SemaDeclCXX.cpp revision 81201626aa08bcc9d05c8b3c6a1d38a7d577c3ce
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If the parameter doesn't have an identifier then the location
274      // points to the '=' which means that the fixit hint won't remove any
275      // extra spaces between the type and the '='.
276      SourceLocation Begin = NewParam->getLocation();
277      if (NewParam->getIdentifier())
278        Begin = PP.getLocForEndOfToken(Begin);
279
280      Diag(NewParam->getLocation(),
281           diag::err_param_default_argument_redefinition)
282        << NewParam->getDefaultArgRange()
283        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
284                                                        NewParam->getLocEnd()));
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      if (OldParam->hasUninstantiatedDefaultArg())
302        NewParam->setUninstantiatedDefaultArg(
303                                      OldParam->getUninstantiatedDefaultArg());
304      else
305        NewParam->setDefaultArg(OldParam->getDefaultArg());
306    } else if (NewParam->hasDefaultArg()) {
307      if (New->getDescribedFunctionTemplate()) {
308        // Paragraph 4, quoted above, only applies to non-template functions.
309        Diag(NewParam->getLocation(),
310             diag::err_param_default_argument_template_redecl)
311          << NewParam->getDefaultArgRange();
312        Diag(Old->getLocation(), diag::note_template_prev_declaration)
313          << false;
314      } else if (New->getTemplateSpecializationKind()
315                   != TSK_ImplicitInstantiation &&
316                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
317        // C++ [temp.expr.spec]p21:
318        //   Default function arguments shall not be specified in a declaration
319        //   or a definition for one of the following explicit specializations:
320        //     - the explicit specialization of a function template;
321        //     - the explicit specialization of a member function template;
322        //     - the explicit specialization of a member function of a class
323        //       template where the class template specialization to which the
324        //       member function specialization belongs is implicitly
325        //       instantiated.
326        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
327          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
328          << New->getDeclName()
329          << NewParam->getDefaultArgRange();
330      } else if (New->getDeclContext()->isDependentContext()) {
331        // C++ [dcl.fct.default]p6 (DR217):
332        //   Default arguments for a member function of a class template shall
333        //   be specified on the initial declaration of the member function
334        //   within the class template.
335        //
336        // Reading the tea leaves a bit in DR217 and its reference to DR205
337        // leads me to the conclusion that one cannot add default function
338        // arguments for an out-of-line definition of a member function of a
339        // dependent type.
340        int WhichKind = 2;
341        if (CXXRecordDecl *Record
342              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
343          if (Record->getDescribedClassTemplate())
344            WhichKind = 0;
345          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
346            WhichKind = 1;
347          else
348            WhichKind = 2;
349        }
350
351        Diag(NewParam->getLocation(),
352             diag::err_param_default_argument_member_template_redecl)
353          << WhichKind
354          << NewParam->getDefaultArgRange();
355      }
356    }
357  }
358
359  if (CheckEquivalentExceptionSpec(
360          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
361          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        if (!Param->hasUnparsedDefaultArg())
414          Param->getDefaultArg()->Destroy(Context);
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  CXXRecordDecl *CurDecl;
428  if (SS && SS->isSet() && !SS->isInvalid()) {
429    DeclContext *DC = computeDeclContext(*SS, true);
430    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
431  } else
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
433
434  if (CurDecl)
435    return &II == CurDecl->getIdentifier();
436  else
437    return false;
438}
439
440/// \brief Check the validity of a C++ base class specifier.
441///
442/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
443/// and returns NULL otherwise.
444CXXBaseSpecifier *
445Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
446                         SourceRange SpecifierRange,
447                         bool Virtual, AccessSpecifier Access,
448                         QualType BaseType,
449                         SourceLocation BaseLoc) {
450  // C++ [class.union]p1:
451  //   A union shall not have base classes.
452  if (Class->isUnion()) {
453    Diag(Class->getLocation(), diag::err_base_clause_on_union)
454      << SpecifierRange;
455    return 0;
456  }
457
458  if (BaseType->isDependentType())
459    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
460                                Class->getTagKind() == RecordDecl::TK_class,
461                                Access, BaseType);
462
463  // Base specifiers must be record types.
464  if (!BaseType->isRecordType()) {
465    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
466    return 0;
467  }
468
469  // C++ [class.union]p1:
470  //   A union shall not be used as a base class.
471  if (BaseType->isUnionType()) {
472    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
473    return 0;
474  }
475
476  // C++ [class.derived]p2:
477  //   The class-name in a base-specifier shall not be an incompletely
478  //   defined class.
479  if (RequireCompleteType(BaseLoc, BaseType,
480                          PDiag(diag::err_incomplete_base_class)
481                            << SpecifierRange))
482    return 0;
483
484  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
485  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
486  assert(BaseDecl && "Record type has no declaration");
487  BaseDecl = BaseDecl->getDefinition(Context);
488  assert(BaseDecl && "Base type is not incomplete, but has no definition");
489  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
490  assert(CXXBaseDecl && "Base type is not a C++ type");
491
492  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
493  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
494    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
495    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
496      << BaseType;
497    return 0;
498  }
499
500  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
501
502  // Create the base specifier.
503  // FIXME: Allocate via ASTContext?
504  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
505                              Class->getTagKind() == RecordDecl::TK_class,
506                              Access, BaseType);
507}
508
509void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
510                                          const CXXRecordDecl *BaseClass,
511                                          bool BaseIsVirtual) {
512  // A class with a non-empty base class is not empty.
513  // FIXME: Standard ref?
514  if (!BaseClass->isEmpty())
515    Class->setEmpty(false);
516
517  // C++ [class.virtual]p1:
518  //   A class that [...] inherits a virtual function is called a polymorphic
519  //   class.
520  if (BaseClass->isPolymorphic())
521    Class->setPolymorphic(true);
522
523  // C++ [dcl.init.aggr]p1:
524  //   An aggregate is [...] a class with [...] no base classes [...].
525  Class->setAggregate(false);
526
527  // C++ [class]p4:
528  //   A POD-struct is an aggregate class...
529  Class->setPOD(false);
530
531  if (BaseIsVirtual) {
532    // C++ [class.ctor]p5:
533    //   A constructor is trivial if its class has no virtual base classes.
534    Class->setHasTrivialConstructor(false);
535
536    // C++ [class.copy]p6:
537    //   A copy constructor is trivial if its class has no virtual base classes.
538    Class->setHasTrivialCopyConstructor(false);
539
540    // C++ [class.copy]p11:
541    //   A copy assignment operator is trivial if its class has no virtual
542    //   base classes.
543    Class->setHasTrivialCopyAssignment(false);
544
545    // C++0x [meta.unary.prop] is_empty:
546    //    T is a class type, but not a union type, with ... no virtual base
547    //    classes
548    Class->setEmpty(false);
549  } else {
550    // C++ [class.ctor]p5:
551    //   A constructor is trivial if all the direct base classes of its
552    //   class have trivial constructors.
553    if (!BaseClass->hasTrivialConstructor())
554      Class->setHasTrivialConstructor(false);
555
556    // C++ [class.copy]p6:
557    //   A copy constructor is trivial if all the direct base classes of its
558    //   class have trivial copy constructors.
559    if (!BaseClass->hasTrivialCopyConstructor())
560      Class->setHasTrivialCopyConstructor(false);
561
562    // C++ [class.copy]p11:
563    //   A copy assignment operator is trivial if all the direct base classes
564    //   of its class have trivial copy assignment operators.
565    if (!BaseClass->hasTrivialCopyAssignment())
566      Class->setHasTrivialCopyAssignment(false);
567  }
568
569  // C++ [class.ctor]p3:
570  //   A destructor is trivial if all the direct base classes of its class
571  //   have trivial destructors.
572  if (!BaseClass->hasTrivialDestructor())
573    Class->setHasTrivialDestructor(false);
574}
575
576/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
577/// one entry in the base class list of a class specifier, for
578/// example:
579///    class foo : public bar, virtual private baz {
580/// 'public bar' and 'virtual private baz' are each base-specifiers.
581Sema::BaseResult
582Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
583                         bool Virtual, AccessSpecifier Access,
584                         TypeTy *basetype, SourceLocation BaseLoc) {
585  if (!classdecl)
586    return true;
587
588  AdjustDeclIfTemplate(classdecl);
589  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
590  QualType BaseType = GetTypeFromParser(basetype);
591  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
592                                                      Virtual, Access,
593                                                      BaseType, BaseLoc))
594    return BaseSpec;
595
596  return true;
597}
598
599/// \brief Performs the actual work of attaching the given base class
600/// specifiers to a C++ class.
601bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
602                                unsigned NumBases) {
603 if (NumBases == 0)
604    return false;
605
606  // Used to keep track of which base types we have already seen, so
607  // that we can properly diagnose redundant direct base types. Note
608  // that the key is always the unqualified canonical type of the base
609  // class.
610  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
611
612  // Copy non-redundant base specifiers into permanent storage.
613  unsigned NumGoodBases = 0;
614  bool Invalid = false;
615  for (unsigned idx = 0; idx < NumBases; ++idx) {
616    QualType NewBaseType
617      = Context.getCanonicalType(Bases[idx]->getType());
618    NewBaseType = NewBaseType.getLocalUnqualifiedType();
619
620    if (KnownBaseTypes[NewBaseType]) {
621      // C++ [class.mi]p3:
622      //   A class shall not be specified as a direct base class of a
623      //   derived class more than once.
624      Diag(Bases[idx]->getSourceRange().getBegin(),
625           diag::err_duplicate_base_class)
626        << KnownBaseTypes[NewBaseType]->getType()
627        << Bases[idx]->getSourceRange();
628
629      // Delete the duplicate base class specifier; we're going to
630      // overwrite its pointer later.
631      Context.Deallocate(Bases[idx]);
632
633      Invalid = true;
634    } else {
635      // Okay, add this new base class.
636      KnownBaseTypes[NewBaseType] = Bases[idx];
637      Bases[NumGoodBases++] = Bases[idx];
638    }
639  }
640
641  // Attach the remaining base class specifiers to the derived class.
642  Class->setBases(Context, Bases, NumGoodBases);
643
644  // Delete the remaining (good) base class specifiers, since their
645  // data has been copied into the CXXRecordDecl.
646  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
647    Context.Deallocate(Bases[idx]);
648
649  return Invalid;
650}
651
652/// ActOnBaseSpecifiers - Attach the given base specifiers to the
653/// class, after checking whether there are any duplicate base
654/// classes.
655void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
656                               unsigned NumBases) {
657  if (!ClassDecl || !Bases || !NumBases)
658    return;
659
660  AdjustDeclIfTemplate(ClassDecl);
661  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
662                       (CXXBaseSpecifier**)(Bases), NumBases);
663}
664
665/// \brief Determine whether the type \p Derived is a C++ class that is
666/// derived from the type \p Base.
667bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
668  if (!getLangOptions().CPlusPlus)
669    return false;
670
671  const RecordType *DerivedRT = Derived->getAs<RecordType>();
672  if (!DerivedRT)
673    return false;
674
675  const RecordType *BaseRT = Base->getAs<RecordType>();
676  if (!BaseRT)
677    return false;
678
679  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
680  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
681  return DerivedRD->isDerivedFrom(BaseRD);
682}
683
684/// \brief Determine whether the type \p Derived is a C++ class that is
685/// derived from the type \p Base.
686bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
687  if (!getLangOptions().CPlusPlus)
688    return false;
689
690  const RecordType *DerivedRT = Derived->getAs<RecordType>();
691  if (!DerivedRT)
692    return false;
693
694  const RecordType *BaseRT = Base->getAs<RecordType>();
695  if (!BaseRT)
696    return false;
697
698  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
699  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
700  return DerivedRD->isDerivedFrom(BaseRD, Paths);
701}
702
703/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
704/// conversion (where Derived and Base are class types) is
705/// well-formed, meaning that the conversion is unambiguous (and
706/// that all of the base classes are accessible). Returns true
707/// and emits a diagnostic if the code is ill-formed, returns false
708/// otherwise. Loc is the location where this routine should point to
709/// if there is an error, and Range is the source range to highlight
710/// if there is an error.
711bool
712Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
713                                   unsigned InaccessibleBaseID,
714                                   unsigned AmbigiousBaseConvID,
715                                   SourceLocation Loc, SourceRange Range,
716                                   DeclarationName Name) {
717  // First, determine whether the path from Derived to Base is
718  // ambiguous. This is slightly more expensive than checking whether
719  // the Derived to Base conversion exists, because here we need to
720  // explore multiple paths to determine if there is an ambiguity.
721  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
722                     /*DetectVirtual=*/false);
723  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
724  assert(DerivationOkay &&
725         "Can only be used with a derived-to-base conversion");
726  (void)DerivationOkay;
727
728  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
729    if (InaccessibleBaseID == 0)
730      return false;
731    // Check that the base class can be accessed.
732    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
733                                Name);
734  }
735
736  // We know that the derived-to-base conversion is ambiguous, and
737  // we're going to produce a diagnostic. Perform the derived-to-base
738  // search just one more time to compute all of the possible paths so
739  // that we can print them out. This is more expensive than any of
740  // the previous derived-to-base checks we've done, but at this point
741  // performance isn't as much of an issue.
742  Paths.clear();
743  Paths.setRecordingPaths(true);
744  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
745  assert(StillOkay && "Can only be used with a derived-to-base conversion");
746  (void)StillOkay;
747
748  // Build up a textual representation of the ambiguous paths, e.g.,
749  // D -> B -> A, that will be used to illustrate the ambiguous
750  // conversions in the diagnostic. We only print one of the paths
751  // to each base class subobject.
752  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
753
754  Diag(Loc, AmbigiousBaseConvID)
755  << Derived << Base << PathDisplayStr << Range << Name;
756  return true;
757}
758
759bool
760Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
761                                   SourceLocation Loc, SourceRange Range,
762                                   bool IgnoreAccess) {
763  return CheckDerivedToBaseConversion(Derived, Base,
764                                      IgnoreAccess ? 0 :
765                                        diag::err_conv_to_inaccessible_base,
766                                      diag::err_ambiguous_derived_to_base_conv,
767                                      Loc, Range, DeclarationName());
768}
769
770
771/// @brief Builds a string representing ambiguous paths from a
772/// specific derived class to different subobjects of the same base
773/// class.
774///
775/// This function builds a string that can be used in error messages
776/// to show the different paths that one can take through the
777/// inheritance hierarchy to go from the derived class to different
778/// subobjects of a base class. The result looks something like this:
779/// @code
780/// struct D -> struct B -> struct A
781/// struct D -> struct C -> struct A
782/// @endcode
783std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
784  std::string PathDisplayStr;
785  std::set<unsigned> DisplayedPaths;
786  for (CXXBasePaths::paths_iterator Path = Paths.begin();
787       Path != Paths.end(); ++Path) {
788    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
789      // We haven't displayed a path to this particular base
790      // class subobject yet.
791      PathDisplayStr += "\n    ";
792      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
793      for (CXXBasePath::const_iterator Element = Path->begin();
794           Element != Path->end(); ++Element)
795        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
796    }
797  }
798
799  return PathDisplayStr;
800}
801
802//===----------------------------------------------------------------------===//
803// C++ class member Handling
804//===----------------------------------------------------------------------===//
805
806/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
807/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
808/// bitfield width if there is one and 'InitExpr' specifies the initializer if
809/// any.
810Sema::DeclPtrTy
811Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
812                               MultiTemplateParamsArg TemplateParameterLists,
813                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
814                               bool Deleted) {
815  const DeclSpec &DS = D.getDeclSpec();
816  DeclarationName Name = GetNameForDeclarator(D);
817  Expr *BitWidth = static_cast<Expr*>(BW);
818  Expr *Init = static_cast<Expr*>(InitExpr);
819  SourceLocation Loc = D.getIdentifierLoc();
820
821  bool isFunc = D.isFunctionDeclarator();
822
823  assert(!DS.isFriendSpecified());
824
825  // C++ 9.2p6: A member shall not be declared to have automatic storage
826  // duration (auto, register) or with the extern storage-class-specifier.
827  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
828  // data members and cannot be applied to names declared const or static,
829  // and cannot be applied to reference members.
830  switch (DS.getStorageClassSpec()) {
831    case DeclSpec::SCS_unspecified:
832    case DeclSpec::SCS_typedef:
833    case DeclSpec::SCS_static:
834      // FALL THROUGH.
835      break;
836    case DeclSpec::SCS_mutable:
837      if (isFunc) {
838        if (DS.getStorageClassSpecLoc().isValid())
839          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
840        else
841          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
842
843        // FIXME: It would be nicer if the keyword was ignored only for this
844        // declarator. Otherwise we could get follow-up errors.
845        D.getMutableDeclSpec().ClearStorageClassSpecs();
846      } else {
847        QualType T = GetTypeForDeclarator(D, S);
848        diag::kind err = static_cast<diag::kind>(0);
849        if (T->isReferenceType())
850          err = diag::err_mutable_reference;
851        else if (T.isConstQualified())
852          err = diag::err_mutable_const;
853        if (err != 0) {
854          if (DS.getStorageClassSpecLoc().isValid())
855            Diag(DS.getStorageClassSpecLoc(), err);
856          else
857            Diag(DS.getThreadSpecLoc(), err);
858          // FIXME: It would be nicer if the keyword was ignored only for this
859          // declarator. Otherwise we could get follow-up errors.
860          D.getMutableDeclSpec().ClearStorageClassSpecs();
861        }
862      }
863      break;
864    default:
865      if (DS.getStorageClassSpecLoc().isValid())
866        Diag(DS.getStorageClassSpecLoc(),
867             diag::err_storageclass_invalid_for_member);
868      else
869        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
870      D.getMutableDeclSpec().ClearStorageClassSpecs();
871  }
872
873  if (!isFunc &&
874      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
875      D.getNumTypeObjects() == 0) {
876    // Check also for this case:
877    //
878    // typedef int f();
879    // f a;
880    //
881    QualType TDType = GetTypeFromParser(DS.getTypeRep());
882    isFunc = TDType->isFunctionType();
883  }
884
885  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
886                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
887                      !isFunc);
888
889  Decl *Member;
890  if (isInstField) {
891    // FIXME: Check for template parameters!
892    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
893                         AS);
894    assert(Member && "HandleField never returns null");
895  } else {
896    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
897               .getAs<Decl>();
898    if (!Member) {
899      if (BitWidth) DeleteExpr(BitWidth);
900      return DeclPtrTy();
901    }
902
903    // Non-instance-fields can't have a bitfield.
904    if (BitWidth) {
905      if (Member->isInvalidDecl()) {
906        // don't emit another diagnostic.
907      } else if (isa<VarDecl>(Member)) {
908        // C++ 9.6p3: A bit-field shall not be a static member.
909        // "static member 'A' cannot be a bit-field"
910        Diag(Loc, diag::err_static_not_bitfield)
911          << Name << BitWidth->getSourceRange();
912      } else if (isa<TypedefDecl>(Member)) {
913        // "typedef member 'x' cannot be a bit-field"
914        Diag(Loc, diag::err_typedef_not_bitfield)
915          << Name << BitWidth->getSourceRange();
916      } else {
917        // A function typedef ("typedef int f(); f a;").
918        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
919        Diag(Loc, diag::err_not_integral_type_bitfield)
920          << Name << cast<ValueDecl>(Member)->getType()
921          << BitWidth->getSourceRange();
922      }
923
924      DeleteExpr(BitWidth);
925      BitWidth = 0;
926      Member->setInvalidDecl();
927    }
928
929    Member->setAccess(AS);
930
931    // If we have declared a member function template, set the access of the
932    // templated declaration as well.
933    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
934      FunTmpl->getTemplatedDecl()->setAccess(AS);
935  }
936
937  assert((Name || isInstField) && "No identifier for non-field ?");
938
939  if (Init)
940    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
941  if (Deleted) // FIXME: Source location is not very good.
942    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
943
944  if (isInstField) {
945    FieldCollector->Add(cast<FieldDecl>(Member));
946    return DeclPtrTy();
947  }
948  return DeclPtrTy::make(Member);
949}
950
951/// \brief Find the direct and/or virtual base specifiers that
952/// correspond to the given base type, for use in base initialization
953/// within a constructor.
954static bool FindBaseInitializer(Sema &SemaRef,
955                                CXXRecordDecl *ClassDecl,
956                                QualType BaseType,
957                                const CXXBaseSpecifier *&DirectBaseSpec,
958                                const CXXBaseSpecifier *&VirtualBaseSpec) {
959  // First, check for a direct base class.
960  DirectBaseSpec = 0;
961  for (CXXRecordDecl::base_class_const_iterator Base
962         = ClassDecl->bases_begin();
963       Base != ClassDecl->bases_end(); ++Base) {
964    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
965      // We found a direct base of this type. That's what we're
966      // initializing.
967      DirectBaseSpec = &*Base;
968      break;
969    }
970  }
971
972  // Check for a virtual base class.
973  // FIXME: We might be able to short-circuit this if we know in advance that
974  // there are no virtual bases.
975  VirtualBaseSpec = 0;
976  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
977    // We haven't found a base yet; search the class hierarchy for a
978    // virtual base class.
979    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
980                       /*DetectVirtual=*/false);
981    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
982                              BaseType, Paths)) {
983      for (CXXBasePaths::paths_iterator Path = Paths.begin();
984           Path != Paths.end(); ++Path) {
985        if (Path->back().Base->isVirtual()) {
986          VirtualBaseSpec = Path->back().Base;
987          break;
988        }
989      }
990    }
991  }
992
993  return DirectBaseSpec || VirtualBaseSpec;
994}
995
996/// ActOnMemInitializer - Handle a C++ member initializer.
997Sema::MemInitResult
998Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
999                          Scope *S,
1000                          const CXXScopeSpec &SS,
1001                          IdentifierInfo *MemberOrBase,
1002                          TypeTy *TemplateTypeTy,
1003                          SourceLocation IdLoc,
1004                          SourceLocation LParenLoc,
1005                          ExprTy **Args, unsigned NumArgs,
1006                          SourceLocation *CommaLocs,
1007                          SourceLocation RParenLoc) {
1008  if (!ConstructorD)
1009    return true;
1010
1011  AdjustDeclIfTemplate(ConstructorD);
1012
1013  CXXConstructorDecl *Constructor
1014    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1015  if (!Constructor) {
1016    // The user wrote a constructor initializer on a function that is
1017    // not a C++ constructor. Ignore the error for now, because we may
1018    // have more member initializers coming; we'll diagnose it just
1019    // once in ActOnMemInitializers.
