SemaDeclCXX.cpp revision 82713174914bdb927a254c5ee188e35fd79c4948
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // If this function has a basic noexcept, it doesn't affect the outcome.
133  if (EST == EST_BasicNoexcept)
134    return;
135
136  // If we have a throw-all spec at this point, ignore the function.
137  if (ComputedEST == EST_None)
138    return;
139
140  // If we're still at noexcept(true) and there's a nothrow() callee,
141  // change to that specification.
142  if (EST == EST_DynamicNone) {
143    if (ComputedEST == EST_BasicNoexcept)
144      ComputedEST = EST_DynamicNone;
145    return;
146  }
147
148  // Check out noexcept specs.
149  if (EST == EST_ComputedNoexcept) {
150    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
151    assert(NR != FunctionProtoType::NR_NoNoexcept &&
152           "Must have noexcept result for EST_ComputedNoexcept.");
153    assert(NR != FunctionProtoType::NR_Dependent &&
154           "Should not generate implicit declarations for dependent cases, "
155           "and don't know how to handle them anyway.");
156
157    // noexcept(false) -> no spec on the new function
158    if (NR == FunctionProtoType::NR_Throw) {
159      ClearExceptions();
160      ComputedEST = EST_None;
161    }
162    // noexcept(true) won't change anything either.
163    return;
164  }
165
166  assert(EST == EST_Dynamic && "EST case not considered earlier.");
167  assert(ComputedEST != EST_None &&
168         "Shouldn't collect exceptions when throw-all is guaranteed.");
169  ComputedEST = EST_Dynamic;
170  // Record the exceptions in this function's exception specification.
171  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
172                                          EEnd = Proto->exception_end();
173       E != EEnd; ++E)
174    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
175      Exceptions.push_back(*E);
176}
177
178bool
179Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
180                              SourceLocation EqualLoc) {
181  if (RequireCompleteType(Param->getLocation(), Param->getType(),
182                          diag::err_typecheck_decl_incomplete_type)) {
183    Param->setInvalidDecl();
184    return true;
185  }
186
187  // C++ [dcl.fct.default]p5
188  //   A default argument expression is implicitly converted (clause
189  //   4) to the parameter type. The default argument expression has
190  //   the same semantic constraints as the initializer expression in
191  //   a declaration of a variable of the parameter type, using the
192  //   copy-initialization semantics (8.5).
193  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
194                                                                    Param);
195  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
196                                                           EqualLoc);
197  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
198  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
199                                      MultiExprArg(*this, &Arg, 1));
200  if (Result.isInvalid())
201    return true;
202  Arg = Result.takeAs<Expr>();
203
204  CheckImplicitConversions(Arg, EqualLoc);
205  Arg = MaybeCreateExprWithCleanups(Arg);
206
207  // Okay: add the default argument to the parameter
208  Param->setDefaultArg(Arg);
209
210  // We have already instantiated this parameter; provide each of the
211  // instantiations with the uninstantiated default argument.
212  UnparsedDefaultArgInstantiationsMap::iterator InstPos
213    = UnparsedDefaultArgInstantiations.find(Param);
214  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
215    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
216      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
217
218    // We're done tracking this parameter's instantiations.
219    UnparsedDefaultArgInstantiations.erase(InstPos);
220  }
221
222  return false;
223}
224
225/// ActOnParamDefaultArgument - Check whether the default argument
226/// provided for a function parameter is well-formed. If so, attach it
227/// to the parameter declaration.
228void
229Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
230                                Expr *DefaultArg) {
231  if (!param || !DefaultArg)
232    return;
233
234  ParmVarDecl *Param = cast<ParmVarDecl>(param);
235  UnparsedDefaultArgLocs.erase(Param);
236
237  // Default arguments are only permitted in C++
238  if (!getLangOptions().CPlusPlus) {
239    Diag(EqualLoc, diag::err_param_default_argument)
240      << DefaultArg->getSourceRange();
241    Param->setInvalidDecl();
242    return;
243  }
244
245  // Check for unexpanded parameter packs.
246  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
247    Param->setInvalidDecl();
248    return;
249  }
250
251  // Check that the default argument is well-formed
252  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
253  if (DefaultArgChecker.Visit(DefaultArg)) {
254    Param->setInvalidDecl();
255    return;
256  }
257
258  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
259}
260
261/// ActOnParamUnparsedDefaultArgument - We've seen a default
262/// argument for a function parameter, but we can't parse it yet
263/// because we're inside a class definition. Note that this default
264/// argument will be parsed later.
265void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
266                                             SourceLocation EqualLoc,
267                                             SourceLocation ArgLoc) {
268  if (!param)
269    return;
270
271  ParmVarDecl *Param = cast<ParmVarDecl>(param);
272  if (Param)
273    Param->setUnparsedDefaultArg();
274
275  UnparsedDefaultArgLocs[Param] = ArgLoc;
276}
277
278/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
279/// the default argument for the parameter param failed.
280void Sema::ActOnParamDefaultArgumentError(Decl *param) {
281  if (!param)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285
286  Param->setInvalidDecl();
287
288  UnparsedDefaultArgLocs.erase(Param);
289}
290
291/// CheckExtraCXXDefaultArguments - Check for any extra default
292/// arguments in the declarator, which is not a function declaration
293/// or definition and therefore is not permitted to have default
294/// arguments. This routine should be invoked for every declarator
295/// that is not a function declaration or definition.
296void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
297  // C++ [dcl.fct.default]p3
298  //   A default argument expression shall be specified only in the
299  //   parameter-declaration-clause of a function declaration or in a
300  //   template-parameter (14.1). It shall not be specified for a
301  //   parameter pack. If it is specified in a
302  //   parameter-declaration-clause, it shall not occur within a
303  //   declarator or abstract-declarator of a parameter-declaration.
304  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
305    DeclaratorChunk &chunk = D.getTypeObject(i);
306    if (chunk.Kind == DeclaratorChunk::Function) {
307      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
308        ParmVarDecl *Param =
309          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
310        if (Param->hasUnparsedDefaultArg()) {
311          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
312          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
313            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
314          delete Toks;
315          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
316        } else if (Param->getDefaultArg()) {
317          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
318            << Param->getDefaultArg()->getSourceRange();
319          Param->setDefaultArg(0);
320        }
321      }
322    }
323  }
324}
325
326// MergeCXXFunctionDecl - Merge two declarations of the same C++
327// function, once we already know that they have the same
328// type. Subroutine of MergeFunctionDecl. Returns true if there was an
329// error, false otherwise.
330bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
331  bool Invalid = false;
332
333  // C++ [dcl.fct.default]p4:
334  //   For non-template functions, default arguments can be added in
335  //   later declarations of a function in the same
336  //   scope. Declarations in different scopes have completely
337  //   distinct sets of default arguments. That is, declarations in
338  //   inner scopes do not acquire default arguments from
339  //   declarations in outer scopes, and vice versa. In a given
340  //   function declaration, all parameters subsequent to a
341  //   parameter with a default argument shall have default
342  //   arguments supplied in this or previous declarations. A
343  //   default argument shall not be redefined by a later
344  //   declaration (not even to the same value).
345  //
346  // C++ [dcl.fct.default]p6:
347  //   Except for member functions of class templates, the default arguments
348  //   in a member function definition that appears outside of the class
349  //   definition are added to the set of default arguments provided by the
350  //   member function declaration in the class definition.
351  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
352    ParmVarDecl *OldParam = Old->getParamDecl(p);
353    ParmVarDecl *NewParam = New->getParamDecl(p);
354
355    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
356
357      unsigned DiagDefaultParamID =
358        diag::err_param_default_argument_redefinition;
359
360      // MSVC accepts that default parameters be redefined for member functions
361      // of template class. The new default parameter's value is ignored.
362      Invalid = true;
363      if (getLangOptions().Microsoft) {
364        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
365        if (MD && MD->getParent()->getDescribedClassTemplate()) {
366          // Merge the old default argument into the new parameter.
367          NewParam->setHasInheritedDefaultArg();
368          if (OldParam->hasUninstantiatedDefaultArg())
369            NewParam->setUninstantiatedDefaultArg(
370                                      OldParam->getUninstantiatedDefaultArg());
371          else
372            NewParam->setDefaultArg(OldParam->getInit());
373          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
374          Invalid = false;
375        }
376      }
377
378      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
379      // hint here. Alternatively, we could walk the type-source information
380      // for NewParam to find the last source location in the type... but it
381      // isn't worth the effort right now. This is the kind of test case that
382      // is hard to get right:
383      //   int f(int);
384      //   void g(int (*fp)(int) = f);
385      //   void g(int (*fp)(int) = &f);
386      Diag(NewParam->getLocation(), DiagDefaultParamID)
387        << NewParam->getDefaultArgRange();
388
389      // Look for the function declaration where the default argument was
390      // actually written, which may be a declaration prior to Old.
391      for (FunctionDecl *Older = Old->getPreviousDeclaration();
392           Older; Older = Older->getPreviousDeclaration()) {
393        if (!Older->getParamDecl(p)->hasDefaultArg())
394          break;
395
396        OldParam = Older->getParamDecl(p);
397      }
398
399      Diag(OldParam->getLocation(), diag::note_previous_definition)
400        << OldParam->getDefaultArgRange();
401    } else if (OldParam->hasDefaultArg()) {
402      // Merge the old default argument into the new parameter.
403      // It's important to use getInit() here;  getDefaultArg()
404      // strips off any top-level ExprWithCleanups.
405      NewParam->setHasInheritedDefaultArg();
406      if (OldParam->hasUninstantiatedDefaultArg())
407        NewParam->setUninstantiatedDefaultArg(
408                                      OldParam->getUninstantiatedDefaultArg());
409      else
410        NewParam->setDefaultArg(OldParam->getInit());
411    } else if (NewParam->hasDefaultArg()) {
412      if (New->getDescribedFunctionTemplate()) {
413        // Paragraph 4, quoted above, only applies to non-template functions.
414        Diag(NewParam->getLocation(),
415             diag::err_param_default_argument_template_redecl)
416          << NewParam->getDefaultArgRange();
417        Diag(Old->getLocation(), diag::note_template_prev_declaration)
418          << false;
419      } else if (New->getTemplateSpecializationKind()
420                   != TSK_ImplicitInstantiation &&
421                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
422        // C++ [temp.expr.spec]p21:
423        //   Default function arguments shall not be specified in a declaration
424        //   or a definition for one of the following explicit specializations:
425        //     - the explicit specialization of a function template;
426        //     - the explicit specialization of a member function template;
427        //     - the explicit specialization of a member function of a class
428        //       template where the class template specialization to which the
429        //       member function specialization belongs is implicitly
430        //       instantiated.
431        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
432          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
433          << New->getDeclName()
434          << NewParam->getDefaultArgRange();
435      } else if (New->getDeclContext()->isDependentContext()) {
436        // C++ [dcl.fct.default]p6 (DR217):
437        //   Default arguments for a member function of a class template shall
438        //   be specified on the initial declaration of the member function
439        //   within the class template.
440        //
441        // Reading the tea leaves a bit in DR217 and its reference to DR205
442        // leads me to the conclusion that one cannot add default function
443        // arguments for an out-of-line definition of a member function of a
444        // dependent type.
445        int WhichKind = 2;
446        if (CXXRecordDecl *Record
447              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
448          if (Record->getDescribedClassTemplate())
449            WhichKind = 0;
450          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
451            WhichKind = 1;
452          else
453            WhichKind = 2;
454        }
455
456        Diag(NewParam->getLocation(),
457             diag::err_param_default_argument_member_template_redecl)
458          << WhichKind
459          << NewParam->getDefaultArgRange();
460      }
461    }
462  }
463
464  if (CheckEquivalentExceptionSpec(Old, New))
465    Invalid = true;
466
467  return Invalid;
468}
469
470/// \brief Merge the exception specifications of two variable declarations.
471///
472/// This is called when there's a redeclaration of a VarDecl. The function
473/// checks if the redeclaration might have an exception specification and
474/// validates compatibility and merges the specs if necessary.
475void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
476  // Shortcut if exceptions are disabled.
477  if (!getLangOptions().CXXExceptions)
478    return;
479
480  assert(Context.hasSameType(New->getType(), Old->getType()) &&
481         "Should only be called if types are otherwise the same.");
482
483  QualType NewType = New->getType();
484  QualType OldType = Old->getType();
485
486  // We're only interested in pointers and references to functions, as well
487  // as pointers to member functions.
488  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
489    NewType = R->getPointeeType();
490    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
491  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
492    NewType = P->getPointeeType();
493    OldType = OldType->getAs<PointerType>()->getPointeeType();
494  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
495    NewType = M->getPointeeType();
496    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
497  }
498
499  if (!NewType->isFunctionProtoType())
500    return;
501
502  // There's lots of special cases for functions. For function pointers, system
503  // libraries are hopefully not as broken so that we don't need these
504  // workarounds.
505  if (CheckEquivalentExceptionSpec(
506        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
507        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
508    New->setInvalidDecl();
509  }
510}
511
512/// CheckCXXDefaultArguments - Verify that the default arguments for a
513/// function declaration are well-formed according to C++
514/// [dcl.fct.default].
515void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
516  unsigned NumParams = FD->getNumParams();
517  unsigned p;
518
519  // Find first parameter with a default argument
520  for (p = 0; p < NumParams; ++p) {
521    ParmVarDecl *Param = FD->getParamDecl(p);
522    if (Param->hasDefaultArg())
523      break;
524  }
525
526  // C++ [dcl.fct.default]p4:
527  //   In a given function declaration, all parameters
528  //   subsequent to a parameter with a default argument shall
529  //   have default arguments supplied in this or previous
530  //   declarations. A default argument shall not be redefined
531  //   by a later declaration (not even to the same value).
532  unsigned LastMissingDefaultArg = 0;
533  for (; p < NumParams; ++p) {
534    ParmVarDecl *Param = FD->getParamDecl(p);
535    if (!Param->hasDefaultArg()) {
536      if (Param->isInvalidDecl())
537        /* We already complained about this parameter. */;
538      else if (Param->getIdentifier())
539        Diag(Param->getLocation(),
540             diag::err_param_default_argument_missing_name)
541          << Param->getIdentifier();
542      else
543        Diag(Param->getLocation(),
544             diag::err_param_default_argument_missing);
545
546      LastMissingDefaultArg = p;
547    }
548  }
549
550  if (LastMissingDefaultArg > 0) {
551    // Some default arguments were missing. Clear out all of the
552    // default arguments up to (and including) the last missing
553    // default argument, so that we leave the function parameters
554    // in a semantically valid state.
555    for (p = 0; p <= LastMissingDefaultArg; ++p) {
556      ParmVarDecl *Param = FD->getParamDecl(p);
557      if (Param->hasDefaultArg()) {
558        Param->setDefaultArg(0);
559      }
560    }
561  }
562}
563
564/// isCurrentClassName - Determine whether the identifier II is the
565/// name of the class type currently being defined. In the case of
566/// nested classes, this will only return true if II is the name of
567/// the innermost class.
568bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
569                              const CXXScopeSpec *SS) {
570  assert(getLangOptions().CPlusPlus && "No class names in C!");
571
572  CXXRecordDecl *CurDecl;
573  if (SS && SS->isSet() && !SS->isInvalid()) {
574    DeclContext *DC = computeDeclContext(*SS, true);
575    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
576  } else
577    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
578
579  if (CurDecl && CurDecl->getIdentifier())
580    return &II == CurDecl->getIdentifier();
581  else
582    return false;
583}
584
585/// \brief Check the validity of a C++ base class specifier.
586///
587/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
588/// and returns NULL otherwise.
589CXXBaseSpecifier *
590Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
591                         SourceRange SpecifierRange,
592                         bool Virtual, AccessSpecifier Access,
593                         TypeSourceInfo *TInfo,
594                         SourceLocation EllipsisLoc) {
595  QualType BaseType = TInfo->getType();
596
597  // C++ [class.union]p1:
598  //   A union shall not have base classes.
599  if (Class->isUnion()) {
600    Diag(Class->getLocation(), diag::err_base_clause_on_union)
601      << SpecifierRange;
602    return 0;
603  }
604
605  if (EllipsisLoc.isValid() &&
606      !TInfo->getType()->containsUnexpandedParameterPack()) {
607    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
608      << TInfo->getTypeLoc().getSourceRange();
609    EllipsisLoc = SourceLocation();
610  }
611
612  if (BaseType->isDependentType())
613    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
614                                          Class->getTagKind() == TTK_Class,
615                                          Access, TInfo, EllipsisLoc);
616
617  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
618
619  // Base specifiers must be record types.
620  if (!BaseType->isRecordType()) {
621    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
622    return 0;
623  }
624
625  // C++ [class.union]p1:
626  //   A union shall not be used as a base class.
627  if (BaseType->isUnionType()) {
628    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
629    return 0;
630  }
631
632  // C++ [class.derived]p2:
633  //   The class-name in a base-specifier shall not be an incompletely
634  //   defined class.
635  if (RequireCompleteType(BaseLoc, BaseType,
636                          PDiag(diag::err_incomplete_base_class)
637                            << SpecifierRange)) {
638    Class->setInvalidDecl();
639    return 0;
640  }
641
642  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
643  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
644  assert(BaseDecl && "Record type has no declaration");
645  BaseDecl = BaseDecl->getDefinition();
646  assert(BaseDecl && "Base type is not incomplete, but has no definition");
647  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
648  assert(CXXBaseDecl && "Base type is not a C++ type");
649
650  // C++ [class]p3:
651  //   If a class is marked final and it appears as a base-type-specifier in
652  //   base-clause, the program is ill-formed.
653  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
654    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
655      << CXXBaseDecl->getDeclName();
656    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
657      << CXXBaseDecl->getDeclName();
658    return 0;
659  }
660
661  if (BaseDecl->isInvalidDecl())
662    Class->setInvalidDecl();
663
664  // Create the base specifier.
665  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
666                                        Class->getTagKind() == TTK_Class,
667                                        Access, TInfo, EllipsisLoc);
668}
669
670/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
671/// one entry in the base class list of a class specifier, for
672/// example:
673///    class foo : public bar, virtual private baz {
674/// 'public bar' and 'virtual private baz' are each base-specifiers.
675BaseResult
676Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
677                         bool Virtual, AccessSpecifier Access,
678                         ParsedType basetype, SourceLocation BaseLoc,
679                         SourceLocation EllipsisLoc) {
680  if (!classdecl)
681    return true;
682
683  AdjustDeclIfTemplate(classdecl);
684  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
685  if (!Class)
686    return true;
687
688  TypeSourceInfo *TInfo = 0;
689  GetTypeFromParser(basetype, &TInfo);
690
691  if (EllipsisLoc.isInvalid() &&
692      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
693                                      UPPC_BaseType))
694    return true;
695
696  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
697                                                      Virtual, Access, TInfo,
698                                                      EllipsisLoc))
699    return BaseSpec;
700
701  return true;
702}
703
704/// \brief Performs the actual work of attaching the given base class
705/// specifiers to a C++ class.
706bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
707                                unsigned NumBases) {
708 if (NumBases == 0)
709    return false;
710
711  // Used to keep track of which base types we have already seen, so
712  // that we can properly diagnose redundant direct base types. Note
713  // that the key is always the unqualified canonical type of the base
714  // class.
715  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
716
717  // Copy non-redundant base specifiers into permanent storage.
718  unsigned NumGoodBases = 0;
719  bool Invalid = false;
720  for (unsigned idx = 0; idx < NumBases; ++idx) {
721    QualType NewBaseType
722      = Context.getCanonicalType(Bases[idx]->getType());
723    NewBaseType = NewBaseType.getLocalUnqualifiedType();
724    if (!Class->hasObjectMember()) {
725      if (const RecordType *FDTTy =
726            NewBaseType.getTypePtr()->getAs<RecordType>())
727        if (FDTTy->getDecl()->hasObjectMember())
728          Class->setHasObjectMember(true);
729    }
730
731    if (KnownBaseTypes[NewBaseType]) {
732      // C++ [class.mi]p3:
733      //   A class shall not be specified as a direct base class of a
734      //   derived class more than once.
735      Diag(Bases[idx]->getSourceRange().getBegin(),
736           diag::err_duplicate_base_class)
737        << KnownBaseTypes[NewBaseType]->getType()
738        << Bases[idx]->getSourceRange();
739
740      // Delete the duplicate base class specifier; we're going to
741      // overwrite its pointer later.
742      Context.Deallocate(Bases[idx]);
743
744      Invalid = true;
745    } else {
746      // Okay, add this new base class.
747      KnownBaseTypes[NewBaseType] = Bases[idx];
748      Bases[NumGoodBases++] = Bases[idx];
749    }
750  }
751
752  // Attach the remaining base class specifiers to the derived class.
753  Class->setBases(Bases, NumGoodBases);
754
755  // Delete the remaining (good) base class specifiers, since their
756  // data has been copied into the CXXRecordDecl.
757  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
758    Context.Deallocate(Bases[idx]);
759
760  return Invalid;
761}
762
763/// ActOnBaseSpecifiers - Attach the given base specifiers to the
764/// class, after checking whether there are any duplicate base
765/// classes.
766void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
767                               unsigned NumBases) {
768  if (!ClassDecl || !Bases || !NumBases)
769    return;
770
771  AdjustDeclIfTemplate(ClassDecl);
772  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
773                       (CXXBaseSpecifier**)(Bases), NumBases);
774}
775
776static CXXRecordDecl *GetClassForType(QualType T) {
777  if (const RecordType *RT = T->getAs<RecordType>())
778    return cast<CXXRecordDecl>(RT->getDecl());
779  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
780    return ICT->getDecl();
781  else
782    return 0;
783}
784
785/// \brief Determine whether the type \p Derived is a C++ class that is
786/// derived from the type \p Base.
787bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
788  if (!getLangOptions().CPlusPlus)
789    return false;
790
791  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
792  if (!DerivedRD)
793    return false;
794
795  CXXRecordDecl *BaseRD = GetClassForType(Base);
796  if (!BaseRD)
797    return false;
798
799  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
800  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
801}
802
803/// \brief Determine whether the type \p Derived is a C++ class that is
804/// derived from the type \p Base.
805bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
806  if (!getLangOptions().CPlusPlus)
807    return false;
808
809  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
810  if (!DerivedRD)
811    return false;
812
813  CXXRecordDecl *BaseRD = GetClassForType(Base);
814  if (!BaseRD)
815    return false;
816
817  return DerivedRD->isDerivedFrom(BaseRD, Paths);
818}
819
820void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
821                              CXXCastPath &BasePathArray) {
822  assert(BasePathArray.empty() && "Base path array must be empty!");
823  assert(Paths.isRecordingPaths() && "Must record paths!");
824
825  const CXXBasePath &Path = Paths.front();
826
827  // We first go backward and check if we have a virtual base.
828  // FIXME: It would be better if CXXBasePath had the base specifier for
829  // the nearest virtual base.
830  unsigned Start = 0;
831  for (unsigned I = Path.size(); I != 0; --I) {
832    if (Path[I - 1].Base->isVirtual()) {
833      Start = I - 1;
834      break;
835    }
836  }
837
838  // Now add all bases.
839  for (unsigned I = Start, E = Path.size(); I != E; ++I)
840    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
841}
842
843/// \brief Determine whether the given base path includes a virtual
844/// base class.
845bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
846  for (CXXCastPath::const_iterator B = BasePath.begin(),
847                                BEnd = BasePath.end();
848       B != BEnd; ++B)
849    if ((*B)->isVirtual())
850      return true;
851
852  return false;
853}
854
855/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
856/// conversion (where Derived and Base are class types) is
857/// well-formed, meaning that the conversion is unambiguous (and
858/// that all of the base classes are accessible). Returns true
859/// and emits a diagnostic if the code is ill-formed, returns false
860/// otherwise. Loc is the location where this routine should point to
861/// if there is an error, and Range is the source range to highlight
862/// if there is an error.
863bool
864Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
865                                   unsigned InaccessibleBaseID,
866                                   unsigned AmbigiousBaseConvID,
867                                   SourceLocation Loc, SourceRange Range,
868                                   DeclarationName Name,
869                                   CXXCastPath *BasePath) {
870  // First, determine whether the path from Derived to Base is
871  // ambiguous. This is slightly more expensive than checking whether
872  // the Derived to Base conversion exists, because here we need to
873  // explore multiple paths to determine if there is an ambiguity.
874  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
875                     /*DetectVirtual=*/false);
876  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
877  assert(DerivationOkay &&
878         "Can only be used with a derived-to-base conversion");
879  (void)DerivationOkay;
880
881  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
882    if (InaccessibleBaseID) {
883      // Check that the base class can be accessed.
884      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
885                                   InaccessibleBaseID)) {
886        case AR_inaccessible:
887          return true;
888        case AR_accessible:
889        case AR_dependent:
890        case AR_delayed:
891          break;
892      }
893    }
894
895    // Build a base path if necessary.
896    if (BasePath)
897      BuildBasePathArray(Paths, *BasePath);
898    return false;
899  }
900
901  // We know that the derived-to-base conversion is ambiguous, and
902  // we're going to produce a diagnostic. Perform the derived-to-base
903  // search just one more time to compute all of the possible paths so
904  // that we can print them out. This is more expensive than any of
905  // the previous derived-to-base checks we've done, but at this point
906  // performance isn't as much of an issue.
907  Paths.clear();
908  Paths.setRecordingPaths(true);
909  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
910  assert(StillOkay && "Can only be used with a derived-to-base conversion");
911  (void)StillOkay;
912
913  // Build up a textual representation of the ambiguous paths, e.g.,
914  // D -> B -> A, that will be used to illustrate the ambiguous
915  // conversions in the diagnostic. We only print one of the paths
916  // to each base class subobject.
917  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
918
919  Diag(Loc, AmbigiousBaseConvID)
920  << Derived << Base << PathDisplayStr << Range << Name;
921  return true;
922}
923
924bool
925Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
926                                   SourceLocation Loc, SourceRange Range,
927                                   CXXCastPath *BasePath,
928                                   bool IgnoreAccess) {
929  return CheckDerivedToBaseConversion(Derived, Base,
930                                      IgnoreAccess ? 0
931                                       : diag::err_upcast_to_inaccessible_base,
932                                      diag::err_ambiguous_derived_to_base_conv,
933                                      Loc, Range, DeclarationName(),
934                                      BasePath);
935}
936
937
938/// @brief Builds a string representing ambiguous paths from a
939/// specific derived class to different subobjects of the same base
940/// class.
941///
942/// This function builds a string that can be used in error messages
943/// to show the different paths that one can take through the
944/// inheritance hierarchy to go from the derived class to different
945/// subobjects of a base class. The result looks something like this:
946/// @code
947/// struct D -> struct B -> struct A
948/// struct D -> struct C -> struct A
949/// @endcode
950std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
951  std::string PathDisplayStr;
952  std::set<unsigned> DisplayedPaths;
953  for (CXXBasePaths::paths_iterator Path = Paths.begin();
954       Path != Paths.end(); ++Path) {
955    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
956      // We haven't displayed a path to this particular base
957      // class subobject yet.
958      PathDisplayStr += "\n    ";
959      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
960      for (CXXBasePath::const_iterator Element = Path->begin();
961           Element != Path->end(); ++Element)
962        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
963    }
964  }
965
966  return PathDisplayStr;
967}
968
969//===----------------------------------------------------------------------===//
970// C++ class member Handling
971//===----------------------------------------------------------------------===//
972
973/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
974Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
975                                 SourceLocation ASLoc,
976                                 SourceLocation ColonLoc) {
977  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
978  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
979                                                  ASLoc, ColonLoc);
980  CurContext->addHiddenDecl(ASDecl);
981  return ASDecl;
982}
983
984/// CheckOverrideControl - Check C++0x override control semantics.
985void Sema::CheckOverrideControl(const Decl *D) {
986  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
987  if (!MD || !MD->isVirtual())
988    return;
989
990  if (MD->isDependentContext())
991    return;
992
993  // C++0x [class.virtual]p3:
994  //   If a virtual function is marked with the virt-specifier override and does
995  //   not override a member function of a base class,
996  //   the program is ill-formed.
997  bool HasOverriddenMethods =
998    MD->begin_overridden_methods() != MD->end_overridden_methods();
999  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1000    Diag(MD->getLocation(),
1001                 diag::err_function_marked_override_not_overriding)
1002      << MD->getDeclName();
1003    return;
1004  }
1005}
1006
1007/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1008/// function overrides a virtual member function marked 'final', according to
1009/// C++0x [class.virtual]p3.
1010bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1011                                                  const CXXMethodDecl *Old) {
1012  if (!Old->hasAttr<FinalAttr>())
1013    return false;
1014
1015  Diag(New->getLocation(), diag::err_final_function_overridden)
1016    << New->getDeclName();
1017  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1018  return true;
1019}
1020
1021/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1022/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1023/// bitfield width if there is one and 'InitExpr' specifies the initializer if
1024/// any.
1025Decl *
1026Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1027                               MultiTemplateParamsArg TemplateParameterLists,
1028                               ExprTy *BW, const VirtSpecifiers &VS,
1029                               ExprTy *InitExpr, bool IsDefinition) {
1030  const DeclSpec &DS = D.getDeclSpec();
1031  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1032  DeclarationName Name = NameInfo.getName();
1033  SourceLocation Loc = NameInfo.getLoc();
1034
1035  // For anonymous bitfields, the location should point to the type.
1036  if (Loc.isInvalid())
1037    Loc = D.getSourceRange().getBegin();
1038
1039  Expr *BitWidth = static_cast<Expr*>(BW);
1040  Expr *Init = static_cast<Expr*>(InitExpr);
1041
1042  assert(isa<CXXRecordDecl>(CurContext));
1043  assert(!DS.isFriendSpecified());
1044
1045  bool isFunc = false;
1046  if (D.isFunctionDeclarator())
1047    isFunc = true;
1048  else if (D.getNumTypeObjects() == 0 &&
1049           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1050    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1051    isFunc = TDType->isFunctionType();
1052  }
1053
1054  // C++ 9.2p6: A member shall not be declared to have automatic storage
1055  // duration (auto, register) or with the extern storage-class-specifier.
1056  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1057  // data members and cannot be applied to names declared const or static,
1058  // and cannot be applied to reference members.
1059  switch (DS.getStorageClassSpec()) {
1060    case DeclSpec::SCS_unspecified:
1061    case DeclSpec::SCS_typedef:
1062    case DeclSpec::SCS_static:
1063      // FALL THROUGH.
1064      break;
1065    case DeclSpec::SCS_mutable:
1066      if (isFunc) {
1067        if (DS.getStorageClassSpecLoc().isValid())
1068          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1069        else
1070          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1071
1072        // FIXME: It would be nicer if the keyword was ignored only for this
1073        // declarator. Otherwise we could get follow-up errors.
1074        D.getMutableDeclSpec().ClearStorageClassSpecs();
1075      }
1076      break;
1077    default:
1078      if (DS.getStorageClassSpecLoc().isValid())
1079        Diag(DS.getStorageClassSpecLoc(),
1080             diag::err_storageclass_invalid_for_member);
1081      else
1082        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1083      D.getMutableDeclSpec().ClearStorageClassSpecs();
1084  }
1085
1086  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1087                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1088                      !isFunc);
1089
1090  Decl *Member;
1091  if (isInstField) {
1092    CXXScopeSpec &SS = D.getCXXScopeSpec();
1093
1094    if (SS.isSet() && !SS.isInvalid()) {
1095      // The user provided a superfluous scope specifier inside a class
1096      // definition:
1097      //
1098      // class X {
1099      //   int X::member;
1100      // };
1101      DeclContext *DC = 0;
1102      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1103        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1104        << Name << FixItHint::CreateRemoval(SS.getRange());
1105      else
1106        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1107          << Name << SS.getRange();
1108
1109      SS.clear();
1110    }
1111
1112    // FIXME: Check for template parameters!
1113    // FIXME: Check that the name is an identifier!
1114    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1115                         AS);
1116    assert(Member && "HandleField never returns null");
1117  } else {
1118    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1119    if (!Member) {
1120      return 0;
1121    }
1122
1123    // Non-instance-fields can't have a bitfield.
1124    if (BitWidth) {
1125      if (Member->isInvalidDecl()) {
1126        // don't emit another diagnostic.
1127      } else if (isa<VarDecl>(Member)) {
1128        // C++ 9.6p3: A bit-field shall not be a static member.
1129        // "static member 'A' cannot be a bit-field"
1130        Diag(Loc, diag::err_static_not_bitfield)
1131          << Name << BitWidth->getSourceRange();
1132      } else if (isa<TypedefDecl>(Member)) {
1133        // "typedef member 'x' cannot be a bit-field"
1134        Diag(Loc, diag::err_typedef_not_bitfield)
1135          << Name << BitWidth->getSourceRange();
1136      } else {
1137        // A function typedef ("typedef int f(); f a;").
1138        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1139        Diag(Loc, diag::err_not_integral_type_bitfield)
1140          << Name << cast<ValueDecl>(Member)->getType()
1141          << BitWidth->getSourceRange();
1142      }
1143
1144      BitWidth = 0;
1145      Member->setInvalidDecl();
1146    }
1147
1148    Member->setAccess(AS);
1149
1150    // If we have declared a member function template, set the access of the
1151    // templated declaration as well.
1152    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1153      FunTmpl->getTemplatedDecl()->setAccess(AS);
1154  }
1155
1156  if (VS.isOverrideSpecified()) {
1157    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1158    if (!MD || !MD->isVirtual()) {
1159      Diag(Member->getLocStart(),
1160           diag::override_keyword_only_allowed_on_virtual_member_functions)
1161        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1162    } else
1163      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1164  }
1165  if (VS.isFinalSpecified()) {
1166    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1167    if (!MD || !MD->isVirtual()) {
1168      Diag(Member->getLocStart(),
1169           diag::override_keyword_only_allowed_on_virtual_member_functions)
1170      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1171    } else
1172      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1173  }
1174
1175  if (VS.getLastLocation().isValid()) {
1176    // Update the end location of a method that has a virt-specifiers.
1177    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1178      MD->setRangeEnd(VS.getLastLocation());
1179  }
1180
1181  CheckOverrideControl(Member);
1182
1183  assert((Name || isInstField) && "No identifier for non-field ?");
1184
1185  if (Init)
1186    AddInitializerToDecl(Member, Init, false,
1187                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1188
1189  FinalizeDeclaration(Member);
1190
1191  if (isInstField)
1192    FieldCollector->Add(cast<FieldDecl>(Member));
1193  return Member;
1194}
1195
1196/// \brief Find the direct and/or virtual base specifiers that
1197/// correspond to the given base type, for use in base initialization
1198/// within a constructor.
1199static bool FindBaseInitializer(Sema &SemaRef,
1200                                CXXRecordDecl *ClassDecl,
1201                                QualType BaseType,
1202                                const CXXBaseSpecifier *&DirectBaseSpec,
1203                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1204  // First, check for a direct base class.
1205  DirectBaseSpec = 0;
1206  for (CXXRecordDecl::base_class_const_iterator Base
1207         = ClassDecl->bases_begin();
1208       Base != ClassDecl->bases_end(); ++Base) {
1209    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1210      // We found a direct base of this type. That's what we're
1211      // initializing.
1212      DirectBaseSpec = &*Base;
1213      break;
1214    }
1215  }
1216
1217  // Check for a virtual base class.
1218  // FIXME: We might be able to short-circuit this if we know in advance that
1219  // there are no virtual bases.
1220  VirtualBaseSpec = 0;
1221  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1222    // We haven't found a base yet; search the class hierarchy for a
1223    // virtual base class.
1224    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1225                       /*DetectVirtual=*/false);
1226    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1227                              BaseType, Paths)) {
1228      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1229           Path != Paths.end(); ++Path) {
1230        if (Path->back().Base->isVirtual()) {
1231          VirtualBaseSpec = Path->back().Base;
1232          break;
1233        }
1234      }
1235    }
1236  }
1237
1238  return DirectBaseSpec || VirtualBaseSpec;
1239}
1240
1241/// ActOnMemInitializer - Handle a C++ member initializer.
