SemaDeclCXX.cpp revision 8c3f89032c8822c443fb8a1633d297b60e5ca90c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If the parameter doesn't have an identifier then the location
274      // points to the '=' which means that the fixit hint won't remove any
275      // extra spaces between the type and the '='.
276      SourceLocation Begin = NewParam->getLocation();
277      if (NewParam->getIdentifier())
278        Begin = PP.getLocForEndOfToken(Begin);
279
280      Diag(NewParam->getLocation(),
281           diag::err_param_default_argument_redefinition)
282        << NewParam->getDefaultArgRange()
283        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
284                                                        NewParam->getLocEnd()));
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      if (OldParam->hasUninstantiatedDefaultArg())
302        NewParam->setUninstantiatedDefaultArg(
303                                      OldParam->getUninstantiatedDefaultArg());
304      else
305        NewParam->setDefaultArg(OldParam->getDefaultArg());
306    } else if (NewParam->hasDefaultArg()) {
307      if (New->getDescribedFunctionTemplate()) {
308        // Paragraph 4, quoted above, only applies to non-template functions.
309        Diag(NewParam->getLocation(),
310             diag::err_param_default_argument_template_redecl)
311          << NewParam->getDefaultArgRange();
312        Diag(Old->getLocation(), diag::note_template_prev_declaration)
313          << false;
314      } else if (New->getTemplateSpecializationKind()
315                   != TSK_ImplicitInstantiation &&
316                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
317        // C++ [temp.expr.spec]p21:
318        //   Default function arguments shall not be specified in a declaration
319        //   or a definition for one of the following explicit specializations:
320        //     - the explicit specialization of a function template;
321        //     - the explicit specialization of a member function template;
322        //     - the explicit specialization of a member function of a class
323        //       template where the class template specialization to which the
324        //       member function specialization belongs is implicitly
325        //       instantiated.
326        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
327          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
328          << New->getDeclName()
329          << NewParam->getDefaultArgRange();
330      } else if (New->getDeclContext()->isDependentContext()) {
331        // C++ [dcl.fct.default]p6 (DR217):
332        //   Default arguments for a member function of a class template shall
333        //   be specified on the initial declaration of the member function
334        //   within the class template.
335        //
336        // Reading the tea leaves a bit in DR217 and its reference to DR205
337        // leads me to the conclusion that one cannot add default function
338        // arguments for an out-of-line definition of a member function of a
339        // dependent type.
340        int WhichKind = 2;
341        if (CXXRecordDecl *Record
342              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
343          if (Record->getDescribedClassTemplate())
344            WhichKind = 0;
345          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
346            WhichKind = 1;
347          else
348            WhichKind = 2;
349        }
350
351        Diag(NewParam->getLocation(),
352             diag::err_param_default_argument_member_template_redecl)
353          << WhichKind
354          << NewParam->getDefaultArgRange();
355      }
356    }
357  }
358
359  if (CheckEquivalentExceptionSpec(
360          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
361          New->getType()->getAs<FunctionProtoType>(), New->getLocation()))
362    Invalid = true;
363
364  return Invalid;
365}
366
367/// CheckCXXDefaultArguments - Verify that the default arguments for a
368/// function declaration are well-formed according to C++
369/// [dcl.fct.default].
370void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
371  unsigned NumParams = FD->getNumParams();
372  unsigned p;
373
374  // Find first parameter with a default argument
375  for (p = 0; p < NumParams; ++p) {
376    ParmVarDecl *Param = FD->getParamDecl(p);
377    if (Param->hasDefaultArg())
378      break;
379  }
380
381  // C++ [dcl.fct.default]p4:
382  //   In a given function declaration, all parameters
383  //   subsequent to a parameter with a default argument shall
384  //   have default arguments supplied in this or previous
385  //   declarations. A default argument shall not be redefined
386  //   by a later declaration (not even to the same value).
387  unsigned LastMissingDefaultArg = 0;
388  for (; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (!Param->hasDefaultArg()) {
391      if (Param->isInvalidDecl())
392        /* We already complained about this parameter. */;
393      else if (Param->getIdentifier())
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing_name)
396          << Param->getIdentifier();
397      else
398        Diag(Param->getLocation(),
399             diag::err_param_default_argument_missing);
400
401      LastMissingDefaultArg = p;
402    }
403  }
404
405  if (LastMissingDefaultArg > 0) {
406    // Some default arguments were missing. Clear out all of the
407    // default arguments up to (and including) the last missing
408    // default argument, so that we leave the function parameters
409    // in a semantically valid state.
410    for (p = 0; p <= LastMissingDefaultArg; ++p) {
411      ParmVarDecl *Param = FD->getParamDecl(p);
412      if (Param->hasDefaultArg()) {
413        if (!Param->hasUnparsedDefaultArg())
414          Param->getDefaultArg()->Destroy(Context);
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  CXXRecordDecl *CurDecl;
428  if (SS && SS->isSet() && !SS->isInvalid()) {
429    DeclContext *DC = computeDeclContext(*SS, true);
430    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
431  } else
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
433
434  if (CurDecl)
435    return &II == CurDecl->getIdentifier();
436  else
437    return false;
438}
439
440/// \brief Check the validity of a C++ base class specifier.
441///
442/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
443/// and returns NULL otherwise.
444CXXBaseSpecifier *
445Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
446                         SourceRange SpecifierRange,
447                         bool Virtual, AccessSpecifier Access,
448                         QualType BaseType,
449                         SourceLocation BaseLoc) {
450  // C++ [class.union]p1:
451  //   A union shall not have base classes.
452  if (Class->isUnion()) {
453    Diag(Class->getLocation(), diag::err_base_clause_on_union)
454      << SpecifierRange;
455    return 0;
456  }
457
458  if (BaseType->isDependentType())
459    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
460                                Class->getTagKind() == RecordDecl::TK_class,
461                                Access, BaseType);
462
463  // Base specifiers must be record types.
464  if (!BaseType->isRecordType()) {
465    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
466    return 0;
467  }
468
469  // C++ [class.union]p1:
470  //   A union shall not be used as a base class.
471  if (BaseType->isUnionType()) {
472    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
473    return 0;
474  }
475
476  // C++ [class.derived]p2:
477  //   The class-name in a base-specifier shall not be an incompletely
478  //   defined class.
479  if (RequireCompleteType(BaseLoc, BaseType,
480                          PDiag(diag::err_incomplete_base_class)
481                            << SpecifierRange))
482    return 0;
483
484  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
485  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
486  assert(BaseDecl && "Record type has no declaration");
487  BaseDecl = BaseDecl->getDefinition(Context);
488  assert(BaseDecl && "Base type is not incomplete, but has no definition");
489  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
490  assert(CXXBaseDecl && "Base type is not a C++ type");
491
492  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
493  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
494    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
495    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
496      << BaseType;
497    return 0;
498  }
499
500  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
501
502  // Create the base specifier.
503  // FIXME: Allocate via ASTContext?
504  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
505                              Class->getTagKind() == RecordDecl::TK_class,
506                              Access, BaseType);
507}
508
509void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
510                                          const CXXRecordDecl *BaseClass,
511                                          bool BaseIsVirtual) {
512  // A class with a non-empty base class is not empty.
513  // FIXME: Standard ref?
514  if (!BaseClass->isEmpty())
515    Class->setEmpty(false);
516
517  // C++ [class.virtual]p1:
518  //   A class that [...] inherits a virtual function is called a polymorphic
519  //   class.
520  if (BaseClass->isPolymorphic())
521    Class->setPolymorphic(true);
522
523  // C++ [dcl.init.aggr]p1:
524  //   An aggregate is [...] a class with [...] no base classes [...].
525  Class->setAggregate(false);
526
527  // C++ [class]p4:
528  //   A POD-struct is an aggregate class...
529  Class->setPOD(false);
530
531  if (BaseIsVirtual) {
532    // C++ [class.ctor]p5:
533    //   A constructor is trivial if its class has no virtual base classes.
534    Class->setHasTrivialConstructor(false);
535
536    // C++ [class.copy]p6:
537    //   A copy constructor is trivial if its class has no virtual base classes.
538    Class->setHasTrivialCopyConstructor(false);
539
540    // C++ [class.copy]p11:
541    //   A copy assignment operator is trivial if its class has no virtual
542    //   base classes.
543    Class->setHasTrivialCopyAssignment(false);
544
545    // C++0x [meta.unary.prop] is_empty:
546    //    T is a class type, but not a union type, with ... no virtual base
547    //    classes
548    Class->setEmpty(false);
549  } else {
550    // C++ [class.ctor]p5:
551    //   A constructor is trivial if all the direct base classes of its
552    //   class have trivial constructors.
553    if (!BaseClass->hasTrivialConstructor())
554      Class->setHasTrivialConstructor(false);
555
556    // C++ [class.copy]p6:
557    //   A copy constructor is trivial if all the direct base classes of its
558    //   class have trivial copy constructors.
559    if (!BaseClass->hasTrivialCopyConstructor())
560      Class->setHasTrivialCopyConstructor(false);
561
562    // C++ [class.copy]p11:
563    //   A copy assignment operator is trivial if all the direct base classes
564    //   of its class have trivial copy assignment operators.
565    if (!BaseClass->hasTrivialCopyAssignment())
566      Class->setHasTrivialCopyAssignment(false);
567  }
568
569  // C++ [class.ctor]p3:
570  //   A destructor is trivial if all the direct base classes of its class
571  //   have trivial destructors.
572  if (!BaseClass->hasTrivialDestructor())
573    Class->setHasTrivialDestructor(false);
574}
575
576/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
577/// one entry in the base class list of a class specifier, for
578/// example:
579///    class foo : public bar, virtual private baz {
580/// 'public bar' and 'virtual private baz' are each base-specifiers.
581Sema::BaseResult
582Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
583                         bool Virtual, AccessSpecifier Access,
584                         TypeTy *basetype, SourceLocation BaseLoc) {
585  if (!classdecl)
586    return true;
587
588  AdjustDeclIfTemplate(classdecl);
589  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
590  QualType BaseType = GetTypeFromParser(basetype);
591  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
592                                                      Virtual, Access,
593                                                      BaseType, BaseLoc))
594    return BaseSpec;
595
596  return true;
597}
598
599/// \brief Performs the actual work of attaching the given base class
600/// specifiers to a C++ class.
601bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
602                                unsigned NumBases) {
603 if (NumBases == 0)
604    return false;
605
606  // Used to keep track of which base types we have already seen, so
607  // that we can properly diagnose redundant direct base types. Note
608  // that the key is always the unqualified canonical type of the base
609  // class.
610  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
611
612  // Copy non-redundant base specifiers into permanent storage.
613  unsigned NumGoodBases = 0;
614  bool Invalid = false;
615  for (unsigned idx = 0; idx < NumBases; ++idx) {
616    QualType NewBaseType
617      = Context.getCanonicalType(Bases[idx]->getType());
618    NewBaseType = NewBaseType.getLocalUnqualifiedType();
619
620    if (KnownBaseTypes[NewBaseType]) {
621      // C++ [class.mi]p3:
622      //   A class shall not be specified as a direct base class of a
623      //   derived class more than once.
624      Diag(Bases[idx]->getSourceRange().getBegin(),
625           diag::err_duplicate_base_class)
626        << KnownBaseTypes[NewBaseType]->getType()
627        << Bases[idx]->getSourceRange();
628
629      // Delete the duplicate base class specifier; we're going to
630      // overwrite its pointer later.
631      Context.Deallocate(Bases[idx]);
632
633      Invalid = true;
634    } else {
635      // Okay, add this new base class.
636      KnownBaseTypes[NewBaseType] = Bases[idx];
637      Bases[NumGoodBases++] = Bases[idx];
638    }
639  }
640
641  // Attach the remaining base class specifiers to the derived class.
642  Class->setBases(Context, Bases, NumGoodBases);
643
644  // Delete the remaining (good) base class specifiers, since their
645  // data has been copied into the CXXRecordDecl.
646  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
647    Context.Deallocate(Bases[idx]);
648
649  return Invalid;
650}
651
652/// ActOnBaseSpecifiers - Attach the given base specifiers to the
653/// class, after checking whether there are any duplicate base
654/// classes.
655void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
656                               unsigned NumBases) {
657  if (!ClassDecl || !Bases || !NumBases)
658    return;
659
660  AdjustDeclIfTemplate(ClassDecl);
661  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
662                       (CXXBaseSpecifier**)(Bases), NumBases);
663}
664
665/// \brief Determine whether the type \p Derived is a C++ class that is
666/// derived from the type \p Base.
667bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
668  if (!getLangOptions().CPlusPlus)
669    return false;
670
671  const RecordType *DerivedRT = Derived->getAs<RecordType>();
672  if (!DerivedRT)
673    return false;
674
675  const RecordType *BaseRT = Base->getAs<RecordType>();
676  if (!BaseRT)
677    return false;
678
679  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
680  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
681  return DerivedRD->isDerivedFrom(BaseRD);
682}
683
684/// \brief Determine whether the type \p Derived is a C++ class that is
685/// derived from the type \p Base.
686bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
687  if (!getLangOptions().CPlusPlus)
688    return false;
689
690  const RecordType *DerivedRT = Derived->getAs<RecordType>();
691  if (!DerivedRT)
692    return false;
693
694  const RecordType *BaseRT = Base->getAs<RecordType>();
695  if (!BaseRT)
696    return false;
697
698  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
699  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
700  return DerivedRD->isDerivedFrom(BaseRD, Paths);
701}
702
703/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
704/// conversion (where Derived and Base are class types) is
705/// well-formed, meaning that the conversion is unambiguous (and
706/// that all of the base classes are accessible). Returns true
707/// and emits a diagnostic if the code is ill-formed, returns false
708/// otherwise. Loc is the location where this routine should point to
709/// if there is an error, and Range is the source range to highlight
710/// if there is an error.
711bool
712Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
713                                   unsigned InaccessibleBaseID,
714                                   unsigned AmbigiousBaseConvID,
715                                   SourceLocation Loc, SourceRange Range,
716                                   DeclarationName Name) {
717  // First, determine whether the path from Derived to Base is
718  // ambiguous. This is slightly more expensive than checking whether
719  // the Derived to Base conversion exists, because here we need to
720  // explore multiple paths to determine if there is an ambiguity.
721  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
722                     /*DetectVirtual=*/false);
723  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
724  assert(DerivationOkay &&
725         "Can only be used with a derived-to-base conversion");
726  (void)DerivationOkay;
727
728  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
729    if (InaccessibleBaseID == 0)
730      return false;
731    // Check that the base class can be accessed.
732    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
733                                Name);
734  }
735
736  // We know that the derived-to-base conversion is ambiguous, and
737  // we're going to produce a diagnostic. Perform the derived-to-base
738  // search just one more time to compute all of the possible paths so
739  // that we can print them out. This is more expensive than any of
740  // the previous derived-to-base checks we've done, but at this point
741  // performance isn't as much of an issue.
742  Paths.clear();
743  Paths.setRecordingPaths(true);
744  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
745  assert(StillOkay && "Can only be used with a derived-to-base conversion");
746  (void)StillOkay;
747
748  // Build up a textual representation of the ambiguous paths, e.g.,
749  // D -> B -> A, that will be used to illustrate the ambiguous
750  // conversions in the diagnostic. We only print one of the paths
751  // to each base class subobject.
752  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
753
754  Diag(Loc, AmbigiousBaseConvID)
755  << Derived << Base << PathDisplayStr << Range << Name;
756  return true;
757}
758
759bool
760Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
761                                   SourceLocation Loc, SourceRange Range,
762                                   bool IgnoreAccess) {
763  return CheckDerivedToBaseConversion(Derived, Base,
764                                      IgnoreAccess ? 0 :
765                                        diag::err_conv_to_inaccessible_base,
766                                      diag::err_ambiguous_derived_to_base_conv,
767                                      Loc, Range, DeclarationName());
768}
769
770
771/// @brief Builds a string representing ambiguous paths from a
772/// specific derived class to different subobjects of the same base
773/// class.
774///
775/// This function builds a string that can be used in error messages
776/// to show the different paths that one can take through the
777/// inheritance hierarchy to go from the derived class to different
778/// subobjects of a base class. The result looks something like this:
779/// @code
780/// struct D -> struct B -> struct A
781/// struct D -> struct C -> struct A
782/// @endcode
783std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
784  std::string PathDisplayStr;
785  std::set<unsigned> DisplayedPaths;
786  for (CXXBasePaths::paths_iterator Path = Paths.begin();
787       Path != Paths.end(); ++Path) {
788    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
789      // We haven't displayed a path to this particular base
790      // class subobject yet.
791      PathDisplayStr += "\n    ";
792      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
793      for (CXXBasePath::const_iterator Element = Path->begin();
794           Element != Path->end(); ++Element)
795        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
796    }
797  }
798
799  return PathDisplayStr;
800}
801
802//===----------------------------------------------------------------------===//
803// C++ class member Handling
804//===----------------------------------------------------------------------===//
805
806/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
807/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
808/// bitfield width if there is one and 'InitExpr' specifies the initializer if
809/// any.
810Sema::DeclPtrTy
811Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
812                               MultiTemplateParamsArg TemplateParameterLists,
813                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
814                               bool Deleted) {
815  const DeclSpec &DS = D.getDeclSpec();
816  DeclarationName Name = GetNameForDeclarator(D);
817  Expr *BitWidth = static_cast<Expr*>(BW);
818  Expr *Init = static_cast<Expr*>(InitExpr);
819  SourceLocation Loc = D.getIdentifierLoc();
820
821  bool isFunc = D.isFunctionDeclarator();
822
823  assert(!DS.isFriendSpecified());
824
825  // C++ 9.2p6: A member shall not be declared to have automatic storage
826  // duration (auto, register) or with the extern storage-class-specifier.
827  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
828  // data members and cannot be applied to names declared const or static,
829  // and cannot be applied to reference members.
830  switch (DS.getStorageClassSpec()) {
831    case DeclSpec::SCS_unspecified:
832    case DeclSpec::SCS_typedef:
833    case DeclSpec::SCS_static:
834      // FALL THROUGH.
835      break;
836    case DeclSpec::SCS_mutable:
837      if (isFunc) {
838        if (DS.getStorageClassSpecLoc().isValid())
839          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
840        else
841          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
842
843        // FIXME: It would be nicer if the keyword was ignored only for this
844        // declarator. Otherwise we could get follow-up errors.
845        D.getMutableDeclSpec().ClearStorageClassSpecs();
846      } else {
847        QualType T = GetTypeForDeclarator(D, S);
848        diag::kind err = static_cast<diag::kind>(0);
849        if (T->isReferenceType())
850          err = diag::err_mutable_reference;
851        else if (T.isConstQualified())
852          err = diag::err_mutable_const;
853        if (err != 0) {
854          if (DS.getStorageClassSpecLoc().isValid())
855            Diag(DS.getStorageClassSpecLoc(), err);
856          else
857            Diag(DS.getThreadSpecLoc(), err);
858          // FIXME: It would be nicer if the keyword was ignored only for this
859          // declarator. Otherwise we could get follow-up errors.
860          D.getMutableDeclSpec().ClearStorageClassSpecs();
861        }
862      }
863      break;
864    default:
865      if (DS.getStorageClassSpecLoc().isValid())
866        Diag(DS.getStorageClassSpecLoc(),
867             diag::err_storageclass_invalid_for_member);
868      else
869        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
870      D.getMutableDeclSpec().ClearStorageClassSpecs();
871  }
872
873  if (!isFunc &&
874      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
875      D.getNumTypeObjects() == 0) {
876    // Check also for this case:
877    //
878    // typedef int f();
879    // f a;
880    //
881    QualType TDType = GetTypeFromParser(DS.getTypeRep());
882    isFunc = TDType->isFunctionType();
883  }
884
885  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
886                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
887                      !isFunc);
888
889  Decl *Member;
890  if (isInstField) {
891    // FIXME: Check for template parameters!
892    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
893                         AS);
894    assert(Member && "HandleField never returns null");
895  } else {
896    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
897               .getAs<Decl>();
898    if (!Member) {
899      if (BitWidth) DeleteExpr(BitWidth);
900      return DeclPtrTy();
901    }
902
903    // Non-instance-fields can't have a bitfield.
904    if (BitWidth) {
905      if (Member->isInvalidDecl()) {
906        // don't emit another diagnostic.
907      } else if (isa<VarDecl>(Member)) {
908        // C++ 9.6p3: A bit-field shall not be a static member.
909        // "static member 'A' cannot be a bit-field"
910        Diag(Loc, diag::err_static_not_bitfield)
911          << Name << BitWidth->getSourceRange();
912      } else if (isa<TypedefDecl>(Member)) {
913        // "typedef member 'x' cannot be a bit-field"
914        Diag(Loc, diag::err_typedef_not_bitfield)
915          << Name << BitWidth->getSourceRange();
916      } else {
917        // A function typedef ("typedef int f(); f a;").
918        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
919        Diag(Loc, diag::err_not_integral_type_bitfield)
920          << Name << cast<ValueDecl>(Member)->getType()
921          << BitWidth->getSourceRange();
922      }
923
924      DeleteExpr(BitWidth);
925      BitWidth = 0;
926      Member->setInvalidDecl();
927    }
928
929    Member->setAccess(AS);
930
931    // If we have declared a member function template, set the access of the
932    // templated declaration as well.
933    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
934      FunTmpl->getTemplatedDecl()->setAccess(AS);
935  }
936
937  assert((Name || isInstField) && "No identifier for non-field ?");
938
939  if (Init)
940    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
941  if (Deleted) // FIXME: Source location is not very good.
942    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
943
944  if (isInstField) {
945    FieldCollector->Add(cast<FieldDecl>(Member));
946    return DeclPtrTy();
947  }
948  return DeclPtrTy::make(Member);
949}
950
951/// ActOnMemInitializer - Handle a C++ member initializer.