1020    return true;
1021  }
1022
1023  CXXRecordDecl *ClassDecl = Constructor->getParent();
1024
1025  // C++ [class.base.init]p2:
1026  //   Names in a mem-initializer-id are looked up in the scope of the
1027  //   constructor’s class and, if not found in that scope, are looked
1028  //   up in the scope containing the constructor’s
1029  //   definition. [Note: if the constructor’s class contains a member
1030  //   with the same name as a direct or virtual base class of the
1031  //   class, a mem-initializer-id naming the member or base class and
1032  //   composed of a single identifier refers to the class member. A
1033  //   mem-initializer-id for the hidden base class may be specified
1034  //   using a qualified name. ]
1035  if (!SS.getScopeRep() && !TemplateTypeTy) {
1036    // Look for a member, first.
1037    FieldDecl *Member = 0;
1038    DeclContext::lookup_result Result
1039      = ClassDecl->lookup(MemberOrBase);
1040    if (Result.first != Result.second)
1041      Member = dyn_cast<FieldDecl>(*Result.first);
1042
1043    // FIXME: Handle members of an anonymous union.
1044
1045    if (Member)
1046      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1047                                    LParenLoc, RParenLoc);
1048  }
1049  // It didn't name a member, so see if it names a class.
1050  QualType BaseType;
1051  TypeSourceInfo *TInfo = 0;
1052
1053  if (TemplateTypeTy) {
1054    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1055  } else {
1056    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1057    LookupParsedName(R, S, &SS);
1058
1059    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1060    if (!TyD) {
1061      if (R.isAmbiguous()) return true;
1062
1063      // If no results were found, try to correct typos.
1064      if (R.empty() &&
1065          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1066        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1067          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1068            // We have found a non-static data member with a similar
1069            // name to what was typed; complain and initialize that
1070            // member.
1071            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1072              << MemberOrBase << true << R.getLookupName()
1073              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1074                                               R.getLookupName().getAsString());
1075            Diag(Member->getLocation(), diag::note_previous_decl)
1076              << Member->getDeclName();
1077
1078            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1079                                          LParenLoc, RParenLoc);
1080          }
1081        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1082          const CXXBaseSpecifier *DirectBaseSpec;
1083          const CXXBaseSpecifier *VirtualBaseSpec;
1084          if (FindBaseInitializer(*this, ClassDecl,
1085                                  Context.getTypeDeclType(Type),
1086                                  DirectBaseSpec, VirtualBaseSpec)) {
1087            // We have found a direct or virtual base class with a
1088            // similar name to what was typed; complain and initialize
1089            // that base class.
1090            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1091              << MemberOrBase << false << R.getLookupName()
1092              << CodeModificationHint::CreateReplacement(R.getNameLoc(),
1093                                               R.getLookupName().getAsString());
1094
1095            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1096                                                             : VirtualBaseSpec;
1097            Diag(BaseSpec->getSourceRange().getBegin(),
1098                 diag::note_base_class_specified_here)
1099              << BaseSpec->getType()
1100              << BaseSpec->getSourceRange();
1101
1102            TyD = Type;
1103          }
1104        }
1105      }
1106
1107      if (!TyD) {
1108        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1109          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1110        return true;
1111      }
1112    }
1113
1114    BaseType = Context.getTypeDeclType(TyD);
1115    if (SS.isSet()) {
1116      NestedNameSpecifier *Qualifier =
1117        static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1118
1119      // FIXME: preserve source range information
1120      BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1121    }
1122  }
1123
1124  if (!TInfo)
1125    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1126
1127  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1128                              LParenLoc, RParenLoc, ClassDecl);
1129}
1130
1131/// Checks an initializer expression for use of uninitialized fields, such as
1132/// containing the field that is being initialized. Returns true if there is an
1133/// uninitialized field was used an updates the SourceLocation parameter; false
1134/// otherwise.
1135static bool InitExprContainsUninitializedFields(const Stmt* S,
1136                                                const FieldDecl* LhsField,
1137                                                SourceLocation* L) {
1138  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1139  if (ME) {
1140    const NamedDecl* RhsField = ME->getMemberDecl();
1141    if (RhsField == LhsField) {
1142      // Initializing a field with itself. Throw a warning.
1143      // But wait; there are exceptions!
1144      // Exception #1:  The field may not belong to this record.
1145      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1146      const Expr* base = ME->getBase();
1147      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1148        // Even though the field matches, it does not belong to this record.
1149        return false;
1150      }
1151      // None of the exceptions triggered; return true to indicate an
1152      // uninitialized field was used.
1153      *L = ME->getMemberLoc();
1154      return true;
1155    }
1156  }
1157  bool found = false;
1158  for (Stmt::const_child_iterator it = S->child_begin();
1159       it != S->child_end() && found == false;
1160       ++it) {
1161    if (isa<CallExpr>(S)) {
1162      // Do not descend into function calls or constructors, as the use
1163      // of an uninitialized field may be valid. One would have to inspect
1164      // the contents of the function/ctor to determine if it is safe or not.
1165      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1166      // may be safe, depending on what the function/ctor does.
1167      continue;
1168    }
1169    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1170  }
1171  return found;
1172}
1173
1174Sema::MemInitResult
1175Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1176                             unsigned NumArgs, SourceLocation IdLoc,
1177                             SourceLocation LParenLoc,
1178                             SourceLocation RParenLoc) {
1179  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1180  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1181  ExprTemporaries.clear();
1182
1183  // Diagnose value-uses of fields to initialize themselves, e.g.
1184  //   foo(foo)
1185  // where foo is not also a parameter to the constructor.
1186  // TODO: implement -Wuninitialized and fold this into that framework.
1187  for (unsigned i = 0; i < NumArgs; ++i) {
1188    SourceLocation L;
1189    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1190      // FIXME: Return true in the case when other fields are used before being
1191      // uninitialized. For example, let this field be the i'th field. When
1192      // initializing the i'th field, throw a warning if any of the >= i'th
1193      // fields are used, as they are not yet initialized.
1194      // Right now we are only handling the case where the i'th field uses
1195      // itself in its initializer.
1196      Diag(L, diag::warn_field_is_uninit);
1197    }
1198  }
1199
1200  bool HasDependentArg = false;
1201  for (unsigned i = 0; i < NumArgs; i++)
1202    HasDependentArg |= Args[i]->isTypeDependent();
1203
1204  CXXConstructorDecl *C = 0;
1205  QualType FieldType = Member->getType();
1206  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1207    FieldType = Array->getElementType();
1208  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1209  if (FieldType->isDependentType()) {
1210    // Can't check init for dependent type.
1211  } else if (FieldType->isRecordType()) {
1212    // Member is a record (struct/union/class), so pass the initializer
1213    // arguments down to the record's constructor.
1214    if (!HasDependentArg) {
1215      C = PerformInitializationByConstructor(FieldType,
1216                                             MultiExprArg(*this,
1217                                                          (void**)Args,
1218                                                          NumArgs),
1219                                             IdLoc,
1220                                             SourceRange(IdLoc, RParenLoc),
1221                                             Member->getDeclName(),
1222                  InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc),
1223                                             ConstructorArgs);
1224
1225      if (C) {
1226        // Take over the constructor arguments as our own.
1227        NumArgs = ConstructorArgs.size();
1228        Args = (Expr **)ConstructorArgs.take();
1229      }
1230    }
1231  } else if (NumArgs != 1 && NumArgs != 0) {
1232    // The member type is not a record type (or an array of record
1233    // types), so it can be only be default- or copy-initialized.
1234    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1235                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1236  } else if (!HasDependentArg) {
1237    Expr *NewExp;
1238    if (NumArgs == 0) {
1239      if (FieldType->isReferenceType()) {
1240        Diag(IdLoc, diag::err_null_intialized_reference_member)
1241              << Member->getDeclName();
1242        return Diag(Member->getLocation(), diag::note_declared_at);
1243      }
1244      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1245      NumArgs = 1;
1246    }
1247    else
1248      NewExp = (Expr*)Args[0];
1249    if (!Member->isInvalidDecl() &&
1250        PerformCopyInitialization(NewExp, FieldType, AA_Passing))
1251      return true;
1252    Args[0] = NewExp;
1253  }
1254
1255  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1256  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1257  ExprTemporaries.clear();
1258
1259  // FIXME: Perform direct initialization of the member.
1260  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1261                                                  C, LParenLoc, (Expr **)Args,
1262                                                  NumArgs, RParenLoc);
1263}
1264
1265Sema::MemInitResult
1266Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1267                           Expr **Args, unsigned NumArgs,
1268                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1269                           CXXRecordDecl *ClassDecl) {
1270  bool HasDependentArg = false;
1271  for (unsigned i = 0; i < NumArgs; i++)
1272    HasDependentArg |= Args[i]->isTypeDependent();
1273
1274  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1275  if (!BaseType->isDependentType()) {
1276    if (!BaseType->isRecordType())
1277      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1278        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1279
1280    // C++ [class.base.init]p2:
1281    //   [...] Unless the mem-initializer-id names a nonstatic data
1282    //   member of the constructor’s class or a direct or virtual base
1283    //   of that class, the mem-initializer is ill-formed. A
1284    //   mem-initializer-list can initialize a base class using any
1285    //   name that denotes that base class type.
1286
1287    // Check for direct and virtual base classes.
1288    const CXXBaseSpecifier *DirectBaseSpec = 0;
1289    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1290    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1291                        VirtualBaseSpec);
1292
1293    // C++ [base.class.init]p2:
1294    //   If a mem-initializer-id is ambiguous because it designates both
1295    //   a direct non-virtual base class and an inherited virtual base
1296    //   class, the mem-initializer is ill-formed.
1297    if (DirectBaseSpec && VirtualBaseSpec)
1298      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1299        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1300    // C++ [base.class.init]p2:
1301    // Unless the mem-initializer-id names a nonstatic data membeer of the
1302    // constructor's class ot a direst or virtual base of that class, the
1303    // mem-initializer is ill-formed.
1304    if (!DirectBaseSpec && !VirtualBaseSpec)
1305      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1306        << BaseType << ClassDecl->getNameAsCString()
1307        << BaseTInfo->getTypeLoc().getSourceRange();
1308  }
1309
1310  CXXConstructorDecl *C = 0;
1311  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1312  if (!BaseType->isDependentType() && !HasDependentArg) {
1313    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1314                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1315
1316    C = PerformInitializationByConstructor(BaseType,
1317                                           MultiExprArg(*this,
1318                                                        (void**)Args, NumArgs),
1319                                           BaseLoc,
1320                                           SourceRange(BaseLoc, RParenLoc),
1321                                           Name,
1322                InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc),
1323                                           ConstructorArgs);
1324    if (C) {
1325      // Take over the constructor arguments as our own.
1326      NumArgs = ConstructorArgs.size();
1327      Args = (Expr **)ConstructorArgs.take();
1328    }
1329  }
1330
1331  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1332  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1333  ExprTemporaries.clear();
1334
1335  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C,
1336                                                  LParenLoc, (Expr **)Args,
1337                                                  NumArgs, RParenLoc);
1338}
1339
1340bool
1341Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1342                              CXXBaseOrMemberInitializer **Initializers,
1343                              unsigned NumInitializers,
1344                              bool IsImplicitConstructor) {
1345  // We need to build the initializer AST according to order of construction
1346  // and not what user specified in the Initializers list.
1347  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1348  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1349  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1350  bool HasDependentBaseInit = false;
1351  bool HadError = false;
1352
1353  for (unsigned i = 0; i < NumInitializers; i++) {
1354    CXXBaseOrMemberInitializer *Member = Initializers[i];
1355    if (Member->isBaseInitializer()) {
1356      if (Member->getBaseClass()->isDependentType())
1357        HasDependentBaseInit = true;
1358      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1359    } else {
1360      AllBaseFields[Member->getMember()] = Member;
1361    }
1362  }
1363
1364  if (HasDependentBaseInit) {
1365    // FIXME. This does not preserve the ordering of the initializers.
1366    // Try (with -Wreorder)
1367    // template<class X> struct A {};
1368    // template<class X> struct B : A<X> {
1369    //   B() : x1(10), A<X>() {}
1370    //   int x1;
1371    // };
1372    // B<int> x;
1373    // On seeing one dependent type, we should essentially exit this routine
1374    // while preserving user-declared initializer list. When this routine is
1375    // called during instantiatiation process, this routine will rebuild the
1376    // ordered initializer list correctly.
1377
1378    // If we have a dependent base initialization, we can't determine the
1379    // association between initializers and bases; just dump the known
1380    // initializers into the list, and don't try to deal with other bases.
1381    for (unsigned i = 0; i < NumInitializers; i++) {
1382      CXXBaseOrMemberInitializer *Member = Initializers[i];
1383      if (Member->isBaseInitializer())
1384        AllToInit.push_back(Member);
1385    }
1386  } else {
1387    // Push virtual bases before others.
1388    for (CXXRecordDecl::base_class_iterator VBase =
1389         ClassDecl->vbases_begin(),
1390         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1391      if (VBase->getType()->isDependentType())
1392        continue;
1393      if (CXXBaseOrMemberInitializer *Value
1394            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1395        AllToInit.push_back(Value);
1396      }
1397      else {
1398        CXXRecordDecl *VBaseDecl =
1399          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1400        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1401        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1402        if (!Ctor) {
1403          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1404            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1405            << 0 << VBase->getType();
1406          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1407            << Context.getTagDeclType(VBaseDecl);
1408          HadError = true;
1409          continue;
1410        }
1411
1412        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1413        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1414                                    Constructor->getLocation(), CtorArgs))
1415          continue;
1416
1417        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1418
1419        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1420        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1421        // necessary.
1422        // FIXME: Is there any better source-location information we can give?
1423        ExprTemporaries.clear();
1424        CXXBaseOrMemberInitializer *Member =
1425          new (Context) CXXBaseOrMemberInitializer(Context,
1426                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1427                                                              SourceLocation()),
1428                                                   Ctor,
1429                                                   SourceLocation(),
1430                                                   CtorArgs.takeAs<Expr>(),
1431                                                   CtorArgs.size(),
1432                                                   SourceLocation());
1433        AllToInit.push_back(Member);
1434      }
1435    }
1436
1437    for (CXXRecordDecl::base_class_iterator Base =
1438         ClassDecl->bases_begin(),
1439         E = ClassDecl->bases_end(); Base != E; ++Base) {
1440      // Virtuals are in the virtual base list and already constructed.
1441      if (Base->isVirtual())
1442        continue;
1443      // Skip dependent types.
1444      if (Base->getType()->isDependentType())
1445        continue;
1446      if (CXXBaseOrMemberInitializer *Value
1447            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1448        AllToInit.push_back(Value);
1449      }
1450      else {
1451        CXXRecordDecl *BaseDecl =
1452          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1453        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1454         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1455        if (!Ctor) {
1456          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1457            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1458            << 0 << Base->getType();
1459          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1460            << Context.getTagDeclType(BaseDecl);
1461          HadError = true;
1462          continue;
1463        }
1464
1465        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1466        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1467                                     Constructor->getLocation(), CtorArgs))
1468          continue;
1469
1470        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1471
1472        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1473        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1474        // necessary.
1475        // FIXME: Is there any better source-location information we can give?
1476        ExprTemporaries.clear();
1477        CXXBaseOrMemberInitializer *Member =
1478          new (Context) CXXBaseOrMemberInitializer(Context,
1479                             Context.getTrivialTypeSourceInfo(Base->getType(),
1480                                                              SourceLocation()),
1481                                                   Ctor,
1482                                                   SourceLocation(),
1483                                                   CtorArgs.takeAs<Expr>(),
1484                                                   CtorArgs.size(),
1485                                                   SourceLocation());
1486        AllToInit.push_back(Member);
1487      }
1488    }
1489  }
1490
1491  // non-static data members.
1492  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1493       E = ClassDecl->field_end(); Field != E; ++Field) {
1494    if ((*Field)->isAnonymousStructOrUnion()) {
1495      if (const RecordType *FieldClassType =
1496          Field->getType()->getAs<RecordType>()) {
1497        CXXRecordDecl *FieldClassDecl
1498          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1499        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1500            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1501          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1502            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1503            // set to the anonymous union data member used in the initializer
1504            // list.
1505            Value->setMember(*Field);
1506            Value->setAnonUnionMember(*FA);
1507            AllToInit.push_back(Value);
1508            break;
1509          }
1510        }
1511      }
1512      continue;
1513    }
1514    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1515      AllToInit.push_back(Value);
1516      continue;
1517    }
1518
1519    if ((*Field)->getType()->isDependentType())
1520      continue;
1521
1522    QualType FT = Context.getBaseElementType((*Field)->getType());
1523    if (const RecordType* RT = FT->getAs<RecordType>()) {
1524      CXXConstructorDecl *Ctor =
1525        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1526      if (!Ctor) {
1527        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1528          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1529          << 1 << (*Field)->getDeclName();
1530        Diag(Field->getLocation(), diag::note_field_decl);
1531        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1532          << Context.getTagDeclType(RT->getDecl());
1533        HadError = true;
1534        continue;
1535      }
1536
1537      if (FT.isConstQualified() && Ctor->isTrivial()) {
1538        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1539          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1540          << 1 << (*Field)->getDeclName();
1541        Diag((*Field)->getLocation(), diag::note_declared_at);
1542        HadError = true;
1543      }
1544
1545      // Don't create initializers for trivial constructors, since they don't
1546      // actually need to be run.
1547      if (Ctor->isTrivial())
1548        continue;
1549
1550      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1551      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1552                                  Constructor->getLocation(), CtorArgs))
1553        continue;
1554
1555      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1556      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1557      ExprTemporaries.clear();
1558      CXXBaseOrMemberInitializer *Member =
1559        new (Context) CXXBaseOrMemberInitializer(Context,
1560                                                 *Field, SourceLocation(),
1561                                                 Ctor,
1562                                                 SourceLocation(),
1563                                                 CtorArgs.takeAs<Expr>(),
1564                                                 CtorArgs.size(),
1565                                                 SourceLocation());
1566
1567      AllToInit.push_back(Member);
1568      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1569    }
1570    else if (FT->isReferenceType()) {
1571      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1572        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1573        << 0 << (*Field)->getDeclName();
1574      Diag((*Field)->getLocation(), diag::note_declared_at);
1575      HadError = true;
1576    }
1577    else if (FT.isConstQualified()) {
1578      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1579        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1580        << 1 << (*Field)->getDeclName();
1581      Diag((*Field)->getLocation(), diag::note_declared_at);
1582      HadError = true;
1583    }
1584  }
1585
1586  NumInitializers = AllToInit.size();
1587  if (NumInitializers > 0) {
1588    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1589    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1590      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1591
1592    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1593    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1594      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1595  }
1596
1597  return HadError;
1598}
1599
1600static void *GetKeyForTopLevelField(FieldDecl *Field) {
1601  // For anonymous unions, use the class declaration as the key.
1602  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1603    if (RT->getDecl()->isAnonymousStructOrUnion())
1604      return static_cast<void *>(RT->getDecl());
1605  }
1606  return static_cast<void *>(Field);
1607}
1608
1609static void *GetKeyForBase(QualType BaseType) {
1610  if (const RecordType *RT = BaseType->getAs<RecordType>())
1611    return (void *)RT;
1612
1613  assert(0 && "Unexpected base type!");
1614  return 0;
1615}
1616
1617static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1618                             bool MemberMaybeAnon = false) {
1619  // For fields injected into the class via declaration of an anonymous union,
1620  // use its anonymous union class declaration as the unique key.
1621  if (Member->isMemberInitializer()) {
1622    FieldDecl *Field = Member->getMember();
1623
1624    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1625    // data member of the class. Data member used in the initializer list is
1626    // in AnonUnionMember field.
1627    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1628      Field = Member->getAnonUnionMember();
1629    if (Field->getDeclContext()->isRecord()) {
1630      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1631      if (RD->isAnonymousStructOrUnion())
1632        return static_cast<void *>(RD);
1633    }
1634    return static_cast<void *>(Field);
1635  }
1636
1637  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1638}
1639
1640/// ActOnMemInitializers - Handle the member initializers for a constructor.
1641void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1642                                SourceLocation ColonLoc,
1643                                MemInitTy **MemInits, unsigned NumMemInits) {
1644  if (!ConstructorDecl)
1645    return;
1646
1647  AdjustDeclIfTemplate(ConstructorDecl);
1648
1649  CXXConstructorDecl *Constructor
1650    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1651
1652  if (!Constructor) {
1653    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1654    return;
1655  }
1656
1657  if (!Constructor->isDependentContext()) {
1658    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1659    bool err = false;
1660    for (unsigned i = 0; i < NumMemInits; i++) {
1661      CXXBaseOrMemberInitializer *Member =
1662        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1663      void *KeyToMember = GetKeyForMember(Member);
1664      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1665      if (!PrevMember) {
1666        PrevMember = Member;
1667        continue;
1668      }
1669      if (FieldDecl *Field = Member->getMember())
1670        Diag(Member->getSourceLocation(),
1671             diag::error_multiple_mem_initialization)
1672          << Field->getNameAsString()
1673          << Member->getSourceRange();
1674      else {
1675        Type *BaseClass = Member->getBaseClass();
1676        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1677        Diag(Member->getSourceLocation(),
1678             diag::error_multiple_base_initialization)
1679          << QualType(BaseClass, 0)
1680          << Member->getSourceRange();
1681      }
1682      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1683        << 0;
1684      err = true;
1685    }
1686
1687    if (err)
1688      return;
1689  }
1690
1691  SetBaseOrMemberInitializers(Constructor,
1692                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1693                      NumMemInits, false);
1694
1695  if (Constructor->isDependentContext())
1696    return;
1697
1698  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1699      Diagnostic::Ignored &&
1700      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1701      Diagnostic::Ignored)
1702    return;
1703
1704  // Also issue warning if order of ctor-initializer list does not match order
1705  // of 1) base class declarations and 2) order of non-static data members.