1242MemInitResult
1243Sema::ActOnMemInitializer(Decl *ConstructorD,
1244                          Scope *S,
1245                          CXXScopeSpec &SS,
1246                          IdentifierInfo *MemberOrBase,
1247                          ParsedType TemplateTypeTy,
1248                          SourceLocation IdLoc,
1249                          SourceLocation LParenLoc,
1250                          ExprTy **Args, unsigned NumArgs,
1251                          SourceLocation RParenLoc,
1252                          SourceLocation EllipsisLoc) {
1253  if (!ConstructorD)
1254    return true;
1255
1256  AdjustDeclIfTemplate(ConstructorD);
1257
1258  CXXConstructorDecl *Constructor
1259    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1260  if (!Constructor) {
1261    // The user wrote a constructor initializer on a function that is
1262    // not a C++ constructor. Ignore the error for now, because we may
1263    // have more member initializers coming; we'll diagnose it just
1264    // once in ActOnMemInitializers.
1265    return true;
1266  }
1267
1268  CXXRecordDecl *ClassDecl = Constructor->getParent();
1269
1270  // C++ [class.base.init]p2:
1271  //   Names in a mem-initializer-id are looked up in the scope of the
1272  //   constructor's class and, if not found in that scope, are looked
1273  //   up in the scope containing the constructor's definition.
1274  //   [Note: if the constructor's class contains a member with the
1275  //   same name as a direct or virtual base class of the class, a
1276  //   mem-initializer-id naming the member or base class and composed
1277  //   of a single identifier refers to the class member. A
1278  //   mem-initializer-id for the hidden base class may be specified
1279  //   using a qualified name. ]
1280  if (!SS.getScopeRep() && !TemplateTypeTy) {
1281    // Look for a member, first.
1282    FieldDecl *Member = 0;
1283    DeclContext::lookup_result Result
1284      = ClassDecl->lookup(MemberOrBase);
1285    if (Result.first != Result.second) {
1286      Member = dyn_cast<FieldDecl>(*Result.first);
1287
1288      if (Member) {
1289        if (EllipsisLoc.isValid())
1290          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1291            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1292
1293        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1294                                    LParenLoc, RParenLoc);
1295      }
1296
1297      // Handle anonymous union case.
1298      if (IndirectFieldDecl* IndirectField
1299            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1300        if (EllipsisLoc.isValid())
1301          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1302            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1303
1304         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1305                                       NumArgs, IdLoc,
1306                                       LParenLoc, RParenLoc);
1307      }
1308    }
1309  }
1310  // It didn't name a member, so see if it names a class.
1311  QualType BaseType;
1312  TypeSourceInfo *TInfo = 0;
1313
1314  if (TemplateTypeTy) {
1315    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1316  } else {
1317    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1318    LookupParsedName(R, S, &SS);
1319
1320    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1321    if (!TyD) {
1322      if (R.isAmbiguous()) return true;
1323
1324      // We don't want access-control diagnostics here.
1325      R.suppressDiagnostics();
1326
1327      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1328        bool NotUnknownSpecialization = false;
1329        DeclContext *DC = computeDeclContext(SS, false);
1330        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1331          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1332
1333        if (!NotUnknownSpecialization) {
1334          // When the scope specifier can refer to a member of an unknown
1335          // specialization, we take it as a type name.
1336          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1337                                       SS.getWithLocInContext(Context),
1338                                       *MemberOrBase, IdLoc);
1339          if (BaseType.isNull())
1340            return true;
1341
1342          R.clear();
1343          R.setLookupName(MemberOrBase);
1344        }
1345      }
1346
1347      // If no results were found, try to correct typos.
1348      if (R.empty() && BaseType.isNull() &&
1349          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1350          R.isSingleResult()) {
1351        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1352          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1353            // We have found a non-static data member with a similar
1354            // name to what was typed; complain and initialize that
1355            // member.
1356            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1357              << MemberOrBase << true << R.getLookupName()
1358              << FixItHint::CreateReplacement(R.getNameLoc(),
1359                                              R.getLookupName().getAsString());
1360            Diag(Member->getLocation(), diag::note_previous_decl)
1361              << Member->getDeclName();
1362
1363            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1364                                          LParenLoc, RParenLoc);
1365          }
1366        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1367          const CXXBaseSpecifier *DirectBaseSpec;
1368          const CXXBaseSpecifier *VirtualBaseSpec;
1369          if (FindBaseInitializer(*this, ClassDecl,
1370                                  Context.getTypeDeclType(Type),
1371                                  DirectBaseSpec, VirtualBaseSpec)) {
1372            // We have found a direct or virtual base class with a
1373            // similar name to what was typed; complain and initialize
1374            // that base class.
1375            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1376              << MemberOrBase << false << R.getLookupName()
1377              << FixItHint::CreateReplacement(R.getNameLoc(),
1378                                              R.getLookupName().getAsString());
1379
1380            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1381                                                             : VirtualBaseSpec;
1382            Diag(BaseSpec->getSourceRange().getBegin(),
1383                 diag::note_base_class_specified_here)
1384              << BaseSpec->getType()
1385              << BaseSpec->getSourceRange();
1386
1387            TyD = Type;
1388          }
1389        }
1390      }
1391
1392      if (!TyD && BaseType.isNull()) {
1393        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1394          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1395        return true;
1396      }
1397    }
1398
1399    if (BaseType.isNull()) {
1400      BaseType = Context.getTypeDeclType(TyD);
1401      if (SS.isSet()) {
1402        NestedNameSpecifier *Qualifier =
1403          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1404
1405        // FIXME: preserve source range information
1406        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1407      }
1408    }
1409  }
1410
1411  if (!TInfo)
1412    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1413
1414  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1415                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1416}
1417
1418/// Checks an initializer expression for use of uninitialized fields, such as
1419/// containing the field that is being initialized. Returns true if there is an
1420/// uninitialized field was used an updates the SourceLocation parameter; false
1421/// otherwise.
1422static bool InitExprContainsUninitializedFields(const Stmt *S,
1423                                                const ValueDecl *LhsField,
1424                                                SourceLocation *L) {
1425  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1426
1427  if (isa<CallExpr>(S)) {
1428    // Do not descend into function calls or constructors, as the use
1429    // of an uninitialized field may be valid. One would have to inspect
1430    // the contents of the function/ctor to determine if it is safe or not.
1431    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1432    // may be safe, depending on what the function/ctor does.
1433    return false;
1434  }
1435  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1436    const NamedDecl *RhsField = ME->getMemberDecl();
1437
1438    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1439      // The member expression points to a static data member.
1440      assert(VD->isStaticDataMember() &&
1441             "Member points to non-static data member!");
1442      (void)VD;
1443      return false;
1444    }
1445
1446    if (isa<EnumConstantDecl>(RhsField)) {
1447      // The member expression points to an enum.
1448      return false;
1449    }
1450
1451    if (RhsField == LhsField) {
1452      // Initializing a field with itself. Throw a warning.
1453      // But wait; there are exceptions!
1454      // Exception #1:  The field may not belong to this record.
1455      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1456      const Expr *base = ME->getBase();
1457      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1458        // Even though the field matches, it does not belong to this record.
1459        return false;
1460      }
1461      // None of the exceptions triggered; return true to indicate an
1462      // uninitialized field was used.
1463      *L = ME->getMemberLoc();
1464      return true;
1465    }
1466  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1467    // sizeof/alignof doesn't reference contents, do not warn.
1468    return false;
1469  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1470    // address-of doesn't reference contents (the pointer may be dereferenced
1471    // in the same expression but it would be rare; and weird).
1472    if (UOE->getOpcode() == UO_AddrOf)
1473      return false;
1474  }
1475  for (Stmt::const_child_range it = S->children(); it; ++it) {
1476    if (!*it) {
1477      // An expression such as 'member(arg ?: "")' may trigger this.
1478      continue;
1479    }
1480    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1481      return true;
1482  }
1483  return false;
1484}
1485
1486MemInitResult
1487Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1488                             unsigned NumArgs, SourceLocation IdLoc,
1489                             SourceLocation LParenLoc,
1490                             SourceLocation RParenLoc) {
1491  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1492  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1493  assert((DirectMember || IndirectMember) &&
1494         "Member must be a FieldDecl or IndirectFieldDecl");
1495
1496  if (Member->isInvalidDecl())
1497    return true;
1498
1499  // Diagnose value-uses of fields to initialize themselves, e.g.
1500  //   foo(foo)
1501  // where foo is not also a parameter to the constructor.
1502  // TODO: implement -Wuninitialized and fold this into that framework.
1503  for (unsigned i = 0; i < NumArgs; ++i) {
1504    SourceLocation L;
1505    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1506      // FIXME: Return true in the case when other fields are used before being
1507      // uninitialized. For example, let this field be the i'th field. When
1508      // initializing the i'th field, throw a warning if any of the >= i'th
1509      // fields are used, as they are not yet initialized.
1510      // Right now we are only handling the case where the i'th field uses
1511      // itself in its initializer.
1512      Diag(L, diag::warn_field_is_uninit);
1513    }
1514  }
1515
1516  bool HasDependentArg = false;
1517  for (unsigned i = 0; i < NumArgs; i++)
1518    HasDependentArg |= Args[i]->isTypeDependent();
1519
1520  Expr *Init;
1521  if (Member->getType()->isDependentType() || HasDependentArg) {
1522    // Can't check initialization for a member of dependent type or when
1523    // any of the arguments are type-dependent expressions.
1524    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1525                                       RParenLoc);
1526
1527    // Erase any temporaries within this evaluation context; we're not
1528    // going to track them in the AST, since we'll be rebuilding the
1529    // ASTs during template instantiation.
1530    ExprTemporaries.erase(
1531              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1532                          ExprTemporaries.end());
1533  } else {
1534    // Initialize the member.
1535    InitializedEntity MemberEntity =
1536      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1537                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1538    InitializationKind Kind =
1539      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1540
1541    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1542
1543    ExprResult MemberInit =
1544      InitSeq.Perform(*this, MemberEntity, Kind,
1545                      MultiExprArg(*this, Args, NumArgs), 0);
1546    if (MemberInit.isInvalid())
1547      return true;
1548
1549    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1550
1551    // C++0x [class.base.init]p7:
1552    //   The initialization of each base and member constitutes a
1553    //   full-expression.
1554    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1555    if (MemberInit.isInvalid())
1556      return true;
1557
1558    // If we are in a dependent context, template instantiation will
1559    // perform this type-checking again. Just save the arguments that we
1560    // received in a ParenListExpr.
1561    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1562    // of the information that we have about the member
1563    // initializer. However, deconstructing the ASTs is a dicey process,
1564    // and this approach is far more likely to get the corner cases right.
1565    if (CurContext->isDependentContext())
1566      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1567                                               RParenLoc);
1568    else
1569      Init = MemberInit.get();
1570  }
1571
1572  if (DirectMember) {
1573    return new (Context) CXXCtorInitializer(Context, DirectMember,
1574                                                    IdLoc, LParenLoc, Init,
1575                                                    RParenLoc);
1576  } else {
1577    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1578                                                    IdLoc, LParenLoc, Init,
1579                                                    RParenLoc);
1580  }
1581}
1582
1583MemInitResult
1584Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1585                                 Expr **Args, unsigned NumArgs,
1586                                 SourceLocation NameLoc,
1587                                 SourceLocation LParenLoc,
1588                                 SourceLocation RParenLoc,
1589                                 CXXRecordDecl *ClassDecl) {
1590  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1591  if (!LangOpts.CPlusPlus0x)
1592    return Diag(Loc, diag::err_delegation_0x_only)
1593      << TInfo->getTypeLoc().getLocalSourceRange();
1594
1595  // Initialize the object.
1596  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1597                                     QualType(ClassDecl->getTypeForDecl(), 0));
1598  InitializationKind Kind =
1599    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1600
1601  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1602
1603  ExprResult DelegationInit =
1604    InitSeq.Perform(*this, DelegationEntity, Kind,
1605                    MultiExprArg(*this, Args, NumArgs), 0);
1606  if (DelegationInit.isInvalid())
1607    return true;
1608
1609  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1610  CXXConstructorDecl *Constructor
1611    = ConExpr->getConstructor();
1612  assert(Constructor && "Delegating constructor with no target?");
1613
1614  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1615
1616  // C++0x [class.base.init]p7:
1617  //   The initialization of each base and member constitutes a
1618  //   full-expression.
1619  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1620  if (DelegationInit.isInvalid())
1621    return true;
1622
1623  // If we are in a dependent context, template instantiation will
1624  // perform this type-checking again. Just save the arguments that we
1625  // received in a ParenListExpr.
1626  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1627  // of the information that we have about the base
1628  // initializer. However, deconstructing the ASTs is a dicey process,
1629  // and this approach is far more likely to get the corner cases right.
1630  if (CurContext->isDependentContext()) {
1631    ExprResult Init
1632      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1633                                          NumArgs, RParenLoc));
1634    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1635                                            Constructor, Init.takeAs<Expr>(),
1636                                            RParenLoc);
1637  }
1638
1639  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1640                                          DelegationInit.takeAs<Expr>(),
1641                                          RParenLoc);
1642}
1643
1644MemInitResult
1645Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1646                           Expr **Args, unsigned NumArgs,
1647                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1648                           CXXRecordDecl *ClassDecl,
1649                           SourceLocation EllipsisLoc) {
1650  bool HasDependentArg = false;
1651  for (unsigned i = 0; i < NumArgs; i++)
1652    HasDependentArg |= Args[i]->isTypeDependent();
1653
1654  SourceLocation BaseLoc
1655    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1656
1657  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1658    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1659             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1660
1661  // C++ [class.base.init]p2:
1662  //   [...] Unless the mem-initializer-id names a nonstatic data
1663  //   member of the constructor's class or a direct or virtual base
1664  //   of that class, the mem-initializer is ill-formed. A
1665  //   mem-initializer-list can initialize a base class using any
1666  //   name that denotes that base class type.
1667  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1668
1669  if (EllipsisLoc.isValid()) {
1670    // This is a pack expansion.
1671    if (!BaseType->containsUnexpandedParameterPack())  {
1672      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1673        << SourceRange(BaseLoc, RParenLoc);
1674
1675      EllipsisLoc = SourceLocation();
1676    }
1677  } else {
1678    // Check for any unexpanded parameter packs.
1679    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1680      return true;
1681
1682    for (unsigned I = 0; I != NumArgs; ++I)
1683      if (DiagnoseUnexpandedParameterPack(Args[I]))
1684        return true;
1685  }
1686
1687  // Check for direct and virtual base classes.
1688  const CXXBaseSpecifier *DirectBaseSpec = 0;
1689  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1690  if (!Dependent) {
1691    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1692                                       BaseType))
1693      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1694                                        LParenLoc, RParenLoc, ClassDecl);
1695
1696    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1697                        VirtualBaseSpec);
1698
1699    // C++ [base.class.init]p2:
1700    // Unless the mem-initializer-id names a nonstatic data member of the
1701    // constructor's class or a direct or virtual base of that class, the
1702    // mem-initializer is ill-formed.
1703    if (!DirectBaseSpec && !VirtualBaseSpec) {
1704      // If the class has any dependent bases, then it's possible that
1705      // one of those types will resolve to the same type as
1706      // BaseType. Therefore, just treat this as a dependent base
1707      // class initialization.  FIXME: Should we try to check the
1708      // initialization anyway? It seems odd.
1709      if (ClassDecl->hasAnyDependentBases())
1710        Dependent = true;
1711      else
1712        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1713          << BaseType << Context.getTypeDeclType(ClassDecl)
1714          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1715    }
1716  }
1717
1718  if (Dependent) {
1719    // Can't check initialization for a base of dependent type or when
1720    // any of the arguments are type-dependent expressions.
1721    ExprResult BaseInit
1722      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1723                                          RParenLoc));
1724
1725    // Erase any temporaries within this evaluation context; we're not
1726    // going to track them in the AST, since we'll be rebuilding the
1727    // ASTs during template instantiation.
1728    ExprTemporaries.erase(
1729              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1730                          ExprTemporaries.end());
1731
1732    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1733                                                    /*IsVirtual=*/false,
1734                                                    LParenLoc,
1735                                                    BaseInit.takeAs<Expr>(),
1736                                                    RParenLoc,
1737                                                    EllipsisLoc);
1738  }
1739
1740  // C++ [base.class.init]p2:
1741  //   If a mem-initializer-id is ambiguous because it designates both
1742  //   a direct non-virtual base class and an inherited virtual base
1743  //   class, the mem-initializer is ill-formed.
1744  if (DirectBaseSpec && VirtualBaseSpec)
1745    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1746      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1747
1748  CXXBaseSpecifier *BaseSpec
1749    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1750  if (!BaseSpec)
1751    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1752
1753  // Initialize the base.
1754  InitializedEntity BaseEntity =
1755    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1756  InitializationKind Kind =
1757    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1758
1759  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1760
1761  ExprResult BaseInit =
1762    InitSeq.Perform(*this, BaseEntity, Kind,
1763                    MultiExprArg(*this, Args, NumArgs), 0);
1764  if (BaseInit.isInvalid())
1765    return true;
1766
1767  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1768
1769  // C++0x [class.base.init]p7:
1770  //   The initialization of each base and member constitutes a
1771  //   full-expression.
1772  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1773  if (BaseInit.isInvalid())
1774    return true;
1775
1776  // If we are in a dependent context, template instantiation will
1777  // perform this type-checking again. Just save the arguments that we
1778  // received in a ParenListExpr.
1779  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1780  // of the information that we have about the base
1781  // initializer. However, deconstructing the ASTs is a dicey process,
1782  // and this approach is far more likely to get the corner cases right.
1783  if (CurContext->isDependentContext()) {
1784    ExprResult Init
1785      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1786                                          RParenLoc));
1787    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1788                                                    BaseSpec->isVirtual(),
1789                                                    LParenLoc,
1790                                                    Init.takeAs<Expr>(),
1791                                                    RParenLoc,
1792                                                    EllipsisLoc);
1793  }
1794
1795  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1796                                                  BaseSpec->isVirtual(),
1797                                                  LParenLoc,
1798                                                  BaseInit.takeAs<Expr>(),
1799                                                  RParenLoc,
1800                                                  EllipsisLoc);
1801}
1802
1803/// ImplicitInitializerKind - How an implicit base or member initializer should
1804/// initialize its base or member.
1805enum ImplicitInitializerKind {
1806  IIK_Default,
1807  IIK_Copy,
1808  IIK_Move
1809};
1810
1811static bool
1812BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1813                             ImplicitInitializerKind ImplicitInitKind,
1814                             CXXBaseSpecifier *BaseSpec,
1815                             bool IsInheritedVirtualBase,
1816                             CXXCtorInitializer *&CXXBaseInit) {
1817  InitializedEntity InitEntity
1818    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1819                                        IsInheritedVirtualBase);
1820
1821  ExprResult BaseInit;
1822
1823  switch (ImplicitInitKind) {
1824  case IIK_Default: {
1825    InitializationKind InitKind
1826      = InitializationKind::CreateDefault(Constructor->getLocation());
1827    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1828    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1829                               MultiExprArg(SemaRef, 0, 0));
1830    break;
1831  }
1832
1833  case IIK_Copy: {
1834    ParmVarDecl *Param = Constructor->getParamDecl(0);
1835    QualType ParamType = Param->getType().getNonReferenceType();
1836
1837    Expr *CopyCtorArg =
1838      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1839                          Constructor->getLocation(), ParamType,
1840                          VK_LValue, 0);
1841
1842    // Cast to the base class to avoid ambiguities.
1843    QualType ArgTy =
1844      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1845                                       ParamType.getQualifiers());
1846
1847    CXXCastPath BasePath;
1848    BasePath.push_back(BaseSpec);
1849    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1850                                            CK_UncheckedDerivedToBase,
1851                                            VK_LValue, &BasePath).take();
1852
1853    InitializationKind InitKind
1854      = InitializationKind::CreateDirect(Constructor->getLocation(),
1855                                         SourceLocation(), SourceLocation());
1856    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1857                                   &CopyCtorArg, 1);
1858    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1859                               MultiExprArg(&CopyCtorArg, 1));
1860    break;
1861  }
1862
1863  case IIK_Move:
1864    assert(false && "Unhandled initializer kind!");
1865  }
1866
1867  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1868  if (BaseInit.isInvalid())
1869    return true;
1870
1871  CXXBaseInit =
1872    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1873               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1874                                                        SourceLocation()),
1875                                             BaseSpec->isVirtual(),
1876                                             SourceLocation(),
1877                                             BaseInit.takeAs<Expr>(),
1878                                             SourceLocation(),
1879                                             SourceLocation());
1880
1881  return false;
1882}
1883
1884static bool
1885BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1886                               ImplicitInitializerKind ImplicitInitKind,
1887                               FieldDecl *Field,
1888                               CXXCtorInitializer *&CXXMemberInit) {
1889  if (Field->isInvalidDecl())
1890    return true;
1891
1892  SourceLocation Loc = Constructor->getLocation();
1893
1894  if (ImplicitInitKind == IIK_Copy) {
1895    ParmVarDecl *Param = Constructor->getParamDecl(0);
1896    QualType ParamType = Param->getType().getNonReferenceType();
1897
1898    Expr *MemberExprBase =
1899      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1900                          Loc, ParamType, VK_LValue, 0);
1901
1902    // Build a reference to this field within the parameter.
1903    CXXScopeSpec SS;
1904    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1905                              Sema::LookupMemberName);
1906    MemberLookup.addDecl(Field, AS_public);
1907    MemberLookup.resolveKind();
1908    ExprResult CopyCtorArg
1909      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1910                                         ParamType, Loc,
1911                                         /*IsArrow=*/false,
1912                                         SS,
1913                                         /*FirstQualifierInScope=*/0,
1914                                         MemberLookup,
1915                                         /*TemplateArgs=*/0);
1916    if (CopyCtorArg.isInvalid())
1917      return true;
1918
1919    // When the field we are copying is an array, create index variables for
1920    // each dimension of the array. We use these index variables to subscript
1921    // the source array, and other clients (e.g., CodeGen) will perform the
1922    // necessary iteration with these index variables.
1923    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1924    QualType BaseType = Field->getType();
1925    QualType SizeType = SemaRef.Context.getSizeType();
1926    while (const ConstantArrayType *Array
1927                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1928      // Create the iteration variable for this array index.
1929      IdentifierInfo *IterationVarName = 0;
1930      {
1931        llvm::SmallString<8> Str;
1932        llvm::raw_svector_ostream OS(Str);
1933        OS << "__i" << IndexVariables.size();
1934        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1935      }
1936      VarDecl *IterationVar
1937        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1938                          IterationVarName, SizeType,
1939                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1940                          SC_None, SC_None);
1941      IndexVariables.push_back(IterationVar);
1942
1943      // Create a reference to the iteration variable.
1944      ExprResult IterationVarRef
1945        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1946      assert(!IterationVarRef.isInvalid() &&
1947             "Reference to invented variable cannot fail!");
1948
1949      // Subscript the array with this iteration variable.
1950      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1951                                                            Loc,
1952                                                        IterationVarRef.take(),
1953                                                            Loc);
1954      if (CopyCtorArg.isInvalid())
1955        return true;
1956
1957      BaseType = Array->getElementType();
1958    }
1959
1960    // Construct the entity that we will be initializing. For an array, this
1961    // will be first element in the array, which may require several levels
1962    // of array-subscript entities.
1963    llvm::SmallVector<InitializedEntity, 4> Entities;
1964    Entities.reserve(1 + IndexVariables.size());
1965    Entities.push_back(InitializedEntity::InitializeMember(Field));
1966    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1967      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1968                                                              0,
1969                                                              Entities.back()));
1970
1971    // Direct-initialize to use the copy constructor.
1972    InitializationKind InitKind =
1973      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1974
1975    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1976    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1977                                   &CopyCtorArgE, 1);
1978
1979    ExprResult MemberInit
1980      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1981                        MultiExprArg(&CopyCtorArgE, 1));
1982    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1983    if (MemberInit.isInvalid())
1984      return true;
1985
1986    CXXMemberInit
1987      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1988                                           MemberInit.takeAs<Expr>(), Loc,
1989                                           IndexVariables.data(),
1990                                           IndexVariables.size());
1991    return false;
1992  }
1993
1994  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1995
1996  QualType FieldBaseElementType =
1997    SemaRef.Context.getBaseElementType(Field->getType());
1998
1999  if (FieldBaseElementType->isRecordType()) {
2000    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2001    InitializationKind InitKind =
2002      InitializationKind::CreateDefault(Loc);
2003
2004    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2005    ExprResult MemberInit =
2006      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2007
2008    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2009    if (MemberInit.isInvalid())
2010      return true;
2011
2012    CXXMemberInit =
2013      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2014                                                       Field, Loc, Loc,
2015                                                       MemberInit.get(),
2016                                                       Loc);
2017    return false;
2018  }
2019
2020  if (!Field->getParent()->isUnion()) {
2021    if (FieldBaseElementType->isReferenceType()) {
2022      SemaRef.Diag(Constructor->getLocation(),
2023                   diag::err_uninitialized_member_in_ctor)
2024      << (int)Constructor->isImplicit()
2025      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2026      << 0 << Field->getDeclName();
2027      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2028      return true;
2029    }
2030
2031    if (FieldBaseElementType.isConstQualified()) {
2032      SemaRef.Diag(Constructor->getLocation(),
2033                   diag::err_uninitialized_member_in_ctor)
2034      << (int)Constructor->isImplicit()
2035      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2036      << 1 << Field->getDeclName();
2037      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2038      return true;
2039    }
2040  }
2041
2042  // Nothing to initialize.
2043  CXXMemberInit = 0;
2044  return false;
2045}
2046
2047namespace {
2048struct BaseAndFieldInfo {
2049  Sema &S;
2050  CXXConstructorDecl *Ctor;
2051  bool AnyErrorsInInits;
2052  ImplicitInitializerKind IIK;
2053  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2054  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2055
2056  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2057    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2058    // FIXME: Handle implicit move constructors.
2059    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2060      IIK = IIK_Copy;
2061    else
2062      IIK = IIK_Default;
2063  }
2064};
2065}
2066
2067static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2068                                    FieldDecl *Top, FieldDecl *Field) {
2069
2070  // Overwhelmingly common case: we have a direct initializer for this field.
2071  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2072    Info.AllToInit.push_back(Init);
2073    return false;
2074  }
2075
2076  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2077    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2078    assert(FieldClassType && "anonymous struct/union without record type");
2079    CXXRecordDecl *FieldClassDecl
2080      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2081
2082    // Even though union members never have non-trivial default
2083    // constructions in C++03, we still build member initializers for aggregate
2084    // record types which can be union members, and C++0x allows non-trivial
2085    // default constructors for union members, so we ensure that only one
2086    // member is initialized for these.
2087    if (FieldClassDecl->isUnion()) {
2088      // First check for an explicit initializer for one field.
2089      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2090           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2091        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2092          Info.AllToInit.push_back(Init);
2093
2094          // Once we've initialized a field of an anonymous union, the union
2095          // field in the class is also initialized, so exit immediately.
2096          return false;
2097        } else if ((*FA)->isAnonymousStructOrUnion()) {
2098          if (CollectFieldInitializer(Info, Top, *FA))
2099            return true;
2100        }
2101      }
2102
2103      // Fallthrough and construct a default initializer for the union as
2104      // a whole, which can call its default constructor if such a thing exists
2105      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2106      // behavior going forward with C++0x, when anonymous unions there are
2107      // finalized, we should revisit this.
2108    } else {
2109      // For structs, we simply descend through to initialize all members where
2110      // necessary.
2111      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2112           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2113        if (CollectFieldInitializer(Info, Top, *FA))
2114          return true;
2115      }
2116    }
2117  }
2118
2119  // Don't try to build an implicit initializer if there were semantic
2120  // errors in any of the initializers (and therefore we might be
2121  // missing some that the user actually wrote).
2122  if (Info.AnyErrorsInInits)
2123    return false;
2124
2125  CXXCtorInitializer *Init = 0;
2126  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2127    return true;
2128
2129  if (Init)
2130    Info.AllToInit.push_back(Init);
2131
2132  return false;
2133}
2134
2135bool
2136Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2137                               CXXCtorInitializer *Initializer) {
2138  assert(Initializer->isDelegatingInitializer());
2139  Constructor->setNumCtorInitializers(1);
2140  CXXCtorInitializer **initializer =
2141    new (Context) CXXCtorInitializer*[1];
2142  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2143  Constructor->setCtorInitializers(initializer);
2144
2145  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2146    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2147    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2148  }
2149
2150  DelegatingCtorDecls.push_back(Constructor);
2151
2152  return false;
2153}
2154
2155bool
2156Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2157                                  CXXCtorInitializer **Initializers,
2158                                  unsigned NumInitializers,
2159                                  bool AnyErrors) {
2160  if (Constructor->getDeclContext()->isDependentContext()) {
2161    // Just store the initializers as written, they will be checked during
2162    // instantiation.
2163    if (NumInitializers > 0) {
2164      Constructor->setNumCtorInitializers(NumInitializers);
2165      CXXCtorInitializer **baseOrMemberInitializers =
2166        new (Context) CXXCtorInitializer*[NumInitializers];
2167      memcpy(baseOrMemberInitializers, Initializers,
2168             NumInitializers * sizeof(CXXCtorInitializer*));
2169      Constructor->setCtorInitializers(baseOrMemberInitializers);
2170    }
2171
2172    return false;
2173  }
2174
2175  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2176
2177  // We need to build the initializer AST according to order of construction
2178  // and not what user specified in the Initializers list.
2179  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2180  if (!ClassDecl)
2181    return true;
2182
2183  bool HadError = false;
2184
2185  for (unsigned i = 0; i < NumInitializers; i++) {
2186    CXXCtorInitializer *Member = Initializers[i];
2187
2188    if (Member->isBaseInitializer())
2189      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2190    else
2191      Info.AllBaseFields[Member->getAnyMember()] = Member;
2192  }
2193
2194  // Keep track of the direct virtual bases.
2195  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2196  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2197       E = ClassDecl->bases_end(); I != E; ++I) {
2198    if (I->isVirtual())
2199      DirectVBases.insert(I);
2200  }
2201
2202  // Push virtual bases before others.
2203  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2204       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2205
2206    if (CXXCtorInitializer *Value
2207        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2208      Info.AllToInit.push_back(Value);
2209    } else if (!AnyErrors) {
2210      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2211      CXXCtorInitializer *CXXBaseInit;
2212      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2213                                       VBase, IsInheritedVirtualBase,
2214                                       CXXBaseInit)) {
2215        HadError = true;
2216        continue;
2217      }
2218
2219      Info.AllToInit.push_back(CXXBaseInit);
2220    }
2221  }
2222
2223  // Non-virtual bases.
2224  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2225       E = ClassDecl->bases_end(); Base != E; ++Base) {
2226    // Virtuals are in the virtual base list and already constructed.
2227    if (Base->isVirtual())
2228      continue;
2229
2230    if (CXXCtorInitializer *Value
2231          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2232      Info.AllToInit.push_back(Value);
2233    } else if (!AnyErrors) {
2234      CXXCtorInitializer *CXXBaseInit;
2235      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2236                                       Base, /*IsInheritedVirtualBase=*/false,
2237                                       CXXBaseInit)) {
2238        HadError = true;
2239        continue;
2240      }
2241
2242      Info.AllToInit.push_back(CXXBaseInit);
2243    }
2244  }
2245
2246  // Fields.
2247  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2248       E = ClassDecl->field_end(); Field != E; ++Field) {
2249    if ((*Field)->getType()->isIncompleteArrayType()) {
2250      assert(ClassDecl->hasFlexibleArrayMember() &&
2251             "Incomplete array type is not valid");
2252      continue;
2253    }
2254    if (CollectFieldInitializer(Info, *Field, *Field))
2255      HadError = true;
2256  }
2257
2258  NumInitializers = Info.AllToInit.size();
2259  if (NumInitializers > 0) {
2260    Constructor->setNumCtorInitializers(NumInitializers);
2261    CXXCtorInitializer **baseOrMemberInitializers =
2262      new (Context) CXXCtorInitializer*[NumInitializers];
2263    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2264           NumInitializers * sizeof(CXXCtorInitializer*));
2265    Constructor->setCtorInitializers(baseOrMemberInitializers);
2266
2267    // Constructors implicitly reference the base and member
2268    // destructors.
2269    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2270                                           Constructor->getParent());
2271  }
2272
2273  return HadError;
2274}
2275
2276static void *GetKeyForTopLevelField(FieldDecl *Field) {
2277  // For anonymous unions, use the class declaration as the key.
2278  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2279    if (RT->getDecl()->isAnonymousStructOrUnion())
2280      return static_cast<void *>(RT->getDecl());
2281  }
2282  return static_cast<void *>(Field);
2283}
2284
2285static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2286  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2287}
2288
2289static void *GetKeyForMember(ASTContext &Context,
2290                             CXXCtorInitializer *Member) {
2291  if (!Member->isAnyMemberInitializer())
2292    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2293
2294  // For fields injected into the class via declaration of an anonymous union,
2295  // use its anonymous union class declaration as the unique key.
2296  FieldDecl *Field = Member->getAnyMember();
2297
2298  // If the field is a member of an anonymous struct or union, our key
2299  // is the anonymous record decl that's a direct child of the class.
2300  RecordDecl *RD = Field->getParent();
2301  if (RD->isAnonymousStructOrUnion()) {
2302    while (true) {
2303      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2304      if (Parent->isAnonymousStructOrUnion())
2305        RD = Parent;
2306      else
2307        break;
2308    }
2309
2310    return static_cast<void *>(RD);
2311  }
2312
2313  return static_cast<void *>(Field);
2314}
2315
2316static void
2317DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2318                                  const CXXConstructorDecl *Constructor,
2319                                  CXXCtorInitializer **Inits,
2320                                  unsigned NumInits) {
2321  if (Constructor->getDeclContext()->isDependentContext())
2322    return;
2323
2324  // Don't check initializers order unless the warning is enabled at the
2325  // location of at least one initializer.
2326  bool ShouldCheckOrder = false;
2327  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2328    CXXCtorInitializer *Init = Inits[InitIndex];
2329    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2330                                         Init->getSourceLocation())
2331          != Diagnostic::Ignored) {
2332      ShouldCheckOrder = true;
2333      break;
2334    }
2335  }
2336  if (!ShouldCheckOrder)
2337    return;
2338
2339  // Build the list of bases and members in the order that they'll
2340  // actually be initialized.  The explicit initializers should be in
2341  // this same order but may be missing things.
2342  llvm::SmallVector<const void*, 32> IdealInitKeys;
2343
2344  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2345
2346  // 1. Virtual bases.
2347  for (CXXRecordDecl::base_class_const_iterator VBase =
2348       ClassDecl->vbases_begin(),
2349       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2350    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2351
2352  // 2. Non-virtual bases.
2353  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2354       E = ClassDecl->bases_end(); Base != E; ++Base) {
2355    if (Base->isVirtual())
2356      continue;
2357    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2358  }
2359
2360  // 3. Direct fields.
2361  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2362       E = ClassDecl->field_end(); Field != E; ++Field)
2363    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2364
2365  unsigned NumIdealInits = IdealInitKeys.size();
2366  unsigned IdealIndex = 0;
2367
2368  CXXCtorInitializer *PrevInit = 0;
2369  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2370    CXXCtorInitializer *Init = Inits[InitIndex];
2371    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2372
2373    // Scan forward to try to find this initializer in the idealized
2374    // initializers list.
2375    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2376      if (InitKey == IdealInitKeys[IdealIndex])
2377        break;
2378
2379    // If we didn't find this initializer, it must be because we
2380    // scanned past it on a previous iteration.  That can only
2381    // happen if we're out of order;  emit a warning.
