SemaDeclCXX.cpp revision 8d051e00ad674754d476cc1fa0442da0bc47b2c8
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/STLExtras.h"
35#include <map>
36#include <set>
37
38using namespace clang;
39
40//===----------------------------------------------------------------------===//
41// CheckDefaultArgumentVisitor
42//===----------------------------------------------------------------------===//
43
44namespace {
45  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
46  /// the default argument of a parameter to determine whether it
47  /// contains any ill-formed subexpressions. For example, this will
48  /// diagnose the use of local variables or parameters within the
49  /// default argument expression.
50  class CheckDefaultArgumentVisitor
51    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
52    Expr *DefaultArg;
53    Sema *S;
54
55  public:
56    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
57      : DefaultArg(defarg), S(s) {}
58
59    bool VisitExpr(Expr *Node);
60    bool VisitDeclRefExpr(DeclRefExpr *DRE);
61    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
62  };
63
64  /// VisitExpr - Visit all of the children of this expression.
65  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
66    bool IsInvalid = false;
67    for (Stmt::child_range I = Node->children(); I; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296      unsigned DiagDefaultParamID =
297        diag::err_param_default_argument_redefinition;
298
299      // MSVC accepts that default parameters be redefined for member functions
300      // of template class. The new default parameter's value is ignored.
301      Invalid = true;
302      if (getLangOptions().Microsoft) {
303        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
304        if (MD && MD->getParent()->getDescribedClassTemplate()) {
305          DiagDefaultParamID = diag::war_param_default_argument_redefinition;
306          Invalid = false;
307        }
308      }
309
310      //   int f(int);
311      //   void g(int (*fp)(int) = f);
312      //   void g(int (*fp)(int) = &f);
313      Diag(NewParam->getLocation(), DiagDefaultParamID)
314        << NewParam->getDefaultArgRange();
315
316      // Look for the function declaration where the default argument was
317      // actually written, which may be a declaration prior to Old.
318      for (FunctionDecl *Older = Old->getPreviousDeclaration();
319           Older; Older = Older->getPreviousDeclaration()) {
320        if (!Older->getParamDecl(p)->hasDefaultArg())
321          break;
322
323        OldParam = Older->getParamDecl(p);
324      }
325
326      Diag(OldParam->getLocation(), diag::note_previous_definition)
327        << OldParam->getDefaultArgRange();
328    } else if (OldParam->hasDefaultArg()) {
329      // Merge the old default argument into the new parameter.
330      // It's important to use getInit() here;  getDefaultArg()
331      // strips off any top-level ExprWithCleanups.
332      NewParam->setHasInheritedDefaultArg();
333      if (OldParam->hasUninstantiatedDefaultArg())
334        NewParam->setUninstantiatedDefaultArg(
335                                      OldParam->getUninstantiatedDefaultArg());
336      else
337        NewParam->setDefaultArg(OldParam->getInit());
338    } else if (NewParam->hasDefaultArg()) {
339      if (New->getDescribedFunctionTemplate()) {
340        // Paragraph 4, quoted above, only applies to non-template functions.
341        Diag(NewParam->getLocation(),
342             diag::err_param_default_argument_template_redecl)
343          << NewParam->getDefaultArgRange();
344        Diag(Old->getLocation(), diag::note_template_prev_declaration)
345          << false;
346      } else if (New->getTemplateSpecializationKind()
347                   != TSK_ImplicitInstantiation &&
348                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
349        // C++ [temp.expr.spec]p21:
350        //   Default function arguments shall not be specified in a declaration
351        //   or a definition for one of the following explicit specializations:
352        //     - the explicit specialization of a function template;
353        //     - the explicit specialization of a member function template;
354        //     - the explicit specialization of a member function of a class
355        //       template where the class template specialization to which the
356        //       member function specialization belongs is implicitly
357        //       instantiated.
358        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
359          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
360          << New->getDeclName()
361          << NewParam->getDefaultArgRange();
362      } else if (New->getDeclContext()->isDependentContext()) {
363        // C++ [dcl.fct.default]p6 (DR217):
364        //   Default arguments for a member function of a class template shall
365        //   be specified on the initial declaration of the member function
366        //   within the class template.
367        //
368        // Reading the tea leaves a bit in DR217 and its reference to DR205
369        // leads me to the conclusion that one cannot add default function
370        // arguments for an out-of-line definition of a member function of a
371        // dependent type.
372        int WhichKind = 2;
373        if (CXXRecordDecl *Record
374              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
375          if (Record->getDescribedClassTemplate())
376            WhichKind = 0;
377          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
378            WhichKind = 1;
379          else
380            WhichKind = 2;
381        }
382
383        Diag(NewParam->getLocation(),
384             diag::err_param_default_argument_member_template_redecl)
385          << WhichKind
386          << NewParam->getDefaultArgRange();
387      }
388    }
389  }
390
391  if (CheckEquivalentExceptionSpec(Old, New))
392    Invalid = true;
393
394  return Invalid;
395}
396
397/// \brief Merge the exception specifications of two variable declarations.
398///
399/// This is called when there's a redeclaration of a VarDecl. The function
400/// checks if the redeclaration might have an exception specification and
401/// validates compatibility and merges the specs if necessary.
402void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
403  // Shortcut if exceptions are disabled.
404  if (!getLangOptions().CXXExceptions)
405    return;
406
407  assert(Context.hasSameType(New->getType(), Old->getType()) &&
408         "Should only be called if types are otherwise the same.");
409
410  QualType NewType = New->getType();
411  QualType OldType = Old->getType();
412
413  // We're only interested in pointers and references to functions, as well
414  // as pointers to member functions.
415  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
416    NewType = R->getPointeeType();
417    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
418  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
419    NewType = P->getPointeeType();
420    OldType = OldType->getAs<PointerType>()->getPointeeType();
421  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
422    NewType = M->getPointeeType();
423    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
424  }
425
426  if (!NewType->isFunctionProtoType())
427    return;
428
429  // There's lots of special cases for functions. For function pointers, system
430  // libraries are hopefully not as broken so that we don't need these
431  // workarounds.
432  if (CheckEquivalentExceptionSpec(
433        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
434        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
435    New->setInvalidDecl();
436  }
437}
438
439/// CheckCXXDefaultArguments - Verify that the default arguments for a
440/// function declaration are well-formed according to C++
441/// [dcl.fct.default].
442void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
443  unsigned NumParams = FD->getNumParams();
444  unsigned p;
445
446  // Find first parameter with a default argument
447  for (p = 0; p < NumParams; ++p) {
448    ParmVarDecl *Param = FD->getParamDecl(p);
449    if (Param->hasDefaultArg())
450      break;
451  }
452
453  // C++ [dcl.fct.default]p4:
454  //   In a given function declaration, all parameters
455  //   subsequent to a parameter with a default argument shall
456  //   have default arguments supplied in this or previous
457  //   declarations. A default argument shall not be redefined
458  //   by a later declaration (not even to the same value).
459  unsigned LastMissingDefaultArg = 0;
460  for (; p < NumParams; ++p) {
461    ParmVarDecl *Param = FD->getParamDecl(p);
462    if (!Param->hasDefaultArg()) {
463      if (Param->isInvalidDecl())
464        /* We already complained about this parameter. */;
465      else if (Param->getIdentifier())
466        Diag(Param->getLocation(),
467             diag::err_param_default_argument_missing_name)
468          << Param->getIdentifier();
469      else
470        Diag(Param->getLocation(),
471             diag::err_param_default_argument_missing);
472
473      LastMissingDefaultArg = p;
474    }
475  }
476
477  if (LastMissingDefaultArg > 0) {
478    // Some default arguments were missing. Clear out all of the
479    // default arguments up to (and including) the last missing
480    // default argument, so that we leave the function parameters
481    // in a semantically valid state.
482    for (p = 0; p <= LastMissingDefaultArg; ++p) {
483      ParmVarDecl *Param = FD->getParamDecl(p);
484      if (Param->hasDefaultArg()) {
485        Param->setDefaultArg(0);
486      }
487    }
488  }
489}
490
491/// isCurrentClassName - Determine whether the identifier II is the
492/// name of the class type currently being defined. In the case of
493/// nested classes, this will only return true if II is the name of
494/// the innermost class.
495bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
496                              const CXXScopeSpec *SS) {
497  assert(getLangOptions().CPlusPlus && "No class names in C!");
498
499  CXXRecordDecl *CurDecl;
500  if (SS && SS->isSet() && !SS->isInvalid()) {
501    DeclContext *DC = computeDeclContext(*SS, true);
502    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
503  } else
504    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
505
506  if (CurDecl && CurDecl->getIdentifier())
507    return &II == CurDecl->getIdentifier();
508  else
509    return false;
510}
511
512/// \brief Check the validity of a C++ base class specifier.
513///
514/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
515/// and returns NULL otherwise.
516CXXBaseSpecifier *
517Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
518                         SourceRange SpecifierRange,
519                         bool Virtual, AccessSpecifier Access,
520                         TypeSourceInfo *TInfo,
521                         SourceLocation EllipsisLoc) {
522  QualType BaseType = TInfo->getType();
523
524  // C++ [class.union]p1:
525  //   A union shall not have base classes.
526  if (Class->isUnion()) {
527    Diag(Class->getLocation(), diag::err_base_clause_on_union)
528      << SpecifierRange;
529    return 0;
530  }
531
532  if (EllipsisLoc.isValid() &&
533      !TInfo->getType()->containsUnexpandedParameterPack()) {
534    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
535      << TInfo->getTypeLoc().getSourceRange();
536    EllipsisLoc = SourceLocation();
537  }
538
539  if (BaseType->isDependentType())
540    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
541                                          Class->getTagKind() == TTK_Class,
542                                          Access, TInfo, EllipsisLoc);
543
544  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
545
546  // Base specifiers must be record types.
547  if (!BaseType->isRecordType()) {
548    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
549    return 0;
550  }
551
552  // C++ [class.union]p1:
553  //   A union shall not be used as a base class.
554  if (BaseType->isUnionType()) {
555    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
556    return 0;
557  }
558
559  // C++ [class.derived]p2:
560  //   The class-name in a base-specifier shall not be an incompletely
561  //   defined class.
562  if (RequireCompleteType(BaseLoc, BaseType,
563                          PDiag(diag::err_incomplete_base_class)
564                            << SpecifierRange)) {
565    Class->setInvalidDecl();
566    return 0;
567  }
568
569  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
570  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
571  assert(BaseDecl && "Record type has no declaration");
572  BaseDecl = BaseDecl->getDefinition();
573  assert(BaseDecl && "Base type is not incomplete, but has no definition");
574  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
575  assert(CXXBaseDecl && "Base type is not a C++ type");
576
577  // C++ [class]p3:
578  //   If a class is marked final and it appears as a base-type-specifier in
579  //   base-clause, the program is ill-formed.
580  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
581    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
582      << CXXBaseDecl->getDeclName();
583    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
584      << CXXBaseDecl->getDeclName();
585    return 0;
586  }
587
588  if (BaseDecl->isInvalidDecl())
589    Class->setInvalidDecl();
590
591  // Create the base specifier.
592  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
593                                        Class->getTagKind() == TTK_Class,
594                                        Access, TInfo, EllipsisLoc);
595}
596
597/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
598/// one entry in the base class list of a class specifier, for
599/// example:
600///    class foo : public bar, virtual private baz {
601/// 'public bar' and 'virtual private baz' are each base-specifiers.
602BaseResult
603Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
604                         bool Virtual, AccessSpecifier Access,
605                         ParsedType basetype, SourceLocation BaseLoc,
606                         SourceLocation EllipsisLoc) {
607  if (!classdecl)
608    return true;
609
610  AdjustDeclIfTemplate(classdecl);
611  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
612  if (!Class)
613    return true;
614
615  TypeSourceInfo *TInfo = 0;
616  GetTypeFromParser(basetype, &TInfo);
617
618  if (EllipsisLoc.isInvalid() &&
619      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
620                                      UPPC_BaseType))
621    return true;
622
623  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
624                                                      Virtual, Access, TInfo,
625                                                      EllipsisLoc))
626    return BaseSpec;
627
628  return true;
629}
630
631/// \brief Performs the actual work of attaching the given base class
632/// specifiers to a C++ class.
633bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
634                                unsigned NumBases) {
635 if (NumBases == 0)
636    return false;
637
638  // Used to keep track of which base types we have already seen, so
639  // that we can properly diagnose redundant direct base types. Note
640  // that the key is always the unqualified canonical type of the base
641  // class.
642  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
643
644  // Copy non-redundant base specifiers into permanent storage.
645  unsigned NumGoodBases = 0;
646  bool Invalid = false;
647  for (unsigned idx = 0; idx < NumBases; ++idx) {
648    QualType NewBaseType
649      = Context.getCanonicalType(Bases[idx]->getType());
650    NewBaseType = NewBaseType.getLocalUnqualifiedType();
651    if (!Class->hasObjectMember()) {
652      if (const RecordType *FDTTy =
653            NewBaseType.getTypePtr()->getAs<RecordType>())
654        if (FDTTy->getDecl()->hasObjectMember())
655          Class->setHasObjectMember(true);
656    }
657
658    if (KnownBaseTypes[NewBaseType]) {
659      // C++ [class.mi]p3:
660      //   A class shall not be specified as a direct base class of a
661      //   derived class more than once.
662      Diag(Bases[idx]->getSourceRange().getBegin(),
663           diag::err_duplicate_base_class)
664        << KnownBaseTypes[NewBaseType]->getType()
665        << Bases[idx]->getSourceRange();
666
667      // Delete the duplicate base class specifier; we're going to
668      // overwrite its pointer later.
669      Context.Deallocate(Bases[idx]);
670
671      Invalid = true;
672    } else {
673      // Okay, add this new base class.
674      KnownBaseTypes[NewBaseType] = Bases[idx];
675      Bases[NumGoodBases++] = Bases[idx];
676    }
677  }
678
679  // Attach the remaining base class specifiers to the derived class.
680  Class->setBases(Bases, NumGoodBases);
681
682  // Delete the remaining (good) base class specifiers, since their
683  // data has been copied into the CXXRecordDecl.
684  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
685    Context.Deallocate(Bases[idx]);
686
687  return Invalid;
688}
689
690/// ActOnBaseSpecifiers - Attach the given base specifiers to the
691/// class, after checking whether there are any duplicate base
692/// classes.
693void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
694                               unsigned NumBases) {
695  if (!ClassDecl || !Bases || !NumBases)
696    return;
697
698  AdjustDeclIfTemplate(ClassDecl);
699  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
700                       (CXXBaseSpecifier**)(Bases), NumBases);
701}
702
703static CXXRecordDecl *GetClassForType(QualType T) {
704  if (const RecordType *RT = T->getAs<RecordType>())
705    return cast<CXXRecordDecl>(RT->getDecl());
706  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
707    return ICT->getDecl();
708  else
709    return 0;
710}
711
712/// \brief Determine whether the type \p Derived is a C++ class that is
713/// derived from the type \p Base.
714bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
715  if (!getLangOptions().CPlusPlus)
716    return false;
717
718  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
719  if (!DerivedRD)
720    return false;
721
722  CXXRecordDecl *BaseRD = GetClassForType(Base);
723  if (!BaseRD)
724    return false;
725
726  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
727  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
728}
729
730/// \brief Determine whether the type \p Derived is a C++ class that is
731/// derived from the type \p Base.
732bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
733  if (!getLangOptions().CPlusPlus)
734    return false;
735
736  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
737  if (!DerivedRD)
738    return false;
739
740  CXXRecordDecl *BaseRD = GetClassForType(Base);
741  if (!BaseRD)
742    return false;
743
744  return DerivedRD->isDerivedFrom(BaseRD, Paths);
745}
746
747void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
748                              CXXCastPath &BasePathArray) {
749  assert(BasePathArray.empty() && "Base path array must be empty!");
750  assert(Paths.isRecordingPaths() && "Must record paths!");
751
752  const CXXBasePath &Path = Paths.front();
753
754  // We first go backward and check if we have a virtual base.
755  // FIXME: It would be better if CXXBasePath had the base specifier for
756  // the nearest virtual base.
757  unsigned Start = 0;
758  for (unsigned I = Path.size(); I != 0; --I) {
759    if (Path[I - 1].Base->isVirtual()) {
760      Start = I - 1;
761      break;
762    }
763  }
764
765  // Now add all bases.
766  for (unsigned I = Start, E = Path.size(); I != E; ++I)
767    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
768}
769
770/// \brief Determine whether the given base path includes a virtual
771/// base class.
772bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
773  for (CXXCastPath::const_iterator B = BasePath.begin(),
774                                BEnd = BasePath.end();
775       B != BEnd; ++B)
776    if ((*B)->isVirtual())
777      return true;
778
779  return false;
780}
781
782/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
783/// conversion (where Derived and Base are class types) is
784/// well-formed, meaning that the conversion is unambiguous (and
785/// that all of the base classes are accessible). Returns true
786/// and emits a diagnostic if the code is ill-formed, returns false
787/// otherwise. Loc is the location where this routine should point to
788/// if there is an error, and Range is the source range to highlight
789/// if there is an error.
790bool
791Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
792                                   unsigned InaccessibleBaseID,
793                                   unsigned AmbigiousBaseConvID,
794                                   SourceLocation Loc, SourceRange Range,
795                                   DeclarationName Name,
796                                   CXXCastPath *BasePath) {
797  // First, determine whether the path from Derived to Base is
798  // ambiguous. This is slightly more expensive than checking whether
799  // the Derived to Base conversion exists, because here we need to
800  // explore multiple paths to determine if there is an ambiguity.
801  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
802                     /*DetectVirtual=*/false);
803  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
804  assert(DerivationOkay &&
805         "Can only be used with a derived-to-base conversion");
806  (void)DerivationOkay;
807
808  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
809    if (InaccessibleBaseID) {
810      // Check that the base class can be accessed.
811      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
812                                   InaccessibleBaseID)) {
813        case AR_inaccessible:
814          return true;
815        case AR_accessible:
816        case AR_dependent:
817        case AR_delayed:
818          break;
819      }
820    }
821
822    // Build a base path if necessary.
823    if (BasePath)
824      BuildBasePathArray(Paths, *BasePath);
825    return false;
826  }
827
828  // We know that the derived-to-base conversion is ambiguous, and
829  // we're going to produce a diagnostic. Perform the derived-to-base
830  // search just one more time to compute all of the possible paths so
831  // that we can print them out. This is more expensive than any of
832  // the previous derived-to-base checks we've done, but at this point
833  // performance isn't as much of an issue.
834  Paths.clear();
835  Paths.setRecordingPaths(true);
836  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
837  assert(StillOkay && "Can only be used with a derived-to-base conversion");
838  (void)StillOkay;
839
840  // Build up a textual representation of the ambiguous paths, e.g.,
841  // D -> B -> A, that will be used to illustrate the ambiguous
842  // conversions in the diagnostic. We only print one of the paths
843  // to each base class subobject.
844  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
845
846  Diag(Loc, AmbigiousBaseConvID)
847  << Derived << Base << PathDisplayStr << Range << Name;
848  return true;
849}
850
851bool
852Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
853                                   SourceLocation Loc, SourceRange Range,
854                                   CXXCastPath *BasePath,
855                                   bool IgnoreAccess) {
856  return CheckDerivedToBaseConversion(Derived, Base,
857                                      IgnoreAccess ? 0
858                                       : diag::err_upcast_to_inaccessible_base,
859                                      diag::err_ambiguous_derived_to_base_conv,
860                                      Loc, Range, DeclarationName(),
861                                      BasePath);
862}
863
864
865/// @brief Builds a string representing ambiguous paths from a
866/// specific derived class to different subobjects of the same base
867/// class.
868///
869/// This function builds a string that can be used in error messages
870/// to show the different paths that one can take through the
871/// inheritance hierarchy to go from the derived class to different
872/// subobjects of a base class. The result looks something like this:
873/// @code
874/// struct D -> struct B -> struct A
875/// struct D -> struct C -> struct A
876/// @endcode
877std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
878  std::string PathDisplayStr;
879  std::set<unsigned> DisplayedPaths;
880  for (CXXBasePaths::paths_iterator Path = Paths.begin();
881       Path != Paths.end(); ++Path) {
882    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
883      // We haven't displayed a path to this particular base
884      // class subobject yet.
885      PathDisplayStr += "\n    ";
886      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
887      for (CXXBasePath::const_iterator Element = Path->begin();
888           Element != Path->end(); ++Element)
889        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
890    }
891  }
892
893  return PathDisplayStr;
894}
895
896//===----------------------------------------------------------------------===//
897// C++ class member Handling
898//===----------------------------------------------------------------------===//
899
900/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
901Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
902                                 SourceLocation ASLoc,
903                                 SourceLocation ColonLoc) {
904  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
905  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
906                                                  ASLoc, ColonLoc);
907  CurContext->addHiddenDecl(ASDecl);
908  return ASDecl;
909}
910
911/// CheckOverrideControl - Check C++0x override control semantics.
912void Sema::CheckOverrideControl(const Decl *D) {
913  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
914  if (!MD || !MD->isVirtual())
915    return;
916
917  if (MD->isDependentContext())
918    return;
919
920  // C++0x [class.virtual]p3:
921  //   If a virtual function is marked with the virt-specifier override and does
922  //   not override a member function of a base class,
923  //   the program is ill-formed.
924  bool HasOverriddenMethods =
925    MD->begin_overridden_methods() != MD->end_overridden_methods();
926  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
927    Diag(MD->getLocation(),
928                 diag::err_function_marked_override_not_overriding)
929      << MD->getDeclName();
930    return;
931  }
932}
933
934/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
935/// function overrides a virtual member function marked 'final', according to
936/// C++0x [class.virtual]p3.
937bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
938                                                  const CXXMethodDecl *Old) {
939  if (!Old->hasAttr<FinalAttr>())
940    return false;
941
942  Diag(New->getLocation(), diag::err_final_function_overridden)
943    << New->getDeclName();
944  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
945  return true;
946}
947
948/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
949/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
950/// bitfield width if there is one and 'InitExpr' specifies the initializer if
951/// any.
952Decl *
953Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
954                               MultiTemplateParamsArg TemplateParameterLists,
955                               ExprTy *BW, const VirtSpecifiers &VS,
956                               ExprTy *InitExpr, bool IsDefinition,
957                               bool Deleted) {
958  const DeclSpec &DS = D.getDeclSpec();
959  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
960  DeclarationName Name = NameInfo.getName();
961  SourceLocation Loc = NameInfo.getLoc();
962
963  // For anonymous bitfields, the location should point to the type.
964  if (Loc.isInvalid())
965    Loc = D.getSourceRange().getBegin();
966
967  Expr *BitWidth = static_cast<Expr*>(BW);
968  Expr *Init = static_cast<Expr*>(InitExpr);
969
970  assert(isa<CXXRecordDecl>(CurContext));
971  assert(!DS.isFriendSpecified());
972
973  bool isFunc = false;
974  if (D.isFunctionDeclarator())
975    isFunc = true;
976  else if (D.getNumTypeObjects() == 0 &&
977           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
978    QualType TDType = GetTypeFromParser(DS.getRepAsType());
979    isFunc = TDType->isFunctionType();
980  }
981
982  // C++ 9.2p6: A member shall not be declared to have automatic storage
983  // duration (auto, register) or with the extern storage-class-specifier.
984  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
985  // data members and cannot be applied to names declared const or static,
986  // and cannot be applied to reference members.
987  switch (DS.getStorageClassSpec()) {
988    case DeclSpec::SCS_unspecified:
989    case DeclSpec::SCS_typedef:
990    case DeclSpec::SCS_static:
991      // FALL THROUGH.
992      break;
993    case DeclSpec::SCS_mutable:
994      if (isFunc) {
995        if (DS.getStorageClassSpecLoc().isValid())
996          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
997        else
998          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
999
1000        // FIXME: It would be nicer if the keyword was ignored only for this
1001        // declarator. Otherwise we could get follow-up errors.
1002        D.getMutableDeclSpec().ClearStorageClassSpecs();
1003      }
1004      break;
1005    default:
1006      if (DS.getStorageClassSpecLoc().isValid())
1007        Diag(DS.getStorageClassSpecLoc(),
1008             diag::err_storageclass_invalid_for_member);
1009      else
1010        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1011      D.getMutableDeclSpec().ClearStorageClassSpecs();
1012  }
1013
1014  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1015                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1016                      !isFunc);
1017
1018  Decl *Member;
1019  if (isInstField) {
1020    CXXScopeSpec &SS = D.getCXXScopeSpec();
1021
1022
1023    if (SS.isSet() && !SS.isInvalid()) {
1024      // The user provided a superfluous scope specifier inside a class
1025      // definition:
1026      //
1027      // class X {
1028      //   int X::member;
1029      // };
1030      DeclContext *DC = 0;
1031      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1032        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1033        << Name << FixItHint::CreateRemoval(SS.getRange());
1034      else
1035        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1036          << Name << SS.getRange();
1037
1038      SS.clear();
1039    }
1040
1041    // FIXME: Check for template parameters!
1042    // FIXME: Check that the name is an identifier!
1043    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1044                         AS);
1045    assert(Member && "HandleField never returns null");
1046  } else {
1047    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1048    if (!Member) {
1049      return 0;
1050    }
1051
1052    // Non-instance-fields can't have a bitfield.
1053    if (BitWidth) {
1054      if (Member->isInvalidDecl()) {
1055        // don't emit another diagnostic.
1056      } else if (isa<VarDecl>(Member)) {
1057        // C++ 9.6p3: A bit-field shall not be a static member.
1058        // "static member 'A' cannot be a bit-field"
1059        Diag(Loc, diag::err_static_not_bitfield)
1060          << Name << BitWidth->getSourceRange();
1061      } else if (isa<TypedefDecl>(Member)) {
1062        // "typedef member 'x' cannot be a bit-field"
1063        Diag(Loc, diag::err_typedef_not_bitfield)
1064          << Name << BitWidth->getSourceRange();
1065      } else {
1066        // A function typedef ("typedef int f(); f a;").
1067        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1068        Diag(Loc, diag::err_not_integral_type_bitfield)
1069          << Name << cast<ValueDecl>(Member)->getType()
1070          << BitWidth->getSourceRange();
1071      }
1072
1073      BitWidth = 0;
1074      Member->setInvalidDecl();
1075    }
1076
1077    Member->setAccess(AS);
1078
1079    // If we have declared a member function template, set the access of the
1080    // templated declaration as well.
1081    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1082      FunTmpl->getTemplatedDecl()->setAccess(AS);
1083  }
1084
1085  if (VS.isOverrideSpecified()) {
1086    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1087    if (!MD || !MD->isVirtual()) {
1088      Diag(Member->getLocStart(),
1089           diag::override_keyword_only_allowed_on_virtual_member_functions)
1090        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1091    } else
1092      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1093  }
1094  if (VS.isFinalSpecified()) {
1095    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1096    if (!MD || !MD->isVirtual()) {
1097      Diag(Member->getLocStart(),
1098           diag::override_keyword_only_allowed_on_virtual_member_functions)
1099      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1100    } else
1101      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1102  }
1103
1104  if (VS.getLastLocation().isValid()) {
1105    // Update the end location of a method that has a virt-specifiers.
1106    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1107      MD->setRangeEnd(VS.getLastLocation());
1108  }
1109
1110  CheckOverrideControl(Member);
1111
1112  assert((Name || isInstField) && "No identifier for non-field ?");
1113
1114  if (Init)
1115    AddInitializerToDecl(Member, Init, false,
1116                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1117  if (Deleted) // FIXME: Source location is not very good.
1118    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1119
1120  FinalizeDeclaration(Member);
1121
1122  if (isInstField)
1123    FieldCollector->Add(cast<FieldDecl>(Member));
1124  return Member;
1125}
1126
1127/// \brief Find the direct and/or virtual base specifiers that
1128/// correspond to the given base type, for use in base initialization
1129/// within a constructor.
1130static bool FindBaseInitializer(Sema &SemaRef,
1131                                CXXRecordDecl *ClassDecl,
1132                                QualType BaseType,
1133                                const CXXBaseSpecifier *&DirectBaseSpec,
1134                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1135  // First, check for a direct base class.
1136  DirectBaseSpec = 0;
1137  for (CXXRecordDecl::base_class_const_iterator Base
1138         = ClassDecl->bases_begin();
1139       Base != ClassDecl->bases_end(); ++Base) {
1140    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1141      // We found a direct base of this type. That's what we're
1142      // initializing.