1706  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1707
1708  CXXRecordDecl *ClassDecl
1709    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1710  // Push virtual bases before others.
1711  for (CXXRecordDecl::base_class_iterator VBase =
1712       ClassDecl->vbases_begin(),
1713       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1714    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1715
1716  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1717       E = ClassDecl->bases_end(); Base != E; ++Base) {
1718    // Virtuals are alread in the virtual base list and are constructed
1719    // first.
1720    if (Base->isVirtual())
1721      continue;
1722    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1723  }
1724
1725  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1726       E = ClassDecl->field_end(); Field != E; ++Field)
1727    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1728
1729  int Last = AllBaseOrMembers.size();
1730  int curIndex = 0;
1731  CXXBaseOrMemberInitializer *PrevMember = 0;
1732  for (unsigned i = 0; i < NumMemInits; i++) {
1733    CXXBaseOrMemberInitializer *Member =
1734      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1735    void *MemberInCtorList = GetKeyForMember(Member, true);
1736
1737    for (; curIndex < Last; curIndex++)
1738      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1739        break;
1740    if (curIndex == Last) {
1741      assert(PrevMember && "Member not in member list?!");
1742      // Initializer as specified in ctor-initializer list is out of order.
1743      // Issue a warning diagnostic.
1744      if (PrevMember->isBaseInitializer()) {
1745        // Diagnostics is for an initialized base class.
1746        Type *BaseClass = PrevMember->getBaseClass();
1747        Diag(PrevMember->getSourceLocation(),
1748             diag::warn_base_initialized)
1749          << QualType(BaseClass, 0);
1750      } else {
1751        FieldDecl *Field = PrevMember->getMember();
1752        Diag(PrevMember->getSourceLocation(),
1753             diag::warn_field_initialized)
1754          << Field->getNameAsString();
1755      }
1756      // Also the note!
1757      if (FieldDecl *Field = Member->getMember())
1758        Diag(Member->getSourceLocation(),
1759             diag::note_fieldorbase_initialized_here) << 0
1760          << Field->getNameAsString();
1761      else {
1762        Type *BaseClass = Member->getBaseClass();
1763        Diag(Member->getSourceLocation(),
1764             diag::note_fieldorbase_initialized_here) << 1
1765          << QualType(BaseClass, 0);
1766      }
1767      for (curIndex = 0; curIndex < Last; curIndex++)
1768        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1769          break;
1770    }
1771    PrevMember = Member;
1772  }
1773}
1774
1775void
1776Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1777  // Ignore dependent destructors.
1778  if (Destructor->isDependentContext())
1779    return;
1780
1781  CXXRecordDecl *ClassDecl = Destructor->getParent();
1782
1783  // Non-static data members.
1784  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1785       E = ClassDecl->field_end(); I != E; ++I) {
1786    FieldDecl *Field = *I;
1787
1788    QualType FieldType = Context.getBaseElementType(Field->getType());
1789
1790    const RecordType* RT = FieldType->getAs<RecordType>();
1791    if (!RT)
1792      continue;
1793
1794    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1795    if (FieldClassDecl->hasTrivialDestructor())
1796      continue;
1797
1798    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1799    MarkDeclarationReferenced(Destructor->getLocation(),
1800                              const_cast<CXXDestructorDecl*>(Dtor));
1801  }
1802
1803  // Bases.
1804  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1805       E = ClassDecl->bases_end(); Base != E; ++Base) {
1806    // Ignore virtual bases.
1807    if (Base->isVirtual())
1808      continue;
1809
1810    // Ignore trivial destructors.
1811    CXXRecordDecl *BaseClassDecl
1812      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1813    if (BaseClassDecl->hasTrivialDestructor())
1814      continue;
1815
1816    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1817    MarkDeclarationReferenced(Destructor->getLocation(),
1818                              const_cast<CXXDestructorDecl*>(Dtor));
1819  }
1820
1821  // Virtual bases.
1822  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1823       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1824    // Ignore trivial destructors.
1825    CXXRecordDecl *BaseClassDecl
1826      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1827    if (BaseClassDecl->hasTrivialDestructor())
1828      continue;
1829
1830    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1831    MarkDeclarationReferenced(Destructor->getLocation(),
1832                              const_cast<CXXDestructorDecl*>(Dtor));
1833  }
1834}
1835
1836void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1837  if (!CDtorDecl)
1838    return;
1839
1840  AdjustDeclIfTemplate(CDtorDecl);
1841
1842  if (CXXConstructorDecl *Constructor
1843      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1844    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1845}
1846
1847namespace {
1848  /// PureVirtualMethodCollector - traverses a class and its superclasses
1849  /// and determines if it has any pure virtual methods.
1850  class PureVirtualMethodCollector {
1851    ASTContext &Context;
1852
1853  public:
1854    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1855
1856  private:
1857    MethodList Methods;
1858
1859    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1860
1861  public:
1862    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1863      : Context(Ctx) {
1864
1865      MethodList List;
1866      Collect(RD, List);
1867
1868      // Copy the temporary list to methods, and make sure to ignore any
1869      // null entries.
1870      for (size_t i = 0, e = List.size(); i != e; ++i) {
1871        if (List[i])
1872          Methods.push_back(List[i]);
1873      }
1874    }
1875
1876    bool empty() const { return Methods.empty(); }
1877
1878    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1879    MethodList::const_iterator methods_end() { return Methods.end(); }
1880  };
1881
1882  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1883                                           MethodList& Methods) {
1884    // First, collect the pure virtual methods for the base classes.
1885    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1886         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1887      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1888        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1889        if (BaseDecl && BaseDecl->isAbstract())
1890          Collect(BaseDecl, Methods);
1891      }
1892    }
1893
1894    // Next, zero out any pure virtual methods that this class overrides.
1895    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1896
1897    MethodSetTy OverriddenMethods;
1898    size_t MethodsSize = Methods.size();
1899
1900    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1901         i != e; ++i) {
1902      // Traverse the record, looking for methods.
1903      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1904        // If the method is pure virtual, add it to the methods vector.
1905        if (MD->isPure())
1906          Methods.push_back(MD);
1907
1908        // Record all the overridden methods in our set.
1909        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1910             E = MD->end_overridden_methods(); I != E; ++I) {
1911          // Keep track of the overridden methods.
1912          OverriddenMethods.insert(*I);
1913        }
1914      }
1915    }
1916
1917    // Now go through the methods and zero out all the ones we know are
1918    // overridden.
1919    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1920      if (OverriddenMethods.count(Methods[i]))
1921        Methods[i] = 0;
1922    }
1923
1924  }
1925}
1926
1927
1928bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1929                                  unsigned DiagID, AbstractDiagSelID SelID,
1930                                  const CXXRecordDecl *CurrentRD) {
1931  if (SelID == -1)
1932    return RequireNonAbstractType(Loc, T,
1933                                  PDiag(DiagID), CurrentRD);
1934  else
1935    return RequireNonAbstractType(Loc, T,
1936                                  PDiag(DiagID) << SelID, CurrentRD);
1937}
1938
1939bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1940                                  const PartialDiagnostic &PD,
1941                                  const CXXRecordDecl *CurrentRD) {
1942  if (!getLangOptions().CPlusPlus)
1943    return false;
1944
1945  if (const ArrayType *AT = Context.getAsArrayType(T))
1946    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1947                                  CurrentRD);
1948
1949  if (const PointerType *PT = T->getAs<PointerType>()) {
1950    // Find the innermost pointer type.
1951    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1952      PT = T;
1953
1954    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1955      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1956  }
1957
1958  const RecordType *RT = T->getAs<RecordType>();
1959  if (!RT)
1960    return false;
1961
1962  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1963  if (!RD)
1964    return false;
1965
1966  if (CurrentRD && CurrentRD != RD)
1967    return false;
1968
1969  if (!RD->isAbstract())
1970    return false;
1971
1972  Diag(Loc, PD) << RD->getDeclName();
1973
1974  // Check if we've already emitted the list of pure virtual functions for this
1975  // class.
1976  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1977    return true;
1978
1979  PureVirtualMethodCollector Collector(Context, RD);
1980
1981  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1982       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1983    const CXXMethodDecl *MD = *I;
1984
1985    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1986      MD->getDeclName();
1987  }
1988
1989  if (!PureVirtualClassDiagSet)
1990    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1991  PureVirtualClassDiagSet->insert(RD);
1992
1993  return true;
1994}
1995
1996namespace {
1997  class AbstractClassUsageDiagnoser
1998    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1999    Sema &SemaRef;
2000    CXXRecordDecl *AbstractClass;
2001
2002    bool VisitDeclContext(const DeclContext *DC) {
2003      bool Invalid = false;
2004
2005      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2006           E = DC->decls_end(); I != E; ++I)
2007        Invalid |= Visit(*I);
2008
2009      return Invalid;
2010    }
2011
2012  public:
2013    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2014      : SemaRef(SemaRef), AbstractClass(ac) {
2015        Visit(SemaRef.Context.getTranslationUnitDecl());
2016    }
2017
2018    bool VisitFunctionDecl(const FunctionDecl *FD) {
2019      if (FD->isThisDeclarationADefinition()) {
2020        // No need to do the check if we're in a definition, because it requires
2021        // that the return/param types are complete.
2022        // because that requires
2023        return VisitDeclContext(FD);
2024      }
2025
2026      // Check the return type.
2027      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2028      bool Invalid =
2029        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2030                                       diag::err_abstract_type_in_decl,
2031                                       Sema::AbstractReturnType,
2032                                       AbstractClass);
2033
2034      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2035           E = FD->param_end(); I != E; ++I) {
2036        const ParmVarDecl *VD = *I;
2037        Invalid |=
2038          SemaRef.RequireNonAbstractType(VD->getLocation(),
2039                                         VD->getOriginalType(),
2040                                         diag::err_abstract_type_in_decl,
2041                                         Sema::AbstractParamType,
2042                                         AbstractClass);
2043      }
2044
2045      return Invalid;
2046    }
2047
2048    bool VisitDecl(const Decl* D) {
2049      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2050        return VisitDeclContext(DC);
2051
2052      return false;
2053    }
2054  };
2055}
2056
2057/// \brief Perform semantic checks on a class definition that has been
2058/// completing, introducing implicitly-declared members, checking for
2059/// abstract types, etc.
2060void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2061  if (!Record || Record->isInvalidDecl())
2062    return;
2063
2064  if (!Record->isDependentType())
2065    AddImplicitlyDeclaredMembersToClass(Record);
2066
2067  if (Record->isInvalidDecl())
2068    return;
2069
2070  if (!Record->isAbstract()) {
2071    // Collect all the pure virtual methods and see if this is an abstract
2072    // class after all.
2073    PureVirtualMethodCollector Collector(Context, Record);
2074    if (!Collector.empty())
2075      Record->setAbstract(true);
2076  }
2077
2078  if (Record->isAbstract())
2079    (void)AbstractClassUsageDiagnoser(*this, Record);
2080}
2081
2082void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2083                                             DeclPtrTy TagDecl,
2084                                             SourceLocation LBrac,
2085                                             SourceLocation RBrac) {
2086  if (!TagDecl)
2087    return;
2088
2089  AdjustDeclIfTemplate(TagDecl);
2090
2091  ActOnFields(S, RLoc, TagDecl,
2092              (DeclPtrTy*)FieldCollector->getCurFields(),
2093              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2094
2095  CheckCompletedCXXClass(
2096                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2097}
2098
2099/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2100/// special functions, such as the default constructor, copy
2101/// constructor, or destructor, to the given C++ class (C++
2102/// [special]p1).  This routine can only be executed just before the
2103/// definition of the class is complete.
2104void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2105  CanQualType ClassType
2106    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2107
2108  // FIXME: Implicit declarations have exception specifications, which are
2109  // the union of the specifications of the implicitly called functions.
2110
2111  if (!ClassDecl->hasUserDeclaredConstructor()) {
2112    // C++ [class.ctor]p5:
2113    //   A default constructor for a class X is a constructor of class X
2114    //   that can be called without an argument. If there is no
2115    //   user-declared constructor for class X, a default constructor is
2116    //   implicitly declared. An implicitly-declared default constructor
2117    //   is an inline public member of its class.
2118    DeclarationName Name
2119      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2120    CXXConstructorDecl *DefaultCon =
2121      CXXConstructorDecl::Create(Context, ClassDecl,
2122                                 ClassDecl->getLocation(), Name,
2123                                 Context.getFunctionType(Context.VoidTy,
2124                                                         0, 0, false, 0),
2125                                 /*TInfo=*/0,
2126                                 /*isExplicit=*/false,
2127                                 /*isInline=*/true,
2128                                 /*isImplicitlyDeclared=*/true);
2129    DefaultCon->setAccess(AS_public);
2130    DefaultCon->setImplicit();
2131    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2132    ClassDecl->addDecl(DefaultCon);
2133  }
2134
2135  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2136    // C++ [class.copy]p4:
2137    //   If the class definition does not explicitly declare a copy
2138    //   constructor, one is declared implicitly.
2139
2140    // C++ [class.copy]p5:
2141    //   The implicitly-declared copy constructor for a class X will
2142    //   have the form
2143    //
2144    //       X::X(const X&)
2145    //
2146    //   if
2147    bool HasConstCopyConstructor = true;
2148
2149    //     -- each direct or virtual base class B of X has a copy
2150    //        constructor whose first parameter is of type const B& or
2151    //        const volatile B&, and
2152    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2153         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2154      const CXXRecordDecl *BaseClassDecl
2155        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2156      HasConstCopyConstructor
2157        = BaseClassDecl->hasConstCopyConstructor(Context);
2158    }
2159
2160    //     -- for all the nonstatic data members of X that are of a
2161    //        class type M (or array thereof), each such class type
2162    //        has a copy constructor whose first parameter is of type
2163    //        const M& or const volatile M&.
2164    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2165         HasConstCopyConstructor && Field != ClassDecl->field_end();
2166         ++Field) {
2167      QualType FieldType = (*Field)->getType();
2168      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2169        FieldType = Array->getElementType();
2170      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2171        const CXXRecordDecl *FieldClassDecl
2172          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2173        HasConstCopyConstructor
2174          = FieldClassDecl->hasConstCopyConstructor(Context);
2175      }
2176    }
2177
2178    //   Otherwise, the implicitly declared copy constructor will have
2179    //   the form
2180    //
2181    //       X::X(X&)
2182    QualType ArgType = ClassType;
2183    if (HasConstCopyConstructor)
2184      ArgType = ArgType.withConst();
2185    ArgType = Context.getLValueReferenceType(ArgType);
2186
2187    //   An implicitly-declared copy constructor is an inline public
2188    //   member of its class.
2189    DeclarationName Name
2190      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2191    CXXConstructorDecl *CopyConstructor
2192      = CXXConstructorDecl::Create(Context, ClassDecl,
2193                                   ClassDecl->getLocation(), Name,
2194                                   Context.getFunctionType(Context.VoidTy,
2195                                                           &ArgType, 1,
2196                                                           false, 0),
2197                                   /*TInfo=*/0,
2198                                   /*isExplicit=*/false,
2199                                   /*isInline=*/true,
2200                                   /*isImplicitlyDeclared=*/true);
2201    CopyConstructor->setAccess(AS_public);
2202    CopyConstructor->setImplicit();
2203    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2204
2205    // Add the parameter to the constructor.
2206    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2207                                                 ClassDecl->getLocation(),
2208                                                 /*IdentifierInfo=*/0,
2209                                                 ArgType, /*TInfo=*/0,
2210                                                 VarDecl::None, 0);
2211    CopyConstructor->setParams(Context, &FromParam, 1);
2212    ClassDecl->addDecl(CopyConstructor);
2213  }
2214
2215  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2216    // Note: The following rules are largely analoguous to the copy
2217    // constructor rules. Note that virtual bases are not taken into account
2218    // for determining the argument type of the operator. Note also that
2219    // operators taking an object instead of a reference are allowed.
2220    //
2221    // C++ [class.copy]p10:
2222    //   If the class definition does not explicitly declare a copy
2223    //   assignment operator, one is declared implicitly.
2224    //   The implicitly-defined copy assignment operator for a class X
2225    //   will have the form
2226    //
2227    //       X& X::operator=(const X&)
2228    //
2229    //   if
2230    bool HasConstCopyAssignment = true;
2231
2232    //       -- each direct base class B of X has a copy assignment operator
2233    //          whose parameter is of type const B&, const volatile B& or B,
2234    //          and
2235    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2236         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2237      assert(!Base->getType()->isDependentType() &&
2238            "Cannot generate implicit members for class with dependent bases.");
2239      const CXXRecordDecl *BaseClassDecl
2240        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2241      const CXXMethodDecl *MD = 0;
2242      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2243                                                                     MD);
2244    }
2245
2246    //       -- for all the nonstatic data members of X that are of a class
2247    //          type M (or array thereof), each such class type has a copy
2248    //          assignment operator whose parameter is of type const M&,
2249    //          const volatile M& or M.
2250    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2251         HasConstCopyAssignment && Field != ClassDecl->field_end();
2252         ++Field) {
2253      QualType FieldType = (*Field)->getType();
2254      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2255        FieldType = Array->getElementType();
2256      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2257        const CXXRecordDecl *FieldClassDecl
2258          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2259        const CXXMethodDecl *MD = 0;
2260        HasConstCopyAssignment
2261          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2262      }
2263    }
2264
2265    //   Otherwise, the implicitly declared copy assignment operator will
2266    //   have the form
2267    //
2268    //       X& X::operator=(X&)
2269    QualType ArgType = ClassType;
2270    QualType RetType = Context.getLValueReferenceType(ArgType);
2271    if (HasConstCopyAssignment)
2272      ArgType = ArgType.withConst();
2273    ArgType = Context.getLValueReferenceType(ArgType);
2274
2275    //   An implicitly-declared copy assignment operator is an inline public
2276    //   member of its class.
2277    DeclarationName Name =
2278      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2279    CXXMethodDecl *CopyAssignment =
2280      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2281                            Context.getFunctionType(RetType, &ArgType, 1,
2282                                                    false, 0),
2283                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2284    CopyAssignment->setAccess(AS_public);
2285    CopyAssignment->setImplicit();
2286    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2287    CopyAssignment->setCopyAssignment(true);
2288
2289    // Add the parameter to the operator.
2290    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2291                                                 ClassDecl->getLocation(),
2292                                                 /*IdentifierInfo=*/0,
2293                                                 ArgType, /*TInfo=*/0,
2294                                                 VarDecl::None, 0);
2295    CopyAssignment->setParams(Context, &FromParam, 1);
2296
2297    // Don't call addedAssignmentOperator. There is no way to distinguish an
2298    // implicit from an explicit assignment operator.
2299    ClassDecl->addDecl(CopyAssignment);
2300    AddOverriddenMethods(ClassDecl, CopyAssignment);
2301  }
2302
2303  if (!ClassDecl->hasUserDeclaredDestructor()) {
2304    // C++ [class.dtor]p2:
2305    //   If a class has no user-declared destructor, a destructor is
2306    //   declared implicitly. An implicitly-declared destructor is an
2307    //   inline public member of its class.
2308    DeclarationName Name
2309      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2310    CXXDestructorDecl *Destructor
2311      = CXXDestructorDecl::Create(Context, ClassDecl,
2312                                  ClassDecl->getLocation(), Name,
2313                                  Context.getFunctionType(Context.VoidTy,
2314                                                          0, 0, false, 0),
2315                                  /*isInline=*/true,
2316                                  /*isImplicitlyDeclared=*/true);
2317    Destructor->setAccess(AS_public);
2318    Destructor->setImplicit();
2319    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2320    ClassDecl->addDecl(Destructor);
2321
2322    AddOverriddenMethods(ClassDecl, Destructor);
2323  }
2324}
2325
2326void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2327  Decl *D = TemplateD.getAs<Decl>();
2328  if (!D)
2329    return;
2330
2331  TemplateParameterList *Params = 0;
2332  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2333    Params = Template->getTemplateParameters();
2334  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2335           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2336    Params = PartialSpec->getTemplateParameters();
2337  else
2338    return;
2339
2340  for (TemplateParameterList::iterator Param = Params->begin(),
2341                                    ParamEnd = Params->end();
2342       Param != ParamEnd; ++Param) {
2343    NamedDecl *Named = cast<NamedDecl>(*Param);
2344    if (Named->getDeclName()) {
2345      S->AddDecl(DeclPtrTy::make(Named));
2346      IdResolver.AddDecl(Named);
2347    }
2348  }
2349}
2350
2351void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2352  if (!RecordD) return;
2353  AdjustDeclIfTemplate(RecordD);
2354  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2355  PushDeclContext(S, Record);
2356}
2357
2358void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2359  if (!RecordD) return;
2360  PopDeclContext();
2361}
2362
2363/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2364/// parsing a top-level (non-nested) C++ class, and we are now
2365/// parsing those parts of the given Method declaration that could
2366/// not be parsed earlier (C++ [class.mem]p2), such as default
2367/// arguments. This action should enter the scope of the given
2368/// Method declaration as if we had just parsed the qualified method
2369/// name. However, it should not bring the parameters into scope;
2370/// that will be performed by ActOnDelayedCXXMethodParameter.
2371void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2372}
2373
2374/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2375/// C++ method declaration. We're (re-)introducing the given
2376/// function parameter into scope for use in parsing later parts of
2377/// the method declaration. For example, we could see an
2378/// ActOnParamDefaultArgument event for this parameter.
2379void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2380  if (!ParamD)
2381    return;
2382
2383  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2384
2385  // If this parameter has an unparsed default argument, clear it out
2386  // to make way for the parsed default argument.
2387  if (Param->hasUnparsedDefaultArg())
2388    Param->setDefaultArg(0);
2389
2390  S->AddDecl(DeclPtrTy::make(Param));
2391  if (Param->getDeclName())
2392    IdResolver.AddDecl(Param);
2393}
2394
2395/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2396/// processing the delayed method declaration for Method. The method
2397/// declaration is now considered finished. There may be a separate
2398/// ActOnStartOfFunctionDef action later (not necessarily
2399/// immediately!) for this method, if it was also defined inside the
2400/// class body.