2382    if (IdealIndex == NumIdealInits && PrevInit) {
2383      Sema::SemaDiagnosticBuilder D =
2384        SemaRef.Diag(PrevInit->getSourceLocation(),
2385                     diag::warn_initializer_out_of_order);
2386
2387      if (PrevInit->isAnyMemberInitializer())
2388        D << 0 << PrevInit->getAnyMember()->getDeclName();
2389      else
2390        D << 1 << PrevInit->getBaseClassInfo()->getType();
2391
2392      if (Init->isAnyMemberInitializer())
2393        D << 0 << Init->getAnyMember()->getDeclName();
2394      else
2395        D << 1 << Init->getBaseClassInfo()->getType();
2396
2397      // Move back to the initializer's location in the ideal list.
2398      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2399        if (InitKey == IdealInitKeys[IdealIndex])
2400          break;
2401
2402      assert(IdealIndex != NumIdealInits &&
2403             "initializer not found in initializer list");
2404    }
2405
2406    PrevInit = Init;
2407  }
2408}
2409
2410namespace {
2411bool CheckRedundantInit(Sema &S,
2412                        CXXCtorInitializer *Init,
2413                        CXXCtorInitializer *&PrevInit) {
2414  if (!PrevInit) {
2415    PrevInit = Init;
2416    return false;
2417  }
2418
2419  if (FieldDecl *Field = Init->getMember())
2420    S.Diag(Init->getSourceLocation(),
2421           diag::err_multiple_mem_initialization)
2422      << Field->getDeclName()
2423      << Init->getSourceRange();
2424  else {
2425    const Type *BaseClass = Init->getBaseClass();
2426    assert(BaseClass && "neither field nor base");
2427    S.Diag(Init->getSourceLocation(),
2428           diag::err_multiple_base_initialization)
2429      << QualType(BaseClass, 0)
2430      << Init->getSourceRange();
2431  }
2432  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2433    << 0 << PrevInit->getSourceRange();
2434
2435  return true;
2436}
2437
2438typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2439typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2440
2441bool CheckRedundantUnionInit(Sema &S,
2442                             CXXCtorInitializer *Init,
2443                             RedundantUnionMap &Unions) {
2444  FieldDecl *Field = Init->getAnyMember();
2445  RecordDecl *Parent = Field->getParent();
2446  if (!Parent->isAnonymousStructOrUnion())
2447    return false;
2448
2449  NamedDecl *Child = Field;
2450  do {
2451    if (Parent->isUnion()) {
2452      UnionEntry &En = Unions[Parent];
2453      if (En.first && En.first != Child) {
2454        S.Diag(Init->getSourceLocation(),
2455               diag::err_multiple_mem_union_initialization)
2456          << Field->getDeclName()
2457          << Init->getSourceRange();
2458        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2459          << 0 << En.second->getSourceRange();
2460        return true;
2461      } else if (!En.first) {
2462        En.first = Child;
2463        En.second = Init;
2464      }
2465    }
2466
2467    Child = Parent;
2468    Parent = cast<RecordDecl>(Parent->getDeclContext());
2469  } while (Parent->isAnonymousStructOrUnion());
2470
2471  return false;
2472}
2473}
2474
2475/// ActOnMemInitializers - Handle the member initializers for a constructor.
2476void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2477                                SourceLocation ColonLoc,
2478                                MemInitTy **meminits, unsigned NumMemInits,
2479                                bool AnyErrors) {
2480  if (!ConstructorDecl)
2481    return;
2482
2483  AdjustDeclIfTemplate(ConstructorDecl);
2484
2485  CXXConstructorDecl *Constructor
2486    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2487
2488  if (!Constructor) {
2489    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2490    return;
2491  }
2492
2493  CXXCtorInitializer **MemInits =
2494    reinterpret_cast<CXXCtorInitializer **>(meminits);
2495
2496  // Mapping for the duplicate initializers check.
2497  // For member initializers, this is keyed with a FieldDecl*.
2498  // For base initializers, this is keyed with a Type*.
2499  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2500
2501  // Mapping for the inconsistent anonymous-union initializers check.
2502  RedundantUnionMap MemberUnions;
2503
2504  bool HadError = false;
2505  for (unsigned i = 0; i < NumMemInits; i++) {
2506    CXXCtorInitializer *Init = MemInits[i];
2507
2508    // Set the source order index.
2509    Init->setSourceOrder(i);
2510
2511    if (Init->isAnyMemberInitializer()) {
2512      FieldDecl *Field = Init->getAnyMember();
2513      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2514          CheckRedundantUnionInit(*this, Init, MemberUnions))
2515        HadError = true;
2516    } else if (Init->isBaseInitializer()) {
2517      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2518      if (CheckRedundantInit(*this, Init, Members[Key]))
2519        HadError = true;
2520    } else {
2521      assert(Init->isDelegatingInitializer());
2522      // This must be the only initializer
2523      if (i != 0 || NumMemInits > 1) {
2524        Diag(MemInits[0]->getSourceLocation(),
2525             diag::err_delegating_initializer_alone)
2526          << MemInits[0]->getSourceRange();
2527        HadError = true;
2528        // We will treat this as being the only initializer.
2529      }
2530      SetDelegatingInitializer(Constructor, MemInits[i]);
2531      // Return immediately as the initializer is set.
2532      return;
2533    }
2534  }
2535
2536  if (HadError)
2537    return;
2538
2539  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2540
2541  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2542}
2543
2544void
2545Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2546                                             CXXRecordDecl *ClassDecl) {
2547  // Ignore dependent contexts.
2548  if (ClassDecl->isDependentContext())
2549    return;
2550
2551  // FIXME: all the access-control diagnostics are positioned on the
2552  // field/base declaration.  That's probably good; that said, the
2553  // user might reasonably want to know why the destructor is being
2554  // emitted, and we currently don't say.
2555
2556  // Non-static data members.
2557  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2558       E = ClassDecl->field_end(); I != E; ++I) {
2559    FieldDecl *Field = *I;
2560    if (Field->isInvalidDecl())
2561      continue;
2562    QualType FieldType = Context.getBaseElementType(Field->getType());
2563
2564    const RecordType* RT = FieldType->getAs<RecordType>();
2565    if (!RT)
2566      continue;
2567
2568    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2569    if (FieldClassDecl->isInvalidDecl())
2570      continue;
2571    if (FieldClassDecl->hasTrivialDestructor())
2572      continue;
2573
2574    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2575    assert(Dtor && "No dtor found for FieldClassDecl!");
2576    CheckDestructorAccess(Field->getLocation(), Dtor,
2577                          PDiag(diag::err_access_dtor_field)
2578                            << Field->getDeclName()
2579                            << FieldType);
2580
2581    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2582  }
2583
2584  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2585
2586  // Bases.
2587  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2588       E = ClassDecl->bases_end(); Base != E; ++Base) {
2589    // Bases are always records in a well-formed non-dependent class.
2590    const RecordType *RT = Base->getType()->getAs<RecordType>();
2591
2592    // Remember direct virtual bases.
2593    if (Base->isVirtual())
2594      DirectVirtualBases.insert(RT);
2595
2596    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2597    // If our base class is invalid, we probably can't get its dtor anyway.
2598    if (BaseClassDecl->isInvalidDecl())
2599      continue;
2600    // Ignore trivial destructors.
2601    if (BaseClassDecl->hasTrivialDestructor())
2602      continue;
2603
2604    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2605    assert(Dtor && "No dtor found for BaseClassDecl!");
2606
2607    // FIXME: caret should be on the start of the class name
2608    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2609                          PDiag(diag::err_access_dtor_base)
2610                            << Base->getType()
2611                            << Base->getSourceRange());
2612
2613    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2614  }
2615
2616  // Virtual bases.
2617  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2618       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2619
2620    // Bases are always records in a well-formed non-dependent class.
2621    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2622
2623    // Ignore direct virtual bases.
2624    if (DirectVirtualBases.count(RT))
2625      continue;
2626
2627    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2628    // If our base class is invalid, we probably can't get its dtor anyway.
2629    if (BaseClassDecl->isInvalidDecl())
2630      continue;
2631    // Ignore trivial destructors.
2632    if (BaseClassDecl->hasTrivialDestructor())
2633      continue;
2634
2635    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2636    assert(Dtor && "No dtor found for BaseClassDecl!");
2637    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2638                          PDiag(diag::err_access_dtor_vbase)
2639                            << VBase->getType());
2640
2641    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2642  }
2643}
2644
2645void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2646  if (!CDtorDecl)
2647    return;
2648
2649  if (CXXConstructorDecl *Constructor
2650      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2651    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2652}
2653
2654bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2655                                  unsigned DiagID, AbstractDiagSelID SelID) {
2656  if (SelID == -1)
2657    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2658  else
2659    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2660}
2661
2662bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2663                                  const PartialDiagnostic &PD) {
2664  if (!getLangOptions().CPlusPlus)
2665    return false;
2666
2667  if (const ArrayType *AT = Context.getAsArrayType(T))
2668    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2669
2670  if (const PointerType *PT = T->getAs<PointerType>()) {
2671    // Find the innermost pointer type.
2672    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2673      PT = T;
2674
2675    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2676      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2677  }
2678
2679  const RecordType *RT = T->getAs<RecordType>();
2680  if (!RT)
2681    return false;
2682
2683  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2684
2685  // We can't answer whether something is abstract until it has a
2686  // definition.  If it's currently being defined, we'll walk back
2687  // over all the declarations when we have a full definition.
2688  const CXXRecordDecl *Def = RD->getDefinition();
2689  if (!Def || Def->isBeingDefined())
2690    return false;
2691
2692  if (!RD->isAbstract())
2693    return false;
2694
2695  Diag(Loc, PD) << RD->getDeclName();
2696  DiagnoseAbstractType(RD);
2697
2698  return true;
2699}
2700
2701void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2702  // Check if we've already emitted the list of pure virtual functions
2703  // for this class.
2704  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2705    return;
2706
2707  CXXFinalOverriderMap FinalOverriders;
2708  RD->getFinalOverriders(FinalOverriders);
2709
2710  // Keep a set of seen pure methods so we won't diagnose the same method
2711  // more than once.
2712  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2713
2714  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2715                                   MEnd = FinalOverriders.end();
2716       M != MEnd;
2717       ++M) {
2718    for (OverridingMethods::iterator SO = M->second.begin(),
2719                                  SOEnd = M->second.end();
2720         SO != SOEnd; ++SO) {
2721      // C++ [class.abstract]p4:
2722      //   A class is abstract if it contains or inherits at least one
2723      //   pure virtual function for which the final overrider is pure
2724      //   virtual.
2725
2726      //
2727      if (SO->second.size() != 1)
2728        continue;
2729
2730      if (!SO->second.front().Method->isPure())
2731        continue;
2732
2733      if (!SeenPureMethods.insert(SO->second.front().Method))
2734        continue;
2735
2736      Diag(SO->second.front().Method->getLocation(),
2737           diag::note_pure_virtual_function)
2738        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2739    }
2740  }
2741
2742  if (!PureVirtualClassDiagSet)
2743    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2744  PureVirtualClassDiagSet->insert(RD);
2745}
2746
2747namespace {
2748struct AbstractUsageInfo {
2749  Sema &S;
2750  CXXRecordDecl *Record;
2751  CanQualType AbstractType;
2752  bool Invalid;
2753
2754  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2755    : S(S), Record(Record),
2756      AbstractType(S.Context.getCanonicalType(
2757                   S.Context.getTypeDeclType(Record))),
2758      Invalid(false) {}
2759
2760  void DiagnoseAbstractType() {
2761    if (Invalid) return;
2762    S.DiagnoseAbstractType(Record);
2763    Invalid = true;
2764  }
2765
2766  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2767};
2768
2769struct CheckAbstractUsage {
2770  AbstractUsageInfo &Info;
2771  const NamedDecl *Ctx;
2772
2773  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2774    : Info(Info), Ctx(Ctx) {}
2775
2776  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2777    switch (TL.getTypeLocClass()) {
2778#define ABSTRACT_TYPELOC(CLASS, PARENT)
2779#define TYPELOC(CLASS, PARENT) \
2780    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2781#include "clang/AST/TypeLocNodes.def"
2782    }
2783  }
2784
2785  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2786    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2787    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2788      if (!TL.getArg(I))
2789        continue;
2790
2791      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2792      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2793    }
2794  }
2795
2796  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2797    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2798  }
2799
2800  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2801    // Visit the type parameters from a permissive context.
2802    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2803      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2804      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2805        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2806          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2807      // TODO: other template argument types?
2808    }
2809  }
2810
2811  // Visit pointee types from a permissive context.
2812#define CheckPolymorphic(Type) \
2813  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2814    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2815  }
2816  CheckPolymorphic(PointerTypeLoc)
2817  CheckPolymorphic(ReferenceTypeLoc)
2818  CheckPolymorphic(MemberPointerTypeLoc)
2819  CheckPolymorphic(BlockPointerTypeLoc)
2820
2821  /// Handle all the types we haven't given a more specific
2822  /// implementation for above.
2823  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2824    // Every other kind of type that we haven't called out already
2825    // that has an inner type is either (1) sugar or (2) contains that
2826    // inner type in some way as a subobject.
2827    if (TypeLoc Next = TL.getNextTypeLoc())
2828      return Visit(Next, Sel);
2829
2830    // If there's no inner type and we're in a permissive context,
2831    // don't diagnose.
2832    if (Sel == Sema::AbstractNone) return;
2833
2834    // Check whether the type matches the abstract type.
2835    QualType T = TL.getType();
2836    if (T->isArrayType()) {
2837      Sel = Sema::AbstractArrayType;
2838      T = Info.S.Context.getBaseElementType(T);
2839    }
2840    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2841    if (CT != Info.AbstractType) return;
2842
2843    // It matched; do some magic.
2844    if (Sel == Sema::AbstractArrayType) {
2845      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2846        << T << TL.getSourceRange();
2847    } else {
2848      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2849        << Sel << T << TL.getSourceRange();
2850    }
2851    Info.DiagnoseAbstractType();
2852  }
2853};
2854
2855void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2856                                  Sema::AbstractDiagSelID Sel) {
2857  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2858}
2859
2860}
2861
2862/// Check for invalid uses of an abstract type in a method declaration.
2863static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2864                                    CXXMethodDecl *MD) {
2865  // No need to do the check on definitions, which require that
2866  // the return/param types be complete.
2867  if (MD->doesThisDeclarationHaveABody())
2868    return;
2869
2870  // For safety's sake, just ignore it if we don't have type source
2871  // information.  This should never happen for non-implicit methods,
2872  // but...
2873  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2874    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2875}
2876
2877/// Check for invalid uses of an abstract type within a class definition.
2878static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2879                                    CXXRecordDecl *RD) {
2880  for (CXXRecordDecl::decl_iterator
2881         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2882    Decl *D = *I;
2883    if (D->isImplicit()) continue;
2884
2885    // Methods and method templates.
2886    if (isa<CXXMethodDecl>(D)) {
2887      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2888    } else if (isa<FunctionTemplateDecl>(D)) {
2889      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2890      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2891
2892    // Fields and static variables.
2893    } else if (isa<FieldDecl>(D)) {
2894      FieldDecl *FD = cast<FieldDecl>(D);
2895      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2896        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2897    } else if (isa<VarDecl>(D)) {
2898      VarDecl *VD = cast<VarDecl>(D);
2899      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2900        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2901
2902    // Nested classes and class templates.
2903    } else if (isa<CXXRecordDecl>(D)) {
2904      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2905    } else if (isa<ClassTemplateDecl>(D)) {
2906      CheckAbstractClassUsage(Info,
2907                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2908    }
2909  }
2910}
2911
2912/// \brief Perform semantic checks on a class definition that has been
2913/// completing, introducing implicitly-declared members, checking for
2914/// abstract types, etc.
2915void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2916  if (!Record)
2917    return;
2918
2919  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2920    AbstractUsageInfo Info(*this, Record);
2921    CheckAbstractClassUsage(Info, Record);
2922  }
2923
2924  // If this is not an aggregate type and has no user-declared constructor,
2925  // complain about any non-static data members of reference or const scalar
2926  // type, since they will never get initializers.
2927  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2928      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2929    bool Complained = false;
2930    for (RecordDecl::field_iterator F = Record->field_begin(),
2931                                 FEnd = Record->field_end();
2932         F != FEnd; ++F) {
2933      if (F->getType()->isReferenceType() ||
2934          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2935        if (!Complained) {
2936          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2937            << Record->getTagKind() << Record;
2938          Complained = true;
2939        }
2940
2941        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2942          << F->getType()->isReferenceType()
2943          << F->getDeclName();
2944      }
2945    }
2946  }
2947
2948  if (Record->isDynamicClass() && !Record->isDependentType())
2949    DynamicClasses.push_back(Record);
2950
2951  if (Record->getIdentifier()) {
2952    // C++ [class.mem]p13:
2953    //   If T is the name of a class, then each of the following shall have a
2954    //   name different from T:
2955    //     - every member of every anonymous union that is a member of class T.
2956    //
2957    // C++ [class.mem]p14:
2958    //   In addition, if class T has a user-declared constructor (12.1), every
2959    //   non-static data member of class T shall have a name different from T.
2960    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2961         R.first != R.second; ++R.first) {
2962      NamedDecl *D = *R.first;
2963      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2964          isa<IndirectFieldDecl>(D)) {
2965        Diag(D->getLocation(), diag::err_member_name_of_class)
2966          << D->getDeclName();
2967        break;
2968      }
2969    }
2970  }
2971
2972  // Warn if the class has virtual methods but non-virtual public destructor.
2973  if (Record->isPolymorphic() && !Record->isDependentType()) {
2974    CXXDestructorDecl *dtor = Record->getDestructor();
2975    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2976      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2977           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2978  }
2979
2980  // See if a method overloads virtual methods in a base
2981  /// class without overriding any.
2982  if (!Record->isDependentType()) {
2983    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2984                                     MEnd = Record->method_end();
2985         M != MEnd; ++M) {
2986      if (!(*M)->isStatic())
2987        DiagnoseHiddenVirtualMethods(Record, *M);
2988    }
2989  }
2990
2991  // Declare inherited constructors. We do this eagerly here because:
2992  // - The standard requires an eager diagnostic for conflicting inherited
2993  //   constructors from different classes.
2994  // - The lazy declaration of the other implicit constructors is so as to not
2995  //   waste space and performance on classes that are not meant to be
2996  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2997  //   have inherited constructors.
2998  DeclareInheritedConstructors(Record);
2999
3000  if (!Record->isDependentType())
3001    CheckExplicitlyDefaultedMethods(Record);
3002}
3003
3004void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3005  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3006                                      ME = Record->method_end();
3007       MI != ME; ++MI) {
3008    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3009      switch (getSpecialMember(*MI)) {
3010      case CXXDefaultConstructor:
3011        CheckExplicitlyDefaultedDefaultConstructor(
3012                                                  cast<CXXConstructorDecl>(*MI));
3013        break;
3014
3015      case CXXDestructor:
3016        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3017        break;
3018
3019      case CXXCopyConstructor:
3020        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3021        break;
3022
3023      case CXXCopyAssignment:
3024        CheckExplicitlyDefaultedCopyAssignment(*MI);
3025        break;
3026
3027      case CXXMoveConstructor:
3028      case CXXMoveAssignment:
3029        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3030        break;
3031
3032      default:
3033        // FIXME: Do moves once they exist
3034        llvm_unreachable("non-special member explicitly defaulted!");
3035      }
3036    }
3037  }
3038
3039}
3040
3041void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3042  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3043
3044  // Whether this was the first-declared instance of the constructor.
3045  // This affects whether we implicitly add an exception spec (and, eventually,
3046  // constexpr). It is also ill-formed to explicitly default a constructor such
3047  // that it would be deleted. (C++0x [decl.fct.def.default])
3048  bool First = CD == CD->getCanonicalDecl();
3049
3050  bool HadError = false;
3051  if (CD->getNumParams() != 0) {
3052    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3053      << CD->getSourceRange();
3054    HadError = true;
3055  }
3056
3057  ImplicitExceptionSpecification Spec
3058    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3059  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3060  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3061                          *ExceptionType = Context.getFunctionType(
3062                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3063
3064  if (CtorType->hasExceptionSpec()) {
3065    if (CheckEquivalentExceptionSpec(
3066          PDiag(diag::err_incorrect_defaulted_exception_spec)
3067            << CXXDefaultConstructor,
3068          PDiag(),
3069          ExceptionType, SourceLocation(),
3070          CtorType, CD->getLocation())) {
3071      HadError = true;
3072    }
3073  } else if (First) {
3074    // We set the declaration to have the computed exception spec here.
3075    // We know there are no parameters.
3076    EPI.ExtInfo = CtorType->getExtInfo();
3077    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3078  }
3079
3080  if (HadError) {
3081    CD->setInvalidDecl();
3082    return;
3083  }
3084
3085  if (ShouldDeleteDefaultConstructor(CD)) {
3086    if (First) {
3087      CD->setDeletedAsWritten();
3088    } else {
3089      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3090        << CXXDefaultConstructor;
3091      CD->setInvalidDecl();
3092    }
3093  }
3094}
3095
3096void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3097  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3098
3099  // Whether this was the first-declared instance of the constructor.
3100  bool First = CD == CD->getCanonicalDecl();
3101
3102  bool HadError = false;
3103  if (CD->getNumParams() != 1) {
3104    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3105      << CD->getSourceRange();
3106    HadError = true;
3107  }
3108
3109  ImplicitExceptionSpecification Spec(Context);
3110  bool Const;
3111  llvm::tie(Spec, Const) =
3112    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3113
3114  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3115  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3116                          *ExceptionType = Context.getFunctionType(
3117                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3118
3119  // Check for parameter type matching.
3120  // This is a copy ctor so we know it's a cv-qualified reference to T.
3121  QualType ArgType = CtorType->getArgType(0);
3122  if (ArgType->getPointeeType().isVolatileQualified()) {
3123    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3124    HadError = true;
3125  }
3126  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3127    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3128    HadError = true;
3129  }
3130
3131  if (CtorType->hasExceptionSpec()) {
3132    if (CheckEquivalentExceptionSpec(
3133          PDiag(diag::err_incorrect_defaulted_exception_spec)
3134            << CXXCopyConstructor,
3135          PDiag(),
3136          ExceptionType, SourceLocation(),
3137          CtorType, CD->getLocation())) {
3138      HadError = true;
3139    }
3140  } else if (First) {
3141    // We set the declaration to have the computed exception spec here.
3142    // We duplicate the one parameter type.
3143    EPI.ExtInfo = CtorType->getExtInfo();
3144    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3145  }
3146
3147  if (HadError) {
3148    CD->setInvalidDecl();
3149    return;
3150  }
3151
3152  if (ShouldDeleteCopyConstructor(CD)) {
3153    if (First) {
3154      CD->setDeletedAsWritten();
3155    } else {
3156      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3157        << CXXCopyConstructor;
3158      CD->setInvalidDecl();
3159    }
3160  }
3161}
3162
3163void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3164  assert(MD->isExplicitlyDefaulted());
3165
3166  // Whether this was the first-declared instance of the operator
3167  bool First = MD == MD->getCanonicalDecl();
3168
3169  bool HadError = false;
3170  if (MD->getNumParams() != 1) {
3171    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3172      << MD->getSourceRange();
3173    HadError = true;
3174  }
3175
3176  QualType ReturnType =
3177    MD->getType()->getAs<FunctionType>()->getResultType();
3178  if (!ReturnType->isLValueReferenceType() ||
3179      !Context.hasSameType(
3180        Context.getCanonicalType(ReturnType->getPointeeType()),
3181        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3182    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3183    HadError = true;
3184  }
3185
3186  ImplicitExceptionSpecification Spec(Context);
3187  bool Const;
3188  llvm::tie(Spec, Const) =
3189    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3190
3191  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3192  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3193                          *ExceptionType = Context.getFunctionType(
3194                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3195
3196  QualType ArgType = OperType->getArgType(0);
3197  if (!ArgType->isReferenceType()) {
3198    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3199    HadError = true;
3200  } else {
3201    if (ArgType->getPointeeType().isVolatileQualified()) {
3202      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3203      HadError = true;
3204    }
3205    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3206      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3207      HadError = true;
3208    }
3209  }
3210
3211  if (OperType->getTypeQuals()) {
3212    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3213    HadError = true;
3214  }
3215
3216  if (OperType->hasExceptionSpec()) {
3217    if (CheckEquivalentExceptionSpec(
3218          PDiag(diag::err_incorrect_defaulted_exception_spec)
3219            << CXXCopyAssignment,
3220          PDiag(),
3221          ExceptionType, SourceLocation(),
3222          OperType, MD->getLocation())) {
3223      HadError = true;
3224    }
3225  } else if (First) {
3226    // We set the declaration to have the computed exception spec here.
3227    // We duplicate the one parameter type.
3228    EPI.RefQualifier = OperType->getRefQualifier();
3229    EPI.ExtInfo = OperType->getExtInfo();
3230    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3231  }
3232
3233  if (HadError) {
3234    MD->setInvalidDecl();
3235    return;
3236  }
3237
3238  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3239    if (First) {
3240      MD->setDeletedAsWritten();
3241    } else {
3242      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3243        << CXXCopyAssignment;
3244      MD->setInvalidDecl();
3245    }
3246  }
3247}
3248
3249void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3250  assert(DD->isExplicitlyDefaulted());
3251
3252  // Whether this was the first-declared instance of the destructor.
3253  bool First = DD == DD->getCanonicalDecl();
3254
3255  ImplicitExceptionSpecification Spec
3256    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3257  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3258  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3259                          *ExceptionType = Context.getFunctionType(
3260                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3261
3262  if (DtorType->hasExceptionSpec()) {
3263    if (CheckEquivalentExceptionSpec(
3264          PDiag(diag::err_incorrect_defaulted_exception_spec)
3265            << CXXDestructor,
3266          PDiag(),
3267          ExceptionType, SourceLocation(),
3268          DtorType, DD->getLocation())) {
3269      DD->setInvalidDecl();
3270      return;
3271    }
3272  } else if (First) {
3273    // We set the declaration to have the computed exception spec here.
3274    // There are no parameters.
3275    EPI.ExtInfo = DtorType->getExtInfo();
3276    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3277  }
3278
3279  if (ShouldDeleteDestructor(DD)) {
3280    if (First) {
3281      DD->setDeletedAsWritten();
3282    } else {
3283      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3284        << CXXDestructor;
3285      DD->setInvalidDecl();
3286    }
3287  }
3288}
3289
3290bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3291  CXXRecordDecl *RD = CD->getParent();
3292  assert(!RD->isDependentType() && "do deletion after instantiation");
3293  if (!LangOpts.CPlusPlus0x)
3294    return false;
3295
3296  SourceLocation Loc = CD->getLocation();
3297
3298  // Do access control from the constructor
3299  ContextRAII CtorContext(*this, CD);
3300
3301  bool Union = RD->isUnion();
3302  bool AllConst = true;
3303
3304  // We do this because we should never actually use an anonymous
3305  // union's constructor.
3306  if (Union && RD->isAnonymousStructOrUnion())
3307    return false;
3308
3309  // FIXME: We should put some diagnostic logic right into this function.
3310
3311  // C++0x [class.ctor]/5
3312  //    A defaulted default constructor for class X is defined as delete if:
3313
3314  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3315                                          BE = RD->bases_end();
3316       BI != BE; ++BI) {
3317    // We'll handle this one later
3318    if (BI->isVirtual())
3319      continue;
3320
3321    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3322    assert(BaseDecl && "base isn't a CXXRecordDecl");
3323
3324    // -- any [direct base class] has a type with a destructor that is
3325    //    delete or inaccessible from the defaulted default constructor
3326    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3327    if (BaseDtor->isDeleted())
3328      return true;
3329    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3330        AR_accessible)
3331      return true;
3332
3333    // -- any [direct base class either] has no default constructor or
3334    //    overload resolution as applied to [its] default constructor
3335    //    results in an ambiguity or in a function that is deleted or
3336    //    inaccessible from the defaulted default constructor
3337    InitializedEntity BaseEntity =
3338      InitializedEntity::InitializeBase(Context, BI, 0);
3339    InitializationKind Kind =
3340      InitializationKind::CreateDirect(Loc, Loc, Loc);
3341
3342    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3343
3344    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3345      return true;
3346  }
3347
3348  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3349                                          BE = RD->vbases_end();
3350       BI != BE; ++BI) {
3351    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3352    assert(BaseDecl && "base isn't a CXXRecordDecl");
3353
3354    // -- any [virtual base class] has a type with a destructor that is
3355    //    delete or inaccessible from the defaulted default constructor
3356    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3357    if (BaseDtor->isDeleted())
3358      return true;
3359    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3360        AR_accessible)
3361      return true;
3362
3363    // -- any [virtual base class either] has no default constructor or
3364    //    overload resolution as applied to [its] default constructor
3365    //    results in an ambiguity or in a function that is deleted or
3366    //    inaccessible from the defaulted default constructor
3367    InitializedEntity BaseEntity =
3368      InitializedEntity::InitializeBase(Context, BI, BI);
3369    InitializationKind Kind =
3370      InitializationKind::CreateDirect(Loc, Loc, Loc);
3371
3372    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3373
3374    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3375      return true;
3376  }
3377
3378  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3379                                     FE = RD->field_end();
3380       FI != FE; ++FI) {
3381    QualType FieldType = Context.getBaseElementType(FI->getType());
3382    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3383
3384    // -- any non-static data member with no brace-or-equal-initializer is of
3385    //    reference type
3386    if (FieldType->isReferenceType())
3387      return true;
3388
3389    // -- X is a union and all its variant members are of const-qualified type
3390    //    (or array thereof)
3391    if (Union && !FieldType.isConstQualified())
3392      AllConst = false;
3393
3394    if (FieldRecord) {
3395      // -- X is a union-like class that has a variant member with a non-trivial
3396      //    default constructor
3397      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3398        return true;
3399
3400      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3401      if (FieldDtor->isDeleted())
3402        return true;
3403      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3404          AR_accessible)
3405        return true;
3406
3407      // -- any non-variant non-static data member of const-qualified type (or
3408      //    array thereof) with no brace-or-equal-initializer does not have a
3409      //    user-provided default constructor
3410      if (FieldType.isConstQualified() &&
3411          !FieldRecord->hasUserProvidedDefaultConstructor())
3412        return true;
3413
3414      if (!Union && FieldRecord->isUnion() &&
3415          FieldRecord->isAnonymousStructOrUnion()) {
3416        // We're okay to reuse AllConst here since we only care about the
3417        // value otherwise if we're in a union.
3418        AllConst = true;
3419
3420        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3421                                           UE = FieldRecord->field_end();
3422             UI != UE; ++UI) {
3423          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3424          CXXRecordDecl *UnionFieldRecord =
3425            UnionFieldType->getAsCXXRecordDecl();
3426
3427          if (!UnionFieldType.isConstQualified())
3428            AllConst = false;
3429
3430          if (UnionFieldRecord &&
3431              !UnionFieldRecord->hasTrivialDefaultConstructor())
3432            return true;
3433        }
3434
3435        if (AllConst)
3436          return true;
3437
3438        // Don't try to initialize the anonymous union
3439        // This is technically non-conformant, but sanity demands it.
3440        continue;
3441      }
3442    } else if (!Union && FieldType.isConstQualified()) {
3443      // -- any non-variant non-static data member of const-qualified type (or
3444      //    array thereof) with no brace-or-equal-initializer does not have a
3445      //    user-provided default constructor
3446      return true;
3447    }
3448
3449    InitializedEntity MemberEntity =
3450      InitializedEntity::InitializeMember(*FI, 0);
3451    InitializationKind Kind =
3452      InitializationKind::CreateDirect(Loc, Loc, Loc);
3453
3454    InitializationSequence InitSeq(*this, MemberEntity, Kind, 0, 0);
3455
3456    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3457      return true;
3458  }
3459
3460  if (Union && AllConst)
3461    return true;
3462
3463  return false;
3464}
3465
3466bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3467  CXXRecordDecl *RD = CD->getParent();
3468  assert(!RD->isDependentType() && "do deletion after instantiation");
3469  if (!LangOpts.CPlusPlus0x)
3470    return false;
3471
3472  SourceLocation Loc = CD->getLocation();
3473
3474  // Do access control from the constructor
3475  ContextRAII CtorContext(*this, CD);
3476
3477    bool Union = RD->isUnion();
3478
3479  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3480         "copy assignment arg has no pointee type");
3481  bool ConstArg =
3482    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3483
3484  // We do this because we should never actually use an anonymous
3485  // union's constructor.
3486  if (Union && RD->isAnonymousStructOrUnion())
3487    return false;
3488
3489  // FIXME: We should put some diagnostic logic right into this function.
3490
3491  // C++0x [class.copy]/11
3492  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3493
3494  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3495                                          BE = RD->bases_end();
3496       BI != BE; ++BI) {
3497    // We'll handle this one later
3498    if (BI->isVirtual())
3499      continue;
3500
3501    QualType BaseType = BI->getType();
3502    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3503    assert(BaseDecl && "base isn't a CXXRecordDecl");
3504
3505    // -- any [direct base class] of a type with a destructor that is deleted or
3506    //    inaccessible from the defaulted constructor
3507    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3508    if (BaseDtor->isDeleted())
3509      return true;
3510    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3511        AR_accessible)
3512      return true;
3513
3514    // -- a [direct base class] B that cannot be [copied] because overload
3515    //    resolution, as applied to B's [copy] constructor, results in an
3516    //    ambiguity or a function that is deleted or inaccessible from the
3517    //    defaulted constructor
3518    InitializedEntity BaseEntity =
3519      InitializedEntity::InitializeBase(Context, BI, 0);
3520    InitializationKind Kind =
3521      InitializationKind::CreateDirect(Loc, Loc, Loc);
3522
3523    // Construct a fake expression to perform the copy overloading.
3524    QualType ArgType = BaseType.getUnqualifiedType();
3525    if (ConstArg)
3526      ArgType.addConst();
3527    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3528
3529    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3530
3531    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3532      return true;
3533  }
3534
3535  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3536                                          BE = RD->vbases_end();
3537       BI != BE; ++BI) {
3538    QualType BaseType = BI->getType();
3539    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3540    assert(BaseDecl && "base isn't a CXXRecordDecl");
3541
3542    // -- any [direct base class] of a type with a destructor that is deleted or
3543    //    inaccessible from the defaulted constructor
3544    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3545    if (BaseDtor->isDeleted())
3546      return true;
3547    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3548        AR_accessible)
3549      return true;
3550
3551    // -- a [virtual base class] B that cannot be [copied] because overload
3552    //    resolution, as applied to B's [copy] constructor, results in an
3553    //    ambiguity or a function that is deleted or inaccessible from the
3554    //    defaulted constructor
3555    InitializedEntity BaseEntity =
3556      InitializedEntity::InitializeBase(Context, BI, BI);
3557    InitializationKind Kind =
3558      InitializationKind::CreateDirect(Loc, Loc, Loc);
3559
3560    // Construct a fake expression to perform the copy overloading.