1143      DirectBaseSpec = &*Base;
1144      break;
1145    }
1146  }
1147
1148  // Check for a virtual base class.
1149  // FIXME: We might be able to short-circuit this if we know in advance that
1150  // there are no virtual bases.
1151  VirtualBaseSpec = 0;
1152  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1153    // We haven't found a base yet; search the class hierarchy for a
1154    // virtual base class.
1155    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1156                       /*DetectVirtual=*/false);
1157    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1158                              BaseType, Paths)) {
1159      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1160           Path != Paths.end(); ++Path) {
1161        if (Path->back().Base->isVirtual()) {
1162          VirtualBaseSpec = Path->back().Base;
1163          break;
1164        }
1165      }
1166    }
1167  }
1168
1169  return DirectBaseSpec || VirtualBaseSpec;
1170}
1171
1172/// ActOnMemInitializer - Handle a C++ member initializer.
1173MemInitResult
1174Sema::ActOnMemInitializer(Decl *ConstructorD,
1175                          Scope *S,
1176                          CXXScopeSpec &SS,
1177                          IdentifierInfo *MemberOrBase,
1178                          ParsedType TemplateTypeTy,
1179                          SourceLocation IdLoc,
1180                          SourceLocation LParenLoc,
1181                          ExprTy **Args, unsigned NumArgs,
1182                          SourceLocation RParenLoc,
1183                          SourceLocation EllipsisLoc) {
1184  if (!ConstructorD)
1185    return true;
1186
1187  AdjustDeclIfTemplate(ConstructorD);
1188
1189  CXXConstructorDecl *Constructor
1190    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1191  if (!Constructor) {
1192    // The user wrote a constructor initializer on a function that is
1193    // not a C++ constructor. Ignore the error for now, because we may
1194    // have more member initializers coming; we'll diagnose it just
1195    // once in ActOnMemInitializers.
1196    return true;
1197  }
1198
1199  CXXRecordDecl *ClassDecl = Constructor->getParent();
1200
1201  // C++ [class.base.init]p2:
1202  //   Names in a mem-initializer-id are looked up in the scope of the
1203  //   constructor's class and, if not found in that scope, are looked
1204  //   up in the scope containing the constructor's definition.
1205  //   [Note: if the constructor's class contains a member with the
1206  //   same name as a direct or virtual base class of the class, a
1207  //   mem-initializer-id naming the member or base class and composed
1208  //   of a single identifier refers to the class member. A
1209  //   mem-initializer-id for the hidden base class may be specified
1210  //   using a qualified name. ]
1211  if (!SS.getScopeRep() && !TemplateTypeTy) {
1212    // Look for a member, first.
1213    FieldDecl *Member = 0;
1214    DeclContext::lookup_result Result
1215      = ClassDecl->lookup(MemberOrBase);
1216    if (Result.first != Result.second) {
1217      Member = dyn_cast<FieldDecl>(*Result.first);
1218
1219      if (Member) {
1220        if (EllipsisLoc.isValid())
1221          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1222            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1223
1224        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1225                                    LParenLoc, RParenLoc);
1226      }
1227
1228      // Handle anonymous union case.
1229      if (IndirectFieldDecl* IndirectField
1230            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1231        if (EllipsisLoc.isValid())
1232          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1233            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1234
1235         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1236                                       NumArgs, IdLoc,
1237                                       LParenLoc, RParenLoc);
1238      }
1239    }
1240  }
1241  // It didn't name a member, so see if it names a class.
1242  QualType BaseType;
1243  TypeSourceInfo *TInfo = 0;
1244
1245  if (TemplateTypeTy) {
1246    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1247  } else {
1248    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1249    LookupParsedName(R, S, &SS);
1250
1251    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1252    if (!TyD) {
1253      if (R.isAmbiguous()) return true;
1254
1255      // We don't want access-control diagnostics here.
1256      R.suppressDiagnostics();
1257
1258      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1259        bool NotUnknownSpecialization = false;
1260        DeclContext *DC = computeDeclContext(SS, false);
1261        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1262          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1263
1264        if (!NotUnknownSpecialization) {
1265          // When the scope specifier can refer to a member of an unknown
1266          // specialization, we take it as a type name.
1267          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1268                                       SS.getWithLocInContext(Context),
1269                                       *MemberOrBase, IdLoc);
1270          if (BaseType.isNull())
1271            return true;
1272
1273          R.clear();
1274          R.setLookupName(MemberOrBase);
1275        }
1276      }
1277
1278      // If no results were found, try to correct typos.
1279      if (R.empty() && BaseType.isNull() &&
1280          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1281          R.isSingleResult()) {
1282        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1283          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1284            // We have found a non-static data member with a similar
1285            // name to what was typed; complain and initialize that
1286            // member.
1287            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1288              << MemberOrBase << true << R.getLookupName()
1289              << FixItHint::CreateReplacement(R.getNameLoc(),
1290                                              R.getLookupName().getAsString());
1291            Diag(Member->getLocation(), diag::note_previous_decl)
1292              << Member->getDeclName();
1293
1294            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1295                                          LParenLoc, RParenLoc);
1296          }
1297        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1298          const CXXBaseSpecifier *DirectBaseSpec;
1299          const CXXBaseSpecifier *VirtualBaseSpec;
1300          if (FindBaseInitializer(*this, ClassDecl,
1301                                  Context.getTypeDeclType(Type),
1302                                  DirectBaseSpec, VirtualBaseSpec)) {
1303            // We have found a direct or virtual base class with a
1304            // similar name to what was typed; complain and initialize
1305            // that base class.
1306            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1307              << MemberOrBase << false << R.getLookupName()
1308              << FixItHint::CreateReplacement(R.getNameLoc(),
1309                                              R.getLookupName().getAsString());
1310
1311            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1312                                                             : VirtualBaseSpec;
1313            Diag(BaseSpec->getSourceRange().getBegin(),
1314                 diag::note_base_class_specified_here)
1315              << BaseSpec->getType()
1316              << BaseSpec->getSourceRange();
1317
1318            TyD = Type;
1319          }
1320        }
1321      }
1322
1323      if (!TyD && BaseType.isNull()) {
1324        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1325          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1326        return true;
1327      }
1328    }
1329
1330    if (BaseType.isNull()) {
1331      BaseType = Context.getTypeDeclType(TyD);
1332      if (SS.isSet()) {
1333        NestedNameSpecifier *Qualifier =
1334          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1335
1336        // FIXME: preserve source range information
1337        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1338      }
1339    }
1340  }
1341
1342  if (!TInfo)
1343    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1344
1345  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1346                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1347}
1348
1349/// Checks an initializer expression for use of uninitialized fields, such as
1350/// containing the field that is being initialized. Returns true if there is an
1351/// uninitialized field was used an updates the SourceLocation parameter; false
1352/// otherwise.
1353static bool InitExprContainsUninitializedFields(const Stmt *S,
1354                                                const ValueDecl *LhsField,
1355                                                SourceLocation *L) {
1356  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1357
1358  if (isa<CallExpr>(S)) {
1359    // Do not descend into function calls or constructors, as the use
1360    // of an uninitialized field may be valid. One would have to inspect
1361    // the contents of the function/ctor to determine if it is safe or not.
1362    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1363    // may be safe, depending on what the function/ctor does.
1364    return false;
1365  }
1366  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1367    const NamedDecl *RhsField = ME->getMemberDecl();
1368
1369    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1370      // The member expression points to a static data member.
1371      assert(VD->isStaticDataMember() &&
1372             "Member points to non-static data member!");
1373      (void)VD;
1374      return false;
1375    }
1376
1377    if (isa<EnumConstantDecl>(RhsField)) {
1378      // The member expression points to an enum.
1379      return false;
1380    }
1381
1382    if (RhsField == LhsField) {
1383      // Initializing a field with itself. Throw a warning.
1384      // But wait; there are exceptions!
1385      // Exception #1:  The field may not belong to this record.
1386      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1387      const Expr *base = ME->getBase();
1388      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1389        // Even though the field matches, it does not belong to this record.
1390        return false;
1391      }
1392      // None of the exceptions triggered; return true to indicate an
1393      // uninitialized field was used.
1394      *L = ME->getMemberLoc();
1395      return true;
1396    }
1397  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1398    // sizeof/alignof doesn't reference contents, do not warn.
1399    return false;
1400  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1401    // address-of doesn't reference contents (the pointer may be dereferenced
1402    // in the same expression but it would be rare; and weird).
1403    if (UOE->getOpcode() == UO_AddrOf)
1404      return false;
1405  }
1406  for (Stmt::const_child_range it = S->children(); it; ++it) {
1407    if (!*it) {
1408      // An expression such as 'member(arg ?: "")' may trigger this.
1409      continue;
1410    }
1411    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1412      return true;
1413  }
1414  return false;
1415}
1416
1417MemInitResult
1418Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1419                             unsigned NumArgs, SourceLocation IdLoc,
1420                             SourceLocation LParenLoc,
1421                             SourceLocation RParenLoc) {
1422  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1423  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1424  assert((DirectMember || IndirectMember) &&
1425         "Member must be a FieldDecl or IndirectFieldDecl");
1426
1427  if (Member->isInvalidDecl())
1428    return true;
1429
1430  // Diagnose value-uses of fields to initialize themselves, e.g.
1431  //   foo(foo)
1432  // where foo is not also a parameter to the constructor.
1433  // TODO: implement -Wuninitialized and fold this into that framework.
1434  for (unsigned i = 0; i < NumArgs; ++i) {
1435    SourceLocation L;
1436    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1437      // FIXME: Return true in the case when other fields are used before being
1438      // uninitialized. For example, let this field be the i'th field. When
1439      // initializing the i'th field, throw a warning if any of the >= i'th
1440      // fields are used, as they are not yet initialized.
1441      // Right now we are only handling the case where the i'th field uses
1442      // itself in its initializer.
1443      Diag(L, diag::warn_field_is_uninit);
1444    }
1445  }
1446
1447  bool HasDependentArg = false;
1448  for (unsigned i = 0; i < NumArgs; i++)
1449    HasDependentArg |= Args[i]->isTypeDependent();
1450
1451  Expr *Init;
1452  if (Member->getType()->isDependentType() || HasDependentArg) {
1453    // Can't check initialization for a member of dependent type or when
1454    // any of the arguments are type-dependent expressions.
1455    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1456                                       RParenLoc);
1457
1458    // Erase any temporaries within this evaluation context; we're not
1459    // going to track them in the AST, since we'll be rebuilding the
1460    // ASTs during template instantiation.
1461    ExprTemporaries.erase(
1462              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1463                          ExprTemporaries.end());
1464  } else {
1465    // Initialize the member.
1466    InitializedEntity MemberEntity =
1467      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1468                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1469    InitializationKind Kind =
1470      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1471
1472    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1473
1474    ExprResult MemberInit =
1475      InitSeq.Perform(*this, MemberEntity, Kind,
1476                      MultiExprArg(*this, Args, NumArgs), 0);
1477    if (MemberInit.isInvalid())
1478      return true;
1479
1480    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1481
1482    // C++0x [class.base.init]p7:
1483    //   The initialization of each base and member constitutes a
1484    //   full-expression.
1485    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1486    if (MemberInit.isInvalid())
1487      return true;
1488
1489    // If we are in a dependent context, template instantiation will
1490    // perform this type-checking again. Just save the arguments that we
1491    // received in a ParenListExpr.
1492    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1493    // of the information that we have about the member
1494    // initializer. However, deconstructing the ASTs is a dicey process,
1495    // and this approach is far more likely to get the corner cases right.
1496    if (CurContext->isDependentContext())
1497      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1498                                               RParenLoc);
1499    else
1500      Init = MemberInit.get();
1501  }
1502
1503  if (DirectMember) {
1504    return new (Context) CXXCtorInitializer(Context, DirectMember,
1505                                                    IdLoc, LParenLoc, Init,
1506                                                    RParenLoc);
1507  } else {
1508    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1509                                                    IdLoc, LParenLoc, Init,
1510                                                    RParenLoc);
1511  }
1512}
1513
1514MemInitResult
1515Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1516                                 Expr **Args, unsigned NumArgs,
1517                                 SourceLocation NameLoc,
1518                                 SourceLocation LParenLoc,
1519                                 SourceLocation RParenLoc,
1520                                 CXXRecordDecl *ClassDecl) {
1521  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1522  if (!LangOpts.CPlusPlus0x)
1523    return Diag(Loc, diag::err_delegation_0x_only)
1524      << TInfo->getTypeLoc().getLocalSourceRange();
1525
1526  // Initialize the object.
1527  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1528                                     QualType(ClassDecl->getTypeForDecl(), 0));
1529  InitializationKind Kind =
1530    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1531
1532  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1533
1534  ExprResult DelegationInit =
1535    InitSeq.Perform(*this, DelegationEntity, Kind,
1536                    MultiExprArg(*this, Args, NumArgs), 0);
1537  if (DelegationInit.isInvalid())
1538    return true;
1539
1540  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1541  CXXConstructorDecl *Constructor = ConExpr->getConstructor();
1542  assert(Constructor && "Delegating constructor with no target?");
1543
1544  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1545
1546  // C++0x [class.base.init]p7:
1547  //   The initialization of each base and member constitutes a
1548  //   full-expression.
1549  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1550  if (DelegationInit.isInvalid())
1551    return true;
1552
1553  // If we are in a dependent context, template instantiation will
1554  // perform this type-checking again. Just save the arguments that we
1555  // received in a ParenListExpr.
1556  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1557  // of the information that we have about the base
1558  // initializer. However, deconstructing the ASTs is a dicey process,
1559  // and this approach is far more likely to get the corner cases right.
1560  if (CurContext->isDependentContext()) {
1561    ExprResult Init
1562      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1563                                          NumArgs, RParenLoc));
1564    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1565                                            Constructor, Init.takeAs<Expr>(),
1566                                            RParenLoc);
1567  }
1568
1569  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1570                                          DelegationInit.takeAs<Expr>(),
1571                                          RParenLoc);
1572}
1573
1574MemInitResult
1575Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1576                           Expr **Args, unsigned NumArgs,
1577                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1578                           CXXRecordDecl *ClassDecl,
1579                           SourceLocation EllipsisLoc) {
1580  bool HasDependentArg = false;
1581  for (unsigned i = 0; i < NumArgs; i++)
1582    HasDependentArg |= Args[i]->isTypeDependent();
1583
1584  SourceLocation BaseLoc
1585    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1586
1587  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1588    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1589             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1590
1591  // C++ [class.base.init]p2:
1592  //   [...] Unless the mem-initializer-id names a nonstatic data
1593  //   member of the constructor's class or a direct or virtual base
1594  //   of that class, the mem-initializer is ill-formed. A
1595  //   mem-initializer-list can initialize a base class using any
1596  //   name that denotes that base class type.
1597  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1598
1599  if (EllipsisLoc.isValid()) {
1600    // This is a pack expansion.
1601    if (!BaseType->containsUnexpandedParameterPack())  {
1602      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1603        << SourceRange(BaseLoc, RParenLoc);
1604
1605      EllipsisLoc = SourceLocation();
1606    }
1607  } else {
1608    // Check for any unexpanded parameter packs.
1609    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1610      return true;
1611
1612    for (unsigned I = 0; I != NumArgs; ++I)
1613      if (DiagnoseUnexpandedParameterPack(Args[I]))
1614        return true;
1615  }
1616
1617  // Check for direct and virtual base classes.
1618  const CXXBaseSpecifier *DirectBaseSpec = 0;
1619  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1620  if (!Dependent) {
1621    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1622                                       BaseType))
1623      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1624                                        LParenLoc, RParenLoc, ClassDecl);
1625
1626    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1627                        VirtualBaseSpec);
1628
1629    // C++ [base.class.init]p2:
1630    // Unless the mem-initializer-id names a nonstatic data member of the
1631    // constructor's class or a direct or virtual base of that class, the
1632    // mem-initializer is ill-formed.
1633    if (!DirectBaseSpec && !VirtualBaseSpec) {
1634      // If the class has any dependent bases, then it's possible that
1635      // one of those types will resolve to the same type as
1636      // BaseType. Therefore, just treat this as a dependent base
1637      // class initialization.  FIXME: Should we try to check the
1638      // initialization anyway? It seems odd.
1639      if (ClassDecl->hasAnyDependentBases())
1640        Dependent = true;
1641      else
1642        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1643          << BaseType << Context.getTypeDeclType(ClassDecl)
1644          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1645    }
1646  }
1647
1648  if (Dependent) {
1649    // Can't check initialization for a base of dependent type or when
1650    // any of the arguments are type-dependent expressions.
1651    ExprResult BaseInit
1652      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1653                                          RParenLoc));
1654
1655    // Erase any temporaries within this evaluation context; we're not
1656    // going to track them in the AST, since we'll be rebuilding the
1657    // ASTs during template instantiation.
1658    ExprTemporaries.erase(
1659              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1660                          ExprTemporaries.end());
1661
1662    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1663                                                    /*IsVirtual=*/false,
1664                                                    LParenLoc,
1665                                                    BaseInit.takeAs<Expr>(),
1666                                                    RParenLoc,
1667                                                    EllipsisLoc);
1668  }
1669
1670  // C++ [base.class.init]p2:
1671  //   If a mem-initializer-id is ambiguous because it designates both
1672  //   a direct non-virtual base class and an inherited virtual base
1673  //   class, the mem-initializer is ill-formed.
1674  if (DirectBaseSpec && VirtualBaseSpec)
1675    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1676      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1677
1678  CXXBaseSpecifier *BaseSpec
1679    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1680  if (!BaseSpec)
1681    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1682
1683  // Initialize the base.
1684  InitializedEntity BaseEntity =
1685    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1686  InitializationKind Kind =
1687    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1688
1689  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1690
1691  ExprResult BaseInit =
1692    InitSeq.Perform(*this, BaseEntity, Kind,
1693                    MultiExprArg(*this, Args, NumArgs), 0);
1694  if (BaseInit.isInvalid())
1695    return true;
1696
1697  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1698
1699  // C++0x [class.base.init]p7:
1700  //   The initialization of each base and member constitutes a
1701  //   full-expression.
1702  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1703  if (BaseInit.isInvalid())
1704    return true;
1705
1706  // If we are in a dependent context, template instantiation will
1707  // perform this type-checking again. Just save the arguments that we
1708  // received in a ParenListExpr.
1709  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1710  // of the information that we have about the base
1711  // initializer. However, deconstructing the ASTs is a dicey process,
1712  // and this approach is far more likely to get the corner cases right.
1713  if (CurContext->isDependentContext()) {
1714    ExprResult Init
1715      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1716                                          RParenLoc));
1717    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1718                                                    BaseSpec->isVirtual(),
1719                                                    LParenLoc,
1720                                                    Init.takeAs<Expr>(),
1721                                                    RParenLoc,
1722                                                    EllipsisLoc);
1723  }
1724
1725  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1726                                                  BaseSpec->isVirtual(),
1727                                                  LParenLoc,
1728                                                  BaseInit.takeAs<Expr>(),
1729                                                  RParenLoc,
1730                                                  EllipsisLoc);
1731}
1732
1733/// ImplicitInitializerKind - How an implicit base or member initializer should
1734/// initialize its base or member.
1735enum ImplicitInitializerKind {
1736  IIK_Default,
1737  IIK_Copy,
1738  IIK_Move
1739};
1740
1741static bool
1742BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1743                             ImplicitInitializerKind ImplicitInitKind,
1744                             CXXBaseSpecifier *BaseSpec,
1745                             bool IsInheritedVirtualBase,
1746                             CXXCtorInitializer *&CXXBaseInit) {
1747  InitializedEntity InitEntity
1748    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1749                                        IsInheritedVirtualBase);
1750
1751  ExprResult BaseInit;
1752
1753  switch (ImplicitInitKind) {
1754  case IIK_Default: {
1755    InitializationKind InitKind
1756      = InitializationKind::CreateDefault(Constructor->getLocation());
1757    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1758    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1759                               MultiExprArg(SemaRef, 0, 0));
1760    break;
1761  }
1762
1763  case IIK_Copy: {
1764    ParmVarDecl *Param = Constructor->getParamDecl(0);
1765    QualType ParamType = Param->getType().getNonReferenceType();
1766
1767    Expr *CopyCtorArg =
1768      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1769                          Constructor->getLocation(), ParamType,
1770                          VK_LValue, 0);
1771
1772    // Cast to the base class to avoid ambiguities.
1773    QualType ArgTy =
1774      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1775                                       ParamType.getQualifiers());
1776
1777    CXXCastPath BasePath;
1778    BasePath.push_back(BaseSpec);
1779    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1780                                            CK_UncheckedDerivedToBase,
1781                                            VK_LValue, &BasePath).take();
1782
1783    InitializationKind InitKind
1784      = InitializationKind::CreateDirect(Constructor->getLocation(),
1785                                         SourceLocation(), SourceLocation());
1786    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1787                                   &CopyCtorArg, 1);
1788    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1789                               MultiExprArg(&CopyCtorArg, 1));
1790    break;
1791  }
1792
1793  case IIK_Move:
1794    assert(false && "Unhandled initializer kind!");
1795  }
1796
1797  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1798  if (BaseInit.isInvalid())
1799    return true;
1800
1801  CXXBaseInit =
1802    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1803               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1804                                                        SourceLocation()),
1805                                             BaseSpec->isVirtual(),
1806                                             SourceLocation(),
1807                                             BaseInit.takeAs<Expr>(),
1808                                             SourceLocation(),
1809                                             SourceLocation());
1810
1811  return false;
1812}
1813
1814static bool
1815BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1816                               ImplicitInitializerKind ImplicitInitKind,
1817                               FieldDecl *Field,
1818                               CXXCtorInitializer *&CXXMemberInit) {
1819  if (Field->isInvalidDecl())
1820    return true;
1821
1822  SourceLocation Loc = Constructor->getLocation();
1823
1824  if (ImplicitInitKind == IIK_Copy) {
1825    ParmVarDecl *Param = Constructor->getParamDecl(0);
1826    QualType ParamType = Param->getType().getNonReferenceType();
1827
1828    Expr *MemberExprBase =
1829      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1830                          Loc, ParamType, VK_LValue, 0);
1831
1832    // Build a reference to this field within the parameter.
1833    CXXScopeSpec SS;
1834    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1835                              Sema::LookupMemberName);
1836    MemberLookup.addDecl(Field, AS_public);
1837    MemberLookup.resolveKind();
1838    ExprResult CopyCtorArg
1839      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1840                                         ParamType, Loc,
1841                                         /*IsArrow=*/false,
1842                                         SS,
1843                                         /*FirstQualifierInScope=*/0,
1844                                         MemberLookup,
1845                                         /*TemplateArgs=*/0);
1846    if (CopyCtorArg.isInvalid())
1847      return true;
1848
1849    // When the field we are copying is an array, create index variables for
1850    // each dimension of the array. We use these index variables to subscript
1851    // the source array, and other clients (e.g., CodeGen) will perform the
1852    // necessary iteration with these index variables.
1853    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1854    QualType BaseType = Field->getType();
1855    QualType SizeType = SemaRef.Context.getSizeType();
1856    while (const ConstantArrayType *Array
1857                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1858      // Create the iteration variable for this array index.
1859      IdentifierInfo *IterationVarName = 0;
1860      {
1861        llvm::SmallString<8> Str;
1862        llvm::raw_svector_ostream OS(Str);
1863        OS << "__i" << IndexVariables.size();
1864        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1865      }
1866      VarDecl *IterationVar
1867        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1868                          IterationVarName, SizeType,
1869                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1870                          SC_None, SC_None);
1871      IndexVariables.push_back(IterationVar);
1872
1873      // Create a reference to the iteration variable.
1874      ExprResult IterationVarRef
1875        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1876      assert(!IterationVarRef.isInvalid() &&
1877             "Reference to invented variable cannot fail!");
1878
1879      // Subscript the array with this iteration variable.
1880      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1881                                                            Loc,
1882                                                        IterationVarRef.take(),
1883                                                            Loc);
1884      if (CopyCtorArg.isInvalid())
1885        return true;
1886
1887      BaseType = Array->getElementType();
1888    }
1889
1890    // Construct the entity that we will be initializing. For an array, this
1891    // will be first element in the array, which may require several levels
1892    // of array-subscript entities.
1893    llvm::SmallVector<InitializedEntity, 4> Entities;
1894    Entities.reserve(1 + IndexVariables.size());
1895    Entities.push_back(InitializedEntity::InitializeMember(Field));
1896    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1897      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1898                                                              0,
1899                                                              Entities.back()));
1900
1901    // Direct-initialize to use the copy constructor.
1902    InitializationKind InitKind =
1903      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1904
1905    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1906    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1907                                   &CopyCtorArgE, 1);
1908
1909    ExprResult MemberInit
1910      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1911                        MultiExprArg(&CopyCtorArgE, 1));
1912    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1913    if (MemberInit.isInvalid())
1914      return true;
1915
1916    CXXMemberInit
1917      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1918                                           MemberInit.takeAs<Expr>(), Loc,
1919                                           IndexVariables.data(),
1920                                           IndexVariables.size());
1921    return false;
1922  }
1923
1924  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1925
1926  QualType FieldBaseElementType =
1927    SemaRef.Context.getBaseElementType(Field->getType());
1928
1929  if (FieldBaseElementType->isRecordType()) {
1930    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1931    InitializationKind InitKind =
1932      InitializationKind::CreateDefault(Loc);
1933
1934    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1935    ExprResult MemberInit =
1936      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1937
1938    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1939    if (MemberInit.isInvalid())
1940      return true;
1941
1942    CXXMemberInit =
1943      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1944                                                       Field, Loc, Loc,
1945                                                       MemberInit.get(),
1946                                                       Loc);
1947    return false;
1948  }
1949
1950  if (FieldBaseElementType->isReferenceType()) {
1951    SemaRef.Diag(Constructor->getLocation(),
1952                 diag::err_uninitialized_member_in_ctor)
1953    << (int)Constructor->isImplicit()
1954    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1955    << 0 << Field->getDeclName();
1956    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1957    return true;
1958  }
1959
1960  if (FieldBaseElementType.isConstQualified()) {
1961    SemaRef.Diag(Constructor->getLocation(),
1962                 diag::err_uninitialized_member_in_ctor)
1963    << (int)Constructor->isImplicit()
1964    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1965    << 1 << Field->getDeclName();
1966    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1967    return true;
1968  }
1969
1970  // Nothing to initialize.
1971  CXXMemberInit = 0;
1972  return false;
1973}
1974
1975namespace {
1976struct BaseAndFieldInfo {
1977  Sema &S;
1978  CXXConstructorDecl *Ctor;
1979  bool AnyErrorsInInits;
1980  ImplicitInitializerKind IIK;
1981  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1982  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1983
1984  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1985    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1986    // FIXME: Handle implicit move constructors.
1987    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1988      IIK = IIK_Copy;
1989    else
1990      IIK = IIK_Default;
1991  }
1992};
1993}
1994
1995static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1996                                    FieldDecl *Top, FieldDecl *Field) {
1997
1998  // Overwhelmingly common case: we have a direct initializer for this field.
1999  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2000    Info.AllToInit.push_back(Init);
2001    return false;
2002  }
2003
2004  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2005    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2006    assert(FieldClassType && "anonymous struct/union without record type");
2007    CXXRecordDecl *FieldClassDecl
2008      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2009
2010    // Even though union members never have non-trivial default
2011    // constructions in C++03, we still build member initializers for aggregate
2012    // record types which can be union members, and C++0x allows non-trivial
2013    // default constructors for union members, so we ensure that only one
2014    // member is initialized for these.
2015    if (FieldClassDecl->isUnion()) {
2016      // First check for an explicit initializer for one field.
2017      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2018           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2019        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2020          Info.AllToInit.push_back(Init);
2021
2022          // Once we've initialized a field of an anonymous union, the union
2023          // field in the class is also initialized, so exit immediately.
2024          return false;
2025        } else if ((*FA)->isAnonymousStructOrUnion()) {
2026          if (CollectFieldInitializer(Info, Top, *FA))
2027            return true;
2028        }
2029      }
2030
2031      // Fallthrough and construct a default initializer for the union as
2032      // a whole, which can call its default constructor if such a thing exists
2033      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2034      // behavior going forward with C++0x, when anonymous unions there are
2035      // finalized, we should revisit this.
2036    } else {
2037      // For structs, we simply descend through to initialize all members where
2038      // necessary.