952Sema::MemInitResult
953Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
954                          Scope *S,
955                          const CXXScopeSpec &SS,
956                          IdentifierInfo *MemberOrBase,
957                          TypeTy *TemplateTypeTy,
958                          SourceLocation IdLoc,
959                          SourceLocation LParenLoc,
960                          ExprTy **Args, unsigned NumArgs,
961                          SourceLocation *CommaLocs,
962                          SourceLocation RParenLoc) {
963  if (!ConstructorD)
964    return true;
965
966  AdjustDeclIfTemplate(ConstructorD);
967
968  CXXConstructorDecl *Constructor
969    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
970  if (!Constructor) {
971    // The user wrote a constructor initializer on a function that is
972    // not a C++ constructor. Ignore the error for now, because we may
973    // have more member initializers coming; we'll diagnose it just
974    // once in ActOnMemInitializers.
975    return true;
976  }
977
978  CXXRecordDecl *ClassDecl = Constructor->getParent();
979
980  // C++ [class.base.init]p2:
981  //   Names in a mem-initializer-id are looked up in the scope of the
982  //   constructor’s class and, if not found in that scope, are looked
983  //   up in the scope containing the constructor’s
984  //   definition. [Note: if the constructor’s class contains a member
985  //   with the same name as a direct or virtual base class of the
986  //   class, a mem-initializer-id naming the member or base class and
987  //   composed of a single identifier refers to the class member. A
988  //   mem-initializer-id for the hidden base class may be specified
989  //   using a qualified name. ]
990  if (!SS.getScopeRep() && !TemplateTypeTy) {
991    // Look for a member, first.
992    FieldDecl *Member = 0;
993    DeclContext::lookup_result Result
994      = ClassDecl->lookup(MemberOrBase);
995    if (Result.first != Result.second)
996      Member = dyn_cast<FieldDecl>(*Result.first);
997
998    // FIXME: Handle members of an anonymous union.
999
1000    if (Member)
1001      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1002                                    LParenLoc, RParenLoc);
1003  }
1004  // It didn't name a member, so see if it names a class.
1005  QualType BaseType;
1006  TypeSourceInfo *TInfo = 0;
1007
1008  if (TemplateTypeTy) {
1009    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1010  } else {
1011    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1012    LookupParsedName(R, S, &SS);
1013
1014    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1015    if (!TyD) {
1016      if (R.isAmbiguous()) return true;
1017
1018      Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1019        << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1020      return true;
1021    }
1022
1023    BaseType = Context.getTypeDeclType(TyD);
1024    if (SS.isSet()) {
1025      NestedNameSpecifier *Qualifier =
1026        static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1027
1028      // FIXME: preserve source range information
1029      BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1030    }
1031  }
1032
1033  if (!TInfo)
1034    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1035
1036  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1037                              LParenLoc, RParenLoc, ClassDecl);
1038}
1039
1040/// Checks an initializer expression for use of uninitialized fields, such as
1041/// containing the field that is being initialized. Returns true if there is an
1042/// uninitialized field was used an updates the SourceLocation parameter; false
1043/// otherwise.
1044static bool InitExprContainsUninitializedFields(const Stmt* S,
1045                                                const FieldDecl* LhsField,
1046                                                SourceLocation* L) {
1047  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1048  if (ME) {
1049    const NamedDecl* RhsField = ME->getMemberDecl();
1050    if (RhsField == LhsField) {
1051      // Initializing a field with itself. Throw a warning.
1052      // But wait; there are exceptions!
1053      // Exception #1:  The field may not belong to this record.
1054      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1055      const Expr* base = ME->getBase();
1056      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1057        // Even though the field matches, it does not belong to this record.
1058        return false;
1059      }
1060      // None of the exceptions triggered; return true to indicate an
1061      // uninitialized field was used.
1062      *L = ME->getMemberLoc();
1063      return true;
1064    }
1065  }
1066  bool found = false;
1067  for (Stmt::const_child_iterator it = S->child_begin();
1068       it != S->child_end() && found == false;
1069       ++it) {
1070    if (isa<CallExpr>(S)) {
1071      // Do not descend into function calls or constructors, as the use
1072      // of an uninitialized field may be valid. One would have to inspect
1073      // the contents of the function/ctor to determine if it is safe or not.
1074      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1075      // may be safe, depending on what the function/ctor does.
1076      continue;
1077    }
1078    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1079  }
1080  return found;
1081}
1082
1083Sema::MemInitResult
1084Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1085                             unsigned NumArgs, SourceLocation IdLoc,
1086                             SourceLocation LParenLoc,
1087                             SourceLocation RParenLoc) {
1088  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1089  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1090  ExprTemporaries.clear();
1091
1092  // Diagnose value-uses of fields to initialize themselves, e.g.
1093  //   foo(foo)
1094  // where foo is not also a parameter to the constructor.
1095  // TODO: implement -Wuninitialized and fold this into that framework.
1096  for (unsigned i = 0; i < NumArgs; ++i) {
1097    SourceLocation L;
1098    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1099      // FIXME: Return true in the case when other fields are used before being
1100      // uninitialized. For example, let this field be the i'th field. When
1101      // initializing the i'th field, throw a warning if any of the >= i'th
1102      // fields are used, as they are not yet initialized.
1103      // Right now we are only handling the case where the i'th field uses
1104      // itself in its initializer.
1105      Diag(L, diag::warn_field_is_uninit);
1106    }
1107  }
1108
1109  bool HasDependentArg = false;
1110  for (unsigned i = 0; i < NumArgs; i++)
1111    HasDependentArg |= Args[i]->isTypeDependent();
1112
1113  CXXConstructorDecl *C = 0;
1114  QualType FieldType = Member->getType();
1115  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1116    FieldType = Array->getElementType();
1117  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1118  if (FieldType->isDependentType()) {
1119    // Can't check init for dependent type.
1120  } else if (FieldType->isRecordType()) {
1121    // Member is a record (struct/union/class), so pass the initializer
1122    // arguments down to the record's constructor.
1123    if (!HasDependentArg) {
1124      C = PerformInitializationByConstructor(FieldType,
1125                                             MultiExprArg(*this,
1126                                                          (void**)Args,
1127                                                          NumArgs),
1128                                             IdLoc,
1129                                             SourceRange(IdLoc, RParenLoc),
1130                                             Member->getDeclName(),
1131                  InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc),
1132                                             ConstructorArgs);
1133
1134      if (C) {
1135        // Take over the constructor arguments as our own.
1136        NumArgs = ConstructorArgs.size();
1137        Args = (Expr **)ConstructorArgs.take();
1138      }
1139    }
1140  } else if (NumArgs != 1 && NumArgs != 0) {
1141    // The member type is not a record type (or an array of record
1142    // types), so it can be only be default- or copy-initialized.
1143    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1144                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1145  } else if (!HasDependentArg) {
1146    Expr *NewExp;
1147    if (NumArgs == 0) {
1148      if (FieldType->isReferenceType()) {
1149        Diag(IdLoc, diag::err_null_intialized_reference_member)
1150              << Member->getDeclName();
1151        return Diag(Member->getLocation(), diag::note_declared_at);
1152      }
1153      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1154      NumArgs = 1;
1155    }
1156    else
1157      NewExp = (Expr*)Args[0];
1158    if (!Member->isInvalidDecl() &&
1159        PerformCopyInitialization(NewExp, FieldType, AA_Passing))
1160      return true;
1161    Args[0] = NewExp;
1162  }
1163
1164  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1165  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1166  ExprTemporaries.clear();
1167
1168  // FIXME: Perform direct initialization of the member.
1169  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1170                                                  C, LParenLoc, (Expr **)Args,
1171                                                  NumArgs, RParenLoc);
1172}
1173
1174Sema::MemInitResult
1175Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1176                           Expr **Args, unsigned NumArgs,
1177                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1178                           CXXRecordDecl *ClassDecl) {
1179  bool HasDependentArg = false;
1180  for (unsigned i = 0; i < NumArgs; i++)
1181    HasDependentArg |= Args[i]->isTypeDependent();
1182
1183  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1184  if (!BaseType->isDependentType()) {
1185    if (!BaseType->isRecordType())
1186      return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1187        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1188
1189    // C++ [class.base.init]p2:
1190    //   [...] Unless the mem-initializer-id names a nonstatic data
1191    //   member of the constructor’s class or a direct or virtual base
1192    //   of that class, the mem-initializer is ill-formed. A
1193    //   mem-initializer-list can initialize a base class using any
1194    //   name that denotes that base class type.
1195
1196    // First, check for a direct base class.
1197    const CXXBaseSpecifier *DirectBaseSpec = 0;
1198    for (CXXRecordDecl::base_class_const_iterator Base =
1199         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1200      if (Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1201        // We found a direct base of this type. That's what we're
1202        // initializing.
1203        DirectBaseSpec = &*Base;
1204        break;
1205      }
1206    }
1207
1208    // Check for a virtual base class.
1209    // FIXME: We might be able to short-circuit this if we know in advance that
1210    // there are no virtual bases.
1211    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1212    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1213      // We haven't found a base yet; search the class hierarchy for a
1214      // virtual base class.
1215      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1216                         /*DetectVirtual=*/false);
1217      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1218        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1219             Path != Paths.end(); ++Path) {
1220          if (Path->back().Base->isVirtual()) {
1221            VirtualBaseSpec = Path->back().Base;
1222            break;
1223          }
1224        }
1225      }
1226    }
1227
1228    // C++ [base.class.init]p2:
1229    //   If a mem-initializer-id is ambiguous because it designates both
1230    //   a direct non-virtual base class and an inherited virtual base
1231    //   class, the mem-initializer is ill-formed.
1232    if (DirectBaseSpec && VirtualBaseSpec)
1233      return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1234        << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1235    // C++ [base.class.init]p2:
1236    // Unless the mem-initializer-id names a nonstatic data membeer of the
1237    // constructor's class ot a direst or virtual base of that class, the
1238    // mem-initializer is ill-formed.
1239    if (!DirectBaseSpec && !VirtualBaseSpec)
1240      return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1241        << BaseType << ClassDecl->getNameAsCString()
1242        << BaseTInfo->getTypeLoc().getSourceRange();
1243  }
1244
1245  CXXConstructorDecl *C = 0;
1246  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1247  if (!BaseType->isDependentType() && !HasDependentArg) {
1248    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1249                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1250
1251    C = PerformInitializationByConstructor(BaseType,
1252                                           MultiExprArg(*this,
1253                                                        (void**)Args, NumArgs),
1254                                           BaseLoc,
1255                                           SourceRange(BaseLoc, RParenLoc),
1256                                           Name,
1257                InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc),
1258                                           ConstructorArgs);
1259    if (C) {
1260      // Take over the constructor arguments as our own.
1261      NumArgs = ConstructorArgs.size();
1262      Args = (Expr **)ConstructorArgs.take();
1263    }
1264  }
1265
1266  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1267  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1268  ExprTemporaries.clear();
1269
1270  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo, C,
1271                                                  LParenLoc, (Expr **)Args,
1272                                                  NumArgs, RParenLoc);
1273}
1274
1275bool
1276Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1277                              CXXBaseOrMemberInitializer **Initializers,
1278                              unsigned NumInitializers,
1279                              bool IsImplicitConstructor) {
1280  // We need to build the initializer AST according to order of construction
1281  // and not what user specified in the Initializers list.
1282  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1283  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1284  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1285  bool HasDependentBaseInit = false;
1286  bool HadError = false;
1287
1288  for (unsigned i = 0; i < NumInitializers; i++) {
1289    CXXBaseOrMemberInitializer *Member = Initializers[i];
1290    if (Member->isBaseInitializer()) {
1291      if (Member->getBaseClass()->isDependentType())
1292        HasDependentBaseInit = true;
1293      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1294    } else {
1295      AllBaseFields[Member->getMember()] = Member;
1296    }
1297  }
1298
1299  if (HasDependentBaseInit) {
1300    // FIXME. This does not preserve the ordering of the initializers.
1301    // Try (with -Wreorder)
1302    // template<class X> struct A {};
1303    // template<class X> struct B : A<X> {
1304    //   B() : x1(10), A<X>() {}
1305    //   int x1;
1306    // };
1307    // B<int> x;
1308    // On seeing one dependent type, we should essentially exit this routine
1309    // while preserving user-declared initializer list. When this routine is
1310    // called during instantiatiation process, this routine will rebuild the
1311    // ordered initializer list correctly.
1312
1313    // If we have a dependent base initialization, we can't determine the
1314    // association between initializers and bases; just dump the known
1315    // initializers into the list, and don't try to deal with other bases.
1316    for (unsigned i = 0; i < NumInitializers; i++) {
1317      CXXBaseOrMemberInitializer *Member = Initializers[i];
1318      if (Member->isBaseInitializer())
1319        AllToInit.push_back(Member);
1320    }
1321  } else {
1322    // Push virtual bases before others.
1323    for (CXXRecordDecl::base_class_iterator VBase =
1324         ClassDecl->vbases_begin(),
1325         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1326      if (VBase->getType()->isDependentType())
1327        continue;
1328      if (CXXBaseOrMemberInitializer *Value
1329            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1330        AllToInit.push_back(Value);
1331      }
1332      else {
1333        CXXRecordDecl *VBaseDecl =
1334          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1335        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1336        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1337        if (!Ctor) {
1338          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1339            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1340            << 0 << VBase->getType();
1341          Diag(VBaseDecl->getLocation(), diag::note_previous_decl)
1342            << Context.getTagDeclType(VBaseDecl);
1343          HadError = true;
1344          continue;
1345        }
1346
1347        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1348        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1349                                    Constructor->getLocation(), CtorArgs))
1350          continue;
1351
1352        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1353
1354        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1355        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1356        // necessary.
1357        // FIXME: Is there any better source-location information we can give?
1358        ExprTemporaries.clear();
1359        CXXBaseOrMemberInitializer *Member =
1360          new (Context) CXXBaseOrMemberInitializer(Context,
1361                             Context.getTrivialTypeSourceInfo(VBase->getType(),
1362                                                              SourceLocation()),
1363                                                   Ctor,
1364                                                   SourceLocation(),
1365                                                   CtorArgs.takeAs<Expr>(),
1366                                                   CtorArgs.size(),
1367                                                   SourceLocation());
1368        AllToInit.push_back(Member);
1369      }
1370    }
1371
1372    for (CXXRecordDecl::base_class_iterator Base =
1373         ClassDecl->bases_begin(),
1374         E = ClassDecl->bases_end(); Base != E; ++Base) {
1375      // Virtuals are in the virtual base list and already constructed.
1376      if (Base->isVirtual())
1377        continue;
1378      // Skip dependent types.
1379      if (Base->getType()->isDependentType())
1380        continue;
1381      if (CXXBaseOrMemberInitializer *Value
1382            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1383        AllToInit.push_back(Value);
1384      }
1385      else {
1386        CXXRecordDecl *BaseDecl =
1387          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1388        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1389         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1390        if (!Ctor) {
1391          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1392            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1393            << 0 << Base->getType();
1394          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1395            << Context.getTagDeclType(BaseDecl);
1396          HadError = true;
1397          continue;
1398        }
1399
1400        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1401        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1402                                     Constructor->getLocation(), CtorArgs))
1403          continue;
1404
1405        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1406
1407        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1408        // subexpression so we can wrap it in a CXXExprWithTemporaries if
1409        // necessary.
1410        // FIXME: Is there any better source-location information we can give?
1411        ExprTemporaries.clear();
1412        CXXBaseOrMemberInitializer *Member =
1413          new (Context) CXXBaseOrMemberInitializer(Context,
1414                             Context.getTrivialTypeSourceInfo(Base->getType(),
1415                                                              SourceLocation()),
1416                                                   Ctor,
1417                                                   SourceLocation(),
1418                                                   CtorArgs.takeAs<Expr>(),
1419                                                   CtorArgs.size(),
1420                                                   SourceLocation());
1421        AllToInit.push_back(Member);
1422      }
1423    }
1424  }
1425
1426  // non-static data members.
1427  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1428       E = ClassDecl->field_end(); Field != E; ++Field) {
1429    if ((*Field)->isAnonymousStructOrUnion()) {
1430      if (const RecordType *FieldClassType =
1431          Field->getType()->getAs<RecordType>()) {
1432        CXXRecordDecl *FieldClassDecl
1433          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1434        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1435            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1436          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1437            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1438            // set to the anonymous union data member used in the initializer
1439            // list.
1440            Value->setMember(*Field);
1441            Value->setAnonUnionMember(*FA);
1442            AllToInit.push_back(Value);
1443            break;
1444          }
1445        }
1446      }
1447      continue;
1448    }
1449    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1450      AllToInit.push_back(Value);
1451      continue;
1452    }
1453
1454    if ((*Field)->getType()->isDependentType())
1455      continue;
1456
1457    QualType FT = Context.getBaseElementType((*Field)->getType());
1458    if (const RecordType* RT = FT->getAs<RecordType>()) {
1459      CXXConstructorDecl *Ctor =
1460        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1461      if (!Ctor) {
1462        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1463          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1464          << 1 << (*Field)->getDeclName();
1465        Diag(Field->getLocation(), diag::note_field_decl);
1466        Diag(RT->getDecl()->getLocation(), diag::note_previous_decl)
1467          << Context.getTagDeclType(RT->getDecl());
1468        HadError = true;
1469        continue;
1470      }
1471
1472      if (FT.isConstQualified() && Ctor->isTrivial()) {
1473        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1474          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1475          << 1 << (*Field)->getDeclName();
1476        Diag((*Field)->getLocation(), diag::note_declared_at);
1477        HadError = true;
1478      }
1479
1480      // Don't create initializers for trivial constructors, since they don't
1481      // actually need to be run.
1482      if (Ctor->isTrivial())
1483        continue;
1484
1485      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1486      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1487                                  Constructor->getLocation(), CtorArgs))
1488        continue;
1489
1490      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1491      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1492      ExprTemporaries.clear();
1493      CXXBaseOrMemberInitializer *Member =
1494        new (Context) CXXBaseOrMemberInitializer(Context,
1495                                                 *Field, SourceLocation(),
1496                                                 Ctor,
1497                                                 SourceLocation(),
1498                                                 CtorArgs.takeAs<Expr>(),
1499                                                 CtorArgs.size(),
1500                                                 SourceLocation());
1501
1502      AllToInit.push_back(Member);
1503      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1504    }
1505    else if (FT->isReferenceType()) {
1506      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1507        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1508        << 0 << (*Field)->getDeclName();
1509      Diag((*Field)->getLocation(), diag::note_declared_at);
1510      HadError = true;
1511    }
1512    else if (FT.isConstQualified()) {
1513      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1514        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1515        << 1 << (*Field)->getDeclName();
1516      Diag((*Field)->getLocation(), diag::note_declared_at);
1517      HadError = true;
1518    }
1519  }
1520
1521  NumInitializers = AllToInit.size();
1522  if (NumInitializers > 0) {
1523    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1524    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1525      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1526
1527    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1528    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1529      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1530  }
1531
1532  return HadError;
1533}
1534
1535static void *GetKeyForTopLevelField(FieldDecl *Field) {
1536  // For anonymous unions, use the class declaration as the key.
1537  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1538    if (RT->getDecl()->isAnonymousStructOrUnion())
1539      return static_cast<void *>(RT->getDecl());
1540  }
1541  return static_cast<void *>(Field);
1542}
1543
1544static void *GetKeyForBase(QualType BaseType) {
1545  if (const RecordType *RT = BaseType->getAs<RecordType>())
1546    return (void *)RT;
1547
1548  assert(0 && "Unexpected base type!");
1549  return 0;
1550}
1551
1552static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1553                             bool MemberMaybeAnon = false) {
1554  // For fields injected into the class via declaration of an anonymous union,
1555  // use its anonymous union class declaration as the unique key.
1556  if (Member->isMemberInitializer()) {
1557    FieldDecl *Field = Member->getMember();
1558
1559    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1560    // data member of the class. Data member used in the initializer list is
1561    // in AnonUnionMember field.
1562    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1563      Field = Member->getAnonUnionMember();
1564    if (Field->getDeclContext()->isRecord()) {
1565      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1566      if (RD->isAnonymousStructOrUnion())
1567        return static_cast<void *>(RD);
1568    }
1569    return static_cast<void *>(Field);
1570  }
1571
1572  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1573}
1574
1575/// ActOnMemInitializers - Handle the member initializers for a constructor.
1576void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1577                                SourceLocation ColonLoc,
1578                                MemInitTy **MemInits, unsigned NumMemInits) {
1579  if (!ConstructorDecl)
1580    return;
1581
1582  AdjustDeclIfTemplate(ConstructorDecl);
1583
1584  CXXConstructorDecl *Constructor
1585    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1586
1587  if (!Constructor) {
1588    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1589    return;
1590  }
1591
1592  if (!Constructor->isDependentContext()) {
1593    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1594    bool err = false;
1595    for (unsigned i = 0; i < NumMemInits; i++) {
1596      CXXBaseOrMemberInitializer *Member =
1597        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1598      void *KeyToMember = GetKeyForMember(Member);
1599      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1600      if (!PrevMember) {
1601        PrevMember = Member;
1602        continue;
1603      }
1604      if (FieldDecl *Field = Member->getMember())
1605        Diag(Member->getSourceLocation(),
1606             diag::error_multiple_mem_initialization)
1607          << Field->getNameAsString()
1608          << Member->getSourceRange();
1609      else {
1610        Type *BaseClass = Member->getBaseClass();
1611        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1612        Diag(Member->getSourceLocation(),
1613             diag::error_multiple_base_initialization)
1614          << QualType(BaseClass, 0)
1615          << Member->getSourceRange();
1616      }
1617      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1618        << 0;
1619      err = true;
1620    }
1621
1622    if (err)
1623      return;
1624  }
1625
1626  SetBaseOrMemberInitializers(Constructor,
1627                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1628                      NumMemInits, false);
1629
1630  if (Constructor->isDependentContext())
1631    return;
1632
1633  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1634      Diagnostic::Ignored &&
1635      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1636      Diagnostic::Ignored)
1637    return;
1638
1639  // Also issue warning if order of ctor-initializer list does not match order
1640  // of 1) base class declarations and 2) order of non-static data members.
1641  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1642
1643  CXXRecordDecl *ClassDecl
1644    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1645  // Push virtual bases before others.
1646  for (CXXRecordDecl::base_class_iterator VBase =
1647       ClassDecl->vbases_begin(),
1648       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1649    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1650
1651  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1652       E = ClassDecl->bases_end(); Base != E; ++Base) {
1653    // Virtuals are alread in the virtual base list and are constructed
1654    // first.