3561    QualType ArgType = BaseType.getUnqualifiedType();
3562    if (ConstArg)
3563      ArgType.addConst();
3564    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3565
3566    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3567
3568    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3569      return true;
3570  }
3571
3572  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3573                                     FE = RD->field_end();
3574       FI != FE; ++FI) {
3575    QualType FieldType = Context.getBaseElementType(FI->getType());
3576
3577    // -- for a copy constructor, a non-static data member of rvalue reference
3578    //    type
3579    if (FieldType->isRValueReferenceType())
3580      return true;
3581
3582    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3583
3584    if (FieldRecord) {
3585      // This is an anonymous union
3586      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3587        // Anonymous unions inside unions do not variant members create
3588        if (!Union) {
3589          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3590                                             UE = FieldRecord->field_end();
3591               UI != UE; ++UI) {
3592            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3593            CXXRecordDecl *UnionFieldRecord =
3594              UnionFieldType->getAsCXXRecordDecl();
3595
3596            // -- a variant member with a non-trivial [copy] constructor and X
3597            //    is a union-like class
3598            if (UnionFieldRecord &&
3599                !UnionFieldRecord->hasTrivialCopyConstructor())
3600              return true;
3601          }
3602        }
3603
3604        // Don't try to initalize an anonymous union
3605        continue;
3606      } else {
3607         // -- a variant member with a non-trivial [copy] constructor and X is a
3608         //    union-like class
3609        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3610          return true;
3611
3612        // -- any [non-static data member] of a type with a destructor that is
3613        //    deleted or inaccessible from the defaulted constructor
3614        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3615        if (FieldDtor->isDeleted())
3616          return true;
3617        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3618            AR_accessible)
3619          return true;
3620      }
3621    }
3622
3623    llvm::SmallVector<InitializedEntity, 4> Entities;
3624    QualType CurType = FI->getType();
3625    Entities.push_back(InitializedEntity::InitializeMember(*FI, 0));
3626    while (CurType->isArrayType()) {
3627      Entities.push_back(InitializedEntity::InitializeElement(Context, 0,
3628                                                              Entities.back()));
3629      CurType = Context.getAsArrayType(CurType)->getElementType();
3630    }
3631
3632    InitializationKind Kind =
3633      InitializationKind::CreateDirect(Loc, Loc, Loc);
3634
3635    // Construct a fake expression to perform the copy overloading.
3636    QualType ArgType = FieldType;
3637    if (ArgType->isReferenceType())
3638      ArgType = ArgType->getPointeeType();
3639    else if (ConstArg)
3640      ArgType.addConst();
3641    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3642
3643    InitializationSequence InitSeq(*this, Entities.back(), Kind, &Arg, 1);
3644
3645    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3646      return true;
3647  }
3648
3649  return false;
3650}
3651
3652bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3653  CXXRecordDecl *RD = MD->getParent();
3654  assert(!RD->isDependentType() && "do deletion after instantiation");
3655  if (!LangOpts.CPlusPlus0x)
3656    return false;
3657
3658  SourceLocation Loc = MD->getLocation();
3659
3660  // Do access control from the constructor
3661  ContextRAII MethodContext(*this, MD);
3662
3663  bool Union = RD->isUnion();
3664
3665  bool ConstArg =
3666    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3667
3668  // We do this because we should never actually use an anonymous
3669  // union's constructor.
3670  if (Union && RD->isAnonymousStructOrUnion())
3671    return false;
3672
3673  DeclarationName OperatorName =
3674    Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3675  LookupResult R(*this, OperatorName, Loc, LookupOrdinaryName);
3676  R.suppressDiagnostics();
3677
3678  // FIXME: We should put some diagnostic logic right into this function.
3679
3680  // C++0x [class.copy]/11
3681  //    A defaulted [copy] assignment operator for class X is defined as deleted
3682  //    if X has:
3683
3684  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3685                                          BE = RD->bases_end();
3686       BI != BE; ++BI) {
3687    // We'll handle this one later
3688    if (BI->isVirtual())
3689      continue;
3690
3691    QualType BaseType = BI->getType();
3692    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3693    assert(BaseDecl && "base isn't a CXXRecordDecl");
3694
3695    // -- a [direct base class] B that cannot be [copied] because overload
3696    //    resolution, as applied to B's [copy] assignment operator, results in
3697    //    an ambiguity or a function that is deleted or inaccessible from the
3698    //    assignment operator
3699
3700    LookupQualifiedName(R, BaseDecl, false);
3701
3702    // Filter out any result that isn't a copy-assignment operator.
3703    LookupResult::Filter F = R.makeFilter();
3704    while (F.hasNext()) {
3705      NamedDecl *D = F.next();
3706      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3707        if (Method->isCopyAssignmentOperator())
3708          continue;
3709
3710      F.erase();
3711    }
3712    F.done();
3713
3714    // Build a fake argument expression
3715    QualType ArgType = BaseType;
3716    QualType ThisType = BaseType;
3717    if (ConstArg)
3718      ArgType.addConst();
3719    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3720                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3721                   };
3722
3723    OverloadCandidateSet OCS((Loc));
3724    OverloadCandidateSet::iterator Best;
3725
3726    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3727
3728    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3729        OR_Success)
3730      return true;
3731  }
3732
3733  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3734                                          BE = RD->vbases_end();
3735       BI != BE; ++BI) {
3736    QualType BaseType = BI->getType();
3737    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3738    assert(BaseDecl && "base isn't a CXXRecordDecl");
3739
3740    // -- a [virtual base class] B that cannot be [copied] because overload
3741    //    resolution, as applied to B's [copy] assignment operator, results in
3742    //    an ambiguity or a function that is deleted or inaccessible from the
3743    //    assignment operator
3744
3745    LookupQualifiedName(R, BaseDecl, false);
3746
3747    // Filter out any result that isn't a copy-assignment operator.
3748    LookupResult::Filter F = R.makeFilter();
3749    while (F.hasNext()) {
3750      NamedDecl *D = F.next();
3751      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3752        if (Method->isCopyAssignmentOperator())
3753          continue;
3754
3755      F.erase();
3756    }
3757    F.done();
3758
3759    // Build a fake argument expression
3760    QualType ArgType = BaseType;
3761    QualType ThisType = BaseType;
3762    if (ConstArg)
3763      ArgType.addConst();
3764    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3765                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3766                   };
3767
3768    OverloadCandidateSet OCS((Loc));
3769    OverloadCandidateSet::iterator Best;
3770
3771    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3772
3773    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3774        OR_Success)
3775      return true;
3776  }
3777
3778  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3779                                     FE = RD->field_end();
3780       FI != FE; ++FI) {
3781    QualType FieldType = Context.getBaseElementType(FI->getType());
3782
3783    // -- a non-static data member of reference type
3784    if (FieldType->isReferenceType())
3785      return true;
3786
3787    // -- a non-static data member of const non-class type (or array thereof)
3788    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3789      return true;
3790
3791    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3792
3793    if (FieldRecord) {
3794      // This is an anonymous union
3795      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3796        // Anonymous unions inside unions do not variant members create
3797        if (!Union) {
3798          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3799                                             UE = FieldRecord->field_end();
3800               UI != UE; ++UI) {
3801            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3802            CXXRecordDecl *UnionFieldRecord =
3803              UnionFieldType->getAsCXXRecordDecl();
3804
3805            // -- a variant member with a non-trivial [copy] assignment operator
3806            //    and X is a union-like class
3807            if (UnionFieldRecord &&
3808                !UnionFieldRecord->hasTrivialCopyAssignment())
3809              return true;
3810          }
3811        }
3812
3813        // Don't try to initalize an anonymous union
3814        continue;
3815      // -- a variant member with a non-trivial [copy] assignment operator
3816      //    and X is a union-like class
3817      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3818          return true;
3819      }
3820
3821      LookupQualifiedName(R, FieldRecord, false);
3822
3823      // Filter out any result that isn't a copy-assignment operator.
3824      LookupResult::Filter F = R.makeFilter();
3825      while (F.hasNext()) {
3826        NamedDecl *D = F.next();
3827        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3828          if (Method->isCopyAssignmentOperator())
3829            continue;
3830
3831        F.erase();
3832      }
3833      F.done();
3834
3835      // Build a fake argument expression
3836      QualType ArgType = FieldType;
3837      QualType ThisType = FieldType;
3838      if (ConstArg)
3839        ArgType.addConst();
3840      Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3841                     , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3842                     };
3843
3844      OverloadCandidateSet OCS((Loc));
3845      OverloadCandidateSet::iterator Best;
3846
3847      AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3848
3849      if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3850          OR_Success)
3851        return true;
3852    }
3853  }
3854
3855  return false;
3856}
3857
3858bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3859  CXXRecordDecl *RD = DD->getParent();
3860  assert(!RD->isDependentType() && "do deletion after instantiation");
3861  if (!LangOpts.CPlusPlus0x)
3862    return false;
3863
3864  SourceLocation Loc = DD->getLocation();
3865
3866  // Do access control from the destructor
3867  ContextRAII CtorContext(*this, DD);
3868
3869  bool Union = RD->isUnion();
3870
3871  // We do this because we should never actually use an anonymous
3872  // union's destructor.
3873  if (Union && RD->isAnonymousStructOrUnion())
3874    return false;
3875
3876  // C++0x [class.dtor]p5
3877  //    A defaulted destructor for a class X is defined as deleted if:
3878  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3879                                          BE = RD->bases_end();
3880       BI != BE; ++BI) {
3881    // We'll handle this one later
3882    if (BI->isVirtual())
3883      continue;
3884
3885    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3886    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3887    assert(BaseDtor && "base has no destructor");
3888
3889    // -- any direct or virtual base class has a deleted destructor or
3890    //    a destructor that is inaccessible from the defaulted destructor
3891    if (BaseDtor->isDeleted())
3892      return true;
3893    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3894        AR_accessible)
3895      return true;
3896  }
3897
3898  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3899                                          BE = RD->vbases_end();
3900       BI != BE; ++BI) {
3901    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3902    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3903    assert(BaseDtor && "base has no destructor");
3904
3905    // -- any direct or virtual base class has a deleted destructor or
3906    //    a destructor that is inaccessible from the defaulted destructor
3907    if (BaseDtor->isDeleted())
3908      return true;
3909    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3910        AR_accessible)
3911      return true;
3912  }
3913
3914  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3915                                     FE = RD->field_end();
3916       FI != FE; ++FI) {
3917    QualType FieldType = Context.getBaseElementType(FI->getType());
3918    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3919    if (FieldRecord) {
3920      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3921         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3922                                            UE = FieldRecord->field_end();
3923              UI != UE; ++UI) {
3924           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3925           CXXRecordDecl *UnionFieldRecord =
3926             UnionFieldType->getAsCXXRecordDecl();
3927
3928           // -- X is a union-like class that has a variant member with a non-
3929           //    trivial destructor.
3930           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3931             return true;
3932         }
3933      // Technically we are supposed to do this next check unconditionally.
3934      // But that makes absolutely no sense.
3935      } else {
3936        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3937
3938        // -- any of the non-static data members has class type M (or array
3939        //    thereof) and M has a deleted destructor or a destructor that is
3940        //    inaccessible from the defaulted destructor
3941        if (FieldDtor->isDeleted())
3942          return true;
3943        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3944          AR_accessible)
3945        return true;
3946
3947        // -- X is a union-like class that has a variant member with a non-
3948        //    trivial destructor.
3949        if (Union && !FieldDtor->isTrivial())
3950          return true;
3951      }
3952    }
3953  }
3954
3955  if (DD->isVirtual()) {
3956    FunctionDecl *OperatorDelete = 0;
3957    DeclarationName Name =
3958      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3959    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3960          false))
3961      return true;
3962  }
3963
3964
3965  return false;
3966}
3967
3968/// \brief Data used with FindHiddenVirtualMethod
3969namespace {
3970  struct FindHiddenVirtualMethodData {
3971    Sema *S;
3972    CXXMethodDecl *Method;
3973    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3974    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3975  };
3976}
3977
3978/// \brief Member lookup function that determines whether a given C++
3979/// method overloads virtual methods in a base class without overriding any,
3980/// to be used with CXXRecordDecl::lookupInBases().
3981static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3982                                    CXXBasePath &Path,
3983                                    void *UserData) {
3984  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3985
3986  FindHiddenVirtualMethodData &Data
3987    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3988
3989  DeclarationName Name = Data.Method->getDeclName();
3990  assert(Name.getNameKind() == DeclarationName::Identifier);
3991
3992  bool foundSameNameMethod = false;
3993  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3994  for (Path.Decls = BaseRecord->lookup(Name);
3995       Path.Decls.first != Path.Decls.second;
3996       ++Path.Decls.first) {
3997    NamedDecl *D = *Path.Decls.first;
3998    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3999      MD = MD->getCanonicalDecl();
4000      foundSameNameMethod = true;
4001      // Interested only in hidden virtual methods.
4002      if (!MD->isVirtual())
4003        continue;
4004      // If the method we are checking overrides a method from its base
4005      // don't warn about the other overloaded methods.
4006      if (!Data.S->IsOverload(Data.Method, MD, false))
4007        return true;
4008      // Collect the overload only if its hidden.
4009      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4010        overloadedMethods.push_back(MD);
4011    }
4012  }
4013
4014  if (foundSameNameMethod)
4015    Data.OverloadedMethods.append(overloadedMethods.begin(),
4016                                   overloadedMethods.end());
4017  return foundSameNameMethod;
4018}
4019
4020/// \brief See if a method overloads virtual methods in a base class without
4021/// overriding any.
4022void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4023  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4024                               MD->getLocation()) == Diagnostic::Ignored)
4025    return;
4026  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4027    return;
4028
4029  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4030                     /*bool RecordPaths=*/false,
4031                     /*bool DetectVirtual=*/false);
4032  FindHiddenVirtualMethodData Data;
4033  Data.Method = MD;
4034  Data.S = this;
4035
4036  // Keep the base methods that were overriden or introduced in the subclass
4037  // by 'using' in a set. A base method not in this set is hidden.
4038  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4039       res.first != res.second; ++res.first) {
4040    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4041      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4042                                          E = MD->end_overridden_methods();
4043           I != E; ++I)
4044        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4045    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4046      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4047        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4048  }
4049
4050  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4051      !Data.OverloadedMethods.empty()) {
4052    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4053      << MD << (Data.OverloadedMethods.size() > 1);
4054
4055    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4056      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4057      Diag(overloadedMD->getLocation(),
4058           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4059    }
4060  }
4061}
4062
4063void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4064                                             Decl *TagDecl,
4065                                             SourceLocation LBrac,
4066                                             SourceLocation RBrac,
4067                                             AttributeList *AttrList) {
4068  if (!TagDecl)
4069    return;
4070
4071  AdjustDeclIfTemplate(TagDecl);
4072
4073  ActOnFields(S, RLoc, TagDecl,
4074              // strict aliasing violation!
4075              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4076              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4077
4078  CheckCompletedCXXClass(
4079                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4080}
4081
4082/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4083/// special functions, such as the default constructor, copy
4084/// constructor, or destructor, to the given C++ class (C++
4085/// [special]p1).  This routine can only be executed just before the
4086/// definition of the class is complete.
4087void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4088  if (!ClassDecl->hasUserDeclaredConstructor())
4089    ++ASTContext::NumImplicitDefaultConstructors;
4090
4091  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4092    ++ASTContext::NumImplicitCopyConstructors;
4093
4094  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4095    ++ASTContext::NumImplicitCopyAssignmentOperators;
4096
4097    // If we have a dynamic class, then the copy assignment operator may be
4098    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4099    // it shows up in the right place in the vtable and that we diagnose
4100    // problems with the implicit exception specification.
4101    if (ClassDecl->isDynamicClass())
4102      DeclareImplicitCopyAssignment(ClassDecl);
4103  }
4104
4105  if (!ClassDecl->hasUserDeclaredDestructor()) {
4106    ++ASTContext::NumImplicitDestructors;
4107
4108    // If we have a dynamic class, then the destructor may be virtual, so we
4109    // have to declare the destructor immediately. This ensures that, e.g., it
4110    // shows up in the right place in the vtable and that we diagnose problems
4111    // with the implicit exception specification.
4112    if (ClassDecl->isDynamicClass())
4113      DeclareImplicitDestructor(ClassDecl);
4114  }
4115}
4116
4117void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4118  if (!D)
4119    return;
4120
4121  int NumParamList = D->getNumTemplateParameterLists();
4122  for (int i = 0; i < NumParamList; i++) {
4123    TemplateParameterList* Params = D->getTemplateParameterList(i);
4124    for (TemplateParameterList::iterator Param = Params->begin(),
4125                                      ParamEnd = Params->end();
4126          Param != ParamEnd; ++Param) {
4127      NamedDecl *Named = cast<NamedDecl>(*Param);
4128      if (Named->getDeclName()) {
4129        S->AddDecl(Named);
4130        IdResolver.AddDecl(Named);
4131      }
4132    }
4133  }
4134}
4135
4136void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4137  if (!D)
4138    return;
4139
4140  TemplateParameterList *Params = 0;
4141  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4142    Params = Template->getTemplateParameters();
4143  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4144           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4145    Params = PartialSpec->getTemplateParameters();
4146  else
4147    return;
4148
4149  for (TemplateParameterList::iterator Param = Params->begin(),
4150                                    ParamEnd = Params->end();
4151       Param != ParamEnd; ++Param) {
4152    NamedDecl *Named = cast<NamedDecl>(*Param);
4153    if (Named->getDeclName()) {
4154      S->AddDecl(Named);
4155      IdResolver.AddDecl(Named);
4156    }
4157  }
4158}
4159
4160void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4161  if (!RecordD) return;
4162  AdjustDeclIfTemplate(RecordD);
4163  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4164  PushDeclContext(S, Record);
4165}
4166
4167void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4168  if (!RecordD) return;
4169  PopDeclContext();
4170}
4171
4172/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4173/// parsing a top-level (non-nested) C++ class, and we are now
4174/// parsing those parts of the given Method declaration that could
4175/// not be parsed earlier (C++ [class.mem]p2), such as default
4176/// arguments. This action should enter the scope of the given
4177/// Method declaration as if we had just parsed the qualified method
4178/// name. However, it should not bring the parameters into scope;
4179/// that will be performed by ActOnDelayedCXXMethodParameter.
4180void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4181}
4182
4183/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4184/// C++ method declaration. We're (re-)introducing the given
4185/// function parameter into scope for use in parsing later parts of
4186/// the method declaration. For example, we could see an
4187/// ActOnParamDefaultArgument event for this parameter.
4188void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4189  if (!ParamD)
4190    return;
4191
4192  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4193
4194  // If this parameter has an unparsed default argument, clear it out
4195  // to make way for the parsed default argument.
4196  if (Param->hasUnparsedDefaultArg())
4197    Param->setDefaultArg(0);
4198
4199  S->AddDecl(Param);
4200  if (Param->getDeclName())
4201    IdResolver.AddDecl(Param);
4202}
4203
4204/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4205/// processing the delayed method declaration for Method. The method
4206/// declaration is now considered finished. There may be a separate
4207/// ActOnStartOfFunctionDef action later (not necessarily
4208/// immediately!) for this method, if it was also defined inside the
4209/// class body.
4210void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4211  if (!MethodD)
4212    return;
4213
4214  AdjustDeclIfTemplate(MethodD);
4215
4216  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4217
4218  // Now that we have our default arguments, check the constructor
4219  // again. It could produce additional diagnostics or affect whether
4220  // the class has implicitly-declared destructors, among other
4221  // things.
4222  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4223    CheckConstructor(Constructor);
4224
4225  // Check the default arguments, which we may have added.
4226  if (!Method->isInvalidDecl())
4227    CheckCXXDefaultArguments(Method);
4228}
4229
4230/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4231/// the well-formedness of the constructor declarator @p D with type @p
4232/// R. If there are any errors in the declarator, this routine will
4233/// emit diagnostics and set the invalid bit to true.  In any case, the type
4234/// will be updated to reflect a well-formed type for the constructor and
4235/// returned.
4236QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4237                                          StorageClass &SC) {
4238  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4239
4240  // C++ [class.ctor]p3:
4241  //   A constructor shall not be virtual (10.3) or static (9.4). A
4242  //   constructor can be invoked for a const, volatile or const
4243  //   volatile object. A constructor shall not be declared const,
4244  //   volatile, or const volatile (9.3.2).
4245  if (isVirtual) {
4246    if (!D.isInvalidType())
4247      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4248        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4249        << SourceRange(D.getIdentifierLoc());
4250    D.setInvalidType();
4251  }
4252  if (SC == SC_Static) {
4253    if (!D.isInvalidType())
4254      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4255        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4256        << SourceRange(D.getIdentifierLoc());
4257    D.setInvalidType();
4258    SC = SC_None;
4259  }
4260
4261  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4262  if (FTI.TypeQuals != 0) {
4263    if (FTI.TypeQuals & Qualifiers::Const)
4264      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4265        << "const" << SourceRange(D.getIdentifierLoc());
4266    if (FTI.TypeQuals & Qualifiers::Volatile)
4267      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4268        << "volatile" << SourceRange(D.getIdentifierLoc());
4269    if (FTI.TypeQuals & Qualifiers::Restrict)
4270      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4271        << "restrict" << SourceRange(D.getIdentifierLoc());
4272    D.setInvalidType();
4273  }
4274
4275  // C++0x [class.ctor]p4:
4276  //   A constructor shall not be declared with a ref-qualifier.
4277  if (FTI.hasRefQualifier()) {
4278    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4279      << FTI.RefQualifierIsLValueRef
4280      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4281    D.setInvalidType();
4282  }
4283
4284  // Rebuild the function type "R" without any type qualifiers (in
4285  // case any of the errors above fired) and with "void" as the
4286  // return type, since constructors don't have return types.
4287  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4288  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4289    return R;
4290
4291  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4292  EPI.TypeQuals = 0;
4293  EPI.RefQualifier = RQ_None;
4294
4295  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4296                                 Proto->getNumArgs(), EPI);
4297}
4298
4299/// CheckConstructor - Checks a fully-formed constructor for
4300/// well-formedness, issuing any diagnostics required. Returns true if
4301/// the constructor declarator is invalid.
4302void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4303  CXXRecordDecl *ClassDecl
4304    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4305  if (!ClassDecl)
4306    return Constructor->setInvalidDecl();
4307
4308  // C++ [class.copy]p3:
4309  //   A declaration of a constructor for a class X is ill-formed if
4310  //   its first parameter is of type (optionally cv-qualified) X and
4311  //   either there are no other parameters or else all other
4312  //   parameters have default arguments.
4313  if (!Constructor->isInvalidDecl() &&
4314      ((Constructor->getNumParams() == 1) ||
4315       (Constructor->getNumParams() > 1 &&
4316        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4317      Constructor->getTemplateSpecializationKind()
4318                                              != TSK_ImplicitInstantiation) {
4319    QualType ParamType = Constructor->getParamDecl(0)->getType();
4320    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4321    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4322      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4323      const char *ConstRef
4324        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4325                                                        : " const &";
4326      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4327        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4328
4329      // FIXME: Rather that making the constructor invalid, we should endeavor
4330      // to fix the type.
4331      Constructor->setInvalidDecl();
4332    }
4333  }
4334}
4335
4336/// CheckDestructor - Checks a fully-formed destructor definition for
4337/// well-formedness, issuing any diagnostics required.  Returns true
4338/// on error.
4339bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4340  CXXRecordDecl *RD = Destructor->getParent();
4341
4342  if (Destructor->isVirtual()) {
4343    SourceLocation Loc;
4344
4345    if (!Destructor->isImplicit())
4346      Loc = Destructor->getLocation();
4347    else
4348      Loc = RD->getLocation();
4349
4350    // If we have a virtual destructor, look up the deallocation function
4351    FunctionDecl *OperatorDelete = 0;
4352    DeclarationName Name =
4353    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4354    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4355      return true;
4356
4357    MarkDeclarationReferenced(Loc, OperatorDelete);
4358
4359    Destructor->setOperatorDelete(OperatorDelete);
4360  }
4361
4362  return false;
4363}
4364
4365static inline bool
4366FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4367  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4368          FTI.ArgInfo[0].Param &&
4369          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4370}
4371
4372/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4373/// the well-formednes of the destructor declarator @p D with type @p
4374/// R. If there are any errors in the declarator, this routine will
4375/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4376/// will be updated to reflect a well-formed type for the destructor and
4377/// returned.
4378QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4379                                         StorageClass& SC) {
4380  // C++ [class.dtor]p1:
4381  //   [...] A typedef-name that names a class is a class-name
4382  //   (7.1.3); however, a typedef-name that names a class shall not
4383  //   be used as the identifier in the declarator for a destructor
4384  //   declaration.
4385  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4386  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4387    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4388      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4389  else if (const TemplateSpecializationType *TST =
4390             DeclaratorType->getAs<TemplateSpecializationType>())
4391    if (TST->isTypeAlias())
4392      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4393        << DeclaratorType << 1;
4394
4395  // C++ [class.dtor]p2:
4396  //   A destructor is used to destroy objects of its class type. A
4397  //   destructor takes no parameters, and no return type can be
4398  //   specified for it (not even void). The address of a destructor
4399  //   shall not be taken. A destructor shall not be static. A
4400  //   destructor can be invoked for a const, volatile or const
4401  //   volatile object. A destructor shall not be declared const,
4402  //   volatile or const volatile (9.3.2).
4403  if (SC == SC_Static) {
4404    if (!D.isInvalidType())
4405      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4406        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4407        << SourceRange(D.getIdentifierLoc())
4408        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4409
4410    SC = SC_None;
4411  }
4412  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4413    // Destructors don't have return types, but the parser will
4414    // happily parse something like:
4415    //
4416    //   class X {
4417    //     float ~X();
4418    //   };
4419    //
4420    // The return type will be eliminated later.
4421    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4422      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4423      << SourceRange(D.getIdentifierLoc());
4424  }
4425
4426  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4427  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4428    if (FTI.TypeQuals & Qualifiers::Const)
4429      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4430        << "const" << SourceRange(D.getIdentifierLoc());
4431    if (FTI.TypeQuals & Qualifiers::Volatile)
4432      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4433        << "volatile" << SourceRange(D.getIdentifierLoc());
4434    if (FTI.TypeQuals & Qualifiers::Restrict)
4435      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4436        << "restrict" << SourceRange(D.getIdentifierLoc());
4437    D.setInvalidType();
4438  }
4439
4440  // C++0x [class.dtor]p2:
4441  //   A destructor shall not be declared with a ref-qualifier.
4442  if (FTI.hasRefQualifier()) {
4443    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4444      << FTI.RefQualifierIsLValueRef
4445      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4446    D.setInvalidType();
4447  }
4448
4449  // Make sure we don't have any parameters.
4450  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4451    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4452
4453    // Delete the parameters.
4454    FTI.freeArgs();
4455    D.setInvalidType();
4456  }
4457
4458  // Make sure the destructor isn't variadic.
4459  if (FTI.isVariadic) {
4460    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4461    D.setInvalidType();
4462  }
4463
4464  // Rebuild the function type "R" without any type qualifiers or
4465  // parameters (in case any of the errors above fired) and with
4466  // "void" as the return type, since destructors don't have return
4467  // types.
4468  if (!D.isInvalidType())
4469    return R;
4470
4471  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4472  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4473  EPI.Variadic = false;
4474  EPI.TypeQuals = 0;
4475  EPI.RefQualifier = RQ_None;
4476  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4477}
4478
4479/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4480/// well-formednes of the conversion function declarator @p D with
4481/// type @p R. If there are any errors in the declarator, this routine
4482/// will emit diagnostics and return true. Otherwise, it will return
4483/// false. Either way, the type @p R will be updated to reflect a
4484/// well-formed type for the conversion operator.
4485void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4486                                     StorageClass& SC) {
4487  // C++ [class.conv.fct]p1:
4488  //   Neither parameter types nor return type can be specified. The
4489  //   type of a conversion function (8.3.5) is "function taking no
4490  //   parameter returning conversion-type-id."
4491  if (SC == SC_Static) {
4492    if (!D.isInvalidType())
4493      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4494        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4495        << SourceRange(D.getIdentifierLoc());
4496    D.setInvalidType();
4497    SC = SC_None;
4498  }
4499
4500  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4501
4502  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4503    // Conversion functions don't have return types, but the parser will
4504    // happily parse something like:
4505    //
4506    //   class X {
4507    //     float operator bool();
4508    //   };
4509    //
4510    // The return type will be changed later anyway.
4511    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4512      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4513      << SourceRange(D.getIdentifierLoc());
4514    D.setInvalidType();
4515  }
4516
4517  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4518
4519  // Make sure we don't have any parameters.
4520  if (Proto->getNumArgs() > 0) {
4521    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4522
4523    // Delete the parameters.
4524    D.getFunctionTypeInfo().freeArgs();
4525    D.setInvalidType();
4526  } else if (Proto->isVariadic()) {
4527    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4528    D.setInvalidType();
4529  }
4530
4531  // Diagnose "&operator bool()" and other such nonsense.  This
4532  // is actually a gcc extension which we don't support.
4533  if (Proto->getResultType() != ConvType) {
4534    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4535      << Proto->getResultType();
4536    D.setInvalidType();
4537    ConvType = Proto->getResultType();
4538  }
4539
4540  // C++ [class.conv.fct]p4:
4541  //   The conversion-type-id shall not represent a function type nor
4542  //   an array type.
4543  if (ConvType->isArrayType()) {
4544    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4545    ConvType = Context.getPointerType(ConvType);
4546    D.setInvalidType();
4547  } else if (ConvType->isFunctionType()) {
4548    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4549    ConvType = Context.getPointerType(ConvType);
4550    D.setInvalidType();
4551  }
4552
4553  // Rebuild the function type "R" without any parameters (in case any
4554  // of the errors above fired) and with the conversion type as the
4555  // return type.
4556  if (D.isInvalidType())
4557    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4558
4559  // C++0x explicit conversion operators.
4560  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4561    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4562         diag::warn_explicit_conversion_functions)
4563      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4564}
4565
4566/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4567/// the declaration of the given C++ conversion function. This routine
4568/// is responsible for recording the conversion function in the C++
4569/// class, if possible.
4570Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4571  assert(Conversion && "Expected to receive a conversion function declaration");
4572
4573  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4574
4575  // Make sure we aren't redeclaring the conversion function.
4576  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4577
4578  // C++ [class.conv.fct]p1:
4579  //   [...] A conversion function is never used to convert a
4580  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4581  //   same object type (or a reference to it), to a (possibly
4582  //   cv-qualified) base class of that type (or a reference to it),
4583  //   or to (possibly cv-qualified) void.
4584  // FIXME: Suppress this warning if the conversion function ends up being a
4585  // virtual function that overrides a virtual function in a base class.
4586  QualType ClassType
4587    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4588  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4589    ConvType = ConvTypeRef->getPointeeType();
4590  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4591      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4592    /* Suppress diagnostics for instantiations. */;
4593  else if (ConvType->isRecordType()) {
4594    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4595    if (ConvType == ClassType)
4596      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4597        << ClassType;
4598    else if (IsDerivedFrom(ClassType, ConvType))
4599      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4600        <<  ClassType << ConvType;
4601  } else if (ConvType->isVoidType()) {
4602    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4603      << ClassType << ConvType;
4604  }
4605
4606  if (FunctionTemplateDecl *ConversionTemplate
4607                                = Conversion->getDescribedFunctionTemplate())
4608    return ConversionTemplate;
4609
4610  return Conversion;
4611}
4612
4613//===----------------------------------------------------------------------===//
4614// Namespace Handling
4615//===----------------------------------------------------------------------===//
4616
4617
4618
4619/// ActOnStartNamespaceDef - This is called at the start of a namespace
4620/// definition.
4621Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4622                                   SourceLocation InlineLoc,
4623                                   SourceLocation NamespaceLoc,
4624                                   SourceLocation IdentLoc,
4625                                   IdentifierInfo *II,
4626                                   SourceLocation LBrace,
4627                                   AttributeList *AttrList) {
4628  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4629  // For anonymous namespace, take the location of the left brace.
4630  SourceLocation Loc = II ? IdentLoc : LBrace;
4631  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4632                                                 StartLoc, Loc, II);
4633  Namespc->setInline(InlineLoc.isValid());
4634
4635  Scope *DeclRegionScope = NamespcScope->getParent();
4636
4637  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4638
4639  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4640    PushNamespaceVisibilityAttr(Attr);
4641
4642  if (II) {
4643    // C++ [namespace.def]p2:
4644    //   The identifier in an original-namespace-definition shall not
4645    //   have been previously defined in the declarative region in
4646    //   which the original-namespace-definition appears. The
4647    //   identifier in an original-namespace-definition is the name of
4648    //   the namespace. Subsequently in that declarative region, it is
4649    //   treated as an original-namespace-name.
4650    //
4651    // Since namespace names are unique in their scope, and we don't
4652    // look through using directives, just look for any ordinary names.
4653
4654    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4655      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4656      Decl::IDNS_Namespace;
4657    NamedDecl *PrevDecl = 0;
4658    for (DeclContext::lookup_result R
4659            = CurContext->getRedeclContext()->lookup(II);
4660         R.first != R.second; ++R.first) {
4661      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4662        PrevDecl = *R.first;
4663        break;
4664      }
4665    }
4666
4667    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4668      // This is an extended namespace definition.
4669      if (Namespc->isInline() != OrigNS->isInline()) {
4670        // inline-ness must match
4671        if (OrigNS->isInline()) {
4672          // The user probably just forgot the 'inline', so suggest that it
4673          // be added back.
4674          Diag(Namespc->getLocation(),
4675               diag::warn_inline_namespace_reopened_noninline)
4676            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4677        } else {
4678          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4679            << Namespc->isInline();
4680        }
4681        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4682
4683        // Recover by ignoring the new namespace's inline status.
4684        Namespc->setInline(OrigNS->isInline());
4685      }
4686
4687      // Attach this namespace decl to the chain of extended namespace
4688      // definitions.
4689      OrigNS->setNextNamespace(Namespc);
4690      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4691
4692      // Remove the previous declaration from the scope.
4693      if (DeclRegionScope->isDeclScope(OrigNS)) {
4694        IdResolver.RemoveDecl(OrigNS);
4695        DeclRegionScope->RemoveDecl(OrigNS);
4696      }
4697    } else if (PrevDecl) {
4698      // This is an invalid name redefinition.
4699      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4700       << Namespc->getDeclName();
4701      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4702      Namespc->setInvalidDecl();
4703      // Continue on to push Namespc as current DeclContext and return it.
4704    } else if (II->isStr("std") &&
4705               CurContext->getRedeclContext()->isTranslationUnit()) {
4706      // This is the first "real" definition of the namespace "std", so update
4707      // our cache of the "std" namespace to point at this definition.
4708      if (NamespaceDecl *StdNS = getStdNamespace()) {
4709        // We had already defined a dummy namespace "std". Link this new
4710        // namespace definition to the dummy namespace "std".
4711        StdNS->setNextNamespace(Namespc);
4712        StdNS->setLocation(IdentLoc);
4713        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4714      }
4715
4716      // Make our StdNamespace cache point at the first real definition of the
4717      // "std" namespace.
4718      StdNamespace = Namespc;
4719    }
4720
4721    PushOnScopeChains(Namespc, DeclRegionScope);
4722  } else {
4723    // Anonymous namespaces.
4724    assert(Namespc->isAnonymousNamespace());
4725
4726    // Link the anonymous namespace into its parent.
4727    NamespaceDecl *PrevDecl;
4728    DeclContext *Parent = CurContext->getRedeclContext();
4729    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4730      PrevDecl = TU->getAnonymousNamespace();
4731      TU->setAnonymousNamespace(Namespc);
4732    } else {
4733      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4734      PrevDecl = ND->getAnonymousNamespace();
4735      ND->setAnonymousNamespace(Namespc);
4736    }
4737
4738    // Link the anonymous namespace with its previous declaration.
4739    if (PrevDecl) {
4740      assert(PrevDecl->isAnonymousNamespace());
4741      assert(!PrevDecl->getNextNamespace());
4742      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4743      PrevDecl->setNextNamespace(Namespc);
4744
4745      if (Namespc->isInline() != PrevDecl->isInline()) {
4746        // inline-ness must match
4747        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4748          << Namespc->isInline();
4749        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4750        Namespc->setInvalidDecl();
4751        // Recover by ignoring the new namespace's inline status.
4752        Namespc->setInline(PrevDecl->isInline());
4753      }
4754    }
4755
4756    CurContext->addDecl(Namespc);
4757
4758    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4759    //   behaves as if it were replaced by
4760    //     namespace unique { /* empty body */ }
4761    //     using namespace unique;
4762    //     namespace unique { namespace-body }
4763    //   where all occurrences of 'unique' in a translation unit are
4764    //   replaced by the same identifier and this identifier differs
4765    //   from all other identifiers in the entire program.