2401void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2402  if (!MethodD)
2403    return;
2404
2405  AdjustDeclIfTemplate(MethodD);
2406
2407  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2408
2409  // Now that we have our default arguments, check the constructor
2410  // again. It could produce additional diagnostics or affect whether
2411  // the class has implicitly-declared destructors, among other
2412  // things.
2413  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2414    CheckConstructor(Constructor);
2415
2416  // Check the default arguments, which we may have added.
2417  if (!Method->isInvalidDecl())
2418    CheckCXXDefaultArguments(Method);
2419}
2420
2421/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2422/// the well-formedness of the constructor declarator @p D with type @p
2423/// R. If there are any errors in the declarator, this routine will
2424/// emit diagnostics and set the invalid bit to true.  In any case, the type
2425/// will be updated to reflect a well-formed type for the constructor and
2426/// returned.
2427QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2428                                          FunctionDecl::StorageClass &SC) {
2429  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2430
2431  // C++ [class.ctor]p3:
2432  //   A constructor shall not be virtual (10.3) or static (9.4). A
2433  //   constructor can be invoked for a const, volatile or const
2434  //   volatile object. A constructor shall not be declared const,
2435  //   volatile, or const volatile (9.3.2).
2436  if (isVirtual) {
2437    if (!D.isInvalidType())
2438      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2439        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2440        << SourceRange(D.getIdentifierLoc());
2441    D.setInvalidType();
2442  }
2443  if (SC == FunctionDecl::Static) {
2444    if (!D.isInvalidType())
2445      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2446        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2447        << SourceRange(D.getIdentifierLoc());
2448    D.setInvalidType();
2449    SC = FunctionDecl::None;
2450  }
2451
2452  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2453  if (FTI.TypeQuals != 0) {
2454    if (FTI.TypeQuals & Qualifiers::Const)
2455      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2456        << "const" << SourceRange(D.getIdentifierLoc());
2457    if (FTI.TypeQuals & Qualifiers::Volatile)
2458      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2459        << "volatile" << SourceRange(D.getIdentifierLoc());
2460    if (FTI.TypeQuals & Qualifiers::Restrict)
2461      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2462        << "restrict" << SourceRange(D.getIdentifierLoc());
2463  }
2464
2465  // Rebuild the function type "R" without any type qualifiers (in
2466  // case any of the errors above fired) and with "void" as the
2467  // return type, since constructors don't have return types. We
2468  // *always* have to do this, because GetTypeForDeclarator will
2469  // put in a result type of "int" when none was specified.
2470  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2471  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2472                                 Proto->getNumArgs(),
2473                                 Proto->isVariadic(), 0);
2474}
2475
2476/// CheckConstructor - Checks a fully-formed constructor for
2477/// well-formedness, issuing any diagnostics required. Returns true if
2478/// the constructor declarator is invalid.
2479void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2480  CXXRecordDecl *ClassDecl
2481    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2482  if (!ClassDecl)
2483    return Constructor->setInvalidDecl();
2484
2485  // C++ [class.copy]p3:
2486  //   A declaration of a constructor for a class X is ill-formed if
2487  //   its first parameter is of type (optionally cv-qualified) X and
2488  //   either there are no other parameters or else all other
2489  //   parameters have default arguments.
2490  if (!Constructor->isInvalidDecl() &&
2491      ((Constructor->getNumParams() == 1) ||
2492       (Constructor->getNumParams() > 1 &&
2493        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2494      Constructor->getTemplateSpecializationKind()
2495                                              != TSK_ImplicitInstantiation) {
2496    QualType ParamType = Constructor->getParamDecl(0)->getType();
2497    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2498    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2499      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2500      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2501        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2502
2503      // FIXME: Rather that making the constructor invalid, we should endeavor
2504      // to fix the type.
2505      Constructor->setInvalidDecl();
2506    }
2507  }
2508
2509  // Notify the class that we've added a constructor.
2510  ClassDecl->addedConstructor(Context, Constructor);
2511}
2512
2513/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2514/// issuing any diagnostics required. Returns true on error.
2515bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2516  CXXRecordDecl *RD = Destructor->getParent();
2517
2518  if (Destructor->isVirtual()) {
2519    SourceLocation Loc;
2520
2521    if (!Destructor->isImplicit())
2522      Loc = Destructor->getLocation();
2523    else
2524      Loc = RD->getLocation();
2525
2526    // If we have a virtual destructor, look up the deallocation function
2527    FunctionDecl *OperatorDelete = 0;
2528    DeclarationName Name =
2529    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2530    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2531      return true;
2532
2533    Destructor->setOperatorDelete(OperatorDelete);
2534  }
2535
2536  return false;
2537}
2538
2539static inline bool
2540FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2541  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2542          FTI.ArgInfo[0].Param &&
2543          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2544}
2545
2546/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2547/// the well-formednes of the destructor declarator @p D with type @p
2548/// R. If there are any errors in the declarator, this routine will
2549/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2550/// will be updated to reflect a well-formed type for the destructor and
2551/// returned.
2552QualType Sema::CheckDestructorDeclarator(Declarator &D,
2553                                         FunctionDecl::StorageClass& SC) {
2554  // C++ [class.dtor]p1:
2555  //   [...] A typedef-name that names a class is a class-name
2556  //   (7.1.3); however, a typedef-name that names a class shall not
2557  //   be used as the identifier in the declarator for a destructor
2558  //   declaration.
2559  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2560  if (isa<TypedefType>(DeclaratorType)) {
2561    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2562      << DeclaratorType;
2563    D.setInvalidType();
2564  }
2565
2566  // C++ [class.dtor]p2:
2567  //   A destructor is used to destroy objects of its class type. A
2568  //   destructor takes no parameters, and no return type can be
2569  //   specified for it (not even void). The address of a destructor
2570  //   shall not be taken. A destructor shall not be static. A
2571  //   destructor can be invoked for a const, volatile or const
2572  //   volatile object. A destructor shall not be declared const,
2573  //   volatile or const volatile (9.3.2).
2574  if (SC == FunctionDecl::Static) {
2575    if (!D.isInvalidType())
2576      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2577        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2578        << SourceRange(D.getIdentifierLoc());
2579    SC = FunctionDecl::None;
2580    D.setInvalidType();
2581  }
2582  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2583    // Destructors don't have return types, but the parser will
2584    // happily parse something like:
2585    //
2586    //   class X {
2587    //     float ~X();
2588    //   };
2589    //
2590    // The return type will be eliminated later.
2591    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2592      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2593      << SourceRange(D.getIdentifierLoc());
2594  }
2595
2596  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2597  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2598    if (FTI.TypeQuals & Qualifiers::Const)
2599      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2600        << "const" << SourceRange(D.getIdentifierLoc());
2601    if (FTI.TypeQuals & Qualifiers::Volatile)
2602      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2603        << "volatile" << SourceRange(D.getIdentifierLoc());
2604    if (FTI.TypeQuals & Qualifiers::Restrict)
2605      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2606        << "restrict" << SourceRange(D.getIdentifierLoc());
2607    D.setInvalidType();
2608  }
2609
2610  // Make sure we don't have any parameters.
2611  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2612    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2613
2614    // Delete the parameters.
2615    FTI.freeArgs();
2616    D.setInvalidType();
2617  }
2618
2619  // Make sure the destructor isn't variadic.
2620  if (FTI.isVariadic) {
2621    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2622    D.setInvalidType();
2623  }
2624
2625  // Rebuild the function type "R" without any type qualifiers or
2626  // parameters (in case any of the errors above fired) and with
2627  // "void" as the return type, since destructors don't have return
2628  // types. We *always* have to do this, because GetTypeForDeclarator
2629  // will put in a result type of "int" when none was specified.
2630  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2631}
2632
2633/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2634/// well-formednes of the conversion function declarator @p D with
2635/// type @p R. If there are any errors in the declarator, this routine
2636/// will emit diagnostics and return true. Otherwise, it will return
2637/// false. Either way, the type @p R will be updated to reflect a
2638/// well-formed type for the conversion operator.
2639void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2640                                     FunctionDecl::StorageClass& SC) {
2641  // C++ [class.conv.fct]p1:
2642  //   Neither parameter types nor return type can be specified. The
2643  //   type of a conversion function (8.3.5) is "function taking no
2644  //   parameter returning conversion-type-id."
2645  if (SC == FunctionDecl::Static) {
2646    if (!D.isInvalidType())
2647      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2648        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2649        << SourceRange(D.getIdentifierLoc());
2650    D.setInvalidType();
2651    SC = FunctionDecl::None;
2652  }
2653  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2654    // Conversion functions don't have return types, but the parser will
2655    // happily parse something like:
2656    //
2657    //   class X {
2658    //     float operator bool();
2659    //   };
2660    //
2661    // The return type will be changed later anyway.
2662    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2663      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2664      << SourceRange(D.getIdentifierLoc());
2665  }
2666
2667  // Make sure we don't have any parameters.
2668  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2669    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2670
2671    // Delete the parameters.
2672    D.getTypeObject(0).Fun.freeArgs();
2673    D.setInvalidType();
2674  }
2675
2676  // Make sure the conversion function isn't variadic.
2677  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2678    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2679    D.setInvalidType();
2680  }
2681
2682  // C++ [class.conv.fct]p4:
2683  //   The conversion-type-id shall not represent a function type nor
2684  //   an array type.
2685  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2686  if (ConvType->isArrayType()) {
2687    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2688    ConvType = Context.getPointerType(ConvType);
2689    D.setInvalidType();
2690  } else if (ConvType->isFunctionType()) {
2691    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2692    ConvType = Context.getPointerType(ConvType);
2693    D.setInvalidType();
2694  }
2695
2696  // Rebuild the function type "R" without any parameters (in case any
2697  // of the errors above fired) and with the conversion type as the
2698  // return type.
2699  R = Context.getFunctionType(ConvType, 0, 0, false,
2700                              R->getAs<FunctionProtoType>()->getTypeQuals());
2701
2702  // C++0x explicit conversion operators.
2703  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2704    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2705         diag::warn_explicit_conversion_functions)
2706      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2707}
2708
2709/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2710/// the declaration of the given C++ conversion function. This routine
2711/// is responsible for recording the conversion function in the C++
2712/// class, if possible.
2713Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2714  assert(Conversion && "Expected to receive a conversion function declaration");
2715
2716  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2717
2718  // Make sure we aren't redeclaring the conversion function.
2719  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2720
2721  // C++ [class.conv.fct]p1:
2722  //   [...] A conversion function is never used to convert a
2723  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2724  //   same object type (or a reference to it), to a (possibly
2725  //   cv-qualified) base class of that type (or a reference to it),
2726  //   or to (possibly cv-qualified) void.
2727  // FIXME: Suppress this warning if the conversion function ends up being a
2728  // virtual function that overrides a virtual function in a base class.
2729  QualType ClassType
2730    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2731  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2732    ConvType = ConvTypeRef->getPointeeType();
2733  if (ConvType->isRecordType()) {
2734    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2735    if (ConvType == ClassType)
2736      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2737        << ClassType;
2738    else if (IsDerivedFrom(ClassType, ConvType))
2739      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2740        <<  ClassType << ConvType;
2741  } else if (ConvType->isVoidType()) {
2742    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2743      << ClassType << ConvType;
2744  }
2745
2746  if (Conversion->getPreviousDeclaration()) {
2747    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2748    if (FunctionTemplateDecl *ConversionTemplate
2749          = Conversion->getDescribedFunctionTemplate())
2750      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2751    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2752      return DeclPtrTy::make(Conversion);
2753    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2754  } else if (FunctionTemplateDecl *ConversionTemplate
2755               = Conversion->getDescribedFunctionTemplate())
2756    ClassDecl->addConversionFunction(ConversionTemplate);
2757  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2758    ClassDecl->addConversionFunction(Conversion);
2759
2760  return DeclPtrTy::make(Conversion);
2761}
2762
2763//===----------------------------------------------------------------------===//
2764// Namespace Handling
2765//===----------------------------------------------------------------------===//
2766
2767/// ActOnStartNamespaceDef - This is called at the start of a namespace
2768/// definition.
2769Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2770                                             SourceLocation IdentLoc,
2771                                             IdentifierInfo *II,
2772                                             SourceLocation LBrace) {
2773  NamespaceDecl *Namespc =
2774      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2775  Namespc->setLBracLoc(LBrace);
2776
2777  Scope *DeclRegionScope = NamespcScope->getParent();
2778
2779  if (II) {
2780    // C++ [namespace.def]p2:
2781    // The identifier in an original-namespace-definition shall not have been
2782    // previously defined in the declarative region in which the
2783    // original-namespace-definition appears. The identifier in an
2784    // original-namespace-definition is the name of the namespace. Subsequently
2785    // in that declarative region, it is treated as an original-namespace-name.
2786
2787    NamedDecl *PrevDecl
2788      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2789                         ForRedeclaration);
2790
2791    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2792      // This is an extended namespace definition.
2793      // Attach this namespace decl to the chain of extended namespace
2794      // definitions.
2795      OrigNS->setNextNamespace(Namespc);
2796      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2797
2798      // Remove the previous declaration from the scope.
2799      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2800        IdResolver.RemoveDecl(OrigNS);
2801        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2802      }
2803    } else if (PrevDecl) {
2804      // This is an invalid name redefinition.
2805      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2806       << Namespc->getDeclName();
2807      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2808      Namespc->setInvalidDecl();
2809      // Continue on to push Namespc as current DeclContext and return it.
2810    } else if (II->isStr("std") &&
2811               CurContext->getLookupContext()->isTranslationUnit()) {
2812      // This is the first "real" definition of the namespace "std", so update
2813      // our cache of the "std" namespace to point at this definition.
2814      if (StdNamespace) {
2815        // We had already defined a dummy namespace "std". Link this new
2816        // namespace definition to the dummy namespace "std".
2817        StdNamespace->setNextNamespace(Namespc);
2818        StdNamespace->setLocation(IdentLoc);
2819        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2820      }
2821
2822      // Make our StdNamespace cache point at the first real definition of the
2823      // "std" namespace.
2824      StdNamespace = Namespc;
2825    }
2826
2827    PushOnScopeChains(Namespc, DeclRegionScope);
2828  } else {
2829    // Anonymous namespaces.
2830    assert(Namespc->isAnonymousNamespace());
2831    CurContext->addDecl(Namespc);
2832
2833    // Link the anonymous namespace into its parent.
2834    NamespaceDecl *PrevDecl;
2835    DeclContext *Parent = CurContext->getLookupContext();
2836    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2837      PrevDecl = TU->getAnonymousNamespace();
2838      TU->setAnonymousNamespace(Namespc);
2839    } else {
2840      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2841      PrevDecl = ND->getAnonymousNamespace();
2842      ND->setAnonymousNamespace(Namespc);
2843    }
2844
2845    // Link the anonymous namespace with its previous declaration.
2846    if (PrevDecl) {
2847      assert(PrevDecl->isAnonymousNamespace());
2848      assert(!PrevDecl->getNextNamespace());
2849      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2850      PrevDecl->setNextNamespace(Namespc);
2851    }
2852
2853    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2854    //   behaves as if it were replaced by
2855    //     namespace unique { /* empty body */ }
2856    //     using namespace unique;
2857    //     namespace unique { namespace-body }
2858    //   where all occurrences of 'unique' in a translation unit are
2859    //   replaced by the same identifier and this identifier differs
2860    //   from all other identifiers in the entire program.
2861
2862    // We just create the namespace with an empty name and then add an
2863    // implicit using declaration, just like the standard suggests.
2864    //
2865    // CodeGen enforces the "universally unique" aspect by giving all
2866    // declarations semantically contained within an anonymous
2867    // namespace internal linkage.
2868
2869    if (!PrevDecl) {
2870      UsingDirectiveDecl* UD
2871        = UsingDirectiveDecl::Create(Context, CurContext,
2872                                     /* 'using' */ LBrace,
2873                                     /* 'namespace' */ SourceLocation(),
2874                                     /* qualifier */ SourceRange(),
2875                                     /* NNS */ NULL,
2876                                     /* identifier */ SourceLocation(),
2877                                     Namespc,
2878                                     /* Ancestor */ CurContext);
2879      UD->setImplicit();
2880      CurContext->addDecl(UD);
2881    }
2882  }
2883
2884  // Although we could have an invalid decl (i.e. the namespace name is a
2885  // redefinition), push it as current DeclContext and try to continue parsing.
2886  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2887  // for the namespace has the declarations that showed up in that particular
2888  // namespace definition.
2889  PushDeclContext(NamespcScope, Namespc);
2890  return DeclPtrTy::make(Namespc);
2891}
2892
2893/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2894/// is a namespace alias, returns the namespace it points to.
2895static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2896  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2897    return AD->getNamespace();
2898  return dyn_cast_or_null<NamespaceDecl>(D);
2899}
2900
2901/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2902/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2903void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2904  Decl *Dcl = D.getAs<Decl>();
2905  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2906  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2907  Namespc->setRBracLoc(RBrace);
2908  PopDeclContext();
2909}
2910
2911Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2912                                          SourceLocation UsingLoc,
2913                                          SourceLocation NamespcLoc,
2914                                          const CXXScopeSpec &SS,
2915                                          SourceLocation IdentLoc,
2916                                          IdentifierInfo *NamespcName,
2917                                          AttributeList *AttrList) {
2918  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2919  assert(NamespcName && "Invalid NamespcName.");
2920  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2921  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2922
2923  UsingDirectiveDecl *UDir = 0;
2924
2925  // Lookup namespace name.
2926  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2927  LookupParsedName(R, S, &SS);
2928  if (R.isAmbiguous())
2929    return DeclPtrTy();
2930
2931  if (!R.empty()) {
2932    NamedDecl *Named = R.getFoundDecl();
2933    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2934        && "expected namespace decl");
2935    // C++ [namespace.udir]p1:
2936    //   A using-directive specifies that the names in the nominated
2937    //   namespace can be used in the scope in which the
2938    //   using-directive appears after the using-directive. During
2939    //   unqualified name lookup (3.4.1), the names appear as if they
2940    //   were declared in the nearest enclosing namespace which
2941    //   contains both the using-directive and the nominated
2942    //   namespace. [Note: in this context, "contains" means "contains
2943    //   directly or indirectly". ]
2944
2945    // Find enclosing context containing both using-directive and
2946    // nominated namespace.
2947    NamespaceDecl *NS = getNamespaceDecl(Named);
2948    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2949    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2950      CommonAncestor = CommonAncestor->getParent();
2951
2952    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2953                                      SS.getRange(),
2954                                      (NestedNameSpecifier *)SS.getScopeRep(),
2955                                      IdentLoc, Named, CommonAncestor);
2956    PushUsingDirective(S, UDir);
2957  } else {
2958    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2959  }
2960
2961  // FIXME: We ignore attributes for now.
2962  delete AttrList;
2963  return DeclPtrTy::make(UDir);
2964}
2965
2966void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2967  // If scope has associated entity, then using directive is at namespace
2968  // or translation unit scope. We add UsingDirectiveDecls, into
2969  // it's lookup structure.
2970  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2971    Ctx->addDecl(UDir);
2972  else
2973    // Otherwise it is block-sope. using-directives will affect lookup
2974    // only to the end of scope.
2975    S->PushUsingDirective(DeclPtrTy::make(UDir));
2976}
2977
2978
2979Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2980                                            AccessSpecifier AS,
2981                                            bool HasUsingKeyword,
2982                                            SourceLocation UsingLoc,
2983                                            const CXXScopeSpec &SS,
2984                                            UnqualifiedId &Name,
2985                                            AttributeList *AttrList,
2986                                            bool IsTypeName,
2987                                            SourceLocation TypenameLoc) {
2988  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2989
2990  switch (Name.getKind()) {
2991  case UnqualifiedId::IK_Identifier:
2992  case UnqualifiedId::IK_OperatorFunctionId:
2993  case UnqualifiedId::IK_LiteralOperatorId:
2994  case UnqualifiedId::IK_ConversionFunctionId:
2995    break;
2996
2997  case UnqualifiedId::IK_ConstructorName:
2998    // C++0x inherited constructors.
2999    if (getLangOptions().CPlusPlus0x) break;
3000
3001    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3002      << SS.getRange();
3003    return DeclPtrTy();
3004
3005  case UnqualifiedId::IK_DestructorName:
3006    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3007      << SS.getRange();
3008    return DeclPtrTy();
3009
3010  case UnqualifiedId::IK_TemplateId:
3011    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3012      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3013    return DeclPtrTy();
3014  }
3015
3016  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3017  if (!TargetName)
3018    return DeclPtrTy();
3019
3020  // Warn about using declarations.
3021  // TODO: store that the declaration was written without 'using' and
3022  // talk about access decls instead of using decls in the
3023  // diagnostics.
3024  if (!HasUsingKeyword) {
3025    UsingLoc = Name.getSourceRange().getBegin();
3026
3027    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3028      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
3029                                               "using ");
3030  }
3031
3032  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3033                                        Name.getSourceRange().getBegin(),
3034                                        TargetName, AttrList,
3035                                        /* IsInstantiation */ false,
3036                                        IsTypeName, TypenameLoc);
3037  if (UD)
3038    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3039
3040  return DeclPtrTy::make(UD);
3041}
3042
3043/// Determines whether to create a using shadow decl for a particular
3044/// decl, given the set of decls existing prior to this using lookup.
3045bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3046                                const LookupResult &Previous) {
3047  // Diagnose finding a decl which is not from a base class of the
3048  // current class.  We do this now because there are cases where this
3049  // function will silently decide not to build a shadow decl, which
3050  // will pre-empt further diagnostics.
3051  //
3052  // We don't need to do this in C++0x because we do the check once on
3053  // the qualifier.
3054  //
3055  // FIXME: diagnose the following if we care enough:
3056  //   struct A { int foo; };
3057  //   struct B : A { using A::foo; };
3058  //   template <class T> struct C : A {};
3059  //   template <class T> struct D : C<T> { using B::foo; } // <---
3060  // This is invalid (during instantiation) in C++03 because B::foo
3061  // resolves to the using decl in B, which is not a base class of D<T>.
3062  // We can't diagnose it immediately because C<T> is an unknown
3063  // specialization.  The UsingShadowDecl in D<T> then points directly
3064  // to A::foo, which will look well-formed when we instantiate.
3065  // The right solution is to not collapse the shadow-decl chain.