1655    if (Base->isVirtual())
1656      continue;
1657    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1658  }
1659
1660  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1661       E = ClassDecl->field_end(); Field != E; ++Field)
1662    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1663
1664  int Last = AllBaseOrMembers.size();
1665  int curIndex = 0;
1666  CXXBaseOrMemberInitializer *PrevMember = 0;
1667  for (unsigned i = 0; i < NumMemInits; i++) {
1668    CXXBaseOrMemberInitializer *Member =
1669      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1670    void *MemberInCtorList = GetKeyForMember(Member, true);
1671
1672    for (; curIndex < Last; curIndex++)
1673      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1674        break;
1675    if (curIndex == Last) {
1676      assert(PrevMember && "Member not in member list?!");
1677      // Initializer as specified in ctor-initializer list is out of order.
1678      // Issue a warning diagnostic.
1679      if (PrevMember->isBaseInitializer()) {
1680        // Diagnostics is for an initialized base class.
1681        Type *BaseClass = PrevMember->getBaseClass();
1682        Diag(PrevMember->getSourceLocation(),
1683             diag::warn_base_initialized)
1684          << QualType(BaseClass, 0);
1685      } else {
1686        FieldDecl *Field = PrevMember->getMember();
1687        Diag(PrevMember->getSourceLocation(),
1688             diag::warn_field_initialized)
1689          << Field->getNameAsString();
1690      }
1691      // Also the note!
1692      if (FieldDecl *Field = Member->getMember())
1693        Diag(Member->getSourceLocation(),
1694             diag::note_fieldorbase_initialized_here) << 0
1695          << Field->getNameAsString();
1696      else {
1697        Type *BaseClass = Member->getBaseClass();
1698        Diag(Member->getSourceLocation(),
1699             diag::note_fieldorbase_initialized_here) << 1
1700          << QualType(BaseClass, 0);
1701      }
1702      for (curIndex = 0; curIndex < Last; curIndex++)
1703        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1704          break;
1705    }
1706    PrevMember = Member;
1707  }
1708}
1709
1710void
1711Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1712  // Ignore dependent destructors.
1713  if (Destructor->isDependentContext())
1714    return;
1715
1716  CXXRecordDecl *ClassDecl = Destructor->getParent();
1717
1718  // Non-static data members.
1719  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1720       E = ClassDecl->field_end(); I != E; ++I) {
1721    FieldDecl *Field = *I;
1722
1723    QualType FieldType = Context.getBaseElementType(Field->getType());
1724
1725    const RecordType* RT = FieldType->getAs<RecordType>();
1726    if (!RT)
1727      continue;
1728
1729    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1730    if (FieldClassDecl->hasTrivialDestructor())
1731      continue;
1732
1733    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1734    MarkDeclarationReferenced(Destructor->getLocation(),
1735                              const_cast<CXXDestructorDecl*>(Dtor));
1736  }
1737
1738  // Bases.
1739  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1740       E = ClassDecl->bases_end(); Base != E; ++Base) {
1741    // Ignore virtual bases.
1742    if (Base->isVirtual())
1743      continue;
1744
1745    // Ignore trivial destructors.
1746    CXXRecordDecl *BaseClassDecl
1747      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1748    if (BaseClassDecl->hasTrivialDestructor())
1749      continue;
1750
1751    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1752    MarkDeclarationReferenced(Destructor->getLocation(),
1753                              const_cast<CXXDestructorDecl*>(Dtor));
1754  }
1755
1756  // Virtual bases.
1757  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1758       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1759    // Ignore trivial destructors.
1760    CXXRecordDecl *BaseClassDecl
1761      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1762    if (BaseClassDecl->hasTrivialDestructor())
1763      continue;
1764
1765    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1766    MarkDeclarationReferenced(Destructor->getLocation(),
1767                              const_cast<CXXDestructorDecl*>(Dtor));
1768  }
1769}
1770
1771void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1772  if (!CDtorDecl)
1773    return;
1774
1775  AdjustDeclIfTemplate(CDtorDecl);
1776
1777  if (CXXConstructorDecl *Constructor
1778      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1779    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1780}
1781
1782namespace {
1783  /// PureVirtualMethodCollector - traverses a class and its superclasses
1784  /// and determines if it has any pure virtual methods.
1785  class PureVirtualMethodCollector {
1786    ASTContext &Context;
1787
1788  public:
1789    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1790
1791  private:
1792    MethodList Methods;
1793
1794    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1795
1796  public:
1797    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1798      : Context(Ctx) {
1799
1800      MethodList List;
1801      Collect(RD, List);
1802
1803      // Copy the temporary list to methods, and make sure to ignore any
1804      // null entries.
1805      for (size_t i = 0, e = List.size(); i != e; ++i) {
1806        if (List[i])
1807          Methods.push_back(List[i]);
1808      }
1809    }
1810
1811    bool empty() const { return Methods.empty(); }
1812
1813    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1814    MethodList::const_iterator methods_end() { return Methods.end(); }
1815  };
1816
1817  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1818                                           MethodList& Methods) {
1819    // First, collect the pure virtual methods for the base classes.
1820    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1821         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1822      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1823        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1824        if (BaseDecl && BaseDecl->isAbstract())
1825          Collect(BaseDecl, Methods);
1826      }
1827    }
1828
1829    // Next, zero out any pure virtual methods that this class overrides.
1830    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1831
1832    MethodSetTy OverriddenMethods;
1833    size_t MethodsSize = Methods.size();
1834
1835    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1836         i != e; ++i) {
1837      // Traverse the record, looking for methods.
1838      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1839        // If the method is pure virtual, add it to the methods vector.
1840        if (MD->isPure())
1841          Methods.push_back(MD);
1842
1843        // Record all the overridden methods in our set.
1844        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1845             E = MD->end_overridden_methods(); I != E; ++I) {
1846          // Keep track of the overridden methods.
1847          OverriddenMethods.insert(*I);
1848        }
1849      }
1850    }
1851
1852    // Now go through the methods and zero out all the ones we know are
1853    // overridden.
1854    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1855      if (OverriddenMethods.count(Methods[i]))
1856        Methods[i] = 0;
1857    }
1858
1859  }
1860}
1861
1862
1863bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1864                                  unsigned DiagID, AbstractDiagSelID SelID,
1865                                  const CXXRecordDecl *CurrentRD) {
1866  if (SelID == -1)
1867    return RequireNonAbstractType(Loc, T,
1868                                  PDiag(DiagID), CurrentRD);
1869  else
1870    return RequireNonAbstractType(Loc, T,
1871                                  PDiag(DiagID) << SelID, CurrentRD);
1872}
1873
1874bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1875                                  const PartialDiagnostic &PD,
1876                                  const CXXRecordDecl *CurrentRD) {
1877  if (!getLangOptions().CPlusPlus)
1878    return false;
1879
1880  if (const ArrayType *AT = Context.getAsArrayType(T))
1881    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1882                                  CurrentRD);
1883
1884  if (const PointerType *PT = T->getAs<PointerType>()) {
1885    // Find the innermost pointer type.
1886    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1887      PT = T;
1888
1889    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1890      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1891  }
1892
1893  const RecordType *RT = T->getAs<RecordType>();
1894  if (!RT)
1895    return false;
1896
1897  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1898  if (!RD)
1899    return false;
1900
1901  if (CurrentRD && CurrentRD != RD)
1902    return false;
1903
1904  if (!RD->isAbstract())
1905    return false;
1906
1907  Diag(Loc, PD) << RD->getDeclName();
1908
1909  // Check if we've already emitted the list of pure virtual functions for this
1910  // class.
1911  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1912    return true;
1913
1914  PureVirtualMethodCollector Collector(Context, RD);
1915
1916  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1917       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1918    const CXXMethodDecl *MD = *I;
1919
1920    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1921      MD->getDeclName();
1922  }
1923
1924  if (!PureVirtualClassDiagSet)
1925    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1926  PureVirtualClassDiagSet->insert(RD);
1927
1928  return true;
1929}
1930
1931namespace {
1932  class AbstractClassUsageDiagnoser
1933    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1934    Sema &SemaRef;
1935    CXXRecordDecl *AbstractClass;
1936
1937    bool VisitDeclContext(const DeclContext *DC) {
1938      bool Invalid = false;
1939
1940      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1941           E = DC->decls_end(); I != E; ++I)
1942        Invalid |= Visit(*I);
1943
1944      return Invalid;
1945    }
1946
1947  public:
1948    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1949      : SemaRef(SemaRef), AbstractClass(ac) {
1950        Visit(SemaRef.Context.getTranslationUnitDecl());
1951    }
1952
1953    bool VisitFunctionDecl(const FunctionDecl *FD) {
1954      if (FD->isThisDeclarationADefinition()) {
1955        // No need to do the check if we're in a definition, because it requires
1956        // that the return/param types are complete.
1957        // because that requires
1958        return VisitDeclContext(FD);
1959      }
1960
1961      // Check the return type.
1962      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1963      bool Invalid =
1964        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1965                                       diag::err_abstract_type_in_decl,
1966                                       Sema::AbstractReturnType,
1967                                       AbstractClass);
1968
1969      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1970           E = FD->param_end(); I != E; ++I) {
1971        const ParmVarDecl *VD = *I;
1972        Invalid |=
1973          SemaRef.RequireNonAbstractType(VD->getLocation(),
1974                                         VD->getOriginalType(),
1975                                         diag::err_abstract_type_in_decl,
1976                                         Sema::AbstractParamType,
1977                                         AbstractClass);
1978      }
1979
1980      return Invalid;
1981    }
1982
1983    bool VisitDecl(const Decl* D) {
1984      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1985        return VisitDeclContext(DC);
1986
1987      return false;
1988    }
1989  };
1990}
1991
1992/// \brief Perform semantic checks on a class definition that has been
1993/// completing, introducing implicitly-declared members, checking for
1994/// abstract types, etc.
1995void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
1996  if (!Record || Record->isInvalidDecl())
1997    return;
1998
1999  if (!Record->isDependentType())
2000    AddImplicitlyDeclaredMembersToClass(Record);
2001
2002  if (Record->isInvalidDecl())
2003    return;
2004
2005  if (!Record->isAbstract()) {
2006    // Collect all the pure virtual methods and see if this is an abstract
2007    // class after all.
2008    PureVirtualMethodCollector Collector(Context, Record);
2009    if (!Collector.empty())
2010      Record->setAbstract(true);
2011  }
2012
2013  if (Record->isAbstract())
2014    (void)AbstractClassUsageDiagnoser(*this, Record);
2015}
2016
2017void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2018                                             DeclPtrTy TagDecl,
2019                                             SourceLocation LBrac,
2020                                             SourceLocation RBrac) {
2021  if (!TagDecl)
2022    return;
2023
2024  AdjustDeclIfTemplate(TagDecl);
2025
2026  ActOnFields(S, RLoc, TagDecl,
2027              (DeclPtrTy*)FieldCollector->getCurFields(),
2028              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
2029
2030  CheckCompletedCXXClass(
2031                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2032}
2033
2034/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2035/// special functions, such as the default constructor, copy
2036/// constructor, or destructor, to the given C++ class (C++
2037/// [special]p1).  This routine can only be executed just before the
2038/// definition of the class is complete.
2039void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2040  CanQualType ClassType
2041    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2042
2043  // FIXME: Implicit declarations have exception specifications, which are
2044  // the union of the specifications of the implicitly called functions.
2045
2046  if (!ClassDecl->hasUserDeclaredConstructor()) {
2047    // C++ [class.ctor]p5:
2048    //   A default constructor for a class X is a constructor of class X
2049    //   that can be called without an argument. If there is no
2050    //   user-declared constructor for class X, a default constructor is
2051    //   implicitly declared. An implicitly-declared default constructor
2052    //   is an inline public member of its class.
2053    DeclarationName Name
2054      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2055    CXXConstructorDecl *DefaultCon =
2056      CXXConstructorDecl::Create(Context, ClassDecl,
2057                                 ClassDecl->getLocation(), Name,
2058                                 Context.getFunctionType(Context.VoidTy,
2059                                                         0, 0, false, 0),
2060                                 /*TInfo=*/0,
2061                                 /*isExplicit=*/false,
2062                                 /*isInline=*/true,
2063                                 /*isImplicitlyDeclared=*/true);
2064    DefaultCon->setAccess(AS_public);
2065    DefaultCon->setImplicit();
2066    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2067    ClassDecl->addDecl(DefaultCon);
2068  }
2069
2070  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2071    // C++ [class.copy]p4:
2072    //   If the class definition does not explicitly declare a copy
2073    //   constructor, one is declared implicitly.
2074
2075    // C++ [class.copy]p5:
2076    //   The implicitly-declared copy constructor for a class X will
2077    //   have the form
2078    //
2079    //       X::X(const X&)
2080    //
2081    //   if
2082    bool HasConstCopyConstructor = true;
2083
2084    //     -- each direct or virtual base class B of X has a copy
2085    //        constructor whose first parameter is of type const B& or
2086    //        const volatile B&, and
2087    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2088         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2089      const CXXRecordDecl *BaseClassDecl
2090        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2091      HasConstCopyConstructor
2092        = BaseClassDecl->hasConstCopyConstructor(Context);
2093    }
2094
2095    //     -- for all the nonstatic data members of X that are of a
2096    //        class type M (or array thereof), each such class type
2097    //        has a copy constructor whose first parameter is of type
2098    //        const M& or const volatile M&.
2099    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2100         HasConstCopyConstructor && Field != ClassDecl->field_end();
2101         ++Field) {
2102      QualType FieldType = (*Field)->getType();
2103      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2104        FieldType = Array->getElementType();
2105      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2106        const CXXRecordDecl *FieldClassDecl
2107          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2108        HasConstCopyConstructor
2109          = FieldClassDecl->hasConstCopyConstructor(Context);
2110      }
2111    }
2112
2113    //   Otherwise, the implicitly declared copy constructor will have
2114    //   the form
2115    //
2116    //       X::X(X&)
2117    QualType ArgType = ClassType;
2118    if (HasConstCopyConstructor)
2119      ArgType = ArgType.withConst();
2120    ArgType = Context.getLValueReferenceType(ArgType);
2121
2122    //   An implicitly-declared copy constructor is an inline public
2123    //   member of its class.
2124    DeclarationName Name
2125      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2126    CXXConstructorDecl *CopyConstructor
2127      = CXXConstructorDecl::Create(Context, ClassDecl,
2128                                   ClassDecl->getLocation(), Name,
2129                                   Context.getFunctionType(Context.VoidTy,
2130                                                           &ArgType, 1,
2131                                                           false, 0),
2132                                   /*TInfo=*/0,
2133                                   /*isExplicit=*/false,
2134                                   /*isInline=*/true,
2135                                   /*isImplicitlyDeclared=*/true);
2136    CopyConstructor->setAccess(AS_public);
2137    CopyConstructor->setImplicit();
2138    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2139
2140    // Add the parameter to the constructor.
2141    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2142                                                 ClassDecl->getLocation(),
2143                                                 /*IdentifierInfo=*/0,
2144                                                 ArgType, /*TInfo=*/0,
2145                                                 VarDecl::None, 0);
2146    CopyConstructor->setParams(Context, &FromParam, 1);
2147    ClassDecl->addDecl(CopyConstructor);
2148  }
2149
2150  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2151    // Note: The following rules are largely analoguous to the copy
2152    // constructor rules. Note that virtual bases are not taken into account
2153    // for determining the argument type of the operator. Note also that
2154    // operators taking an object instead of a reference are allowed.
2155    //
2156    // C++ [class.copy]p10:
2157    //   If the class definition does not explicitly declare a copy
2158    //   assignment operator, one is declared implicitly.
2159    //   The implicitly-defined copy assignment operator for a class X
2160    //   will have the form
2161    //
2162    //       X& X::operator=(const X&)
2163    //
2164    //   if
2165    bool HasConstCopyAssignment = true;
2166
2167    //       -- each direct base class B of X has a copy assignment operator
2168    //          whose parameter is of type const B&, const volatile B& or B,
2169    //          and
2170    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2171         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2172      assert(!Base->getType()->isDependentType() &&
2173            "Cannot generate implicit members for class with dependent bases.");
2174      const CXXRecordDecl *BaseClassDecl
2175        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2176      const CXXMethodDecl *MD = 0;
2177      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2178                                                                     MD);
2179    }
2180
2181    //       -- for all the nonstatic data members of X that are of a class
2182    //          type M (or array thereof), each such class type has a copy
2183    //          assignment operator whose parameter is of type const M&,
2184    //          const volatile M& or M.
2185    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2186         HasConstCopyAssignment && Field != ClassDecl->field_end();
2187         ++Field) {
2188      QualType FieldType = (*Field)->getType();
2189      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2190        FieldType = Array->getElementType();
2191      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2192        const CXXRecordDecl *FieldClassDecl
2193          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2194        const CXXMethodDecl *MD = 0;
2195        HasConstCopyAssignment
2196          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2197      }
2198    }
2199
2200    //   Otherwise, the implicitly declared copy assignment operator will
2201    //   have the form
2202    //
2203    //       X& X::operator=(X&)
2204    QualType ArgType = ClassType;
2205    QualType RetType = Context.getLValueReferenceType(ArgType);
2206    if (HasConstCopyAssignment)
2207      ArgType = ArgType.withConst();
2208    ArgType = Context.getLValueReferenceType(ArgType);
2209
2210    //   An implicitly-declared copy assignment operator is an inline public
2211    //   member of its class.
2212    DeclarationName Name =
2213      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2214    CXXMethodDecl *CopyAssignment =
2215      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2216                            Context.getFunctionType(RetType, &ArgType, 1,
2217                                                    false, 0),
2218                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2219    CopyAssignment->setAccess(AS_public);
2220    CopyAssignment->setImplicit();
2221    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2222    CopyAssignment->setCopyAssignment(true);
2223
2224    // Add the parameter to the operator.
2225    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2226                                                 ClassDecl->getLocation(),
2227                                                 /*IdentifierInfo=*/0,
2228                                                 ArgType, /*TInfo=*/0,
2229                                                 VarDecl::None, 0);
2230    CopyAssignment->setParams(Context, &FromParam, 1);
2231
2232    // Don't call addedAssignmentOperator. There is no way to distinguish an
2233    // implicit from an explicit assignment operator.
2234    ClassDecl->addDecl(CopyAssignment);
2235    AddOverriddenMethods(ClassDecl, CopyAssignment);
2236  }
2237
2238  if (!ClassDecl->hasUserDeclaredDestructor()) {
2239    // C++ [class.dtor]p2:
2240    //   If a class has no user-declared destructor, a destructor is
2241    //   declared implicitly. An implicitly-declared destructor is an
2242    //   inline public member of its class.
2243    DeclarationName Name
2244      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2245    CXXDestructorDecl *Destructor
2246      = CXXDestructorDecl::Create(Context, ClassDecl,
2247                                  ClassDecl->getLocation(), Name,
2248                                  Context.getFunctionType(Context.VoidTy,
2249                                                          0, 0, false, 0),
2250                                  /*isInline=*/true,
2251                                  /*isImplicitlyDeclared=*/true);
2252    Destructor->setAccess(AS_public);
2253    Destructor->setImplicit();
2254    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2255    ClassDecl->addDecl(Destructor);
2256
2257    AddOverriddenMethods(ClassDecl, Destructor);
2258  }
2259}
2260
2261void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2262  Decl *D = TemplateD.getAs<Decl>();
2263  if (!D)
2264    return;
2265
2266  TemplateParameterList *Params = 0;
2267  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2268    Params = Template->getTemplateParameters();
2269  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2270           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2271    Params = PartialSpec->getTemplateParameters();
2272  else
2273    return;
2274
2275  for (TemplateParameterList::iterator Param = Params->begin(),
2276                                    ParamEnd = Params->end();
2277       Param != ParamEnd; ++Param) {
2278    NamedDecl *Named = cast<NamedDecl>(*Param);
2279    if (Named->getDeclName()) {
2280      S->AddDecl(DeclPtrTy::make(Named));
2281      IdResolver.AddDecl(Named);
2282    }
2283  }
2284}
2285
2286void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2287  if (!RecordD) return;
2288  AdjustDeclIfTemplate(RecordD);
2289  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2290  PushDeclContext(S, Record);
2291}
2292
2293void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2294  if (!RecordD) return;
2295  PopDeclContext();
2296}
2297
2298/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2299/// parsing a top-level (non-nested) C++ class, and we are now
2300/// parsing those parts of the given Method declaration that could
2301/// not be parsed earlier (C++ [class.mem]p2), such as default
2302/// arguments. This action should enter the scope of the given
2303/// Method declaration as if we had just parsed the qualified method
2304/// name. However, it should not bring the parameters into scope;
2305/// that will be performed by ActOnDelayedCXXMethodParameter.
2306void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2307}
2308
2309/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2310/// C++ method declaration. We're (re-)introducing the given
2311/// function parameter into scope for use in parsing later parts of
2312/// the method declaration. For example, we could see an
2313/// ActOnParamDefaultArgument event for this parameter.
2314void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2315  if (!ParamD)
2316    return;
2317
2318  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2319
2320  // If this parameter has an unparsed default argument, clear it out
2321  // to make way for the parsed default argument.
2322  if (Param->hasUnparsedDefaultArg())
2323    Param->setDefaultArg(0);
2324
2325  S->AddDecl(DeclPtrTy::make(Param));
2326  if (Param->getDeclName())
2327    IdResolver.AddDecl(Param);
2328}
2329
2330/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2331/// processing the delayed method declaration for Method. The method
2332/// declaration is now considered finished. There may be a separate
2333/// ActOnStartOfFunctionDef action later (not necessarily
2334/// immediately!) for this method, if it was also defined inside the
2335/// class body.
2336void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2337  if (!MethodD)
2338    return;
2339
2340  AdjustDeclIfTemplate(MethodD);
2341
2342  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2343
2344  // Now that we have our default arguments, check the constructor
2345  // again. It could produce additional diagnostics or affect whether
2346  // the class has implicitly-declared destructors, among other
2347  // things.
2348  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2349    CheckConstructor(Constructor);
2350
2351  // Check the default arguments, which we may have added.