4766
4767    // We just create the namespace with an empty name and then add an
4768    // implicit using declaration, just like the standard suggests.
4769    //
4770    // CodeGen enforces the "universally unique" aspect by giving all
4771    // declarations semantically contained within an anonymous
4772    // namespace internal linkage.
4773
4774    if (!PrevDecl) {
4775      UsingDirectiveDecl* UD
4776        = UsingDirectiveDecl::Create(Context, CurContext,
4777                                     /* 'using' */ LBrace,
4778                                     /* 'namespace' */ SourceLocation(),
4779                                     /* qualifier */ NestedNameSpecifierLoc(),
4780                                     /* identifier */ SourceLocation(),
4781                                     Namespc,
4782                                     /* Ancestor */ CurContext);
4783      UD->setImplicit();
4784      CurContext->addDecl(UD);
4785    }
4786  }
4787
4788  // Although we could have an invalid decl (i.e. the namespace name is a
4789  // redefinition), push it as current DeclContext and try to continue parsing.
4790  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4791  // for the namespace has the declarations that showed up in that particular
4792  // namespace definition.
4793  PushDeclContext(NamespcScope, Namespc);
4794  return Namespc;
4795}
4796
4797/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4798/// is a namespace alias, returns the namespace it points to.
4799static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4800  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4801    return AD->getNamespace();
4802  return dyn_cast_or_null<NamespaceDecl>(D);
4803}
4804
4805/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4806/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4807void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4808  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4809  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4810  Namespc->setRBraceLoc(RBrace);
4811  PopDeclContext();
4812  if (Namespc->hasAttr<VisibilityAttr>())
4813    PopPragmaVisibility();
4814}
4815
4816CXXRecordDecl *Sema::getStdBadAlloc() const {
4817  return cast_or_null<CXXRecordDecl>(
4818                                  StdBadAlloc.get(Context.getExternalSource()));
4819}
4820
4821NamespaceDecl *Sema::getStdNamespace() const {
4822  return cast_or_null<NamespaceDecl>(
4823                                 StdNamespace.get(Context.getExternalSource()));
4824}
4825
4826/// \brief Retrieve the special "std" namespace, which may require us to
4827/// implicitly define the namespace.
4828NamespaceDecl *Sema::getOrCreateStdNamespace() {
4829  if (!StdNamespace) {
4830    // The "std" namespace has not yet been defined, so build one implicitly.
4831    StdNamespace = NamespaceDecl::Create(Context,
4832                                         Context.getTranslationUnitDecl(),
4833                                         SourceLocation(), SourceLocation(),
4834                                         &PP.getIdentifierTable().get("std"));
4835    getStdNamespace()->setImplicit(true);
4836  }
4837
4838  return getStdNamespace();
4839}
4840
4841/// \brief Determine whether a using statement is in a context where it will be
4842/// apply in all contexts.
4843static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4844  switch (CurContext->getDeclKind()) {
4845    case Decl::TranslationUnit:
4846      return true;
4847    case Decl::LinkageSpec:
4848      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4849    default:
4850      return false;
4851  }
4852}
4853
4854Decl *Sema::ActOnUsingDirective(Scope *S,
4855                                          SourceLocation UsingLoc,
4856                                          SourceLocation NamespcLoc,
4857                                          CXXScopeSpec &SS,
4858                                          SourceLocation IdentLoc,
4859                                          IdentifierInfo *NamespcName,
4860                                          AttributeList *AttrList) {
4861  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4862  assert(NamespcName && "Invalid NamespcName.");
4863  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4864
4865  // This can only happen along a recovery path.
4866  while (S->getFlags() & Scope::TemplateParamScope)
4867    S = S->getParent();
4868  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4869
4870  UsingDirectiveDecl *UDir = 0;
4871  NestedNameSpecifier *Qualifier = 0;
4872  if (SS.isSet())
4873    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4874
4875  // Lookup namespace name.
4876  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4877  LookupParsedName(R, S, &SS);
4878  if (R.isAmbiguous())
4879    return 0;
4880
4881  if (R.empty()) {
4882    // Allow "using namespace std;" or "using namespace ::std;" even if
4883    // "std" hasn't been defined yet, for GCC compatibility.
4884    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4885        NamespcName->isStr("std")) {
4886      Diag(IdentLoc, diag::ext_using_undefined_std);
4887      R.addDecl(getOrCreateStdNamespace());
4888      R.resolveKind();
4889    }
4890    // Otherwise, attempt typo correction.
4891    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4892                                                       CTC_NoKeywords, 0)) {
4893      if (R.getAsSingle<NamespaceDecl>() ||
4894          R.getAsSingle<NamespaceAliasDecl>()) {
4895        if (DeclContext *DC = computeDeclContext(SS, false))
4896          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4897            << NamespcName << DC << Corrected << SS.getRange()
4898            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4899        else
4900          Diag(IdentLoc, diag::err_using_directive_suggest)
4901            << NamespcName << Corrected
4902            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4903        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4904          << Corrected;
4905
4906        NamespcName = Corrected.getAsIdentifierInfo();
4907      } else {
4908        R.clear();
4909        R.setLookupName(NamespcName);
4910      }
4911    }
4912  }
4913
4914  if (!R.empty()) {
4915    NamedDecl *Named = R.getFoundDecl();
4916    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4917        && "expected namespace decl");
4918    // C++ [namespace.udir]p1:
4919    //   A using-directive specifies that the names in the nominated
4920    //   namespace can be used in the scope in which the
4921    //   using-directive appears after the using-directive. During
4922    //   unqualified name lookup (3.4.1), the names appear as if they
4923    //   were declared in the nearest enclosing namespace which
4924    //   contains both the using-directive and the nominated
4925    //   namespace. [Note: in this context, "contains" means "contains
4926    //   directly or indirectly". ]
4927
4928    // Find enclosing context containing both using-directive and
4929    // nominated namespace.
4930    NamespaceDecl *NS = getNamespaceDecl(Named);
4931    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4932    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4933      CommonAncestor = CommonAncestor->getParent();
4934
4935    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4936                                      SS.getWithLocInContext(Context),
4937                                      IdentLoc, Named, CommonAncestor);
4938
4939    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4940        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4941      Diag(IdentLoc, diag::warn_using_directive_in_header);
4942    }
4943
4944    PushUsingDirective(S, UDir);
4945  } else {
4946    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4947  }
4948
4949  // FIXME: We ignore attributes for now.
4950  return UDir;
4951}
4952
4953void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4954  // If scope has associated entity, then using directive is at namespace
4955  // or translation unit scope. We add UsingDirectiveDecls, into
4956  // it's lookup structure.
4957  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4958    Ctx->addDecl(UDir);
4959  else
4960    // Otherwise it is block-sope. using-directives will affect lookup
4961    // only to the end of scope.
4962    S->PushUsingDirective(UDir);
4963}
4964
4965
4966Decl *Sema::ActOnUsingDeclaration(Scope *S,
4967                                  AccessSpecifier AS,
4968                                  bool HasUsingKeyword,
4969                                  SourceLocation UsingLoc,
4970                                  CXXScopeSpec &SS,
4971                                  UnqualifiedId &Name,
4972                                  AttributeList *AttrList,
4973                                  bool IsTypeName,
4974                                  SourceLocation TypenameLoc) {
4975  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4976
4977  switch (Name.getKind()) {
4978  case UnqualifiedId::IK_Identifier:
4979  case UnqualifiedId::IK_OperatorFunctionId:
4980  case UnqualifiedId::IK_LiteralOperatorId:
4981  case UnqualifiedId::IK_ConversionFunctionId:
4982    break;
4983
4984  case UnqualifiedId::IK_ConstructorName:
4985  case UnqualifiedId::IK_ConstructorTemplateId:
4986    // C++0x inherited constructors.
4987    if (getLangOptions().CPlusPlus0x) break;
4988
4989    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4990      << SS.getRange();
4991    return 0;
4992
4993  case UnqualifiedId::IK_DestructorName:
4994    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
4995      << SS.getRange();
4996    return 0;
4997
4998  case UnqualifiedId::IK_TemplateId:
4999    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5000      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5001    return 0;
5002  }
5003
5004  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5005  DeclarationName TargetName = TargetNameInfo.getName();
5006  if (!TargetName)
5007    return 0;
5008
5009  // Warn about using declarations.
5010  // TODO: store that the declaration was written without 'using' and
5011  // talk about access decls instead of using decls in the
5012  // diagnostics.
5013  if (!HasUsingKeyword) {
5014    UsingLoc = Name.getSourceRange().getBegin();
5015
5016    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5017      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5018  }
5019
5020  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5021      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5022    return 0;
5023
5024  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5025                                        TargetNameInfo, AttrList,
5026                                        /* IsInstantiation */ false,
5027                                        IsTypeName, TypenameLoc);
5028  if (UD)
5029    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5030
5031  return UD;
5032}
5033
5034/// \brief Determine whether a using declaration considers the given
5035/// declarations as "equivalent", e.g., if they are redeclarations of
5036/// the same entity or are both typedefs of the same type.
5037static bool
5038IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5039                         bool &SuppressRedeclaration) {
5040  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5041    SuppressRedeclaration = false;
5042    return true;
5043  }
5044
5045  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5046    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5047      SuppressRedeclaration = true;
5048      return Context.hasSameType(TD1->getUnderlyingType(),
5049                                 TD2->getUnderlyingType());
5050    }
5051
5052  return false;
5053}
5054
5055
5056/// Determines whether to create a using shadow decl for a particular
5057/// decl, given the set of decls existing prior to this using lookup.
5058bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5059                                const LookupResult &Previous) {
5060  // Diagnose finding a decl which is not from a base class of the
5061  // current class.  We do this now because there are cases where this
5062  // function will silently decide not to build a shadow decl, which
5063  // will pre-empt further diagnostics.
5064  //
5065  // We don't need to do this in C++0x because we do the check once on
5066  // the qualifier.
5067  //
5068  // FIXME: diagnose the following if we care enough:
5069  //   struct A { int foo; };
5070  //   struct B : A { using A::foo; };
5071  //   template <class T> struct C : A {};
5072  //   template <class T> struct D : C<T> { using B::foo; } // <---
5073  // This is invalid (during instantiation) in C++03 because B::foo
5074  // resolves to the using decl in B, which is not a base class of D<T>.
5075  // We can't diagnose it immediately because C<T> is an unknown
5076  // specialization.  The UsingShadowDecl in D<T> then points directly
5077  // to A::foo, which will look well-formed when we instantiate.
5078  // The right solution is to not collapse the shadow-decl chain.
5079  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5080    DeclContext *OrigDC = Orig->getDeclContext();
5081
5082    // Handle enums and anonymous structs.
5083    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5084    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5085    while (OrigRec->isAnonymousStructOrUnion())
5086      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5087
5088    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5089      if (OrigDC == CurContext) {
5090        Diag(Using->getLocation(),
5091             diag::err_using_decl_nested_name_specifier_is_current_class)
5092          << Using->getQualifierLoc().getSourceRange();
5093        Diag(Orig->getLocation(), diag::note_using_decl_target);
5094        return true;
5095      }
5096
5097      Diag(Using->getQualifierLoc().getBeginLoc(),
5098           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5099        << Using->getQualifier()
5100        << cast<CXXRecordDecl>(CurContext)
5101        << Using->getQualifierLoc().getSourceRange();
5102      Diag(Orig->getLocation(), diag::note_using_decl_target);
5103      return true;
5104    }
5105  }
5106
5107  if (Previous.empty()) return false;
5108
5109  NamedDecl *Target = Orig;
5110  if (isa<UsingShadowDecl>(Target))
5111    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5112
5113  // If the target happens to be one of the previous declarations, we
5114  // don't have a conflict.
5115  //
5116  // FIXME: but we might be increasing its access, in which case we
5117  // should redeclare it.
5118  NamedDecl *NonTag = 0, *Tag = 0;
5119  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5120         I != E; ++I) {
5121    NamedDecl *D = (*I)->getUnderlyingDecl();
5122    bool Result;
5123    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5124      return Result;
5125
5126    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5127  }
5128
5129  if (Target->isFunctionOrFunctionTemplate()) {
5130    FunctionDecl *FD;
5131    if (isa<FunctionTemplateDecl>(Target))
5132      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5133    else
5134      FD = cast<FunctionDecl>(Target);
5135
5136    NamedDecl *OldDecl = 0;
5137    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5138    case Ovl_Overload:
5139      return false;
5140
5141    case Ovl_NonFunction:
5142      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5143      break;
5144
5145    // We found a decl with the exact signature.
5146    case Ovl_Match:
5147      // If we're in a record, we want to hide the target, so we
5148      // return true (without a diagnostic) to tell the caller not to
5149      // build a shadow decl.
5150      if (CurContext->isRecord())
5151        return true;
5152
5153      // If we're not in a record, this is an error.
5154      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5155      break;
5156    }
5157
5158    Diag(Target->getLocation(), diag::note_using_decl_target);
5159    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5160    return true;
5161  }
5162
5163  // Target is not a function.
5164
5165  if (isa<TagDecl>(Target)) {
5166    // No conflict between a tag and a non-tag.
5167    if (!Tag) return false;
5168
5169    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5170    Diag(Target->getLocation(), diag::note_using_decl_target);
5171    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5172    return true;
5173  }
5174
5175  // No conflict between a tag and a non-tag.
5176  if (!NonTag) return false;
5177
5178  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5179  Diag(Target->getLocation(), diag::note_using_decl_target);
5180  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5181  return true;
5182}
5183
5184/// Builds a shadow declaration corresponding to a 'using' declaration.
5185UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5186                                            UsingDecl *UD,
5187                                            NamedDecl *Orig) {
5188
5189  // If we resolved to another shadow declaration, just coalesce them.
5190  NamedDecl *Target = Orig;
5191  if (isa<UsingShadowDecl>(Target)) {
5192    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5193    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5194  }
5195
5196  UsingShadowDecl *Shadow
5197    = UsingShadowDecl::Create(Context, CurContext,
5198                              UD->getLocation(), UD, Target);
5199  UD->addShadowDecl(Shadow);
5200
5201  Shadow->setAccess(UD->getAccess());
5202  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5203    Shadow->setInvalidDecl();
5204
5205  if (S)
5206    PushOnScopeChains(Shadow, S);
5207  else
5208    CurContext->addDecl(Shadow);
5209
5210
5211  return Shadow;
5212}
5213
5214/// Hides a using shadow declaration.  This is required by the current
5215/// using-decl implementation when a resolvable using declaration in a
5216/// class is followed by a declaration which would hide or override
5217/// one or more of the using decl's targets; for example:
5218///
5219///   struct Base { void foo(int); };
5220///   struct Derived : Base {
5221///     using Base::foo;
5222///     void foo(int);
5223///   };
5224///
5225/// The governing language is C++03 [namespace.udecl]p12:
5226///
5227///   When a using-declaration brings names from a base class into a
5228///   derived class scope, member functions in the derived class
5229///   override and/or hide member functions with the same name and
5230///   parameter types in a base class (rather than conflicting).
5231///
5232/// There are two ways to implement this:
5233///   (1) optimistically create shadow decls when they're not hidden
5234///       by existing declarations, or
5235///   (2) don't create any shadow decls (or at least don't make them
5236///       visible) until we've fully parsed/instantiated the class.
5237/// The problem with (1) is that we might have to retroactively remove
5238/// a shadow decl, which requires several O(n) operations because the
5239/// decl structures are (very reasonably) not designed for removal.
5240/// (2) avoids this but is very fiddly and phase-dependent.
5241void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5242  if (Shadow->getDeclName().getNameKind() ==
5243        DeclarationName::CXXConversionFunctionName)
5244    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5245
5246  // Remove it from the DeclContext...
5247  Shadow->getDeclContext()->removeDecl(Shadow);
5248
5249  // ...and the scope, if applicable...
5250  if (S) {
5251    S->RemoveDecl(Shadow);
5252    IdResolver.RemoveDecl(Shadow);
5253  }
5254
5255  // ...and the using decl.
5256  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5257
5258  // TODO: complain somehow if Shadow was used.  It shouldn't
5259  // be possible for this to happen, because...?
5260}
5261
5262/// Builds a using declaration.
5263///
5264/// \param IsInstantiation - Whether this call arises from an
5265///   instantiation of an unresolved using declaration.  We treat
5266///   the lookup differently for these declarations.
5267NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5268                                       SourceLocation UsingLoc,
5269                                       CXXScopeSpec &SS,
5270                                       const DeclarationNameInfo &NameInfo,
5271                                       AttributeList *AttrList,
5272                                       bool IsInstantiation,
5273                                       bool IsTypeName,
5274                                       SourceLocation TypenameLoc) {
5275  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5276  SourceLocation IdentLoc = NameInfo.getLoc();
5277  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5278
5279  // FIXME: We ignore attributes for now.
5280
5281  if (SS.isEmpty()) {
5282    Diag(IdentLoc, diag::err_using_requires_qualname);
5283    return 0;
5284  }
5285
5286  // Do the redeclaration lookup in the current scope.
5287  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5288                        ForRedeclaration);
5289  Previous.setHideTags(false);
5290  if (S) {
5291    LookupName(Previous, S);
5292
5293    // It is really dumb that we have to do this.
5294    LookupResult::Filter F = Previous.makeFilter();
5295    while (F.hasNext()) {
5296      NamedDecl *D = F.next();
5297      if (!isDeclInScope(D, CurContext, S))
5298        F.erase();
5299    }
5300    F.done();
5301  } else {
5302    assert(IsInstantiation && "no scope in non-instantiation");
5303    assert(CurContext->isRecord() && "scope not record in instantiation");
5304    LookupQualifiedName(Previous, CurContext);
5305  }
5306
5307  // Check for invalid redeclarations.
5308  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5309    return 0;
5310
5311  // Check for bad qualifiers.
5312  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5313    return 0;
5314
5315  DeclContext *LookupContext = computeDeclContext(SS);
5316  NamedDecl *D;
5317  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5318  if (!LookupContext) {
5319    if (IsTypeName) {
5320      // FIXME: not all declaration name kinds are legal here
5321      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5322                                              UsingLoc, TypenameLoc,
5323                                              QualifierLoc,
5324                                              IdentLoc, NameInfo.getName());
5325    } else {
5326      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5327                                           QualifierLoc, NameInfo);
5328    }
5329  } else {
5330    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5331                          NameInfo, IsTypeName);
5332  }
5333  D->setAccess(AS);
5334  CurContext->addDecl(D);
5335
5336  if (!LookupContext) return D;
5337  UsingDecl *UD = cast<UsingDecl>(D);
5338
5339  if (RequireCompleteDeclContext(SS, LookupContext)) {
5340    UD->setInvalidDecl();
5341    return UD;
5342  }
5343
5344  // Constructor inheriting using decls get special treatment.
5345  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5346    if (CheckInheritedConstructorUsingDecl(UD))
5347      UD->setInvalidDecl();
5348    return UD;
5349  }
5350
5351  // Otherwise, look up the target name.
5352
5353  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5354  R.setUsingDeclaration(true);
5355
5356  // Unlike most lookups, we don't always want to hide tag
5357  // declarations: tag names are visible through the using declaration
5358  // even if hidden by ordinary names, *except* in a dependent context
5359  // where it's important for the sanity of two-phase lookup.
5360  if (!IsInstantiation)
5361    R.setHideTags(false);
5362
5363  LookupQualifiedName(R, LookupContext);
5364
5365  if (R.empty()) {
5366    Diag(IdentLoc, diag::err_no_member)
5367      << NameInfo.getName() << LookupContext << SS.getRange();
5368    UD->setInvalidDecl();
5369    return UD;
5370  }
5371
5372  if (R.isAmbiguous()) {
5373    UD->setInvalidDecl();
5374    return UD;
5375  }
5376
5377  if (IsTypeName) {
5378    // If we asked for a typename and got a non-type decl, error out.
5379    if (!R.getAsSingle<TypeDecl>()) {
5380      Diag(IdentLoc, diag::err_using_typename_non_type);
5381      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5382        Diag((*I)->getUnderlyingDecl()->getLocation(),
5383             diag::note_using_decl_target);
5384      UD->setInvalidDecl();
5385      return UD;
5386    }
5387  } else {
5388    // If we asked for a non-typename and we got a type, error out,
5389    // but only if this is an instantiation of an unresolved using
5390    // decl.  Otherwise just silently find the type name.
5391    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5392      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5393      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5394      UD->setInvalidDecl();
5395      return UD;
5396    }
5397  }
5398
5399  // C++0x N2914 [namespace.udecl]p6:
5400  // A using-declaration shall not name a namespace.
5401  if (R.getAsSingle<NamespaceDecl>()) {
5402    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5403      << SS.getRange();
5404    UD->setInvalidDecl();
5405    return UD;
5406  }
5407
5408  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5409    if (!CheckUsingShadowDecl(UD, *I, Previous))
5410      BuildUsingShadowDecl(S, UD, *I);
5411  }
5412
5413  return UD;
5414}
5415
5416/// Additional checks for a using declaration referring to a constructor name.
5417bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5418  if (UD->isTypeName()) {
5419    // FIXME: Cannot specify typename when specifying constructor
5420    return true;
5421  }
5422
5423  const Type *SourceType = UD->getQualifier()->getAsType();
5424  assert(SourceType &&
5425         "Using decl naming constructor doesn't have type in scope spec.");
5426  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5427
5428  // Check whether the named type is a direct base class.
5429  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5430  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5431  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5432       BaseIt != BaseE; ++BaseIt) {
5433    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5434    if (CanonicalSourceType == BaseType)
5435      break;
5436  }
5437
5438  if (BaseIt == BaseE) {
5439    // Did not find SourceType in the bases.
5440    Diag(UD->getUsingLocation(),
5441         diag::err_using_decl_constructor_not_in_direct_base)
5442      << UD->getNameInfo().getSourceRange()
5443      << QualType(SourceType, 0) << TargetClass;
5444    return true;
5445  }
5446
5447  BaseIt->setInheritConstructors();
5448
5449  return false;
5450}
5451
5452/// Checks that the given using declaration is not an invalid
5453/// redeclaration.  Note that this is checking only for the using decl
5454/// itself, not for any ill-formedness among the UsingShadowDecls.
5455bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5456                                       bool isTypeName,
5457                                       const CXXScopeSpec &SS,
5458                                       SourceLocation NameLoc,
5459                                       const LookupResult &Prev) {
5460  // C++03 [namespace.udecl]p8:
5461  // C++0x [namespace.udecl]p10:
5462  //   A using-declaration is a declaration and can therefore be used
5463  //   repeatedly where (and only where) multiple declarations are
5464  //   allowed.
5465  //
5466  // That's in non-member contexts.
5467  if (!CurContext->getRedeclContext()->isRecord())
5468    return false;
5469
5470  NestedNameSpecifier *Qual
5471    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5472
5473  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5474    NamedDecl *D = *I;
5475
5476    bool DTypename;
5477    NestedNameSpecifier *DQual;
5478    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5479      DTypename = UD->isTypeName();
5480      DQual = UD->getQualifier();
5481    } else if (UnresolvedUsingValueDecl *UD
5482                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5483      DTypename = false;
5484      DQual = UD->getQualifier();
5485    } else if (UnresolvedUsingTypenameDecl *UD
5486                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5487      DTypename = true;
5488      DQual = UD->getQualifier();
5489    } else continue;
5490
5491    // using decls differ if one says 'typename' and the other doesn't.
5492    // FIXME: non-dependent using decls?
5493    if (isTypeName != DTypename) continue;
5494
5495    // using decls differ if they name different scopes (but note that
5496    // template instantiation can cause this check to trigger when it
5497    // didn't before instantiation).
5498    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5499        Context.getCanonicalNestedNameSpecifier(DQual))
5500      continue;
5501
5502    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5503    Diag(D->getLocation(), diag::note_using_decl) << 1;
5504    return true;
5505  }
5506
5507  return false;
5508}
5509
5510
5511/// Checks that the given nested-name qualifier used in a using decl
5512/// in the current context is appropriately related to the current
5513/// scope.  If an error is found, diagnoses it and returns true.
5514bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5515                                   const CXXScopeSpec &SS,
5516                                   SourceLocation NameLoc) {
5517  DeclContext *NamedContext = computeDeclContext(SS);
5518
5519  if (!CurContext->isRecord()) {
5520    // C++03 [namespace.udecl]p3:
5521    // C++0x [namespace.udecl]p8:
5522    //   A using-declaration for a class member shall be a member-declaration.
5523
5524    // If we weren't able to compute a valid scope, it must be a
5525    // dependent class scope.
5526    if (!NamedContext || NamedContext->isRecord()) {
5527      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5528        << SS.getRange();
5529      return true;
5530    }
5531
5532    // Otherwise, everything is known to be fine.
5533    return false;
5534  }
5535
5536  // The current scope is a record.
5537
5538  // If the named context is dependent, we can't decide much.
5539  if (!NamedContext) {
5540    // FIXME: in C++0x, we can diagnose if we can prove that the
5541    // nested-name-specifier does not refer to a base class, which is
5542    // still possible in some cases.
5543
5544    // Otherwise we have to conservatively report that things might be
5545    // okay.
5546    return false;
5547  }
5548
5549  if (!NamedContext->isRecord()) {
5550    // Ideally this would point at the last name in the specifier,
5551    // but we don't have that level of source info.
5552    Diag(SS.getRange().getBegin(),
5553         diag::err_using_decl_nested_name_specifier_is_not_class)
5554      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5555    return true;
5556  }
5557
5558  if (!NamedContext->isDependentContext() &&
5559      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5560    return true;
5561
5562  if (getLangOptions().CPlusPlus0x) {
5563    // C++0x [namespace.udecl]p3:
5564    //   In a using-declaration used as a member-declaration, the
5565    //   nested-name-specifier shall name a base class of the class
5566    //   being defined.
5567
5568    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5569                                 cast<CXXRecordDecl>(NamedContext))) {
5570      if (CurContext == NamedContext) {
5571        Diag(NameLoc,
5572             diag::err_using_decl_nested_name_specifier_is_current_class)
5573          << SS.getRange();
5574        return true;
5575      }
5576
5577      Diag(SS.getRange().getBegin(),
5578           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5579        << (NestedNameSpecifier*) SS.getScopeRep()
5580        << cast<CXXRecordDecl>(CurContext)
5581        << SS.getRange();
5582      return true;
5583    }
5584
5585    return false;
5586  }
5587
5588  // C++03 [namespace.udecl]p4:
5589  //   A using-declaration used as a member-declaration shall refer
5590  //   to a member of a base class of the class being defined [etc.].
5591
5592  // Salient point: SS doesn't have to name a base class as long as
5593  // lookup only finds members from base classes.  Therefore we can
5594  // diagnose here only if we can prove that that can't happen,
5595  // i.e. if the class hierarchies provably don't intersect.
5596
5597  // TODO: it would be nice if "definitely valid" results were cached
5598  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5599  // need to be repeated.
5600
5601  struct UserData {
5602    llvm::DenseSet<const CXXRecordDecl*> Bases;
5603
5604    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5605      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5606      Data->Bases.insert(Base);
5607      return true;
5608    }
5609
5610    bool hasDependentBases(const CXXRecordDecl *Class) {
5611      return !Class->forallBases(collect, this);
5612    }
5613
5614    /// Returns true if the base is dependent or is one of the
5615    /// accumulated base classes.
5616    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5617      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5618      return !Data->Bases.count(Base);
5619    }
5620
5621    bool mightShareBases(const CXXRecordDecl *Class) {
5622      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5623    }
5624  };
5625
5626  UserData Data;
5627
5628  // Returns false if we find a dependent base.
5629  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5630    return false;
5631
5632  // Returns false if the class has a dependent base or if it or one
5633  // of its bases is present in the base set of the current context.
5634  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5635    return false;
5636
5637  Diag(SS.getRange().getBegin(),
5638       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5639    << (NestedNameSpecifier*) SS.getScopeRep()
5640    << cast<CXXRecordDecl>(CurContext)
5641    << SS.getRange();
5642
5643  return true;
5644}
5645
5646Decl *Sema::ActOnAliasDeclaration(Scope *S,
5647                                  AccessSpecifier AS,
5648                                  MultiTemplateParamsArg TemplateParamLists,
5649                                  SourceLocation UsingLoc,
5650                                  UnqualifiedId &Name,
5651                                  TypeResult Type) {
5652  // Skip up to the relevant declaration scope.
5653  while (S->getFlags() & Scope::TemplateParamScope)
5654    S = S->getParent();
5655  assert((S->getFlags() & Scope::DeclScope) &&
5656         "got alias-declaration outside of declaration scope");
5657
5658  if (Type.isInvalid())
5659    return 0;
5660
5661  bool Invalid = false;
5662  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5663  TypeSourceInfo *TInfo = 0;
5664  GetTypeFromParser(Type.get(), &TInfo);
5665
5666  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5667    return 0;
5668
5669  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5670                                      UPPC_DeclarationType)) {
5671    Invalid = true;
5672    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5673                                             TInfo->getTypeLoc().getBeginLoc());
5674  }
5675
5676  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5677  LookupName(Previous, S);
5678
5679  // Warn about shadowing the name of a template parameter.
5680  if (Previous.isSingleResult() &&
5681      Previous.getFoundDecl()->isTemplateParameter()) {
5682    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5683                                        Previous.getFoundDecl()))
5684      Invalid = true;
5685    Previous.clear();
5686  }
5687
5688  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5689         "name in alias declaration must be an identifier");
5690  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5691                                               Name.StartLocation,
5692                                               Name.Identifier, TInfo);
5693
5694  NewTD->setAccess(AS);
5695
5696  if (Invalid)
5697    NewTD->setInvalidDecl();
5698
5699  CheckTypedefForVariablyModifiedType(S, NewTD);
5700  Invalid |= NewTD->isInvalidDecl();
5701
5702  bool Redeclaration = false;
5703
5704  NamedDecl *NewND;
5705  if (TemplateParamLists.size()) {
5706    TypeAliasTemplateDecl *OldDecl = 0;
5707    TemplateParameterList *OldTemplateParams = 0;
5708
5709    if (TemplateParamLists.size() != 1) {
5710      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5711        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5712         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5713    }
5714    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5715
5716    // Only consider previous declarations in the same scope.
5717    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5718                         /*ExplicitInstantiationOrSpecialization*/false);
5719    if (!Previous.empty()) {
5720      Redeclaration = true;
5721
5722      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5723      if (!OldDecl && !Invalid) {
5724        Diag(UsingLoc, diag::err_redefinition_different_kind)
5725          << Name.Identifier;
5726
5727        NamedDecl *OldD = Previous.getRepresentativeDecl();
5728        if (OldD->getLocation().isValid())
5729          Diag(OldD->getLocation(), diag::note_previous_definition);
5730
5731        Invalid = true;
5732      }
5733
5734      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5735        if (TemplateParameterListsAreEqual(TemplateParams,
5736                                           OldDecl->getTemplateParameters(),
5737                                           /*Complain=*/true,
5738                                           TPL_TemplateMatch))
5739          OldTemplateParams = OldDecl->getTemplateParameters();
5740        else
5741          Invalid = true;
5742
5743        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5744        if (!Invalid &&
5745            !Context.hasSameType(OldTD->getUnderlyingType(),
5746                                 NewTD->getUnderlyingType())) {
5747          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5748          // but we can't reasonably accept it.
5749          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5750            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5751          if (OldTD->getLocation().isValid())
5752            Diag(OldTD->getLocation(), diag::note_previous_definition);
5753          Invalid = true;
5754        }
5755      }
5756    }
5757
5758    // Merge any previous default template arguments into our parameters,
5759    // and check the parameter list.
5760    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5761                                   TPC_TypeAliasTemplate))
5762      return 0;
5763
5764    TypeAliasTemplateDecl *NewDecl =
5765      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5766                                    Name.Identifier, TemplateParams,
5767                                    NewTD);
5768
5769    NewDecl->setAccess(AS);
5770
5771    if (Invalid)
5772      NewDecl->setInvalidDecl();
5773    else if (OldDecl)
5774      NewDecl->setPreviousDeclaration(OldDecl);
5775
5776    NewND = NewDecl;
5777  } else {
5778    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5779    NewND = NewTD;
5780  }
5781
5782  if (!Redeclaration)
5783    PushOnScopeChains(NewND, S);
5784
5785  return NewND;
5786}
5787
5788Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5789                                             SourceLocation NamespaceLoc,
5790                                             SourceLocation AliasLoc,
5791                                             IdentifierInfo *Alias,
5792                                             CXXScopeSpec &SS,
5793                                             SourceLocation IdentLoc,
5794                                             IdentifierInfo *Ident) {
5795
5796  // Lookup the namespace name.
5797  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5798  LookupParsedName(R, S, &SS);
5799
5800  // Check if we have a previous declaration with the same name.
5801  NamedDecl *PrevDecl
5802    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5803                       ForRedeclaration);
5804  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5805    PrevDecl = 0;
5806
5807  if (PrevDecl) {
5808    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5809      // We already have an alias with the same name that points to the same
5810      // namespace, so don't create a new one.
5811      // FIXME: At some point, we'll want to create the (redundant)
5812      // declaration to maintain better source information.
5813      if (!R.isAmbiguous() && !R.empty() &&
5814          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5815        return 0;
5816    }
5817
5818    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5819      diag::err_redefinition_different_kind;
5820    Diag(AliasLoc, DiagID) << Alias;
5821    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5822    return 0;
5823  }
5824
5825  if (R.isAmbiguous())
5826    return 0;
5827
5828  if (R.empty()) {
5829    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5830                                                CTC_NoKeywords, 0)) {
5831      if (R.getAsSingle<NamespaceDecl>() ||
5832          R.getAsSingle<NamespaceAliasDecl>()) {
5833        if (DeclContext *DC = computeDeclContext(SS, false))
5834          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5835            << Ident << DC << Corrected << SS.getRange()
5836            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5837        else
5838          Diag(IdentLoc, diag::err_using_directive_suggest)
5839            << Ident << Corrected
5840            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5841
5842        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5843          << Corrected;
5844
5845        Ident = Corrected.getAsIdentifierInfo();
5846      } else {
5847        R.clear();
5848        R.setLookupName(Ident);
5849      }
5850    }
5851
5852    if (R.empty()) {
5853      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5854      return 0;
5855    }
5856  }
5857
5858  NamespaceAliasDecl *AliasDecl =
5859    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5860                               Alias, SS.getWithLocInContext(Context),
5861                               IdentLoc, R.getFoundDecl());
5862
5863  PushOnScopeChains(AliasDecl, S);
5864  return AliasDecl;
5865}
5866
5867namespace {
5868  /// \brief Scoped object used to handle the state changes required in Sema
5869  /// to implicitly define the body of a C++ member function;
5870  class ImplicitlyDefinedFunctionScope {
5871    Sema &S;
5872    Sema::ContextRAII SavedContext;
5873
5874  public:
5875    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5876      : S(S), SavedContext(S, Method)
5877    {
5878      S.PushFunctionScope();
5879      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5880    }
5881
5882    ~ImplicitlyDefinedFunctionScope() {
5883      S.PopExpressionEvaluationContext();
5884      S.PopFunctionOrBlockScope();
5885    }
5886  };
5887}
5888
5889static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
5890                                                       CXXRecordDecl *D) {
5891  ASTContext &Context = Self.Context;
5892  QualType ClassType = Context.getTypeDeclType(D);
5893  DeclarationName ConstructorName
5894    = Context.DeclarationNames.getCXXConstructorName(
5895                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
5896
5897  DeclContext::lookup_const_iterator Con, ConEnd;
5898  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
5899       Con != ConEnd; ++Con) {
5900    // FIXME: In C++0x, a constructor template can be a default constructor.