2039      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2040           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2041        if (CollectFieldInitializer(Info, Top, *FA))
2042          return true;
2043      }
2044    }
2045  }
2046
2047  // Don't try to build an implicit initializer if there were semantic
2048  // errors in any of the initializers (and therefore we might be
2049  // missing some that the user actually wrote).
2050  if (Info.AnyErrorsInInits)
2051    return false;
2052
2053  CXXCtorInitializer *Init = 0;
2054  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2055    return true;
2056
2057  if (Init)
2058    Info.AllToInit.push_back(Init);
2059
2060  return false;
2061}
2062
2063bool
2064Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2065                                  CXXCtorInitializer **Initializers,
2066                                  unsigned NumInitializers,
2067                                  bool AnyErrors) {
2068  if (Constructor->getDeclContext()->isDependentContext()) {
2069    // Just store the initializers as written, they will be checked during
2070    // instantiation.
2071    if (NumInitializers > 0) {
2072      Constructor->setNumCtorInitializers(NumInitializers);
2073      CXXCtorInitializer **baseOrMemberInitializers =
2074        new (Context) CXXCtorInitializer*[NumInitializers];
2075      memcpy(baseOrMemberInitializers, Initializers,
2076             NumInitializers * sizeof(CXXCtorInitializer*));
2077      Constructor->setCtorInitializers(baseOrMemberInitializers);
2078    }
2079
2080    return false;
2081  }
2082
2083  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2084
2085  // We need to build the initializer AST according to order of construction
2086  // and not what user specified in the Initializers list.
2087  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2088  if (!ClassDecl)
2089    return true;
2090
2091  bool HadError = false;
2092
2093  for (unsigned i = 0; i < NumInitializers; i++) {
2094    CXXCtorInitializer *Member = Initializers[i];
2095
2096    if (Member->isBaseInitializer())
2097      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2098    else
2099      Info.AllBaseFields[Member->getAnyMember()] = Member;
2100  }
2101
2102  // Keep track of the direct virtual bases.
2103  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2104  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2105       E = ClassDecl->bases_end(); I != E; ++I) {
2106    if (I->isVirtual())
2107      DirectVBases.insert(I);
2108  }
2109
2110  // Push virtual bases before others.
2111  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2112       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2113
2114    if (CXXCtorInitializer *Value
2115        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2116      Info.AllToInit.push_back(Value);
2117    } else if (!AnyErrors) {
2118      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2119      CXXCtorInitializer *CXXBaseInit;
2120      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2121                                       VBase, IsInheritedVirtualBase,
2122                                       CXXBaseInit)) {
2123        HadError = true;
2124        continue;
2125      }
2126
2127      Info.AllToInit.push_back(CXXBaseInit);
2128    }
2129  }
2130
2131  // Non-virtual bases.
2132  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2133       E = ClassDecl->bases_end(); Base != E; ++Base) {
2134    // Virtuals are in the virtual base list and already constructed.
2135    if (Base->isVirtual())
2136      continue;
2137
2138    if (CXXCtorInitializer *Value
2139          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2140      Info.AllToInit.push_back(Value);
2141    } else if (!AnyErrors) {
2142      CXXCtorInitializer *CXXBaseInit;
2143      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2144                                       Base, /*IsInheritedVirtualBase=*/false,
2145                                       CXXBaseInit)) {
2146        HadError = true;
2147        continue;
2148      }
2149
2150      Info.AllToInit.push_back(CXXBaseInit);
2151    }
2152  }
2153
2154  // Fields.
2155  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2156       E = ClassDecl->field_end(); Field != E; ++Field) {
2157    if ((*Field)->getType()->isIncompleteArrayType()) {
2158      assert(ClassDecl->hasFlexibleArrayMember() &&
2159             "Incomplete array type is not valid");
2160      continue;
2161    }
2162    if (CollectFieldInitializer(Info, *Field, *Field))
2163      HadError = true;
2164  }
2165
2166  NumInitializers = Info.AllToInit.size();
2167  if (NumInitializers > 0) {
2168    Constructor->setNumCtorInitializers(NumInitializers);
2169    CXXCtorInitializer **baseOrMemberInitializers =
2170      new (Context) CXXCtorInitializer*[NumInitializers];
2171    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2172           NumInitializers * sizeof(CXXCtorInitializer*));
2173    Constructor->setCtorInitializers(baseOrMemberInitializers);
2174
2175    // Constructors implicitly reference the base and member
2176    // destructors.
2177    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2178                                           Constructor->getParent());
2179  }
2180
2181  return HadError;
2182}
2183
2184static void *GetKeyForTopLevelField(FieldDecl *Field) {
2185  // For anonymous unions, use the class declaration as the key.
2186  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2187    if (RT->getDecl()->isAnonymousStructOrUnion())
2188      return static_cast<void *>(RT->getDecl());
2189  }
2190  return static_cast<void *>(Field);
2191}
2192
2193static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2194  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2195}
2196
2197static void *GetKeyForMember(ASTContext &Context,
2198                             CXXCtorInitializer *Member) {
2199  if (!Member->isAnyMemberInitializer())
2200    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2201
2202  // For fields injected into the class via declaration of an anonymous union,
2203  // use its anonymous union class declaration as the unique key.
2204  FieldDecl *Field = Member->getAnyMember();
2205
2206  // If the field is a member of an anonymous struct or union, our key
2207  // is the anonymous record decl that's a direct child of the class.
2208  RecordDecl *RD = Field->getParent();
2209  if (RD->isAnonymousStructOrUnion()) {
2210    while (true) {
2211      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2212      if (Parent->isAnonymousStructOrUnion())
2213        RD = Parent;
2214      else
2215        break;
2216    }
2217
2218    return static_cast<void *>(RD);
2219  }
2220
2221  return static_cast<void *>(Field);
2222}
2223
2224static void
2225DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2226                                  const CXXConstructorDecl *Constructor,
2227                                  CXXCtorInitializer **Inits,
2228                                  unsigned NumInits) {
2229  if (Constructor->getDeclContext()->isDependentContext())
2230    return;
2231
2232  // Don't check initializers order unless the warning is enabled at the
2233  // location of at least one initializer.
2234  bool ShouldCheckOrder = false;
2235  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2236    CXXCtorInitializer *Init = Inits[InitIndex];
2237    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2238                                         Init->getSourceLocation())
2239          != Diagnostic::Ignored) {
2240      ShouldCheckOrder = true;
2241      break;
2242    }
2243  }
2244  if (!ShouldCheckOrder)
2245    return;
2246
2247  // Build the list of bases and members in the order that they'll
2248  // actually be initialized.  The explicit initializers should be in
2249  // this same order but may be missing things.
2250  llvm::SmallVector<const void*, 32> IdealInitKeys;
2251
2252  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2253
2254  // 1. Virtual bases.
2255  for (CXXRecordDecl::base_class_const_iterator VBase =
2256       ClassDecl->vbases_begin(),
2257       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2258    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2259
2260  // 2. Non-virtual bases.
2261  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2262       E = ClassDecl->bases_end(); Base != E; ++Base) {
2263    if (Base->isVirtual())
2264      continue;
2265    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2266  }
2267
2268  // 3. Direct fields.
2269  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2270       E = ClassDecl->field_end(); Field != E; ++Field)
2271    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2272
2273  unsigned NumIdealInits = IdealInitKeys.size();
2274  unsigned IdealIndex = 0;
2275
2276  CXXCtorInitializer *PrevInit = 0;
2277  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2278    CXXCtorInitializer *Init = Inits[InitIndex];
2279    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2280
2281    // Scan forward to try to find this initializer in the idealized
2282    // initializers list.
2283    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2284      if (InitKey == IdealInitKeys[IdealIndex])
2285        break;
2286
2287    // If we didn't find this initializer, it must be because we
2288    // scanned past it on a previous iteration.  That can only
2289    // happen if we're out of order;  emit a warning.
2290    if (IdealIndex == NumIdealInits && PrevInit) {
2291      Sema::SemaDiagnosticBuilder D =
2292        SemaRef.Diag(PrevInit->getSourceLocation(),
2293                     diag::warn_initializer_out_of_order);
2294
2295      if (PrevInit->isAnyMemberInitializer())
2296        D << 0 << PrevInit->getAnyMember()->getDeclName();
2297      else
2298        D << 1 << PrevInit->getBaseClassInfo()->getType();
2299
2300      if (Init->isAnyMemberInitializer())
2301        D << 0 << Init->getAnyMember()->getDeclName();
2302      else
2303        D << 1 << Init->getBaseClassInfo()->getType();
2304
2305      // Move back to the initializer's location in the ideal list.
2306      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2307        if (InitKey == IdealInitKeys[IdealIndex])
2308          break;
2309
2310      assert(IdealIndex != NumIdealInits &&
2311             "initializer not found in initializer list");
2312    }
2313
2314    PrevInit = Init;
2315  }
2316}
2317
2318namespace {
2319bool CheckRedundantInit(Sema &S,
2320                        CXXCtorInitializer *Init,
2321                        CXXCtorInitializer *&PrevInit) {
2322  if (!PrevInit) {
2323    PrevInit = Init;
2324    return false;
2325  }
2326
2327  if (FieldDecl *Field = Init->getMember())
2328    S.Diag(Init->getSourceLocation(),
2329           diag::err_multiple_mem_initialization)
2330      << Field->getDeclName()
2331      << Init->getSourceRange();
2332  else {
2333    const Type *BaseClass = Init->getBaseClass();
2334    assert(BaseClass && "neither field nor base");
2335    S.Diag(Init->getSourceLocation(),
2336           diag::err_multiple_base_initialization)
2337      << QualType(BaseClass, 0)
2338      << Init->getSourceRange();
2339  }
2340  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2341    << 0 << PrevInit->getSourceRange();
2342
2343  return true;
2344}
2345
2346typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2347typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2348
2349bool CheckRedundantUnionInit(Sema &S,
2350                             CXXCtorInitializer *Init,
2351                             RedundantUnionMap &Unions) {
2352  FieldDecl *Field = Init->getAnyMember();
2353  RecordDecl *Parent = Field->getParent();
2354  if (!Parent->isAnonymousStructOrUnion())
2355    return false;
2356
2357  NamedDecl *Child = Field;
2358  do {
2359    if (Parent->isUnion()) {
2360      UnionEntry &En = Unions[Parent];
2361      if (En.first && En.first != Child) {
2362        S.Diag(Init->getSourceLocation(),
2363               diag::err_multiple_mem_union_initialization)
2364          << Field->getDeclName()
2365          << Init->getSourceRange();
2366        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2367          << 0 << En.second->getSourceRange();
2368        return true;
2369      } else if (!En.first) {
2370        En.first = Child;
2371        En.second = Init;
2372      }
2373    }
2374
2375    Child = Parent;
2376    Parent = cast<RecordDecl>(Parent->getDeclContext());
2377  } while (Parent->isAnonymousStructOrUnion());
2378
2379  return false;
2380}
2381}
2382
2383/// ActOnMemInitializers - Handle the member initializers for a constructor.
2384void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2385                                SourceLocation ColonLoc,
2386                                MemInitTy **meminits, unsigned NumMemInits,
2387                                bool AnyErrors) {
2388  if (!ConstructorDecl)
2389    return;
2390
2391  AdjustDeclIfTemplate(ConstructorDecl);
2392
2393  CXXConstructorDecl *Constructor
2394    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2395
2396  if (!Constructor) {
2397    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2398    return;
2399  }
2400
2401  CXXCtorInitializer **MemInits =
2402    reinterpret_cast<CXXCtorInitializer **>(meminits);
2403
2404  // Mapping for the duplicate initializers check.
2405  // For member initializers, this is keyed with a FieldDecl*.
2406  // For base initializers, this is keyed with a Type*.
2407  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2408
2409  // Mapping for the inconsistent anonymous-union initializers check.
2410  RedundantUnionMap MemberUnions;
2411
2412  bool HadError = false;
2413  for (unsigned i = 0; i < NumMemInits; i++) {
2414    CXXCtorInitializer *Init = MemInits[i];
2415
2416    // Set the source order index.
2417    Init->setSourceOrder(i);
2418
2419    if (Init->isAnyMemberInitializer()) {
2420      FieldDecl *Field = Init->getAnyMember();
2421      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2422          CheckRedundantUnionInit(*this, Init, MemberUnions))
2423        HadError = true;
2424    } else if (Init->isBaseInitializer()) {
2425      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2426      if (CheckRedundantInit(*this, Init, Members[Key]))
2427        HadError = true;
2428    } else {
2429      assert(Init->isDelegatingInitializer());
2430      // This must be the only initializer
2431      if (i != 0 || NumMemInits > 1) {
2432        Diag(MemInits[0]->getSourceLocation(),
2433             diag::err_delegating_initializer_alone)
2434          << MemInits[0]->getSourceRange();
2435        HadError = true;
2436      }
2437    }
2438  }
2439
2440  if (HadError)
2441    return;
2442
2443  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2444
2445  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2446}
2447
2448void
2449Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2450                                             CXXRecordDecl *ClassDecl) {
2451  // Ignore dependent contexts.
2452  if (ClassDecl->isDependentContext())
2453    return;
2454
2455  // FIXME: all the access-control diagnostics are positioned on the
2456  // field/base declaration.  That's probably good; that said, the
2457  // user might reasonably want to know why the destructor is being
2458  // emitted, and we currently don't say.
2459
2460  // Non-static data members.
2461  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2462       E = ClassDecl->field_end(); I != E; ++I) {
2463    FieldDecl *Field = *I;
2464    if (Field->isInvalidDecl())
2465      continue;
2466    QualType FieldType = Context.getBaseElementType(Field->getType());
2467
2468    const RecordType* RT = FieldType->getAs<RecordType>();
2469    if (!RT)
2470      continue;
2471
2472    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2473    if (FieldClassDecl->isInvalidDecl())
2474      continue;
2475    if (FieldClassDecl->hasTrivialDestructor())
2476      continue;
2477
2478    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2479    assert(Dtor && "No dtor found for FieldClassDecl!");
2480    CheckDestructorAccess(Field->getLocation(), Dtor,
2481                          PDiag(diag::err_access_dtor_field)
2482                            << Field->getDeclName()
2483                            << FieldType);
2484
2485    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2486  }
2487
2488  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2489
2490  // Bases.
2491  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2492       E = ClassDecl->bases_end(); Base != E; ++Base) {
2493    // Bases are always records in a well-formed non-dependent class.
2494    const RecordType *RT = Base->getType()->getAs<RecordType>();
2495
2496    // Remember direct virtual bases.
2497    if (Base->isVirtual())
2498      DirectVirtualBases.insert(RT);
2499
2500    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2501    // If our base class is invalid, we probably can't get its dtor anyway.
2502    if (BaseClassDecl->isInvalidDecl())
2503      continue;
2504    // Ignore trivial destructors.
2505    if (BaseClassDecl->hasTrivialDestructor())
2506      continue;
2507
2508    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2509    assert(Dtor && "No dtor found for BaseClassDecl!");
2510
2511    // FIXME: caret should be on the start of the class name
2512    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2513                          PDiag(diag::err_access_dtor_base)
2514                            << Base->getType()
2515                            << Base->getSourceRange());
2516
2517    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2518  }
2519
2520  // Virtual bases.
2521  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2522       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2523
2524    // Bases are always records in a well-formed non-dependent class.
2525    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2526
2527    // Ignore direct virtual bases.
2528    if (DirectVirtualBases.count(RT))
2529      continue;
2530
2531    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2532    // If our base class is invalid, we probably can't get its dtor anyway.
2533    if (BaseClassDecl->isInvalidDecl())
2534      continue;
2535    // Ignore trivial destructors.
2536    if (BaseClassDecl->hasTrivialDestructor())
2537      continue;
2538
2539    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2540    assert(Dtor && "No dtor found for BaseClassDecl!");
2541    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2542                          PDiag(diag::err_access_dtor_vbase)
2543                            << VBase->getType());
2544
2545    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2546  }
2547}
2548
2549void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2550  if (!CDtorDecl)
2551    return;
2552
2553  if (CXXConstructorDecl *Constructor
2554      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2555    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2556}
2557
2558bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2559                                  unsigned DiagID, AbstractDiagSelID SelID) {
2560  if (SelID == -1)
2561    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2562  else
2563    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2564}
2565
2566bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2567                                  const PartialDiagnostic &PD) {
2568  if (!getLangOptions().CPlusPlus)
2569    return false;
2570
2571  if (const ArrayType *AT = Context.getAsArrayType(T))
2572    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2573
2574  if (const PointerType *PT = T->getAs<PointerType>()) {
2575    // Find the innermost pointer type.
2576    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2577      PT = T;
2578
2579    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2580      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2581  }
2582
2583  const RecordType *RT = T->getAs<RecordType>();
2584  if (!RT)
2585    return false;
2586
2587  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2588
2589  // We can't answer whether something is abstract until it has a
2590  // definition.  If it's currently being defined, we'll walk back
2591  // over all the declarations when we have a full definition.
2592  const CXXRecordDecl *Def = RD->getDefinition();
2593  if (!Def || Def->isBeingDefined())
2594    return false;
2595
2596  if (!RD->isAbstract())
2597    return false;
2598
2599  Diag(Loc, PD) << RD->getDeclName();
2600  DiagnoseAbstractType(RD);
2601
2602  return true;
2603}
2604
2605void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2606  // Check if we've already emitted the list of pure virtual functions
2607  // for this class.
2608  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2609    return;
2610
2611  CXXFinalOverriderMap FinalOverriders;
2612  RD->getFinalOverriders(FinalOverriders);
2613
2614  // Keep a set of seen pure methods so we won't diagnose the same method
2615  // more than once.
2616  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2617
2618  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2619                                   MEnd = FinalOverriders.end();
2620       M != MEnd;
2621       ++M) {
2622    for (OverridingMethods::iterator SO = M->second.begin(),
2623                                  SOEnd = M->second.end();
2624         SO != SOEnd; ++SO) {
2625      // C++ [class.abstract]p4:
2626      //   A class is abstract if it contains or inherits at least one
2627      //   pure virtual function for which the final overrider is pure
2628      //   virtual.
2629
2630      //
2631      if (SO->second.size() != 1)
2632        continue;
2633
2634      if (!SO->second.front().Method->isPure())
2635        continue;
2636
2637      if (!SeenPureMethods.insert(SO->second.front().Method))
2638        continue;
2639
2640      Diag(SO->second.front().Method->getLocation(),
2641           diag::note_pure_virtual_function)
2642        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2643    }
2644  }
2645
2646  if (!PureVirtualClassDiagSet)
2647    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2648  PureVirtualClassDiagSet->insert(RD);
2649}
2650
2651namespace {
2652struct AbstractUsageInfo {
2653  Sema &S;
2654  CXXRecordDecl *Record;
2655  CanQualType AbstractType;
2656  bool Invalid;
2657
2658  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2659    : S(S), Record(Record),
2660      AbstractType(S.Context.getCanonicalType(
2661                   S.Context.getTypeDeclType(Record))),
2662      Invalid(false) {}
2663
2664  void DiagnoseAbstractType() {
2665    if (Invalid) return;
2666    S.DiagnoseAbstractType(Record);
2667    Invalid = true;
2668  }
2669
2670  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2671};
2672
2673struct CheckAbstractUsage {
2674  AbstractUsageInfo &Info;
2675  const NamedDecl *Ctx;
2676
2677  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2678    : Info(Info), Ctx(Ctx) {}
2679
2680  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2681    switch (TL.getTypeLocClass()) {
2682#define ABSTRACT_TYPELOC(CLASS, PARENT)
2683#define TYPELOC(CLASS, PARENT) \
2684    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2685#include "clang/AST/TypeLocNodes.def"
2686    }
2687  }
2688
2689  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2690    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2691    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2692      if (!TL.getArg(I))
2693        continue;
2694
2695      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2696      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2697    }
2698  }
2699
2700  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2701    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2702  }
2703
2704  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2705    // Visit the type parameters from a permissive context.
2706    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2707      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2708      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2709        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2710          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2711      // TODO: other template argument types?
2712    }
2713  }
2714
2715  // Visit pointee types from a permissive context.
2716#define CheckPolymorphic(Type) \
2717  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2718    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2719  }
2720  CheckPolymorphic(PointerTypeLoc)
2721  CheckPolymorphic(ReferenceTypeLoc)
2722  CheckPolymorphic(MemberPointerTypeLoc)
2723  CheckPolymorphic(BlockPointerTypeLoc)
2724
2725  /// Handle all the types we haven't given a more specific
2726  /// implementation for above.
2727  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2728    // Every other kind of type that we haven't called out already
2729    // that has an inner type is either (1) sugar or (2) contains that
2730    // inner type in some way as a subobject.
2731    if (TypeLoc Next = TL.getNextTypeLoc())
2732      return Visit(Next, Sel);
2733
2734    // If there's no inner type and we're in a permissive context,
2735    // don't diagnose.
2736    if (Sel == Sema::AbstractNone) return;
2737
2738    // Check whether the type matches the abstract type.
2739    QualType T = TL.getType();
2740    if (T->isArrayType()) {
2741      Sel = Sema::AbstractArrayType;
2742      T = Info.S.Context.getBaseElementType(T);
2743    }
2744    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2745    if (CT != Info.AbstractType) return;
2746
2747    // It matched; do some magic.
2748    if (Sel == Sema::AbstractArrayType) {
2749      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2750        << T << TL.getSourceRange();
2751    } else {
2752      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2753        << Sel << T << TL.getSourceRange();
2754    }
2755    Info.DiagnoseAbstractType();
2756  }
2757};
2758
2759void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2760                                  Sema::AbstractDiagSelID Sel) {
2761  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2762}
2763
2764}
2765
2766/// Check for invalid uses of an abstract type in a method declaration.
2767static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2768                                    CXXMethodDecl *MD) {
2769  // No need to do the check on definitions, which require that
2770  // the return/param types be complete.
2771  if (MD->isThisDeclarationADefinition())
2772    return;
2773
2774  // For safety's sake, just ignore it if we don't have type source
2775  // information.  This should never happen for non-implicit methods,
2776  // but...
2777  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2778    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2779}
2780
2781/// Check for invalid uses of an abstract type within a class definition.
2782static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2783                                    CXXRecordDecl *RD) {
2784  for (CXXRecordDecl::decl_iterator
2785         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2786    Decl *D = *I;
2787    if (D->isImplicit()) continue;
2788
2789    // Methods and method templates.
2790    if (isa<CXXMethodDecl>(D)) {
2791      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2792    } else if (isa<FunctionTemplateDecl>(D)) {
2793      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2794      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2795
2796    // Fields and static variables.
2797    } else if (isa<FieldDecl>(D)) {
2798      FieldDecl *FD = cast<FieldDecl>(D);
2799      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2800        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2801    } else if (isa<VarDecl>(D)) {
2802      VarDecl *VD = cast<VarDecl>(D);
2803      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2804        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2805
2806    // Nested classes and class templates.
2807    } else if (isa<CXXRecordDecl>(D)) {
2808      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2809    } else if (isa<ClassTemplateDecl>(D)) {
2810      CheckAbstractClassUsage(Info,
2811                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2812    }
2813  }
2814}
2815
2816/// \brief Perform semantic checks on a class definition that has been
2817/// completing, introducing implicitly-declared members, checking for
2818/// abstract types, etc.
2819void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2820  if (!Record)
2821    return;
2822
2823  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2824    AbstractUsageInfo Info(*this, Record);
2825    CheckAbstractClassUsage(Info, Record);
2826  }
2827
2828  // If this is not an aggregate type and has no user-declared constructor,
2829  // complain about any non-static data members of reference or const scalar
2830  // type, since they will never get initializers.
2831  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2832      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2833    bool Complained = false;
2834    for (RecordDecl::field_iterator F = Record->field_begin(),
2835                                 FEnd = Record->field_end();
2836         F != FEnd; ++F) {
2837      if (F->getType()->isReferenceType() ||
2838          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2839        if (!Complained) {
2840          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2841            << Record->getTagKind() << Record;
2842          Complained = true;
2843        }
2844
2845        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2846          << F->getType()->isReferenceType()
2847          << F->getDeclName();
2848      }
2849    }
2850  }
2851
2852  if (Record->isDynamicClass() && !Record->isDependentType())
2853    DynamicClasses.push_back(Record);
2854
2855  if (Record->getIdentifier()) {
2856    // C++ [class.mem]p13:
2857    //   If T is the name of a class, then each of the following shall have a
2858    //   name different from T:
2859    //     - every member of every anonymous union that is a member of class T.
2860    //
2861    // C++ [class.mem]p14:
2862    //   In addition, if class T has a user-declared constructor (12.1), every
2863    //   non-static data member of class T shall have a name different from T.
2864    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2865         R.first != R.second; ++R.first) {
2866      NamedDecl *D = *R.first;
2867      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2868          isa<IndirectFieldDecl>(D)) {
2869        Diag(D->getLocation(), diag::err_member_name_of_class)
2870          << D->getDeclName();
2871        break;
2872      }
2873    }
2874  }
2875
2876  // Warn if the class has virtual methods but non-virtual public destructor.
2877  if (Record->isPolymorphic() && !Record->isDependentType()) {
2878    CXXDestructorDecl *dtor = Record->getDestructor();
2879    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2880      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2881           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2882  }
2883
2884  // See if a method overloads virtual methods in a base
2885  /// class without overriding any.
2886  if (!Record->isDependentType()) {
2887    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2888                                     MEnd = Record->method_end();
2889         M != MEnd; ++M) {
2890      if (!(*M)->isStatic())
2891        DiagnoseHiddenVirtualMethods(Record, *M);
2892    }
2893  }
2894
2895  // Declare inherited constructors. We do this eagerly here because:
2896  // - The standard requires an eager diagnostic for conflicting inherited
2897  //   constructors from different classes.
2898  // - The lazy declaration of the other implicit constructors is so as to not
2899  //   waste space and performance on classes that are not meant to be
2900  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2901  //   have inherited constructors.
2902  DeclareInheritedConstructors(Record);
2903}
2904
2905/// \brief Data used with FindHiddenVirtualMethod
2906namespace {
2907  struct FindHiddenVirtualMethodData {
2908    Sema *S;
2909    CXXMethodDecl *Method;
2910    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2911    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2912  };
2913}
2914
2915/// \brief Member lookup function that determines whether a given C++
2916/// method overloads virtual methods in a base class without overriding any,
2917/// to be used with CXXRecordDecl::lookupInBases().
2918static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2919                                    CXXBasePath &Path,
2920                                    void *UserData) {
2921  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2922
2923  FindHiddenVirtualMethodData &Data
2924    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2925
2926  DeclarationName Name = Data.Method->getDeclName();
2927  assert(Name.getNameKind() == DeclarationName::Identifier);
2928
2929  bool foundSameNameMethod = false;
2930  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2931  for (Path.Decls = BaseRecord->lookup(Name);
2932       Path.Decls.first != Path.Decls.second;
2933       ++Path.Decls.first) {
2934    NamedDecl *D = *Path.Decls.first;
2935    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2936      MD = MD->getCanonicalDecl();
2937      foundSameNameMethod = true;
2938      // Interested only in hidden virtual methods.
2939      if (!MD->isVirtual())
2940        continue;
2941      // If the method we are checking overrides a method from its base
2942      // don't warn about the other overloaded methods.
2943      if (!Data.S->IsOverload(Data.Method, MD, false))
2944        return true;
2945      // Collect the overload only if its hidden.
2946      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2947        overloadedMethods.push_back(MD);
2948    }
2949  }
2950
2951  if (foundSameNameMethod)
2952    Data.OverloadedMethods.append(overloadedMethods.begin(),
2953                                   overloadedMethods.end());
2954  return foundSameNameMethod;
2955}
2956
2957/// \brief See if a method overloads virtual methods in a base class without
2958/// overriding any.
2959void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2960  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2961                               MD->getLocation()) == Diagnostic::Ignored)
2962    return;
2963  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2964    return;
2965
2966  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2967                     /*bool RecordPaths=*/false,
2968                     /*bool DetectVirtual=*/false);
2969  FindHiddenVirtualMethodData Data;
2970  Data.Method = MD;
2971  Data.S = this;
2972
2973  // Keep the base methods that were overriden or introduced in the subclass
2974  // by 'using' in a set. A base method not in this set is hidden.