2352  if (!Method->isInvalidDecl())
2353    CheckCXXDefaultArguments(Method);
2354}
2355
2356/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2357/// the well-formedness of the constructor declarator @p D with type @p
2358/// R. If there are any errors in the declarator, this routine will
2359/// emit diagnostics and set the invalid bit to true.  In any case, the type
2360/// will be updated to reflect a well-formed type for the constructor and
2361/// returned.
2362QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2363                                          FunctionDecl::StorageClass &SC) {
2364  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2365
2366  // C++ [class.ctor]p3:
2367  //   A constructor shall not be virtual (10.3) or static (9.4). A
2368  //   constructor can be invoked for a const, volatile or const
2369  //   volatile object. A constructor shall not be declared const,
2370  //   volatile, or const volatile (9.3.2).
2371  if (isVirtual) {
2372    if (!D.isInvalidType())
2373      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2374        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2375        << SourceRange(D.getIdentifierLoc());
2376    D.setInvalidType();
2377  }
2378  if (SC == FunctionDecl::Static) {
2379    if (!D.isInvalidType())
2380      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2381        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2382        << SourceRange(D.getIdentifierLoc());
2383    D.setInvalidType();
2384    SC = FunctionDecl::None;
2385  }
2386
2387  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2388  if (FTI.TypeQuals != 0) {
2389    if (FTI.TypeQuals & Qualifiers::Const)
2390      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2391        << "const" << SourceRange(D.getIdentifierLoc());
2392    if (FTI.TypeQuals & Qualifiers::Volatile)
2393      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2394        << "volatile" << SourceRange(D.getIdentifierLoc());
2395    if (FTI.TypeQuals & Qualifiers::Restrict)
2396      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2397        << "restrict" << SourceRange(D.getIdentifierLoc());
2398  }
2399
2400  // Rebuild the function type "R" without any type qualifiers (in
2401  // case any of the errors above fired) and with "void" as the
2402  // return type, since constructors don't have return types. We
2403  // *always* have to do this, because GetTypeForDeclarator will
2404  // put in a result type of "int" when none was specified.
2405  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2406  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2407                                 Proto->getNumArgs(),
2408                                 Proto->isVariadic(), 0);
2409}
2410
2411/// CheckConstructor - Checks a fully-formed constructor for
2412/// well-formedness, issuing any diagnostics required. Returns true if
2413/// the constructor declarator is invalid.
2414void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2415  CXXRecordDecl *ClassDecl
2416    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2417  if (!ClassDecl)
2418    return Constructor->setInvalidDecl();
2419
2420  // C++ [class.copy]p3:
2421  //   A declaration of a constructor for a class X is ill-formed if
2422  //   its first parameter is of type (optionally cv-qualified) X and
2423  //   either there are no other parameters or else all other
2424  //   parameters have default arguments.
2425  if (!Constructor->isInvalidDecl() &&
2426      ((Constructor->getNumParams() == 1) ||
2427       (Constructor->getNumParams() > 1 &&
2428        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2429      Constructor->getTemplateSpecializationKind()
2430                                              != TSK_ImplicitInstantiation) {
2431    QualType ParamType = Constructor->getParamDecl(0)->getType();
2432    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2433    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2434      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2435      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2436        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2437
2438      // FIXME: Rather that making the constructor invalid, we should endeavor
2439      // to fix the type.
2440      Constructor->setInvalidDecl();
2441    }
2442  }
2443
2444  // Notify the class that we've added a constructor.
2445  ClassDecl->addedConstructor(Context, Constructor);
2446}
2447
2448/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2449/// issuing any diagnostics required. Returns true on error.
2450bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2451  CXXRecordDecl *RD = Destructor->getParent();
2452
2453  if (Destructor->isVirtual()) {
2454    SourceLocation Loc;
2455
2456    if (!Destructor->isImplicit())
2457      Loc = Destructor->getLocation();
2458    else
2459      Loc = RD->getLocation();
2460
2461    // If we have a virtual destructor, look up the deallocation function
2462    FunctionDecl *OperatorDelete = 0;
2463    DeclarationName Name =
2464    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2465    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2466      return true;
2467
2468    Destructor->setOperatorDelete(OperatorDelete);
2469  }
2470
2471  return false;
2472}
2473
2474static inline bool
2475FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2476  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2477          FTI.ArgInfo[0].Param &&
2478          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2479}
2480
2481/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2482/// the well-formednes of the destructor declarator @p D with type @p
2483/// R. If there are any errors in the declarator, this routine will
2484/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2485/// will be updated to reflect a well-formed type for the destructor and
2486/// returned.
2487QualType Sema::CheckDestructorDeclarator(Declarator &D,
2488                                         FunctionDecl::StorageClass& SC) {
2489  // C++ [class.dtor]p1:
2490  //   [...] A typedef-name that names a class is a class-name
2491  //   (7.1.3); however, a typedef-name that names a class shall not
2492  //   be used as the identifier in the declarator for a destructor
2493  //   declaration.
2494  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2495  if (isa<TypedefType>(DeclaratorType)) {
2496    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2497      << DeclaratorType;
2498    D.setInvalidType();
2499  }
2500
2501  // C++ [class.dtor]p2:
2502  //   A destructor is used to destroy objects of its class type. A
2503  //   destructor takes no parameters, and no return type can be
2504  //   specified for it (not even void). The address of a destructor
2505  //   shall not be taken. A destructor shall not be static. A
2506  //   destructor can be invoked for a const, volatile or const
2507  //   volatile object. A destructor shall not be declared const,
2508  //   volatile or const volatile (9.3.2).
2509  if (SC == FunctionDecl::Static) {
2510    if (!D.isInvalidType())
2511      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2512        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2513        << SourceRange(D.getIdentifierLoc());
2514    SC = FunctionDecl::None;
2515    D.setInvalidType();
2516  }
2517  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2518    // Destructors don't have return types, but the parser will
2519    // happily parse something like:
2520    //
2521    //   class X {
2522    //     float ~X();
2523    //   };
2524    //
2525    // The return type will be eliminated later.
2526    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2527      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2528      << SourceRange(D.getIdentifierLoc());
2529  }
2530
2531  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2532  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2533    if (FTI.TypeQuals & Qualifiers::Const)
2534      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2535        << "const" << SourceRange(D.getIdentifierLoc());
2536    if (FTI.TypeQuals & Qualifiers::Volatile)
2537      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2538        << "volatile" << SourceRange(D.getIdentifierLoc());
2539    if (FTI.TypeQuals & Qualifiers::Restrict)
2540      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2541        << "restrict" << SourceRange(D.getIdentifierLoc());
2542    D.setInvalidType();
2543  }
2544
2545  // Make sure we don't have any parameters.
2546  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2547    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2548
2549    // Delete the parameters.
2550    FTI.freeArgs();
2551    D.setInvalidType();
2552  }
2553
2554  // Make sure the destructor isn't variadic.
2555  if (FTI.isVariadic) {
2556    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2557    D.setInvalidType();
2558  }
2559
2560  // Rebuild the function type "R" without any type qualifiers or
2561  // parameters (in case any of the errors above fired) and with
2562  // "void" as the return type, since destructors don't have return
2563  // types. We *always* have to do this, because GetTypeForDeclarator
2564  // will put in a result type of "int" when none was specified.
2565  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2566}
2567
2568/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2569/// well-formednes of the conversion function declarator @p D with
2570/// type @p R. If there are any errors in the declarator, this routine
2571/// will emit diagnostics and return true. Otherwise, it will return
2572/// false. Either way, the type @p R will be updated to reflect a
2573/// well-formed type for the conversion operator.
2574void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2575                                     FunctionDecl::StorageClass& SC) {
2576  // C++ [class.conv.fct]p1:
2577  //   Neither parameter types nor return type can be specified. The
2578  //   type of a conversion function (8.3.5) is "function taking no
2579  //   parameter returning conversion-type-id."
2580  if (SC == FunctionDecl::Static) {
2581    if (!D.isInvalidType())
2582      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2583        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2584        << SourceRange(D.getIdentifierLoc());
2585    D.setInvalidType();
2586    SC = FunctionDecl::None;
2587  }
2588  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2589    // Conversion functions don't have return types, but the parser will
2590    // happily parse something like:
2591    //
2592    //   class X {
2593    //     float operator bool();
2594    //   };
2595    //
2596    // The return type will be changed later anyway.
2597    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2598      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2599      << SourceRange(D.getIdentifierLoc());
2600  }
2601
2602  // Make sure we don't have any parameters.
2603  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2604    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2605
2606    // Delete the parameters.
2607    D.getTypeObject(0).Fun.freeArgs();
2608    D.setInvalidType();
2609  }
2610
2611  // Make sure the conversion function isn't variadic.
2612  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2613    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2614    D.setInvalidType();
2615  }
2616
2617  // C++ [class.conv.fct]p4:
2618  //   The conversion-type-id shall not represent a function type nor
2619  //   an array type.
2620  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2621  if (ConvType->isArrayType()) {
2622    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2623    ConvType = Context.getPointerType(ConvType);
2624    D.setInvalidType();
2625  } else if (ConvType->isFunctionType()) {
2626    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2627    ConvType = Context.getPointerType(ConvType);
2628    D.setInvalidType();
2629  }
2630
2631  // Rebuild the function type "R" without any parameters (in case any
2632  // of the errors above fired) and with the conversion type as the
2633  // return type.
2634  R = Context.getFunctionType(ConvType, 0, 0, false,
2635                              R->getAs<FunctionProtoType>()->getTypeQuals());
2636
2637  // C++0x explicit conversion operators.
2638  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2639    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2640         diag::warn_explicit_conversion_functions)
2641      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2642}
2643
2644/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2645/// the declaration of the given C++ conversion function. This routine
2646/// is responsible for recording the conversion function in the C++
2647/// class, if possible.
2648Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2649  assert(Conversion && "Expected to receive a conversion function declaration");
2650
2651  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2652
2653  // Make sure we aren't redeclaring the conversion function.
2654  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2655
2656  // C++ [class.conv.fct]p1:
2657  //   [...] A conversion function is never used to convert a
2658  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2659  //   same object type (or a reference to it), to a (possibly
2660  //   cv-qualified) base class of that type (or a reference to it),
2661  //   or to (possibly cv-qualified) void.
2662  // FIXME: Suppress this warning if the conversion function ends up being a
2663  // virtual function that overrides a virtual function in a base class.
2664  QualType ClassType
2665    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2666  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2667    ConvType = ConvTypeRef->getPointeeType();
2668  if (ConvType->isRecordType()) {
2669    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2670    if (ConvType == ClassType)
2671      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2672        << ClassType;
2673    else if (IsDerivedFrom(ClassType, ConvType))
2674      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2675        <<  ClassType << ConvType;
2676  } else if (ConvType->isVoidType()) {
2677    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2678      << ClassType << ConvType;
2679  }
2680
2681  if (Conversion->getPreviousDeclaration()) {
2682    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2683    if (FunctionTemplateDecl *ConversionTemplate
2684          = Conversion->getDescribedFunctionTemplate())
2685      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2686    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2687      return DeclPtrTy::make(Conversion);
2688    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2689  } else if (FunctionTemplateDecl *ConversionTemplate
2690               = Conversion->getDescribedFunctionTemplate())
2691    ClassDecl->addConversionFunction(ConversionTemplate);
2692  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2693    ClassDecl->addConversionFunction(Conversion);
2694
2695  return DeclPtrTy::make(Conversion);
2696}
2697
2698//===----------------------------------------------------------------------===//
2699// Namespace Handling
2700//===----------------------------------------------------------------------===//
2701
2702/// ActOnStartNamespaceDef - This is called at the start of a namespace
2703/// definition.
2704Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2705                                             SourceLocation IdentLoc,
2706                                             IdentifierInfo *II,
2707                                             SourceLocation LBrace) {
2708  NamespaceDecl *Namespc =
2709      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2710  Namespc->setLBracLoc(LBrace);
2711
2712  Scope *DeclRegionScope = NamespcScope->getParent();
2713
2714  if (II) {
2715    // C++ [namespace.def]p2:
2716    // The identifier in an original-namespace-definition shall not have been
2717    // previously defined in the declarative region in which the
2718    // original-namespace-definition appears. The identifier in an
2719    // original-namespace-definition is the name of the namespace. Subsequently
2720    // in that declarative region, it is treated as an original-namespace-name.
2721
2722    NamedDecl *PrevDecl
2723      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2724                         ForRedeclaration);
2725
2726    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2727      // This is an extended namespace definition.
2728      // Attach this namespace decl to the chain of extended namespace
2729      // definitions.
2730      OrigNS->setNextNamespace(Namespc);
2731      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2732
2733      // Remove the previous declaration from the scope.
2734      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2735        IdResolver.RemoveDecl(OrigNS);
2736        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2737      }
2738    } else if (PrevDecl) {
2739      // This is an invalid name redefinition.
2740      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2741       << Namespc->getDeclName();
2742      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2743      Namespc->setInvalidDecl();
2744      // Continue on to push Namespc as current DeclContext and return it.
2745    } else if (II->isStr("std") &&
2746               CurContext->getLookupContext()->isTranslationUnit()) {
2747      // This is the first "real" definition of the namespace "std", so update
2748      // our cache of the "std" namespace to point at this definition.
2749      if (StdNamespace) {
2750        // We had already defined a dummy namespace "std". Link this new
2751        // namespace definition to the dummy namespace "std".
2752        StdNamespace->setNextNamespace(Namespc);
2753        StdNamespace->setLocation(IdentLoc);
2754        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2755      }
2756
2757      // Make our StdNamespace cache point at the first real definition of the
2758      // "std" namespace.
2759      StdNamespace = Namespc;
2760    }
2761
2762    PushOnScopeChains(Namespc, DeclRegionScope);
2763  } else {
2764    // Anonymous namespaces.
2765    assert(Namespc->isAnonymousNamespace());
2766    CurContext->addDecl(Namespc);
2767
2768    // Link the anonymous namespace into its parent.
2769    NamespaceDecl *PrevDecl;
2770    DeclContext *Parent = CurContext->getLookupContext();
2771    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
2772      PrevDecl = TU->getAnonymousNamespace();
2773      TU->setAnonymousNamespace(Namespc);
2774    } else {
2775      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
2776      PrevDecl = ND->getAnonymousNamespace();
2777      ND->setAnonymousNamespace(Namespc);
2778    }
2779
2780    // Link the anonymous namespace with its previous declaration.
2781    if (PrevDecl) {
2782      assert(PrevDecl->isAnonymousNamespace());
2783      assert(!PrevDecl->getNextNamespace());
2784      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
2785      PrevDecl->setNextNamespace(Namespc);
2786    }
2787
2788    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2789    //   behaves as if it were replaced by
2790    //     namespace unique { /* empty body */ }
2791    //     using namespace unique;
2792    //     namespace unique { namespace-body }
2793    //   where all occurrences of 'unique' in a translation unit are
2794    //   replaced by the same identifier and this identifier differs
2795    //   from all other identifiers in the entire program.
2796
2797    // We just create the namespace with an empty name and then add an
2798    // implicit using declaration, just like the standard suggests.
2799    //
2800    // CodeGen enforces the "universally unique" aspect by giving all
2801    // declarations semantically contained within an anonymous
2802    // namespace internal linkage.
2803
2804    if (!PrevDecl) {
2805      UsingDirectiveDecl* UD
2806        = UsingDirectiveDecl::Create(Context, CurContext,
2807                                     /* 'using' */ LBrace,
2808                                     /* 'namespace' */ SourceLocation(),
2809                                     /* qualifier */ SourceRange(),
2810                                     /* NNS */ NULL,
2811                                     /* identifier */ SourceLocation(),
2812                                     Namespc,
2813                                     /* Ancestor */ CurContext);
2814      UD->setImplicit();
2815      CurContext->addDecl(UD);
2816    }
2817  }
2818
2819  // Although we could have an invalid decl (i.e. the namespace name is a
2820  // redefinition), push it as current DeclContext and try to continue parsing.
2821  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2822  // for the namespace has the declarations that showed up in that particular
2823  // namespace definition.
2824  PushDeclContext(NamespcScope, Namespc);
2825  return DeclPtrTy::make(Namespc);
2826}
2827
2828/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2829/// is a namespace alias, returns the namespace it points to.
2830static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2831  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2832    return AD->getNamespace();
2833  return dyn_cast_or_null<NamespaceDecl>(D);
2834}
2835
2836/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2837/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2838void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2839  Decl *Dcl = D.getAs<Decl>();
2840  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2841  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2842  Namespc->setRBracLoc(RBrace);
2843  PopDeclContext();
2844}
2845
2846Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2847                                          SourceLocation UsingLoc,
2848                                          SourceLocation NamespcLoc,
2849                                          const CXXScopeSpec &SS,
2850                                          SourceLocation IdentLoc,
2851                                          IdentifierInfo *NamespcName,
2852                                          AttributeList *AttrList) {
2853  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2854  assert(NamespcName && "Invalid NamespcName.");
2855  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2856  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2857
2858  UsingDirectiveDecl *UDir = 0;
2859
2860  // Lookup namespace name.
2861  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2862  LookupParsedName(R, S, &SS);
2863  if (R.isAmbiguous())
2864    return DeclPtrTy();
2865
2866  if (!R.empty()) {
2867    NamedDecl *Named = R.getFoundDecl();
2868    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2869        && "expected namespace decl");
2870    // C++ [namespace.udir]p1:
2871    //   A using-directive specifies that the names in the nominated
2872    //   namespace can be used in the scope in which the
2873    //   using-directive appears after the using-directive. During
2874    //   unqualified name lookup (3.4.1), the names appear as if they
2875    //   were declared in the nearest enclosing namespace which
2876    //   contains both the using-directive and the nominated
2877    //   namespace. [Note: in this context, "contains" means "contains
2878    //   directly or indirectly". ]
2879
2880    // Find enclosing context containing both using-directive and
2881    // nominated namespace.
2882    NamespaceDecl *NS = getNamespaceDecl(Named);
2883    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2884    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2885      CommonAncestor = CommonAncestor->getParent();
2886
2887    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2888                                      SS.getRange(),
2889                                      (NestedNameSpecifier *)SS.getScopeRep(),
2890                                      IdentLoc, Named, CommonAncestor);
2891    PushUsingDirective(S, UDir);
2892  } else {
2893    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2894  }
2895
2896  // FIXME: We ignore attributes for now.
2897  delete AttrList;
2898  return DeclPtrTy::make(UDir);
2899}
2900
2901void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2902  // If scope has associated entity, then using directive is at namespace
2903  // or translation unit scope. We add UsingDirectiveDecls, into
2904  // it's lookup structure.
2905  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2906    Ctx->addDecl(UDir);
2907  else
2908    // Otherwise it is block-sope. using-directives will affect lookup
2909    // only to the end of scope.
2910    S->PushUsingDirective(DeclPtrTy::make(UDir));
2911}
2912
2913
2914Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2915                                            AccessSpecifier AS,
2916                                            bool HasUsingKeyword,
2917                                            SourceLocation UsingLoc,
2918                                            const CXXScopeSpec &SS,
2919                                            UnqualifiedId &Name,
2920                                            AttributeList *AttrList,
2921                                            bool IsTypeName,
2922                                            SourceLocation TypenameLoc) {
2923  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2924
2925  switch (Name.getKind()) {
2926  case UnqualifiedId::IK_Identifier:
2927  case UnqualifiedId::IK_OperatorFunctionId:
2928  case UnqualifiedId::IK_LiteralOperatorId:
2929  case UnqualifiedId::IK_ConversionFunctionId:
2930    break;
2931
2932  case UnqualifiedId::IK_ConstructorName:
2933    // C++0x inherited constructors.
2934    if (getLangOptions().CPlusPlus0x) break;
2935
2936    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2937      << SS.getRange();
2938    return DeclPtrTy();
2939
2940  case UnqualifiedId::IK_DestructorName:
2941    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2942      << SS.getRange();
2943    return DeclPtrTy();
2944
2945  case UnqualifiedId::IK_TemplateId:
2946    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2947      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2948    return DeclPtrTy();
2949  }
2950
2951  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2952  if (!TargetName)
2953    return DeclPtrTy();
2954
2955  // Warn about using declarations.
2956  // TODO: store that the declaration was written without 'using' and
2957  // talk about access decls instead of using decls in the
2958  // diagnostics.
2959  if (!HasUsingKeyword) {
2960    UsingLoc = Name.getSourceRange().getBegin();
2961
2962    Diag(UsingLoc, diag::warn_access_decl_deprecated)
2963      << CodeModificationHint::CreateInsertion(SS.getRange().getBegin(),
2964                                               "using ");
2965  }
2966
2967  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
2968                                        Name.getSourceRange().getBegin(),
2969                                        TargetName, AttrList,
2970                                        /* IsInstantiation */ false,
2971                                        IsTypeName, TypenameLoc);
2972  if (UD)
2973    PushOnScopeChains(UD, S, /*AddToContext*/ false);
2974
2975  return DeclPtrTy::make(UD);
2976}
2977
2978/// Determines whether to create a using shadow decl for a particular
2979/// decl, given the set of decls existing prior to this using lookup.
2980bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
2981                                const LookupResult &Previous) {
2982  // Diagnose finding a decl which is not from a base class of the
2983  // current class.  We do this now because there are cases where this
2984  // function will silently decide not to build a shadow decl, which
2985  // will pre-empt further diagnostics.
2986  //
2987  // We don't need to do this in C++0x because we do the check once on
2988  // the qualifier.
2989  //
2990  // FIXME: diagnose the following if we care enough:
2991  //   struct A { int foo; };
2992  //   struct B : A { using A::foo; };
2993  //   template <class T> struct C : A {};
2994  //   template <class T> struct D : C<T> { using B::foo; } // <---
2995  // This is invalid (during instantiation) in C++03 because B::foo
2996  // resolves to the using decl in B, which is not a base class of D<T>.
2997  // We can't diagnose it immediately because C<T> is an unknown
2998  // specialization.  The UsingShadowDecl in D<T> then points directly
2999  // to A::foo, which will look well-formed when we instantiate.
3000  // The right solution is to not collapse the shadow-decl chain.
3001  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3002    DeclContext *OrigDC = Orig->getDeclContext();
3003
3004    // Handle enums and anonymous structs.