5901    if (isa<FunctionTemplateDecl>(*Con))
5902      continue;
5903
5904    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
5905    if (Constructor->isDefaultConstructor())
5906      return Constructor;
5907  }
5908  return 0;
5909}
5910
5911Sema::ImplicitExceptionSpecification
5912Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5913  // C++ [except.spec]p14:
5914  //   An implicitly declared special member function (Clause 12) shall have an
5915  //   exception-specification. [...]
5916  ImplicitExceptionSpecification ExceptSpec(Context);
5917
5918  // Direct base-class constructors.
5919  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5920                                       BEnd = ClassDecl->bases_end();
5921       B != BEnd; ++B) {
5922    if (B->isVirtual()) // Handled below.
5923      continue;
5924
5925    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5926      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5927      if (BaseClassDecl->needsImplicitDefaultConstructor())
5928        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5929      else if (CXXConstructorDecl *Constructor
5930                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5931        ExceptSpec.CalledDecl(Constructor);
5932    }
5933  }
5934
5935  // Virtual base-class constructors.
5936  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5937                                       BEnd = ClassDecl->vbases_end();
5938       B != BEnd; ++B) {
5939    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5940      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5941      if (BaseClassDecl->needsImplicitDefaultConstructor())
5942        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5943      else if (CXXConstructorDecl *Constructor
5944                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5945        ExceptSpec.CalledDecl(Constructor);
5946    }
5947  }
5948
5949  // Field constructors.
5950  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5951                               FEnd = ClassDecl->field_end();
5952       F != FEnd; ++F) {
5953    if (const RecordType *RecordTy
5954              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5955      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5956      if (FieldClassDecl->needsImplicitDefaultConstructor())
5957        ExceptSpec.CalledDecl(
5958                            DeclareImplicitDefaultConstructor(FieldClassDecl));
5959      else if (CXXConstructorDecl *Constructor
5960                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
5961        ExceptSpec.CalledDecl(Constructor);
5962    }
5963  }
5964
5965  return ExceptSpec;
5966}
5967
5968CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5969                                                     CXXRecordDecl *ClassDecl) {
5970  // C++ [class.ctor]p5:
5971  //   A default constructor for a class X is a constructor of class X
5972  //   that can be called without an argument. If there is no
5973  //   user-declared constructor for class X, a default constructor is
5974  //   implicitly declared. An implicitly-declared default constructor
5975  //   is an inline public member of its class.
5976  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5977         "Should not build implicit default constructor!");
5978
5979  ImplicitExceptionSpecification Spec =
5980    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5981  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5982
5983  // Create the actual constructor declaration.
5984  CanQualType ClassType
5985    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5986  SourceLocation ClassLoc = ClassDecl->getLocation();
5987  DeclarationName Name
5988    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5989  DeclarationNameInfo NameInfo(Name, ClassLoc);
5990  CXXConstructorDecl *DefaultCon
5991    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5992                                 Context.getFunctionType(Context.VoidTy,
5993                                                         0, 0, EPI),
5994                                 /*TInfo=*/0,
5995                                 /*isExplicit=*/false,
5996                                 /*isInline=*/true,
5997                                 /*isImplicitlyDeclared=*/true);
5998  DefaultCon->setAccess(AS_public);
5999  DefaultCon->setDefaulted();
6000  DefaultCon->setImplicit();
6001  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6002
6003  // Note that we have declared this constructor.
6004  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6005
6006  if (Scope *S = getScopeForContext(ClassDecl))
6007    PushOnScopeChains(DefaultCon, S, false);
6008  ClassDecl->addDecl(DefaultCon);
6009
6010  if (ShouldDeleteDefaultConstructor(DefaultCon))
6011    DefaultCon->setDeletedAsWritten();
6012
6013  return DefaultCon;
6014}
6015
6016void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6017                                            CXXConstructorDecl *Constructor) {
6018  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6019          !Constructor->doesThisDeclarationHaveABody() &&
6020          !Constructor->isDeleted()) &&
6021    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6022
6023  CXXRecordDecl *ClassDecl = Constructor->getParent();
6024  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6025
6026  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6027  DiagnosticErrorTrap Trap(Diags);
6028  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6029      Trap.hasErrorOccurred()) {
6030    Diag(CurrentLocation, diag::note_member_synthesized_at)
6031      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6032    Constructor->setInvalidDecl();
6033    return;
6034  }
6035
6036  SourceLocation Loc = Constructor->getLocation();
6037  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6038
6039  Constructor->setUsed();
6040  MarkVTableUsed(CurrentLocation, ClassDecl);
6041
6042  if (ASTMutationListener *L = getASTMutationListener()) {
6043    L->CompletedImplicitDefinition(Constructor);
6044  }
6045}
6046
6047void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6048  // We start with an initial pass over the base classes to collect those that
6049  // inherit constructors from. If there are none, we can forgo all further
6050  // processing.
6051  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6052  BasesVector BasesToInheritFrom;
6053  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6054                                          BaseE = ClassDecl->bases_end();
6055         BaseIt != BaseE; ++BaseIt) {
6056    if (BaseIt->getInheritConstructors()) {
6057      QualType Base = BaseIt->getType();
6058      if (Base->isDependentType()) {
6059        // If we inherit constructors from anything that is dependent, just
6060        // abort processing altogether. We'll get another chance for the
6061        // instantiations.
6062        return;
6063      }
6064      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6065    }
6066  }
6067  if (BasesToInheritFrom.empty())
6068    return;
6069
6070  // Now collect the constructors that we already have in the current class.
6071  // Those take precedence over inherited constructors.
6072  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6073  //   unless there is a user-declared constructor with the same signature in
6074  //   the class where the using-declaration appears.
6075  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6076  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6077                                    CtorE = ClassDecl->ctor_end();
6078       CtorIt != CtorE; ++CtorIt) {
6079    ExistingConstructors.insert(
6080        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6081  }
6082
6083  Scope *S = getScopeForContext(ClassDecl);
6084  DeclarationName CreatedCtorName =
6085      Context.DeclarationNames.getCXXConstructorName(
6086          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6087
6088  // Now comes the true work.
6089  // First, we keep a map from constructor types to the base that introduced
6090  // them. Needed for finding conflicting constructors. We also keep the
6091  // actually inserted declarations in there, for pretty diagnostics.
6092  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6093  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6094  ConstructorToSourceMap InheritedConstructors;
6095  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6096                             BaseE = BasesToInheritFrom.end();
6097       BaseIt != BaseE; ++BaseIt) {
6098    const RecordType *Base = *BaseIt;
6099    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6100    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6101    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6102                                      CtorE = BaseDecl->ctor_end();
6103         CtorIt != CtorE; ++CtorIt) {
6104      // Find the using declaration for inheriting this base's constructors.
6105      DeclarationName Name =
6106          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6107      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6108          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6109      SourceLocation UsingLoc = UD ? UD->getLocation() :
6110                                     ClassDecl->getLocation();
6111
6112      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6113      //   from the class X named in the using-declaration consists of actual
6114      //   constructors and notional constructors that result from the
6115      //   transformation of defaulted parameters as follows:
6116      //   - all non-template default constructors of X, and
6117      //   - for each non-template constructor of X that has at least one
6118      //     parameter with a default argument, the set of constructors that
6119      //     results from omitting any ellipsis parameter specification and
6120      //     successively omitting parameters with a default argument from the
6121      //     end of the parameter-type-list.
6122      CXXConstructorDecl *BaseCtor = *CtorIt;
6123      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6124      const FunctionProtoType *BaseCtorType =
6125          BaseCtor->getType()->getAs<FunctionProtoType>();
6126
6127      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6128                    maxParams = BaseCtor->getNumParams();
6129           params <= maxParams; ++params) {
6130        // Skip default constructors. They're never inherited.
6131        if (params == 0)
6132          continue;
6133        // Skip copy and move constructors for the same reason.
6134        if (CanBeCopyOrMove && params == 1)
6135          continue;
6136
6137        // Build up a function type for this particular constructor.
6138        // FIXME: The working paper does not consider that the exception spec
6139        // for the inheriting constructor might be larger than that of the
6140        // source. This code doesn't yet, either.
6141        const Type *NewCtorType;
6142        if (params == maxParams)
6143          NewCtorType = BaseCtorType;
6144        else {
6145          llvm::SmallVector<QualType, 16> Args;
6146          for (unsigned i = 0; i < params; ++i) {
6147            Args.push_back(BaseCtorType->getArgType(i));
6148          }
6149          FunctionProtoType::ExtProtoInfo ExtInfo =
6150              BaseCtorType->getExtProtoInfo();
6151          ExtInfo.Variadic = false;
6152          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6153                                                Args.data(), params, ExtInfo)
6154                       .getTypePtr();
6155        }
6156        const Type *CanonicalNewCtorType =
6157            Context.getCanonicalType(NewCtorType);
6158
6159        // Now that we have the type, first check if the class already has a
6160        // constructor with this signature.
6161        if (ExistingConstructors.count(CanonicalNewCtorType))
6162          continue;
6163
6164        // Then we check if we have already declared an inherited constructor
6165        // with this signature.
6166        std::pair<ConstructorToSourceMap::iterator, bool> result =
6167            InheritedConstructors.insert(std::make_pair(
6168                CanonicalNewCtorType,
6169                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6170        if (!result.second) {
6171          // Already in the map. If it came from a different class, that's an
6172          // error. Not if it's from the same.
6173          CanQualType PreviousBase = result.first->second.first;
6174          if (CanonicalBase != PreviousBase) {
6175            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6176            const CXXConstructorDecl *PrevBaseCtor =
6177                PrevCtor->getInheritedConstructor();
6178            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6179
6180            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6181            Diag(BaseCtor->getLocation(),
6182                 diag::note_using_decl_constructor_conflict_current_ctor);
6183            Diag(PrevBaseCtor->getLocation(),
6184                 diag::note_using_decl_constructor_conflict_previous_ctor);
6185            Diag(PrevCtor->getLocation(),
6186                 diag::note_using_decl_constructor_conflict_previous_using);
6187          }
6188          continue;
6189        }
6190
6191        // OK, we're there, now add the constructor.
6192        // C++0x [class.inhctor]p8: [...] that would be performed by a
6193        //   user-writtern inline constructor [...]
6194        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6195        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6196            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6197            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6198            /*ImplicitlyDeclared=*/true);
6199        NewCtor->setAccess(BaseCtor->getAccess());
6200
6201        // Build up the parameter decls and add them.
6202        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6203        for (unsigned i = 0; i < params; ++i) {
6204          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6205                                                   UsingLoc, UsingLoc,
6206                                                   /*IdentifierInfo=*/0,
6207                                                   BaseCtorType->getArgType(i),
6208                                                   /*TInfo=*/0, SC_None,
6209                                                   SC_None, /*DefaultArg=*/0));
6210        }
6211        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6212        NewCtor->setInheritedConstructor(BaseCtor);
6213
6214        PushOnScopeChains(NewCtor, S, false);
6215        ClassDecl->addDecl(NewCtor);
6216        result.first->second.second = NewCtor;
6217      }
6218    }
6219  }
6220}
6221
6222Sema::ImplicitExceptionSpecification
6223Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6224  // C++ [except.spec]p14:
6225  //   An implicitly declared special member function (Clause 12) shall have
6226  //   an exception-specification.
6227  ImplicitExceptionSpecification ExceptSpec(Context);
6228
6229  // Direct base-class destructors.
6230  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6231                                       BEnd = ClassDecl->bases_end();
6232       B != BEnd; ++B) {
6233    if (B->isVirtual()) // Handled below.
6234      continue;
6235
6236    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6237      ExceptSpec.CalledDecl(
6238                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6239  }
6240
6241  // Virtual base-class destructors.
6242  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6243                                       BEnd = ClassDecl->vbases_end();
6244       B != BEnd; ++B) {
6245    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6246      ExceptSpec.CalledDecl(
6247                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6248  }
6249
6250  // Field destructors.
6251  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6252                               FEnd = ClassDecl->field_end();
6253       F != FEnd; ++F) {
6254    if (const RecordType *RecordTy
6255        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6256      ExceptSpec.CalledDecl(
6257                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6258  }
6259
6260  return ExceptSpec;
6261}
6262
6263CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6264  // C++ [class.dtor]p2:
6265  //   If a class has no user-declared destructor, a destructor is
6266  //   declared implicitly. An implicitly-declared destructor is an
6267  //   inline public member of its class.
6268
6269  ImplicitExceptionSpecification Spec =
6270      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6271  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6272
6273  // Create the actual destructor declaration.
6274  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6275
6276  CanQualType ClassType
6277    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6278  SourceLocation ClassLoc = ClassDecl->getLocation();
6279  DeclarationName Name
6280    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6281  DeclarationNameInfo NameInfo(Name, ClassLoc);
6282  CXXDestructorDecl *Destructor
6283      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6284                                  /*isInline=*/true,
6285                                  /*isImplicitlyDeclared=*/true);
6286  Destructor->setAccess(AS_public);
6287  Destructor->setDefaulted();
6288  Destructor->setImplicit();
6289  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6290
6291  // Note that we have declared this destructor.
6292  ++ASTContext::NumImplicitDestructorsDeclared;
6293
6294  // Introduce this destructor into its scope.
6295  if (Scope *S = getScopeForContext(ClassDecl))
6296    PushOnScopeChains(Destructor, S, false);
6297  ClassDecl->addDecl(Destructor);
6298
6299  // This could be uniqued if it ever proves significant.
6300  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6301
6302  if (ShouldDeleteDestructor(Destructor))
6303    Destructor->setDeletedAsWritten();
6304
6305  AddOverriddenMethods(ClassDecl, Destructor);
6306
6307  return Destructor;
6308}
6309
6310void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6311                                    CXXDestructorDecl *Destructor) {
6312  assert((Destructor->isDefaulted() &&
6313          !Destructor->doesThisDeclarationHaveABody()) &&
6314         "DefineImplicitDestructor - call it for implicit default dtor");
6315  CXXRecordDecl *ClassDecl = Destructor->getParent();
6316  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6317
6318  if (Destructor->isInvalidDecl())
6319    return;
6320
6321  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6322
6323  DiagnosticErrorTrap Trap(Diags);
6324  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6325                                         Destructor->getParent());
6326
6327  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6328    Diag(CurrentLocation, diag::note_member_synthesized_at)
6329      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6330
6331    Destructor->setInvalidDecl();
6332    return;
6333  }
6334
6335  SourceLocation Loc = Destructor->getLocation();
6336  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6337
6338  Destructor->setUsed();
6339  MarkVTableUsed(CurrentLocation, ClassDecl);
6340
6341  if (ASTMutationListener *L = getASTMutationListener()) {
6342    L->CompletedImplicitDefinition(Destructor);
6343  }
6344}
6345
6346void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6347                                         CXXDestructorDecl *destructor) {
6348  // C++11 [class.dtor]p3:
6349  //   A declaration of a destructor that does not have an exception-
6350  //   specification is implicitly considered to have the same exception-
6351  //   specification as an implicit declaration.
6352  const FunctionProtoType *dtorType = destructor->getType()->
6353                                        getAs<FunctionProtoType>();
6354  if (dtorType->hasExceptionSpec())
6355    return;
6356
6357  ImplicitExceptionSpecification exceptSpec =
6358      ComputeDefaultedDtorExceptionSpec(classDecl);
6359
6360  // Replace the destructor's type.
6361  FunctionProtoType::ExtProtoInfo epi;
6362  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6363  epi.NumExceptions = exceptSpec.size();
6364  epi.Exceptions = exceptSpec.data();
6365  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6366
6367  destructor->setType(ty);
6368
6369  // FIXME: If the destructor has a body that could throw, and the newly created
6370  // spec doesn't allow exceptions, we should emit a warning, because this
6371  // change in behavior can break conforming C++03 programs at runtime.
6372  // However, we don't have a body yet, so it needs to be done somewhere else.
6373}
6374
6375/// \brief Builds a statement that copies the given entity from \p From to
6376/// \c To.
6377///
6378/// This routine is used to copy the members of a class with an
6379/// implicitly-declared copy assignment operator. When the entities being
6380/// copied are arrays, this routine builds for loops to copy them.
6381///
6382/// \param S The Sema object used for type-checking.
6383///
6384/// \param Loc The location where the implicit copy is being generated.
6385///
6386/// \param T The type of the expressions being copied. Both expressions must
6387/// have this type.
6388///
6389/// \param To The expression we are copying to.
6390///
6391/// \param From The expression we are copying from.
6392///
6393/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6394/// Otherwise, it's a non-static member subobject.
6395///
6396/// \param Depth Internal parameter recording the depth of the recursion.
6397///
6398/// \returns A statement or a loop that copies the expressions.
6399static StmtResult
6400BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6401                      Expr *To, Expr *From,
6402                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6403  // C++0x [class.copy]p30:
6404  //   Each subobject is assigned in the manner appropriate to its type:
6405  //
6406  //     - if the subobject is of class type, the copy assignment operator
6407  //       for the class is used (as if by explicit qualification; that is,
6408  //       ignoring any possible virtual overriding functions in more derived
6409  //       classes);
6410  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6411    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6412
6413    // Look for operator=.
6414    DeclarationName Name
6415      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6416    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6417    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6418
6419    // Filter out any result that isn't a copy-assignment operator.
6420    LookupResult::Filter F = OpLookup.makeFilter();
6421    while (F.hasNext()) {
6422      NamedDecl *D = F.next();
6423      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6424        if (Method->isCopyAssignmentOperator())
6425          continue;
6426
6427      F.erase();
6428    }
6429    F.done();
6430
6431    // Suppress the protected check (C++ [class.protected]) for each of the
6432    // assignment operators we found. This strange dance is required when
6433    // we're assigning via a base classes's copy-assignment operator. To
6434    // ensure that we're getting the right base class subobject (without
6435    // ambiguities), we need to cast "this" to that subobject type; to
6436    // ensure that we don't go through the virtual call mechanism, we need
6437    // to qualify the operator= name with the base class (see below). However,
6438    // this means that if the base class has a protected copy assignment
6439    // operator, the protected member access check will fail. So, we
6440    // rewrite "protected" access to "public" access in this case, since we
6441    // know by construction that we're calling from a derived class.
6442    if (CopyingBaseSubobject) {
6443      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6444           L != LEnd; ++L) {
6445        if (L.getAccess() == AS_protected)
6446          L.setAccess(AS_public);
6447      }
6448    }
6449
6450    // Create the nested-name-specifier that will be used to qualify the
6451    // reference to operator=; this is required to suppress the virtual
6452    // call mechanism.
6453    CXXScopeSpec SS;
6454    SS.MakeTrivial(S.Context,
6455                   NestedNameSpecifier::Create(S.Context, 0, false,
6456                                               T.getTypePtr()),
6457                   Loc);
6458
6459    // Create the reference to operator=.
6460    ExprResult OpEqualRef
6461      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6462                                   /*FirstQualifierInScope=*/0, OpLookup,
6463                                   /*TemplateArgs=*/0,
6464                                   /*SuppressQualifierCheck=*/true);
6465    if (OpEqualRef.isInvalid())
6466      return StmtError();
6467
6468    // Build the call to the assignment operator.
6469
6470    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6471                                                  OpEqualRef.takeAs<Expr>(),
6472                                                  Loc, &From, 1, Loc);
6473    if (Call.isInvalid())
6474      return StmtError();
6475
6476    return S.Owned(Call.takeAs<Stmt>());
6477  }
6478
6479  //     - if the subobject is of scalar type, the built-in assignment
6480  //       operator is used.
6481  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6482  if (!ArrayTy) {
6483    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6484    if (Assignment.isInvalid())
6485      return StmtError();
6486
6487    return S.Owned(Assignment.takeAs<Stmt>());
6488  }
6489
6490  //     - if the subobject is an array, each element is assigned, in the
6491  //       manner appropriate to the element type;
6492
6493  // Construct a loop over the array bounds, e.g.,
6494  //
6495  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6496  //
6497  // that will copy each of the array elements.
6498  QualType SizeType = S.Context.getSizeType();
6499
6500  // Create the iteration variable.
6501  IdentifierInfo *IterationVarName = 0;
6502  {
6503    llvm::SmallString<8> Str;
6504    llvm::raw_svector_ostream OS(Str);
6505    OS << "__i" << Depth;
6506    IterationVarName = &S.Context.Idents.get(OS.str());
6507  }
6508  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6509                                          IterationVarName, SizeType,
6510                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6511                                          SC_None, SC_None);
6512
6513  // Initialize the iteration variable to zero.
6514  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6515  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6516
6517  // Create a reference to the iteration variable; we'll use this several
6518  // times throughout.
6519  Expr *IterationVarRef
6520    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6521  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6522
6523  // Create the DeclStmt that holds the iteration variable.
6524  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6525
6526  // Create the comparison against the array bound.
6527  llvm::APInt Upper
6528    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6529  Expr *Comparison
6530    = new (S.Context) BinaryOperator(IterationVarRef,
6531                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6532                                     BO_NE, S.Context.BoolTy,
6533                                     VK_RValue, OK_Ordinary, Loc);
6534
6535  // Create the pre-increment of the iteration variable.
6536  Expr *Increment
6537    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6538                                    VK_LValue, OK_Ordinary, Loc);
6539
6540  // Subscript the "from" and "to" expressions with the iteration variable.
6541  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6542                                                         IterationVarRef, Loc));
6543  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6544                                                       IterationVarRef, Loc));
6545
6546  // Build the copy for an individual element of the array.
6547  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6548                                          To, From, CopyingBaseSubobject,
6549                                          Depth + 1);
6550  if (Copy.isInvalid())
6551    return StmtError();
6552
6553  // Construct the loop that copies all elements of this array.
6554  return S.ActOnForStmt(Loc, Loc, InitStmt,
6555                        S.MakeFullExpr(Comparison),
6556                        0, S.MakeFullExpr(Increment),
6557                        Loc, Copy.take());
6558}
6559
6560/// \brief Determine whether the given class has a copy assignment operator
6561/// that accepts a const-qualified argument.
6562static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6563  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6564
6565  if (!Class->hasDeclaredCopyAssignment())
6566    S.DeclareImplicitCopyAssignment(Class);
6567
6568  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6569  DeclarationName OpName
6570    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6571
6572  DeclContext::lookup_const_iterator Op, OpEnd;
6573  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6574    // C++ [class.copy]p9:
6575    //   A user-declared copy assignment operator is a non-static non-template
6576    //   member function of class X with exactly one parameter of type X, X&,
6577    //   const X&, volatile X& or const volatile X&.
6578    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6579    if (!Method)
6580      continue;
6581
6582    if (Method->isStatic())
6583      continue;
6584    if (Method->getPrimaryTemplate())
6585      continue;
6586    const FunctionProtoType *FnType =
6587    Method->getType()->getAs<FunctionProtoType>();
6588    assert(FnType && "Overloaded operator has no prototype.");
6589    // Don't assert on this; an invalid decl might have been left in the AST.
6590    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6591      continue;
6592    bool AcceptsConst = true;
6593    QualType ArgType = FnType->getArgType(0);
6594    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6595      ArgType = Ref->getPointeeType();
6596      // Is it a non-const lvalue reference?
6597      if (!ArgType.isConstQualified())
6598        AcceptsConst = false;
6599    }
6600    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6601      continue;
6602
6603    // We have a single argument of type cv X or cv X&, i.e. we've found the
6604    // copy assignment operator. Return whether it accepts const arguments.
6605    return AcceptsConst;
6606  }
6607  assert(Class->isInvalidDecl() &&
6608         "No copy assignment operator declared in valid code.");
6609  return false;
6610}
6611
6612std::pair<Sema::ImplicitExceptionSpecification, bool>
6613Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6614                                                   CXXRecordDecl *ClassDecl) {
6615  // C++ [class.copy]p10:
6616  //   If the class definition does not explicitly declare a copy
6617  //   assignment operator, one is declared implicitly.
6618  //   The implicitly-defined copy assignment operator for a class X
6619  //   will have the form
6620  //
6621  //       X& X::operator=(const X&)
6622  //
6623  //   if
6624  bool HasConstCopyAssignment = true;
6625
6626  //       -- each direct base class B of X has a copy assignment operator
6627  //          whose parameter is of type const B&, const volatile B& or B,
6628  //          and
6629  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6630                                       BaseEnd = ClassDecl->bases_end();
6631       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6632    assert(!Base->getType()->isDependentType() &&
6633           "Cannot generate implicit members for class with dependent bases.");
6634    const CXXRecordDecl *BaseClassDecl
6635      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6636    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6637  }
6638
6639  //       -- for all the nonstatic data members of X that are of a class
6640  //          type M (or array thereof), each such class type has a copy
6641  //          assignment operator whose parameter is of type const M&,
6642  //          const volatile M& or M.
6643  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6644                                  FieldEnd = ClassDecl->field_end();
6645       HasConstCopyAssignment && Field != FieldEnd;
6646       ++Field) {
6647    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6648    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6649      const CXXRecordDecl *FieldClassDecl
6650        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6651      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6652    }
6653  }
6654
6655  //   Otherwise, the implicitly declared copy assignment operator will
6656  //   have the form
6657  //
6658  //       X& X::operator=(X&)
6659
6660  // C++ [except.spec]p14:
6661  //   An implicitly declared special member function (Clause 12) shall have an
6662  //   exception-specification. [...]
6663  ImplicitExceptionSpecification ExceptSpec(Context);
6664  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6665                                       BaseEnd = ClassDecl->bases_end();
6666       Base != BaseEnd; ++Base) {
6667    CXXRecordDecl *BaseClassDecl
6668      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6669
6670    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6671      DeclareImplicitCopyAssignment(BaseClassDecl);
6672
6673    if (CXXMethodDecl *CopyAssign
6674           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6675      ExceptSpec.CalledDecl(CopyAssign);
6676  }
6677  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6678                                  FieldEnd = ClassDecl->field_end();
6679       Field != FieldEnd;
6680       ++Field) {
6681    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6682    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6683      CXXRecordDecl *FieldClassDecl
6684        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6685
6686      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6687        DeclareImplicitCopyAssignment(FieldClassDecl);
6688
6689      if (CXXMethodDecl *CopyAssign
6690            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6691        ExceptSpec.CalledDecl(CopyAssign);
6692    }
6693  }
6694
6695  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6696}
6697
6698CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6699  // Note: The following rules are largely analoguous to the copy
6700  // constructor rules. Note that virtual bases are not taken into account
6701  // for determining the argument type of the operator. Note also that
6702  // operators taking an object instead of a reference are allowed.
6703
6704  ImplicitExceptionSpecification Spec(Context);
6705  bool Const;
6706  llvm::tie(Spec, Const) =
6707    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6708
6709  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6710  QualType RetType = Context.getLValueReferenceType(ArgType);
6711  if (Const)
6712    ArgType = ArgType.withConst();
6713  ArgType = Context.getLValueReferenceType(ArgType);
6714
6715  //   An implicitly-declared copy assignment operator is an inline public
6716  //   member of its class.
6717  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6718  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6719  SourceLocation ClassLoc = ClassDecl->getLocation();
6720  DeclarationNameInfo NameInfo(Name, ClassLoc);
6721  CXXMethodDecl *CopyAssignment
6722    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6723                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6724                            /*TInfo=*/0, /*isStatic=*/false,
6725                            /*StorageClassAsWritten=*/SC_None,
6726                            /*isInline=*/true,
6727                            SourceLocation());
6728  CopyAssignment->setAccess(AS_public);
6729  CopyAssignment->setDefaulted();
6730  CopyAssignment->setImplicit();
6731  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6732
6733  // Add the parameter to the operator.
6734  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6735                                               ClassLoc, ClassLoc, /*Id=*/0,
6736                                               ArgType, /*TInfo=*/0,
6737                                               SC_None,
6738                                               SC_None, 0);
6739  CopyAssignment->setParams(&FromParam, 1);
6740
6741  // Note that we have added this copy-assignment operator.
6742  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6743
6744  if (Scope *S = getScopeForContext(ClassDecl))
6745    PushOnScopeChains(CopyAssignment, S, false);
6746  ClassDecl->addDecl(CopyAssignment);
6747
6748  if (ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6749    CopyAssignment->setDeletedAsWritten();
6750
6751  AddOverriddenMethods(ClassDecl, CopyAssignment);
6752  return CopyAssignment;
6753}
6754
6755void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6756                                        CXXMethodDecl *CopyAssignOperator) {
6757  assert((CopyAssignOperator->isDefaulted() &&
6758          CopyAssignOperator->isOverloadedOperator() &&
6759          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6760          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6761         "DefineImplicitCopyAssignment called for wrong function");
6762
6763  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6764
6765  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6766    CopyAssignOperator->setInvalidDecl();
6767    return;
6768  }
6769
6770  CopyAssignOperator->setUsed();
6771
6772  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6773  DiagnosticErrorTrap Trap(Diags);
6774
6775  // C++0x [class.copy]p30:
6776  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6777  //   for a non-union class X performs memberwise copy assignment of its
6778  //   subobjects. The direct base classes of X are assigned first, in the
6779  //   order of their declaration in the base-specifier-list, and then the
6780  //   immediate non-static data members of X are assigned, in the order in
6781  //   which they were declared in the class definition.
6782
6783  // The statements that form the synthesized function body.
6784  ASTOwningVector<Stmt*> Statements(*this);
6785
6786  // The parameter for the "other" object, which we are copying from.
6787  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6788  Qualifiers OtherQuals = Other->getType().getQualifiers();
6789  QualType OtherRefType = Other->getType();
6790  if (const LValueReferenceType *OtherRef
6791                                = OtherRefType->getAs<LValueReferenceType>()) {
6792    OtherRefType = OtherRef->getPointeeType();
6793    OtherQuals = OtherRefType.getQualifiers();
6794  }
6795
6796  // Our location for everything implicitly-generated.
6797  SourceLocation Loc = CopyAssignOperator->getLocation();
6798
6799  // Construct a reference to the "other" object. We'll be using this
6800  // throughout the generated ASTs.
6801  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6802  assert(OtherRef && "Reference to parameter cannot fail!");
6803
6804  // Construct the "this" pointer. We'll be using this throughout the generated
6805  // ASTs.
6806  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6807  assert(This && "Reference to this cannot fail!");
6808
6809  // Assign base classes.
6810  bool Invalid = false;
6811  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6812       E = ClassDecl->bases_end(); Base != E; ++Base) {
6813    // Form the assignment:
6814    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6815    QualType BaseType = Base->getType().getUnqualifiedType();
6816    if (!BaseType->isRecordType()) {
6817      Invalid = true;
6818      continue;
6819    }
6820
6821    CXXCastPath BasePath;
6822    BasePath.push_back(Base);
6823
6824    // Construct the "from" expression, which is an implicit cast to the
6825    // appropriately-qualified base type.
6826    Expr *From = OtherRef;
6827    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6828                             CK_UncheckedDerivedToBase,
6829                             VK_LValue, &BasePath).take();
6830
6831    // Dereference "this".
6832    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6833
6834    // Implicitly cast "this" to the appropriately-qualified base type.
6835    To = ImpCastExprToType(To.take(),
6836                           Context.getCVRQualifiedType(BaseType,
6837                                     CopyAssignOperator->getTypeQualifiers()),
6838                           CK_UncheckedDerivedToBase,
6839                           VK_LValue, &BasePath);
6840
6841    // Build the copy.
6842    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6843                                            To.get(), From,
6844                                            /*CopyingBaseSubobject=*/true);
6845    if (Copy.isInvalid()) {
6846      Diag(CurrentLocation, diag::note_member_synthesized_at)
6847        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6848      CopyAssignOperator->setInvalidDecl();
6849      return;
6850    }
6851
6852    // Success! Record the copy.
6853    Statements.push_back(Copy.takeAs<Expr>());
6854  }
6855
6856  // \brief Reference to the __builtin_memcpy function.
6857  Expr *BuiltinMemCpyRef = 0;
6858  // \brief Reference to the __builtin_objc_memmove_collectable function.
6859  Expr *CollectableMemCpyRef = 0;
6860
6861  // Assign non-static members.
6862  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6863                                  FieldEnd = ClassDecl->field_end();
6864       Field != FieldEnd; ++Field) {
6865    // Check for members of reference type; we can't copy those.
6866    if (Field->getType()->isReferenceType()) {
6867      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6868        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6869      Diag(Field->getLocation(), diag::note_declared_at);
6870      Diag(CurrentLocation, diag::note_member_synthesized_at)
6871        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6872      Invalid = true;
6873      continue;
6874    }
6875
6876    // Check for members of const-qualified, non-class type.
6877    QualType BaseType = Context.getBaseElementType(Field->getType());
6878    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6879      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6880        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6881      Diag(Field->getLocation(), diag::note_declared_at);
6882      Diag(CurrentLocation, diag::note_member_synthesized_at)
6883        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6884      Invalid = true;
6885      continue;
6886    }
6887
6888    QualType FieldType = Field->getType().getNonReferenceType();
6889    if (FieldType->isIncompleteArrayType()) {
6890      assert(ClassDecl->hasFlexibleArrayMember() &&
6891             "Incomplete array type is not valid");
6892      continue;
6893    }
6894
6895    // Build references to the field in the object we're copying from and to.
6896    CXXScopeSpec SS; // Intentionally empty
6897    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6898                              LookupMemberName);
6899    MemberLookup.addDecl(*Field);
6900    MemberLookup.resolveKind();
6901    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6902                                               Loc, /*IsArrow=*/false,
6903                                               SS, 0, MemberLookup, 0);
6904    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6905                                             Loc, /*IsArrow=*/true,
6906                                             SS, 0, MemberLookup, 0);
6907    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6908    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6909
6910    // If the field should be copied with __builtin_memcpy rather than via
6911    // explicit assignments, do so. This optimization only applies for arrays
6912    // of scalars and arrays of class type with trivial copy-assignment
6913    // operators.
6914    if (FieldType->isArrayType() &&
6915        (!BaseType->isRecordType() ||
6916         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
6917           ->hasTrivialCopyAssignment())) {
6918      // Compute the size of the memory buffer to be copied.
6919      QualType SizeType = Context.getSizeType();
6920      llvm::APInt Size(Context.getTypeSize(SizeType),
6921                       Context.getTypeSizeInChars(BaseType).getQuantity());
6922      for (const ConstantArrayType *Array
6923              = Context.getAsConstantArrayType(FieldType);
6924           Array;
6925           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6926        llvm::APInt ArraySize
6927          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6928        Size *= ArraySize;
6929      }
6930
6931      // Take the address of the field references for "from" and "to".
6932      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6933      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6934
6935      bool NeedsCollectableMemCpy =
6936          (BaseType->isRecordType() &&
6937           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6938
6939      if (NeedsCollectableMemCpy) {
6940        if (!CollectableMemCpyRef) {
6941          // Create a reference to the __builtin_objc_memmove_collectable function.
6942          LookupResult R(*this,
6943                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6944                         Loc, LookupOrdinaryName);
6945          LookupName(R, TUScope, true);
6946
6947          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6948          if (!CollectableMemCpy) {
6949            // Something went horribly wrong earlier, and we will have
6950            // complained about it.
6951            Invalid = true;
6952            continue;
6953          }
6954
6955          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6956                                                  CollectableMemCpy->getType(),
6957                                                  VK_LValue, Loc, 0).take();
6958          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6959        }
6960      }
6961      // Create a reference to the __builtin_memcpy builtin function.
6962      else if (!BuiltinMemCpyRef) {
6963        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6964                       LookupOrdinaryName);
6965        LookupName(R, TUScope, true);
6966
6967        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6968        if (!BuiltinMemCpy) {
6969          // Something went horribly wrong earlier, and we will have complained
6970          // about it.