2975  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2976       res.first != res.second; ++res.first) {
2977    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2978      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2979                                          E = MD->end_overridden_methods();
2980           I != E; ++I)
2981        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2982    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2983      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2984        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2985  }
2986
2987  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2988      !Data.OverloadedMethods.empty()) {
2989    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2990      << MD << (Data.OverloadedMethods.size() > 1);
2991
2992    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2993      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2994      Diag(overloadedMD->getLocation(),
2995           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2996    }
2997  }
2998}
2999
3000void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
3001                                             Decl *TagDecl,
3002                                             SourceLocation LBrac,
3003                                             SourceLocation RBrac,
3004                                             AttributeList *AttrList) {
3005  if (!TagDecl)
3006    return;
3007
3008  AdjustDeclIfTemplate(TagDecl);
3009
3010  ActOnFields(S, RLoc, TagDecl,
3011              // strict aliasing violation!
3012              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
3013              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
3014
3015  CheckCompletedCXXClass(
3016                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
3017}
3018
3019namespace {
3020  /// \brief Helper class that collects exception specifications for
3021  /// implicitly-declared special member functions.
3022  class ImplicitExceptionSpecification {
3023    ASTContext &Context;
3024    // We order exception specifications thus:
3025    // noexcept is the most restrictive, but is only used in C++0x.
3026    // throw() comes next.
3027    // Then a throw(collected exceptions)
3028    // Finally no specification.
3029    // throw(...) is used instead if any called function uses it.
3030    ExceptionSpecificationType ComputedEST;
3031    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
3032    llvm::SmallVector<QualType, 4> Exceptions;
3033
3034    void ClearExceptions() {
3035      ExceptionsSeen.clear();
3036      Exceptions.clear();
3037    }
3038
3039  public:
3040    explicit ImplicitExceptionSpecification(ASTContext &Context)
3041      : Context(Context), ComputedEST(EST_BasicNoexcept) {
3042      if (!Context.getLangOptions().CPlusPlus0x)
3043        ComputedEST = EST_DynamicNone;
3044    }
3045
3046    /// \brief Get the computed exception specification type.
3047    ExceptionSpecificationType getExceptionSpecType() const {
3048      assert(ComputedEST != EST_ComputedNoexcept &&
3049             "noexcept(expr) should not be a possible result");
3050      return ComputedEST;
3051    }
3052
3053    /// \brief The number of exceptions in the exception specification.
3054    unsigned size() const { return Exceptions.size(); }
3055
3056    /// \brief The set of exceptions in the exception specification.
3057    const QualType *data() const { return Exceptions.data(); }
3058
3059    /// \brief Integrate another called method into the collected data.
3060    void CalledDecl(CXXMethodDecl *Method) {
3061      // If we have an MSAny spec already, don't bother.
3062      if (!Method || ComputedEST == EST_MSAny)
3063        return;
3064
3065      const FunctionProtoType *Proto
3066        = Method->getType()->getAs<FunctionProtoType>();
3067
3068      ExceptionSpecificationType EST = Proto->getExceptionSpecType();
3069
3070      // If this function can throw any exceptions, make a note of that.
3071      if (EST == EST_MSAny || EST == EST_None) {
3072        ClearExceptions();
3073        ComputedEST = EST;
3074        return;
3075      }
3076
3077      // If this function has a basic noexcept, it doesn't affect the outcome.
3078      if (EST == EST_BasicNoexcept)
3079        return;
3080
3081      // If we have a throw-all spec at this point, ignore the function.
3082      if (ComputedEST == EST_None)
3083        return;
3084
3085      // If we're still at noexcept(true) and there's a nothrow() callee,
3086      // change to that specification.
3087      if (EST == EST_DynamicNone) {
3088        if (ComputedEST == EST_BasicNoexcept)
3089          ComputedEST = EST_DynamicNone;
3090        return;
3091      }
3092
3093      // Check out noexcept specs.
3094      if (EST == EST_ComputedNoexcept) {
3095        FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(Context);
3096        assert(NR != FunctionProtoType::NR_NoNoexcept &&
3097               "Must have noexcept result for EST_ComputedNoexcept.");
3098        assert(NR != FunctionProtoType::NR_Dependent &&
3099               "Should not generate implicit declarations for dependent cases, "
3100               "and don't know how to handle them anyway.");
3101
3102        // noexcept(false) -> no spec on the new function
3103        if (NR == FunctionProtoType::NR_Throw) {
3104          ClearExceptions();
3105          ComputedEST = EST_None;
3106        }
3107        // noexcept(true) won't change anything either.
3108        return;
3109      }
3110
3111      assert(EST == EST_Dynamic && "EST case not considered earlier.");
3112      assert(ComputedEST != EST_None &&
3113             "Shouldn't collect exceptions when throw-all is guaranteed.");
3114      ComputedEST = EST_Dynamic;
3115      // Record the exceptions in this function's exception specification.
3116      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
3117                                              EEnd = Proto->exception_end();
3118           E != EEnd; ++E)
3119        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
3120          Exceptions.push_back(*E);
3121    }
3122  };
3123}
3124
3125
3126/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3127/// special functions, such as the default constructor, copy
3128/// constructor, or destructor, to the given C++ class (C++
3129/// [special]p1).  This routine can only be executed just before the
3130/// definition of the class is complete.
3131void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3132  if (!ClassDecl->hasUserDeclaredConstructor())
3133    ++ASTContext::NumImplicitDefaultConstructors;
3134
3135  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3136    ++ASTContext::NumImplicitCopyConstructors;
3137
3138  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3139    ++ASTContext::NumImplicitCopyAssignmentOperators;
3140
3141    // If we have a dynamic class, then the copy assignment operator may be
3142    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3143    // it shows up in the right place in the vtable and that we diagnose
3144    // problems with the implicit exception specification.
3145    if (ClassDecl->isDynamicClass())
3146      DeclareImplicitCopyAssignment(ClassDecl);
3147  }
3148
3149  if (!ClassDecl->hasUserDeclaredDestructor()) {
3150    ++ASTContext::NumImplicitDestructors;
3151
3152    // If we have a dynamic class, then the destructor may be virtual, so we
3153    // have to declare the destructor immediately. This ensures that, e.g., it
3154    // shows up in the right place in the vtable and that we diagnose problems
3155    // with the implicit exception specification.
3156    if (ClassDecl->isDynamicClass())
3157      DeclareImplicitDestructor(ClassDecl);
3158  }
3159}
3160
3161void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3162  if (!D)
3163    return;
3164
3165  TemplateParameterList *Params = 0;
3166  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3167    Params = Template->getTemplateParameters();
3168  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3169           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3170    Params = PartialSpec->getTemplateParameters();
3171  else
3172    return;
3173
3174  for (TemplateParameterList::iterator Param = Params->begin(),
3175                                    ParamEnd = Params->end();
3176       Param != ParamEnd; ++Param) {
3177    NamedDecl *Named = cast<NamedDecl>(*Param);
3178    if (Named->getDeclName()) {
3179      S->AddDecl(Named);
3180      IdResolver.AddDecl(Named);
3181    }
3182  }
3183}
3184
3185void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3186  if (!RecordD) return;
3187  AdjustDeclIfTemplate(RecordD);
3188  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3189  PushDeclContext(S, Record);
3190}
3191
3192void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3193  if (!RecordD) return;
3194  PopDeclContext();
3195}
3196
3197/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3198/// parsing a top-level (non-nested) C++ class, and we are now
3199/// parsing those parts of the given Method declaration that could
3200/// not be parsed earlier (C++ [class.mem]p2), such as default
3201/// arguments. This action should enter the scope of the given
3202/// Method declaration as if we had just parsed the qualified method
3203/// name. However, it should not bring the parameters into scope;
3204/// that will be performed by ActOnDelayedCXXMethodParameter.
3205void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3206}
3207
3208/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3209/// C++ method declaration. We're (re-)introducing the given
3210/// function parameter into scope for use in parsing later parts of
3211/// the method declaration. For example, we could see an
3212/// ActOnParamDefaultArgument event for this parameter.
3213void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3214  if (!ParamD)
3215    return;
3216
3217  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3218
3219  // If this parameter has an unparsed default argument, clear it out
3220  // to make way for the parsed default argument.
3221  if (Param->hasUnparsedDefaultArg())
3222    Param->setDefaultArg(0);
3223
3224  S->AddDecl(Param);
3225  if (Param->getDeclName())
3226    IdResolver.AddDecl(Param);
3227}
3228
3229/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3230/// processing the delayed method declaration for Method. The method
3231/// declaration is now considered finished. There may be a separate
3232/// ActOnStartOfFunctionDef action later (not necessarily
3233/// immediately!) for this method, if it was also defined inside the
3234/// class body.
3235void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3236  if (!MethodD)
3237    return;
3238
3239  AdjustDeclIfTemplate(MethodD);
3240
3241  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3242
3243  // Now that we have our default arguments, check the constructor
3244  // again. It could produce additional diagnostics or affect whether
3245  // the class has implicitly-declared destructors, among other
3246  // things.
3247  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3248    CheckConstructor(Constructor);
3249
3250  // Check the default arguments, which we may have added.
3251  if (!Method->isInvalidDecl())
3252    CheckCXXDefaultArguments(Method);
3253}
3254
3255/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3256/// the well-formedness of the constructor declarator @p D with type @p
3257/// R. If there are any errors in the declarator, this routine will
3258/// emit diagnostics and set the invalid bit to true.  In any case, the type
3259/// will be updated to reflect a well-formed type for the constructor and
3260/// returned.
3261QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3262                                          StorageClass &SC) {
3263  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3264
3265  // C++ [class.ctor]p3:
3266  //   A constructor shall not be virtual (10.3) or static (9.4). A
3267  //   constructor can be invoked for a const, volatile or const
3268  //   volatile object. A constructor shall not be declared const,
3269  //   volatile, or const volatile (9.3.2).
3270  if (isVirtual) {
3271    if (!D.isInvalidType())
3272      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3273        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3274        << SourceRange(D.getIdentifierLoc());
3275    D.setInvalidType();
3276  }
3277  if (SC == SC_Static) {
3278    if (!D.isInvalidType())
3279      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3280        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3281        << SourceRange(D.getIdentifierLoc());
3282    D.setInvalidType();
3283    SC = SC_None;
3284  }
3285
3286  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3287  if (FTI.TypeQuals != 0) {
3288    if (FTI.TypeQuals & Qualifiers::Const)
3289      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3290        << "const" << SourceRange(D.getIdentifierLoc());
3291    if (FTI.TypeQuals & Qualifiers::Volatile)
3292      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3293        << "volatile" << SourceRange(D.getIdentifierLoc());
3294    if (FTI.TypeQuals & Qualifiers::Restrict)
3295      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3296        << "restrict" << SourceRange(D.getIdentifierLoc());
3297    D.setInvalidType();
3298  }
3299
3300  // C++0x [class.ctor]p4:
3301  //   A constructor shall not be declared with a ref-qualifier.
3302  if (FTI.hasRefQualifier()) {
3303    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3304      << FTI.RefQualifierIsLValueRef
3305      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3306    D.setInvalidType();
3307  }
3308
3309  // Rebuild the function type "R" without any type qualifiers (in
3310  // case any of the errors above fired) and with "void" as the
3311  // return type, since constructors don't have return types.
3312  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3313  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3314    return R;
3315
3316  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3317  EPI.TypeQuals = 0;
3318  EPI.RefQualifier = RQ_None;
3319
3320  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3321                                 Proto->getNumArgs(), EPI);
3322}
3323
3324/// CheckConstructor - Checks a fully-formed constructor for
3325/// well-formedness, issuing any diagnostics required. Returns true if
3326/// the constructor declarator is invalid.
3327void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3328  CXXRecordDecl *ClassDecl
3329    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3330  if (!ClassDecl)
3331    return Constructor->setInvalidDecl();
3332
3333  // C++ [class.copy]p3:
3334  //   A declaration of a constructor for a class X is ill-formed if
3335  //   its first parameter is of type (optionally cv-qualified) X and
3336  //   either there are no other parameters or else all other
3337  //   parameters have default arguments.
3338  if (!Constructor->isInvalidDecl() &&
3339      ((Constructor->getNumParams() == 1) ||
3340       (Constructor->getNumParams() > 1 &&
3341        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3342      Constructor->getTemplateSpecializationKind()
3343                                              != TSK_ImplicitInstantiation) {
3344    QualType ParamType = Constructor->getParamDecl(0)->getType();
3345    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3346    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3347      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3348      const char *ConstRef
3349        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3350                                                        : " const &";
3351      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3352        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3353
3354      // FIXME: Rather that making the constructor invalid, we should endeavor
3355      // to fix the type.
3356      Constructor->setInvalidDecl();
3357    }
3358  }
3359}
3360
3361/// CheckDestructor - Checks a fully-formed destructor definition for
3362/// well-formedness, issuing any diagnostics required.  Returns true
3363/// on error.
3364bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3365  CXXRecordDecl *RD = Destructor->getParent();
3366
3367  if (Destructor->isVirtual()) {
3368    SourceLocation Loc;
3369
3370    if (!Destructor->isImplicit())
3371      Loc = Destructor->getLocation();
3372    else
3373      Loc = RD->getLocation();
3374
3375    // If we have a virtual destructor, look up the deallocation function
3376    FunctionDecl *OperatorDelete = 0;
3377    DeclarationName Name =
3378    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3379    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3380      return true;
3381
3382    MarkDeclarationReferenced(Loc, OperatorDelete);
3383
3384    Destructor->setOperatorDelete(OperatorDelete);
3385  }
3386
3387  return false;
3388}
3389
3390static inline bool
3391FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3392  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3393          FTI.ArgInfo[0].Param &&
3394          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3395}
3396
3397/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3398/// the well-formednes of the destructor declarator @p D with type @p
3399/// R. If there are any errors in the declarator, this routine will
3400/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3401/// will be updated to reflect a well-formed type for the destructor and
3402/// returned.
3403QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3404                                         StorageClass& SC) {
3405  // C++ [class.dtor]p1:
3406  //   [...] A typedef-name that names a class is a class-name
3407  //   (7.1.3); however, a typedef-name that names a class shall not
3408  //   be used as the identifier in the declarator for a destructor
3409  //   declaration.
3410  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3411  if (isa<TypedefType>(DeclaratorType))
3412    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3413      << DeclaratorType;
3414
3415  // C++ [class.dtor]p2:
3416  //   A destructor is used to destroy objects of its class type. A
3417  //   destructor takes no parameters, and no return type can be
3418  //   specified for it (not even void). The address of a destructor
3419  //   shall not be taken. A destructor shall not be static. A
3420  //   destructor can be invoked for a const, volatile or const
3421  //   volatile object. A destructor shall not be declared const,
3422  //   volatile or const volatile (9.3.2).
3423  if (SC == SC_Static) {
3424    if (!D.isInvalidType())
3425      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3426        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3427        << SourceRange(D.getIdentifierLoc())
3428        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3429
3430    SC = SC_None;
3431  }
3432  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3433    // Destructors don't have return types, but the parser will
3434    // happily parse something like:
3435    //
3436    //   class X {
3437    //     float ~X();
3438    //   };
3439    //
3440    // The return type will be eliminated later.
3441    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3442      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3443      << SourceRange(D.getIdentifierLoc());
3444  }
3445
3446  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3447  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3448    if (FTI.TypeQuals & Qualifiers::Const)
3449      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3450        << "const" << SourceRange(D.getIdentifierLoc());
3451    if (FTI.TypeQuals & Qualifiers::Volatile)
3452      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3453        << "volatile" << SourceRange(D.getIdentifierLoc());
3454    if (FTI.TypeQuals & Qualifiers::Restrict)
3455      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3456        << "restrict" << SourceRange(D.getIdentifierLoc());
3457    D.setInvalidType();
3458  }
3459
3460  // C++0x [class.dtor]p2:
3461  //   A destructor shall not be declared with a ref-qualifier.
3462  if (FTI.hasRefQualifier()) {
3463    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3464      << FTI.RefQualifierIsLValueRef
3465      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3466    D.setInvalidType();
3467  }
3468
3469  // Make sure we don't have any parameters.
3470  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3471    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3472
3473    // Delete the parameters.
3474    FTI.freeArgs();
3475    D.setInvalidType();
3476  }
3477
3478  // Make sure the destructor isn't variadic.
3479  if (FTI.isVariadic) {
3480    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3481    D.setInvalidType();
3482  }
3483
3484  // Rebuild the function type "R" without any type qualifiers or
3485  // parameters (in case any of the errors above fired) and with
3486  // "void" as the return type, since destructors don't have return
3487  // types.
3488  if (!D.isInvalidType())
3489    return R;
3490
3491  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3492  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3493  EPI.Variadic = false;
3494  EPI.TypeQuals = 0;
3495  EPI.RefQualifier = RQ_None;
3496  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3497}
3498
3499/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3500/// well-formednes of the conversion function declarator @p D with
3501/// type @p R. If there are any errors in the declarator, this routine
3502/// will emit diagnostics and return true. Otherwise, it will return
3503/// false. Either way, the type @p R will be updated to reflect a
3504/// well-formed type for the conversion operator.
3505void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3506                                     StorageClass& SC) {
3507  // C++ [class.conv.fct]p1:
3508  //   Neither parameter types nor return type can be specified. The
3509  //   type of a conversion function (8.3.5) is "function taking no
3510  //   parameter returning conversion-type-id."
3511  if (SC == SC_Static) {
3512    if (!D.isInvalidType())
3513      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3514        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3515        << SourceRange(D.getIdentifierLoc());
3516    D.setInvalidType();
3517    SC = SC_None;
3518  }
3519
3520  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3521
3522  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3523    // Conversion functions don't have return types, but the parser will
3524    // happily parse something like:
3525    //
3526    //   class X {
3527    //     float operator bool();
3528    //   };
3529    //
3530    // The return type will be changed later anyway.
3531    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3532      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3533      << SourceRange(D.getIdentifierLoc());
3534    D.setInvalidType();
3535  }
3536
3537  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3538
3539  // Make sure we don't have any parameters.
3540  if (Proto->getNumArgs() > 0) {
3541    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3542
3543    // Delete the parameters.
3544    D.getFunctionTypeInfo().freeArgs();
3545    D.setInvalidType();
3546  } else if (Proto->isVariadic()) {
3547    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3548    D.setInvalidType();
3549  }
3550
3551  // Diagnose "&operator bool()" and other such nonsense.  This
3552  // is actually a gcc extension which we don't support.
3553  if (Proto->getResultType() != ConvType) {
3554    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3555      << Proto->getResultType();
3556    D.setInvalidType();
3557    ConvType = Proto->getResultType();
3558  }
3559
3560  // C++ [class.conv.fct]p4:
3561  //   The conversion-type-id shall not represent a function type nor
3562  //   an array type.
3563  if (ConvType->isArrayType()) {
3564    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3565    ConvType = Context.getPointerType(ConvType);
3566    D.setInvalidType();
3567  } else if (ConvType->isFunctionType()) {
3568    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3569    ConvType = Context.getPointerType(ConvType);
3570    D.setInvalidType();
3571  }
3572
3573  // Rebuild the function type "R" without any parameters (in case any
3574  // of the errors above fired) and with the conversion type as the
3575  // return type.
3576  if (D.isInvalidType())
3577    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3578
3579  // C++0x explicit conversion operators.
3580  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3581    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3582         diag::warn_explicit_conversion_functions)
3583      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3584}
3585
3586/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3587/// the declaration of the given C++ conversion function. This routine
3588/// is responsible for recording the conversion function in the C++
3589/// class, if possible.
3590Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3591  assert(Conversion && "Expected to receive a conversion function declaration");
3592
3593  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3594
3595  // Make sure we aren't redeclaring the conversion function.
3596  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3597
3598  // C++ [class.conv.fct]p1:
3599  //   [...] A conversion function is never used to convert a
3600  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3601  //   same object type (or a reference to it), to a (possibly
3602  //   cv-qualified) base class of that type (or a reference to it),
3603  //   or to (possibly cv-qualified) void.
3604  // FIXME: Suppress this warning if the conversion function ends up being a
3605  // virtual function that overrides a virtual function in a base class.
3606  QualType ClassType
3607    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3608  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3609    ConvType = ConvTypeRef->getPointeeType();
3610  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3611      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3612    /* Suppress diagnostics for instantiations. */;
3613  else if (ConvType->isRecordType()) {
3614    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3615    if (ConvType == ClassType)
3616      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3617        << ClassType;
3618    else if (IsDerivedFrom(ClassType, ConvType))
3619      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3620        <<  ClassType << ConvType;
3621  } else if (ConvType->isVoidType()) {
3622    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3623      << ClassType << ConvType;
3624  }
3625
3626  if (FunctionTemplateDecl *ConversionTemplate
3627                                = Conversion->getDescribedFunctionTemplate())
3628    return ConversionTemplate;
3629
3630  return Conversion;
3631}
3632
3633//===----------------------------------------------------------------------===//
3634// Namespace Handling
3635//===----------------------------------------------------------------------===//
3636
3637
3638
3639/// ActOnStartNamespaceDef - This is called at the start of a namespace
3640/// definition.
3641Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3642                                   SourceLocation InlineLoc,
3643                                   SourceLocation NamespaceLoc,
3644                                   SourceLocation IdentLoc,
3645                                   IdentifierInfo *II,
3646                                   SourceLocation LBrace,
3647                                   AttributeList *AttrList) {
3648  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
3649  // For anonymous namespace, take the location of the left brace.
3650  SourceLocation Loc = II ? IdentLoc : LBrace;
3651  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3652                                                 StartLoc, Loc, II);
3653  Namespc->setInline(InlineLoc.isValid());
3654
3655  Scope *DeclRegionScope = NamespcScope->getParent();
3656
3657  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3658
3659  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3660    PushNamespaceVisibilityAttr(Attr);
3661
3662  if (II) {
3663    // C++ [namespace.def]p2:
3664    //   The identifier in an original-namespace-definition shall not
3665    //   have been previously defined in the declarative region in
3666    //   which the original-namespace-definition appears. The
3667    //   identifier in an original-namespace-definition is the name of
3668    //   the namespace. Subsequently in that declarative region, it is
3669    //   treated as an original-namespace-name.
3670    //
3671    // Since namespace names are unique in their scope, and we don't
3672    // look through using directives, just
3673    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3674    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3675
3676    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3677      // This is an extended namespace definition.
3678      if (Namespc->isInline() != OrigNS->isInline()) {
3679        // inline-ness must match
3680        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3681          << Namespc->isInline();
3682        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3683        Namespc->setInvalidDecl();
3684        // Recover by ignoring the new namespace's inline status.
3685        Namespc->setInline(OrigNS->isInline());
3686      }
3687
3688      // Attach this namespace decl to the chain of extended namespace
3689      // definitions.
3690      OrigNS->setNextNamespace(Namespc);
3691      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3692
3693      // Remove the previous declaration from the scope.
3694      if (DeclRegionScope->isDeclScope(OrigNS)) {
3695        IdResolver.RemoveDecl(OrigNS);
3696        DeclRegionScope->RemoveDecl(OrigNS);
3697      }
3698    } else if (PrevDecl) {
3699      // This is an invalid name redefinition.
3700      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3701       << Namespc->getDeclName();
3702      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3703      Namespc->setInvalidDecl();
3704      // Continue on to push Namespc as current DeclContext and return it.
3705    } else if (II->isStr("std") &&
3706               CurContext->getRedeclContext()->isTranslationUnit()) {
3707      // This is the first "real" definition of the namespace "std", so update
3708      // our cache of the "std" namespace to point at this definition.
3709      if (NamespaceDecl *StdNS = getStdNamespace()) {
3710        // We had already defined a dummy namespace "std". Link this new
3711        // namespace definition to the dummy namespace "std".
3712        StdNS->setNextNamespace(Namespc);
3713        StdNS->setLocation(IdentLoc);
3714        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3715      }
3716
3717      // Make our StdNamespace cache point at the first real definition of the
3718      // "std" namespace.
3719      StdNamespace = Namespc;
3720    }
3721
3722    PushOnScopeChains(Namespc, DeclRegionScope);
3723  } else {
3724    // Anonymous namespaces.
3725    assert(Namespc->isAnonymousNamespace());
3726
3727    // Link the anonymous namespace into its parent.
3728    NamespaceDecl *PrevDecl;
3729    DeclContext *Parent = CurContext->getRedeclContext();
3730    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3731      PrevDecl = TU->getAnonymousNamespace();
3732      TU->setAnonymousNamespace(Namespc);
3733    } else {
3734      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3735      PrevDecl = ND->getAnonymousNamespace();
3736      ND->setAnonymousNamespace(Namespc);
3737    }
3738
3739    // Link the anonymous namespace with its previous declaration.
3740    if (PrevDecl) {
3741      assert(PrevDecl->isAnonymousNamespace());
3742      assert(!PrevDecl->getNextNamespace());
3743      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3744      PrevDecl->setNextNamespace(Namespc);
3745
3746      if (Namespc->isInline() != PrevDecl->isInline()) {
3747        // inline-ness must match
3748        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3749          << Namespc->isInline();
3750        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3751        Namespc->setInvalidDecl();
3752        // Recover by ignoring the new namespace's inline status.
3753        Namespc->setInline(PrevDecl->isInline());
3754      }
3755    }
3756
3757    CurContext->addDecl(Namespc);
3758
3759    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3760    //   behaves as if it were replaced by
3761    //     namespace unique { /* empty body */ }
3762    //     using namespace unique;
3763    //     namespace unique { namespace-body }
3764    //   where all occurrences of 'unique' in a translation unit are
3765    //   replaced by the same identifier and this identifier differs
3766    //   from all other identifiers in the entire program.
3767
3768    // We just create the namespace with an empty name and then add an
3769    // implicit using declaration, just like the standard suggests.
3770    //
3771    // CodeGen enforces the "universally unique" aspect by giving all
3772    // declarations semantically contained within an anonymous
3773    // namespace internal linkage.
3774
3775    if (!PrevDecl) {
3776      UsingDirectiveDecl* UD
3777        = UsingDirectiveDecl::Create(Context, CurContext,
3778                                     /* 'using' */ LBrace,
3779                                     /* 'namespace' */ SourceLocation(),
3780                                     /* qualifier */ NestedNameSpecifierLoc(),
3781                                     /* identifier */ SourceLocation(),
3782                                     Namespc,
3783                                     /* Ancestor */ CurContext);
3784      UD->setImplicit();
3785      CurContext->addDecl(UD);
3786    }
3787  }
3788
3789  // Although we could have an invalid decl (i.e. the namespace name is a
3790  // redefinition), push it as current DeclContext and try to continue parsing.
3791  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3792  // for the namespace has the declarations that showed up in that particular
3793  // namespace definition.
3794  PushDeclContext(NamespcScope, Namespc);
3795  return Namespc;
3796}
3797
3798/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3799/// is a namespace alias, returns the namespace it points to.
3800static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3801  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3802    return AD->getNamespace();
3803  return dyn_cast_or_null<NamespaceDecl>(D);
3804}
3805
3806/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3807/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3808void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3809  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3810  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3811  Namespc->setRBraceLoc(RBrace);
3812  PopDeclContext();
3813  if (Namespc->hasAttr<VisibilityAttr>())
3814    PopPragmaVisibility();
3815}
3816
3817CXXRecordDecl *Sema::getStdBadAlloc() const {
3818  return cast_or_null<CXXRecordDecl>(
3819                                  StdBadAlloc.get(Context.getExternalSource()));
3820}
3821
3822NamespaceDecl *Sema::getStdNamespace() const {
3823  return cast_or_null<NamespaceDecl>(
3824                                 StdNamespace.get(Context.getExternalSource()));
3825}
3826
3827/// \brief Retrieve the special "std" namespace, which may require us to
3828/// implicitly define the namespace.
3829NamespaceDecl *Sema::getOrCreateStdNamespace() {
3830  if (!StdNamespace) {
3831    // The "std" namespace has not yet been defined, so build one implicitly.
3832    StdNamespace = NamespaceDecl::Create(Context,
3833                                         Context.getTranslationUnitDecl(),
3834                                         SourceLocation(), SourceLocation(),
3835                                         &PP.getIdentifierTable().get("std"));
3836    getStdNamespace()->setImplicit(true);
3837  }
3838
3839  return getStdNamespace();
3840}
3841
3842/// \brief Determine whether a using statement is in a context where it will be
3843/// apply in all contexts.
3844static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
3845  switch (CurContext->getDeclKind()) {
3846    case Decl::TranslationUnit:
3847      return true;
3848    case Decl::LinkageSpec:
3849      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
3850    default:
3851      return false;
3852  }
3853}
3854
3855Decl *Sema::ActOnUsingDirective(Scope *S,
3856                                          SourceLocation UsingLoc,
3857                                          SourceLocation NamespcLoc,
3858                                          CXXScopeSpec &SS,
3859                                          SourceLocation IdentLoc,
3860                                          IdentifierInfo *NamespcName,
3861                                          AttributeList *AttrList) {
3862  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3863  assert(NamespcName && "Invalid NamespcName.");
3864  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3865
3866  // This can only happen along a recovery path.