3066  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3067    DeclContext *OrigDC = Orig->getDeclContext();
3068
3069    // Handle enums and anonymous structs.
3070    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3071    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3072    while (OrigRec->isAnonymousStructOrUnion())
3073      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3074
3075    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3076      if (OrigDC == CurContext) {
3077        Diag(Using->getLocation(),
3078             diag::err_using_decl_nested_name_specifier_is_current_class)
3079          << Using->getNestedNameRange();
3080        Diag(Orig->getLocation(), diag::note_using_decl_target);
3081        return true;
3082      }
3083
3084      Diag(Using->getNestedNameRange().getBegin(),
3085           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3086        << Using->getTargetNestedNameDecl()
3087        << cast<CXXRecordDecl>(CurContext)
3088        << Using->getNestedNameRange();
3089      Diag(Orig->getLocation(), diag::note_using_decl_target);
3090      return true;
3091    }
3092  }
3093
3094  if (Previous.empty()) return false;
3095
3096  NamedDecl *Target = Orig;
3097  if (isa<UsingShadowDecl>(Target))
3098    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3099
3100  // If the target happens to be one of the previous declarations, we
3101  // don't have a conflict.
3102  //
3103  // FIXME: but we might be increasing its access, in which case we
3104  // should redeclare it.
3105  NamedDecl *NonTag = 0, *Tag = 0;
3106  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3107         I != E; ++I) {
3108    NamedDecl *D = (*I)->getUnderlyingDecl();
3109    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3110      return false;
3111
3112    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3113  }
3114
3115  if (Target->isFunctionOrFunctionTemplate()) {
3116    FunctionDecl *FD;
3117    if (isa<FunctionTemplateDecl>(Target))
3118      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3119    else
3120      FD = cast<FunctionDecl>(Target);
3121
3122    NamedDecl *OldDecl = 0;
3123    switch (CheckOverload(FD, Previous, OldDecl)) {
3124    case Ovl_Overload:
3125      return false;
3126
3127    case Ovl_NonFunction:
3128      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3129      break;
3130
3131    // We found a decl with the exact signature.
3132    case Ovl_Match:
3133      if (isa<UsingShadowDecl>(OldDecl)) {
3134        // Silently ignore the possible conflict.
3135        return false;
3136      }
3137
3138      // If we're in a record, we want to hide the target, so we
3139      // return true (without a diagnostic) to tell the caller not to
3140      // build a shadow decl.
3141      if (CurContext->isRecord())
3142        return true;
3143
3144      // If we're not in a record, this is an error.
3145      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3146      break;
3147    }
3148
3149    Diag(Target->getLocation(), diag::note_using_decl_target);
3150    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3151    return true;
3152  }
3153
3154  // Target is not a function.
3155
3156  if (isa<TagDecl>(Target)) {
3157    // No conflict between a tag and a non-tag.
3158    if (!Tag) return false;
3159
3160    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3161    Diag(Target->getLocation(), diag::note_using_decl_target);
3162    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3163    return true;
3164  }
3165
3166  // No conflict between a tag and a non-tag.
3167  if (!NonTag) return false;
3168
3169  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3170  Diag(Target->getLocation(), diag::note_using_decl_target);
3171  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3172  return true;
3173}
3174
3175/// Builds a shadow declaration corresponding to a 'using' declaration.
3176UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3177                                            UsingDecl *UD,
3178                                            NamedDecl *Orig) {
3179
3180  // If we resolved to another shadow declaration, just coalesce them.
3181  NamedDecl *Target = Orig;
3182  if (isa<UsingShadowDecl>(Target)) {
3183    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3184    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3185  }
3186
3187  UsingShadowDecl *Shadow
3188    = UsingShadowDecl::Create(Context, CurContext,
3189                              UD->getLocation(), UD, Target);
3190  UD->addShadowDecl(Shadow);
3191
3192  if (S)
3193    PushOnScopeChains(Shadow, S);
3194  else
3195    CurContext->addDecl(Shadow);
3196  Shadow->setAccess(UD->getAccess());
3197
3198  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3199    Shadow->setInvalidDecl();
3200
3201  return Shadow;
3202}
3203
3204/// Hides a using shadow declaration.  This is required by the current
3205/// using-decl implementation when a resolvable using declaration in a
3206/// class is followed by a declaration which would hide or override
3207/// one or more of the using decl's targets; for example:
3208///
3209///   struct Base { void foo(int); };
3210///   struct Derived : Base {
3211///     using Base::foo;
3212///     void foo(int);
3213///   };
3214///
3215/// The governing language is C++03 [namespace.udecl]p12:
3216///
3217///   When a using-declaration brings names from a base class into a
3218///   derived class scope, member functions in the derived class
3219///   override and/or hide member functions with the same name and
3220///   parameter types in a base class (rather than conflicting).
3221///
3222/// There are two ways to implement this:
3223///   (1) optimistically create shadow decls when they're not hidden
3224///       by existing declarations, or
3225///   (2) don't create any shadow decls (or at least don't make them
3226///       visible) until we've fully parsed/instantiated the class.
3227/// The problem with (1) is that we might have to retroactively remove
3228/// a shadow decl, which requires several O(n) operations because the
3229/// decl structures are (very reasonably) not designed for removal.
3230/// (2) avoids this but is very fiddly and phase-dependent.
3231void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3232  // Remove it from the DeclContext...
3233  Shadow->getDeclContext()->removeDecl(Shadow);
3234
3235  // ...and the scope, if applicable...
3236  if (S) {
3237    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3238    IdResolver.RemoveDecl(Shadow);
3239  }
3240
3241  // ...and the using decl.
3242  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3243
3244  // TODO: complain somehow if Shadow was used.  It shouldn't
3245  // be possible for this to happen, because
3246}
3247
3248/// Builds a using declaration.
3249///
3250/// \param IsInstantiation - Whether this call arises from an
3251///   instantiation of an unresolved using declaration.  We treat
3252///   the lookup differently for these declarations.
3253NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3254                                       SourceLocation UsingLoc,
3255                                       const CXXScopeSpec &SS,
3256                                       SourceLocation IdentLoc,
3257                                       DeclarationName Name,
3258                                       AttributeList *AttrList,
3259                                       bool IsInstantiation,
3260                                       bool IsTypeName,
3261                                       SourceLocation TypenameLoc) {
3262  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3263  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3264
3265  // FIXME: We ignore attributes for now.
3266  delete AttrList;
3267
3268  if (SS.isEmpty()) {
3269    Diag(IdentLoc, diag::err_using_requires_qualname);
3270    return 0;
3271  }
3272
3273  // Do the redeclaration lookup in the current scope.
3274  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3275                        ForRedeclaration);
3276  Previous.setHideTags(false);
3277  if (S) {
3278    LookupName(Previous, S);
3279
3280    // It is really dumb that we have to do this.
3281    LookupResult::Filter F = Previous.makeFilter();
3282    while (F.hasNext()) {
3283      NamedDecl *D = F.next();
3284      if (!isDeclInScope(D, CurContext, S))
3285        F.erase();
3286    }
3287    F.done();
3288  } else {
3289    assert(IsInstantiation && "no scope in non-instantiation");
3290    assert(CurContext->isRecord() && "scope not record in instantiation");
3291    LookupQualifiedName(Previous, CurContext);
3292  }
3293
3294  NestedNameSpecifier *NNS =
3295    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3296
3297  // Check for invalid redeclarations.
3298  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3299    return 0;
3300
3301  // Check for bad qualifiers.
3302  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3303    return 0;
3304
3305  DeclContext *LookupContext = computeDeclContext(SS);
3306  NamedDecl *D;
3307  if (!LookupContext) {
3308    if (IsTypeName) {
3309      // FIXME: not all declaration name kinds are legal here
3310      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3311                                              UsingLoc, TypenameLoc,
3312                                              SS.getRange(), NNS,
3313                                              IdentLoc, Name);
3314    } else {
3315      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3316                                           UsingLoc, SS.getRange(), NNS,
3317                                           IdentLoc, Name);
3318    }
3319  } else {
3320    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3321                          SS.getRange(), UsingLoc, NNS, Name,
3322                          IsTypeName);
3323  }
3324  D->setAccess(AS);
3325  CurContext->addDecl(D);
3326
3327  if (!LookupContext) return D;
3328  UsingDecl *UD = cast<UsingDecl>(D);
3329
3330  if (RequireCompleteDeclContext(SS)) {
3331    UD->setInvalidDecl();
3332    return UD;
3333  }
3334
3335  // Look up the target name.
3336
3337  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3338
3339  // Unlike most lookups, we don't always want to hide tag
3340  // declarations: tag names are visible through the using declaration
3341  // even if hidden by ordinary names, *except* in a dependent context
3342  // where it's important for the sanity of two-phase lookup.
3343  if (!IsInstantiation)
3344    R.setHideTags(false);
3345
3346  LookupQualifiedName(R, LookupContext);
3347
3348  if (R.empty()) {
3349    Diag(IdentLoc, diag::err_no_member)
3350      << Name << LookupContext << SS.getRange();
3351    UD->setInvalidDecl();
3352    return UD;
3353  }
3354
3355  if (R.isAmbiguous()) {
3356    UD->setInvalidDecl();
3357    return UD;
3358  }
3359
3360  if (IsTypeName) {
3361    // If we asked for a typename and got a non-type decl, error out.
3362    if (!R.getAsSingle<TypeDecl>()) {
3363      Diag(IdentLoc, diag::err_using_typename_non_type);
3364      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3365        Diag((*I)->getUnderlyingDecl()->getLocation(),
3366             diag::note_using_decl_target);
3367      UD->setInvalidDecl();
3368      return UD;
3369    }
3370  } else {
3371    // If we asked for a non-typename and we got a type, error out,
3372    // but only if this is an instantiation of an unresolved using
3373    // decl.  Otherwise just silently find the type name.
3374    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3375      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3376      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3377      UD->setInvalidDecl();
3378      return UD;
3379    }
3380  }
3381
3382  // C++0x N2914 [namespace.udecl]p6:
3383  // A using-declaration shall not name a namespace.
3384  if (R.getAsSingle<NamespaceDecl>()) {
3385    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3386      << SS.getRange();
3387    UD->setInvalidDecl();
3388    return UD;
3389  }
3390
3391  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3392    if (!CheckUsingShadowDecl(UD, *I, Previous))
3393      BuildUsingShadowDecl(S, UD, *I);
3394  }
3395
3396  return UD;
3397}
3398
3399/// Checks that the given using declaration is not an invalid
3400/// redeclaration.  Note that this is checking only for the using decl
3401/// itself, not for any ill-formedness among the UsingShadowDecls.
3402bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3403                                       bool isTypeName,
3404                                       const CXXScopeSpec &SS,
3405                                       SourceLocation NameLoc,
3406                                       const LookupResult &Prev) {
3407  // C++03 [namespace.udecl]p8:
3408  // C++0x [namespace.udecl]p10:
3409  //   A using-declaration is a declaration and can therefore be used
3410  //   repeatedly where (and only where) multiple declarations are
3411  //   allowed.
3412  // That's only in file contexts.
3413  if (CurContext->getLookupContext()->isFileContext())
3414    return false;
3415
3416  NestedNameSpecifier *Qual
3417    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3418
3419  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3420    NamedDecl *D = *I;
3421
3422    bool DTypename;
3423    NestedNameSpecifier *DQual;
3424    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3425      DTypename = UD->isTypeName();
3426      DQual = UD->getTargetNestedNameDecl();
3427    } else if (UnresolvedUsingValueDecl *UD
3428                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3429      DTypename = false;
3430      DQual = UD->getTargetNestedNameSpecifier();
3431    } else if (UnresolvedUsingTypenameDecl *UD
3432                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3433      DTypename = true;
3434      DQual = UD->getTargetNestedNameSpecifier();
3435    } else continue;
3436
3437    // using decls differ if one says 'typename' and the other doesn't.
3438    // FIXME: non-dependent using decls?
3439    if (isTypeName != DTypename) continue;
3440
3441    // using decls differ if they name different scopes (but note that
3442    // template instantiation can cause this check to trigger when it
3443    // didn't before instantiation).
3444    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3445        Context.getCanonicalNestedNameSpecifier(DQual))
3446      continue;
3447
3448    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3449    Diag(D->getLocation(), diag::note_using_decl) << 1;
3450    return true;
3451  }
3452
3453  return false;
3454}
3455
3456
3457/// Checks that the given nested-name qualifier used in a using decl
3458/// in the current context is appropriately related to the current
3459/// scope.  If an error is found, diagnoses it and returns true.
3460bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3461                                   const CXXScopeSpec &SS,
3462                                   SourceLocation NameLoc) {
3463  DeclContext *NamedContext = computeDeclContext(SS);
3464
3465  if (!CurContext->isRecord()) {
3466    // C++03 [namespace.udecl]p3:
3467    // C++0x [namespace.udecl]p8:
3468    //   A using-declaration for a class member shall be a member-declaration.
3469
3470    // If we weren't able to compute a valid scope, it must be a
3471    // dependent class scope.
3472    if (!NamedContext || NamedContext->isRecord()) {
3473      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3474        << SS.getRange();
3475      return true;
3476    }
3477
3478    // Otherwise, everything is known to be fine.
3479    return false;
3480  }
3481
3482  // The current scope is a record.
3483
3484  // If the named context is dependent, we can't decide much.
3485  if (!NamedContext) {
3486    // FIXME: in C++0x, we can diagnose if we can prove that the
3487    // nested-name-specifier does not refer to a base class, which is
3488    // still possible in some cases.
3489
3490    // Otherwise we have to conservatively report that things might be
3491    // okay.
3492    return false;
3493  }
3494
3495  if (!NamedContext->isRecord()) {
3496    // Ideally this would point at the last name in the specifier,
3497    // but we don't have that level of source info.
3498    Diag(SS.getRange().getBegin(),
3499         diag::err_using_decl_nested_name_specifier_is_not_class)
3500      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3501    return true;
3502  }
3503
3504  if (getLangOptions().CPlusPlus0x) {
3505    // C++0x [namespace.udecl]p3:
3506    //   In a using-declaration used as a member-declaration, the
3507    //   nested-name-specifier shall name a base class of the class
3508    //   being defined.
3509
3510    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3511                                 cast<CXXRecordDecl>(NamedContext))) {
3512      if (CurContext == NamedContext) {
3513        Diag(NameLoc,
3514             diag::err_using_decl_nested_name_specifier_is_current_class)
3515          << SS.getRange();
3516        return true;
3517      }
3518
3519      Diag(SS.getRange().getBegin(),
3520           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3521        << (NestedNameSpecifier*) SS.getScopeRep()
3522        << cast<CXXRecordDecl>(CurContext)
3523        << SS.getRange();
3524      return true;
3525    }
3526
3527    return false;
3528  }
3529
3530  // C++03 [namespace.udecl]p4:
3531  //   A using-declaration used as a member-declaration shall refer
3532  //   to a member of a base class of the class being defined [etc.].
3533
3534  // Salient point: SS doesn't have to name a base class as long as
3535  // lookup only finds members from base classes.  Therefore we can
3536  // diagnose here only if we can prove that that can't happen,
3537  // i.e. if the class hierarchies provably don't intersect.
3538
3539  // TODO: it would be nice if "definitely valid" results were cached
3540  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3541  // need to be repeated.
3542
3543  struct UserData {
3544    llvm::DenseSet<const CXXRecordDecl*> Bases;
3545
3546    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3547      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3548      Data->Bases.insert(Base);
3549      return true;
3550    }
3551
3552    bool hasDependentBases(const CXXRecordDecl *Class) {
3553      return !Class->forallBases(collect, this);
3554    }
3555
3556    /// Returns true if the base is dependent or is one of the
3557    /// accumulated base classes.
3558    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3559      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3560      return !Data->Bases.count(Base);
3561    }
3562
3563    bool mightShareBases(const CXXRecordDecl *Class) {
3564      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3565    }
3566  };
3567
3568  UserData Data;
3569
3570  // Returns false if we find a dependent base.
3571  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3572    return false;
3573
3574  // Returns false if the class has a dependent base or if it or one
3575  // of its bases is present in the base set of the current context.
3576  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3577    return false;
3578
3579  Diag(SS.getRange().getBegin(),
3580       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3581    << (NestedNameSpecifier*) SS.getScopeRep()
3582    << cast<CXXRecordDecl>(CurContext)
3583    << SS.getRange();
3584
3585  return true;
3586}
3587
3588Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3589                                             SourceLocation NamespaceLoc,
3590                                             SourceLocation AliasLoc,
3591                                             IdentifierInfo *Alias,
3592                                             const CXXScopeSpec &SS,
3593                                             SourceLocation IdentLoc,
3594                                             IdentifierInfo *Ident) {
3595
3596  // Lookup the namespace name.
3597  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3598  LookupParsedName(R, S, &SS);
3599
3600  // Check if we have a previous declaration with the same name.
3601  if (NamedDecl *PrevDecl
3602        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3603    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3604      // We already have an alias with the same name that points to the same
3605      // namespace, so don't create a new one.
3606      if (!R.isAmbiguous() && !R.empty() &&
3607          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3608        return DeclPtrTy();
3609    }
3610
3611    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3612      diag::err_redefinition_different_kind;
3613    Diag(AliasLoc, DiagID) << Alias;
3614    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3615    return DeclPtrTy();
3616  }
3617
3618  if (R.isAmbiguous())
3619    return DeclPtrTy();
3620
3621  if (R.empty()) {
3622    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3623    return DeclPtrTy();
3624  }
3625
3626  NamespaceAliasDecl *AliasDecl =
3627    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3628                               Alias, SS.getRange(),
3629                               (NestedNameSpecifier *)SS.getScopeRep(),
3630                               IdentLoc, R.getFoundDecl());
3631
3632  CurContext->addDecl(AliasDecl);
3633  return DeclPtrTy::make(AliasDecl);
3634}
3635
3636void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3637                                            CXXConstructorDecl *Constructor) {
3638  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3639          !Constructor->isUsed()) &&
3640    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3641
3642  CXXRecordDecl *ClassDecl
3643    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3644  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3645
3646  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3647    Diag(CurrentLocation, diag::note_member_synthesized_at)
3648      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3649    Constructor->setInvalidDecl();
3650  } else {
3651    Constructor->setUsed();
3652  }
3653}
3654
3655void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3656                                    CXXDestructorDecl *Destructor) {
3657  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3658         "DefineImplicitDestructor - call it for implicit default dtor");
3659  CXXRecordDecl *ClassDecl = Destructor->getParent();
3660  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3661  // C++ [class.dtor] p5
3662  // Before the implicitly-declared default destructor for a class is
3663  // implicitly defined, all the implicitly-declared default destructors
3664  // for its base class and its non-static data members shall have been
3665  // implicitly defined.
3666  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3667       E = ClassDecl->bases_end(); Base != E; ++Base) {
3668    CXXRecordDecl *BaseClassDecl
3669      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3670    if (!BaseClassDecl->hasTrivialDestructor()) {
3671      if (CXXDestructorDecl *BaseDtor =
3672          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3673        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3674      else
3675        assert(false &&
3676               "DefineImplicitDestructor - missing dtor in a base class");
3677    }
3678  }
3679
3680  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3681       E = ClassDecl->field_end(); Field != E; ++Field) {
3682    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3683    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3684      FieldType = Array->getElementType();
3685    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3686      CXXRecordDecl *FieldClassDecl
3687        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3688      if (!FieldClassDecl->hasTrivialDestructor()) {
3689        if (CXXDestructorDecl *FieldDtor =
3690            const_cast<CXXDestructorDecl*>(
3691                                        FieldClassDecl->getDestructor(Context)))
3692          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3693        else
3694          assert(false &&
3695          "DefineImplicitDestructor - missing dtor in class of a data member");
3696      }
3697    }
3698  }
3699
3700  // FIXME: If CheckDestructor fails, we should emit a note about where the
3701  // implicit destructor was needed.
3702  if (CheckDestructor(Destructor)) {
3703    Diag(CurrentLocation, diag::note_member_synthesized_at)
3704      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3705
3706    Destructor->setInvalidDecl();
3707    return;
3708  }
3709
3710  Destructor->setUsed();
3711}
3712
3713void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3714                                          CXXMethodDecl *MethodDecl) {
3715  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3716          MethodDecl->getOverloadedOperator() == OO_Equal &&
3717          !MethodDecl->isUsed()) &&
3718         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3719
3720  CXXRecordDecl *ClassDecl
3721    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3722
3723  // C++[class.copy] p12
3724  // Before the implicitly-declared copy assignment operator for a class is
3725  // implicitly defined, all implicitly-declared copy assignment operators
3726  // for its direct base classes and its nonstatic data members shall have
3727  // been implicitly defined.
3728  bool err = false;
3729  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3730       E = ClassDecl->bases_end(); Base != E; ++Base) {
3731    CXXRecordDecl *BaseClassDecl
3732      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3733    if (CXXMethodDecl *BaseAssignOpMethod =
3734          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3735                                  BaseClassDecl))
3736      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3737  }
3738  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3739       E = ClassDecl->field_end(); Field != E; ++Field) {
3740    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3741    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3742      FieldType = Array->getElementType();
3743    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3744      CXXRecordDecl *FieldClassDecl
3745        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3746      if (CXXMethodDecl *FieldAssignOpMethod =
3747          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3748                                  FieldClassDecl))
3749        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3750    } else if (FieldType->isReferenceType()) {
3751      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3752      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3753      Diag(Field->getLocation(), diag::note_declared_at);
3754      Diag(CurrentLocation, diag::note_first_required_here);
3755      err = true;
3756    } else if (FieldType.isConstQualified()) {
3757      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3758      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3759      Diag(Field->getLocation(), diag::note_declared_at);
3760      Diag(CurrentLocation, diag::note_first_required_here);
3761      err = true;
3762    }
3763  }
3764  if (!err)
3765    MethodDecl->setUsed();
3766}
3767
3768CXXMethodDecl *
3769Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3770                              ParmVarDecl *ParmDecl,
3771                              CXXRecordDecl *ClassDecl) {
3772  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3773  QualType RHSType(LHSType);
3774  // If class's assignment operator argument is const/volatile qualified,
3775  // look for operator = (const/volatile B&). Otherwise, look for
3776  // operator = (B&).