6971          Invalid = true;
6972          continue;
6973        }
6974
6975        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6976                                            BuiltinMemCpy->getType(),
6977                                            VK_LValue, Loc, 0).take();
6978        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6979      }
6980
6981      ASTOwningVector<Expr*> CallArgs(*this);
6982      CallArgs.push_back(To.takeAs<Expr>());
6983      CallArgs.push_back(From.takeAs<Expr>());
6984      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
6985      ExprResult Call = ExprError();
6986      if (NeedsCollectableMemCpy)
6987        Call = ActOnCallExpr(/*Scope=*/0,
6988                             CollectableMemCpyRef,
6989                             Loc, move_arg(CallArgs),
6990                             Loc);
6991      else
6992        Call = ActOnCallExpr(/*Scope=*/0,
6993                             BuiltinMemCpyRef,
6994                             Loc, move_arg(CallArgs),
6995                             Loc);
6996
6997      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
6998      Statements.push_back(Call.takeAs<Expr>());
6999      continue;
7000    }
7001
7002    // Build the copy of this field.
7003    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7004                                                  To.get(), From.get(),
7005                                              /*CopyingBaseSubobject=*/false);
7006    if (Copy.isInvalid()) {
7007      Diag(CurrentLocation, diag::note_member_synthesized_at)
7008        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7009      CopyAssignOperator->setInvalidDecl();
7010      return;
7011    }
7012
7013    // Success! Record the copy.
7014    Statements.push_back(Copy.takeAs<Stmt>());
7015  }
7016
7017  if (!Invalid) {
7018    // Add a "return *this;"
7019    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7020
7021    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7022    if (Return.isInvalid())
7023      Invalid = true;
7024    else {
7025      Statements.push_back(Return.takeAs<Stmt>());
7026
7027      if (Trap.hasErrorOccurred()) {
7028        Diag(CurrentLocation, diag::note_member_synthesized_at)
7029          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7030        Invalid = true;
7031      }
7032    }
7033  }
7034
7035  if (Invalid) {
7036    CopyAssignOperator->setInvalidDecl();
7037    return;
7038  }
7039
7040  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7041                                            /*isStmtExpr=*/false);
7042  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7043  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7044
7045  if (ASTMutationListener *L = getASTMutationListener()) {
7046    L->CompletedImplicitDefinition(CopyAssignOperator);
7047  }
7048}
7049
7050std::pair<Sema::ImplicitExceptionSpecification, bool>
7051Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7052  // C++ [class.copy]p5:
7053  //   The implicitly-declared copy constructor for a class X will
7054  //   have the form
7055  //
7056  //       X::X(const X&)
7057  //
7058  //   if
7059  bool HasConstCopyConstructor = true;
7060
7061  //     -- each direct or virtual base class B of X has a copy
7062  //        constructor whose first parameter is of type const B& or
7063  //        const volatile B&, and
7064  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7065                                       BaseEnd = ClassDecl->bases_end();
7066       HasConstCopyConstructor && Base != BaseEnd;
7067       ++Base) {
7068    // Virtual bases are handled below.
7069    if (Base->isVirtual())
7070      continue;
7071
7072    CXXRecordDecl *BaseClassDecl
7073      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7074    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7075      DeclareImplicitCopyConstructor(BaseClassDecl);
7076
7077    HasConstCopyConstructor = BaseClassDecl->hasConstCopyConstructor();
7078  }
7079
7080  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7081                                       BaseEnd = ClassDecl->vbases_end();
7082       HasConstCopyConstructor && Base != BaseEnd;
7083       ++Base) {
7084    CXXRecordDecl *BaseClassDecl
7085      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7086    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7087      DeclareImplicitCopyConstructor(BaseClassDecl);
7088
7089    HasConstCopyConstructor= BaseClassDecl->hasConstCopyConstructor();
7090  }
7091
7092  //     -- for all the nonstatic data members of X that are of a
7093  //        class type M (or array thereof), each such class type
7094  //        has a copy constructor whose first parameter is of type
7095  //        const M& or const volatile M&.
7096  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7097                                  FieldEnd = ClassDecl->field_end();
7098       HasConstCopyConstructor && Field != FieldEnd;
7099       ++Field) {
7100    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7101    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7102      CXXRecordDecl *FieldClassDecl
7103        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7104      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7105        DeclareImplicitCopyConstructor(FieldClassDecl);
7106
7107      HasConstCopyConstructor = FieldClassDecl->hasConstCopyConstructor();
7108    }
7109  }
7110  //   Otherwise, the implicitly declared copy constructor will have
7111  //   the form
7112  //
7113  //       X::X(X&)
7114
7115  // C++ [except.spec]p14:
7116  //   An implicitly declared special member function (Clause 12) shall have an
7117  //   exception-specification. [...]
7118  ImplicitExceptionSpecification ExceptSpec(Context);
7119  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7120  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7121                                       BaseEnd = ClassDecl->bases_end();
7122       Base != BaseEnd;
7123       ++Base) {
7124    // Virtual bases are handled below.
7125    if (Base->isVirtual())
7126      continue;
7127
7128    CXXRecordDecl *BaseClassDecl
7129      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7130    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7131      DeclareImplicitCopyConstructor(BaseClassDecl);
7132
7133    if (CXXConstructorDecl *CopyConstructor
7134                          = BaseClassDecl->getCopyConstructor(Quals))
7135      ExceptSpec.CalledDecl(CopyConstructor);
7136  }
7137  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7138                                       BaseEnd = ClassDecl->vbases_end();
7139       Base != BaseEnd;
7140       ++Base) {
7141    CXXRecordDecl *BaseClassDecl
7142      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7143    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7144      DeclareImplicitCopyConstructor(BaseClassDecl);
7145
7146    if (CXXConstructorDecl *CopyConstructor
7147                          = BaseClassDecl->getCopyConstructor(Quals))
7148      ExceptSpec.CalledDecl(CopyConstructor);
7149  }
7150  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7151                                  FieldEnd = ClassDecl->field_end();
7152       Field != FieldEnd;
7153       ++Field) {
7154    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7155    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7156      CXXRecordDecl *FieldClassDecl
7157        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7158      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7159        DeclareImplicitCopyConstructor(FieldClassDecl);
7160
7161      if (CXXConstructorDecl *CopyConstructor
7162                          = FieldClassDecl->getCopyConstructor(Quals))
7163        ExceptSpec.CalledDecl(CopyConstructor);
7164    }
7165  }
7166
7167  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7168}
7169
7170CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7171                                                    CXXRecordDecl *ClassDecl) {
7172  // C++ [class.copy]p4:
7173  //   If the class definition does not explicitly declare a copy
7174  //   constructor, one is declared implicitly.
7175
7176  ImplicitExceptionSpecification Spec(Context);
7177  bool Const;
7178  llvm::tie(Spec, Const) =
7179    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7180
7181  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7182  QualType ArgType = ClassType;
7183  if (Const)
7184    ArgType = ArgType.withConst();
7185  ArgType = Context.getLValueReferenceType(ArgType);
7186
7187  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7188
7189  DeclarationName Name
7190    = Context.DeclarationNames.getCXXConstructorName(
7191                                           Context.getCanonicalType(ClassType));
7192  SourceLocation ClassLoc = ClassDecl->getLocation();
7193  DeclarationNameInfo NameInfo(Name, ClassLoc);
7194
7195  //   An implicitly-declared copy constructor is an inline public
7196  //   member of its class.
7197  CXXConstructorDecl *CopyConstructor
7198    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7199                                 Context.getFunctionType(Context.VoidTy,
7200                                                         &ArgType, 1, EPI),
7201                                 /*TInfo=*/0,
7202                                 /*isExplicit=*/false,
7203                                 /*isInline=*/true,
7204                                 /*isImplicitlyDeclared=*/true);
7205  CopyConstructor->setAccess(AS_public);
7206  CopyConstructor->setDefaulted();
7207  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7208
7209  // Note that we have declared this constructor.
7210  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7211
7212  // Add the parameter to the constructor.
7213  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7214                                               ClassLoc, ClassLoc,
7215                                               /*IdentifierInfo=*/0,
7216                                               ArgType, /*TInfo=*/0,
7217                                               SC_None,
7218                                               SC_None, 0);
7219  CopyConstructor->setParams(&FromParam, 1);
7220
7221  if (Scope *S = getScopeForContext(ClassDecl))
7222    PushOnScopeChains(CopyConstructor, S, false);
7223  ClassDecl->addDecl(CopyConstructor);
7224
7225  if (ShouldDeleteCopyConstructor(CopyConstructor))
7226    CopyConstructor->setDeletedAsWritten();
7227
7228  return CopyConstructor;
7229}
7230
7231void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7232                                   CXXConstructorDecl *CopyConstructor) {
7233  assert((CopyConstructor->isDefaulted() &&
7234          CopyConstructor->isCopyConstructor() &&
7235          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7236         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7237
7238  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7239  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7240
7241  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7242  DiagnosticErrorTrap Trap(Diags);
7243
7244  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7245      Trap.hasErrorOccurred()) {
7246    Diag(CurrentLocation, diag::note_member_synthesized_at)
7247      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7248    CopyConstructor->setInvalidDecl();
7249  }  else {
7250    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7251                                               CopyConstructor->getLocation(),
7252                                               MultiStmtArg(*this, 0, 0),
7253                                               /*isStmtExpr=*/false)
7254                                                              .takeAs<Stmt>());
7255  }
7256
7257  CopyConstructor->setUsed();
7258
7259  if (ASTMutationListener *L = getASTMutationListener()) {
7260    L->CompletedImplicitDefinition(CopyConstructor);
7261  }
7262}
7263
7264ExprResult
7265Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7266                            CXXConstructorDecl *Constructor,
7267                            MultiExprArg ExprArgs,
7268                            bool RequiresZeroInit,
7269                            unsigned ConstructKind,
7270                            SourceRange ParenRange) {
7271  bool Elidable = false;
7272
7273  // C++0x [class.copy]p34:
7274  //   When certain criteria are met, an implementation is allowed to
7275  //   omit the copy/move construction of a class object, even if the
7276  //   copy/move constructor and/or destructor for the object have
7277  //   side effects. [...]
7278  //     - when a temporary class object that has not been bound to a
7279  //       reference (12.2) would be copied/moved to a class object
7280  //       with the same cv-unqualified type, the copy/move operation
7281  //       can be omitted by constructing the temporary object
7282  //       directly into the target of the omitted copy/move
7283  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7284      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7285    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7286    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7287  }
7288
7289  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7290                               Elidable, move(ExprArgs), RequiresZeroInit,
7291                               ConstructKind, ParenRange);
7292}
7293
7294/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7295/// including handling of its default argument expressions.
7296ExprResult
7297Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7298                            CXXConstructorDecl *Constructor, bool Elidable,
7299                            MultiExprArg ExprArgs,
7300                            bool RequiresZeroInit,
7301                            unsigned ConstructKind,
7302                            SourceRange ParenRange) {
7303  unsigned NumExprs = ExprArgs.size();
7304  Expr **Exprs = (Expr **)ExprArgs.release();
7305
7306  for (specific_attr_iterator<NonNullAttr>
7307           i = Constructor->specific_attr_begin<NonNullAttr>(),
7308           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7309    const NonNullAttr *NonNull = *i;
7310    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7311  }
7312
7313  MarkDeclarationReferenced(ConstructLoc, Constructor);
7314  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7315                                        Constructor, Elidable, Exprs, NumExprs,
7316                                        RequiresZeroInit,
7317              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7318                                        ParenRange));
7319}
7320
7321bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7322                                        CXXConstructorDecl *Constructor,
7323                                        MultiExprArg Exprs) {
7324  // FIXME: Provide the correct paren SourceRange when available.
7325  ExprResult TempResult =
7326    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7327                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7328                          SourceRange());
7329  if (TempResult.isInvalid())
7330    return true;
7331
7332  Expr *Temp = TempResult.takeAs<Expr>();
7333  CheckImplicitConversions(Temp, VD->getLocation());
7334  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7335  Temp = MaybeCreateExprWithCleanups(Temp);
7336  VD->setInit(Temp);
7337
7338  return false;
7339}
7340
7341void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7342  if (VD->isInvalidDecl()) return;
7343
7344  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7345  if (ClassDecl->isInvalidDecl()) return;
7346  if (ClassDecl->hasTrivialDestructor()) return;
7347  if (ClassDecl->isDependentContext()) return;
7348
7349  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7350  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7351  CheckDestructorAccess(VD->getLocation(), Destructor,
7352                        PDiag(diag::err_access_dtor_var)
7353                        << VD->getDeclName()
7354                        << VD->getType());
7355
7356  if (!VD->hasGlobalStorage()) return;
7357
7358  // Emit warning for non-trivial dtor in global scope (a real global,
7359  // class-static, function-static).
7360  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7361
7362  // TODO: this should be re-enabled for static locals by !CXAAtExit
7363  if (!VD->isStaticLocal())
7364    Diag(VD->getLocation(), diag::warn_global_destructor);
7365}
7366
7367/// AddCXXDirectInitializerToDecl - This action is called immediately after
7368/// ActOnDeclarator, when a C++ direct initializer is present.
7369/// e.g: "int x(1);"
7370void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7371                                         SourceLocation LParenLoc,
7372                                         MultiExprArg Exprs,
7373                                         SourceLocation RParenLoc,
7374                                         bool TypeMayContainAuto) {
7375  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7376
7377  // If there is no declaration, there was an error parsing it.  Just ignore
7378  // the initializer.
7379  if (RealDecl == 0)
7380    return;
7381
7382  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7383  if (!VDecl) {
7384    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7385    RealDecl->setInvalidDecl();
7386    return;
7387  }
7388
7389  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7390  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7391    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7392    if (Exprs.size() > 1) {
7393      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7394           diag::err_auto_var_init_multiple_expressions)
7395        << VDecl->getDeclName() << VDecl->getType()
7396        << VDecl->getSourceRange();
7397      RealDecl->setInvalidDecl();
7398      return;
7399    }
7400
7401    Expr *Init = Exprs.get()[0];
7402    TypeSourceInfo *DeducedType = 0;
7403    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7404      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7405        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7406        << Init->getSourceRange();
7407    if (!DeducedType) {
7408      RealDecl->setInvalidDecl();
7409      return;
7410    }
7411    VDecl->setTypeSourceInfo(DeducedType);
7412    VDecl->setType(DeducedType->getType());
7413
7414    // If this is a redeclaration, check that the type we just deduced matches
7415    // the previously declared type.
7416    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7417      MergeVarDeclTypes(VDecl, Old);
7418  }
7419
7420  // We will represent direct-initialization similarly to copy-initialization:
7421  //    int x(1);  -as-> int x = 1;
7422  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7423  //
7424  // Clients that want to distinguish between the two forms, can check for
7425  // direct initializer using VarDecl::hasCXXDirectInitializer().
7426  // A major benefit is that clients that don't particularly care about which
7427  // exactly form was it (like the CodeGen) can handle both cases without
7428  // special case code.
7429
7430  // C++ 8.5p11:
7431  // The form of initialization (using parentheses or '=') is generally
7432  // insignificant, but does matter when the entity being initialized has a
7433  // class type.
7434
7435  if (!VDecl->getType()->isDependentType() &&
7436      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7437                          diag::err_typecheck_decl_incomplete_type)) {
7438    VDecl->setInvalidDecl();
7439    return;
7440  }
7441
7442  // The variable can not have an abstract class type.
7443  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7444                             diag::err_abstract_type_in_decl,
7445                             AbstractVariableType))
7446    VDecl->setInvalidDecl();
7447
7448  const VarDecl *Def;
7449  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7450    Diag(VDecl->getLocation(), diag::err_redefinition)
7451    << VDecl->getDeclName();
7452    Diag(Def->getLocation(), diag::note_previous_definition);
7453    VDecl->setInvalidDecl();
7454    return;
7455  }
7456
7457  // C++ [class.static.data]p4
7458  //   If a static data member is of const integral or const
7459  //   enumeration type, its declaration in the class definition can
7460  //   specify a constant-initializer which shall be an integral
7461  //   constant expression (5.19). In that case, the member can appear
7462  //   in integral constant expressions. The member shall still be
7463  //   defined in a namespace scope if it is used in the program and the
7464  //   namespace scope definition shall not contain an initializer.
7465  //
7466  // We already performed a redefinition check above, but for static
7467  // data members we also need to check whether there was an in-class
7468  // declaration with an initializer.
7469  const VarDecl* PrevInit = 0;
7470  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7471    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7472    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7473    return;
7474  }
7475
7476  bool IsDependent = false;
7477  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7478    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7479      VDecl->setInvalidDecl();
7480      return;
7481    }
7482
7483    if (Exprs.get()[I]->isTypeDependent())
7484      IsDependent = true;
7485  }
7486
7487  // If either the declaration has a dependent type or if any of the
7488  // expressions is type-dependent, we represent the initialization
7489  // via a ParenListExpr for later use during template instantiation.
7490  if (VDecl->getType()->isDependentType() || IsDependent) {
7491    // Let clients know that initialization was done with a direct initializer.
7492    VDecl->setCXXDirectInitializer(true);
7493
7494    // Store the initialization expressions as a ParenListExpr.
7495    unsigned NumExprs = Exprs.size();
7496    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7497                                               (Expr **)Exprs.release(),
7498                                               NumExprs, RParenLoc));
7499    return;
7500  }
7501
7502  // Capture the variable that is being initialized and the style of
7503  // initialization.
7504  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7505
7506  // FIXME: Poor source location information.
7507  InitializationKind Kind
7508    = InitializationKind::CreateDirect(VDecl->getLocation(),
7509                                       LParenLoc, RParenLoc);
7510
7511  InitializationSequence InitSeq(*this, Entity, Kind,
7512                                 Exprs.get(), Exprs.size());
7513  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7514  if (Result.isInvalid()) {
7515    VDecl->setInvalidDecl();
7516    return;
7517  }
7518
7519  CheckImplicitConversions(Result.get(), LParenLoc);
7520
7521  Result = MaybeCreateExprWithCleanups(Result);
7522  VDecl->setInit(Result.takeAs<Expr>());
7523  VDecl->setCXXDirectInitializer(true);
7524
7525  CheckCompleteVariableDeclaration(VDecl);
7526}
7527
7528/// \brief Given a constructor and the set of arguments provided for the
7529/// constructor, convert the arguments and add any required default arguments
7530/// to form a proper call to this constructor.
7531///
7532/// \returns true if an error occurred, false otherwise.
7533bool
7534Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7535                              MultiExprArg ArgsPtr,
7536                              SourceLocation Loc,
7537                              ASTOwningVector<Expr*> &ConvertedArgs) {
7538  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7539  unsigned NumArgs = ArgsPtr.size();
7540  Expr **Args = (Expr **)ArgsPtr.get();
7541
7542  const FunctionProtoType *Proto
7543    = Constructor->getType()->getAs<FunctionProtoType>();
7544  assert(Proto && "Constructor without a prototype?");
7545  unsigned NumArgsInProto = Proto->getNumArgs();
7546
7547  // If too few arguments are available, we'll fill in the rest with defaults.
7548  if (NumArgs < NumArgsInProto)
7549    ConvertedArgs.reserve(NumArgsInProto);
7550  else
7551    ConvertedArgs.reserve(NumArgs);
7552
7553  VariadicCallType CallType =
7554    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7555  llvm::SmallVector<Expr *, 8> AllArgs;
7556  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7557                                        Proto, 0, Args, NumArgs, AllArgs,
7558                                        CallType);
7559  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7560    ConvertedArgs.push_back(AllArgs[i]);
7561  return Invalid;
7562}
7563
7564static inline bool
7565CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7566                                       const FunctionDecl *FnDecl) {
7567  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7568  if (isa<NamespaceDecl>(DC)) {
7569    return SemaRef.Diag(FnDecl->getLocation(),
7570                        diag::err_operator_new_delete_declared_in_namespace)
7571      << FnDecl->getDeclName();
7572  }
7573
7574  if (isa<TranslationUnitDecl>(DC) &&
7575      FnDecl->getStorageClass() == SC_Static) {
7576    return SemaRef.Diag(FnDecl->getLocation(),
7577                        diag::err_operator_new_delete_declared_static)
7578      << FnDecl->getDeclName();
7579  }
7580
7581  return false;
7582}
7583
7584static inline bool
7585CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7586                            CanQualType ExpectedResultType,
7587                            CanQualType ExpectedFirstParamType,
7588                            unsigned DependentParamTypeDiag,
7589                            unsigned InvalidParamTypeDiag) {
7590  QualType ResultType =
7591    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7592
7593  // Check that the result type is not dependent.
7594  if (ResultType->isDependentType())
7595    return SemaRef.Diag(FnDecl->getLocation(),
7596                        diag::err_operator_new_delete_dependent_result_type)
7597    << FnDecl->getDeclName() << ExpectedResultType;
7598
7599  // Check that the result type is what we expect.
7600  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7601    return SemaRef.Diag(FnDecl->getLocation(),
7602                        diag::err_operator_new_delete_invalid_result_type)
7603    << FnDecl->getDeclName() << ExpectedResultType;
7604
7605  // A function template must have at least 2 parameters.
7606  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7607    return SemaRef.Diag(FnDecl->getLocation(),
7608                      diag::err_operator_new_delete_template_too_few_parameters)
7609        << FnDecl->getDeclName();
7610
7611  // The function decl must have at least 1 parameter.
7612  if (FnDecl->getNumParams() == 0)
7613    return SemaRef.Diag(FnDecl->getLocation(),
7614                        diag::err_operator_new_delete_too_few_parameters)
7615      << FnDecl->getDeclName();
7616
7617  // Check the the first parameter type is not dependent.
7618  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7619  if (FirstParamType->isDependentType())
7620    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7621      << FnDecl->getDeclName() << ExpectedFirstParamType;
7622
7623  // Check that the first parameter type is what we expect.
7624  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7625      ExpectedFirstParamType)
7626    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7627    << FnDecl->getDeclName() << ExpectedFirstParamType;
7628
7629  return false;
7630}
7631
7632static bool
7633CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7634  // C++ [basic.stc.dynamic.allocation]p1:
7635  //   A program is ill-formed if an allocation function is declared in a
7636  //   namespace scope other than global scope or declared static in global
7637  //   scope.
7638  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7639    return true;
7640
7641  CanQualType SizeTy =
7642    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7643
7644  // C++ [basic.stc.dynamic.allocation]p1:
7645  //  The return type shall be void*. The first parameter shall have type
7646  //  std::size_t.
7647  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7648                                  SizeTy,
7649                                  diag::err_operator_new_dependent_param_type,
7650                                  diag::err_operator_new_param_type))
7651    return true;
7652
7653  // C++ [basic.stc.dynamic.allocation]p1:
7654  //  The first parameter shall not have an associated default argument.
7655  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7656    return SemaRef.Diag(FnDecl->getLocation(),
7657                        diag::err_operator_new_default_arg)
7658      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7659
7660  return false;
7661}
7662
7663static bool
7664CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7665  // C++ [basic.stc.dynamic.deallocation]p1:
7666  //   A program is ill-formed if deallocation functions are declared in a
7667  //   namespace scope other than global scope or declared static in global
7668  //   scope.
7669  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7670    return true;
7671
7672  // C++ [basic.stc.dynamic.deallocation]p2:
7673  //   Each deallocation function shall return void and its first parameter
7674  //   shall be void*.
7675  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7676                                  SemaRef.Context.VoidPtrTy,
7677                                 diag::err_operator_delete_dependent_param_type,
7678                                 diag::err_operator_delete_param_type))
7679    return true;
7680
7681  return false;
7682}
7683
7684/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7685/// of this overloaded operator is well-formed. If so, returns false;
7686/// otherwise, emits appropriate diagnostics and returns true.
7687bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7688  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7689         "Expected an overloaded operator declaration");
7690
7691  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7692
7693  // C++ [over.oper]p5:
7694  //   The allocation and deallocation functions, operator new,
7695  //   operator new[], operator delete and operator delete[], are
7696  //   described completely in 3.7.3. The attributes and restrictions
7697  //   found in the rest of this subclause do not apply to them unless
7698  //   explicitly stated in 3.7.3.
7699  if (Op == OO_Delete || Op == OO_Array_Delete)
7700    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7701
7702  if (Op == OO_New || Op == OO_Array_New)
7703    return CheckOperatorNewDeclaration(*this, FnDecl);
7704
7705  // C++ [over.oper]p6:
7706  //   An operator function shall either be a non-static member
7707  //   function or be a non-member function and have at least one
7708  //   parameter whose type is a class, a reference to a class, an
7709  //   enumeration, or a reference to an enumeration.
7710  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7711    if (MethodDecl->isStatic())
7712      return Diag(FnDecl->getLocation(),
7713                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7714  } else {
7715    bool ClassOrEnumParam = false;
7716    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7717                                   ParamEnd = FnDecl->param_end();
7718         Param != ParamEnd; ++Param) {
7719      QualType ParamType = (*Param)->getType().getNonReferenceType();
7720      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7721          ParamType->isEnumeralType()) {
7722        ClassOrEnumParam = true;
7723        break;
7724      }
7725    }
7726
7727    if (!ClassOrEnumParam)
7728      return Diag(FnDecl->getLocation(),
7729                  diag::err_operator_overload_needs_class_or_enum)
7730        << FnDecl->getDeclName();
7731  }
7732
7733  // C++ [over.oper]p8:
7734  //   An operator function cannot have default arguments (8.3.6),
7735  //   except where explicitly stated below.
7736  //
7737  // Only the function-call operator allows default arguments
7738  // (C++ [over.call]p1).
7739  if (Op != OO_Call) {
7740    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7741         Param != FnDecl->param_end(); ++Param) {
7742      if ((*Param)->hasDefaultArg())
7743        return Diag((*Param)->getLocation(),
7744                    diag::err_operator_overload_default_arg)
7745          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7746    }
7747  }
7748
7749  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7750    { false, false, false }
7751#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7752    , { Unary, Binary, MemberOnly }
7753#include "clang/Basic/OperatorKinds.def"
7754  };
7755
7756  bool CanBeUnaryOperator = OperatorUses[Op][0];
7757  bool CanBeBinaryOperator = OperatorUses[Op][1];
7758  bool MustBeMemberOperator = OperatorUses[Op][2];
7759
7760  // C++ [over.oper]p8:
7761  //   [...] Operator functions cannot have more or fewer parameters
7762  //   than the number required for the corresponding operator, as
7763  //   described in the rest of this subclause.
7764  unsigned NumParams = FnDecl->getNumParams()
7765                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7766  if (Op != OO_Call &&
7767      ((NumParams == 1 && !CanBeUnaryOperator) ||
7768       (NumParams == 2 && !CanBeBinaryOperator) ||
7769       (NumParams < 1) || (NumParams > 2))) {
7770    // We have the wrong number of parameters.
7771    unsigned ErrorKind;
7772    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7773      ErrorKind = 2;  // 2 -> unary or binary.
7774    } else if (CanBeUnaryOperator) {
7775      ErrorKind = 0;  // 0 -> unary
7776    } else {
7777      assert(CanBeBinaryOperator &&
7778             "All non-call overloaded operators are unary or binary!");
7779      ErrorKind = 1;  // 1 -> binary
7780    }
7781
7782    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7783      << FnDecl->getDeclName() << NumParams << ErrorKind;
7784  }
7785
7786  // Overloaded operators other than operator() cannot be variadic.
7787  if (Op != OO_Call &&
7788      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7789    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7790      << FnDecl->getDeclName();
7791  }
7792
7793  // Some operators must be non-static member functions.
7794  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7795    return Diag(FnDecl->getLocation(),
7796                diag::err_operator_overload_must_be_member)
7797      << FnDecl->getDeclName();
7798  }
7799
7800  // C++ [over.inc]p1:
7801  //   The user-defined function called operator++ implements the
7802  //   prefix and postfix ++ operator. If this function is a member
7803  //   function with no parameters, or a non-member function with one
7804  //   parameter of class or enumeration type, it defines the prefix
7805  //   increment operator ++ for objects of that type. If the function
7806  //   is a member function with one parameter (which shall be of type
7807  //   int) or a non-member function with two parameters (the second
7808  //   of which shall be of type int), it defines the postfix
7809  //   increment operator ++ for objects of that type.
7810  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7811    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7812    bool ParamIsInt = false;
7813    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7814      ParamIsInt = BT->getKind() == BuiltinType::Int;
7815
7816    if (!ParamIsInt)
7817      return Diag(LastParam->getLocation(),
7818                  diag::err_operator_overload_post_incdec_must_be_int)
7819        << LastParam->getType() << (Op == OO_MinusMinus);
7820  }
7821
7822  return false;
7823}
7824
7825/// CheckLiteralOperatorDeclaration - Check whether the declaration
7826/// of this literal operator function is well-formed. If so, returns
7827/// false; otherwise, emits appropriate diagnostics and returns true.
7828bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7829  DeclContext *DC = FnDecl->getDeclContext();
7830  Decl::Kind Kind = DC->getDeclKind();
7831  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7832      Kind != Decl::LinkageSpec) {
7833    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7834      << FnDecl->getDeclName();
7835    return true;
7836  }
7837
7838  bool Valid = false;
7839
7840  // template <char...> type operator "" name() is the only valid template
7841  // signature, and the only valid signature with no parameters.
7842  if (FnDecl->param_size() == 0) {
7843    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7844      // Must have only one template parameter
7845      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7846      if (Params->size() == 1) {
7847        NonTypeTemplateParmDecl *PmDecl =
7848          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7849
7850        // The template parameter must be a char parameter pack.
7851        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7852            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7853          Valid = true;
7854      }
7855    }
7856  } else {
7857    // Check the first parameter
7858    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7859
7860    QualType T = (*Param)->getType();
7861
7862    // unsigned long long int, long double, and any character type are allowed
7863    // as the only parameters.
7864    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7865        Context.hasSameType(T, Context.LongDoubleTy) ||
7866        Context.hasSameType(T, Context.CharTy) ||
7867        Context.hasSameType(T, Context.WCharTy) ||
7868        Context.hasSameType(T, Context.Char16Ty) ||
7869        Context.hasSameType(T, Context.Char32Ty)) {
7870      if (++Param == FnDecl->param_end())
7871        Valid = true;
7872      goto FinishedParams;
7873    }
7874
7875    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7876    const PointerType *PT = T->getAs<PointerType>();
7877    if (!PT)
7878      goto FinishedParams;
7879    T = PT->getPointeeType();
7880    if (!T.isConstQualified())
7881      goto FinishedParams;
7882    T = T.getUnqualifiedType();
7883
7884    // Move on to the second parameter;
7885    ++Param;
7886
7887    // If there is no second parameter, the first must be a const char *
7888    if (Param == FnDecl->param_end()) {
7889      if (Context.hasSameType(T, Context.CharTy))
7890        Valid = true;
7891      goto FinishedParams;
7892    }
7893
7894    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7895    // are allowed as the first parameter to a two-parameter function
7896    if (!(Context.hasSameType(T, Context.CharTy) ||
7897          Context.hasSameType(T, Context.WCharTy) ||
7898          Context.hasSameType(T, Context.Char16Ty) ||
7899          Context.hasSameType(T, Context.Char32Ty)))
7900      goto FinishedParams;
7901
7902    // The second and final parameter must be an std::size_t
7903    T = (*Param)->getType().getUnqualifiedType();
7904    if (Context.hasSameType(T, Context.getSizeType()) &&
7905        ++Param == FnDecl->param_end())
7906      Valid = true;
7907  }
7908
7909  // FIXME: This diagnostic is absolutely terrible.
7910FinishedParams:
7911  if (!Valid) {
7912    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7913      << FnDecl->getDeclName();
7914    return true;
7915  }
7916
7917  return false;
7918}
7919
7920/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7921/// linkage specification, including the language and (if present)
7922/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7923/// the location of the language string literal, which is provided
7924/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7925/// the '{' brace. Otherwise, this linkage specification does not
7926/// have any braces.
7927Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7928                                           SourceLocation LangLoc,
7929                                           llvm::StringRef Lang,
7930                                           SourceLocation LBraceLoc) {
7931  LinkageSpecDecl::LanguageIDs Language;
7932  if (Lang == "\"C\"")
7933    Language = LinkageSpecDecl::lang_c;
7934  else if (Lang == "\"C++\"")
7935    Language = LinkageSpecDecl::lang_cxx;
7936  else {
7937    Diag(LangLoc, diag::err_bad_language);
7938    return 0;
7939  }
7940
7941  // FIXME: Add all the various semantics of linkage specifications
7942
7943  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7944                                               ExternLoc, LangLoc, Language);
7945  CurContext->addDecl(D);
7946  PushDeclContext(S, D);
7947  return D;
7948}
7949
7950/// ActOnFinishLinkageSpecification - Complete the definition of
7951/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7952/// valid, it's the position of the closing '}' brace in a linkage
7953/// specification that uses braces.
7954Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7955                                            Decl *LinkageSpec,
7956                                            SourceLocation RBraceLoc) {
7957  if (LinkageSpec) {
7958    if (RBraceLoc.isValid()) {
7959      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7960      LSDecl->setRBraceLoc(RBraceLoc);
7961    }
7962    PopDeclContext();
7963  }
7964  return LinkageSpec;
7965}
7966
7967/// \brief Perform semantic analysis for the variable declaration that
7968/// occurs within a C++ catch clause, returning the newly-created
7969/// variable.
7970VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7971                                         TypeSourceInfo *TInfo,
7972                                         SourceLocation StartLoc,
7973                                         SourceLocation Loc,
7974                                         IdentifierInfo *Name) {
7975  bool Invalid = false;
7976  QualType ExDeclType = TInfo->getType();
7977
7978  // Arrays and functions decay.
7979  if (ExDeclType->isArrayType())
7980    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7981  else if (ExDeclType->isFunctionType())
7982    ExDeclType = Context.getPointerType(ExDeclType);
7983
7984  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7985  // The exception-declaration shall not denote a pointer or reference to an
7986  // incomplete type, other than [cv] void*.
7987  // N2844 forbids rvalue references.
7988  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
7989    Diag(Loc, diag::err_catch_rvalue_ref);
7990    Invalid = true;
7991  }
7992
7993  // GCC allows catching pointers and references to incomplete types
7994  // as an extension; so do we, but we warn by default.
7995
7996  QualType BaseType = ExDeclType;
7997  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
7998  unsigned DK = diag::err_catch_incomplete;
7999  bool IncompleteCatchIsInvalid = true;
8000  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8001    BaseType = Ptr->getPointeeType();
8002    Mode = 1;
8003    DK = diag::ext_catch_incomplete_ptr;
8004    IncompleteCatchIsInvalid = false;
8005  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8006    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8007    BaseType = Ref->getPointeeType();
8008    Mode = 2;
8009    DK = diag::ext_catch_incomplete_ref;
8010    IncompleteCatchIsInvalid = false;
8011  }
8012  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8013      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8014      IncompleteCatchIsInvalid)
8015    Invalid = true;
8016
8017  if (!Invalid && !ExDeclType->isDependentType() &&
8018      RequireNonAbstractType(Loc, ExDeclType,
8019                             diag::err_abstract_type_in_decl,
8020                             AbstractVariableType))
8021    Invalid = true;
8022
8023  // Only the non-fragile NeXT runtime currently supports C++ catches
8024  // of ObjC types, and no runtime supports catching ObjC types by value.
8025  if (!Invalid && getLangOptions().ObjC1) {
8026    QualType T = ExDeclType;
8027    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8028      T = RT->getPointeeType();
8029
8030    if (T->isObjCObjectType()) {
8031      Diag(Loc, diag::err_objc_object_catch);
8032      Invalid = true;
8033    } else if (T->isObjCObjectPointerType()) {
8034      if (!getLangOptions().ObjCNonFragileABI) {
8035        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8036        Invalid = true;
8037      }
8038    }
8039  }
8040
8041  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8042                                    ExDeclType, TInfo, SC_None, SC_None);
8043  ExDecl->setExceptionVariable(true);
8044
8045  if (!Invalid) {
8046    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8047      // C++ [except.handle]p16:
8048      //   The object declared in an exception-declaration or, if the
8049      //   exception-declaration does not specify a name, a temporary (12.2) is
8050      //   copy-initialized (8.5) from the exception object. [...]