3867  while (S->getFlags() & Scope::TemplateParamScope)
3868    S = S->getParent();
3869  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3870
3871  UsingDirectiveDecl *UDir = 0;
3872  NestedNameSpecifier *Qualifier = 0;
3873  if (SS.isSet())
3874    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3875
3876  // Lookup namespace name.
3877  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3878  LookupParsedName(R, S, &SS);
3879  if (R.isAmbiguous())
3880    return 0;
3881
3882  if (R.empty()) {
3883    // Allow "using namespace std;" or "using namespace ::std;" even if
3884    // "std" hasn't been defined yet, for GCC compatibility.
3885    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3886        NamespcName->isStr("std")) {
3887      Diag(IdentLoc, diag::ext_using_undefined_std);
3888      R.addDecl(getOrCreateStdNamespace());
3889      R.resolveKind();
3890    }
3891    // Otherwise, attempt typo correction.
3892    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3893                                                       CTC_NoKeywords, 0)) {
3894      if (R.getAsSingle<NamespaceDecl>() ||
3895          R.getAsSingle<NamespaceAliasDecl>()) {
3896        if (DeclContext *DC = computeDeclContext(SS, false))
3897          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3898            << NamespcName << DC << Corrected << SS.getRange()
3899            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3900        else
3901          Diag(IdentLoc, diag::err_using_directive_suggest)
3902            << NamespcName << Corrected
3903            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3904        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3905          << Corrected;
3906
3907        NamespcName = Corrected.getAsIdentifierInfo();
3908      } else {
3909        R.clear();
3910        R.setLookupName(NamespcName);
3911      }
3912    }
3913  }
3914
3915  if (!R.empty()) {
3916    NamedDecl *Named = R.getFoundDecl();
3917    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3918        && "expected namespace decl");
3919    // C++ [namespace.udir]p1:
3920    //   A using-directive specifies that the names in the nominated
3921    //   namespace can be used in the scope in which the
3922    //   using-directive appears after the using-directive. During
3923    //   unqualified name lookup (3.4.1), the names appear as if they
3924    //   were declared in the nearest enclosing namespace which
3925    //   contains both the using-directive and the nominated
3926    //   namespace. [Note: in this context, "contains" means "contains
3927    //   directly or indirectly". ]
3928
3929    // Find enclosing context containing both using-directive and
3930    // nominated namespace.
3931    NamespaceDecl *NS = getNamespaceDecl(Named);
3932    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3933    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3934      CommonAncestor = CommonAncestor->getParent();
3935
3936    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3937                                      SS.getWithLocInContext(Context),
3938                                      IdentLoc, Named, CommonAncestor);
3939
3940    if (IsUsingDirectiveInToplevelContext(CurContext) &&
3941        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
3942      Diag(IdentLoc, diag::warn_using_directive_in_header);
3943    }
3944
3945    PushUsingDirective(S, UDir);
3946  } else {
3947    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3948  }
3949
3950  // FIXME: We ignore attributes for now.
3951  return UDir;
3952}
3953
3954void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3955  // If scope has associated entity, then using directive is at namespace
3956  // or translation unit scope. We add UsingDirectiveDecls, into
3957  // it's lookup structure.
3958  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3959    Ctx->addDecl(UDir);
3960  else
3961    // Otherwise it is block-sope. using-directives will affect lookup
3962    // only to the end of scope.
3963    S->PushUsingDirective(UDir);
3964}
3965
3966
3967Decl *Sema::ActOnUsingDeclaration(Scope *S,
3968                                  AccessSpecifier AS,
3969                                  bool HasUsingKeyword,
3970                                  SourceLocation UsingLoc,
3971                                  CXXScopeSpec &SS,
3972                                  UnqualifiedId &Name,
3973                                  AttributeList *AttrList,
3974                                  bool IsTypeName,
3975                                  SourceLocation TypenameLoc) {
3976  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3977
3978  switch (Name.getKind()) {
3979  case UnqualifiedId::IK_Identifier:
3980  case UnqualifiedId::IK_OperatorFunctionId:
3981  case UnqualifiedId::IK_LiteralOperatorId:
3982  case UnqualifiedId::IK_ConversionFunctionId:
3983    break;
3984
3985  case UnqualifiedId::IK_ConstructorName:
3986  case UnqualifiedId::IK_ConstructorTemplateId:
3987    // C++0x inherited constructors.
3988    if (getLangOptions().CPlusPlus0x) break;
3989
3990    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3991      << SS.getRange();
3992    return 0;
3993
3994  case UnqualifiedId::IK_DestructorName:
3995    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3996      << SS.getRange();
3997    return 0;
3998
3999  case UnqualifiedId::IK_TemplateId:
4000    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
4001      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
4002    return 0;
4003  }
4004
4005  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4006  DeclarationName TargetName = TargetNameInfo.getName();
4007  if (!TargetName)
4008    return 0;
4009
4010  // Warn about using declarations.
4011  // TODO: store that the declaration was written without 'using' and
4012  // talk about access decls instead of using decls in the
4013  // diagnostics.
4014  if (!HasUsingKeyword) {
4015    UsingLoc = Name.getSourceRange().getBegin();
4016
4017    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4018      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4019  }
4020
4021  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
4022      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
4023    return 0;
4024
4025  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
4026                                        TargetNameInfo, AttrList,
4027                                        /* IsInstantiation */ false,
4028                                        IsTypeName, TypenameLoc);
4029  if (UD)
4030    PushOnScopeChains(UD, S, /*AddToContext*/ false);
4031
4032  return UD;
4033}
4034
4035/// \brief Determine whether a using declaration considers the given
4036/// declarations as "equivalent", e.g., if they are redeclarations of
4037/// the same entity or are both typedefs of the same type.
4038static bool
4039IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
4040                         bool &SuppressRedeclaration) {
4041  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
4042    SuppressRedeclaration = false;
4043    return true;
4044  }
4045
4046  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
4047    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
4048      SuppressRedeclaration = true;
4049      return Context.hasSameType(TD1->getUnderlyingType(),
4050                                 TD2->getUnderlyingType());
4051    }
4052
4053  return false;
4054}
4055
4056
4057/// Determines whether to create a using shadow decl for a particular
4058/// decl, given the set of decls existing prior to this using lookup.
4059bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
4060                                const LookupResult &Previous) {
4061  // Diagnose finding a decl which is not from a base class of the
4062  // current class.  We do this now because there are cases where this
4063  // function will silently decide not to build a shadow decl, which
4064  // will pre-empt further diagnostics.
4065  //
4066  // We don't need to do this in C++0x because we do the check once on
4067  // the qualifier.
4068  //
4069  // FIXME: diagnose the following if we care enough:
4070  //   struct A { int foo; };
4071  //   struct B : A { using A::foo; };
4072  //   template <class T> struct C : A {};
4073  //   template <class T> struct D : C<T> { using B::foo; } // <---
4074  // This is invalid (during instantiation) in C++03 because B::foo
4075  // resolves to the using decl in B, which is not a base class of D<T>.
4076  // We can't diagnose it immediately because C<T> is an unknown
4077  // specialization.  The UsingShadowDecl in D<T> then points directly
4078  // to A::foo, which will look well-formed when we instantiate.
4079  // The right solution is to not collapse the shadow-decl chain.
4080  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
4081    DeclContext *OrigDC = Orig->getDeclContext();
4082
4083    // Handle enums and anonymous structs.
4084    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
4085    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
4086    while (OrigRec->isAnonymousStructOrUnion())
4087      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
4088
4089    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
4090      if (OrigDC == CurContext) {
4091        Diag(Using->getLocation(),
4092             diag::err_using_decl_nested_name_specifier_is_current_class)
4093          << Using->getQualifierLoc().getSourceRange();
4094        Diag(Orig->getLocation(), diag::note_using_decl_target);
4095        return true;
4096      }
4097
4098      Diag(Using->getQualifierLoc().getBeginLoc(),
4099           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4100        << Using->getQualifier()
4101        << cast<CXXRecordDecl>(CurContext)
4102        << Using->getQualifierLoc().getSourceRange();
4103      Diag(Orig->getLocation(), diag::note_using_decl_target);
4104      return true;
4105    }
4106  }
4107
4108  if (Previous.empty()) return false;
4109
4110  NamedDecl *Target = Orig;
4111  if (isa<UsingShadowDecl>(Target))
4112    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4113
4114  // If the target happens to be one of the previous declarations, we
4115  // don't have a conflict.
4116  //
4117  // FIXME: but we might be increasing its access, in which case we
4118  // should redeclare it.
4119  NamedDecl *NonTag = 0, *Tag = 0;
4120  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4121         I != E; ++I) {
4122    NamedDecl *D = (*I)->getUnderlyingDecl();
4123    bool Result;
4124    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4125      return Result;
4126
4127    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4128  }
4129
4130  if (Target->isFunctionOrFunctionTemplate()) {
4131    FunctionDecl *FD;
4132    if (isa<FunctionTemplateDecl>(Target))
4133      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4134    else
4135      FD = cast<FunctionDecl>(Target);
4136
4137    NamedDecl *OldDecl = 0;
4138    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4139    case Ovl_Overload:
4140      return false;
4141
4142    case Ovl_NonFunction:
4143      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4144      break;
4145
4146    // We found a decl with the exact signature.
4147    case Ovl_Match:
4148      // If we're in a record, we want to hide the target, so we
4149      // return true (without a diagnostic) to tell the caller not to
4150      // build a shadow decl.
4151      if (CurContext->isRecord())
4152        return true;
4153
4154      // If we're not in a record, this is an error.
4155      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4156      break;
4157    }
4158
4159    Diag(Target->getLocation(), diag::note_using_decl_target);
4160    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4161    return true;
4162  }
4163
4164  // Target is not a function.
4165
4166  if (isa<TagDecl>(Target)) {
4167    // No conflict between a tag and a non-tag.
4168    if (!Tag) return false;
4169
4170    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4171    Diag(Target->getLocation(), diag::note_using_decl_target);
4172    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4173    return true;
4174  }
4175
4176  // No conflict between a tag and a non-tag.
4177  if (!NonTag) return false;
4178
4179  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4180  Diag(Target->getLocation(), diag::note_using_decl_target);
4181  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4182  return true;
4183}
4184
4185/// Builds a shadow declaration corresponding to a 'using' declaration.
4186UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4187                                            UsingDecl *UD,
4188                                            NamedDecl *Orig) {
4189
4190  // If we resolved to another shadow declaration, just coalesce them.
4191  NamedDecl *Target = Orig;
4192  if (isa<UsingShadowDecl>(Target)) {
4193    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4194    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4195  }
4196
4197  UsingShadowDecl *Shadow
4198    = UsingShadowDecl::Create(Context, CurContext,
4199                              UD->getLocation(), UD, Target);
4200  UD->addShadowDecl(Shadow);
4201
4202  Shadow->setAccess(UD->getAccess());
4203  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4204    Shadow->setInvalidDecl();
4205
4206  if (S)
4207    PushOnScopeChains(Shadow, S);
4208  else
4209    CurContext->addDecl(Shadow);
4210
4211
4212  return Shadow;
4213}
4214
4215/// Hides a using shadow declaration.  This is required by the current
4216/// using-decl implementation when a resolvable using declaration in a
4217/// class is followed by a declaration which would hide or override
4218/// one or more of the using decl's targets; for example:
4219///
4220///   struct Base { void foo(int); };
4221///   struct Derived : Base {
4222///     using Base::foo;
4223///     void foo(int);
4224///   };
4225///
4226/// The governing language is C++03 [namespace.udecl]p12:
4227///
4228///   When a using-declaration brings names from a base class into a
4229///   derived class scope, member functions in the derived class
4230///   override and/or hide member functions with the same name and
4231///   parameter types in a base class (rather than conflicting).
4232///
4233/// There are two ways to implement this:
4234///   (1) optimistically create shadow decls when they're not hidden
4235///       by existing declarations, or
4236///   (2) don't create any shadow decls (or at least don't make them
4237///       visible) until we've fully parsed/instantiated the class.
4238/// The problem with (1) is that we might have to retroactively remove
4239/// a shadow decl, which requires several O(n) operations because the
4240/// decl structures are (very reasonably) not designed for removal.
4241/// (2) avoids this but is very fiddly and phase-dependent.
4242void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4243  if (Shadow->getDeclName().getNameKind() ==
4244        DeclarationName::CXXConversionFunctionName)
4245    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4246
4247  // Remove it from the DeclContext...
4248  Shadow->getDeclContext()->removeDecl(Shadow);
4249
4250  // ...and the scope, if applicable...
4251  if (S) {
4252    S->RemoveDecl(Shadow);
4253    IdResolver.RemoveDecl(Shadow);
4254  }
4255
4256  // ...and the using decl.
4257  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4258
4259  // TODO: complain somehow if Shadow was used.  It shouldn't
4260  // be possible for this to happen, because...?
4261}
4262
4263/// Builds a using declaration.
4264///
4265/// \param IsInstantiation - Whether this call arises from an
4266///   instantiation of an unresolved using declaration.  We treat
4267///   the lookup differently for these declarations.
4268NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4269                                       SourceLocation UsingLoc,
4270                                       CXXScopeSpec &SS,
4271                                       const DeclarationNameInfo &NameInfo,
4272                                       AttributeList *AttrList,
4273                                       bool IsInstantiation,
4274                                       bool IsTypeName,
4275                                       SourceLocation TypenameLoc) {
4276  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4277  SourceLocation IdentLoc = NameInfo.getLoc();
4278  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4279
4280  // FIXME: We ignore attributes for now.
4281
4282  if (SS.isEmpty()) {
4283    Diag(IdentLoc, diag::err_using_requires_qualname);
4284    return 0;
4285  }
4286
4287  // Do the redeclaration lookup in the current scope.
4288  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4289                        ForRedeclaration);
4290  Previous.setHideTags(false);
4291  if (S) {
4292    LookupName(Previous, S);
4293
4294    // It is really dumb that we have to do this.
4295    LookupResult::Filter F = Previous.makeFilter();
4296    while (F.hasNext()) {
4297      NamedDecl *D = F.next();
4298      if (!isDeclInScope(D, CurContext, S))
4299        F.erase();
4300    }
4301    F.done();
4302  } else {
4303    assert(IsInstantiation && "no scope in non-instantiation");
4304    assert(CurContext->isRecord() && "scope not record in instantiation");
4305    LookupQualifiedName(Previous, CurContext);
4306  }
4307
4308  // Check for invalid redeclarations.
4309  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4310    return 0;
4311
4312  // Check for bad qualifiers.
4313  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4314    return 0;
4315
4316  DeclContext *LookupContext = computeDeclContext(SS);
4317  NamedDecl *D;
4318  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4319  if (!LookupContext) {
4320    if (IsTypeName) {
4321      // FIXME: not all declaration name kinds are legal here
4322      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4323                                              UsingLoc, TypenameLoc,
4324                                              QualifierLoc,
4325                                              IdentLoc, NameInfo.getName());
4326    } else {
4327      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4328                                           QualifierLoc, NameInfo);
4329    }
4330  } else {
4331    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4332                          NameInfo, IsTypeName);
4333  }
4334  D->setAccess(AS);
4335  CurContext->addDecl(D);
4336
4337  if (!LookupContext) return D;
4338  UsingDecl *UD = cast<UsingDecl>(D);
4339
4340  if (RequireCompleteDeclContext(SS, LookupContext)) {
4341    UD->setInvalidDecl();
4342    return UD;
4343  }
4344
4345  // Constructor inheriting using decls get special treatment.
4346  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4347    if (CheckInheritedConstructorUsingDecl(UD))
4348      UD->setInvalidDecl();
4349    return UD;
4350  }
4351
4352  // Otherwise, look up the target name.
4353
4354  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4355
4356  // Unlike most lookups, we don't always want to hide tag
4357  // declarations: tag names are visible through the using declaration
4358  // even if hidden by ordinary names, *except* in a dependent context
4359  // where it's important for the sanity of two-phase lookup.
4360  if (!IsInstantiation)
4361    R.setHideTags(false);
4362
4363  LookupQualifiedName(R, LookupContext);
4364
4365  if (R.empty()) {
4366    Diag(IdentLoc, diag::err_no_member)
4367      << NameInfo.getName() << LookupContext << SS.getRange();
4368    UD->setInvalidDecl();
4369    return UD;
4370  }
4371
4372  if (R.isAmbiguous()) {
4373    UD->setInvalidDecl();
4374    return UD;
4375  }
4376
4377  if (IsTypeName) {
4378    // If we asked for a typename and got a non-type decl, error out.
4379    if (!R.getAsSingle<TypeDecl>()) {
4380      Diag(IdentLoc, diag::err_using_typename_non_type);
4381      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4382        Diag((*I)->getUnderlyingDecl()->getLocation(),
4383             diag::note_using_decl_target);
4384      UD->setInvalidDecl();
4385      return UD;
4386    }
4387  } else {
4388    // If we asked for a non-typename and we got a type, error out,
4389    // but only if this is an instantiation of an unresolved using
4390    // decl.  Otherwise just silently find the type name.
4391    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4392      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4393      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4394      UD->setInvalidDecl();
4395      return UD;
4396    }
4397  }
4398
4399  // C++0x N2914 [namespace.udecl]p6:
4400  // A using-declaration shall not name a namespace.
4401  if (R.getAsSingle<NamespaceDecl>()) {
4402    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4403      << SS.getRange();
4404    UD->setInvalidDecl();
4405    return UD;
4406  }
4407
4408  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4409    if (!CheckUsingShadowDecl(UD, *I, Previous))
4410      BuildUsingShadowDecl(S, UD, *I);
4411  }
4412
4413  return UD;
4414}
4415
4416/// Additional checks for a using declaration referring to a constructor name.
4417bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4418  if (UD->isTypeName()) {
4419    // FIXME: Cannot specify typename when specifying constructor
4420    return true;
4421  }
4422
4423  const Type *SourceType = UD->getQualifier()->getAsType();
4424  assert(SourceType &&
4425         "Using decl naming constructor doesn't have type in scope spec.");
4426  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4427
4428  // Check whether the named type is a direct base class.
4429  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4430  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4431  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4432       BaseIt != BaseE; ++BaseIt) {
4433    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4434    if (CanonicalSourceType == BaseType)
4435      break;
4436  }
4437
4438  if (BaseIt == BaseE) {
4439    // Did not find SourceType in the bases.
4440    Diag(UD->getUsingLocation(),
4441         diag::err_using_decl_constructor_not_in_direct_base)
4442      << UD->getNameInfo().getSourceRange()
4443      << QualType(SourceType, 0) << TargetClass;
4444    return true;
4445  }
4446
4447  BaseIt->setInheritConstructors();
4448
4449  return false;
4450}
4451
4452/// Checks that the given using declaration is not an invalid
4453/// redeclaration.  Note that this is checking only for the using decl
4454/// itself, not for any ill-formedness among the UsingShadowDecls.
4455bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4456                                       bool isTypeName,
4457                                       const CXXScopeSpec &SS,
4458                                       SourceLocation NameLoc,
4459                                       const LookupResult &Prev) {
4460  // C++03 [namespace.udecl]p8:
4461  // C++0x [namespace.udecl]p10:
4462  //   A using-declaration is a declaration and can therefore be used
4463  //   repeatedly where (and only where) multiple declarations are
4464  //   allowed.
4465  //
4466  // That's in non-member contexts.
4467  if (!CurContext->getRedeclContext()->isRecord())
4468    return false;
4469
4470  NestedNameSpecifier *Qual
4471    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4472
4473  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4474    NamedDecl *D = *I;
4475
4476    bool DTypename;
4477    NestedNameSpecifier *DQual;
4478    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4479      DTypename = UD->isTypeName();
4480      DQual = UD->getQualifier();
4481    } else if (UnresolvedUsingValueDecl *UD
4482                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4483      DTypename = false;
4484      DQual = UD->getQualifier();
4485    } else if (UnresolvedUsingTypenameDecl *UD
4486                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4487      DTypename = true;
4488      DQual = UD->getQualifier();
4489    } else continue;
4490
4491    // using decls differ if one says 'typename' and the other doesn't.
4492    // FIXME: non-dependent using decls?
4493    if (isTypeName != DTypename) continue;
4494
4495    // using decls differ if they name different scopes (but note that
4496    // template instantiation can cause this check to trigger when it
4497    // didn't before instantiation).
4498    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4499        Context.getCanonicalNestedNameSpecifier(DQual))
4500      continue;
4501
4502    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4503    Diag(D->getLocation(), diag::note_using_decl) << 1;
4504    return true;
4505  }
4506
4507  return false;
4508}
4509
4510
4511/// Checks that the given nested-name qualifier used in a using decl
4512/// in the current context is appropriately related to the current
4513/// scope.  If an error is found, diagnoses it and returns true.
4514bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4515                                   const CXXScopeSpec &SS,
4516                                   SourceLocation NameLoc) {
4517  DeclContext *NamedContext = computeDeclContext(SS);
4518
4519  if (!CurContext->isRecord()) {
4520    // C++03 [namespace.udecl]p3:
4521    // C++0x [namespace.udecl]p8:
4522    //   A using-declaration for a class member shall be a member-declaration.
4523
4524    // If we weren't able to compute a valid scope, it must be a
4525    // dependent class scope.
4526    if (!NamedContext || NamedContext->isRecord()) {
4527      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4528        << SS.getRange();
4529      return true;
4530    }
4531
4532    // Otherwise, everything is known to be fine.
4533    return false;
4534  }
4535
4536  // The current scope is a record.
4537
4538  // If the named context is dependent, we can't decide much.
4539  if (!NamedContext) {
4540    // FIXME: in C++0x, we can diagnose if we can prove that the
4541    // nested-name-specifier does not refer to a base class, which is
4542    // still possible in some cases.
4543
4544    // Otherwise we have to conservatively report that things might be
4545    // okay.
4546    return false;
4547  }
4548
4549  if (!NamedContext->isRecord()) {
4550    // Ideally this would point at the last name in the specifier,
4551    // but we don't have that level of source info.
4552    Diag(SS.getRange().getBegin(),
4553         diag::err_using_decl_nested_name_specifier_is_not_class)
4554      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4555    return true;
4556  }
4557
4558  if (!NamedContext->isDependentContext() &&
4559      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4560    return true;
4561
4562  if (getLangOptions().CPlusPlus0x) {
4563    // C++0x [namespace.udecl]p3:
4564    //   In a using-declaration used as a member-declaration, the
4565    //   nested-name-specifier shall name a base class of the class
4566    //   being defined.
4567
4568    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4569                                 cast<CXXRecordDecl>(NamedContext))) {
4570      if (CurContext == NamedContext) {
4571        Diag(NameLoc,
4572             diag::err_using_decl_nested_name_specifier_is_current_class)
4573          << SS.getRange();
4574        return true;
4575      }
4576
4577      Diag(SS.getRange().getBegin(),
4578           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4579        << (NestedNameSpecifier*) SS.getScopeRep()
4580        << cast<CXXRecordDecl>(CurContext)
4581        << SS.getRange();
4582      return true;
4583    }
4584
4585    return false;
4586  }
4587
4588  // C++03 [namespace.udecl]p4:
4589  //   A using-declaration used as a member-declaration shall refer
4590  //   to a member of a base class of the class being defined [etc.].
4591
4592  // Salient point: SS doesn't have to name a base class as long as
4593  // lookup only finds members from base classes.  Therefore we can
4594  // diagnose here only if we can prove that that can't happen,
4595  // i.e. if the class hierarchies provably don't intersect.
4596
4597  // TODO: it would be nice if "definitely valid" results were cached
4598  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4599  // need to be repeated.
4600
4601  struct UserData {
4602    llvm::DenseSet<const CXXRecordDecl*> Bases;
4603
4604    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4605      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4606      Data->Bases.insert(Base);
4607      return true;
4608    }
4609
4610    bool hasDependentBases(const CXXRecordDecl *Class) {
4611      return !Class->forallBases(collect, this);
4612    }
4613
4614    /// Returns true if the base is dependent or is one of the
4615    /// accumulated base classes.
4616    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4617      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4618      return !Data->Bases.count(Base);
4619    }
4620
4621    bool mightShareBases(const CXXRecordDecl *Class) {
4622      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4623    }
4624  };
4625
4626  UserData Data;
4627
4628  // Returns false if we find a dependent base.
4629  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4630    return false;
4631
4632  // Returns false if the class has a dependent base or if it or one
4633  // of its bases is present in the base set of the current context.
4634  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4635    return false;
4636
4637  Diag(SS.getRange().getBegin(),
4638       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4639    << (NestedNameSpecifier*) SS.getScopeRep()
4640    << cast<CXXRecordDecl>(CurContext)
4641    << SS.getRange();
4642
4643  return true;
4644}
4645
4646Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4647                                             SourceLocation NamespaceLoc,
4648                                             SourceLocation AliasLoc,
4649                                             IdentifierInfo *Alias,
4650                                             CXXScopeSpec &SS,
4651                                             SourceLocation IdentLoc,
4652                                             IdentifierInfo *Ident) {
4653
4654  // Lookup the namespace name.
4655  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4656  LookupParsedName(R, S, &SS);
4657
4658  // Check if we have a previous declaration with the same name.
4659  NamedDecl *PrevDecl
4660    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4661                       ForRedeclaration);
4662  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4663    PrevDecl = 0;
4664
4665  if (PrevDecl) {
4666    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4667      // We already have an alias with the same name that points to the same
4668      // namespace, so don't create a new one.
4669      // FIXME: At some point, we'll want to create the (redundant)
4670      // declaration to maintain better source information.
4671      if (!R.isAmbiguous() && !R.empty() &&
4672          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4673        return 0;
4674    }
4675
4676    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4677      diag::err_redefinition_different_kind;
4678    Diag(AliasLoc, DiagID) << Alias;
4679    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4680    return 0;
4681  }
4682
4683  if (R.isAmbiguous())
4684    return 0;
4685
4686  if (R.empty()) {
4687    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4688                                                CTC_NoKeywords, 0)) {
4689      if (R.getAsSingle<NamespaceDecl>() ||
4690          R.getAsSingle<NamespaceAliasDecl>()) {
4691        if (DeclContext *DC = computeDeclContext(SS, false))
4692          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4693            << Ident << DC << Corrected << SS.getRange()
4694            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4695        else
4696          Diag(IdentLoc, diag::err_using_directive_suggest)
4697            << Ident << Corrected
4698            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4699
4700        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4701          << Corrected;
4702
4703        Ident = Corrected.getAsIdentifierInfo();
4704      } else {
4705        R.clear();
4706        R.setLookupName(Ident);
4707      }
4708    }
4709
4710    if (R.empty()) {
4711      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4712      return 0;
4713    }
4714  }
4715
4716  NamespaceAliasDecl *AliasDecl =
4717    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4718                               Alias, SS.getWithLocInContext(Context),
4719                               IdentLoc, R.getFoundDecl());
4720
4721  PushOnScopeChains(AliasDecl, S);
4722  return AliasDecl;
4723}
4724
4725namespace {
4726  /// \brief Scoped object used to handle the state changes required in Sema
4727  /// to implicitly define the body of a C++ member function;
4728  class ImplicitlyDefinedFunctionScope {
4729    Sema &S;
4730    Sema::ContextRAII SavedContext;
4731
4732  public:
4733    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4734      : S(S), SavedContext(S, Method)
4735    {
4736      S.PushFunctionScope();
4737      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4738    }
4739
4740    ~ImplicitlyDefinedFunctionScope() {
4741      S.PopExpressionEvaluationContext();
4742      S.PopFunctionOrBlockScope();
4743    }
4744  };
4745}
4746
4747static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4748                                                       CXXRecordDecl *D) {
4749  ASTContext &Context = Self.Context;
4750  QualType ClassType = Context.getTypeDeclType(D);
4751  DeclarationName ConstructorName
4752    = Context.DeclarationNames.getCXXConstructorName(
4753                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4754
4755  DeclContext::lookup_const_iterator Con, ConEnd;
4756  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4757       Con != ConEnd; ++Con) {
4758    // FIXME: In C++0x, a constructor template can be a default constructor.