3005    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3006    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3007    while (OrigRec->isAnonymousStructOrUnion())
3008      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3009
3010    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3011      if (OrigDC == CurContext) {
3012        Diag(Using->getLocation(),
3013             diag::err_using_decl_nested_name_specifier_is_current_class)
3014          << Using->getNestedNameRange();
3015        Diag(Orig->getLocation(), diag::note_using_decl_target);
3016        return true;
3017      }
3018
3019      Diag(Using->getNestedNameRange().getBegin(),
3020           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3021        << Using->getTargetNestedNameDecl()
3022        << cast<CXXRecordDecl>(CurContext)
3023        << Using->getNestedNameRange();
3024      Diag(Orig->getLocation(), diag::note_using_decl_target);
3025      return true;
3026    }
3027  }
3028
3029  if (Previous.empty()) return false;
3030
3031  NamedDecl *Target = Orig;
3032  if (isa<UsingShadowDecl>(Target))
3033    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3034
3035  // If the target happens to be one of the previous declarations, we
3036  // don't have a conflict.
3037  //
3038  // FIXME: but we might be increasing its access, in which case we
3039  // should redeclare it.
3040  NamedDecl *NonTag = 0, *Tag = 0;
3041  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3042         I != E; ++I) {
3043    NamedDecl *D = (*I)->getUnderlyingDecl();
3044    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3045      return false;
3046
3047    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3048  }
3049
3050  if (Target->isFunctionOrFunctionTemplate()) {
3051    FunctionDecl *FD;
3052    if (isa<FunctionTemplateDecl>(Target))
3053      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3054    else
3055      FD = cast<FunctionDecl>(Target);
3056
3057    NamedDecl *OldDecl = 0;
3058    switch (CheckOverload(FD, Previous, OldDecl)) {
3059    case Ovl_Overload:
3060      return false;
3061
3062    case Ovl_NonFunction:
3063      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3064      break;
3065
3066    // We found a decl with the exact signature.
3067    case Ovl_Match:
3068      if (isa<UsingShadowDecl>(OldDecl)) {
3069        // Silently ignore the possible conflict.
3070        return false;
3071      }
3072
3073      // If we're in a record, we want to hide the target, so we
3074      // return true (without a diagnostic) to tell the caller not to
3075      // build a shadow decl.
3076      if (CurContext->isRecord())
3077        return true;
3078
3079      // If we're not in a record, this is an error.
3080      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3081      break;
3082    }
3083
3084    Diag(Target->getLocation(), diag::note_using_decl_target);
3085    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3086    return true;
3087  }
3088
3089  // Target is not a function.
3090
3091  if (isa<TagDecl>(Target)) {
3092    // No conflict between a tag and a non-tag.
3093    if (!Tag) return false;
3094
3095    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3096    Diag(Target->getLocation(), diag::note_using_decl_target);
3097    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3098    return true;
3099  }
3100
3101  // No conflict between a tag and a non-tag.
3102  if (!NonTag) return false;
3103
3104  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3105  Diag(Target->getLocation(), diag::note_using_decl_target);
3106  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3107  return true;
3108}
3109
3110/// Builds a shadow declaration corresponding to a 'using' declaration.
3111UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3112                                            UsingDecl *UD,
3113                                            NamedDecl *Orig) {
3114
3115  // If we resolved to another shadow declaration, just coalesce them.
3116  NamedDecl *Target = Orig;
3117  if (isa<UsingShadowDecl>(Target)) {
3118    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3119    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3120  }
3121
3122  UsingShadowDecl *Shadow
3123    = UsingShadowDecl::Create(Context, CurContext,
3124                              UD->getLocation(), UD, Target);
3125  UD->addShadowDecl(Shadow);
3126
3127  if (S)
3128    PushOnScopeChains(Shadow, S);
3129  else
3130    CurContext->addDecl(Shadow);
3131  Shadow->setAccess(UD->getAccess());
3132
3133  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3134    Shadow->setInvalidDecl();
3135
3136  return Shadow;
3137}
3138
3139/// Hides a using shadow declaration.  This is required by the current
3140/// using-decl implementation when a resolvable using declaration in a
3141/// class is followed by a declaration which would hide or override
3142/// one or more of the using decl's targets; for example:
3143///
3144///   struct Base { void foo(int); };
3145///   struct Derived : Base {
3146///     using Base::foo;
3147///     void foo(int);
3148///   };
3149///
3150/// The governing language is C++03 [namespace.udecl]p12:
3151///
3152///   When a using-declaration brings names from a base class into a
3153///   derived class scope, member functions in the derived class
3154///   override and/or hide member functions with the same name and
3155///   parameter types in a base class (rather than conflicting).
3156///
3157/// There are two ways to implement this:
3158///   (1) optimistically create shadow decls when they're not hidden
3159///       by existing declarations, or
3160///   (2) don't create any shadow decls (or at least don't make them
3161///       visible) until we've fully parsed/instantiated the class.
3162/// The problem with (1) is that we might have to retroactively remove
3163/// a shadow decl, which requires several O(n) operations because the
3164/// decl structures are (very reasonably) not designed for removal.
3165/// (2) avoids this but is very fiddly and phase-dependent.
3166void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3167  // Remove it from the DeclContext...
3168  Shadow->getDeclContext()->removeDecl(Shadow);
3169
3170  // ...and the scope, if applicable...
3171  if (S) {
3172    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3173    IdResolver.RemoveDecl(Shadow);
3174  }
3175
3176  // ...and the using decl.
3177  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3178
3179  // TODO: complain somehow if Shadow was used.  It shouldn't
3180  // be possible for this to happen, because
3181}
3182
3183/// Builds a using declaration.
3184///
3185/// \param IsInstantiation - Whether this call arises from an
3186///   instantiation of an unresolved using declaration.  We treat
3187///   the lookup differently for these declarations.
3188NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3189                                       SourceLocation UsingLoc,
3190                                       const CXXScopeSpec &SS,
3191                                       SourceLocation IdentLoc,
3192                                       DeclarationName Name,
3193                                       AttributeList *AttrList,
3194                                       bool IsInstantiation,
3195                                       bool IsTypeName,
3196                                       SourceLocation TypenameLoc) {
3197  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3198  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3199
3200  // FIXME: We ignore attributes for now.
3201  delete AttrList;
3202
3203  if (SS.isEmpty()) {
3204    Diag(IdentLoc, diag::err_using_requires_qualname);
3205    return 0;
3206  }
3207
3208  // Do the redeclaration lookup in the current scope.
3209  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3210                        ForRedeclaration);
3211  Previous.setHideTags(false);
3212  if (S) {
3213    LookupName(Previous, S);
3214
3215    // It is really dumb that we have to do this.
3216    LookupResult::Filter F = Previous.makeFilter();
3217    while (F.hasNext()) {
3218      NamedDecl *D = F.next();
3219      if (!isDeclInScope(D, CurContext, S))
3220        F.erase();
3221    }
3222    F.done();
3223  } else {
3224    assert(IsInstantiation && "no scope in non-instantiation");
3225    assert(CurContext->isRecord() && "scope not record in instantiation");
3226    LookupQualifiedName(Previous, CurContext);
3227  }
3228
3229  NestedNameSpecifier *NNS =
3230    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3231
3232  // Check for invalid redeclarations.
3233  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3234    return 0;
3235
3236  // Check for bad qualifiers.
3237  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3238    return 0;
3239
3240  DeclContext *LookupContext = computeDeclContext(SS);
3241  NamedDecl *D;
3242  if (!LookupContext) {
3243    if (IsTypeName) {
3244      // FIXME: not all declaration name kinds are legal here
3245      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3246                                              UsingLoc, TypenameLoc,
3247                                              SS.getRange(), NNS,
3248                                              IdentLoc, Name);
3249    } else {
3250      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3251                                           UsingLoc, SS.getRange(), NNS,
3252                                           IdentLoc, Name);
3253    }
3254  } else {
3255    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3256                          SS.getRange(), UsingLoc, NNS, Name,
3257                          IsTypeName);
3258  }
3259  D->setAccess(AS);
3260  CurContext->addDecl(D);
3261
3262  if (!LookupContext) return D;
3263  UsingDecl *UD = cast<UsingDecl>(D);
3264
3265  if (RequireCompleteDeclContext(SS)) {
3266    UD->setInvalidDecl();
3267    return UD;
3268  }
3269
3270  // Look up the target name.
3271
3272  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3273
3274  // Unlike most lookups, we don't always want to hide tag
3275  // declarations: tag names are visible through the using declaration
3276  // even if hidden by ordinary names, *except* in a dependent context
3277  // where it's important for the sanity of two-phase lookup.
3278  if (!IsInstantiation)
3279    R.setHideTags(false);
3280
3281  LookupQualifiedName(R, LookupContext);
3282
3283  if (R.empty()) {
3284    Diag(IdentLoc, diag::err_no_member)
3285      << Name << LookupContext << SS.getRange();
3286    UD->setInvalidDecl();
3287    return UD;
3288  }
3289
3290  if (R.isAmbiguous()) {
3291    UD->setInvalidDecl();
3292    return UD;
3293  }
3294
3295  if (IsTypeName) {
3296    // If we asked for a typename and got a non-type decl, error out.
3297    if (!R.getAsSingle<TypeDecl>()) {
3298      Diag(IdentLoc, diag::err_using_typename_non_type);
3299      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3300        Diag((*I)->getUnderlyingDecl()->getLocation(),
3301             diag::note_using_decl_target);
3302      UD->setInvalidDecl();
3303      return UD;
3304    }
3305  } else {
3306    // If we asked for a non-typename and we got a type, error out,
3307    // but only if this is an instantiation of an unresolved using
3308    // decl.  Otherwise just silently find the type name.
3309    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3310      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3311      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3312      UD->setInvalidDecl();
3313      return UD;
3314    }
3315  }
3316
3317  // C++0x N2914 [namespace.udecl]p6:
3318  // A using-declaration shall not name a namespace.
3319  if (R.getAsSingle<NamespaceDecl>()) {
3320    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3321      << SS.getRange();
3322    UD->setInvalidDecl();
3323    return UD;
3324  }
3325
3326  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3327    if (!CheckUsingShadowDecl(UD, *I, Previous))
3328      BuildUsingShadowDecl(S, UD, *I);
3329  }
3330
3331  return UD;
3332}
3333
3334/// Checks that the given using declaration is not an invalid
3335/// redeclaration.  Note that this is checking only for the using decl
3336/// itself, not for any ill-formedness among the UsingShadowDecls.
3337bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3338                                       bool isTypeName,
3339                                       const CXXScopeSpec &SS,
3340                                       SourceLocation NameLoc,
3341                                       const LookupResult &Prev) {
3342  // C++03 [namespace.udecl]p8:
3343  // C++0x [namespace.udecl]p10:
3344  //   A using-declaration is a declaration and can therefore be used
3345  //   repeatedly where (and only where) multiple declarations are
3346  //   allowed.
3347  // That's only in file contexts.
3348  if (CurContext->getLookupContext()->isFileContext())
3349    return false;
3350
3351  NestedNameSpecifier *Qual
3352    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3353
3354  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3355    NamedDecl *D = *I;
3356
3357    bool DTypename;
3358    NestedNameSpecifier *DQual;
3359    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3360      DTypename = UD->isTypeName();
3361      DQual = UD->getTargetNestedNameDecl();
3362    } else if (UnresolvedUsingValueDecl *UD
3363                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3364      DTypename = false;
3365      DQual = UD->getTargetNestedNameSpecifier();
3366    } else if (UnresolvedUsingTypenameDecl *UD
3367                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3368      DTypename = true;
3369      DQual = UD->getTargetNestedNameSpecifier();
3370    } else continue;
3371
3372    // using decls differ if one says 'typename' and the other doesn't.
3373    // FIXME: non-dependent using decls?
3374    if (isTypeName != DTypename) continue;
3375
3376    // using decls differ if they name different scopes (but note that
3377    // template instantiation can cause this check to trigger when it
3378    // didn't before instantiation).
3379    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3380        Context.getCanonicalNestedNameSpecifier(DQual))
3381      continue;
3382
3383    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3384    Diag(D->getLocation(), diag::note_using_decl) << 1;
3385    return true;
3386  }
3387
3388  return false;
3389}
3390
3391
3392/// Checks that the given nested-name qualifier used in a using decl
3393/// in the current context is appropriately related to the current
3394/// scope.  If an error is found, diagnoses it and returns true.
3395bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3396                                   const CXXScopeSpec &SS,
3397                                   SourceLocation NameLoc) {
3398  DeclContext *NamedContext = computeDeclContext(SS);
3399
3400  if (!CurContext->isRecord()) {
3401    // C++03 [namespace.udecl]p3:
3402    // C++0x [namespace.udecl]p8:
3403    //   A using-declaration for a class member shall be a member-declaration.
3404
3405    // If we weren't able to compute a valid scope, it must be a
3406    // dependent class scope.
3407    if (!NamedContext || NamedContext->isRecord()) {
3408      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3409        << SS.getRange();
3410      return true;
3411    }
3412
3413    // Otherwise, everything is known to be fine.
3414    return false;
3415  }
3416
3417  // The current scope is a record.
3418
3419  // If the named context is dependent, we can't decide much.
3420  if (!NamedContext) {
3421    // FIXME: in C++0x, we can diagnose if we can prove that the
3422    // nested-name-specifier does not refer to a base class, which is
3423    // still possible in some cases.
3424
3425    // Otherwise we have to conservatively report that things might be
3426    // okay.
3427    return false;
3428  }
3429
3430  if (!NamedContext->isRecord()) {
3431    // Ideally this would point at the last name in the specifier,
3432    // but we don't have that level of source info.
3433    Diag(SS.getRange().getBegin(),
3434         diag::err_using_decl_nested_name_specifier_is_not_class)
3435      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3436    return true;
3437  }
3438
3439  if (getLangOptions().CPlusPlus0x) {
3440    // C++0x [namespace.udecl]p3:
3441    //   In a using-declaration used as a member-declaration, the
3442    //   nested-name-specifier shall name a base class of the class
3443    //   being defined.
3444
3445    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3446                                 cast<CXXRecordDecl>(NamedContext))) {
3447      if (CurContext == NamedContext) {
3448        Diag(NameLoc,
3449             diag::err_using_decl_nested_name_specifier_is_current_class)
3450          << SS.getRange();
3451        return true;
3452      }
3453
3454      Diag(SS.getRange().getBegin(),
3455           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3456        << (NestedNameSpecifier*) SS.getScopeRep()
3457        << cast<CXXRecordDecl>(CurContext)
3458        << SS.getRange();
3459      return true;
3460    }
3461
3462    return false;
3463  }
3464
3465  // C++03 [namespace.udecl]p4:
3466  //   A using-declaration used as a member-declaration shall refer
3467  //   to a member of a base class of the class being defined [etc.].
3468
3469  // Salient point: SS doesn't have to name a base class as long as
3470  // lookup only finds members from base classes.  Therefore we can
3471  // diagnose here only if we can prove that that can't happen,
3472  // i.e. if the class hierarchies provably don't intersect.
3473
3474  // TODO: it would be nice if "definitely valid" results were cached
3475  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3476  // need to be repeated.
3477
3478  struct UserData {
3479    llvm::DenseSet<const CXXRecordDecl*> Bases;
3480
3481    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3482      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3483      Data->Bases.insert(Base);
3484      return true;
3485    }
3486
3487    bool hasDependentBases(const CXXRecordDecl *Class) {
3488      return !Class->forallBases(collect, this);
3489    }
3490
3491    /// Returns true if the base is dependent or is one of the
3492    /// accumulated base classes.
3493    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3494      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3495      return !Data->Bases.count(Base);
3496    }
3497
3498    bool mightShareBases(const CXXRecordDecl *Class) {
3499      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3500    }
3501  };
3502
3503  UserData Data;
3504
3505  // Returns false if we find a dependent base.
3506  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3507    return false;
3508
3509  // Returns false if the class has a dependent base or if it or one
3510  // of its bases is present in the base set of the current context.
3511  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3512    return false;
3513
3514  Diag(SS.getRange().getBegin(),
3515       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3516    << (NestedNameSpecifier*) SS.getScopeRep()
3517    << cast<CXXRecordDecl>(CurContext)
3518    << SS.getRange();
3519
3520  return true;
3521}
3522
3523Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3524                                             SourceLocation NamespaceLoc,
3525                                             SourceLocation AliasLoc,
3526                                             IdentifierInfo *Alias,
3527                                             const CXXScopeSpec &SS,
3528                                             SourceLocation IdentLoc,
3529                                             IdentifierInfo *Ident) {
3530
3531  // Lookup the namespace name.
3532  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3533  LookupParsedName(R, S, &SS);
3534
3535  // Check if we have a previous declaration with the same name.
3536  if (NamedDecl *PrevDecl
3537        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3538    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3539      // We already have an alias with the same name that points to the same
3540      // namespace, so don't create a new one.
3541      if (!R.isAmbiguous() && !R.empty() &&
3542          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3543        return DeclPtrTy();
3544    }
3545
3546    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3547      diag::err_redefinition_different_kind;
3548    Diag(AliasLoc, DiagID) << Alias;
3549    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3550    return DeclPtrTy();
3551  }
3552
3553  if (R.isAmbiguous())
3554    return DeclPtrTy();
3555
3556  if (R.empty()) {
3557    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3558    return DeclPtrTy();
3559  }
3560
3561  NamespaceAliasDecl *AliasDecl =
3562    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3563                               Alias, SS.getRange(),
3564                               (NestedNameSpecifier *)SS.getScopeRep(),
3565                               IdentLoc, R.getFoundDecl());
3566
3567  CurContext->addDecl(AliasDecl);
3568  return DeclPtrTy::make(AliasDecl);
3569}
3570
3571void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3572                                            CXXConstructorDecl *Constructor) {
3573  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3574          !Constructor->isUsed()) &&
3575    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3576
3577  CXXRecordDecl *ClassDecl
3578    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3579  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3580
3581  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3582    Diag(CurrentLocation, diag::note_member_synthesized_at)
3583      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3584    Constructor->setInvalidDecl();
3585  } else {
3586    Constructor->setUsed();
3587  }
3588}
3589
3590void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3591                                    CXXDestructorDecl *Destructor) {
3592  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3593         "DefineImplicitDestructor - call it for implicit default dtor");
3594  CXXRecordDecl *ClassDecl = Destructor->getParent();
3595  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3596  // C++ [class.dtor] p5
3597  // Before the implicitly-declared default destructor for a class is
3598  // implicitly defined, all the implicitly-declared default destructors
3599  // for its base class and its non-static data members shall have been
3600  // implicitly defined.
3601  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3602       E = ClassDecl->bases_end(); Base != E; ++Base) {
3603    CXXRecordDecl *BaseClassDecl
3604      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3605    if (!BaseClassDecl->hasTrivialDestructor()) {
3606      if (CXXDestructorDecl *BaseDtor =
3607          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3608        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3609      else
3610        assert(false &&
3611               "DefineImplicitDestructor - missing dtor in a base class");
3612    }
3613  }
3614
3615  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3616       E = ClassDecl->field_end(); Field != E; ++Field) {
3617    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3618    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3619      FieldType = Array->getElementType();
3620    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3621      CXXRecordDecl *FieldClassDecl
3622        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3623      if (!FieldClassDecl->hasTrivialDestructor()) {
3624        if (CXXDestructorDecl *FieldDtor =
3625            const_cast<CXXDestructorDecl*>(
3626                                        FieldClassDecl->getDestructor(Context)))
3627          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3628        else
3629          assert(false &&
3630          "DefineImplicitDestructor - missing dtor in class of a data member");
3631      }
3632    }
3633  }
3634
3635  // FIXME: If CheckDestructor fails, we should emit a note about where the
3636  // implicit destructor was needed.
3637  if (CheckDestructor(Destructor)) {
3638    Diag(CurrentLocation, diag::note_member_synthesized_at)
3639      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3640
3641    Destructor->setInvalidDecl();
3642    return;
3643  }
3644
3645  Destructor->setUsed();
3646}
3647
3648void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3649                                          CXXMethodDecl *MethodDecl) {
3650  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3651          MethodDecl->getOverloadedOperator() == OO_Equal &&
3652          !MethodDecl->isUsed()) &&
3653         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3654
3655  CXXRecordDecl *ClassDecl
3656    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3657
3658  // C++[class.copy] p12
3659  // Before the implicitly-declared copy assignment operator for a class is
3660  // implicitly defined, all implicitly-declared copy assignment operators
3661  // for its direct base classes and its nonstatic data members shall have
3662  // been implicitly defined.
3663  bool err = false;
3664  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3665       E = ClassDecl->bases_end(); Base != E; ++Base) {
3666    CXXRecordDecl *BaseClassDecl
3667      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3668    if (CXXMethodDecl *BaseAssignOpMethod =
3669          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3670                                  BaseClassDecl))
3671      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3672  }
3673  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3674       E = ClassDecl->field_end(); Field != E; ++Field) {
3675    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3676    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3677      FieldType = Array->getElementType();
3678    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3679      CXXRecordDecl *FieldClassDecl
3680        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3681      if (CXXMethodDecl *FieldAssignOpMethod =
3682          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3683                                  FieldClassDecl))
3684        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3685    } else if (FieldType->isReferenceType()) {
3686      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3687      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3688      Diag(Field->getLocation(), diag::note_declared_at);
3689      Diag(CurrentLocation, diag::note_first_required_here);
3690      err = true;
3691    } else if (FieldType.isConstQualified()) {
3692      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3693      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3694      Diag(Field->getLocation(), diag::note_declared_at);
3695      Diag(CurrentLocation, diag::note_first_required_here);
3696      err = true;
3697    }
3698  }
3699  if (!err)
3700    MethodDecl->setUsed();
3701}
3702
3703CXXMethodDecl *
3704Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3705                              ParmVarDecl *ParmDecl,
3706                              CXXRecordDecl *ClassDecl) {
3707  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3708  QualType RHSType(LHSType);
3709  // If class's assignment operator argument is const/volatile qualified,
3710  // look for operator = (const/volatile B&). Otherwise, look for
3711  // operator = (B&).