8051      //   The object is destroyed when the handler exits, after the destruction
8052      //   of any automatic objects initialized within the handler.
8053      //
8054      // We just pretend to initialize the object with itself, then make sure
8055      // it can be destroyed later.
8056      QualType initType = ExDeclType;
8057
8058      InitializedEntity entity =
8059        InitializedEntity::InitializeVariable(ExDecl);
8060      InitializationKind initKind =
8061        InitializationKind::CreateCopy(Loc, SourceLocation());
8062
8063      Expr *opaqueValue =
8064        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8065      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8066      ExprResult result = sequence.Perform(*this, entity, initKind,
8067                                           MultiExprArg(&opaqueValue, 1));
8068      if (result.isInvalid())
8069        Invalid = true;
8070      else {
8071        // If the constructor used was non-trivial, set this as the
8072        // "initializer".
8073        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8074        if (!construct->getConstructor()->isTrivial()) {
8075          Expr *init = MaybeCreateExprWithCleanups(construct);
8076          ExDecl->setInit(init);
8077        }
8078
8079        // And make sure it's destructable.
8080        FinalizeVarWithDestructor(ExDecl, recordType);
8081      }
8082    }
8083  }
8084
8085  if (Invalid)
8086    ExDecl->setInvalidDecl();
8087
8088  return ExDecl;
8089}
8090
8091/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8092/// handler.
8093Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8094  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8095  bool Invalid = D.isInvalidType();
8096
8097  // Check for unexpanded parameter packs.
8098  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8099                                               UPPC_ExceptionType)) {
8100    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8101                                             D.getIdentifierLoc());
8102    Invalid = true;
8103  }
8104
8105  IdentifierInfo *II = D.getIdentifier();
8106  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8107                                             LookupOrdinaryName,
8108                                             ForRedeclaration)) {
8109    // The scope should be freshly made just for us. There is just no way
8110    // it contains any previous declaration.
8111    assert(!S->isDeclScope(PrevDecl));
8112    if (PrevDecl->isTemplateParameter()) {
8113      // Maybe we will complain about the shadowed template parameter.
8114      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8115    }
8116  }
8117
8118  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8119    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8120      << D.getCXXScopeSpec().getRange();
8121    Invalid = true;
8122  }
8123
8124  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8125                                              D.getSourceRange().getBegin(),
8126                                              D.getIdentifierLoc(),
8127                                              D.getIdentifier());
8128  if (Invalid)
8129    ExDecl->setInvalidDecl();
8130
8131  // Add the exception declaration into this scope.
8132  if (II)
8133    PushOnScopeChains(ExDecl, S);
8134  else
8135    CurContext->addDecl(ExDecl);
8136
8137  ProcessDeclAttributes(S, ExDecl, D);
8138  return ExDecl;
8139}
8140
8141Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8142                                         Expr *AssertExpr,
8143                                         Expr *AssertMessageExpr_,
8144                                         SourceLocation RParenLoc) {
8145  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8146
8147  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8148    llvm::APSInt Value(32);
8149    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8150      Diag(StaticAssertLoc,
8151           diag::err_static_assert_expression_is_not_constant) <<
8152        AssertExpr->getSourceRange();
8153      return 0;
8154    }
8155
8156    if (Value == 0) {
8157      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8158        << AssertMessage->getString() << AssertExpr->getSourceRange();
8159    }
8160  }
8161
8162  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8163    return 0;
8164
8165  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8166                                        AssertExpr, AssertMessage, RParenLoc);
8167
8168  CurContext->addDecl(Decl);
8169  return Decl;
8170}
8171
8172/// \brief Perform semantic analysis of the given friend type declaration.
8173///
8174/// \returns A friend declaration that.
8175FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8176                                      TypeSourceInfo *TSInfo) {
8177  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8178
8179  QualType T = TSInfo->getType();
8180  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8181
8182  if (!getLangOptions().CPlusPlus0x) {
8183    // C++03 [class.friend]p2:
8184    //   An elaborated-type-specifier shall be used in a friend declaration
8185    //   for a class.*
8186    //
8187    //   * The class-key of the elaborated-type-specifier is required.
8188    if (!ActiveTemplateInstantiations.empty()) {
8189      // Do not complain about the form of friend template types during
8190      // template instantiation; we will already have complained when the
8191      // template was declared.
8192    } else if (!T->isElaboratedTypeSpecifier()) {
8193      // If we evaluated the type to a record type, suggest putting
8194      // a tag in front.
8195      if (const RecordType *RT = T->getAs<RecordType>()) {
8196        RecordDecl *RD = RT->getDecl();
8197
8198        std::string InsertionText = std::string(" ") + RD->getKindName();
8199
8200        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8201          << (unsigned) RD->getTagKind()
8202          << T
8203          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8204                                        InsertionText);
8205      } else {
8206        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8207          << T
8208          << SourceRange(FriendLoc, TypeRange.getEnd());
8209      }
8210    } else if (T->getAs<EnumType>()) {
8211      Diag(FriendLoc, diag::ext_enum_friend)
8212        << T
8213        << SourceRange(FriendLoc, TypeRange.getEnd());
8214    }
8215  }
8216
8217  // C++0x [class.friend]p3:
8218  //   If the type specifier in a friend declaration designates a (possibly
8219  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8220  //   the friend declaration is ignored.
8221
8222  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8223  // in [class.friend]p3 that we do not implement.
8224
8225  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8226}
8227
8228/// Handle a friend tag declaration where the scope specifier was
8229/// templated.
8230Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8231                                    unsigned TagSpec, SourceLocation TagLoc,
8232                                    CXXScopeSpec &SS,
8233                                    IdentifierInfo *Name, SourceLocation NameLoc,
8234                                    AttributeList *Attr,
8235                                    MultiTemplateParamsArg TempParamLists) {
8236  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8237
8238  bool isExplicitSpecialization = false;
8239  bool Invalid = false;
8240
8241  if (TemplateParameterList *TemplateParams
8242        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8243                                                  TempParamLists.get(),
8244                                                  TempParamLists.size(),
8245                                                  /*friend*/ true,
8246                                                  isExplicitSpecialization,
8247                                                  Invalid)) {
8248    if (TemplateParams->size() > 0) {
8249      // This is a declaration of a class template.
8250      if (Invalid)
8251        return 0;
8252
8253      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8254                                SS, Name, NameLoc, Attr,
8255                                TemplateParams, AS_public,
8256                                TempParamLists.size() - 1,
8257                   (TemplateParameterList**) TempParamLists.release()).take();
8258    } else {
8259      // The "template<>" header is extraneous.
8260      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8261        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8262      isExplicitSpecialization = true;
8263    }
8264  }
8265
8266  if (Invalid) return 0;
8267
8268  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8269
8270  bool isAllExplicitSpecializations = true;
8271  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8272    if (TempParamLists.get()[I]->size()) {
8273      isAllExplicitSpecializations = false;
8274      break;
8275    }
8276  }
8277
8278  // FIXME: don't ignore attributes.
8279
8280  // If it's explicit specializations all the way down, just forget
8281  // about the template header and build an appropriate non-templated
8282  // friend.  TODO: for source fidelity, remember the headers.
8283  if (isAllExplicitSpecializations) {
8284    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8285    ElaboratedTypeKeyword Keyword
8286      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8287    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8288                                   *Name, NameLoc);
8289    if (T.isNull())
8290      return 0;
8291
8292    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8293    if (isa<DependentNameType>(T)) {
8294      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8295      TL.setKeywordLoc(TagLoc);
8296      TL.setQualifierLoc(QualifierLoc);
8297      TL.setNameLoc(NameLoc);
8298    } else {
8299      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8300      TL.setKeywordLoc(TagLoc);
8301      TL.setQualifierLoc(QualifierLoc);
8302      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8303    }
8304
8305    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8306                                            TSI, FriendLoc);
8307    Friend->setAccess(AS_public);
8308    CurContext->addDecl(Friend);
8309    return Friend;
8310  }
8311
8312  // Handle the case of a templated-scope friend class.  e.g.
8313  //   template <class T> class A<T>::B;
8314  // FIXME: we don't support these right now.
8315  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8316  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8317  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8318  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8319  TL.setKeywordLoc(TagLoc);
8320  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8321  TL.setNameLoc(NameLoc);
8322
8323  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8324                                          TSI, FriendLoc);
8325  Friend->setAccess(AS_public);
8326  Friend->setUnsupportedFriend(true);
8327  CurContext->addDecl(Friend);
8328  return Friend;
8329}
8330
8331
8332/// Handle a friend type declaration.  This works in tandem with
8333/// ActOnTag.
8334///
8335/// Notes on friend class templates:
8336///
8337/// We generally treat friend class declarations as if they were
8338/// declaring a class.  So, for example, the elaborated type specifier
8339/// in a friend declaration is required to obey the restrictions of a
8340/// class-head (i.e. no typedefs in the scope chain), template
8341/// parameters are required to match up with simple template-ids, &c.
8342/// However, unlike when declaring a template specialization, it's
8343/// okay to refer to a template specialization without an empty
8344/// template parameter declaration, e.g.
8345///   friend class A<T>::B<unsigned>;
8346/// We permit this as a special case; if there are any template
8347/// parameters present at all, require proper matching, i.e.
8348///   template <> template <class T> friend class A<int>::B;
8349Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8350                                MultiTemplateParamsArg TempParams) {
8351  SourceLocation Loc = DS.getSourceRange().getBegin();
8352
8353  assert(DS.isFriendSpecified());
8354  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8355
8356  // Try to convert the decl specifier to a type.  This works for
8357  // friend templates because ActOnTag never produces a ClassTemplateDecl
8358  // for a TUK_Friend.
8359  Declarator TheDeclarator(DS, Declarator::MemberContext);
8360  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8361  QualType T = TSI->getType();
8362  if (TheDeclarator.isInvalidType())
8363    return 0;
8364
8365  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8366    return 0;
8367
8368  // This is definitely an error in C++98.  It's probably meant to
8369  // be forbidden in C++0x, too, but the specification is just
8370  // poorly written.
8371  //
8372  // The problem is with declarations like the following:
8373  //   template <T> friend A<T>::foo;
8374  // where deciding whether a class C is a friend or not now hinges
8375  // on whether there exists an instantiation of A that causes
8376  // 'foo' to equal C.  There are restrictions on class-heads
8377  // (which we declare (by fiat) elaborated friend declarations to
8378  // be) that makes this tractable.
8379  //
8380  // FIXME: handle "template <> friend class A<T>;", which
8381  // is possibly well-formed?  Who even knows?
8382  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8383    Diag(Loc, diag::err_tagless_friend_type_template)
8384      << DS.getSourceRange();
8385    return 0;
8386  }
8387
8388  // C++98 [class.friend]p1: A friend of a class is a function
8389  //   or class that is not a member of the class . . .
8390  // This is fixed in DR77, which just barely didn't make the C++03
8391  // deadline.  It's also a very silly restriction that seriously
8392  // affects inner classes and which nobody else seems to implement;
8393  // thus we never diagnose it, not even in -pedantic.
8394  //
8395  // But note that we could warn about it: it's always useless to
8396  // friend one of your own members (it's not, however, worthless to
8397  // friend a member of an arbitrary specialization of your template).
8398
8399  Decl *D;
8400  if (unsigned NumTempParamLists = TempParams.size())
8401    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8402                                   NumTempParamLists,
8403                                   TempParams.release(),
8404                                   TSI,
8405                                   DS.getFriendSpecLoc());
8406  else
8407    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8408
8409  if (!D)
8410    return 0;
8411
8412  D->setAccess(AS_public);
8413  CurContext->addDecl(D);
8414
8415  return D;
8416}
8417
8418Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8419                                    MultiTemplateParamsArg TemplateParams) {
8420  const DeclSpec &DS = D.getDeclSpec();
8421
8422  assert(DS.isFriendSpecified());
8423  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8424
8425  SourceLocation Loc = D.getIdentifierLoc();
8426  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8427  QualType T = TInfo->getType();
8428
8429  // C++ [class.friend]p1
8430  //   A friend of a class is a function or class....
8431  // Note that this sees through typedefs, which is intended.
8432  // It *doesn't* see through dependent types, which is correct
8433  // according to [temp.arg.type]p3:
8434  //   If a declaration acquires a function type through a
8435  //   type dependent on a template-parameter and this causes
8436  //   a declaration that does not use the syntactic form of a
8437  //   function declarator to have a function type, the program
8438  //   is ill-formed.
8439  if (!T->isFunctionType()) {
8440    Diag(Loc, diag::err_unexpected_friend);
8441
8442    // It might be worthwhile to try to recover by creating an
8443    // appropriate declaration.
8444    return 0;
8445  }
8446
8447  // C++ [namespace.memdef]p3
8448  //  - If a friend declaration in a non-local class first declares a
8449  //    class or function, the friend class or function is a member
8450  //    of the innermost enclosing namespace.
8451  //  - The name of the friend is not found by simple name lookup
8452  //    until a matching declaration is provided in that namespace
8453  //    scope (either before or after the class declaration granting
8454  //    friendship).
8455  //  - If a friend function is called, its name may be found by the
8456  //    name lookup that considers functions from namespaces and
8457  //    classes associated with the types of the function arguments.
8458  //  - When looking for a prior declaration of a class or a function
8459  //    declared as a friend, scopes outside the innermost enclosing
8460  //    namespace scope are not considered.
8461
8462  CXXScopeSpec &SS = D.getCXXScopeSpec();
8463  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8464  DeclarationName Name = NameInfo.getName();
8465  assert(Name);
8466
8467  // Check for unexpanded parameter packs.
8468  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8469      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8470      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8471    return 0;
8472
8473  // The context we found the declaration in, or in which we should
8474  // create the declaration.
8475  DeclContext *DC;
8476  Scope *DCScope = S;
8477  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8478                        ForRedeclaration);
8479
8480  // FIXME: there are different rules in local classes
8481
8482  // There are four cases here.
8483  //   - There's no scope specifier, in which case we just go to the
8484  //     appropriate scope and look for a function or function template
8485  //     there as appropriate.
8486  // Recover from invalid scope qualifiers as if they just weren't there.
8487  if (SS.isInvalid() || !SS.isSet()) {
8488    // C++0x [namespace.memdef]p3:
8489    //   If the name in a friend declaration is neither qualified nor
8490    //   a template-id and the declaration is a function or an
8491    //   elaborated-type-specifier, the lookup to determine whether
8492    //   the entity has been previously declared shall not consider
8493    //   any scopes outside the innermost enclosing namespace.
8494    // C++0x [class.friend]p11:
8495    //   If a friend declaration appears in a local class and the name
8496    //   specified is an unqualified name, a prior declaration is
8497    //   looked up without considering scopes that are outside the
8498    //   innermost enclosing non-class scope. For a friend function
8499    //   declaration, if there is no prior declaration, the program is
8500    //   ill-formed.
8501    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8502    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8503
8504    // Find the appropriate context according to the above.
8505    DC = CurContext;
8506    while (true) {
8507      // Skip class contexts.  If someone can cite chapter and verse
8508      // for this behavior, that would be nice --- it's what GCC and
8509      // EDG do, and it seems like a reasonable intent, but the spec
8510      // really only says that checks for unqualified existing
8511      // declarations should stop at the nearest enclosing namespace,
8512      // not that they should only consider the nearest enclosing
8513      // namespace.
8514      while (DC->isRecord())
8515        DC = DC->getParent();
8516
8517      LookupQualifiedName(Previous, DC);
8518
8519      // TODO: decide what we think about using declarations.
8520      if (isLocal || !Previous.empty())
8521        break;
8522
8523      if (isTemplateId) {
8524        if (isa<TranslationUnitDecl>(DC)) break;
8525      } else {
8526        if (DC->isFileContext()) break;
8527      }
8528      DC = DC->getParent();
8529    }
8530
8531    // C++ [class.friend]p1: A friend of a class is a function or
8532    //   class that is not a member of the class . . .
8533    // C++0x changes this for both friend types and functions.
8534    // Most C++ 98 compilers do seem to give an error here, so
8535    // we do, too.
8536    if (!Previous.empty() && DC->Equals(CurContext)
8537        && !getLangOptions().CPlusPlus0x)
8538      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8539
8540    DCScope = getScopeForDeclContext(S, DC);
8541
8542  //   - There's a non-dependent scope specifier, in which case we
8543  //     compute it and do a previous lookup there for a function
8544  //     or function template.
8545  } else if (!SS.getScopeRep()->isDependent()) {
8546    DC = computeDeclContext(SS);
8547    if (!DC) return 0;
8548
8549    if (RequireCompleteDeclContext(SS, DC)) return 0;
8550
8551    LookupQualifiedName(Previous, DC);
8552
8553    // Ignore things found implicitly in the wrong scope.
8554    // TODO: better diagnostics for this case.  Suggesting the right
8555    // qualified scope would be nice...
8556    LookupResult::Filter F = Previous.makeFilter();
8557    while (F.hasNext()) {
8558      NamedDecl *D = F.next();
8559      if (!DC->InEnclosingNamespaceSetOf(
8560              D->getDeclContext()->getRedeclContext()))
8561        F.erase();
8562    }
8563    F.done();
8564
8565    if (Previous.empty()) {
8566      D.setInvalidType();
8567      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8568      return 0;
8569    }
8570
8571    // C++ [class.friend]p1: A friend of a class is a function or
8572    //   class that is not a member of the class . . .
8573    if (DC->Equals(CurContext))
8574      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8575
8576  //   - There's a scope specifier that does not match any template
8577  //     parameter lists, in which case we use some arbitrary context,
8578  //     create a method or method template, and wait for instantiation.
8579  //   - There's a scope specifier that does match some template
8580  //     parameter lists, which we don't handle right now.
8581  } else {
8582    DC = CurContext;
8583    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8584  }
8585
8586  if (!DC->isRecord()) {
8587    // This implies that it has to be an operator or function.
8588    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8589        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8590        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8591      Diag(Loc, diag::err_introducing_special_friend) <<
8592        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8593         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8594      return 0;
8595    }
8596  }
8597
8598  bool Redeclaration = false;
8599  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8600                                          move(TemplateParams),
8601                                          IsDefinition,
8602                                          Redeclaration);
8603  if (!ND) return 0;
8604
8605  assert(ND->getDeclContext() == DC);
8606  assert(ND->getLexicalDeclContext() == CurContext);
8607
8608  // Add the function declaration to the appropriate lookup tables,
8609  // adjusting the redeclarations list as necessary.  We don't
8610  // want to do this yet if the friending class is dependent.
8611  //
8612  // Also update the scope-based lookup if the target context's
8613  // lookup context is in lexical scope.
8614  if (!CurContext->isDependentContext()) {
8615    DC = DC->getRedeclContext();
8616    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8617    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8618      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8619  }
8620
8621  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8622                                       D.getIdentifierLoc(), ND,
8623                                       DS.getFriendSpecLoc());
8624  FrD->setAccess(AS_public);
8625  CurContext->addDecl(FrD);
8626
8627  if (ND->isInvalidDecl())
8628    FrD->setInvalidDecl();
8629  else {
8630    FunctionDecl *FD;
8631    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8632      FD = FTD->getTemplatedDecl();
8633    else
8634      FD = cast<FunctionDecl>(ND);
8635
8636    // Mark templated-scope function declarations as unsupported.
8637    if (FD->getNumTemplateParameterLists())
8638      FrD->setUnsupportedFriend(true);
8639  }
8640
8641  return ND;
8642}
8643
8644void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8645  AdjustDeclIfTemplate(Dcl);
8646
8647  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8648  if (!Fn) {
8649    Diag(DelLoc, diag::err_deleted_non_function);
8650    return;
8651  }
8652  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8653    Diag(DelLoc, diag::err_deleted_decl_not_first);
8654    Diag(Prev->getLocation(), diag::note_previous_declaration);
8655    // If the declaration wasn't the first, we delete the function anyway for
8656    // recovery.
8657  }
8658  Fn->setDeletedAsWritten();
8659}
8660
8661void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8662  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8663
8664  if (MD) {
8665    if (MD->getParent()->isDependentType()) {
8666      MD->setDefaulted();
8667      MD->setExplicitlyDefaulted();
8668      return;
8669    }
8670
8671    CXXSpecialMember Member = getSpecialMember(MD);
8672    if (Member == CXXInvalid) {
8673      Diag(DefaultLoc, diag::err_default_special_members);
8674      return;
8675    }
8676
8677    MD->setDefaulted();
8678    MD->setExplicitlyDefaulted();
8679
8680    // If this definition appears within the record, do the checking when
8681    // the record is complete.
8682    const FunctionDecl *Primary = MD;
8683    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8684      // Find the uninstantiated declaration that actually had the '= default'
8685      // on it.
8686      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8687
8688    if (Primary == Primary->getCanonicalDecl())
8689      return;
8690
8691    switch (Member) {
8692    case CXXDefaultConstructor: {
8693      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8694      CheckExplicitlyDefaultedDefaultConstructor(CD);
8695      if (!CD->isInvalidDecl())
8696        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8697      break;
8698    }
8699
8700    case CXXCopyConstructor: {
8701      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8702      CheckExplicitlyDefaultedCopyConstructor(CD);
8703      if (!CD->isInvalidDecl())
8704        DefineImplicitCopyConstructor(DefaultLoc, CD);
8705      break;
8706    }
8707
8708    case CXXCopyAssignment: {
8709      CheckExplicitlyDefaultedCopyAssignment(MD);
8710      if (!MD->isInvalidDecl())
8711        DefineImplicitCopyAssignment(DefaultLoc, MD);
8712      break;
8713    }
8714
8715    case CXXDestructor: {
8716      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8717      CheckExplicitlyDefaultedDestructor(DD);
8718      if (!DD->isInvalidDecl())
8719        DefineImplicitDestructor(DefaultLoc, DD);
8720      break;
8721    }
8722
8723    case CXXMoveConstructor:
8724    case CXXMoveAssignment:
8725      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8726      break;
8727
8728    default:
8729      // FIXME: Do the rest once we have move functions
8730      break;
8731    }
8732  } else {
8733    Diag(DefaultLoc, diag::err_default_special_members);
8734  }
8735}
8736
8737static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8738  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8739    Stmt *SubStmt = *CI;
8740    if (!SubStmt)
8741      continue;
8742    if (isa<ReturnStmt>(SubStmt))
8743      Self.Diag(SubStmt->getSourceRange().getBegin(),
8744           diag::err_return_in_constructor_handler);
8745    if (!isa<Expr>(SubStmt))
8746      SearchForReturnInStmt(Self, SubStmt);
8747  }
8748}
8749
8750void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8751  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8752    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8753    SearchForReturnInStmt(*this, Handler);
8754  }
8755}
8756
8757bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8758                                             const CXXMethodDecl *Old) {
8759  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8760  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8761
8762  if (Context.hasSameType(NewTy, OldTy) ||
8763      NewTy->isDependentType() || OldTy->isDependentType())
8764    return false;
8765
8766  // Check if the return types are covariant
8767  QualType NewClassTy, OldClassTy;
8768
8769  /// Both types must be pointers or references to classes.
8770  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8771    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8772      NewClassTy = NewPT->getPointeeType();
8773      OldClassTy = OldPT->getPointeeType();
8774    }
8775  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8776    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8777      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8778        NewClassTy = NewRT->getPointeeType();
8779        OldClassTy = OldRT->getPointeeType();
8780      }
8781    }
8782  }
8783
8784  // The return types aren't either both pointers or references to a class type.
8785  if (NewClassTy.isNull()) {
8786    Diag(New->getLocation(),
8787         diag::err_different_return_type_for_overriding_virtual_function)
8788      << New->getDeclName() << NewTy << OldTy;
8789    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8790
8791    return true;
8792  }
8793
8794  // C++ [class.virtual]p6:
8795  //   If the return type of D::f differs from the return type of B::f, the
8796  //   class type in the return type of D::f shall be complete at the point of
8797  //   declaration of D::f or shall be the class type D.
8798  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8799    if (!RT->isBeingDefined() &&
8800        RequireCompleteType(New->getLocation(), NewClassTy,
8801                            PDiag(diag::err_covariant_return_incomplete)
8802                              << New->getDeclName()))
8803    return true;
8804  }
8805
8806  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8807    // Check if the new class derives from the old class.
8808    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8809      Diag(New->getLocation(),
8810           diag::err_covariant_return_not_derived)
8811      << New->getDeclName() << NewTy << OldTy;
8812      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8813      return true;
8814    }
8815
8816    // Check if we the conversion from derived to base is valid.
8817    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8818                    diag::err_covariant_return_inaccessible_base,
8819                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8820                    // FIXME: Should this point to the return type?
8821                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8822      // FIXME: this note won't trigger for delayed access control
8823      // diagnostics, and it's impossible to get an undelayed error
8824      // here from access control during the original parse because
8825      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8826      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8827      return true;
8828    }
8829  }
8830
8831  // The qualifiers of the return types must be the same.
8832  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8833    Diag(New->getLocation(),
8834         diag::err_covariant_return_type_different_qualifications)
8835    << New->getDeclName() << NewTy << OldTy;
8836    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8837    return true;
8838  };
8839
8840
8841  // The new class type must have the same or less qualifiers as the old type.
8842  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8843    Diag(New->getLocation(),
8844         diag::err_covariant_return_type_class_type_more_qualified)
8845    << New->getDeclName() << NewTy << OldTy;
8846    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8847    return true;
8848  };
8849
8850  return false;
8851}
8852
8853/// \brief Mark the given method pure.
8854///
8855/// \param Method the method to be marked pure.
8856///
8857/// \param InitRange the source range that covers the "0" initializer.
8858bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8859  SourceLocation EndLoc = InitRange.getEnd();
8860  if (EndLoc.isValid())
8861    Method->setRangeEnd(EndLoc);
8862
8863  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8864    Method->setPure();
8865    return false;
8866  }
8867
8868  if (!Method->isInvalidDecl())
8869    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8870      << Method->getDeclName() << InitRange;
8871  return true;
8872}
8873
8874/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8875/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8876/// is a fresh scope pushed for just this purpose.
8877///
8878/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8879/// static data member of class X, names should be looked up in the scope of
8880/// class X.
8881void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8882  // If there is no declaration, there was an error parsing it.
8883  if (D == 0 || D->isInvalidDecl()) return;
8884
8885  // We should only get called for declarations with scope specifiers, like:
8886  //   int foo::bar;
8887  assert(D->isOutOfLine());
8888  EnterDeclaratorContext(S, D->getDeclContext());
8889}
8890
8891/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8892/// initializer for the out-of-line declaration 'D'.
8893void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8894  // If there is no declaration, there was an error parsing it.
8895  if (D == 0 || D->isInvalidDecl()) return;
8896
8897  assert(D->isOutOfLine());
8898  ExitDeclaratorContext(S);
8899}
8900
8901/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8902/// C++ if/switch/while/for statement.
8903/// e.g: "if (int x = f()) {...}"
8904DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8905  // C++ 6.4p2:
8906  // The declarator shall not specify a function or an array.
8907  // The type-specifier-seq shall not contain typedef and shall not declare a
8908  // new class or enumeration.
8909  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8910         "Parser allowed 'typedef' as storage class of condition decl.");
8911
8912  TagDecl *OwnedTag = 0;
8913  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
8914  QualType Ty = TInfo->getType();
8915
8916  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
8917                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
8918                              // would be created and CXXConditionDeclExpr wants a VarDecl.
8919    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
8920      << D.getSourceRange();
8921    return DeclResult();
8922  } else if (OwnedTag && OwnedTag->isDefinition()) {
8923    // The type-specifier-seq shall not declare a new class or enumeration.
8924    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
8925  }
8926
8927  Decl *Dcl = ActOnDeclarator(S, D);
8928  if (!Dcl)
8929    return DeclResult();
8930
8931  return Dcl;
8932}
8933
8934void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8935                          bool DefinitionRequired) {
8936  // Ignore any vtable uses in unevaluated operands or for classes that do
8937  // not have a vtable.
8938  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8939      CurContext->isDependentContext() ||
8940      ExprEvalContexts.back().Context == Unevaluated)
8941    return;
8942
8943  // Try to insert this class into the map.
8944  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8945  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8946    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8947  if (!Pos.second) {
8948    // If we already had an entry, check to see if we are promoting this vtable
8949    // to required a definition. If so, we need to reappend to the VTableUses
8950    // list, since we may have already processed the first entry.
8951    if (DefinitionRequired && !Pos.first->second) {
8952      Pos.first->second = true;
8953    } else {
8954      // Otherwise, we can early exit.
8955      return;
8956    }
8957  }
8958
8959  // Local classes need to have their virtual members marked
8960  // immediately. For all other classes, we mark their virtual members
8961  // at the end of the translation unit.
8962  if (Class->isLocalClass())
8963    MarkVirtualMembersReferenced(Loc, Class);
8964  else
8965    VTableUses.push_back(std::make_pair(Class, Loc));
8966}
8967
8968bool Sema::DefineUsedVTables() {
8969  if (VTableUses.empty())
8970    return false;
8971
8972  // Note: The VTableUses vector could grow as a result of marking
8973  // the members of a class as "used", so we check the size each
8974  // time through the loop and prefer indices (with are stable) to
8975  // iterators (which are not).
8976  bool DefinedAnything = false;
8977  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8978    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8979    if (!Class)
8980      continue;
8981
8982    SourceLocation Loc = VTableUses[I].second;
8983
8984    // If this class has a key function, but that key function is
8985    // defined in another translation unit, we don't need to emit the
8986    // vtable even though we're using it.
8987    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8988    if (KeyFunction && !KeyFunction->hasBody()) {
8989      switch (KeyFunction->getTemplateSpecializationKind()) {
8990      case TSK_Undeclared:
8991      case TSK_ExplicitSpecialization:
8992      case TSK_ExplicitInstantiationDeclaration:
8993        // The key function is in another translation unit.
8994        continue;
8995
8996      case TSK_ExplicitInstantiationDefinition:
8997      case TSK_ImplicitInstantiation:
8998        // We will be instantiating the key function.
8999        break;
9000      }
9001    } else if (!KeyFunction) {
9002      // If we have a class with no key function that is the subject
9003      // of an explicit instantiation declaration, suppress the
9004      // vtable; it will live with the explicit instantiation
9005      // definition.
9006      bool IsExplicitInstantiationDeclaration
9007        = Class->getTemplateSpecializationKind()
9008                                      == TSK_ExplicitInstantiationDeclaration;
9009      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9010                                 REnd = Class->redecls_end();
9011           R != REnd; ++R) {
9012        TemplateSpecializationKind TSK
9013          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9014        if (TSK == TSK_ExplicitInstantiationDeclaration)
9015          IsExplicitInstantiationDeclaration = true;
9016        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9017          IsExplicitInstantiationDeclaration = false;
9018          break;
9019        }
9020      }
9021
9022      if (IsExplicitInstantiationDeclaration)
9023        continue;
9024    }
9025
9026    // Mark all of the virtual members of this class as referenced, so
9027    // that we can build a vtable. Then, tell the AST consumer that a
9028    // vtable for this class is required.
9029    DefinedAnything = true;
9030    MarkVirtualMembersReferenced(Loc, Class);
9031    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9032    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9033
9034    // Optionally warn if we're emitting a weak vtable.
9035    if (Class->getLinkage() == ExternalLinkage &&
9036        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9037      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9038        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9039    }
9040  }
9041  VTableUses.clear();
9042
9043  return DefinedAnything;
9044}
9045
9046void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9047                                        const CXXRecordDecl *RD) {
9048  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9049       e = RD->method_end(); i != e; ++i) {
9050    CXXMethodDecl *MD = *i;
9051
9052    // C++ [basic.def.odr]p2:
9053    //   [...] A virtual member function is used if it is not pure. [...]
9054    if (MD->isVirtual() && !MD->isPure())
9055      MarkDeclarationReferenced(Loc, MD);
9056  }
9057
9058  // Only classes that have virtual bases need a VTT.
9059  if (RD->getNumVBases() == 0)
9060    return;
9061
9062  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9063           e = RD->bases_end(); i != e; ++i) {
9064    const CXXRecordDecl *Base =
9065        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9066    if (Base->getNumVBases() == 0)
9067      continue;
9068    MarkVirtualMembersReferenced(Loc, Base);
9069  }
9070}
9071
9072/// SetIvarInitializers - This routine builds initialization ASTs for the
9073/// Objective-C implementation whose ivars need be initialized.
9074void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9075  if (!getLangOptions().CPlusPlus)
9076    return;
9077  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9078    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9079    CollectIvarsToConstructOrDestruct(OID, ivars);
9080    if (ivars.empty())
9081      return;
9082    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9083    for (unsigned i = 0; i < ivars.size(); i++) {
9084      FieldDecl *Field = ivars[i];
9085      if (Field->isInvalidDecl())
9086        continue;
9087
9088      CXXCtorInitializer *Member;
9089      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9090      InitializationKind InitKind =
9091        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9092
9093      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9094      ExprResult MemberInit =
9095        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9096      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9097      // Note, MemberInit could actually come back empty if no initialization
9098      // is required (e.g., because it would call a trivial default constructor)
9099      if (!MemberInit.get() || MemberInit.isInvalid())
9100        continue;
9101
9102      Member =
9103        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9104                                         SourceLocation(),
9105                                         MemberInit.takeAs<Expr>(),
9106                                         SourceLocation());
9107      AllToInit.push_back(Member);
9108
9109      // Be sure that the destructor is accessible and is marked as referenced.
9110      if (const RecordType *RecordTy
9111                  = Context.getBaseElementType(Field->getType())
9112                                                        ->getAs<RecordType>()) {
9113                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9114        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9115          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9116          CheckDestructorAccess(Field->getLocation(), Destructor,
9117                            PDiag(diag::err_access_dtor_ivar)
9118                              << Context.getBaseElementType(Field->getType()));
9119        }
9120      }
9121    }
9122    ObjCImplementation->setIvarInitializers(Context,
9123                                            AllToInit.data(), AllToInit.size());
9124  }
9125}
9126
9127static
9128void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9129                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9130                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9131                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9132                           Sema &S) {
9133  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9134                                                   CE = Current.end();
9135  if (Ctor->isInvalidDecl())
9136    return;
9137
9138  const FunctionDecl *FNTarget = 0;
9139  CXXConstructorDecl *Target;
9140
9141  // We ignore the result here since if we don't have a body, Target will be
9142  // null below.
9143  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9144  Target
9145= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9146
9147  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9148                     // Avoid dereferencing a null pointer here.
9149                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9150
9151  if (!Current.insert(Canonical))
9152    return;
9153
9154  // We know that beyond here, we aren't chaining into a cycle.
9155  if (!Target || !Target->isDelegatingConstructor() ||
9156      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9157    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9158      Valid.insert(*CI);
9159    Current.clear();
9160  // We've hit a cycle.
9161  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9162             Current.count(TCanonical)) {
9163    // If we haven't diagnosed this cycle yet, do so now.
9164    if (!Invalid.count(TCanonical)) {
9165      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9166             diag::warn_delegating_ctor_cycle)
9167        << Ctor;
9168
9169      // Don't add a note for a function delegating directo to itself.
9170      if (TCanonical != Canonical)
9171        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9172
9173      CXXConstructorDecl *C = Target;
9174      while (C->getCanonicalDecl() != Canonical) {
9175        (void)C->getTargetConstructor()->hasBody(FNTarget);
9176        assert(FNTarget && "Ctor cycle through bodiless function");
9177
9178        C
9179       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9180        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9181      }
9182    }
9183
9184    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9185      Invalid.insert(*CI);
9186    Current.clear();
9187  } else {
9188    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9189  }
9190}
9191
9192
9193void Sema::CheckDelegatingCtorCycles() {
9194  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9195
9196  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9197                                                   CE = Current.end();
9198
9199  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9200         I = DelegatingCtorDecls.begin(),
9201         E = DelegatingCtorDecls.end();
9202       I != E; ++I) {
9203   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9204  }
9205
9206  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9207    (*CI)->setInvalidDecl();
9208}
9209