4759    if (isa<FunctionTemplateDecl>(*Con))
4760      continue;
4761
4762    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4763    if (Constructor->isDefaultConstructor())
4764      return Constructor;
4765  }
4766  return 0;
4767}
4768
4769CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4770                                                     CXXRecordDecl *ClassDecl) {
4771  // C++ [class.ctor]p5:
4772  //   A default constructor for a class X is a constructor of class X
4773  //   that can be called without an argument. If there is no
4774  //   user-declared constructor for class X, a default constructor is
4775  //   implicitly declared. An implicitly-declared default constructor
4776  //   is an inline public member of its class.
4777  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4778         "Should not build implicit default constructor!");
4779
4780  // C++ [except.spec]p14:
4781  //   An implicitly declared special member function (Clause 12) shall have an
4782  //   exception-specification. [...]
4783  ImplicitExceptionSpecification ExceptSpec(Context);
4784
4785  // Direct base-class constructors.
4786  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4787                                       BEnd = ClassDecl->bases_end();
4788       B != BEnd; ++B) {
4789    if (B->isVirtual()) // Handled below.
4790      continue;
4791
4792    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4793      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4794      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4795        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4796      else if (CXXConstructorDecl *Constructor
4797                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4798        ExceptSpec.CalledDecl(Constructor);
4799    }
4800  }
4801
4802  // Virtual base-class constructors.
4803  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4804                                       BEnd = ClassDecl->vbases_end();
4805       B != BEnd; ++B) {
4806    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4807      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4808      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4809        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4810      else if (CXXConstructorDecl *Constructor
4811                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4812        ExceptSpec.CalledDecl(Constructor);
4813    }
4814  }
4815
4816  // Field constructors.
4817  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4818                               FEnd = ClassDecl->field_end();
4819       F != FEnd; ++F) {
4820    if (const RecordType *RecordTy
4821              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4822      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4823      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4824        ExceptSpec.CalledDecl(
4825                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4826      else if (CXXConstructorDecl *Constructor
4827                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4828        ExceptSpec.CalledDecl(Constructor);
4829    }
4830  }
4831
4832  FunctionProtoType::ExtProtoInfo EPI;
4833  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
4834  EPI.NumExceptions = ExceptSpec.size();
4835  EPI.Exceptions = ExceptSpec.data();
4836
4837  // Create the actual constructor declaration.
4838  CanQualType ClassType
4839    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4840  SourceLocation ClassLoc = ClassDecl->getLocation();
4841  DeclarationName Name
4842    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4843  DeclarationNameInfo NameInfo(Name, ClassLoc);
4844  CXXConstructorDecl *DefaultCon
4845    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
4846                                 Context.getFunctionType(Context.VoidTy,
4847                                                         0, 0, EPI),
4848                                 /*TInfo=*/0,
4849                                 /*isExplicit=*/false,
4850                                 /*isInline=*/true,
4851                                 /*isImplicitlyDeclared=*/true);
4852  DefaultCon->setAccess(AS_public);
4853  DefaultCon->setImplicit();
4854  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4855
4856  // Note that we have declared this constructor.
4857  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4858
4859  if (Scope *S = getScopeForContext(ClassDecl))
4860    PushOnScopeChains(DefaultCon, S, false);
4861  ClassDecl->addDecl(DefaultCon);
4862
4863  return DefaultCon;
4864}
4865
4866void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4867                                            CXXConstructorDecl *Constructor) {
4868  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4869          !Constructor->isUsed(false)) &&
4870    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4871
4872  CXXRecordDecl *ClassDecl = Constructor->getParent();
4873  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4874
4875  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4876  DiagnosticErrorTrap Trap(Diags);
4877  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4878      Trap.hasErrorOccurred()) {
4879    Diag(CurrentLocation, diag::note_member_synthesized_at)
4880      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4881    Constructor->setInvalidDecl();
4882    return;
4883  }
4884
4885  SourceLocation Loc = Constructor->getLocation();
4886  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4887
4888  Constructor->setUsed();
4889  MarkVTableUsed(CurrentLocation, ClassDecl);
4890}
4891
4892void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4893  // We start with an initial pass over the base classes to collect those that
4894  // inherit constructors from. If there are none, we can forgo all further
4895  // processing.
4896  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4897  BasesVector BasesToInheritFrom;
4898  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4899                                          BaseE = ClassDecl->bases_end();
4900         BaseIt != BaseE; ++BaseIt) {
4901    if (BaseIt->getInheritConstructors()) {
4902      QualType Base = BaseIt->getType();
4903      if (Base->isDependentType()) {
4904        // If we inherit constructors from anything that is dependent, just
4905        // abort processing altogether. We'll get another chance for the
4906        // instantiations.
4907        return;
4908      }
4909      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4910    }
4911  }
4912  if (BasesToInheritFrom.empty())
4913    return;
4914
4915  // Now collect the constructors that we already have in the current class.
4916  // Those take precedence over inherited constructors.
4917  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4918  //   unless there is a user-declared constructor with the same signature in
4919  //   the class where the using-declaration appears.
4920  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4921  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4922                                    CtorE = ClassDecl->ctor_end();
4923       CtorIt != CtorE; ++CtorIt) {
4924    ExistingConstructors.insert(
4925        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4926  }
4927
4928  Scope *S = getScopeForContext(ClassDecl);
4929  DeclarationName CreatedCtorName =
4930      Context.DeclarationNames.getCXXConstructorName(
4931          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4932
4933  // Now comes the true work.
4934  // First, we keep a map from constructor types to the base that introduced
4935  // them. Needed for finding conflicting constructors. We also keep the
4936  // actually inserted declarations in there, for pretty diagnostics.
4937  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4938  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4939  ConstructorToSourceMap InheritedConstructors;
4940  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4941                             BaseE = BasesToInheritFrom.end();
4942       BaseIt != BaseE; ++BaseIt) {
4943    const RecordType *Base = *BaseIt;
4944    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4945    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4946    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4947                                      CtorE = BaseDecl->ctor_end();
4948         CtorIt != CtorE; ++CtorIt) {
4949      // Find the using declaration for inheriting this base's constructors.
4950      DeclarationName Name =
4951          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4952      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4953          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4954      SourceLocation UsingLoc = UD ? UD->getLocation() :
4955                                     ClassDecl->getLocation();
4956
4957      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4958      //   from the class X named in the using-declaration consists of actual
4959      //   constructors and notional constructors that result from the
4960      //   transformation of defaulted parameters as follows:
4961      //   - all non-template default constructors of X, and
4962      //   - for each non-template constructor of X that has at least one
4963      //     parameter with a default argument, the set of constructors that
4964      //     results from omitting any ellipsis parameter specification and
4965      //     successively omitting parameters with a default argument from the
4966      //     end of the parameter-type-list.
4967      CXXConstructorDecl *BaseCtor = *CtorIt;
4968      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4969      const FunctionProtoType *BaseCtorType =
4970          BaseCtor->getType()->getAs<FunctionProtoType>();
4971
4972      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4973                    maxParams = BaseCtor->getNumParams();
4974           params <= maxParams; ++params) {
4975        // Skip default constructors. They're never inherited.
4976        if (params == 0)
4977          continue;
4978        // Skip copy and move constructors for the same reason.
4979        if (CanBeCopyOrMove && params == 1)
4980          continue;
4981
4982        // Build up a function type for this particular constructor.
4983        // FIXME: The working paper does not consider that the exception spec
4984        // for the inheriting constructor might be larger than that of the
4985        // source. This code doesn't yet, either.
4986        const Type *NewCtorType;
4987        if (params == maxParams)
4988          NewCtorType = BaseCtorType;
4989        else {
4990          llvm::SmallVector<QualType, 16> Args;
4991          for (unsigned i = 0; i < params; ++i) {
4992            Args.push_back(BaseCtorType->getArgType(i));
4993          }
4994          FunctionProtoType::ExtProtoInfo ExtInfo =
4995              BaseCtorType->getExtProtoInfo();
4996          ExtInfo.Variadic = false;
4997          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4998                                                Args.data(), params, ExtInfo)
4999                       .getTypePtr();
5000        }
5001        const Type *CanonicalNewCtorType =
5002            Context.getCanonicalType(NewCtorType);
5003
5004        // Now that we have the type, first check if the class already has a
5005        // constructor with this signature.
5006        if (ExistingConstructors.count(CanonicalNewCtorType))
5007          continue;
5008
5009        // Then we check if we have already declared an inherited constructor
5010        // with this signature.
5011        std::pair<ConstructorToSourceMap::iterator, bool> result =
5012            InheritedConstructors.insert(std::make_pair(
5013                CanonicalNewCtorType,
5014                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
5015        if (!result.second) {
5016          // Already in the map. If it came from a different class, that's an
5017          // error. Not if it's from the same.
5018          CanQualType PreviousBase = result.first->second.first;
5019          if (CanonicalBase != PreviousBase) {
5020            const CXXConstructorDecl *PrevCtor = result.first->second.second;
5021            const CXXConstructorDecl *PrevBaseCtor =
5022                PrevCtor->getInheritedConstructor();
5023            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
5024
5025            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
5026            Diag(BaseCtor->getLocation(),
5027                 diag::note_using_decl_constructor_conflict_current_ctor);
5028            Diag(PrevBaseCtor->getLocation(),
5029                 diag::note_using_decl_constructor_conflict_previous_ctor);
5030            Diag(PrevCtor->getLocation(),
5031                 diag::note_using_decl_constructor_conflict_previous_using);
5032          }
5033          continue;
5034        }
5035
5036        // OK, we're there, now add the constructor.
5037        // C++0x [class.inhctor]p8: [...] that would be performed by a
5038        //   user-writtern inline constructor [...]
5039        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
5040        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
5041            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
5042            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
5043            /*ImplicitlyDeclared=*/true);
5044        NewCtor->setAccess(BaseCtor->getAccess());
5045
5046        // Build up the parameter decls and add them.
5047        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
5048        for (unsigned i = 0; i < params; ++i) {
5049          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
5050                                                   UsingLoc, UsingLoc,
5051                                                   /*IdentifierInfo=*/0,
5052                                                   BaseCtorType->getArgType(i),
5053                                                   /*TInfo=*/0, SC_None,
5054                                                   SC_None, /*DefaultArg=*/0));
5055        }
5056        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
5057        NewCtor->setInheritedConstructor(BaseCtor);
5058
5059        PushOnScopeChains(NewCtor, S, false);
5060        ClassDecl->addDecl(NewCtor);
5061        result.first->second.second = NewCtor;
5062      }
5063    }
5064  }
5065}
5066
5067CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
5068  // C++ [class.dtor]p2:
5069  //   If a class has no user-declared destructor, a destructor is
5070  //   declared implicitly. An implicitly-declared destructor is an
5071  //   inline public member of its class.
5072
5073  // C++ [except.spec]p14:
5074  //   An implicitly declared special member function (Clause 12) shall have
5075  //   an exception-specification.
5076  ImplicitExceptionSpecification ExceptSpec(Context);
5077
5078  // Direct base-class destructors.
5079  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5080                                       BEnd = ClassDecl->bases_end();
5081       B != BEnd; ++B) {
5082    if (B->isVirtual()) // Handled below.
5083      continue;
5084
5085    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5086      ExceptSpec.CalledDecl(
5087                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5088  }
5089
5090  // Virtual base-class destructors.
5091  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5092                                       BEnd = ClassDecl->vbases_end();
5093       B != BEnd; ++B) {
5094    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5095      ExceptSpec.CalledDecl(
5096                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5097  }
5098
5099  // Field destructors.
5100  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5101                               FEnd = ClassDecl->field_end();
5102       F != FEnd; ++F) {
5103    if (const RecordType *RecordTy
5104        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
5105      ExceptSpec.CalledDecl(
5106                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
5107  }
5108
5109  // Create the actual destructor declaration.
5110  FunctionProtoType::ExtProtoInfo EPI;
5111  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5112  EPI.NumExceptions = ExceptSpec.size();
5113  EPI.Exceptions = ExceptSpec.data();
5114  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5115
5116  CanQualType ClassType
5117    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5118  SourceLocation ClassLoc = ClassDecl->getLocation();
5119  DeclarationName Name
5120    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5121  DeclarationNameInfo NameInfo(Name, ClassLoc);
5122  CXXDestructorDecl *Destructor
5123      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5124                                  /*isInline=*/true,
5125                                  /*isImplicitlyDeclared=*/true);
5126  Destructor->setAccess(AS_public);
5127  Destructor->setImplicit();
5128  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5129
5130  // Note that we have declared this destructor.
5131  ++ASTContext::NumImplicitDestructorsDeclared;
5132
5133  // Introduce this destructor into its scope.
5134  if (Scope *S = getScopeForContext(ClassDecl))
5135    PushOnScopeChains(Destructor, S, false);
5136  ClassDecl->addDecl(Destructor);
5137
5138  // This could be uniqued if it ever proves significant.
5139  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5140
5141  AddOverriddenMethods(ClassDecl, Destructor);
5142
5143  return Destructor;
5144}
5145
5146void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5147                                    CXXDestructorDecl *Destructor) {
5148  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
5149         "DefineImplicitDestructor - call it for implicit default dtor");
5150  CXXRecordDecl *ClassDecl = Destructor->getParent();
5151  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
5152
5153  if (Destructor->isInvalidDecl())
5154    return;
5155
5156  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
5157
5158  DiagnosticErrorTrap Trap(Diags);
5159  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5160                                         Destructor->getParent());
5161
5162  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
5163    Diag(CurrentLocation, diag::note_member_synthesized_at)
5164      << CXXDestructor << Context.getTagDeclType(ClassDecl);
5165
5166    Destructor->setInvalidDecl();
5167    return;
5168  }
5169
5170  SourceLocation Loc = Destructor->getLocation();
5171  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5172
5173  Destructor->setUsed();
5174  MarkVTableUsed(CurrentLocation, ClassDecl);
5175}
5176
5177/// \brief Builds a statement that copies the given entity from \p From to
5178/// \c To.
5179///
5180/// This routine is used to copy the members of a class with an
5181/// implicitly-declared copy assignment operator. When the entities being
5182/// copied are arrays, this routine builds for loops to copy them.
5183///
5184/// \param S The Sema object used for type-checking.
5185///
5186/// \param Loc The location where the implicit copy is being generated.
5187///
5188/// \param T The type of the expressions being copied. Both expressions must
5189/// have this type.
5190///
5191/// \param To The expression we are copying to.
5192///
5193/// \param From The expression we are copying from.
5194///
5195/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5196/// Otherwise, it's a non-static member subobject.
5197///
5198/// \param Depth Internal parameter recording the depth of the recursion.
5199///
5200/// \returns A statement or a loop that copies the expressions.
5201static StmtResult
5202BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5203                      Expr *To, Expr *From,
5204                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5205  // C++0x [class.copy]p30:
5206  //   Each subobject is assigned in the manner appropriate to its type:
5207  //
5208  //     - if the subobject is of class type, the copy assignment operator
5209  //       for the class is used (as if by explicit qualification; that is,
5210  //       ignoring any possible virtual overriding functions in more derived
5211  //       classes);
5212  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5213    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5214
5215    // Look for operator=.
5216    DeclarationName Name
5217      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5218    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5219    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5220
5221    // Filter out any result that isn't a copy-assignment operator.
5222    LookupResult::Filter F = OpLookup.makeFilter();
5223    while (F.hasNext()) {
5224      NamedDecl *D = F.next();
5225      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5226        if (Method->isCopyAssignmentOperator())
5227          continue;
5228
5229      F.erase();
5230    }
5231    F.done();
5232
5233    // Suppress the protected check (C++ [class.protected]) for each of the
5234    // assignment operators we found. This strange dance is required when
5235    // we're assigning via a base classes's copy-assignment operator. To
5236    // ensure that we're getting the right base class subobject (without
5237    // ambiguities), we need to cast "this" to that subobject type; to
5238    // ensure that we don't go through the virtual call mechanism, we need
5239    // to qualify the operator= name with the base class (see below). However,
5240    // this means that if the base class has a protected copy assignment
5241    // operator, the protected member access check will fail. So, we
5242    // rewrite "protected" access to "public" access in this case, since we
5243    // know by construction that we're calling from a derived class.
5244    if (CopyingBaseSubobject) {
5245      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5246           L != LEnd; ++L) {
5247        if (L.getAccess() == AS_protected)
5248          L.setAccess(AS_public);
5249      }
5250    }
5251
5252    // Create the nested-name-specifier that will be used to qualify the
5253    // reference to operator=; this is required to suppress the virtual
5254    // call mechanism.
5255    CXXScopeSpec SS;
5256    SS.MakeTrivial(S.Context,
5257                   NestedNameSpecifier::Create(S.Context, 0, false,
5258                                               T.getTypePtr()),
5259                   Loc);
5260
5261    // Create the reference to operator=.
5262    ExprResult OpEqualRef
5263      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5264                                   /*FirstQualifierInScope=*/0, OpLookup,
5265                                   /*TemplateArgs=*/0,
5266                                   /*SuppressQualifierCheck=*/true);
5267    if (OpEqualRef.isInvalid())
5268      return StmtError();
5269
5270    // Build the call to the assignment operator.
5271
5272    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5273                                                  OpEqualRef.takeAs<Expr>(),
5274                                                  Loc, &From, 1, Loc);
5275    if (Call.isInvalid())
5276      return StmtError();
5277
5278    return S.Owned(Call.takeAs<Stmt>());
5279  }
5280
5281  //     - if the subobject is of scalar type, the built-in assignment
5282  //       operator is used.
5283  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5284  if (!ArrayTy) {
5285    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5286    if (Assignment.isInvalid())
5287      return StmtError();
5288
5289    return S.Owned(Assignment.takeAs<Stmt>());
5290  }
5291
5292  //     - if the subobject is an array, each element is assigned, in the
5293  //       manner appropriate to the element type;
5294
5295  // Construct a loop over the array bounds, e.g.,
5296  //
5297  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5298  //
5299  // that will copy each of the array elements.
5300  QualType SizeType = S.Context.getSizeType();
5301
5302  // Create the iteration variable.
5303  IdentifierInfo *IterationVarName = 0;
5304  {
5305    llvm::SmallString<8> Str;
5306    llvm::raw_svector_ostream OS(Str);
5307    OS << "__i" << Depth;
5308    IterationVarName = &S.Context.Idents.get(OS.str());
5309  }
5310  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
5311                                          IterationVarName, SizeType,
5312                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5313                                          SC_None, SC_None);
5314
5315  // Initialize the iteration variable to zero.
5316  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5317  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5318
5319  // Create a reference to the iteration variable; we'll use this several
5320  // times throughout.
5321  Expr *IterationVarRef
5322    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5323  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5324
5325  // Create the DeclStmt that holds the iteration variable.
5326  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5327
5328  // Create the comparison against the array bound.
5329  llvm::APInt Upper
5330    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5331  Expr *Comparison
5332    = new (S.Context) BinaryOperator(IterationVarRef,
5333                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5334                                     BO_NE, S.Context.BoolTy,
5335                                     VK_RValue, OK_Ordinary, Loc);
5336
5337  // Create the pre-increment of the iteration variable.
5338  Expr *Increment
5339    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5340                                    VK_LValue, OK_Ordinary, Loc);
5341
5342  // Subscript the "from" and "to" expressions with the iteration variable.
5343  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5344                                                         IterationVarRef, Loc));
5345  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5346                                                       IterationVarRef, Loc));
5347
5348  // Build the copy for an individual element of the array.
5349  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5350                                          To, From, CopyingBaseSubobject,
5351                                          Depth + 1);
5352  if (Copy.isInvalid())
5353    return StmtError();
5354
5355  // Construct the loop that copies all elements of this array.
5356  return S.ActOnForStmt(Loc, Loc, InitStmt,
5357                        S.MakeFullExpr(Comparison),
5358                        0, S.MakeFullExpr(Increment),
5359                        Loc, Copy.take());
5360}
5361
5362/// \brief Determine whether the given class has a copy assignment operator
5363/// that accepts a const-qualified argument.
5364static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5365  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5366
5367  if (!Class->hasDeclaredCopyAssignment())
5368    S.DeclareImplicitCopyAssignment(Class);
5369
5370  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5371  DeclarationName OpName
5372    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5373
5374  DeclContext::lookup_const_iterator Op, OpEnd;
5375  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5376    // C++ [class.copy]p9:
5377    //   A user-declared copy assignment operator is a non-static non-template
5378    //   member function of class X with exactly one parameter of type X, X&,
5379    //   const X&, volatile X& or const volatile X&.
5380    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5381    if (!Method)
5382      continue;
5383
5384    if (Method->isStatic())
5385      continue;
5386    if (Method->getPrimaryTemplate())
5387      continue;
5388    const FunctionProtoType *FnType =
5389    Method->getType()->getAs<FunctionProtoType>();
5390    assert(FnType && "Overloaded operator has no prototype.");
5391    // Don't assert on this; an invalid decl might have been left in the AST.
5392    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5393      continue;
5394    bool AcceptsConst = true;
5395    QualType ArgType = FnType->getArgType(0);
5396    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5397      ArgType = Ref->getPointeeType();
5398      // Is it a non-const lvalue reference?
5399      if (!ArgType.isConstQualified())
5400        AcceptsConst = false;
5401    }
5402    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5403      continue;
5404
5405    // We have a single argument of type cv X or cv X&, i.e. we've found the
5406    // copy assignment operator. Return whether it accepts const arguments.
5407    return AcceptsConst;
5408  }
5409  assert(Class->isInvalidDecl() &&
5410         "No copy assignment operator declared in valid code.");
5411  return false;
5412}
5413
5414CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5415  // Note: The following rules are largely analoguous to the copy
5416  // constructor rules. Note that virtual bases are not taken into account
5417  // for determining the argument type of the operator. Note also that
5418  // operators taking an object instead of a reference are allowed.
5419
5420
5421  // C++ [class.copy]p10:
5422  //   If the class definition does not explicitly declare a copy
5423  //   assignment operator, one is declared implicitly.
5424  //   The implicitly-defined copy assignment operator for a class X
5425  //   will have the form
5426  //
5427  //       X& X::operator=(const X&)
5428  //
5429  //   if
5430  bool HasConstCopyAssignment = true;
5431
5432  //       -- each direct base class B of X has a copy assignment operator
5433  //          whose parameter is of type const B&, const volatile B& or B,
5434  //          and
5435  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5436                                       BaseEnd = ClassDecl->bases_end();
5437       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5438    assert(!Base->getType()->isDependentType() &&
5439           "Cannot generate implicit members for class with dependent bases.");
5440    const CXXRecordDecl *BaseClassDecl
5441      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5442    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5443  }
5444
5445  //       -- for all the nonstatic data members of X that are of a class
5446  //          type M (or array thereof), each such class type has a copy
5447  //          assignment operator whose parameter is of type const M&,
5448  //          const volatile M& or M.
5449  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5450                                  FieldEnd = ClassDecl->field_end();
5451       HasConstCopyAssignment && Field != FieldEnd;
5452       ++Field) {
5453    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5454    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5455      const CXXRecordDecl *FieldClassDecl
5456        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5457      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5458    }
5459  }
5460
5461  //   Otherwise, the implicitly declared copy assignment operator will
5462  //   have the form
5463  //
5464  //       X& X::operator=(X&)
5465  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5466  QualType RetType = Context.getLValueReferenceType(ArgType);
5467  if (HasConstCopyAssignment)
5468    ArgType = ArgType.withConst();
5469  ArgType = Context.getLValueReferenceType(ArgType);
5470
5471  // C++ [except.spec]p14:
5472  //   An implicitly declared special member function (Clause 12) shall have an
5473  //   exception-specification. [...]
5474  ImplicitExceptionSpecification ExceptSpec(Context);
5475  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5476                                       BaseEnd = ClassDecl->bases_end();
5477       Base != BaseEnd; ++Base) {
5478    CXXRecordDecl *BaseClassDecl
5479      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5480
5481    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5482      DeclareImplicitCopyAssignment(BaseClassDecl);
5483
5484    if (CXXMethodDecl *CopyAssign
5485           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5486      ExceptSpec.CalledDecl(CopyAssign);
5487  }
5488  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5489                                  FieldEnd = ClassDecl->field_end();
5490       Field != FieldEnd;
5491       ++Field) {
5492    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5493    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5494      CXXRecordDecl *FieldClassDecl
5495        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5496
5497      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5498        DeclareImplicitCopyAssignment(FieldClassDecl);
5499
5500      if (CXXMethodDecl *CopyAssign
5501            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5502        ExceptSpec.CalledDecl(CopyAssign);
5503    }
5504  }
5505
5506  //   An implicitly-declared copy assignment operator is an inline public
5507  //   member of its class.
5508  FunctionProtoType::ExtProtoInfo EPI;
5509  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5510  EPI.NumExceptions = ExceptSpec.size();
5511  EPI.Exceptions = ExceptSpec.data();
5512  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5513  SourceLocation ClassLoc = ClassDecl->getLocation();
5514  DeclarationNameInfo NameInfo(Name, ClassLoc);
5515  CXXMethodDecl *CopyAssignment
5516    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5517                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5518                            /*TInfo=*/0, /*isStatic=*/false,
5519                            /*StorageClassAsWritten=*/SC_None,
5520                            /*isInline=*/true,
5521                            SourceLocation());
5522  CopyAssignment->setAccess(AS_public);
5523  CopyAssignment->setImplicit();
5524  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5525
5526  // Add the parameter to the operator.
5527  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5528                                               ClassLoc, ClassLoc, /*Id=*/0,
5529                                               ArgType, /*TInfo=*/0,
5530                                               SC_None,
5531                                               SC_None, 0);
5532  CopyAssignment->setParams(&FromParam, 1);
5533
5534  // Note that we have added this copy-assignment operator.
5535  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5536
5537  if (Scope *S = getScopeForContext(ClassDecl))
5538    PushOnScopeChains(CopyAssignment, S, false);
5539  ClassDecl->addDecl(CopyAssignment);
5540
5541  AddOverriddenMethods(ClassDecl, CopyAssignment);
5542  return CopyAssignment;
5543}
5544
5545void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5546                                        CXXMethodDecl *CopyAssignOperator) {
5547  assert((CopyAssignOperator->isImplicit() &&
5548          CopyAssignOperator->isOverloadedOperator() &&
5549          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5550          !CopyAssignOperator->isUsed(false)) &&
5551         "DefineImplicitCopyAssignment called for wrong function");
5552
5553  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5554
5555  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5556    CopyAssignOperator->setInvalidDecl();
5557    return;
5558  }
5559
5560  CopyAssignOperator->setUsed();
5561
5562  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5563  DiagnosticErrorTrap Trap(Diags);
5564
5565  // C++0x [class.copy]p30:
5566  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5567  //   for a non-union class X performs memberwise copy assignment of its
5568  //   subobjects. The direct base classes of X are assigned first, in the
5569  //   order of their declaration in the base-specifier-list, and then the
5570  //   immediate non-static data members of X are assigned, in the order in
5571  //   which they were declared in the class definition.
5572
5573  // The statements that form the synthesized function body.
5574  ASTOwningVector<Stmt*> Statements(*this);
5575
5576  // The parameter for the "other" object, which we are copying from.
5577  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5578  Qualifiers OtherQuals = Other->getType().getQualifiers();
5579  QualType OtherRefType = Other->getType();
5580  if (const LValueReferenceType *OtherRef
5581                                = OtherRefType->getAs<LValueReferenceType>()) {
5582    OtherRefType = OtherRef->getPointeeType();
5583    OtherQuals = OtherRefType.getQualifiers();
5584  }
5585
5586  // Our location for everything implicitly-generated.
5587  SourceLocation Loc = CopyAssignOperator->getLocation();
5588
5589  // Construct a reference to the "other" object. We'll be using this
5590  // throughout the generated ASTs.
5591  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5592  assert(OtherRef && "Reference to parameter cannot fail!");
5593
5594  // Construct the "this" pointer. We'll be using this throughout the generated
5595  // ASTs.
5596  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5597  assert(This && "Reference to this cannot fail!");
5598
5599  // Assign base classes.
5600  bool Invalid = false;
5601  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5602       E = ClassDecl->bases_end(); Base != E; ++Base) {
5603    // Form the assignment:
5604    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5605    QualType BaseType = Base->getType().getUnqualifiedType();
5606    if (!BaseType->isRecordType()) {
5607      Invalid = true;
5608      continue;
5609    }
5610
5611    CXXCastPath BasePath;
5612    BasePath.push_back(Base);
5613
5614    // Construct the "from" expression, which is an implicit cast to the
5615    // appropriately-qualified base type.
5616    Expr *From = OtherRef;
5617    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5618                             CK_UncheckedDerivedToBase,
5619                             VK_LValue, &BasePath).take();
5620
5621    // Dereference "this".