3712  RHSType = Context.getCVRQualifiedType(RHSType,
3713                                     ParmDecl->getType().getCVRQualifiers());
3714  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3715                                                           LHSType,
3716                                                           SourceLocation()));
3717  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3718                                                           RHSType,
3719                                                           CurrentLocation));
3720  Expr *Args[2] = { &*LHS, &*RHS };
3721  OverloadCandidateSet CandidateSet;
3722  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3723                              CandidateSet);
3724  OverloadCandidateSet::iterator Best;
3725  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3726    return cast<CXXMethodDecl>(Best->Function);
3727  assert(false &&
3728         "getAssignOperatorMethod - copy assignment operator method not found");
3729  return 0;
3730}
3731
3732void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3733                                   CXXConstructorDecl *CopyConstructor,
3734                                   unsigned TypeQuals) {
3735  assert((CopyConstructor->isImplicit() &&
3736          CopyConstructor->isCopyConstructor(TypeQuals) &&
3737          !CopyConstructor->isUsed()) &&
3738         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3739
3740  CXXRecordDecl *ClassDecl
3741    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3742  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3743  // C++ [class.copy] p209
3744  // Before the implicitly-declared copy constructor for a class is
3745  // implicitly defined, all the implicitly-declared copy constructors
3746  // for its base class and its non-static data members shall have been
3747  // implicitly defined.
3748  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3749       Base != ClassDecl->bases_end(); ++Base) {
3750    CXXRecordDecl *BaseClassDecl
3751      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3752    if (CXXConstructorDecl *BaseCopyCtor =
3753        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3754      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3755  }
3756  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3757                                  FieldEnd = ClassDecl->field_end();
3758       Field != FieldEnd; ++Field) {
3759    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3760    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3761      FieldType = Array->getElementType();
3762    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3763      CXXRecordDecl *FieldClassDecl
3764        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3765      if (CXXConstructorDecl *FieldCopyCtor =
3766          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3767        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3768    }
3769  }
3770  CopyConstructor->setUsed();
3771}
3772
3773Sema::OwningExprResult
3774Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3775                            CXXConstructorDecl *Constructor,
3776                            MultiExprArg ExprArgs,
3777                            bool RequiresZeroInit) {
3778  bool Elidable = false;
3779
3780  // C++ [class.copy]p15:
3781  //   Whenever a temporary class object is copied using a copy constructor, and
3782  //   this object and the copy have the same cv-unqualified type, an
3783  //   implementation is permitted to treat the original and the copy as two
3784  //   different ways of referring to the same object and not perform a copy at
3785  //   all, even if the class copy constructor or destructor have side effects.
3786
3787  // FIXME: Is this enough?
3788  if (Constructor->isCopyConstructor()) {
3789    Expr *E = ((Expr **)ExprArgs.get())[0];
3790    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3791      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3792        E = ICE->getSubExpr();
3793    if (CXXFunctionalCastExpr *FCE = dyn_cast<CXXFunctionalCastExpr>(E))
3794      E = FCE->getSubExpr();
3795    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3796      E = BE->getSubExpr();
3797    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3798      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3799        E = ICE->getSubExpr();
3800
3801    if (CallExpr *CE = dyn_cast<CallExpr>(E))
3802      Elidable = !CE->getCallReturnType()->isReferenceType();
3803    else if (isa<CXXTemporaryObjectExpr>(E))
3804      Elidable = true;
3805    else if (isa<CXXConstructExpr>(E))
3806      Elidable = true;
3807  }
3808
3809  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3810                               Elidable, move(ExprArgs), RequiresZeroInit);
3811}
3812
3813/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3814/// including handling of its default argument expressions.
3815Sema::OwningExprResult
3816Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3817                            CXXConstructorDecl *Constructor, bool Elidable,
3818                            MultiExprArg ExprArgs,
3819                            bool RequiresZeroInit) {
3820  unsigned NumExprs = ExprArgs.size();
3821  Expr **Exprs = (Expr **)ExprArgs.release();
3822
3823  MarkDeclarationReferenced(ConstructLoc, Constructor);
3824  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
3825                                        Constructor, Elidable, Exprs, NumExprs,
3826                                        RequiresZeroInit));
3827}
3828
3829Sema::OwningExprResult
3830Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3831                                  QualType Ty,
3832                                  SourceLocation TyBeginLoc,
3833                                  MultiExprArg Args,
3834                                  SourceLocation RParenLoc) {
3835  unsigned NumExprs = Args.size();
3836  Expr **Exprs = (Expr **)Args.release();
3837
3838  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3839  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3840                                                    TyBeginLoc, Exprs,
3841                                                    NumExprs, RParenLoc));
3842}
3843
3844
3845bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3846                                        CXXConstructorDecl *Constructor,
3847                                        MultiExprArg Exprs) {
3848  OwningExprResult TempResult =
3849    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3850                          move(Exprs));
3851  if (TempResult.isInvalid())
3852    return true;
3853
3854  Expr *Temp = TempResult.takeAs<Expr>();
3855  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3856  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
3857  VD->setInit(Context, Temp);
3858
3859  return false;
3860}
3861
3862void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3863  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3864                                  DeclInitType->getAs<RecordType>()->getDecl());
3865  if (!ClassDecl->hasTrivialDestructor())
3866    if (CXXDestructorDecl *Destructor =
3867        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3868      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3869}
3870
3871/// AddCXXDirectInitializerToDecl - This action is called immediately after
3872/// ActOnDeclarator, when a C++ direct initializer is present.
3873/// e.g: "int x(1);"
3874void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3875                                         SourceLocation LParenLoc,
3876                                         MultiExprArg Exprs,
3877                                         SourceLocation *CommaLocs,
3878                                         SourceLocation RParenLoc) {
3879  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
3880  Decl *RealDecl = Dcl.getAs<Decl>();
3881
3882  // If there is no declaration, there was an error parsing it.  Just ignore
3883  // the initializer.
3884  if (RealDecl == 0)
3885    return;
3886
3887  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3888  if (!VDecl) {
3889    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3890    RealDecl->setInvalidDecl();
3891    return;
3892  }
3893
3894  // We will represent direct-initialization similarly to copy-initialization:
3895  //    int x(1);  -as-> int x = 1;
3896  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3897  //
3898  // Clients that want to distinguish between the two forms, can check for
3899  // direct initializer using VarDecl::hasCXXDirectInitializer().
3900  // A major benefit is that clients that don't particularly care about which
3901  // exactly form was it (like the CodeGen) can handle both cases without
3902  // special case code.
3903
3904  // If either the declaration has a dependent type or if any of the expressions
3905  // is type-dependent, we represent the initialization via a ParenListExpr for
3906  // later use during template instantiation.
3907  if (VDecl->getType()->isDependentType() ||
3908      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3909    // Let clients know that initialization was done with a direct initializer.
3910    VDecl->setCXXDirectInitializer(true);
3911
3912    // Store the initialization expressions as a ParenListExpr.
3913    unsigned NumExprs = Exprs.size();
3914    VDecl->setInit(Context,
3915                   new (Context) ParenListExpr(Context, LParenLoc,
3916                                               (Expr **)Exprs.release(),
3917                                               NumExprs, RParenLoc));
3918    return;
3919  }
3920
3921
3922  // C++ 8.5p11:
3923  // The form of initialization (using parentheses or '=') is generally
3924  // insignificant, but does matter when the entity being initialized has a
3925  // class type.
3926  QualType DeclInitType = VDecl->getType();
3927  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3928    DeclInitType = Context.getBaseElementType(Array);
3929
3930  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3931                          diag::err_typecheck_decl_incomplete_type)) {
3932    VDecl->setInvalidDecl();
3933    return;
3934  }
3935
3936  // The variable can not have an abstract class type.
3937  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3938                             diag::err_abstract_type_in_decl,
3939                             AbstractVariableType))
3940    VDecl->setInvalidDecl();
3941
3942  const VarDecl *Def = 0;
3943  if (VDecl->getDefinition(Def)) {
3944    Diag(VDecl->getLocation(), diag::err_redefinition)
3945    << VDecl->getDeclName();
3946    Diag(Def->getLocation(), diag::note_previous_definition);
3947    VDecl->setInvalidDecl();
3948    return;
3949  }
3950
3951  // Capture the variable that is being initialized and the style of
3952  // initialization.
3953  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3954
3955  // FIXME: Poor source location information.
3956  InitializationKind Kind
3957    = InitializationKind::CreateDirect(VDecl->getLocation(),
3958                                       LParenLoc, RParenLoc);
3959
3960  InitializationSequence InitSeq(*this, Entity, Kind,
3961                                 (Expr**)Exprs.get(), Exprs.size());
3962  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
3963  if (Result.isInvalid()) {
3964    VDecl->setInvalidDecl();
3965    return;
3966  }
3967
3968  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
3969  VDecl->setInit(Context, Result.takeAs<Expr>());
3970  VDecl->setCXXDirectInitializer(true);
3971
3972  if (VDecl->getType()->getAs<RecordType>())
3973    FinalizeVarWithDestructor(VDecl, DeclInitType);
3974}
3975
3976/// \brief Add the applicable constructor candidates for an initialization
3977/// by constructor.
3978static void AddConstructorInitializationCandidates(Sema &SemaRef,
3979                                                   QualType ClassType,
3980                                                   Expr **Args,
3981                                                   unsigned NumArgs,
3982                                                   InitializationKind Kind,
3983                                           OverloadCandidateSet &CandidateSet) {
3984  // C++ [dcl.init]p14:
3985  //   If the initialization is direct-initialization, or if it is
3986  //   copy-initialization where the cv-unqualified version of the
3987  //   source type is the same class as, or a derived class of, the
3988  //   class of the destination, constructors are considered. The
3989  //   applicable constructors are enumerated (13.3.1.3), and the
3990  //   best one is chosen through overload resolution (13.3). The
3991  //   constructor so selected is called to initialize the object,
3992  //   with the initializer expression(s) as its argument(s). If no
3993  //   constructor applies, or the overload resolution is ambiguous,
3994  //   the initialization is ill-formed.
3995  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3996  assert(ClassRec && "Can only initialize a class type here");
3997
3998  // FIXME: When we decide not to synthesize the implicitly-declared
3999  // constructors, we'll need to make them appear here.
4000
4001  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4002  DeclarationName ConstructorName
4003    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4004              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4005  DeclContext::lookup_const_iterator Con, ConEnd;
4006  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4007       Con != ConEnd; ++Con) {
4008    // Find the constructor (which may be a template).
4009    CXXConstructorDecl *Constructor = 0;
4010    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4011    if (ConstructorTmpl)
4012      Constructor
4013      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4014    else
4015      Constructor = cast<CXXConstructorDecl>(*Con);
4016
4017    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4018        (Kind.getKind() == InitializationKind::IK_Value) ||
4019        (Kind.getKind() == InitializationKind::IK_Copy &&
4020         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4021        ((Kind.getKind() == InitializationKind::IK_Default) &&
4022         Constructor->isDefaultConstructor())) {
4023      if (ConstructorTmpl)
4024        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
4025                                             /*ExplicitArgs*/ 0,
4026                                             Args, NumArgs, CandidateSet);
4027      else
4028        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
4029    }
4030  }
4031}
4032
4033/// \brief Attempt to perform initialization by constructor
4034/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4035/// copy-initialization.
4036///
4037/// This routine determines whether initialization by constructor is possible,
4038/// but it does not emit any diagnostics in the case where the initialization
4039/// is ill-formed.
4040///
4041/// \param ClassType the type of the object being initialized, which must have
4042/// class type.
4043///
4044/// \param Args the arguments provided to initialize the object
4045///
4046/// \param NumArgs the number of arguments provided to initialize the object
4047///
4048/// \param Kind the type of initialization being performed
4049///
4050/// \returns the constructor used to initialize the object, if successful.
4051/// Otherwise, emits a diagnostic and returns NULL.
4052CXXConstructorDecl *
4053Sema::TryInitializationByConstructor(QualType ClassType,
4054                                     Expr **Args, unsigned NumArgs,
4055                                     SourceLocation Loc,
4056                                     InitializationKind Kind) {
4057  // Build the overload candidate set
4058  OverloadCandidateSet CandidateSet;
4059  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4060                                         CandidateSet);
4061
4062  // Determine whether we found a constructor we can use.
4063  OverloadCandidateSet::iterator Best;
4064  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4065    case OR_Success:
4066    case OR_Deleted:
4067      // We found a constructor. Return it.
4068      return cast<CXXConstructorDecl>(Best->Function);
4069
4070    case OR_No_Viable_Function:
4071    case OR_Ambiguous:
4072      // Overload resolution failed. Return nothing.
4073      return 0;
4074  }
4075
4076  // Silence GCC warning
4077  return 0;
4078}
4079
4080/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
4081/// may occur as part of direct-initialization or copy-initialization.
4082///
4083/// \param ClassType the type of the object being initialized, which must have
4084/// class type.
4085///
4086/// \param ArgsPtr the arguments provided to initialize the object
4087///
4088/// \param Loc the source location where the initialization occurs
4089///
4090/// \param Range the source range that covers the entire initialization
4091///
4092/// \param InitEntity the name of the entity being initialized, if known
4093///
4094/// \param Kind the type of initialization being performed
4095///
4096/// \param ConvertedArgs a vector that will be filled in with the
4097/// appropriately-converted arguments to the constructor (if initialization
4098/// succeeded).
4099///
4100/// \returns the constructor used to initialize the object, if successful.
4101/// Otherwise, emits a diagnostic and returns NULL.
4102CXXConstructorDecl *
4103Sema::PerformInitializationByConstructor(QualType ClassType,
4104                                         MultiExprArg ArgsPtr,
4105                                         SourceLocation Loc, SourceRange Range,
4106                                         DeclarationName InitEntity,
4107                                         InitializationKind Kind,
4108                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4109
4110  // Build the overload candidate set
4111  Expr **Args = (Expr **)ArgsPtr.get();
4112  unsigned NumArgs = ArgsPtr.size();
4113  OverloadCandidateSet CandidateSet;
4114  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4115                                         CandidateSet);
4116
4117  OverloadCandidateSet::iterator Best;
4118  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4119  case OR_Success:
4120    // We found a constructor. Break out so that we can convert the arguments
4121    // appropriately.
4122    break;
4123
4124  case OR_No_Viable_Function:
4125    if (InitEntity)
4126      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4127        << InitEntity << Range;
4128    else
4129      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
4130        << ClassType << Range;
4131    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
4132    return 0;
4133
4134  case OR_Ambiguous:
4135    if (InitEntity)
4136      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
4137    else
4138      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
4139    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4140    return 0;
4141
4142  case OR_Deleted:
4143    if (InitEntity)
4144      Diag(Loc, diag::err_ovl_deleted_init)
4145        << Best->Function->isDeleted()
4146        << InitEntity << Range;
4147    else {
4148      const CXXRecordDecl *RD =
4149          cast<CXXRecordDecl>(ClassType->getAs<RecordType>()->getDecl());
4150      Diag(Loc, diag::err_ovl_deleted_init)
4151        << Best->Function->isDeleted()
4152        << RD->getDeclName() << Range;
4153    }
4154    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4155    return 0;
4156  }
4157
4158  // Convert the arguments, fill in default arguments, etc.
4159  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4160  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
4161    return 0;
4162
4163  return Constructor;
4164}
4165
4166/// \brief Given a constructor and the set of arguments provided for the
4167/// constructor, convert the arguments and add any required default arguments
4168/// to form a proper call to this constructor.
4169///
4170/// \returns true if an error occurred, false otherwise.
4171bool
4172Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4173                              MultiExprArg ArgsPtr,
4174                              SourceLocation Loc,
4175                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4176  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4177  unsigned NumArgs = ArgsPtr.size();
4178  Expr **Args = (Expr **)ArgsPtr.get();
4179
4180  const FunctionProtoType *Proto
4181    = Constructor->getType()->getAs<FunctionProtoType>();
4182  assert(Proto && "Constructor without a prototype?");
4183  unsigned NumArgsInProto = Proto->getNumArgs();
4184
4185  // If too few arguments are available, we'll fill in the rest with defaults.
4186  if (NumArgs < NumArgsInProto)
4187    ConvertedArgs.reserve(NumArgsInProto);
4188  else
4189    ConvertedArgs.reserve(NumArgs);
4190
4191  VariadicCallType CallType =
4192    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4193  llvm::SmallVector<Expr *, 8> AllArgs;
4194  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4195                                        Proto, 0, Args, NumArgs, AllArgs,
4196                                        CallType);
4197  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4198    ConvertedArgs.push_back(AllArgs[i]);
4199  return Invalid;
4200}
4201
4202/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4203/// determine whether they are reference-related,
4204/// reference-compatible, reference-compatible with added
4205/// qualification, or incompatible, for use in C++ initialization by
4206/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4207/// type, and the first type (T1) is the pointee type of the reference
4208/// type being initialized.
4209Sema::ReferenceCompareResult
4210Sema::CompareReferenceRelationship(SourceLocation Loc,
4211                                   QualType OrigT1, QualType OrigT2,
4212                                   bool& DerivedToBase) {
4213  assert(!OrigT1->isReferenceType() &&
4214    "T1 must be the pointee type of the reference type");
4215  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4216
4217  QualType T1 = Context.getCanonicalType(OrigT1);
4218  QualType T2 = Context.getCanonicalType(OrigT2);
4219  Qualifiers T1Quals, T2Quals;
4220  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4221  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4222
4223  // C++ [dcl.init.ref]p4:
4224  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4225  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4226  //   T1 is a base class of T2.
4227  if (UnqualT1 == UnqualT2)
4228    DerivedToBase = false;
4229  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4230           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4231           IsDerivedFrom(UnqualT2, UnqualT1))
4232    DerivedToBase = true;
4233  else
4234    return Ref_Incompatible;
4235
4236  // At this point, we know that T1 and T2 are reference-related (at
4237  // least).
4238
4239  // If the type is an array type, promote the element qualifiers to the type
4240  // for comparison.
4241  if (isa<ArrayType>(T1) && T1Quals)
4242    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4243  if (isa<ArrayType>(T2) && T2Quals)
4244    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4245
4246  // C++ [dcl.init.ref]p4:
4247  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4248  //   reference-related to T2 and cv1 is the same cv-qualification
4249  //   as, or greater cv-qualification than, cv2. For purposes of
4250  //   overload resolution, cases for which cv1 is greater
4251  //   cv-qualification than cv2 are identified as
4252  //   reference-compatible with added qualification (see 13.3.3.2).
4253  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4254    return Ref_Compatible;
4255  else if (T1.isMoreQualifiedThan(T2))
4256    return Ref_Compatible_With_Added_Qualification;
4257  else
4258    return Ref_Related;
4259}
4260
4261/// CheckReferenceInit - Check the initialization of a reference
4262/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4263/// the initializer (either a simple initializer or an initializer
4264/// list), and DeclType is the type of the declaration. When ICS is
4265/// non-null, this routine will compute the implicit conversion
4266/// sequence according to C++ [over.ics.ref] and will not produce any
4267/// diagnostics; when ICS is null, it will emit diagnostics when any
4268/// errors are found. Either way, a return value of true indicates
4269/// that there was a failure, a return value of false indicates that
4270/// the reference initialization succeeded.
4271///
4272/// When @p SuppressUserConversions, user-defined conversions are
4273/// suppressed.
4274/// When @p AllowExplicit, we also permit explicit user-defined
4275/// conversion functions.
4276/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4277/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4278/// This is used when this is called from a C-style cast.
4279bool
4280Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4281                         SourceLocation DeclLoc,
4282                         bool SuppressUserConversions,
4283                         bool AllowExplicit, bool ForceRValue,
4284                         ImplicitConversionSequence *ICS,
4285                         bool IgnoreBaseAccess) {
4286  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4287
4288  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4289  QualType T2 = Init->getType();
4290
4291  // If the initializer is the address of an overloaded function, try
4292  // to resolve the overloaded function. If all goes well, T2 is the
4293  // type of the resulting function.
4294  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4295    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4296                                                          ICS != 0);
4297    if (Fn) {
4298      // Since we're performing this reference-initialization for
4299      // real, update the initializer with the resulting function.
4300      if (!ICS) {
4301        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4302          return true;
4303
4304        Init = FixOverloadedFunctionReference(Init, Fn);
4305      }
4306
4307      T2 = Fn->getType();
4308    }
4309  }
4310
4311  // Compute some basic properties of the types and the initializer.
4312  bool isRValRef = DeclType->isRValueReferenceType();
4313  bool DerivedToBase = false;
4314  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4315                                                  Init->isLvalue(Context);
4316  ReferenceCompareResult RefRelationship
4317    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4318
4319  // Most paths end in a failed conversion.
4320  if (ICS)
4321    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
4322
4323  // C++ [dcl.init.ref]p5:
4324  //   A reference to type "cv1 T1" is initialized by an expression
4325  //   of type "cv2 T2" as follows:
4326
4327  //     -- If the initializer expression
4328
4329  // Rvalue references cannot bind to lvalues (N2812).
4330  // There is absolutely no situation where they can. In particular, note that
4331  // this is ill-formed, even if B has a user-defined conversion to A&&:
4332  //   B b;
4333  //   A&& r = b;
4334  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4335    if (!ICS)
4336      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4337        << Init->getSourceRange();
4338    return true;
4339  }
4340
4341  bool BindsDirectly = false;
4342  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4343  //          reference-compatible with "cv2 T2," or
4344  //
4345  // Note that the bit-field check is skipped if we are just computing
4346  // the implicit conversion sequence (C++ [over.best.ics]p2).
4347  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4348      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4349    BindsDirectly = true;
4350
4351    if (ICS) {
4352      // C++ [over.ics.ref]p1:
4353      //   When a parameter of reference type binds directly (8.5.3)
4354      //   to an argument expression, the implicit conversion sequence
4355      //   is the identity conversion, unless the argument expression
4356      //   has a type that is a derived class of the parameter type,
4357      //   in which case the implicit conversion sequence is a
4358      //   derived-to-base Conversion (13.3.3.1).
4359      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4360      ICS->Standard.First = ICK_Identity;
4361      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4362      ICS->Standard.Third = ICK_Identity;
4363      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4364      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4365      ICS->Standard.ReferenceBinding = true;
4366      ICS->Standard.DirectBinding = true;
4367      ICS->Standard.RRefBinding = false;
4368      ICS->Standard.CopyConstructor = 0;
4369
4370      // Nothing more to do: the inaccessibility/ambiguity check for
4371      // derived-to-base conversions is suppressed when we're
4372      // computing the implicit conversion sequence (C++
4373      // [over.best.ics]p2).