3777  RHSType = Context.getCVRQualifiedType(RHSType,
3778                                     ParmDecl->getType().getCVRQualifiers());
3779  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3780                                                           LHSType,
3781                                                           SourceLocation()));
3782  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3783                                                           RHSType,
3784                                                           CurrentLocation));
3785  Expr *Args[2] = { &*LHS, &*RHS };
3786  OverloadCandidateSet CandidateSet;
3787  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3788                              CandidateSet);
3789  OverloadCandidateSet::iterator Best;
3790  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3791    return cast<CXXMethodDecl>(Best->Function);
3792  assert(false &&
3793         "getAssignOperatorMethod - copy assignment operator method not found");
3794  return 0;
3795}
3796
3797void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3798                                   CXXConstructorDecl *CopyConstructor,
3799                                   unsigned TypeQuals) {
3800  assert((CopyConstructor->isImplicit() &&
3801          CopyConstructor->isCopyConstructor(TypeQuals) &&
3802          !CopyConstructor->isUsed()) &&
3803         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3804
3805  CXXRecordDecl *ClassDecl
3806    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3807  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3808  // C++ [class.copy] p209
3809  // Before the implicitly-declared copy constructor for a class is
3810  // implicitly defined, all the implicitly-declared copy constructors
3811  // for its base class and its non-static data members shall have been
3812  // implicitly defined.
3813  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3814       Base != ClassDecl->bases_end(); ++Base) {
3815    CXXRecordDecl *BaseClassDecl
3816      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3817    if (CXXConstructorDecl *BaseCopyCtor =
3818        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3819      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3820  }
3821  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3822                                  FieldEnd = ClassDecl->field_end();
3823       Field != FieldEnd; ++Field) {
3824    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3825    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3826      FieldType = Array->getElementType();
3827    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3828      CXXRecordDecl *FieldClassDecl
3829        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3830      if (CXXConstructorDecl *FieldCopyCtor =
3831          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3832        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3833    }
3834  }
3835  CopyConstructor->setUsed();
3836}
3837
3838Sema::OwningExprResult
3839Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3840                            CXXConstructorDecl *Constructor,
3841                            MultiExprArg ExprArgs,
3842                            bool RequiresZeroInit) {
3843  bool Elidable = false;
3844
3845  // C++ [class.copy]p15:
3846  //   Whenever a temporary class object is copied using a copy constructor, and
3847  //   this object and the copy have the same cv-unqualified type, an
3848  //   implementation is permitted to treat the original and the copy as two
3849  //   different ways of referring to the same object and not perform a copy at
3850  //   all, even if the class copy constructor or destructor have side effects.
3851
3852  // FIXME: Is this enough?
3853  if (Constructor->isCopyConstructor()) {
3854    Expr *E = ((Expr **)ExprArgs.get())[0];
3855    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3856      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3857        E = ICE->getSubExpr();
3858    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3859      E = FCE->getSubExpr();
3860    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3861      E = BE->getSubExpr();
3862    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3863      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3864        E = ICE->getSubExpr();
3865
3866    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3867      Elidable = !CE->getCallReturnType()->isReferenceType();
3868    else if (isa<CXXTemporaryObjectExpr>(E))
3869      Elidable = true;
3870    else if (isa<CXXConstructExpr>(E))
3871      Elidable = true;
3872  }
3873
3874  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3875                               Elidable, move(ExprArgs), RequiresZeroInit);
3876}
3877
3878/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3879/// including handling of its default argument expressions.
3880Sema::OwningExprResult
3881Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3882                            CXXConstructorDecl *Constructor, bool Elidable,
3883                            MultiExprArg ExprArgs,
3884                            bool RequiresZeroInit) {
3885  unsigned NumExprs = ExprArgs.size();
3886  Expr **Exprs = (Expr **)ExprArgs.release();
3887
3888  MarkDeclarationReferenced(ConstructLoc, Constructor);
3889  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
3890                                        Constructor, Elidable, Exprs, NumExprs,
3891                                        RequiresZeroInit));
3892}
3893
3894Sema::OwningExprResult
3895Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3896                                  QualType Ty,
3897                                  SourceLocation TyBeginLoc,
3898                                  MultiExprArg Args,
3899                                  SourceLocation RParenLoc) {
3900  unsigned NumExprs = Args.size();
3901  Expr **Exprs = (Expr **)Args.release();
3902
3903  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3904  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3905                                                    TyBeginLoc, Exprs,
3906                                                    NumExprs, RParenLoc));
3907}
3908
3909
3910bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3911                                        CXXConstructorDecl *Constructor,
3912                                        MultiExprArg Exprs) {
3913  OwningExprResult TempResult =
3914    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3915                          move(Exprs));
3916  if (TempResult.isInvalid())
3917    return true;
3918
3919  Expr *Temp = TempResult.takeAs<Expr>();
3920  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3921  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
3922  VD->setInit(Context, Temp);
3923
3924  return false;
3925}
3926
3927void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3928  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3929                                  DeclInitType->getAs<RecordType>()->getDecl());
3930  if (!ClassDecl->hasTrivialDestructor())
3931    if (CXXDestructorDecl *Destructor =
3932        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3933      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3934}
3935
3936/// AddCXXDirectInitializerToDecl - This action is called immediately after
3937/// ActOnDeclarator, when a C++ direct initializer is present.
3938/// e.g: "int x(1);"
3939void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3940                                         SourceLocation LParenLoc,
3941                                         MultiExprArg Exprs,
3942                                         SourceLocation *CommaLocs,
3943                                         SourceLocation RParenLoc) {
3944  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
3945  Decl *RealDecl = Dcl.getAs<Decl>();
3946
3947  // If there is no declaration, there was an error parsing it.  Just ignore
3948  // the initializer.
3949  if (RealDecl == 0)
3950    return;
3951
3952  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3953  if (!VDecl) {
3954    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3955    RealDecl->setInvalidDecl();
3956    return;
3957  }
3958
3959  // We will represent direct-initialization similarly to copy-initialization:
3960  //    int x(1);  -as-> int x = 1;
3961  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3962  //
3963  // Clients that want to distinguish between the two forms, can check for
3964  // direct initializer using VarDecl::hasCXXDirectInitializer().
3965  // A major benefit is that clients that don't particularly care about which
3966  // exactly form was it (like the CodeGen) can handle both cases without
3967  // special case code.
3968
3969  // If either the declaration has a dependent type or if any of the expressions
3970  // is type-dependent, we represent the initialization via a ParenListExpr for
3971  // later use during template instantiation.
3972  if (VDecl->getType()->isDependentType() ||
3973      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3974    // Let clients know that initialization was done with a direct initializer.
3975    VDecl->setCXXDirectInitializer(true);
3976
3977    // Store the initialization expressions as a ParenListExpr.
3978    unsigned NumExprs = Exprs.size();
3979    VDecl->setInit(Context,
3980                   new (Context) ParenListExpr(Context, LParenLoc,
3981                                               (Expr **)Exprs.release(),
3982                                               NumExprs, RParenLoc));
3983    return;
3984  }
3985
3986
3987  // C++ 8.5p11:
3988  // The form of initialization (using parentheses or '=') is generally
3989  // insignificant, but does matter when the entity being initialized has a
3990  // class type.
3991  QualType DeclInitType = VDecl->getType();
3992  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3993    DeclInitType = Context.getBaseElementType(Array);
3994
3995  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3996                          diag::err_typecheck_decl_incomplete_type)) {
3997    VDecl->setInvalidDecl();
3998    return;
3999  }
4000
4001  // The variable can not have an abstract class type.
4002  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4003                             diag::err_abstract_type_in_decl,
4004                             AbstractVariableType))
4005    VDecl->setInvalidDecl();
4006
4007  const VarDecl *Def = 0;
4008  if (VDecl->getDefinition(Def)) {
4009    Diag(VDecl->getLocation(), diag::err_redefinition)
4010    << VDecl->getDeclName();
4011    Diag(Def->getLocation(), diag::note_previous_definition);
4012    VDecl->setInvalidDecl();
4013    return;
4014  }
4015
4016  // Capture the variable that is being initialized and the style of
4017  // initialization.
4018  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4019
4020  // FIXME: Poor source location information.
4021  InitializationKind Kind
4022    = InitializationKind::CreateDirect(VDecl->getLocation(),
4023                                       LParenLoc, RParenLoc);
4024
4025  InitializationSequence InitSeq(*this, Entity, Kind,
4026                                 (Expr**)Exprs.get(), Exprs.size());
4027  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4028  if (Result.isInvalid()) {
4029    VDecl->setInvalidDecl();
4030    return;
4031  }
4032
4033  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4034  VDecl->setInit(Context, Result.takeAs<Expr>());
4035  VDecl->setCXXDirectInitializer(true);
4036
4037  if (VDecl->getType()->getAs<RecordType>())
4038    FinalizeVarWithDestructor(VDecl, DeclInitType);
4039}
4040
4041/// \brief Add the applicable constructor candidates for an initialization
4042/// by constructor.
4043static void AddConstructorInitializationCandidates(Sema &SemaRef,
4044                                                   QualType ClassType,
4045                                                   Expr **Args,
4046                                                   unsigned NumArgs,
4047                                                   InitializationKind Kind,
4048                                           OverloadCandidateSet &CandidateSet) {
4049  // C++ [dcl.init]p14:
4050  //   If the initialization is direct-initialization, or if it is
4051  //   copy-initialization where the cv-unqualified version of the
4052  //   source type is the same class as, or a derived class of, the
4053  //   class of the destination, constructors are considered. The
4054  //   applicable constructors are enumerated (13.3.1.3), and the
4055  //   best one is chosen through overload resolution (13.3). The
4056  //   constructor so selected is called to initialize the object,
4057  //   with the initializer expression(s) as its argument(s). If no
4058  //   constructor applies, or the overload resolution is ambiguous,
4059  //   the initialization is ill-formed.
4060  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4061  assert(ClassRec && "Can only initialize a class type here");
4062
4063  // FIXME: When we decide not to synthesize the implicitly-declared
4064  // constructors, we'll need to make them appear here.
4065
4066  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4067  DeclarationName ConstructorName
4068    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4069              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4070  DeclContext::lookup_const_iterator Con, ConEnd;
4071  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4072       Con != ConEnd; ++Con) {
4073    // Find the constructor (which may be a template).
4074    CXXConstructorDecl *Constructor = 0;
4075    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4076    if (ConstructorTmpl)
4077      Constructor
4078      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4079    else
4080      Constructor = cast<CXXConstructorDecl>(*Con);
4081
4082    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4083        (Kind.getKind() == InitializationKind::IK_Value) ||
4084        (Kind.getKind() == InitializationKind::IK_Copy &&
4085         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4086        ((Kind.getKind() == InitializationKind::IK_Default) &&
4087         Constructor->isDefaultConstructor())) {
4088      if (ConstructorTmpl)
4089        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4090                                             /*ExplicitArgs*/ 0,
4091                                             Args, NumArgs, CandidateSet);
4092      else
4093        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
4094    }
4095  }
4096}
4097
4098/// \brief Attempt to perform initialization by constructor
4099/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4100/// copy-initialization.
4101///
4102/// This routine determines whether initialization by constructor is possible,
4103/// but it does not emit any diagnostics in the case where the initialization
4104/// is ill-formed.
4105///
4106/// \param ClassType the type of the object being initialized, which must have
4107/// class type.
4108///
4109/// \param Args the arguments provided to initialize the object
4110///
4111/// \param NumArgs the number of arguments provided to initialize the object
4112///
4113/// \param Kind the type of initialization being performed
4114///
4115/// \returns the constructor used to initialize the object, if successful.
4116/// Otherwise, emits a diagnostic and returns NULL.
4117CXXConstructorDecl *
4118Sema::TryInitializationByConstructor(QualType ClassType,
4119                                     Expr **Args, unsigned NumArgs,
4120                                     SourceLocation Loc,
4121                                     InitializationKind Kind) {
4122  // Build the overload candidate set
4123  OverloadCandidateSet CandidateSet;
4124  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4125                                         CandidateSet);
4126
4127  // Determine whether we found a constructor we can use.
4128  OverloadCandidateSet::iterator Best;
4129  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4130    case OR_Success:
4131    case OR_Deleted:
4132      // We found a constructor. Return it.
4133      return cast<CXXConstructorDecl>(Best->Function);
4134
4135    case OR_No_Viable_Function:
4136    case OR_Ambiguous:
4137      // Overload resolution failed. Return nothing.
4138      return 0;
4139  }
4140
4141  // Silence GCC warning
4142  return 0;
4143}
4144
4145/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
4146/// may occur as part of direct-initialization or copy-initialization.
4147///
4148/// \param ClassType the type of the object being initialized, which must have
4149/// class type.
4150///
4151/// \param ArgsPtr the arguments provided to initialize the object
4152///
4153/// \param Loc the source location where the initialization occurs
4154///
4155/// \param Range the source range that covers the entire initialization
4156///
4157/// \param InitEntity the name of the entity being initialized, if known
4158///
4159/// \param Kind the type of initialization being performed
4160///
4161/// \param ConvertedArgs a vector that will be filled in with the
4162/// appropriately-converted arguments to the constructor (if initialization
4163/// succeeded).
4164///
4165/// \returns the constructor used to initialize the object, if successful.
4166/// Otherwise, emits a diagnostic and returns NULL.
4167CXXConstructorDecl *
4168Sema::PerformInitializationByConstructor(QualType ClassType,
4169                                         MultiExprArg ArgsPtr,
4170                                         SourceLocation Loc, SourceRange Range,
4171                                         DeclarationName InitEntity,
4172                                         InitializationKind Kind,
4173                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4174
4175  // Build the overload candidate set
4176  Expr **Args = (Expr **)ArgsPtr.get();
4177  unsigned NumArgs = ArgsPtr.size();
4178  OverloadCandidateSet CandidateSet;
4179  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4180                                         CandidateSet);
4181
4182  OverloadCandidateSet::iterator Best;
4183  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4184  case OR_Success:
4185    // We found a constructor. Break out so that we can convert the arguments
4186    // appropriately.
4187    break;
4188
4189  case OR_No_Viable_Function:
4190    if (InitEntity)
4191      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4192        << InitEntity << Range;
4193    else
4194      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4195        << ClassType << Range;
4196    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates);
4197    return 0;
4198
4199  case OR_Ambiguous:
4200    if (InitEntity)
4201      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
4202    else
4203      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
4204    PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates);
4205    return 0;
4206
4207  case OR_Deleted:
4208    if (InitEntity)
4209      Diag(Loc, diag::err_ovl_deleted_init)
4210        << Best->Function->isDeleted()
4211        << InitEntity << Range;
4212    else {
4213      const CXXRecordDecl *RD =
4214          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
4215      Diag(Loc, diag::err_ovl_deleted_init)
4216        << Best->Function->isDeleted()
4217        << RD->getDeclName() << Range;
4218    }
4219    PrintOverloadCandidates(CandidateSet, OCD_AllCandidates);
4220    return 0;
4221  }
4222
4223  // Convert the arguments, fill in default arguments, etc.
4224  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4225  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
4226    return 0;
4227
4228  return Constructor;
4229}
4230
4231/// \brief Given a constructor and the set of arguments provided for the
4232/// constructor, convert the arguments and add any required default arguments
4233/// to form a proper call to this constructor.
4234///
4235/// \returns true if an error occurred, false otherwise.
4236bool
4237Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4238                              MultiExprArg ArgsPtr,
4239                              SourceLocation Loc,
4240                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4241  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4242  unsigned NumArgs = ArgsPtr.size();
4243  Expr **Args = (Expr **)ArgsPtr.get();
4244
4245  const FunctionProtoType *Proto
4246    = Constructor->getType()->getAs<FunctionProtoType>();
4247  assert(Proto && "Constructor without a prototype?");
4248  unsigned NumArgsInProto = Proto->getNumArgs();
4249
4250  // If too few arguments are available, we'll fill in the rest with defaults.
4251  if (NumArgs < NumArgsInProto)
4252    ConvertedArgs.reserve(NumArgsInProto);
4253  else
4254    ConvertedArgs.reserve(NumArgs);
4255
4256  VariadicCallType CallType =
4257    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4258  llvm::SmallVector<Expr *, 8> AllArgs;
4259  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4260                                        Proto, 0, Args, NumArgs, AllArgs,
4261                                        CallType);
4262  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4263    ConvertedArgs.push_back(AllArgs[i]);
4264  return Invalid;
4265}
4266
4267/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4268/// determine whether they are reference-related,
4269/// reference-compatible, reference-compatible with added
4270/// qualification, or incompatible, for use in C++ initialization by
4271/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4272/// type, and the first type (T1) is the pointee type of the reference
4273/// type being initialized.
4274Sema::ReferenceCompareResult
4275Sema::CompareReferenceRelationship(SourceLocation Loc,
4276                                   QualType OrigT1, QualType OrigT2,
4277                                   bool& DerivedToBase) {
4278  assert(!OrigT1->isReferenceType() &&
4279    "T1 must be the pointee type of the reference type");
4280  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4281
4282  QualType T1 = Context.getCanonicalType(OrigT1);
4283  QualType T2 = Context.getCanonicalType(OrigT2);
4284  Qualifiers T1Quals, T2Quals;
4285  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4286  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4287
4288  // C++ [dcl.init.ref]p4:
4289  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4290  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4291  //   T1 is a base class of T2.
4292  if (UnqualT1 == UnqualT2)
4293    DerivedToBase = false;
4294  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4295           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4296           IsDerivedFrom(UnqualT2, UnqualT1))
4297    DerivedToBase = true;
4298  else
4299    return Ref_Incompatible;
4300
4301  // At this point, we know that T1 and T2 are reference-related (at
4302  // least).
4303
4304  // If the type is an array type, promote the element qualifiers to the type
4305  // for comparison.
4306  if (isa<ArrayType>(T1) && T1Quals)
4307    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4308  if (isa<ArrayType>(T2) && T2Quals)
4309    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4310
4311  // C++ [dcl.init.ref]p4:
4312  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4313  //   reference-related to T2 and cv1 is the same cv-qualification
4314  //   as, or greater cv-qualification than, cv2. For purposes of
4315  //   overload resolution, cases for which cv1 is greater
4316  //   cv-qualification than cv2 are identified as
4317  //   reference-compatible with added qualification (see 13.3.3.2).
4318  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4319    return Ref_Compatible;
4320  else if (T1.isMoreQualifiedThan(T2))
4321    return Ref_Compatible_With_Added_Qualification;
4322  else
4323    return Ref_Related;
4324}
4325
4326/// CheckReferenceInit - Check the initialization of a reference
4327/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4328/// the initializer (either a simple initializer or an initializer
4329/// list), and DeclType is the type of the declaration. When ICS is
4330/// non-null, this routine will compute the implicit conversion
4331/// sequence according to C++ [over.ics.ref] and will not produce any
4332/// diagnostics; when ICS is null, it will emit diagnostics when any
4333/// errors are found. Either way, a return value of true indicates
4334/// that there was a failure, a return value of false indicates that
4335/// the reference initialization succeeded.
4336///
4337/// When @p SuppressUserConversions, user-defined conversions are
4338/// suppressed.
4339/// When @p AllowExplicit, we also permit explicit user-defined
4340/// conversion functions.
4341/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4342/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4343/// This is used when this is called from a C-style cast.
4344bool
4345Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4346                         SourceLocation DeclLoc,
4347                         bool SuppressUserConversions,
4348                         bool AllowExplicit, bool ForceRValue,
4349                         ImplicitConversionSequence *ICS,
4350                         bool IgnoreBaseAccess) {
4351  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4352
4353  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4354  QualType T2 = Init->getType();
4355
4356  // If the initializer is the address of an overloaded function, try
4357  // to resolve the overloaded function. If all goes well, T2 is the
4358  // type of the resulting function.
4359  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4360    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4361                                                          ICS != 0);
4362    if (Fn) {
4363      // Since we're performing this reference-initialization for
4364      // real, update the initializer with the resulting function.
4365      if (!ICS) {
4366        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4367          return true;
4368
4369        Init = FixOverloadedFunctionReference(Init, Fn);
4370      }
4371
4372      T2 = Fn->getType();
4373    }
4374  }
4375
4376  // Compute some basic properties of the types and the initializer.
4377  bool isRValRef = DeclType->isRValueReferenceType();
4378  bool DerivedToBase = false;
4379  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4380                                                  Init->isLvalue(Context);
4381  ReferenceCompareResult RefRelationship
4382    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4383
4384  // Most paths end in a failed conversion.
4385  if (ICS)
4386    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
4387
4388  // C++ [dcl.init.ref]p5:
4389  //   A reference to type "cv1 T1" is initialized by an expression
4390  //   of type "cv2 T2" as follows:
4391
4392  //     -- If the initializer expression
4393
4394  // Rvalue references cannot bind to lvalues (N2812).
4395  // There is absolutely no situation where they can. In particular, note that
4396  // this is ill-formed, even if B has a user-defined conversion to A&&:
4397  //   B b;
4398  //   A&& r = b;
4399  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4400    if (!ICS)
4401      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4402        << Init->getSourceRange();
4403    return true;
4404  }
4405
4406  bool BindsDirectly = false;
4407  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4408  //          reference-compatible with "cv2 T2," or
4409  //
4410  // Note that the bit-field check is skipped if we are just computing
4411  // the implicit conversion sequence (C++ [over.best.ics]p2).
4412  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4413      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4414    BindsDirectly = true;
4415
4416    if (ICS) {
4417      // C++ [over.ics.ref]p1:
4418      //   When a parameter of reference type binds directly (8.5.3)
4419      //   to an argument expression, the implicit conversion sequence
4420      //   is the identity conversion, unless the argument expression
4421      //   has a type that is a derived class of the parameter type,
4422      //   in which case the implicit conversion sequence is a
4423      //   derived-to-base Conversion (13.3.3.1).
4424      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4425      ICS->Standard.First = ICK_Identity;
4426      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4427      ICS->Standard.Third = ICK_Identity;
4428      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4429      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4430      ICS->Standard.ReferenceBinding = true;
4431      ICS->Standard.DirectBinding = true;
4432      ICS->Standard.RRefBinding = false;
4433      ICS->Standard.CopyConstructor = 0;
4434
4435      // Nothing more to do: the inaccessibility/ambiguity check for
4436      // derived-to-base conversions is suppressed when we're
4437      // computing the implicit conversion sequence (C++
4438      // [over.best.ics]p2).