5622    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5623
5624    // Implicitly cast "this" to the appropriately-qualified base type.
5625    To = ImpCastExprToType(To.take(),
5626                           Context.getCVRQualifiedType(BaseType,
5627                                     CopyAssignOperator->getTypeQualifiers()),
5628                           CK_UncheckedDerivedToBase,
5629                           VK_LValue, &BasePath);
5630
5631    // Build the copy.
5632    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5633                                            To.get(), From,
5634                                            /*CopyingBaseSubobject=*/true);
5635    if (Copy.isInvalid()) {
5636      Diag(CurrentLocation, diag::note_member_synthesized_at)
5637        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5638      CopyAssignOperator->setInvalidDecl();
5639      return;
5640    }
5641
5642    // Success! Record the copy.
5643    Statements.push_back(Copy.takeAs<Expr>());
5644  }
5645
5646  // \brief Reference to the __builtin_memcpy function.
5647  Expr *BuiltinMemCpyRef = 0;
5648  // \brief Reference to the __builtin_objc_memmove_collectable function.
5649  Expr *CollectableMemCpyRef = 0;
5650
5651  // Assign non-static members.
5652  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5653                                  FieldEnd = ClassDecl->field_end();
5654       Field != FieldEnd; ++Field) {
5655    // Check for members of reference type; we can't copy those.
5656    if (Field->getType()->isReferenceType()) {
5657      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5658        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5659      Diag(Field->getLocation(), diag::note_declared_at);
5660      Diag(CurrentLocation, diag::note_member_synthesized_at)
5661        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5662      Invalid = true;
5663      continue;
5664    }
5665
5666    // Check for members of const-qualified, non-class type.
5667    QualType BaseType = Context.getBaseElementType(Field->getType());
5668    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5669      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5670        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5671      Diag(Field->getLocation(), diag::note_declared_at);
5672      Diag(CurrentLocation, diag::note_member_synthesized_at)
5673        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5674      Invalid = true;
5675      continue;
5676    }
5677
5678    QualType FieldType = Field->getType().getNonReferenceType();
5679    if (FieldType->isIncompleteArrayType()) {
5680      assert(ClassDecl->hasFlexibleArrayMember() &&
5681             "Incomplete array type is not valid");
5682      continue;
5683    }
5684
5685    // Build references to the field in the object we're copying from and to.
5686    CXXScopeSpec SS; // Intentionally empty
5687    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5688                              LookupMemberName);
5689    MemberLookup.addDecl(*Field);
5690    MemberLookup.resolveKind();
5691    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5692                                               Loc, /*IsArrow=*/false,
5693                                               SS, 0, MemberLookup, 0);
5694    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5695                                             Loc, /*IsArrow=*/true,
5696                                             SS, 0, MemberLookup, 0);
5697    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5698    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5699
5700    // If the field should be copied with __builtin_memcpy rather than via
5701    // explicit assignments, do so. This optimization only applies for arrays
5702    // of scalars and arrays of class type with trivial copy-assignment
5703    // operators.
5704    if (FieldType->isArrayType() &&
5705        (!BaseType->isRecordType() ||
5706         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5707           ->hasTrivialCopyAssignment())) {
5708      // Compute the size of the memory buffer to be copied.
5709      QualType SizeType = Context.getSizeType();
5710      llvm::APInt Size(Context.getTypeSize(SizeType),
5711                       Context.getTypeSizeInChars(BaseType).getQuantity());
5712      for (const ConstantArrayType *Array
5713              = Context.getAsConstantArrayType(FieldType);
5714           Array;
5715           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5716        llvm::APInt ArraySize
5717          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5718        Size *= ArraySize;
5719      }
5720
5721      // Take the address of the field references for "from" and "to".
5722      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5723      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5724
5725      bool NeedsCollectableMemCpy =
5726          (BaseType->isRecordType() &&
5727           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5728
5729      if (NeedsCollectableMemCpy) {
5730        if (!CollectableMemCpyRef) {
5731          // Create a reference to the __builtin_objc_memmove_collectable function.
5732          LookupResult R(*this,
5733                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5734                         Loc, LookupOrdinaryName);
5735          LookupName(R, TUScope, true);
5736
5737          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5738          if (!CollectableMemCpy) {
5739            // Something went horribly wrong earlier, and we will have
5740            // complained about it.
5741            Invalid = true;
5742            continue;
5743          }
5744
5745          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5746                                                  CollectableMemCpy->getType(),
5747                                                  VK_LValue, Loc, 0).take();
5748          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5749        }
5750      }
5751      // Create a reference to the __builtin_memcpy builtin function.
5752      else if (!BuiltinMemCpyRef) {
5753        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5754                       LookupOrdinaryName);
5755        LookupName(R, TUScope, true);
5756
5757        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5758        if (!BuiltinMemCpy) {
5759          // Something went horribly wrong earlier, and we will have complained
5760          // about it.
5761          Invalid = true;
5762          continue;
5763        }
5764
5765        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5766                                            BuiltinMemCpy->getType(),
5767                                            VK_LValue, Loc, 0).take();
5768        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5769      }
5770
5771      ASTOwningVector<Expr*> CallArgs(*this);
5772      CallArgs.push_back(To.takeAs<Expr>());
5773      CallArgs.push_back(From.takeAs<Expr>());
5774      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5775      ExprResult Call = ExprError();
5776      if (NeedsCollectableMemCpy)
5777        Call = ActOnCallExpr(/*Scope=*/0,
5778                             CollectableMemCpyRef,
5779                             Loc, move_arg(CallArgs),
5780                             Loc);
5781      else
5782        Call = ActOnCallExpr(/*Scope=*/0,
5783                             BuiltinMemCpyRef,
5784                             Loc, move_arg(CallArgs),
5785                             Loc);
5786
5787      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5788      Statements.push_back(Call.takeAs<Expr>());
5789      continue;
5790    }
5791
5792    // Build the copy of this field.
5793    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5794                                                  To.get(), From.get(),
5795                                              /*CopyingBaseSubobject=*/false);
5796    if (Copy.isInvalid()) {
5797      Diag(CurrentLocation, diag::note_member_synthesized_at)
5798        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5799      CopyAssignOperator->setInvalidDecl();
5800      return;
5801    }
5802
5803    // Success! Record the copy.
5804    Statements.push_back(Copy.takeAs<Stmt>());
5805  }
5806
5807  if (!Invalid) {
5808    // Add a "return *this;"
5809    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5810
5811    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5812    if (Return.isInvalid())
5813      Invalid = true;
5814    else {
5815      Statements.push_back(Return.takeAs<Stmt>());
5816
5817      if (Trap.hasErrorOccurred()) {
5818        Diag(CurrentLocation, diag::note_member_synthesized_at)
5819          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5820        Invalid = true;
5821      }
5822    }
5823  }
5824
5825  if (Invalid) {
5826    CopyAssignOperator->setInvalidDecl();
5827    return;
5828  }
5829
5830  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5831                                            /*isStmtExpr=*/false);
5832  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5833  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5834}
5835
5836CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5837                                                    CXXRecordDecl *ClassDecl) {
5838  // C++ [class.copy]p4:
5839  //   If the class definition does not explicitly declare a copy
5840  //   constructor, one is declared implicitly.
5841
5842  // C++ [class.copy]p5:
5843  //   The implicitly-declared copy constructor for a class X will
5844  //   have the form
5845  //
5846  //       X::X(const X&)
5847  //
5848  //   if
5849  bool HasConstCopyConstructor = true;
5850
5851  //     -- each direct or virtual base class B of X has a copy
5852  //        constructor whose first parameter is of type const B& or
5853  //        const volatile B&, and
5854  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5855                                       BaseEnd = ClassDecl->bases_end();
5856       HasConstCopyConstructor && Base != BaseEnd;
5857       ++Base) {
5858    // Virtual bases are handled below.
5859    if (Base->isVirtual())
5860      continue;
5861
5862    CXXRecordDecl *BaseClassDecl
5863      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5864    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5865      DeclareImplicitCopyConstructor(BaseClassDecl);
5866
5867    HasConstCopyConstructor
5868      = BaseClassDecl->hasConstCopyConstructor(Context);
5869  }
5870
5871  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5872                                       BaseEnd = ClassDecl->vbases_end();
5873       HasConstCopyConstructor && Base != BaseEnd;
5874       ++Base) {
5875    CXXRecordDecl *BaseClassDecl
5876      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5877    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5878      DeclareImplicitCopyConstructor(BaseClassDecl);
5879
5880    HasConstCopyConstructor
5881      = BaseClassDecl->hasConstCopyConstructor(Context);
5882  }
5883
5884  //     -- for all the nonstatic data members of X that are of a
5885  //        class type M (or array thereof), each such class type
5886  //        has a copy constructor whose first parameter is of type
5887  //        const M& or const volatile M&.
5888  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5889                                  FieldEnd = ClassDecl->field_end();
5890       HasConstCopyConstructor && Field != FieldEnd;
5891       ++Field) {
5892    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5893    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5894      CXXRecordDecl *FieldClassDecl
5895        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5896      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5897        DeclareImplicitCopyConstructor(FieldClassDecl);
5898
5899      HasConstCopyConstructor
5900        = FieldClassDecl->hasConstCopyConstructor(Context);
5901    }
5902  }
5903
5904  //   Otherwise, the implicitly declared copy constructor will have
5905  //   the form
5906  //
5907  //       X::X(X&)
5908  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5909  QualType ArgType = ClassType;
5910  if (HasConstCopyConstructor)
5911    ArgType = ArgType.withConst();
5912  ArgType = Context.getLValueReferenceType(ArgType);
5913
5914  // C++ [except.spec]p14:
5915  //   An implicitly declared special member function (Clause 12) shall have an
5916  //   exception-specification. [...]
5917  ImplicitExceptionSpecification ExceptSpec(Context);
5918  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5919  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5920                                       BaseEnd = ClassDecl->bases_end();
5921       Base != BaseEnd;
5922       ++Base) {
5923    // Virtual bases are handled below.
5924    if (Base->isVirtual())
5925      continue;
5926
5927    CXXRecordDecl *BaseClassDecl
5928      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5929    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5930      DeclareImplicitCopyConstructor(BaseClassDecl);
5931
5932    if (CXXConstructorDecl *CopyConstructor
5933                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5934      ExceptSpec.CalledDecl(CopyConstructor);
5935  }
5936  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5937                                       BaseEnd = ClassDecl->vbases_end();
5938       Base != BaseEnd;
5939       ++Base) {
5940    CXXRecordDecl *BaseClassDecl
5941      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5942    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5943      DeclareImplicitCopyConstructor(BaseClassDecl);
5944
5945    if (CXXConstructorDecl *CopyConstructor
5946                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5947      ExceptSpec.CalledDecl(CopyConstructor);
5948  }
5949  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5950                                  FieldEnd = ClassDecl->field_end();
5951       Field != FieldEnd;
5952       ++Field) {
5953    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5954    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5955      CXXRecordDecl *FieldClassDecl
5956        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5957      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5958        DeclareImplicitCopyConstructor(FieldClassDecl);
5959
5960      if (CXXConstructorDecl *CopyConstructor
5961                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5962        ExceptSpec.CalledDecl(CopyConstructor);
5963    }
5964  }
5965
5966  //   An implicitly-declared copy constructor is an inline public
5967  //   member of its class.
5968  FunctionProtoType::ExtProtoInfo EPI;
5969  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5970  EPI.NumExceptions = ExceptSpec.size();
5971  EPI.Exceptions = ExceptSpec.data();
5972  DeclarationName Name
5973    = Context.DeclarationNames.getCXXConstructorName(
5974                                           Context.getCanonicalType(ClassType));
5975  SourceLocation ClassLoc = ClassDecl->getLocation();
5976  DeclarationNameInfo NameInfo(Name, ClassLoc);
5977  CXXConstructorDecl *CopyConstructor
5978    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5979                                 Context.getFunctionType(Context.VoidTy,
5980                                                         &ArgType, 1, EPI),
5981                                 /*TInfo=*/0,
5982                                 /*isExplicit=*/false,
5983                                 /*isInline=*/true,
5984                                 /*isImplicitlyDeclared=*/true);
5985  CopyConstructor->setAccess(AS_public);
5986  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5987
5988  // Note that we have declared this constructor.
5989  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5990
5991  // Add the parameter to the constructor.
5992  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5993                                               ClassLoc, ClassLoc,
5994                                               /*IdentifierInfo=*/0,
5995                                               ArgType, /*TInfo=*/0,
5996                                               SC_None,
5997                                               SC_None, 0);
5998  CopyConstructor->setParams(&FromParam, 1);
5999  if (Scope *S = getScopeForContext(ClassDecl))
6000    PushOnScopeChains(CopyConstructor, S, false);
6001  ClassDecl->addDecl(CopyConstructor);
6002
6003  return CopyConstructor;
6004}
6005
6006void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
6007                                   CXXConstructorDecl *CopyConstructor,
6008                                   unsigned TypeQuals) {
6009  assert((CopyConstructor->isImplicit() &&
6010          CopyConstructor->isCopyConstructor(TypeQuals) &&
6011          !CopyConstructor->isUsed(false)) &&
6012         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
6013
6014  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
6015  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
6016
6017  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
6018  DiagnosticErrorTrap Trap(Diags);
6019
6020  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
6021      Trap.hasErrorOccurred()) {
6022    Diag(CurrentLocation, diag::note_member_synthesized_at)
6023      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
6024    CopyConstructor->setInvalidDecl();
6025  }  else {
6026    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
6027                                               CopyConstructor->getLocation(),
6028                                               MultiStmtArg(*this, 0, 0),
6029                                               /*isStmtExpr=*/false)
6030                                                              .takeAs<Stmt>());
6031  }
6032
6033  CopyConstructor->setUsed();
6034}
6035
6036ExprResult
6037Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6038                            CXXConstructorDecl *Constructor,
6039                            MultiExprArg ExprArgs,
6040                            bool RequiresZeroInit,
6041                            unsigned ConstructKind,
6042                            SourceRange ParenRange) {
6043  bool Elidable = false;
6044
6045  // C++0x [class.copy]p34:
6046  //   When certain criteria are met, an implementation is allowed to
6047  //   omit the copy/move construction of a class object, even if the
6048  //   copy/move constructor and/or destructor for the object have
6049  //   side effects. [...]
6050  //     - when a temporary class object that has not been bound to a
6051  //       reference (12.2) would be copied/moved to a class object
6052  //       with the same cv-unqualified type, the copy/move operation
6053  //       can be omitted by constructing the temporary object
6054  //       directly into the target of the omitted copy/move
6055  if (ConstructKind == CXXConstructExpr::CK_Complete &&
6056      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
6057    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
6058    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
6059  }
6060
6061  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
6062                               Elidable, move(ExprArgs), RequiresZeroInit,
6063                               ConstructKind, ParenRange);
6064}
6065
6066/// BuildCXXConstructExpr - Creates a complete call to a constructor,
6067/// including handling of its default argument expressions.
6068ExprResult
6069Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6070                            CXXConstructorDecl *Constructor, bool Elidable,
6071                            MultiExprArg ExprArgs,
6072                            bool RequiresZeroInit,
6073                            unsigned ConstructKind,
6074                            SourceRange ParenRange) {
6075  unsigned NumExprs = ExprArgs.size();
6076  Expr **Exprs = (Expr **)ExprArgs.release();
6077
6078  for (specific_attr_iterator<NonNullAttr>
6079           i = Constructor->specific_attr_begin<NonNullAttr>(),
6080           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
6081    const NonNullAttr *NonNull = *i;
6082    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
6083  }
6084
6085  MarkDeclarationReferenced(ConstructLoc, Constructor);
6086  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
6087                                        Constructor, Elidable, Exprs, NumExprs,
6088                                        RequiresZeroInit,
6089              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
6090                                        ParenRange));
6091}
6092
6093bool Sema::InitializeVarWithConstructor(VarDecl *VD,
6094                                        CXXConstructorDecl *Constructor,
6095                                        MultiExprArg Exprs) {
6096  // FIXME: Provide the correct paren SourceRange when available.
6097  ExprResult TempResult =
6098    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
6099                          move(Exprs), false, CXXConstructExpr::CK_Complete,
6100                          SourceRange());
6101  if (TempResult.isInvalid())
6102    return true;
6103
6104  Expr *Temp = TempResult.takeAs<Expr>();
6105  CheckImplicitConversions(Temp, VD->getLocation());
6106  MarkDeclarationReferenced(VD->getLocation(), Constructor);
6107  Temp = MaybeCreateExprWithCleanups(Temp);
6108  VD->setInit(Temp);
6109
6110  return false;
6111}
6112
6113void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6114  if (VD->isInvalidDecl()) return;
6115
6116  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6117  if (ClassDecl->isInvalidDecl()) return;
6118  if (ClassDecl->hasTrivialDestructor()) return;
6119  if (ClassDecl->isDependentContext()) return;
6120
6121  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6122  MarkDeclarationReferenced(VD->getLocation(), Destructor);
6123  CheckDestructorAccess(VD->getLocation(), Destructor,
6124                        PDiag(diag::err_access_dtor_var)
6125                        << VD->getDeclName()
6126                        << VD->getType());
6127
6128  if (!VD->hasGlobalStorage()) return;
6129
6130  // Emit warning for non-trivial dtor in global scope (a real global,
6131  // class-static, function-static).
6132  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
6133
6134  // TODO: this should be re-enabled for static locals by !CXAAtExit
6135  if (!VD->isStaticLocal())
6136    Diag(VD->getLocation(), diag::warn_global_destructor);
6137}
6138
6139/// AddCXXDirectInitializerToDecl - This action is called immediately after
6140/// ActOnDeclarator, when a C++ direct initializer is present.
6141/// e.g: "int x(1);"
6142void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
6143                                         SourceLocation LParenLoc,
6144                                         MultiExprArg Exprs,
6145                                         SourceLocation RParenLoc,
6146                                         bool TypeMayContainAuto) {
6147  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
6148
6149  // If there is no declaration, there was an error parsing it.  Just ignore
6150  // the initializer.
6151  if (RealDecl == 0)
6152    return;
6153
6154  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6155  if (!VDecl) {
6156    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6157    RealDecl->setInvalidDecl();
6158    return;
6159  }
6160
6161  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6162  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6163    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
6164    if (Exprs.size() > 1) {
6165      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
6166           diag::err_auto_var_init_multiple_expressions)
6167        << VDecl->getDeclName() << VDecl->getType()
6168        << VDecl->getSourceRange();
6169      RealDecl->setInvalidDecl();
6170      return;
6171    }
6172
6173    Expr *Init = Exprs.get()[0];
6174    TypeSourceInfo *DeducedType = 0;
6175    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
6176      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
6177        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
6178        << Init->getSourceRange();
6179    if (!DeducedType) {
6180      RealDecl->setInvalidDecl();
6181      return;
6182    }
6183    VDecl->setTypeSourceInfo(DeducedType);
6184    VDecl->setType(DeducedType->getType());
6185
6186    // If this is a redeclaration, check that the type we just deduced matches
6187    // the previously declared type.
6188    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6189      MergeVarDeclTypes(VDecl, Old);
6190  }
6191
6192  // We will represent direct-initialization similarly to copy-initialization:
6193  //    int x(1);  -as-> int x = 1;
6194  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6195  //
6196  // Clients that want to distinguish between the two forms, can check for
6197  // direct initializer using VarDecl::hasCXXDirectInitializer().
6198  // A major benefit is that clients that don't particularly care about which
6199  // exactly form was it (like the CodeGen) can handle both cases without
6200  // special case code.
6201
6202  // C++ 8.5p11:
6203  // The form of initialization (using parentheses or '=') is generally
6204  // insignificant, but does matter when the entity being initialized has a
6205  // class type.
6206
6207  if (!VDecl->getType()->isDependentType() &&
6208      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6209                          diag::err_typecheck_decl_incomplete_type)) {
6210    VDecl->setInvalidDecl();
6211    return;
6212  }
6213
6214  // The variable can not have an abstract class type.
6215  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6216                             diag::err_abstract_type_in_decl,
6217                             AbstractVariableType))
6218    VDecl->setInvalidDecl();
6219
6220  const VarDecl *Def;
6221  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6222    Diag(VDecl->getLocation(), diag::err_redefinition)
6223    << VDecl->getDeclName();
6224    Diag(Def->getLocation(), diag::note_previous_definition);
6225    VDecl->setInvalidDecl();
6226    return;
6227  }
6228
6229  // C++ [class.static.data]p4
6230  //   If a static data member is of const integral or const
6231  //   enumeration type, its declaration in the class definition can
6232  //   specify a constant-initializer which shall be an integral
6233  //   constant expression (5.19). In that case, the member can appear
6234  //   in integral constant expressions. The member shall still be
6235  //   defined in a namespace scope if it is used in the program and the
6236  //   namespace scope definition shall not contain an initializer.
6237  //
6238  // We already performed a redefinition check above, but for static
6239  // data members we also need to check whether there was an in-class
6240  // declaration with an initializer.
6241  const VarDecl* PrevInit = 0;
6242  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6243    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6244    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6245    return;
6246  }
6247
6248  bool IsDependent = false;
6249  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6250    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6251      VDecl->setInvalidDecl();
6252      return;
6253    }
6254
6255    if (Exprs.get()[I]->isTypeDependent())
6256      IsDependent = true;
6257  }
6258
6259  // If either the declaration has a dependent type or if any of the
6260  // expressions is type-dependent, we represent the initialization
6261  // via a ParenListExpr for later use during template instantiation.
6262  if (VDecl->getType()->isDependentType() || IsDependent) {
6263    // Let clients know that initialization was done with a direct initializer.
6264    VDecl->setCXXDirectInitializer(true);
6265
6266    // Store the initialization expressions as a ParenListExpr.
6267    unsigned NumExprs = Exprs.size();
6268    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6269                                               (Expr **)Exprs.release(),
6270                                               NumExprs, RParenLoc));
6271    return;
6272  }
6273
6274  // Capture the variable that is being initialized and the style of
6275  // initialization.
6276  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6277
6278  // FIXME: Poor source location information.
6279  InitializationKind Kind
6280    = InitializationKind::CreateDirect(VDecl->getLocation(),
6281                                       LParenLoc, RParenLoc);
6282
6283  InitializationSequence InitSeq(*this, Entity, Kind,
6284                                 Exprs.get(), Exprs.size());
6285  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6286  if (Result.isInvalid()) {
6287    VDecl->setInvalidDecl();
6288    return;
6289  }
6290
6291  CheckImplicitConversions(Result.get(), LParenLoc);
6292
6293  Result = MaybeCreateExprWithCleanups(Result);
6294  VDecl->setInit(Result.takeAs<Expr>());
6295  VDecl->setCXXDirectInitializer(true);
6296
6297  CheckCompleteVariableDeclaration(VDecl);
6298}
6299
6300/// \brief Given a constructor and the set of arguments provided for the
6301/// constructor, convert the arguments and add any required default arguments
6302/// to form a proper call to this constructor.
6303///
6304/// \returns true if an error occurred, false otherwise.
6305bool
6306Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6307                              MultiExprArg ArgsPtr,
6308                              SourceLocation Loc,
6309                              ASTOwningVector<Expr*> &ConvertedArgs) {
6310  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6311  unsigned NumArgs = ArgsPtr.size();
6312  Expr **Args = (Expr **)ArgsPtr.get();
6313
6314  const FunctionProtoType *Proto
6315    = Constructor->getType()->getAs<FunctionProtoType>();
6316  assert(Proto && "Constructor without a prototype?");
6317  unsigned NumArgsInProto = Proto->getNumArgs();
6318
6319  // If too few arguments are available, we'll fill in the rest with defaults.
6320  if (NumArgs < NumArgsInProto)
6321    ConvertedArgs.reserve(NumArgsInProto);
6322  else
6323    ConvertedArgs.reserve(NumArgs);
6324
6325  VariadicCallType CallType =
6326    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6327  llvm::SmallVector<Expr *, 8> AllArgs;
6328  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6329                                        Proto, 0, Args, NumArgs, AllArgs,
6330                                        CallType);
6331  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6332    ConvertedArgs.push_back(AllArgs[i]);
6333  return Invalid;
6334}
6335
6336static inline bool
6337CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6338                                       const FunctionDecl *FnDecl) {
6339  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6340  if (isa<NamespaceDecl>(DC)) {
6341    return SemaRef.Diag(FnDecl->getLocation(),
6342                        diag::err_operator_new_delete_declared_in_namespace)
6343      << FnDecl->getDeclName();
6344  }
6345
6346  if (isa<TranslationUnitDecl>(DC) &&
6347      FnDecl->getStorageClass() == SC_Static) {
6348    return SemaRef.Diag(FnDecl->getLocation(),
6349                        diag::err_operator_new_delete_declared_static)
6350      << FnDecl->getDeclName();
6351  }
6352
6353  return false;
6354}
6355
6356static inline bool
6357CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6358                            CanQualType ExpectedResultType,
6359                            CanQualType ExpectedFirstParamType,
6360                            unsigned DependentParamTypeDiag,
6361                            unsigned InvalidParamTypeDiag) {
6362  QualType ResultType =
6363    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6364
6365  // Check that the result type is not dependent.
6366  if (ResultType->isDependentType())
6367    return SemaRef.Diag(FnDecl->getLocation(),
6368                        diag::err_operator_new_delete_dependent_result_type)
6369    << FnDecl->getDeclName() << ExpectedResultType;
6370
6371  // Check that the result type is what we expect.
6372  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6373    return SemaRef.Diag(FnDecl->getLocation(),
6374                        diag::err_operator_new_delete_invalid_result_type)
6375    << FnDecl->getDeclName() << ExpectedResultType;
6376
6377  // A function template must have at least 2 parameters.
6378  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6379    return SemaRef.Diag(FnDecl->getLocation(),
6380                      diag::err_operator_new_delete_template_too_few_parameters)
6381        << FnDecl->getDeclName();
6382
6383  // The function decl must have at least 1 parameter.
6384  if (FnDecl->getNumParams() == 0)
6385    return SemaRef.Diag(FnDecl->getLocation(),
6386                        diag::err_operator_new_delete_too_few_parameters)
6387      << FnDecl->getDeclName();
6388
6389  // Check the the first parameter type is not dependent.
6390  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6391  if (FirstParamType->isDependentType())
6392    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6393      << FnDecl->getDeclName() << ExpectedFirstParamType;
6394
6395  // Check that the first parameter type is what we expect.
6396  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6397      ExpectedFirstParamType)
6398    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6399    << FnDecl->getDeclName() << ExpectedFirstParamType;
6400
6401  return false;
6402}
6403
6404static bool
6405CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6406  // C++ [basic.stc.dynamic.allocation]p1:
6407  //   A program is ill-formed if an allocation function is declared in a
6408  //   namespace scope other than global scope or declared static in global
6409  //   scope.
6410  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6411    return true;
6412
6413  CanQualType SizeTy =
6414    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6415
6416  // C++ [basic.stc.dynamic.allocation]p1:
6417  //  The return type shall be void*. The first parameter shall have type
6418  //  std::size_t.
6419  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6420                                  SizeTy,
6421                                  diag::err_operator_new_dependent_param_type,
6422                                  diag::err_operator_new_param_type))
6423    return true;
6424
6425  // C++ [basic.stc.dynamic.allocation]p1:
6426  //  The first parameter shall not have an associated default argument.
6427  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6428    return SemaRef.Diag(FnDecl->getLocation(),
6429                        diag::err_operator_new_default_arg)
6430      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6431
6432  return false;
6433}
6434
6435static bool
6436CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6437  // C++ [basic.stc.dynamic.deallocation]p1:
6438  //   A program is ill-formed if deallocation functions are declared in a
6439  //   namespace scope other than global scope or declared static in global
6440  //   scope.
6441  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6442    return true;
6443
6444  // C++ [basic.stc.dynamic.deallocation]p2:
6445  //   Each deallocation function shall return void and its first parameter
6446  //   shall be void*.
6447  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6448                                  SemaRef.Context.VoidPtrTy,
6449                                 diag::err_operator_delete_dependent_param_type,
6450                                 diag::err_operator_delete_param_type))
6451    return true;
6452
6453  return false;
6454}
6455
6456/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6457/// of this overloaded operator is well-formed. If so, returns false;
6458/// otherwise, emits appropriate diagnostics and returns true.