4374      return false;
4375    } else {
4376      // Perform the conversion.
4377      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4378      if (DerivedToBase)
4379        CK = CastExpr::CK_DerivedToBase;
4380      else if(CheckExceptionSpecCompatibility(Init, T1))
4381        return true;
4382      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4383    }
4384  }
4385
4386  //       -- has a class type (i.e., T2 is a class type) and can be
4387  //          implicitly converted to an lvalue of type "cv3 T3,"
4388  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4389  //          92) (this conversion is selected by enumerating the
4390  //          applicable conversion functions (13.3.1.6) and choosing
4391  //          the best one through overload resolution (13.3)),
4392  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4393      !RequireCompleteType(DeclLoc, T2, 0)) {
4394    CXXRecordDecl *T2RecordDecl
4395      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4396
4397    OverloadCandidateSet CandidateSet;
4398    const UnresolvedSet *Conversions
4399      = T2RecordDecl->getVisibleConversionFunctions();
4400    for (UnresolvedSet::iterator I = Conversions->begin(),
4401           E = Conversions->end(); I != E; ++I) {
4402      NamedDecl *D = *I;
4403      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4404      if (isa<UsingShadowDecl>(D))
4405        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4406
4407      FunctionTemplateDecl *ConvTemplate
4408        = dyn_cast<FunctionTemplateDecl>(D);
4409      CXXConversionDecl *Conv;
4410      if (ConvTemplate)
4411        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4412      else
4413        Conv = cast<CXXConversionDecl>(D);
4414
4415      // If the conversion function doesn't return a reference type,
4416      // it can't be considered for this conversion.
4417      if (Conv->getConversionType()->isLValueReferenceType() &&
4418          (AllowExplicit || !Conv->isExplicit())) {
4419        if (ConvTemplate)
4420          AddTemplateConversionCandidate(ConvTemplate, ActingDC,
4421                                         Init, DeclType, CandidateSet);
4422        else
4423          AddConversionCandidate(Conv, ActingDC, Init, DeclType, CandidateSet);
4424      }
4425    }
4426
4427    OverloadCandidateSet::iterator Best;
4428    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4429    case OR_Success:
4430      // This is a direct binding.
4431      BindsDirectly = true;
4432
4433      if (ICS) {
4434        // C++ [over.ics.ref]p1:
4435        //
4436        //   [...] If the parameter binds directly to the result of
4437        //   applying a conversion function to the argument
4438        //   expression, the implicit conversion sequence is a
4439        //   user-defined conversion sequence (13.3.3.1.2), with the
4440        //   second standard conversion sequence either an identity
4441        //   conversion or, if the conversion function returns an
4442        //   entity of a type that is a derived class of the parameter
4443        //   type, a derived-to-base Conversion.
4444        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
4445        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4446        ICS->UserDefined.After = Best->FinalConversion;
4447        ICS->UserDefined.ConversionFunction = Best->Function;
4448        ICS->UserDefined.EllipsisConversion = false;
4449        assert(ICS->UserDefined.After.ReferenceBinding &&
4450               ICS->UserDefined.After.DirectBinding &&
4451               "Expected a direct reference binding!");
4452        return false;
4453      } else {
4454        OwningExprResult InitConversion =
4455          BuildCXXCastArgument(DeclLoc, QualType(),
4456                               CastExpr::CK_UserDefinedConversion,
4457                               cast<CXXMethodDecl>(Best->Function),
4458                               Owned(Init));
4459        Init = InitConversion.takeAs<Expr>();
4460
4461        if (CheckExceptionSpecCompatibility(Init, T1))
4462          return true;
4463        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4464                          /*isLvalue=*/true);
4465      }
4466      break;
4467
4468    case OR_Ambiguous:
4469      if (ICS) {
4470        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4471             Cand != CandidateSet.end(); ++Cand)
4472          if (Cand->Viable)
4473            ICS->ConversionFunctionSet.push_back(Cand->Function);
4474        break;
4475      }
4476      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4477            << Init->getSourceRange();
4478      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
4479      return true;
4480
4481    case OR_No_Viable_Function:
4482    case OR_Deleted:
4483      // There was no suitable conversion, or we found a deleted
4484      // conversion; continue with other checks.
4485      break;
4486    }
4487  }
4488
4489  if (BindsDirectly) {
4490    // C++ [dcl.init.ref]p4:
4491    //   [...] In all cases where the reference-related or
4492    //   reference-compatible relationship of two types is used to
4493    //   establish the validity of a reference binding, and T1 is a
4494    //   base class of T2, a program that necessitates such a binding
4495    //   is ill-formed if T1 is an inaccessible (clause 11) or
4496    //   ambiguous (10.2) base class of T2.
4497    //
4498    // Note that we only check this condition when we're allowed to
4499    // complain about errors, because we should not be checking for
4500    // ambiguity (or inaccessibility) unless the reference binding
4501    // actually happens.
4502    if (DerivedToBase)
4503      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4504                                          Init->getSourceRange(),
4505                                          IgnoreBaseAccess);
4506    else
4507      return false;
4508  }
4509
4510  //     -- Otherwise, the reference shall be to a non-volatile const
4511  //        type (i.e., cv1 shall be const), or the reference shall be an
4512  //        rvalue reference and the initializer expression shall be an rvalue.
4513  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4514    if (!ICS)
4515      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4516        << T1 << int(InitLvalue != Expr::LV_Valid)
4517        << T2 << Init->getSourceRange();
4518    return true;
4519  }
4520
4521  //       -- If the initializer expression is an rvalue, with T2 a
4522  //          class type, and "cv1 T1" is reference-compatible with
4523  //          "cv2 T2," the reference is bound in one of the
4524  //          following ways (the choice is implementation-defined):
4525  //
4526  //          -- The reference is bound to the object represented by
4527  //             the rvalue (see 3.10) or to a sub-object within that
4528  //             object.
4529  //
4530  //          -- A temporary of type "cv1 T2" [sic] is created, and
4531  //             a constructor is called to copy the entire rvalue
4532  //             object into the temporary. The reference is bound to
4533  //             the temporary or to a sub-object within the
4534  //             temporary.
4535  //
4536  //          The constructor that would be used to make the copy
4537  //          shall be callable whether or not the copy is actually
4538  //          done.
4539  //
4540  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4541  // freedom, so we will always take the first option and never build
4542  // a temporary in this case. FIXME: We will, however, have to check
4543  // for the presence of a copy constructor in C++98/03 mode.
4544  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4545      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4546    if (ICS) {
4547      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4548      ICS->Standard.First = ICK_Identity;
4549      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4550      ICS->Standard.Third = ICK_Identity;
4551      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4552      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4553      ICS->Standard.ReferenceBinding = true;
4554      ICS->Standard.DirectBinding = false;
4555      ICS->Standard.RRefBinding = isRValRef;
4556      ICS->Standard.CopyConstructor = 0;
4557    } else {
4558      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4559      if (DerivedToBase)
4560        CK = CastExpr::CK_DerivedToBase;
4561      else if(CheckExceptionSpecCompatibility(Init, T1))
4562        return true;
4563      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4564    }
4565    return false;
4566  }
4567
4568  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4569  //          initialized from the initializer expression using the
4570  //          rules for a non-reference copy initialization (8.5). The
4571  //          reference is then bound to the temporary. If T1 is
4572  //          reference-related to T2, cv1 must be the same
4573  //          cv-qualification as, or greater cv-qualification than,
4574  //          cv2; otherwise, the program is ill-formed.
4575  if (RefRelationship == Ref_Related) {
4576    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4577    // we would be reference-compatible or reference-compatible with
4578    // added qualification. But that wasn't the case, so the reference
4579    // initialization fails.
4580    if (!ICS)
4581      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4582        << T1 << int(InitLvalue != Expr::LV_Valid)
4583        << T2 << Init->getSourceRange();
4584    return true;
4585  }
4586
4587  // If at least one of the types is a class type, the types are not
4588  // related, and we aren't allowed any user conversions, the
4589  // reference binding fails. This case is important for breaking
4590  // recursion, since TryImplicitConversion below will attempt to
4591  // create a temporary through the use of a copy constructor.
4592  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4593      (T1->isRecordType() || T2->isRecordType())) {
4594    if (!ICS)
4595      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4596        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4597    return true;
4598  }
4599
4600  // Actually try to convert the initializer to T1.
4601  if (ICS) {
4602    // C++ [over.ics.ref]p2:
4603    //
4604    //   When a parameter of reference type is not bound directly to
4605    //   an argument expression, the conversion sequence is the one
4606    //   required to convert the argument expression to the
4607    //   underlying type of the reference according to
4608    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4609    //   to copy-initializing a temporary of the underlying type with
4610    //   the argument expression. Any difference in top-level
4611    //   cv-qualification is subsumed by the initialization itself
4612    //   and does not constitute a conversion.
4613    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4614                                 /*AllowExplicit=*/false,
4615                                 /*ForceRValue=*/false,
4616                                 /*InOverloadResolution=*/false);
4617
4618    // Of course, that's still a reference binding.
4619    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4620      ICS->Standard.ReferenceBinding = true;
4621      ICS->Standard.RRefBinding = isRValRef;
4622    } else if (ICS->ConversionKind ==
4623              ImplicitConversionSequence::UserDefinedConversion) {
4624      ICS->UserDefined.After.ReferenceBinding = true;
4625      ICS->UserDefined.After.RRefBinding = isRValRef;
4626    }
4627    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4628  } else {
4629    ImplicitConversionSequence Conversions;
4630    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4631                                                   false, false,
4632                                                   Conversions);
4633    if (badConversion) {
4634      if ((Conversions.ConversionKind  ==
4635            ImplicitConversionSequence::BadConversion)
4636          && !Conversions.ConversionFunctionSet.empty()) {
4637        Diag(DeclLoc,
4638             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4639        for (int j = Conversions.ConversionFunctionSet.size()-1;
4640             j >= 0; j--) {
4641          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4642          Diag(Func->getLocation(), diag::err_ovl_candidate);
4643        }
4644      }
4645      else {
4646        if (isRValRef)
4647          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4648            << Init->getSourceRange();
4649        else
4650          Diag(DeclLoc, diag::err_invalid_initialization)
4651            << DeclType << Init->getType() << Init->getSourceRange();
4652      }
4653    }
4654    return badConversion;
4655  }
4656}
4657
4658static inline bool
4659CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4660                                       const FunctionDecl *FnDecl) {
4661  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4662  if (isa<NamespaceDecl>(DC)) {
4663    return SemaRef.Diag(FnDecl->getLocation(),
4664                        diag::err_operator_new_delete_declared_in_namespace)
4665      << FnDecl->getDeclName();
4666  }
4667
4668  if (isa<TranslationUnitDecl>(DC) &&
4669      FnDecl->getStorageClass() == FunctionDecl::Static) {
4670    return SemaRef.Diag(FnDecl->getLocation(),
4671                        diag::err_operator_new_delete_declared_static)
4672      << FnDecl->getDeclName();
4673  }
4674
4675  return false;
4676}
4677
4678static inline bool
4679CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4680                            CanQualType ExpectedResultType,
4681                            CanQualType ExpectedFirstParamType,
4682                            unsigned DependentParamTypeDiag,
4683                            unsigned InvalidParamTypeDiag) {
4684  QualType ResultType =
4685    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4686
4687  // Check that the result type is not dependent.
4688  if (ResultType->isDependentType())
4689    return SemaRef.Diag(FnDecl->getLocation(),
4690                        diag::err_operator_new_delete_dependent_result_type)
4691    << FnDecl->getDeclName() << ExpectedResultType;
4692
4693  // Check that the result type is what we expect.
4694  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4695    return SemaRef.Diag(FnDecl->getLocation(),
4696                        diag::err_operator_new_delete_invalid_result_type)
4697    << FnDecl->getDeclName() << ExpectedResultType;
4698
4699  // A function template must have at least 2 parameters.
4700  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4701    return SemaRef.Diag(FnDecl->getLocation(),
4702                      diag::err_operator_new_delete_template_too_few_parameters)
4703        << FnDecl->getDeclName();
4704
4705  // The function decl must have at least 1 parameter.
4706  if (FnDecl->getNumParams() == 0)
4707    return SemaRef.Diag(FnDecl->getLocation(),
4708                        diag::err_operator_new_delete_too_few_parameters)
4709      << FnDecl->getDeclName();
4710
4711  // Check the the first parameter type is not dependent.
4712  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4713  if (FirstParamType->isDependentType())
4714    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4715      << FnDecl->getDeclName() << ExpectedFirstParamType;
4716
4717  // Check that the first parameter type is what we expect.
4718  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4719      ExpectedFirstParamType)
4720    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4721    << FnDecl->getDeclName() << ExpectedFirstParamType;
4722
4723  return false;
4724}
4725
4726static bool
4727CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4728  // C++ [basic.stc.dynamic.allocation]p1:
4729  //   A program is ill-formed if an allocation function is declared in a
4730  //   namespace scope other than global scope or declared static in global
4731  //   scope.
4732  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4733    return true;
4734
4735  CanQualType SizeTy =
4736    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4737
4738  // C++ [basic.stc.dynamic.allocation]p1:
4739  //  The return type shall be void*. The first parameter shall have type
4740  //  std::size_t.
4741  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4742                                  SizeTy,
4743                                  diag::err_operator_new_dependent_param_type,
4744                                  diag::err_operator_new_param_type))
4745    return true;
4746
4747  // C++ [basic.stc.dynamic.allocation]p1:
4748  //  The first parameter shall not have an associated default argument.
4749  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4750    return SemaRef.Diag(FnDecl->getLocation(),
4751                        diag::err_operator_new_default_arg)
4752      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4753
4754  return false;
4755}
4756
4757static bool
4758CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4759  // C++ [basic.stc.dynamic.deallocation]p1:
4760  //   A program is ill-formed if deallocation functions are declared in a
4761  //   namespace scope other than global scope or declared static in global
4762  //   scope.
4763  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4764    return true;
4765
4766  // C++ [basic.stc.dynamic.deallocation]p2:
4767  //   Each deallocation function shall return void and its first parameter
4768  //   shall be void*.
4769  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4770                                  SemaRef.Context.VoidPtrTy,
4771                                 diag::err_operator_delete_dependent_param_type,
4772                                 diag::err_operator_delete_param_type))
4773    return true;
4774
4775  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4776  if (FirstParamType->isDependentType())
4777    return SemaRef.Diag(FnDecl->getLocation(),
4778                        diag::err_operator_delete_dependent_param_type)
4779    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4780
4781  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4782      SemaRef.Context.VoidPtrTy)
4783    return SemaRef.Diag(FnDecl->getLocation(),
4784                        diag::err_operator_delete_param_type)
4785      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4786
4787  return false;
4788}
4789
4790/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4791/// of this overloaded operator is well-formed. If so, returns false;
4792/// otherwise, emits appropriate diagnostics and returns true.
4793bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4794  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4795         "Expected an overloaded operator declaration");
4796
4797  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4798
4799  // C++ [over.oper]p5:
4800  //   The allocation and deallocation functions, operator new,
4801  //   operator new[], operator delete and operator delete[], are
4802  //   described completely in 3.7.3. The attributes and restrictions
4803  //   found in the rest of this subclause do not apply to them unless
4804  //   explicitly stated in 3.7.3.
4805  if (Op == OO_Delete || Op == OO_Array_Delete)
4806    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4807
4808  if (Op == OO_New || Op == OO_Array_New)
4809    return CheckOperatorNewDeclaration(*this, FnDecl);
4810
4811  // C++ [over.oper]p6:
4812  //   An operator function shall either be a non-static member
4813  //   function or be a non-member function and have at least one
4814  //   parameter whose type is a class, a reference to a class, an
4815  //   enumeration, or a reference to an enumeration.
4816  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4817    if (MethodDecl->isStatic())
4818      return Diag(FnDecl->getLocation(),
4819                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4820  } else {
4821    bool ClassOrEnumParam = false;
4822    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4823                                   ParamEnd = FnDecl->param_end();
4824         Param != ParamEnd; ++Param) {
4825      QualType ParamType = (*Param)->getType().getNonReferenceType();
4826      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4827          ParamType->isEnumeralType()) {
4828        ClassOrEnumParam = true;
4829        break;
4830      }
4831    }
4832
4833    if (!ClassOrEnumParam)
4834      return Diag(FnDecl->getLocation(),
4835                  diag::err_operator_overload_needs_class_or_enum)
4836        << FnDecl->getDeclName();
4837  }
4838
4839  // C++ [over.oper]p8:
4840  //   An operator function cannot have default arguments (8.3.6),
4841  //   except where explicitly stated below.
4842  //
4843  // Only the function-call operator allows default arguments
4844  // (C++ [over.call]p1).
4845  if (Op != OO_Call) {
4846    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4847         Param != FnDecl->param_end(); ++Param) {
4848      if ((*Param)->hasDefaultArg())
4849        return Diag((*Param)->getLocation(),
4850                    diag::err_operator_overload_default_arg)
4851          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4852    }
4853  }
4854
4855  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4856    { false, false, false }
4857#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4858    , { Unary, Binary, MemberOnly }
4859#include "clang/Basic/OperatorKinds.def"
4860  };
4861
4862  bool CanBeUnaryOperator = OperatorUses[Op][0];
4863  bool CanBeBinaryOperator = OperatorUses[Op][1];
4864  bool MustBeMemberOperator = OperatorUses[Op][2];
4865
4866  // C++ [over.oper]p8:
4867  //   [...] Operator functions cannot have more or fewer parameters
4868  //   than the number required for the corresponding operator, as
4869  //   described in the rest of this subclause.
4870  unsigned NumParams = FnDecl->getNumParams()
4871                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4872  if (Op != OO_Call &&
4873      ((NumParams == 1 && !CanBeUnaryOperator) ||
4874       (NumParams == 2 && !CanBeBinaryOperator) ||
4875       (NumParams < 1) || (NumParams > 2))) {
4876    // We have the wrong number of parameters.
4877    unsigned ErrorKind;
4878    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4879      ErrorKind = 2;  // 2 -> unary or binary.
4880    } else if (CanBeUnaryOperator) {
4881      ErrorKind = 0;  // 0 -> unary
4882    } else {
4883      assert(CanBeBinaryOperator &&
4884             "All non-call overloaded operators are unary or binary!");
4885      ErrorKind = 1;  // 1 -> binary
4886    }
4887
4888    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4889      << FnDecl->getDeclName() << NumParams << ErrorKind;
4890  }
4891
4892  // Overloaded operators other than operator() cannot be variadic.
4893  if (Op != OO_Call &&
4894      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4895    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4896      << FnDecl->getDeclName();
4897  }
4898
4899  // Some operators must be non-static member functions.
4900  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4901    return Diag(FnDecl->getLocation(),
4902                diag::err_operator_overload_must_be_member)
4903      << FnDecl->getDeclName();
4904  }
4905
4906  // C++ [over.inc]p1:
4907  //   The user-defined function called operator++ implements the
4908  //   prefix and postfix ++ operator. If this function is a member
4909  //   function with no parameters, or a non-member function with one
4910  //   parameter of class or enumeration type, it defines the prefix
4911  //   increment operator ++ for objects of that type. If the function
4912  //   is a member function with one parameter (which shall be of type
4913  //   int) or a non-member function with two parameters (the second
4914  //   of which shall be of type int), it defines the postfix
4915  //   increment operator ++ for objects of that type.
4916  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4917    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4918    bool ParamIsInt = false;
4919    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4920      ParamIsInt = BT->getKind() == BuiltinType::Int;
4921
4922    if (!ParamIsInt)
4923      return Diag(LastParam->getLocation(),
4924                  diag::err_operator_overload_post_incdec_must_be_int)
4925        << LastParam->getType() << (Op == OO_MinusMinus);
4926  }
4927
4928  // Notify the class if it got an assignment operator.
4929  if (Op == OO_Equal) {
4930    // Would have returned earlier otherwise.
4931    assert(isa<CXXMethodDecl>(FnDecl) &&
4932      "Overloaded = not member, but not filtered.");
4933    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4934    Method->getParent()->addedAssignmentOperator(Context, Method);
4935  }
4936
4937  return false;
4938}
4939
4940/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4941/// linkage specification, including the language and (if present)
4942/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4943/// the location of the language string literal, which is provided
4944/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4945/// the '{' brace. Otherwise, this linkage specification does not
4946/// have any braces.
4947Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4948                                                     SourceLocation ExternLoc,
4949                                                     SourceLocation LangLoc,
4950                                                     const char *Lang,
4951                                                     unsigned StrSize,
4952                                                     SourceLocation LBraceLoc) {
4953  LinkageSpecDecl::LanguageIDs Language;
4954  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4955    Language = LinkageSpecDecl::lang_c;
4956  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4957    Language = LinkageSpecDecl::lang_cxx;
4958  else {
4959    Diag(LangLoc, diag::err_bad_language);
4960    return DeclPtrTy();
4961  }
4962
4963  // FIXME: Add all the various semantics of linkage specifications
4964
4965  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4966                                               LangLoc, Language,
4967                                               LBraceLoc.isValid());
4968  CurContext->addDecl(D);
4969  PushDeclContext(S, D);
4970  return DeclPtrTy::make(D);
4971}
4972
4973/// ActOnFinishLinkageSpecification - Completely the definition of
4974/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4975/// valid, it's the position of the closing '}' brace in a linkage
4976/// specification that uses braces.
4977Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4978                                                      DeclPtrTy LinkageSpec,
4979                                                      SourceLocation RBraceLoc) {
4980  if (LinkageSpec)
4981    PopDeclContext();
4982  return LinkageSpec;
4983}
4984
4985/// \brief Perform semantic analysis for the variable declaration that
4986/// occurs within a C++ catch clause, returning the newly-created
4987/// variable.
4988VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4989                                         TypeSourceInfo *TInfo,
4990                                         IdentifierInfo *Name,
4991                                         SourceLocation Loc,
4992                                         SourceRange Range) {
4993  bool Invalid = false;
4994
4995  // Arrays and functions decay.