4439      return false;
4440    } else {
4441      // Perform the conversion.
4442      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4443      if (DerivedToBase)
4444        CK = CastExpr::CK_DerivedToBase;
4445      else if(CheckExceptionSpecCompatibility(Init, T1))
4446        return true;
4447      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4448    }
4449  }
4450
4451  //       -- has a class type (i.e., T2 is a class type) and can be
4452  //          implicitly converted to an lvalue of type "cv3 T3,"
4453  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4454  //          92) (this conversion is selected by enumerating the
4455  //          applicable conversion functions (13.3.1.6) and choosing
4456  //          the best one through overload resolution (13.3)),
4457  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4458      !RequireCompleteType(DeclLoc, T2, 0)) {
4459    CXXRecordDecl *T2RecordDecl
4460      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4461
4462    OverloadCandidateSet CandidateSet;
4463    const UnresolvedSet *Conversions
4464      = T2RecordDecl->getVisibleConversionFunctions();
4465    for (UnresolvedSet::iterator I = Conversions->begin(),
4466           E = Conversions->end(); I != E; ++I) {
4467      NamedDecl *D = *I;
4468      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4469      if (isa<UsingShadowDecl>(D))
4470        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4471
4472      FunctionTemplateDecl *ConvTemplate
4473        = dyn_cast<FunctionTemplateDecl>(D);
4474      CXXConversionDecl *Conv;
4475      if (ConvTemplate)
4476        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4477      else
4478        Conv = cast<CXXConversionDecl>(D);
4479
4480      // If the conversion function doesn't return a reference type,
4481      // it can't be considered for this conversion.
4482      if (Conv->getConversionType()->isLValueReferenceType() &&
4483          (AllowExplicit || !Conv->isExplicit())) {
4484        if (ConvTemplate)
4485          AddTemplateConversionCandidate(ConvTemplate, ActingDC,
4486                                         Init, DeclType, CandidateSet);
4487        else
4488          AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet);
4489      }
4490    }
4491
4492    OverloadCandidateSet::iterator Best;
4493    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4494    case OR_Success:
4495      // This is a direct binding.
4496      BindsDirectly = true;
4497
4498      if (ICS) {
4499        // C++ [over.ics.ref]p1:
4500        //
4501        //   [...] If the parameter binds directly to the result of
4502        //   applying a conversion function to the argument
4503        //   expression, the implicit conversion sequence is a
4504        //   user-defined conversion sequence (13.3.3.1.2), with the
4505        //   second standard conversion sequence either an identity
4506        //   conversion or, if the conversion function returns an
4507        //   entity of a type that is a derived class of the parameter
4508        //   type, a derived-to-base Conversion.
4509        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
4510        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4511        ICS->UserDefined.After = Best->FinalConversion;
4512        ICS->UserDefined.ConversionFunction = Best->Function;
4513        ICS->UserDefined.EllipsisConversion = false;
4514        assert(ICS->UserDefined.After.ReferenceBinding &&
4515               ICS->UserDefined.After.DirectBinding &&
4516               "Expected a direct reference binding!");
4517        return false;
4518      } else {
4519        OwningExprResult InitConversion =
4520          BuildCXXCastArgument(DeclLoc, QualType(),
4521                               CastExpr::CK_UserDefinedConversion,
4522                               cast<CXXMethodDecl>(Best->Function),
4523                               Owned(Init));
4524        Init = InitConversion.takeAs<Expr>();
4525
4526        if (CheckExceptionSpecCompatibility(Init, T1))
4527          return true;
4528        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4529                          /*isLvalue=*/true);
4530      }
4531      break;
4532
4533    case OR_Ambiguous:
4534      if (ICS) {
4535        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4536             Cand != CandidateSet.end(); ++Cand)
4537          if (Cand->Viable)
4538            ICS->ConversionFunctionSet.push_back(Cand->Function);
4539        break;
4540      }
4541      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4542            << Init->getSourceRange();
4543      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates);
4544      return true;
4545
4546    case OR_No_Viable_Function:
4547    case OR_Deleted:
4548      // There was no suitable conversion, or we found a deleted
4549      // conversion; continue with other checks.
4550      break;
4551    }
4552  }
4553
4554  if (BindsDirectly) {
4555    // C++ [dcl.init.ref]p4:
4556    //   [...] In all cases where the reference-related or
4557    //   reference-compatible relationship of two types is used to
4558    //   establish the validity of a reference binding, and T1 is a
4559    //   base class of T2, a program that necessitates such a binding
4560    //   is ill-formed if T1 is an inaccessible (clause 11) or
4561    //   ambiguous (10.2) base class of T2.
4562    //
4563    // Note that we only check this condition when we're allowed to
4564    // complain about errors, because we should not be checking for
4565    // ambiguity (or inaccessibility) unless the reference binding
4566    // actually happens.
4567    if (DerivedToBase)
4568      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4569                                          Init->getSourceRange(),
4570                                          IgnoreBaseAccess);
4571    else
4572      return false;
4573  }
4574
4575  //     -- Otherwise, the reference shall be to a non-volatile const
4576  //        type (i.e., cv1 shall be const), or the reference shall be an
4577  //        rvalue reference and the initializer expression shall be an rvalue.
4578  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4579    if (!ICS)
4580      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4581        << T1 << int(InitLvalue != Expr::LV_Valid)
4582        << T2 << Init->getSourceRange();
4583    return true;
4584  }
4585
4586  //       -- If the initializer expression is an rvalue, with T2 a
4587  //          class type, and "cv1 T1" is reference-compatible with
4588  //          "cv2 T2," the reference is bound in one of the
4589  //          following ways (the choice is implementation-defined):
4590  //
4591  //          -- The reference is bound to the object represented by
4592  //             the rvalue (see 3.10) or to a sub-object within that
4593  //             object.
4594  //
4595  //          -- A temporary of type "cv1 T2" [sic] is created, and
4596  //             a constructor is called to copy the entire rvalue
4597  //             object into the temporary. The reference is bound to
4598  //             the temporary or to a sub-object within the
4599  //             temporary.
4600  //
4601  //          The constructor that would be used to make the copy
4602  //          shall be callable whether or not the copy is actually
4603  //          done.
4604  //
4605  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4606  // freedom, so we will always take the first option and never build
4607  // a temporary in this case. FIXME: We will, however, have to check
4608  // for the presence of a copy constructor in C++98/03 mode.
4609  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4610      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4611    if (ICS) {
4612      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4613      ICS->Standard.First = ICK_Identity;
4614      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4615      ICS->Standard.Third = ICK_Identity;
4616      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4617      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4618      ICS->Standard.ReferenceBinding = true;
4619      ICS->Standard.DirectBinding = false;
4620      ICS->Standard.RRefBinding = isRValRef;
4621      ICS->Standard.CopyConstructor = 0;
4622    } else {
4623      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4624      if (DerivedToBase)
4625        CK = CastExpr::CK_DerivedToBase;
4626      else if(CheckExceptionSpecCompatibility(Init, T1))
4627        return true;
4628      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4629    }
4630    return false;
4631  }
4632
4633  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4634  //          initialized from the initializer expression using the
4635  //          rules for a non-reference copy initialization (8.5). The
4636  //          reference is then bound to the temporary. If T1 is
4637  //          reference-related to T2, cv1 must be the same
4638  //          cv-qualification as, or greater cv-qualification than,
4639  //          cv2; otherwise, the program is ill-formed.
4640  if (RefRelationship == Ref_Related) {
4641    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4642    // we would be reference-compatible or reference-compatible with
4643    // added qualification. But that wasn't the case, so the reference
4644    // initialization fails.
4645    if (!ICS)
4646      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4647        << T1 << int(InitLvalue != Expr::LV_Valid)
4648        << T2 << Init->getSourceRange();
4649    return true;
4650  }
4651
4652  // If at least one of the types is a class type, the types are not
4653  // related, and we aren't allowed any user conversions, the
4654  // reference binding fails. This case is important for breaking
4655  // recursion, since TryImplicitConversion below will attempt to
4656  // create a temporary through the use of a copy constructor.
4657  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4658      (T1->isRecordType() || T2->isRecordType())) {
4659    if (!ICS)
4660      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4661        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4662    return true;
4663  }
4664
4665  // Actually try to convert the initializer to T1.
4666  if (ICS) {
4667    // C++ [over.ics.ref]p2:
4668    //
4669    //   When a parameter of reference type is not bound directly to
4670    //   an argument expression, the conversion sequence is the one
4671    //   required to convert the argument expression to the
4672    //   underlying type of the reference according to
4673    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4674    //   to copy-initializing a temporary of the underlying type with
4675    //   the argument expression. Any difference in top-level
4676    //   cv-qualification is subsumed by the initialization itself
4677    //   and does not constitute a conversion.
4678    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4679                                 /*AllowExplicit=*/false,
4680                                 /*ForceRValue=*/false,
4681                                 /*InOverloadResolution=*/false);
4682
4683    // Of course, that's still a reference binding.
4684    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4685      ICS->Standard.ReferenceBinding = true;
4686      ICS->Standard.RRefBinding = isRValRef;
4687    } else if (ICS->ConversionKind ==
4688              ImplicitConversionSequence::UserDefinedConversion) {
4689      ICS->UserDefined.After.ReferenceBinding = true;
4690      ICS->UserDefined.After.RRefBinding = isRValRef;
4691    }
4692    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4693  } else {
4694    ImplicitConversionSequence Conversions;
4695    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4696                                                   false, false,
4697                                                   Conversions);
4698    if (badConversion) {
4699      if ((Conversions.ConversionKind  ==
4700            ImplicitConversionSequence::BadConversion)
4701          && !Conversions.ConversionFunctionSet.empty()) {
4702        Diag(DeclLoc,
4703             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4704        for (int j = Conversions.ConversionFunctionSet.size()-1;
4705             j >= 0; j--) {
4706          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4707          NoteOverloadCandidate(Func);
4708        }
4709      }
4710      else {
4711        if (isRValRef)
4712          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4713            << Init->getSourceRange();
4714        else
4715          Diag(DeclLoc, diag::err_invalid_initialization)
4716            << DeclType << Init->getType() << Init->getSourceRange();
4717      }
4718    }
4719    return badConversion;
4720  }
4721}
4722
4723static inline bool
4724CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4725                                       const FunctionDecl *FnDecl) {
4726  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4727  if (isa<NamespaceDecl>(DC)) {
4728    return SemaRef.Diag(FnDecl->getLocation(),
4729                        diag::err_operator_new_delete_declared_in_namespace)
4730      << FnDecl->getDeclName();
4731  }
4732
4733  if (isa<TranslationUnitDecl>(DC) &&
4734      FnDecl->getStorageClass() == FunctionDecl::Static) {
4735    return SemaRef.Diag(FnDecl->getLocation(),
4736                        diag::err_operator_new_delete_declared_static)
4737      << FnDecl->getDeclName();
4738  }
4739
4740  return false;
4741}
4742
4743static inline bool
4744CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4745                            CanQualType ExpectedResultType,
4746                            CanQualType ExpectedFirstParamType,
4747                            unsigned DependentParamTypeDiag,
4748                            unsigned InvalidParamTypeDiag) {
4749  QualType ResultType =
4750    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4751
4752  // Check that the result type is not dependent.
4753  if (ResultType->isDependentType())
4754    return SemaRef.Diag(FnDecl->getLocation(),
4755                        diag::err_operator_new_delete_dependent_result_type)
4756    << FnDecl->getDeclName() << ExpectedResultType;
4757
4758  // Check that the result type is what we expect.
4759  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4760    return SemaRef.Diag(FnDecl->getLocation(),
4761                        diag::err_operator_new_delete_invalid_result_type)
4762    << FnDecl->getDeclName() << ExpectedResultType;
4763
4764  // A function template must have at least 2 parameters.
4765  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4766    return SemaRef.Diag(FnDecl->getLocation(),
4767                      diag::err_operator_new_delete_template_too_few_parameters)
4768        << FnDecl->getDeclName();
4769
4770  // The function decl must have at least 1 parameter.
4771  if (FnDecl->getNumParams() == 0)
4772    return SemaRef.Diag(FnDecl->getLocation(),
4773                        diag::err_operator_new_delete_too_few_parameters)
4774      << FnDecl->getDeclName();
4775
4776  // Check the the first parameter type is not dependent.
4777  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4778  if (FirstParamType->isDependentType())
4779    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4780      << FnDecl->getDeclName() << ExpectedFirstParamType;
4781
4782  // Check that the first parameter type is what we expect.
4783  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4784      ExpectedFirstParamType)
4785    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4786    << FnDecl->getDeclName() << ExpectedFirstParamType;
4787
4788  return false;
4789}
4790
4791static bool
4792CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4793  // C++ [basic.stc.dynamic.allocation]p1:
4794  //   A program is ill-formed if an allocation function is declared in a
4795  //   namespace scope other than global scope or declared static in global
4796  //   scope.
4797  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4798    return true;
4799
4800  CanQualType SizeTy =
4801    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4802
4803  // C++ [basic.stc.dynamic.allocation]p1:
4804  //  The return type shall be void*. The first parameter shall have type
4805  //  std::size_t.
4806  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4807                                  SizeTy,
4808                                  diag::err_operator_new_dependent_param_type,
4809                                  diag::err_operator_new_param_type))
4810    return true;
4811
4812  // C++ [basic.stc.dynamic.allocation]p1:
4813  //  The first parameter shall not have an associated default argument.
4814  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4815    return SemaRef.Diag(FnDecl->getLocation(),
4816                        diag::err_operator_new_default_arg)
4817      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4818
4819  return false;
4820}
4821
4822static bool
4823CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4824  // C++ [basic.stc.dynamic.deallocation]p1:
4825  //   A program is ill-formed if deallocation functions are declared in a
4826  //   namespace scope other than global scope or declared static in global
4827  //   scope.
4828  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4829    return true;
4830
4831  // C++ [basic.stc.dynamic.deallocation]p2:
4832  //   Each deallocation function shall return void and its first parameter
4833  //   shall be void*.
4834  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4835                                  SemaRef.Context.VoidPtrTy,
4836                                 diag::err_operator_delete_dependent_param_type,
4837                                 diag::err_operator_delete_param_type))
4838    return true;
4839
4840  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4841  if (FirstParamType->isDependentType())
4842    return SemaRef.Diag(FnDecl->getLocation(),
4843                        diag::err_operator_delete_dependent_param_type)
4844    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4845
4846  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4847      SemaRef.Context.VoidPtrTy)
4848    return SemaRef.Diag(FnDecl->getLocation(),
4849                        diag::err_operator_delete_param_type)
4850      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4851
4852  return false;
4853}
4854
4855/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4856/// of this overloaded operator is well-formed. If so, returns false;
4857/// otherwise, emits appropriate diagnostics and returns true.
4858bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4859  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4860         "Expected an overloaded operator declaration");
4861
4862  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4863
4864  // C++ [over.oper]p5:
4865  //   The allocation and deallocation functions, operator new,
4866  //   operator new[], operator delete and operator delete[], are
4867  //   described completely in 3.7.3. The attributes and restrictions
4868  //   found in the rest of this subclause do not apply to them unless
4869  //   explicitly stated in 3.7.3.
4870  if (Op == OO_Delete || Op == OO_Array_Delete)
4871    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4872
4873  if (Op == OO_New || Op == OO_Array_New)
4874    return CheckOperatorNewDeclaration(*this, FnDecl);
4875
4876  // C++ [over.oper]p6:
4877  //   An operator function shall either be a non-static member
4878  //   function or be a non-member function and have at least one
4879  //   parameter whose type is a class, a reference to a class, an
4880  //   enumeration, or a reference to an enumeration.
4881  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4882    if (MethodDecl->isStatic())
4883      return Diag(FnDecl->getLocation(),
4884                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4885  } else {
4886    bool ClassOrEnumParam = false;
4887    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4888                                   ParamEnd = FnDecl->param_end();
4889         Param != ParamEnd; ++Param) {
4890      QualType ParamType = (*Param)->getType().getNonReferenceType();
4891      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4892          ParamType->isEnumeralType()) {
4893        ClassOrEnumParam = true;
4894        break;
4895      }
4896    }
4897
4898    if (!ClassOrEnumParam)
4899      return Diag(FnDecl->getLocation(),
4900                  diag::err_operator_overload_needs_class_or_enum)
4901        << FnDecl->getDeclName();
4902  }
4903
4904  // C++ [over.oper]p8:
4905  //   An operator function cannot have default arguments (8.3.6),
4906  //   except where explicitly stated below.
4907  //
4908  // Only the function-call operator allows default arguments
4909  // (C++ [over.call]p1).
4910  if (Op != OO_Call) {
4911    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4912         Param != FnDecl->param_end(); ++Param) {
4913      if ((*Param)->hasDefaultArg())
4914        return Diag((*Param)->getLocation(),
4915                    diag::err_operator_overload_default_arg)
4916          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4917    }
4918  }
4919
4920  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4921    { false, false, false }
4922#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4923    , { Unary, Binary, MemberOnly }
4924#include "clang/Basic/OperatorKinds.def"
4925  };
4926
4927  bool CanBeUnaryOperator = OperatorUses[Op][0];
4928  bool CanBeBinaryOperator = OperatorUses[Op][1];
4929  bool MustBeMemberOperator = OperatorUses[Op][2];
4930
4931  // C++ [over.oper]p8:
4932  //   [...] Operator functions cannot have more or fewer parameters
4933  //   than the number required for the corresponding operator, as
4934  //   described in the rest of this subclause.
4935  unsigned NumParams = FnDecl->getNumParams()
4936                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4937  if (Op != OO_Call &&
4938      ((NumParams == 1 && !CanBeUnaryOperator) ||
4939       (NumParams == 2 && !CanBeBinaryOperator) ||
4940       (NumParams < 1) || (NumParams > 2))) {
4941    // We have the wrong number of parameters.
4942    unsigned ErrorKind;
4943    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4944      ErrorKind = 2;  // 2 -> unary or binary.
4945    } else if (CanBeUnaryOperator) {
4946      ErrorKind = 0;  // 0 -> unary
4947    } else {
4948      assert(CanBeBinaryOperator &&
4949             "All non-call overloaded operators are unary or binary!");
4950      ErrorKind = 1;  // 1 -> binary
4951    }
4952
4953    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4954      << FnDecl->getDeclName() << NumParams << ErrorKind;
4955  }
4956
4957  // Overloaded operators other than operator() cannot be variadic.
4958  if (Op != OO_Call &&
4959      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4960    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4961      << FnDecl->getDeclName();
4962  }
4963
4964  // Some operators must be non-static member functions.
4965  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4966    return Diag(FnDecl->getLocation(),
4967                diag::err_operator_overload_must_be_member)
4968      << FnDecl->getDeclName();
4969  }
4970
4971  // C++ [over.inc]p1:
4972  //   The user-defined function called operator++ implements the
4973  //   prefix and postfix ++ operator. If this function is a member
4974  //   function with no parameters, or a non-member function with one
4975  //   parameter of class or enumeration type, it defines the prefix
4976  //   increment operator ++ for objects of that type. If the function
4977  //   is a member function with one parameter (which shall be of type
4978  //   int) or a non-member function with two parameters (the second
4979  //   of which shall be of type int), it defines the postfix
4980  //   increment operator ++ for objects of that type.
4981  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4982    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4983    bool ParamIsInt = false;
4984    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4985      ParamIsInt = BT->getKind() == BuiltinType::Int;
4986
4987    if (!ParamIsInt)
4988      return Diag(LastParam->getLocation(),
4989                  diag::err_operator_overload_post_incdec_must_be_int)
4990        << LastParam->getType() << (Op == OO_MinusMinus);
4991  }
4992
4993  // Notify the class if it got an assignment operator.
4994  if (Op == OO_Equal) {
4995    // Would have returned earlier otherwise.
4996    assert(isa<CXXMethodDecl>(FnDecl) &&
4997      "Overloaded = not member, but not filtered.");
4998    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4999    Method->getParent()->addedAssignmentOperator(Context, Method);
5000  }
5001
5002  return false;
5003}
5004
5005/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5006/// linkage specification, including the language and (if present)
5007/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5008/// the location of the language string literal, which is provided
5009/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5010/// the '{' brace. Otherwise, this linkage specification does not
5011/// have any braces.
5012Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5013                                                     SourceLocation ExternLoc,
5014                                                     SourceLocation LangLoc,
5015                                                     const char *Lang,
5016                                                     unsigned StrSize,
5017                                                     SourceLocation LBraceLoc) {
5018  LinkageSpecDecl::LanguageIDs Language;
5019  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5020    Language = LinkageSpecDecl::lang_c;
5021  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5022    Language = LinkageSpecDecl::lang_cxx;
5023  else {
5024    Diag(LangLoc, diag::err_bad_language);
5025    return DeclPtrTy();
5026  }
5027
5028  // FIXME: Add all the various semantics of linkage specifications
5029
5030  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5031                                               LangLoc, Language,
5032                                               LBraceLoc.isValid());
5033  CurContext->addDecl(D);
5034  PushDeclContext(S, D);
5035  return DeclPtrTy::make(D);
5036}
5037
5038/// ActOnFinishLinkageSpecification - Completely the definition of
5039/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5040/// valid, it's the position of the closing '}' brace in a linkage
5041/// specification that uses braces.
5042Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5043                                                      DeclPtrTy LinkageSpec,
5044                                                      SourceLocation RBraceLoc) {
5045  if (LinkageSpec)
5046    PopDeclContext();
5047  return LinkageSpec;
5048}
5049
5050/// \brief Perform semantic analysis for the variable declaration that
5051/// occurs within a C++ catch clause, returning the newly-created
5052/// variable.
5053VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5054                                         TypeSourceInfo *TInfo,
5055                                         IdentifierInfo *Name,
5056                                         SourceLocation Loc,
5057                                         SourceRange Range) {
5058  bool Invalid = false;
5059
5060  // Arrays and functions decay.
5061  if (ExDeclType->isArrayType())
5062    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5063  else if (ExDeclType->isFunctionType())
5064    ExDeclType = Context.getPointerType(ExDeclType);
5065
5066  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5067  // The exception-declaration shall not denote a pointer or reference to an
5068  // incomplete type, other than [cv] void*.
5069  // N2844 forbids rvalue references.
5070  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5071    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5072    Invalid = true;
5073  }
5074
5075  QualType BaseType = ExDeclType;
5076  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5077  unsigned DK = diag::err_catch_incomplete;
5078  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5079    BaseType = Ptr->getPointeeType();
5080    Mode = 1;
5081    DK = diag::err_catch_incomplete_ptr;
5082  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5083    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5084    BaseType = Ref->getPointeeType();
5085    Mode = 2;
5086    DK = diag::err_catch_incomplete_ref;
5087  }
5088  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5089      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5090    Invalid = true;
5091
5092  if (!Invalid && !ExDeclType->isDependentType() &&
5093      RequireNonAbstractType(Loc, ExDeclType,
5094                             diag::err_abstract_type_in_decl,
5095                             AbstractVariableType))
5096    Invalid = true;
5097
5098  // FIXME: Need to test for ability to copy-construct and destroy the
5099  // exception variable.
5100
5101  // FIXME: Need to check for abstract classes.
5102
5103  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5104                                    Name, ExDeclType, TInfo, VarDecl::None);
5105
5106  if (Invalid)
5107    ExDecl->setInvalidDecl();
5108
5109  return ExDecl;
5110}
5111
5112/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5113/// handler.
5114Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5115  TypeSourceInfo *TInfo = 0;
5116  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5117
5118  bool Invalid = D.isInvalidType();
5119  IdentifierInfo *II = D.getIdentifier();
5120  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5121    // The scope should be freshly made just for us. There is just no way
5122    // it contains any previous declaration.
5123    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5124    if (PrevDecl->isTemplateParameter()) {
5125      // Maybe we will complain about the shadowed template parameter.
5126      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5127    }
5128  }
5129
5130  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5131    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5132      << D.getCXXScopeSpec().getRange();
5133    Invalid = true;
5134  }
5135
5136  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5137                                              D.getIdentifier(),
5138                                              D.getIdentifierLoc(),
5139                                            D.getDeclSpec().getSourceRange());
5140
5141  if (Invalid)
5142    ExDecl->setInvalidDecl();
5143
5144  // Add the exception declaration into this scope.
5145  if (II)
5146    PushOnScopeChains(ExDecl, S);
5147  else
5148    CurContext->addDecl(ExDecl);
5149
5150  ProcessDeclAttributes(S, ExDecl, D);
5151  return DeclPtrTy::make(ExDecl);
5152}
5153
5154Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5155                                                   ExprArg assertexpr,
5156                                                   ExprArg assertmessageexpr) {
5157  Expr *AssertExpr = (Expr *)assertexpr.get();
5158  StringLiteral *AssertMessage =
5159    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5160
5161  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5162    llvm::APSInt Value(32);
5163    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5164      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5165        AssertExpr->getSourceRange();
5166      return DeclPtrTy();
5167    }
5168
5169    if (Value == 0) {
5170      Diag(AssertLoc, diag::err_static_assert_failed)
5171        << AssertMessage->getString() << AssertExpr->getSourceRange();
5172    }
5173  }
5174
5175  assertexpr.release();
5176  assertmessageexpr.release();
5177  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5178                                        AssertExpr, AssertMessage);
5179
5180  CurContext->addDecl(Decl);
5181  return DeclPtrTy::make(Decl);
5182}
5183
5184/// Handle a friend type declaration.  This works in tandem with
5185/// ActOnTag.
5186///
5187/// Notes on friend class templates:
5188///
5189/// We generally treat friend class declarations as if they were
5190/// declaring a class.  So, for example, the elaborated type specifier
5191/// in a friend declaration is required to obey the restrictions of a
5192/// class-head (i.e. no typedefs in the scope chain), template
5193/// parameters are required to match up with simple template-ids, &c.
5194/// However, unlike when declaring a template specialization, it's
5195/// okay to refer to a template specialization without an empty
5196/// template parameter declaration, e.g.
5197///   friend class A<T>::B<unsigned>;
5198/// We permit this as a special case; if there are any template
5199/// parameters present at all, require proper matching, i.e.
5200///   template <> template <class T> friend class A<int>::B;
5201Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5202                                          MultiTemplateParamsArg TempParams) {
5203  SourceLocation Loc = DS.getSourceRange().getBegin();
5204
5205  assert(DS.isFriendSpecified());
5206  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5207
5208  // Try to convert the decl specifier to a type.  This works for
5209  // friend templates because ActOnTag never produces a ClassTemplateDecl
5210  // for a TUK_Friend.
5211  Declarator TheDeclarator(DS, Declarator::MemberContext);
5212  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5213  if (TheDeclarator.isInvalidType())
5214    return DeclPtrTy();
5215
5216  // This is definitely an error in C++98.  It's probably meant to
5217  // be forbidden in C++0x, too, but the specification is just
5218  // poorly written.
5219  //
5220  // The problem is with declarations like the following:
5221  //   template <T> friend A<T>::foo;
5222  // where deciding whether a class C is a friend or not now hinges
5223  // on whether there exists an instantiation of A that causes
5224  // 'foo' to equal C.  There are restrictions on class-heads
5225  // (which we declare (by fiat) elaborated friend declarations to
5226  // be) that makes this tractable.
5227  //
5228  // FIXME: handle "template <> friend class A<T>;", which
5229  // is possibly well-formed?  Who even knows?
5230  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5231    Diag(Loc, diag::err_tagless_friend_type_template)
5232      << DS.getSourceRange();
5233    return DeclPtrTy();
5234  }
5235
5236  // C++ [class.friend]p2:
5237  //   An elaborated-type-specifier shall be used in a friend declaration
5238  //   for a class.*
5239  //   * The class-key of the elaborated-type-specifier is required.
5240  // This is one of the rare places in Clang where it's legitimate to
5241  // ask about the "spelling" of the type.
5242  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5243    // If we evaluated the type to a record type, suggest putting
5244    // a tag in front.
5245    if (const RecordType *RT = T->getAs<RecordType>()) {
5246      RecordDecl *RD = RT->getDecl();
5247
5248      std::string InsertionText = std::string(" ") + RD->getKindName();
5249
5250      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5251        << (unsigned) RD->getTagKind()
5252        << T
5253        << SourceRange(DS.getFriendSpecLoc())
5254        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5255                                                 InsertionText);
5256      return DeclPtrTy();
5257    }else {
5258      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5259          << DS.getSourceRange();
5260      return DeclPtrTy();
5261    }
5262  }
5263
5264  // Enum types cannot be friends.
5265  if (T->getAs<EnumType>()) {
5266    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5267      << SourceRange(DS.getFriendSpecLoc());
5268    return DeclPtrTy();
5269  }
5270
5271  // C++98 [class.friend]p1: A friend of a class is a function
5272  //   or class that is not a member of the class . . .
5273  // This is fixed in DR77, which just barely didn't make the C++03
5274  // deadline.  It's also a very silly restriction that seriously
5275  // affects inner classes and which nobody else seems to implement;
5276  // thus we never diagnose it, not even in -pedantic.
5277
5278  Decl *D;
5279  if (TempParams.size())
5280    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5281                                   TempParams.size(),
5282                                 (TemplateParameterList**) TempParams.release(),
5283                                   T.getTypePtr(),
5284                                   DS.getFriendSpecLoc());
5285  else
5286    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5287                           DS.getFriendSpecLoc());
5288  D->setAccess(AS_public);
5289  CurContext->addDecl(D);
5290
5291  return DeclPtrTy::make(D);
5292}
5293
5294Sema::DeclPtrTy
5295Sema::ActOnFriendFunctionDecl(Scope *S,
5296                              Declarator &D,
5297                              bool IsDefinition,
5298                              MultiTemplateParamsArg TemplateParams) {
5299  const DeclSpec &DS = D.getDeclSpec();
5300
5301  assert(DS.isFriendSpecified());
5302  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5303
5304  SourceLocation Loc = D.getIdentifierLoc();
5305  TypeSourceInfo *TInfo = 0;
5306  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5307
5308  // C++ [class.friend]p1
5309  //   A friend of a class is a function or class....
5310  // Note that this sees through typedefs, which is intended.
5311  // It *doesn't* see through dependent types, which is correct
5312  // according to [temp.arg.type]p3:
5313  //   If a declaration acquires a function type through a
5314  //   type dependent on a template-parameter and this causes
5315  //   a declaration that does not use the syntactic form of a
5316  //   function declarator to have a function type, the program
5317  //   is ill-formed.
5318  if (!T->isFunctionType()) {
5319    Diag(Loc, diag::err_unexpected_friend);
5320
5321    // It might be worthwhile to try to recover by creating an
5322    // appropriate declaration.
5323    return DeclPtrTy();
5324  }
5325
5326  // C++ [namespace.memdef]p3
5327  //  - If a friend declaration in a non-local class first declares a
5328  //    class or function, the friend class or function is a member
5329  //    of the innermost enclosing namespace.
5330  //  - The name of the friend is not found by simple name lookup
5331  //    until a matching declaration is provided in that namespace
5332  //    scope (either before or after the class declaration granting
5333  //    friendship).
5334  //  - If a friend function is called, its name may be found by the
5335  //    name lookup that considers functions from namespaces and
5336  //    classes associated with the types of the function arguments.
5337  //  - When looking for a prior declaration of a class or a function
5338  //    declared as a friend, scopes outside the innermost enclosing
5339  //    namespace scope are not considered.
5340
5341  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5342  DeclarationName Name = GetNameForDeclarator(D);
5343  assert(Name);
5344
5345  // The context we found the declaration in, or in which we should
5346  // create the declaration.
5347  DeclContext *DC;
5348
5349  // FIXME: handle local classes
5350
5351  // Recover from invalid scope qualifiers as if they just weren't there.
5352  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5353                        ForRedeclaration);
5354  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5355    // FIXME: RequireCompleteDeclContext
5356    DC = computeDeclContext(ScopeQual);
5357
5358    // FIXME: handle dependent contexts
5359    if (!DC) return DeclPtrTy();
5360
5361    LookupQualifiedName(Previous, DC);
5362
5363    // If searching in that context implicitly found a declaration in
5364    // a different context, treat it like it wasn't found at all.
5365    // TODO: better diagnostics for this case.  Suggesting the right
5366    // qualified scope would be nice...
5367    // FIXME: getRepresentativeDecl() is not right here at all
5368    if (Previous.empty() ||
5369        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5370      D.setInvalidType();
5371      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5372      return DeclPtrTy();
5373    }
5374
5375    // C++ [class.friend]p1: A friend of a class is a function or
5376    //   class that is not a member of the class . . .
5377    if (DC->Equals(CurContext))
5378      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5379
5380  // Otherwise walk out to the nearest namespace scope looking for matches.
5381  } else {
5382    // TODO: handle local class contexts.
5383
5384    DC = CurContext;
5385    while (true) {
5386      // Skip class contexts.  If someone can cite chapter and verse
5387      // for this behavior, that would be nice --- it's what GCC and
5388      // EDG do, and it seems like a reasonable intent, but the spec
5389      // really only says that checks for unqualified existing
5390      // declarations should stop at the nearest enclosing namespace,
5391      // not that they should only consider the nearest enclosing
5392      // namespace.
5393      while (DC->isRecord())
5394        DC = DC->getParent();
5395
5396      LookupQualifiedName(Previous, DC);
5397
5398      // TODO: decide what we think about using declarations.
5399      if (!Previous.empty())
5400        break;
5401
5402      if (DC->isFileContext()) break;
5403      DC = DC->getParent();
5404    }
5405
5406    // C++ [class.friend]p1: A friend of a class is a function or
5407    //   class that is not a member of the class . . .
5408    // C++0x changes this for both friend types and functions.
5409    // Most C++ 98 compilers do seem to give an error here, so
5410    // we do, too.
5411    if (!Previous.empty() && DC->Equals(CurContext)
5412        && !getLangOptions().CPlusPlus0x)
5413      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5414  }
5415
5416  if (DC->isFileContext()) {
5417    // This implies that it has to be an operator or function.
5418    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5419        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5420        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5421      Diag(Loc, diag::err_introducing_special_friend) <<
5422        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5423         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5424      return DeclPtrTy();
5425    }
5426  }
5427
5428  bool Redeclaration = false;
5429  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5430                                          move(TemplateParams),
5431                                          IsDefinition,
5432                                          Redeclaration);
5433  if (!ND) return DeclPtrTy();
5434
5435  assert(ND->getDeclContext() == DC);
5436  assert(ND->getLexicalDeclContext() == CurContext);
5437
5438  // Add the function declaration to the appropriate lookup tables,
5439  // adjusting the redeclarations list as necessary.  We don't
5440  // want to do this yet if the friending class is dependent.
5441  //
5442  // Also update the scope-based lookup if the target context's
5443  // lookup context is in lexical scope.
5444  if (!CurContext->isDependentContext()) {
5445    DC = DC->getLookupContext();
5446    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5447    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5448      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5449  }
5450
5451  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5452                                       D.getIdentifierLoc(), ND,
5453                                       DS.getFriendSpecLoc());
5454  FrD->setAccess(AS_public);
5455  CurContext->addDecl(FrD);
5456
5457  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5458    FrD->setSpecialization(true);
5459
5460  return DeclPtrTy::make(ND);
5461}
5462
5463void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5464  AdjustDeclIfTemplate(dcl);
5465
5466  Decl *Dcl = dcl.getAs<Decl>();
5467  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5468  if (!Fn) {
5469    Diag(DelLoc, diag::err_deleted_non_function);
5470    return;
5471  }
5472  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5473    Diag(DelLoc, diag::err_deleted_decl_not_first);
5474    Diag(Prev->getLocation(), diag::note_previous_declaration);
5475    // If the declaration wasn't the first, we delete the function anyway for
5476    // recovery.
5477  }
5478  Fn->setDeleted();
5479}
5480
5481static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5482  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5483       ++CI) {
5484    Stmt *SubStmt = *CI;
5485    if (!SubStmt)
5486      continue;
5487    if (isa<ReturnStmt>(SubStmt))
5488      Self.Diag(SubStmt->getSourceRange().getBegin(),
5489           diag::err_return_in_constructor_handler);
5490    if (!isa<Expr>(SubStmt))
5491      SearchForReturnInStmt(Self, SubStmt);
5492  }
5493}
5494
5495void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5496  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5497    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5498    SearchForReturnInStmt(*this, Handler);
5499  }
5500}
5501
5502bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5503                                             const CXXMethodDecl *Old) {
5504  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5505  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5506
5507  QualType CNewTy = Context.getCanonicalType(NewTy);
5508  QualType COldTy = Context.getCanonicalType(OldTy);
5509
5510  if (CNewTy == COldTy &&
5511      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
5512    return false;
5513
5514  // Check if the return types are covariant
5515  QualType NewClassTy, OldClassTy;
5516
5517  /// Both types must be pointers or references to classes.
5518  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
5519    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
5520      NewClassTy = NewPT->getPointeeType();
5521      OldClassTy = OldPT->getPointeeType();
5522    }
5523  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
5524    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
5525      NewClassTy = NewRT->getPointeeType();
5526      OldClassTy = OldRT->getPointeeType();
5527    }
5528  }
5529
5530  // The return types aren't either both pointers or references to a class type.
5531  if (NewClassTy.isNull()) {
5532    Diag(New->getLocation(),
5533         diag::err_different_return_type_for_overriding_virtual_function)
5534      << New->getDeclName() << NewTy << OldTy;
5535    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5536
5537    return true;
5538  }
5539
5540  // C++ [class.virtual]p6:
5541  //   If the return type of D::f differs from the return type of B::f, the
5542  //   class type in the return type of D::f shall be complete at the point of
5543  //   declaration of D::f or shall be the class type D.
5544  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5545    if (!RT->isBeingDefined() &&
5546        RequireCompleteType(New->getLocation(), NewClassTy,
5547                            PDiag(diag::err_covariant_return_incomplete)
5548                              << New->getDeclName()))
5549    return true;
5550  }
5551
5552  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5553    // Check if the new class derives from the old class.
5554    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5555      Diag(New->getLocation(),
5556           diag::err_covariant_return_not_derived)
5557      << New->getDeclName() << NewTy << OldTy;
5558      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5559      return true;
5560    }
5561
5562    // Check if we the conversion from derived to base is valid.
5563    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5564                      diag::err_covariant_return_inaccessible_base,
5565                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5566                      // FIXME: Should this point to the return type?
5567                      New->getLocation(), SourceRange(), New->getDeclName())) {
5568      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5569      return true;
5570    }
5571  }
5572
5573  // The qualifiers of the return types must be the same.
5574  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
5575    Diag(New->getLocation(),
5576         diag::err_covariant_return_type_different_qualifications)
5577    << New->getDeclName() << NewTy << OldTy;
5578    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5579    return true;
5580  };
5581
5582
5583  // The new class type must have the same or less qualifiers as the old type.
5584  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5585    Diag(New->getLocation(),
5586         diag::err_covariant_return_type_class_type_more_qualified)
5587    << New->getDeclName() << NewTy << OldTy;
5588    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5589    return true;
5590  };
5591
5592  return false;
5593}
5594
5595bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5596                                             const CXXMethodDecl *Old)
5597{
5598  if (Old->hasAttr<FinalAttr>()) {
5599    Diag(New->getLocation(), diag::err_final_function_overridden)
5600      << New->getDeclName();
5601    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5602    return true;
5603  }
5604
5605  return false;
5606}
5607
5608/// \brief Mark the given method pure.
5609///
5610/// \param Method the method to be marked pure.
5611///
5612/// \param InitRange the source range that covers the "0" initializer.
5613bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5614  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5615    Method->setPure();
5616
5617    // A class is abstract if at least one function is pure virtual.
5618    Method->getParent()->setAbstract(true);
5619    return false;
5620  }
5621
5622  if (!Method->isInvalidDecl())
5623    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5624      << Method->getDeclName() << InitRange;
5625  return true;
5626}
5627
5628/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5629/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5630/// is a fresh scope pushed for just this purpose.
5631///
5632/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5633/// static data member of class X, names should be looked up in the scope of
5634/// class X.
5635void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5636  // If there is no declaration, there was an error parsing it.
5637  Decl *D = Dcl.getAs<Decl>();
5638  if (D == 0) return;
5639
5640  // We should only get called for declarations with scope specifiers, like:
5641  //   int foo::bar;
5642  assert(D->isOutOfLine());
5643  EnterDeclaratorContext(S, D->getDeclContext());
5644}
5645
5646/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5647/// initializer for the out-of-line declaration 'Dcl'.
5648void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5649  // If there is no declaration, there was an error parsing it.
5650  Decl *D = Dcl.getAs<Decl>();
5651  if (D == 0) return;
5652
5653  assert(D->isOutOfLine());
5654  ExitDeclaratorContext(S);
5655}
5656
5657/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5658/// C++ if/switch/while/for statement.
5659/// e.g: "if (int x = f()) {...}"
5660Action::DeclResult
5661Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5662  // C++ 6.4p2:
5663  // The declarator shall not specify a function or an array.
5664  // The type-specifier-seq shall not contain typedef and shall not declare a
5665  // new class or enumeration.
5666  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5667         "Parser allowed 'typedef' as storage class of condition decl.");
5668
5669  TypeSourceInfo *TInfo = 0;
5670  TagDecl *OwnedTag = 0;
5671  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5672
5673  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5674                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5675                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5676    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5677      << D.getSourceRange();
5678    return DeclResult();
5679  } else if (OwnedTag && OwnedTag->isDefinition()) {
5680    // The type-specifier-seq shall not declare a new class or enumeration.
5681    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5682  }
5683
5684  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5685  if (!Dcl)
5686    return DeclResult();
5687
5688  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5689  VD->setDeclaredInCondition(true);
5690  return Dcl;
5691}
5692
5693void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5694                                             CXXMethodDecl *MD) {
5695  // Ignore dependent types.
5696  if (MD->isDependentContext())
5697    return;
5698
5699  CXXRecordDecl *RD = MD->getParent();
5700
5701  // Ignore classes without a vtable.
5702  if (!RD->isDynamicClass())
5703    return;
5704
5705  // Ignore declarations that are not definitions.
5706  if (!MD->isThisDeclarationADefinition())
5707    return;
5708
5709  if (isa<CXXConstructorDecl>(MD)) {
5710    switch (MD->getParent()->getTemplateSpecializationKind()) {
5711    case TSK_Undeclared:
5712    case TSK_ExplicitSpecialization:
5713      // Classes that aren't instantiations of templates don't need their
5714      // virtual methods marked until we see the definition of the key
5715      // function.
5716      return;
5717
5718    case TSK_ImplicitInstantiation:
5719    case TSK_ExplicitInstantiationDeclaration:
5720    case TSK_ExplicitInstantiationDefinition:
5721      // This is a constructor of a class template; mark all of the virtual
5722      // members as referenced to ensure that they get instantiatied.
5723      break;
5724    }
5725  } else if (!MD->isOutOfLine()) {
5726    // Consider only out-of-line definitions of member functions. When we see
5727    // an inline definition, it's too early to compute the key function.
5728    return;
5729  } else if (const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD)) {
5730    // If this is not the key function, we don't need to mark virtual members.
5731    if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl())
5732      return;
5733  } else {
5734    // The class has no key function, so we've already noted that we need to
5735    // mark the virtual members of this class.
5736    return;
5737  }
5738
5739  // We will need to mark all of the virtual members as referenced to build the
5740  // vtable.
5741  ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5742}
5743
5744bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5745  if (ClassesWithUnmarkedVirtualMembers.empty())
5746    return false;
5747
5748  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5749    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5750    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5751    ClassesWithUnmarkedVirtualMembers.pop_back();
5752    MarkVirtualMembersReferenced(Loc, RD);
5753  }
5754
5755  return true;
5756}
5757
5758void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5759  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5760       e = RD->method_end(); i != e; ++i) {
5761    CXXMethodDecl *MD = *i;
5762
5763    // C++ [basic.def.odr]p2:
5764    //   [...] A virtual member function is used if it is not pure. [...]
5765    if (MD->isVirtual() && !MD->isPure())
5766      MarkDeclarationReferenced(Loc, MD);
5767  }
5768}
5769
5770