4996  if (ExDeclType->isArrayType())
4997    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4998  else if (ExDeclType->isFunctionType())
4999    ExDeclType = Context.getPointerType(ExDeclType);
5000
5001  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5002  // The exception-declaration shall not denote a pointer or reference to an
5003  // incomplete type, other than [cv] void*.
5004  // N2844 forbids rvalue references.
5005  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5006    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5007    Invalid = true;
5008  }
5009
5010  QualType BaseType = ExDeclType;
5011  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5012  unsigned DK = diag::err_catch_incomplete;
5013  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5014    BaseType = Ptr->getPointeeType();
5015    Mode = 1;
5016    DK = diag::err_catch_incomplete_ptr;
5017  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5018    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5019    BaseType = Ref->getPointeeType();
5020    Mode = 2;
5021    DK = diag::err_catch_incomplete_ref;
5022  }
5023  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5024      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
5025    Invalid = true;
5026
5027  if (!Invalid && !ExDeclType->isDependentType() &&
5028      RequireNonAbstractType(Loc, ExDeclType,
5029                             diag::err_abstract_type_in_decl,
5030                             AbstractVariableType))
5031    Invalid = true;
5032
5033  // FIXME: Need to test for ability to copy-construct and destroy the
5034  // exception variable.
5035
5036  // FIXME: Need to check for abstract classes.
5037
5038  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5039                                    Name, ExDeclType, TInfo, VarDecl::None);
5040
5041  if (Invalid)
5042    ExDecl->setInvalidDecl();
5043
5044  return ExDecl;
5045}
5046
5047/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5048/// handler.
5049Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5050  TypeSourceInfo *TInfo = 0;
5051  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5052
5053  bool Invalid = D.isInvalidType();
5054  IdentifierInfo *II = D.getIdentifier();
5055  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5056    // The scope should be freshly made just for us. There is just no way
5057    // it contains any previous declaration.
5058    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5059    if (PrevDecl->isTemplateParameter()) {
5060      // Maybe we will complain about the shadowed template parameter.
5061      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5062    }
5063  }
5064
5065  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5066    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5067      << D.getCXXScopeSpec().getRange();
5068    Invalid = true;
5069  }
5070
5071  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5072                                              D.getIdentifier(),
5073                                              D.getIdentifierLoc(),
5074                                            D.getDeclSpec().getSourceRange());
5075
5076  if (Invalid)
5077    ExDecl->setInvalidDecl();
5078
5079  // Add the exception declaration into this scope.
5080  if (II)
5081    PushOnScopeChains(ExDecl, S);
5082  else
5083    CurContext->addDecl(ExDecl);
5084
5085  ProcessDeclAttributes(S, ExDecl, D);
5086  return DeclPtrTy::make(ExDecl);
5087}
5088
5089Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5090                                                   ExprArg assertexpr,
5091                                                   ExprArg assertmessageexpr) {
5092  Expr *AssertExpr = (Expr *)assertexpr.get();
5093  StringLiteral *AssertMessage =
5094    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5095
5096  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5097    llvm::APSInt Value(32);
5098    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5099      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5100        AssertExpr->getSourceRange();
5101      return DeclPtrTy();
5102    }
5103
5104    if (Value == 0) {
5105      Diag(AssertLoc, diag::err_static_assert_failed)
5106        << AssertMessage->getString() << AssertExpr->getSourceRange();
5107    }
5108  }
5109
5110  assertexpr.release();
5111  assertmessageexpr.release();
5112  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5113                                        AssertExpr, AssertMessage);
5114
5115  CurContext->addDecl(Decl);
5116  return DeclPtrTy::make(Decl);
5117}
5118
5119/// Handle a friend type declaration.  This works in tandem with
5120/// ActOnTag.
5121///
5122/// Notes on friend class templates:
5123///
5124/// We generally treat friend class declarations as if they were
5125/// declaring a class.  So, for example, the elaborated type specifier
5126/// in a friend declaration is required to obey the restrictions of a
5127/// class-head (i.e. no typedefs in the scope chain), template
5128/// parameters are required to match up with simple template-ids, &c.
5129/// However, unlike when declaring a template specialization, it's
5130/// okay to refer to a template specialization without an empty
5131/// template parameter declaration, e.g.
5132///   friend class A<T>::B<unsigned>;
5133/// We permit this as a special case; if there are any template
5134/// parameters present at all, require proper matching, i.e.
5135///   template <> template <class T> friend class A<int>::B;
5136Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5137                                          MultiTemplateParamsArg TempParams) {
5138  SourceLocation Loc = DS.getSourceRange().getBegin();
5139
5140  assert(DS.isFriendSpecified());
5141  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5142
5143  // Try to convert the decl specifier to a type.  This works for
5144  // friend templates because ActOnTag never produces a ClassTemplateDecl
5145  // for a TUK_Friend.
5146  Declarator TheDeclarator(DS, Declarator::MemberContext);
5147  QualType T = GetTypeForDeclarator(TheDeclarator, S);
5148  if (TheDeclarator.isInvalidType())
5149    return DeclPtrTy();
5150
5151  // This is definitely an error in C++98.  It's probably meant to
5152  // be forbidden in C++0x, too, but the specification is just
5153  // poorly written.
5154  //
5155  // The problem is with declarations like the following:
5156  //   template <T> friend A<T>::foo;
5157  // where deciding whether a class C is a friend or not now hinges
5158  // on whether there exists an instantiation of A that causes
5159  // 'foo' to equal C.  There are restrictions on class-heads
5160  // (which we declare (by fiat) elaborated friend declarations to
5161  // be) that makes this tractable.
5162  //
5163  // FIXME: handle "template <> friend class A<T>;", which
5164  // is possibly well-formed?  Who even knows?
5165  if (TempParams.size() && !isa<ElaboratedType>(T)) {
5166    Diag(Loc, diag::err_tagless_friend_type_template)
5167      << DS.getSourceRange();
5168    return DeclPtrTy();
5169  }
5170
5171  // C++ [class.friend]p2:
5172  //   An elaborated-type-specifier shall be used in a friend declaration
5173  //   for a class.*
5174  //   * The class-key of the elaborated-type-specifier is required.
5175  // This is one of the rare places in Clang where it's legitimate to
5176  // ask about the "spelling" of the type.
5177  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
5178    // If we evaluated the type to a record type, suggest putting
5179    // a tag in front.
5180    if (const RecordType *RT = T->getAs<RecordType>()) {
5181      RecordDecl *RD = RT->getDecl();
5182
5183      std::string InsertionText = std::string(" ") + RD->getKindName();
5184
5185      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
5186        << (unsigned) RD->getTagKind()
5187        << T
5188        << SourceRange(DS.getFriendSpecLoc())
5189        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
5190                                                 InsertionText);
5191      return DeclPtrTy();
5192    }else {
5193      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
5194          << DS.getSourceRange();
5195      return DeclPtrTy();
5196    }
5197  }
5198
5199  // Enum types cannot be friends.
5200  if (T->getAs<EnumType>()) {
5201    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
5202      << SourceRange(DS.getFriendSpecLoc());
5203    return DeclPtrTy();
5204  }
5205
5206  // C++98 [class.friend]p1: A friend of a class is a function
5207  //   or class that is not a member of the class . . .
5208  // This is fixed in DR77, which just barely didn't make the C++03
5209  // deadline.  It's also a very silly restriction that seriously
5210  // affects inner classes and which nobody else seems to implement;
5211  // thus we never diagnose it, not even in -pedantic.
5212
5213  Decl *D;
5214  if (TempParams.size())
5215    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5216                                   TempParams.size(),
5217                                 (TemplateParameterList**) TempParams.release(),
5218                                   T.getTypePtr(),
5219                                   DS.getFriendSpecLoc());
5220  else
5221    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
5222                           DS.getFriendSpecLoc());
5223  D->setAccess(AS_public);
5224  CurContext->addDecl(D);
5225
5226  return DeclPtrTy::make(D);
5227}
5228
5229Sema::DeclPtrTy
5230Sema::ActOnFriendFunctionDecl(Scope *S,
5231                              Declarator &D,
5232                              bool IsDefinition,
5233                              MultiTemplateParamsArg TemplateParams) {
5234  const DeclSpec &DS = D.getDeclSpec();
5235
5236  assert(DS.isFriendSpecified());
5237  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5238
5239  SourceLocation Loc = D.getIdentifierLoc();
5240  TypeSourceInfo *TInfo = 0;
5241  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5242
5243  // C++ [class.friend]p1
5244  //   A friend of a class is a function or class....
5245  // Note that this sees through typedefs, which is intended.
5246  // It *doesn't* see through dependent types, which is correct
5247  // according to [temp.arg.type]p3:
5248  //   If a declaration acquires a function type through a
5249  //   type dependent on a template-parameter and this causes
5250  //   a declaration that does not use the syntactic form of a
5251  //   function declarator to have a function type, the program
5252  //   is ill-formed.
5253  if (!T->isFunctionType()) {
5254    Diag(Loc, diag::err_unexpected_friend);
5255
5256    // It might be worthwhile to try to recover by creating an
5257    // appropriate declaration.
5258    return DeclPtrTy();
5259  }
5260
5261  // C++ [namespace.memdef]p3
5262  //  - If a friend declaration in a non-local class first declares a
5263  //    class or function, the friend class or function is a member
5264  //    of the innermost enclosing namespace.
5265  //  - The name of the friend is not found by simple name lookup
5266  //    until a matching declaration is provided in that namespace
5267  //    scope (either before or after the class declaration granting
5268  //    friendship).
5269  //  - If a friend function is called, its name may be found by the
5270  //    name lookup that considers functions from namespaces and
5271  //    classes associated with the types of the function arguments.
5272  //  - When looking for a prior declaration of a class or a function
5273  //    declared as a friend, scopes outside the innermost enclosing
5274  //    namespace scope are not considered.
5275
5276  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5277  DeclarationName Name = GetNameForDeclarator(D);
5278  assert(Name);
5279
5280  // The context we found the declaration in, or in which we should
5281  // create the declaration.
5282  DeclContext *DC;
5283
5284  // FIXME: handle local classes
5285
5286  // Recover from invalid scope qualifiers as if they just weren't there.
5287  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5288                        ForRedeclaration);
5289  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5290    // FIXME: RequireCompleteDeclContext
5291    DC = computeDeclContext(ScopeQual);
5292
5293    // FIXME: handle dependent contexts
5294    if (!DC) return DeclPtrTy();
5295
5296    LookupQualifiedName(Previous, DC);
5297
5298    // If searching in that context implicitly found a declaration in
5299    // a different context, treat it like it wasn't found at all.
5300    // TODO: better diagnostics for this case.  Suggesting the right
5301    // qualified scope would be nice...
5302    // FIXME: getRepresentativeDecl() is not right here at all
5303    if (Previous.empty() ||
5304        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5305      D.setInvalidType();
5306      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5307      return DeclPtrTy();
5308    }
5309
5310    // C++ [class.friend]p1: A friend of a class is a function or
5311    //   class that is not a member of the class . . .
5312    if (DC->Equals(CurContext))
5313      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5314
5315  // Otherwise walk out to the nearest namespace scope looking for matches.
5316  } else {
5317    // TODO: handle local class contexts.
5318
5319    DC = CurContext;
5320    while (true) {
5321      // Skip class contexts.  If someone can cite chapter and verse
5322      // for this behavior, that would be nice --- it's what GCC and
5323      // EDG do, and it seems like a reasonable intent, but the spec
5324      // really only says that checks for unqualified existing
5325      // declarations should stop at the nearest enclosing namespace,
5326      // not that they should only consider the nearest enclosing
5327      // namespace.
5328      while (DC->isRecord())
5329        DC = DC->getParent();
5330
5331      LookupQualifiedName(Previous, DC);
5332
5333      // TODO: decide what we think about using declarations.
5334      if (!Previous.empty())
5335        break;
5336
5337      if (DC->isFileContext()) break;
5338      DC = DC->getParent();
5339    }
5340
5341    // C++ [class.friend]p1: A friend of a class is a function or
5342    //   class that is not a member of the class . . .
5343    // C++0x changes this for both friend types and functions.
5344    // Most C++ 98 compilers do seem to give an error here, so
5345    // we do, too.
5346    if (!Previous.empty() && DC->Equals(CurContext)
5347        && !getLangOptions().CPlusPlus0x)
5348      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5349  }
5350
5351  if (DC->isFileContext()) {
5352    // This implies that it has to be an operator or function.
5353    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5354        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5355        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5356      Diag(Loc, diag::err_introducing_special_friend) <<
5357        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5358         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5359      return DeclPtrTy();
5360    }
5361  }
5362
5363  bool Redeclaration = false;
5364  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5365                                          move(TemplateParams),
5366                                          IsDefinition,
5367                                          Redeclaration);
5368  if (!ND) return DeclPtrTy();
5369
5370  assert(ND->getDeclContext() == DC);
5371  assert(ND->getLexicalDeclContext() == CurContext);
5372
5373  // Add the function declaration to the appropriate lookup tables,
5374  // adjusting the redeclarations list as necessary.  We don't
5375  // want to do this yet if the friending class is dependent.
5376  //
5377  // Also update the scope-based lookup if the target context's
5378  // lookup context is in lexical scope.
5379  if (!CurContext->isDependentContext()) {
5380    DC = DC->getLookupContext();
5381    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5382    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5383      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5384  }
5385
5386  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5387                                       D.getIdentifierLoc(), ND,
5388                                       DS.getFriendSpecLoc());
5389  FrD->setAccess(AS_public);
5390  CurContext->addDecl(FrD);
5391
5392  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId)
5393    FrD->setSpecialization(true);
5394
5395  return DeclPtrTy::make(ND);
5396}
5397
5398void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5399  AdjustDeclIfTemplate(dcl);
5400
5401  Decl *Dcl = dcl.getAs<Decl>();
5402  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5403  if (!Fn) {
5404    Diag(DelLoc, diag::err_deleted_non_function);
5405    return;
5406  }
5407  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5408    Diag(DelLoc, diag::err_deleted_decl_not_first);
5409    Diag(Prev->getLocation(), diag::note_previous_declaration);
5410    // If the declaration wasn't the first, we delete the function anyway for
5411    // recovery.
5412  }
5413  Fn->setDeleted();
5414}
5415
5416static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5417  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5418       ++CI) {
5419    Stmt *SubStmt = *CI;
5420    if (!SubStmt)
5421      continue;
5422    if (isa<ReturnStmt>(SubStmt))
5423      Self.Diag(SubStmt->getSourceRange().getBegin(),
5424           diag::err_return_in_constructor_handler);
5425    if (!isa<Expr>(SubStmt))
5426      SearchForReturnInStmt(Self, SubStmt);
5427  }
5428}
5429
5430void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5431  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5432    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5433    SearchForReturnInStmt(*this, Handler);
5434  }
5435}
5436
5437bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5438                                             const CXXMethodDecl *Old) {
5439  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5440  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5441
5442  QualType CNewTy = Context.getCanonicalType(NewTy);
5443  QualType COldTy = Context.getCanonicalType(OldTy);
5444
5445  if (CNewTy == COldTy &&
5446      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
5447    return false;
5448
5449  // Check if the return types are covariant
5450  QualType NewClassTy, OldClassTy;
5451
5452  /// Both types must be pointers or references to classes.
5453  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
5454    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
5455      NewClassTy = NewPT->getPointeeType();
5456      OldClassTy = OldPT->getPointeeType();
5457    }
5458  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
5459    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
5460      NewClassTy = NewRT->getPointeeType();
5461      OldClassTy = OldRT->getPointeeType();
5462    }
5463  }
5464
5465  // The return types aren't either both pointers or references to a class type.
5466  if (NewClassTy.isNull()) {
5467    Diag(New->getLocation(),
5468         diag::err_different_return_type_for_overriding_virtual_function)
5469      << New->getDeclName() << NewTy << OldTy;
5470    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5471
5472    return true;
5473  }
5474
5475  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5476    // Check if the new class derives from the old class.
5477    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5478      Diag(New->getLocation(),
5479           diag::err_covariant_return_not_derived)
5480      << New->getDeclName() << NewTy << OldTy;
5481      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5482      return true;
5483    }
5484
5485    // Check if we the conversion from derived to base is valid.
5486    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5487                      diag::err_covariant_return_inaccessible_base,
5488                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5489                      // FIXME: Should this point to the return type?
5490                      New->getLocation(), SourceRange(), New->getDeclName())) {
5491      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5492      return true;
5493    }
5494  }
5495
5496  // The qualifiers of the return types must be the same.
5497  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
5498    Diag(New->getLocation(),
5499         diag::err_covariant_return_type_different_qualifications)
5500    << New->getDeclName() << NewTy << OldTy;
5501    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5502    return true;
5503  };
5504
5505
5506  // The new class type must have the same or less qualifiers as the old type.
5507  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5508    Diag(New->getLocation(),
5509         diag::err_covariant_return_type_class_type_more_qualified)
5510    << New->getDeclName() << NewTy << OldTy;
5511    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5512    return true;
5513  };
5514
5515  return false;
5516}
5517
5518bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5519                                             const CXXMethodDecl *Old)
5520{
5521  if (Old->hasAttr<FinalAttr>()) {
5522    Diag(New->getLocation(), diag::err_final_function_overridden)
5523      << New->getDeclName();
5524    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5525    return true;
5526  }
5527
5528  return false;
5529}
5530
5531/// \brief Mark the given method pure.
5532///
5533/// \param Method the method to be marked pure.
5534///
5535/// \param InitRange the source range that covers the "0" initializer.
5536bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5537  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5538    Method->setPure();
5539
5540    // A class is abstract if at least one function is pure virtual.
5541    Method->getParent()->setAbstract(true);
5542    return false;
5543  }
5544
5545  if (!Method->isInvalidDecl())
5546    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5547      << Method->getDeclName() << InitRange;
5548  return true;
5549}
5550
5551/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5552/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5553/// is a fresh scope pushed for just this purpose.
5554///
5555/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5556/// static data member of class X, names should be looked up in the scope of
5557/// class X.
5558void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5559  // If there is no declaration, there was an error parsing it.
5560  Decl *D = Dcl.getAs<Decl>();
5561  if (D == 0) return;
5562
5563  // We should only get called for declarations with scope specifiers, like:
5564  //   int foo::bar;
5565  assert(D->isOutOfLine());
5566  EnterDeclaratorContext(S, D->getDeclContext());
5567}
5568
5569/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5570/// initializer for the out-of-line declaration 'Dcl'.
5571void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5572  // If there is no declaration, there was an error parsing it.
5573  Decl *D = Dcl.getAs<Decl>();
5574  if (D == 0) return;
5575
5576  assert(D->isOutOfLine());
5577  ExitDeclaratorContext(S);
5578}
5579
5580/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5581/// C++ if/switch/while/for statement.
5582/// e.g: "if (int x = f()) {...}"
5583Action::DeclResult
5584Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5585  // C++ 6.4p2:
5586  // The declarator shall not specify a function or an array.
5587  // The type-specifier-seq shall not contain typedef and shall not declare a
5588  // new class or enumeration.
5589  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5590         "Parser allowed 'typedef' as storage class of condition decl.");
5591
5592  TypeSourceInfo *TInfo = 0;
5593  TagDecl *OwnedTag = 0;
5594  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5595
5596  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5597                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5598                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5599    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5600      << D.getSourceRange();
5601    return DeclResult();
5602  } else if (OwnedTag && OwnedTag->isDefinition()) {
5603    // The type-specifier-seq shall not declare a new class or enumeration.
5604    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5605  }
5606
5607  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5608  if (!Dcl)
5609    return DeclResult();
5610
5611  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5612  VD->setDeclaredInCondition(true);
5613  return Dcl;
5614}
5615
5616void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5617                                             CXXMethodDecl *MD) {
5618  // Ignore dependent types.
5619  if (MD->isDependentContext())
5620    return;
5621
5622  CXXRecordDecl *RD = MD->getParent();
5623
5624  // Ignore classes without a vtable.
5625  if (!RD->isDynamicClass())
5626    return;
5627
5628  if (!MD->isOutOfLine()) {
5629    // The only inline functions we care about are constructors. We also defer
5630    // marking the virtual members as referenced until we've reached the end
5631    // of the translation unit. We do this because we need to know the key
5632    // function of the class in order to determine the key function.
5633    if (isa<CXXConstructorDecl>(MD))
5634      ClassesWithUnmarkedVirtualMembers.insert(std::make_pair(RD, Loc));
5635    return;
5636  }
5637
5638  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5639
5640  if (!KeyFunction) {
5641    // This record does not have a key function, so we assume that the vtable
5642    // will be emitted when it's used by the constructor.
5643    if (!isa<CXXConstructorDecl>(MD))
5644      return;
5645  } else if (KeyFunction->getCanonicalDecl() != MD->getCanonicalDecl()) {
5646    // We don't have the right key function.
5647    return;
5648  }
5649
5650  // Mark the members as referenced.
5651  MarkVirtualMembersReferenced(Loc, RD);
5652  ClassesWithUnmarkedVirtualMembers.erase(RD);
5653}
5654
5655bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5656  if (ClassesWithUnmarkedVirtualMembers.empty())
5657    return false;
5658
5659  for (std::map<CXXRecordDecl *, SourceLocation>::iterator i =
5660       ClassesWithUnmarkedVirtualMembers.begin(),
5661       e = ClassesWithUnmarkedVirtualMembers.end(); i != e; ++i) {
5662    CXXRecordDecl *RD = i->first;
5663
5664    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5665    if (KeyFunction) {
5666      // We know that the class has a key function. If the key function was
5667      // declared in this translation unit, then it the class decl would not
5668      // have been in the ClassesWithUnmarkedVirtualMembers map.
5669      continue;
5670    }
5671
5672    SourceLocation Loc = i->second;
5673    MarkVirtualMembersReferenced(Loc, RD);
5674  }
5675
5676  ClassesWithUnmarkedVirtualMembers.clear();
5677  return true;
5678}
5679
5680void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, CXXRecordDecl *RD) {
5681  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5682       e = RD->method_end(); i != e; ++i) {
5683    CXXMethodDecl *MD = *i;
5684
5685    // C++ [basic.def.odr]p2:
5686    //   [...] A virtual member function is used if it is not pure. [...]
5687    if (MD->isVirtual() && !MD->isPure())
5688      MarkDeclarationReferenced(Loc, MD);
5689  }
5690}
5691
5692