6459bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6460  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6461         "Expected an overloaded operator declaration");
6462
6463  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6464
6465  // C++ [over.oper]p5:
6466  //   The allocation and deallocation functions, operator new,
6467  //   operator new[], operator delete and operator delete[], are
6468  //   described completely in 3.7.3. The attributes and restrictions
6469  //   found in the rest of this subclause do not apply to them unless
6470  //   explicitly stated in 3.7.3.
6471  if (Op == OO_Delete || Op == OO_Array_Delete)
6472    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6473
6474  if (Op == OO_New || Op == OO_Array_New)
6475    return CheckOperatorNewDeclaration(*this, FnDecl);
6476
6477  // C++ [over.oper]p6:
6478  //   An operator function shall either be a non-static member
6479  //   function or be a non-member function and have at least one
6480  //   parameter whose type is a class, a reference to a class, an
6481  //   enumeration, or a reference to an enumeration.
6482  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6483    if (MethodDecl->isStatic())
6484      return Diag(FnDecl->getLocation(),
6485                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6486  } else {
6487    bool ClassOrEnumParam = false;
6488    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6489                                   ParamEnd = FnDecl->param_end();
6490         Param != ParamEnd; ++Param) {
6491      QualType ParamType = (*Param)->getType().getNonReferenceType();
6492      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6493          ParamType->isEnumeralType()) {
6494        ClassOrEnumParam = true;
6495        break;
6496      }
6497    }
6498
6499    if (!ClassOrEnumParam)
6500      return Diag(FnDecl->getLocation(),
6501                  diag::err_operator_overload_needs_class_or_enum)
6502        << FnDecl->getDeclName();
6503  }
6504
6505  // C++ [over.oper]p8:
6506  //   An operator function cannot have default arguments (8.3.6),
6507  //   except where explicitly stated below.
6508  //
6509  // Only the function-call operator allows default arguments
6510  // (C++ [over.call]p1).
6511  if (Op != OO_Call) {
6512    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6513         Param != FnDecl->param_end(); ++Param) {
6514      if ((*Param)->hasDefaultArg())
6515        return Diag((*Param)->getLocation(),
6516                    diag::err_operator_overload_default_arg)
6517          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6518    }
6519  }
6520
6521  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6522    { false, false, false }
6523#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6524    , { Unary, Binary, MemberOnly }
6525#include "clang/Basic/OperatorKinds.def"
6526  };
6527
6528  bool CanBeUnaryOperator = OperatorUses[Op][0];
6529  bool CanBeBinaryOperator = OperatorUses[Op][1];
6530  bool MustBeMemberOperator = OperatorUses[Op][2];
6531
6532  // C++ [over.oper]p8:
6533  //   [...] Operator functions cannot have more or fewer parameters
6534  //   than the number required for the corresponding operator, as
6535  //   described in the rest of this subclause.
6536  unsigned NumParams = FnDecl->getNumParams()
6537                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6538  if (Op != OO_Call &&
6539      ((NumParams == 1 && !CanBeUnaryOperator) ||
6540       (NumParams == 2 && !CanBeBinaryOperator) ||
6541       (NumParams < 1) || (NumParams > 2))) {
6542    // We have the wrong number of parameters.
6543    unsigned ErrorKind;
6544    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6545      ErrorKind = 2;  // 2 -> unary or binary.
6546    } else if (CanBeUnaryOperator) {
6547      ErrorKind = 0;  // 0 -> unary
6548    } else {
6549      assert(CanBeBinaryOperator &&
6550             "All non-call overloaded operators are unary or binary!");
6551      ErrorKind = 1;  // 1 -> binary
6552    }
6553
6554    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6555      << FnDecl->getDeclName() << NumParams << ErrorKind;
6556  }
6557
6558  // Overloaded operators other than operator() cannot be variadic.
6559  if (Op != OO_Call &&
6560      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6561    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6562      << FnDecl->getDeclName();
6563  }
6564
6565  // Some operators must be non-static member functions.
6566  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6567    return Diag(FnDecl->getLocation(),
6568                diag::err_operator_overload_must_be_member)
6569      << FnDecl->getDeclName();
6570  }
6571
6572  // C++ [over.inc]p1:
6573  //   The user-defined function called operator++ implements the
6574  //   prefix and postfix ++ operator. If this function is a member
6575  //   function with no parameters, or a non-member function with one
6576  //   parameter of class or enumeration type, it defines the prefix
6577  //   increment operator ++ for objects of that type. If the function
6578  //   is a member function with one parameter (which shall be of type
6579  //   int) or a non-member function with two parameters (the second
6580  //   of which shall be of type int), it defines the postfix
6581  //   increment operator ++ for objects of that type.
6582  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6583    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6584    bool ParamIsInt = false;
6585    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6586      ParamIsInt = BT->getKind() == BuiltinType::Int;
6587
6588    if (!ParamIsInt)
6589      return Diag(LastParam->getLocation(),
6590                  diag::err_operator_overload_post_incdec_must_be_int)
6591        << LastParam->getType() << (Op == OO_MinusMinus);
6592  }
6593
6594  return false;
6595}
6596
6597/// CheckLiteralOperatorDeclaration - Check whether the declaration
6598/// of this literal operator function is well-formed. If so, returns
6599/// false; otherwise, emits appropriate diagnostics and returns true.
6600bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6601  DeclContext *DC = FnDecl->getDeclContext();
6602  Decl::Kind Kind = DC->getDeclKind();
6603  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6604      Kind != Decl::LinkageSpec) {
6605    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6606      << FnDecl->getDeclName();
6607    return true;
6608  }
6609
6610  bool Valid = false;
6611
6612  // template <char...> type operator "" name() is the only valid template
6613  // signature, and the only valid signature with no parameters.
6614  if (FnDecl->param_size() == 0) {
6615    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6616      // Must have only one template parameter
6617      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6618      if (Params->size() == 1) {
6619        NonTypeTemplateParmDecl *PmDecl =
6620          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6621
6622        // The template parameter must be a char parameter pack.
6623        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6624            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6625          Valid = true;
6626      }
6627    }
6628  } else {
6629    // Check the first parameter
6630    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6631
6632    QualType T = (*Param)->getType();
6633
6634    // unsigned long long int, long double, and any character type are allowed
6635    // as the only parameters.
6636    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6637        Context.hasSameType(T, Context.LongDoubleTy) ||
6638        Context.hasSameType(T, Context.CharTy) ||
6639        Context.hasSameType(T, Context.WCharTy) ||
6640        Context.hasSameType(T, Context.Char16Ty) ||
6641        Context.hasSameType(T, Context.Char32Ty)) {
6642      if (++Param == FnDecl->param_end())
6643        Valid = true;
6644      goto FinishedParams;
6645    }
6646
6647    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6648    const PointerType *PT = T->getAs<PointerType>();
6649    if (!PT)
6650      goto FinishedParams;
6651    T = PT->getPointeeType();
6652    if (!T.isConstQualified())
6653      goto FinishedParams;
6654    T = T.getUnqualifiedType();
6655
6656    // Move on to the second parameter;
6657    ++Param;
6658
6659    // If there is no second parameter, the first must be a const char *
6660    if (Param == FnDecl->param_end()) {
6661      if (Context.hasSameType(T, Context.CharTy))
6662        Valid = true;
6663      goto FinishedParams;
6664    }
6665
6666    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6667    // are allowed as the first parameter to a two-parameter function
6668    if (!(Context.hasSameType(T, Context.CharTy) ||
6669          Context.hasSameType(T, Context.WCharTy) ||
6670          Context.hasSameType(T, Context.Char16Ty) ||
6671          Context.hasSameType(T, Context.Char32Ty)))
6672      goto FinishedParams;
6673
6674    // The second and final parameter must be an std::size_t
6675    T = (*Param)->getType().getUnqualifiedType();
6676    if (Context.hasSameType(T, Context.getSizeType()) &&
6677        ++Param == FnDecl->param_end())
6678      Valid = true;
6679  }
6680
6681  // FIXME: This diagnostic is absolutely terrible.
6682FinishedParams:
6683  if (!Valid) {
6684    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6685      << FnDecl->getDeclName();
6686    return true;
6687  }
6688
6689  return false;
6690}
6691
6692/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6693/// linkage specification, including the language and (if present)
6694/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6695/// the location of the language string literal, which is provided
6696/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6697/// the '{' brace. Otherwise, this linkage specification does not
6698/// have any braces.
6699Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6700                                           SourceLocation LangLoc,
6701                                           llvm::StringRef Lang,
6702                                           SourceLocation LBraceLoc) {
6703  LinkageSpecDecl::LanguageIDs Language;
6704  if (Lang == "\"C\"")
6705    Language = LinkageSpecDecl::lang_c;
6706  else if (Lang == "\"C++\"")
6707    Language = LinkageSpecDecl::lang_cxx;
6708  else {
6709    Diag(LangLoc, diag::err_bad_language);
6710    return 0;
6711  }
6712
6713  // FIXME: Add all the various semantics of linkage specifications
6714
6715  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6716                                               ExternLoc, LangLoc, Language);
6717  CurContext->addDecl(D);
6718  PushDeclContext(S, D);
6719  return D;
6720}
6721
6722/// ActOnFinishLinkageSpecification - Complete the definition of
6723/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6724/// valid, it's the position of the closing '}' brace in a linkage
6725/// specification that uses braces.
6726Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6727                                            Decl *LinkageSpec,
6728                                            SourceLocation RBraceLoc) {
6729  if (LinkageSpec) {
6730    if (RBraceLoc.isValid()) {
6731      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
6732      LSDecl->setRBraceLoc(RBraceLoc);
6733    }
6734    PopDeclContext();
6735  }
6736  return LinkageSpec;
6737}
6738
6739/// \brief Perform semantic analysis for the variable declaration that
6740/// occurs within a C++ catch clause, returning the newly-created
6741/// variable.
6742VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6743                                         TypeSourceInfo *TInfo,
6744                                         SourceLocation StartLoc,
6745                                         SourceLocation Loc,
6746                                         IdentifierInfo *Name) {
6747  bool Invalid = false;
6748  QualType ExDeclType = TInfo->getType();
6749
6750  // Arrays and functions decay.
6751  if (ExDeclType->isArrayType())
6752    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6753  else if (ExDeclType->isFunctionType())
6754    ExDeclType = Context.getPointerType(ExDeclType);
6755
6756  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6757  // The exception-declaration shall not denote a pointer or reference to an
6758  // incomplete type, other than [cv] void*.
6759  // N2844 forbids rvalue references.
6760  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6761    Diag(Loc, diag::err_catch_rvalue_ref);
6762    Invalid = true;
6763  }
6764
6765  // GCC allows catching pointers and references to incomplete types
6766  // as an extension; so do we, but we warn by default.
6767
6768  QualType BaseType = ExDeclType;
6769  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6770  unsigned DK = diag::err_catch_incomplete;
6771  bool IncompleteCatchIsInvalid = true;
6772  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6773    BaseType = Ptr->getPointeeType();
6774    Mode = 1;
6775    DK = diag::ext_catch_incomplete_ptr;
6776    IncompleteCatchIsInvalid = false;
6777  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6778    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6779    BaseType = Ref->getPointeeType();
6780    Mode = 2;
6781    DK = diag::ext_catch_incomplete_ref;
6782    IncompleteCatchIsInvalid = false;
6783  }
6784  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6785      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6786      IncompleteCatchIsInvalid)
6787    Invalid = true;
6788
6789  if (!Invalid && !ExDeclType->isDependentType() &&
6790      RequireNonAbstractType(Loc, ExDeclType,
6791                             diag::err_abstract_type_in_decl,
6792                             AbstractVariableType))
6793    Invalid = true;
6794
6795  // Only the non-fragile NeXT runtime currently supports C++ catches
6796  // of ObjC types, and no runtime supports catching ObjC types by value.
6797  if (!Invalid && getLangOptions().ObjC1) {
6798    QualType T = ExDeclType;
6799    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6800      T = RT->getPointeeType();
6801
6802    if (T->isObjCObjectType()) {
6803      Diag(Loc, diag::err_objc_object_catch);
6804      Invalid = true;
6805    } else if (T->isObjCObjectPointerType()) {
6806      if (!getLangOptions().ObjCNonFragileABI) {
6807        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6808        Invalid = true;
6809      }
6810    }
6811  }
6812
6813  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
6814                                    ExDeclType, TInfo, SC_None, SC_None);
6815  ExDecl->setExceptionVariable(true);
6816
6817  if (!Invalid) {
6818    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6819      // C++ [except.handle]p16:
6820      //   The object declared in an exception-declaration or, if the
6821      //   exception-declaration does not specify a name, a temporary (12.2) is
6822      //   copy-initialized (8.5) from the exception object. [...]
6823      //   The object is destroyed when the handler exits, after the destruction
6824      //   of any automatic objects initialized within the handler.
6825      //
6826      // We just pretend to initialize the object with itself, then make sure
6827      // it can be destroyed later.
6828      QualType initType = ExDeclType;
6829
6830      InitializedEntity entity =
6831        InitializedEntity::InitializeVariable(ExDecl);
6832      InitializationKind initKind =
6833        InitializationKind::CreateCopy(Loc, SourceLocation());
6834
6835      Expr *opaqueValue =
6836        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6837      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6838      ExprResult result = sequence.Perform(*this, entity, initKind,
6839                                           MultiExprArg(&opaqueValue, 1));
6840      if (result.isInvalid())
6841        Invalid = true;
6842      else {
6843        // If the constructor used was non-trivial, set this as the
6844        // "initializer".
6845        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6846        if (!construct->getConstructor()->isTrivial()) {
6847          Expr *init = MaybeCreateExprWithCleanups(construct);
6848          ExDecl->setInit(init);
6849        }
6850
6851        // And make sure it's destructable.
6852        FinalizeVarWithDestructor(ExDecl, recordType);
6853      }
6854    }
6855  }
6856
6857  if (Invalid)
6858    ExDecl->setInvalidDecl();
6859
6860  return ExDecl;
6861}
6862
6863/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6864/// handler.
6865Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6866  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6867  bool Invalid = D.isInvalidType();
6868
6869  // Check for unexpanded parameter packs.
6870  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6871                                               UPPC_ExceptionType)) {
6872    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6873                                             D.getIdentifierLoc());
6874    Invalid = true;
6875  }
6876
6877  IdentifierInfo *II = D.getIdentifier();
6878  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6879                                             LookupOrdinaryName,
6880                                             ForRedeclaration)) {
6881    // The scope should be freshly made just for us. There is just no way
6882    // it contains any previous declaration.
6883    assert(!S->isDeclScope(PrevDecl));
6884    if (PrevDecl->isTemplateParameter()) {
6885      // Maybe we will complain about the shadowed template parameter.
6886      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6887    }
6888  }
6889
6890  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6891    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6892      << D.getCXXScopeSpec().getRange();
6893    Invalid = true;
6894  }
6895
6896  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6897                                              D.getSourceRange().getBegin(),
6898                                              D.getIdentifierLoc(),
6899                                              D.getIdentifier());
6900  if (Invalid)
6901    ExDecl->setInvalidDecl();
6902
6903  // Add the exception declaration into this scope.
6904  if (II)
6905    PushOnScopeChains(ExDecl, S);
6906  else
6907    CurContext->addDecl(ExDecl);
6908
6909  ProcessDeclAttributes(S, ExDecl, D);
6910  return ExDecl;
6911}
6912
6913Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
6914                                         Expr *AssertExpr,
6915                                         Expr *AssertMessageExpr_,
6916                                         SourceLocation RParenLoc) {
6917  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6918
6919  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6920    llvm::APSInt Value(32);
6921    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6922      Diag(StaticAssertLoc,
6923           diag::err_static_assert_expression_is_not_constant) <<
6924        AssertExpr->getSourceRange();
6925      return 0;
6926    }
6927
6928    if (Value == 0) {
6929      Diag(StaticAssertLoc, diag::err_static_assert_failed)
6930        << AssertMessage->getString() << AssertExpr->getSourceRange();
6931    }
6932  }
6933
6934  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6935    return 0;
6936
6937  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
6938                                        AssertExpr, AssertMessage, RParenLoc);
6939
6940  CurContext->addDecl(Decl);
6941  return Decl;
6942}
6943
6944/// \brief Perform semantic analysis of the given friend type declaration.
6945///
6946/// \returns A friend declaration that.
6947FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6948                                      TypeSourceInfo *TSInfo) {
6949  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6950
6951  QualType T = TSInfo->getType();
6952  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6953
6954  if (!getLangOptions().CPlusPlus0x) {
6955    // C++03 [class.friend]p2:
6956    //   An elaborated-type-specifier shall be used in a friend declaration
6957    //   for a class.*
6958    //
6959    //   * The class-key of the elaborated-type-specifier is required.
6960    if (!ActiveTemplateInstantiations.empty()) {
6961      // Do not complain about the form of friend template types during
6962      // template instantiation; we will already have complained when the
6963      // template was declared.
6964    } else if (!T->isElaboratedTypeSpecifier()) {
6965      // If we evaluated the type to a record type, suggest putting
6966      // a tag in front.
6967      if (const RecordType *RT = T->getAs<RecordType>()) {
6968        RecordDecl *RD = RT->getDecl();
6969
6970        std::string InsertionText = std::string(" ") + RD->getKindName();
6971
6972        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6973          << (unsigned) RD->getTagKind()
6974          << T
6975          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6976                                        InsertionText);
6977      } else {
6978        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6979          << T
6980          << SourceRange(FriendLoc, TypeRange.getEnd());
6981      }
6982    } else if (T->getAs<EnumType>()) {
6983      Diag(FriendLoc, diag::ext_enum_friend)
6984        << T
6985        << SourceRange(FriendLoc, TypeRange.getEnd());
6986    }
6987  }
6988
6989  // C++0x [class.friend]p3:
6990  //   If the type specifier in a friend declaration designates a (possibly
6991  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6992  //   the friend declaration is ignored.
6993
6994  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6995  // in [class.friend]p3 that we do not implement.
6996
6997  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6998}
6999
7000/// Handle a friend tag declaration where the scope specifier was
7001/// templated.
7002Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
7003                                    unsigned TagSpec, SourceLocation TagLoc,
7004                                    CXXScopeSpec &SS,
7005                                    IdentifierInfo *Name, SourceLocation NameLoc,
7006                                    AttributeList *Attr,
7007                                    MultiTemplateParamsArg TempParamLists) {
7008  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7009
7010  bool isExplicitSpecialization = false;
7011  bool Invalid = false;
7012
7013  if (TemplateParameterList *TemplateParams
7014        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
7015                                                  TempParamLists.get(),
7016                                                  TempParamLists.size(),
7017                                                  /*friend*/ true,
7018                                                  isExplicitSpecialization,
7019                                                  Invalid)) {
7020    if (TemplateParams->size() > 0) {
7021      // This is a declaration of a class template.
7022      if (Invalid)
7023        return 0;
7024
7025      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
7026                                SS, Name, NameLoc, Attr,
7027                                TemplateParams, AS_public,
7028                                TempParamLists.size() - 1,
7029                   (TemplateParameterList**) TempParamLists.release()).take();
7030    } else {
7031      // The "template<>" header is extraneous.
7032      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7033        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7034      isExplicitSpecialization = true;
7035    }
7036  }
7037
7038  if (Invalid) return 0;
7039
7040  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
7041
7042  bool isAllExplicitSpecializations = true;
7043  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
7044    if (TempParamLists.get()[I]->size()) {
7045      isAllExplicitSpecializations = false;
7046      break;
7047    }
7048  }
7049
7050  // FIXME: don't ignore attributes.
7051
7052  // If it's explicit specializations all the way down, just forget
7053  // about the template header and build an appropriate non-templated
7054  // friend.  TODO: for source fidelity, remember the headers.
7055  if (isAllExplicitSpecializations) {
7056    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7057    ElaboratedTypeKeyword Keyword
7058      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7059    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
7060                                   *Name, NameLoc);
7061    if (T.isNull())
7062      return 0;
7063
7064    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7065    if (isa<DependentNameType>(T)) {
7066      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7067      TL.setKeywordLoc(TagLoc);
7068      TL.setQualifierLoc(QualifierLoc);
7069      TL.setNameLoc(NameLoc);
7070    } else {
7071      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
7072      TL.setKeywordLoc(TagLoc);
7073      TL.setQualifierLoc(QualifierLoc);
7074      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
7075    }
7076
7077    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7078                                            TSI, FriendLoc);
7079    Friend->setAccess(AS_public);
7080    CurContext->addDecl(Friend);
7081    return Friend;
7082  }
7083
7084  // Handle the case of a templated-scope friend class.  e.g.
7085  //   template <class T> class A<T>::B;
7086  // FIXME: we don't support these right now.
7087  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7088  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
7089  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7090  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7091  TL.setKeywordLoc(TagLoc);
7092  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7093  TL.setNameLoc(NameLoc);
7094
7095  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7096                                          TSI, FriendLoc);
7097  Friend->setAccess(AS_public);
7098  Friend->setUnsupportedFriend(true);
7099  CurContext->addDecl(Friend);
7100  return Friend;
7101}
7102
7103
7104/// Handle a friend type declaration.  This works in tandem with
7105/// ActOnTag.
7106///
7107/// Notes on friend class templates:
7108///
7109/// We generally treat friend class declarations as if they were
7110/// declaring a class.  So, for example, the elaborated type specifier
7111/// in a friend declaration is required to obey the restrictions of a
7112/// class-head (i.e. no typedefs in the scope chain), template
7113/// parameters are required to match up with simple template-ids, &c.
7114/// However, unlike when declaring a template specialization, it's
7115/// okay to refer to a template specialization without an empty
7116/// template parameter declaration, e.g.
7117///   friend class A<T>::B<unsigned>;
7118/// We permit this as a special case; if there are any template
7119/// parameters present at all, require proper matching, i.e.
7120///   template <> template <class T> friend class A<int>::B;
7121Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7122                                MultiTemplateParamsArg TempParams) {
7123  SourceLocation Loc = DS.getSourceRange().getBegin();
7124
7125  assert(DS.isFriendSpecified());
7126  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7127
7128  // Try to convert the decl specifier to a type.  This works for
7129  // friend templates because ActOnTag never produces a ClassTemplateDecl
7130  // for a TUK_Friend.
7131  Declarator TheDeclarator(DS, Declarator::MemberContext);
7132  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
7133  QualType T = TSI->getType();
7134  if (TheDeclarator.isInvalidType())
7135    return 0;
7136
7137  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
7138    return 0;
7139
7140  // This is definitely an error in C++98.  It's probably meant to
7141  // be forbidden in C++0x, too, but the specification is just
7142  // poorly written.
7143  //
7144  // The problem is with declarations like the following:
7145  //   template <T> friend A<T>::foo;
7146  // where deciding whether a class C is a friend or not now hinges
7147  // on whether there exists an instantiation of A that causes
7148  // 'foo' to equal C.  There are restrictions on class-heads
7149  // (which we declare (by fiat) elaborated friend declarations to
7150  // be) that makes this tractable.
7151  //
7152  // FIXME: handle "template <> friend class A<T>;", which
7153  // is possibly well-formed?  Who even knows?
7154  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
7155    Diag(Loc, diag::err_tagless_friend_type_template)
7156      << DS.getSourceRange();
7157    return 0;
7158  }
7159
7160  // C++98 [class.friend]p1: A friend of a class is a function
7161  //   or class that is not a member of the class . . .
7162  // This is fixed in DR77, which just barely didn't make the C++03
7163  // deadline.  It's also a very silly restriction that seriously
7164  // affects inner classes and which nobody else seems to implement;
7165  // thus we never diagnose it, not even in -pedantic.
7166  //
7167  // But note that we could warn about it: it's always useless to
7168  // friend one of your own members (it's not, however, worthless to
7169  // friend a member of an arbitrary specialization of your template).
7170
7171  Decl *D;
7172  if (unsigned NumTempParamLists = TempParams.size())
7173    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
7174                                   NumTempParamLists,
7175                                   TempParams.release(),
7176                                   TSI,
7177                                   DS.getFriendSpecLoc());
7178  else
7179    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
7180
7181  if (!D)
7182    return 0;
7183
7184  D->setAccess(AS_public);
7185  CurContext->addDecl(D);
7186
7187  return D;
7188}
7189
7190Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7191                                    MultiTemplateParamsArg TemplateParams) {
7192  const DeclSpec &DS = D.getDeclSpec();
7193
7194  assert(DS.isFriendSpecified());
7195  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7196
7197  SourceLocation Loc = D.getIdentifierLoc();
7198  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7199  QualType T = TInfo->getType();
7200
7201  // C++ [class.friend]p1
7202  //   A friend of a class is a function or class....
7203  // Note that this sees through typedefs, which is intended.
7204  // It *doesn't* see through dependent types, which is correct
7205  // according to [temp.arg.type]p3:
7206  //   If a declaration acquires a function type through a
7207  //   type dependent on a template-parameter and this causes
7208  //   a declaration that does not use the syntactic form of a
7209  //   function declarator to have a function type, the program
7210  //   is ill-formed.
7211  if (!T->isFunctionType()) {
7212    Diag(Loc, diag::err_unexpected_friend);
7213
7214    // It might be worthwhile to try to recover by creating an
7215    // appropriate declaration.
7216    return 0;
7217  }
7218
7219  // C++ [namespace.memdef]p3
7220  //  - If a friend declaration in a non-local class first declares a
7221  //    class or function, the friend class or function is a member
7222  //    of the innermost enclosing namespace.
7223  //  - The name of the friend is not found by simple name lookup
7224  //    until a matching declaration is provided in that namespace
7225  //    scope (either before or after the class declaration granting
7226  //    friendship).
7227  //  - If a friend function is called, its name may be found by the
7228  //    name lookup that considers functions from namespaces and
7229  //    classes associated with the types of the function arguments.
7230  //  - When looking for a prior declaration of a class or a function
7231  //    declared as a friend, scopes outside the innermost enclosing
7232  //    namespace scope are not considered.
7233
7234  CXXScopeSpec &SS = D.getCXXScopeSpec();
7235  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7236  DeclarationName Name = NameInfo.getName();
7237  assert(Name);
7238
7239  // Check for unexpanded parameter packs.
7240  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7241      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7242      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7243    return 0;
7244
7245  // The context we found the declaration in, or in which we should
7246  // create the declaration.
7247  DeclContext *DC;
7248  Scope *DCScope = S;
7249  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7250                        ForRedeclaration);
7251
7252  // FIXME: there are different rules in local classes
7253
7254  // There are four cases here.
7255  //   - There's no scope specifier, in which case we just go to the
7256  //     appropriate scope and look for a function or function template
7257  //     there as appropriate.
7258  // Recover from invalid scope qualifiers as if they just weren't there.
7259  if (SS.isInvalid() || !SS.isSet()) {
7260    // C++0x [namespace.memdef]p3:
7261    //   If the name in a friend declaration is neither qualified nor
7262    //   a template-id and the declaration is a function or an
7263    //   elaborated-type-specifier, the lookup to determine whether
7264    //   the entity has been previously declared shall not consider
7265    //   any scopes outside the innermost enclosing namespace.
7266    // C++0x [class.friend]p11:
7267    //   If a friend declaration appears in a local class and the name
7268    //   specified is an unqualified name, a prior declaration is
7269    //   looked up without considering scopes that are outside the
7270    //   innermost enclosing non-class scope. For a friend function
7271    //   declaration, if there is no prior declaration, the program is
7272    //   ill-formed.
7273    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7274    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7275
7276    // Find the appropriate context according to the above.
7277    DC = CurContext;
7278    while (true) {
7279      // Skip class contexts.  If someone can cite chapter and verse
7280      // for this behavior, that would be nice --- it's what GCC and
7281      // EDG do, and it seems like a reasonable intent, but the spec
7282      // really only says that checks for unqualified existing
7283      // declarations should stop at the nearest enclosing namespace,
7284      // not that they should only consider the nearest enclosing
7285      // namespace.
7286      while (DC->isRecord())
7287        DC = DC->getParent();
7288
7289      LookupQualifiedName(Previous, DC);
7290
7291      // TODO: decide what we think about using declarations.
7292      if (isLocal || !Previous.empty())
7293        break;
7294
7295      if (isTemplateId) {
7296        if (isa<TranslationUnitDecl>(DC)) break;
7297      } else {
7298        if (DC->isFileContext()) break;
7299      }
7300      DC = DC->getParent();
7301    }
7302
7303    // C++ [class.friend]p1: A friend of a class is a function or
7304    //   class that is not a member of the class . . .
7305    // C++0x changes this for both friend types and functions.
7306    // Most C++ 98 compilers do seem to give an error here, so
7307    // we do, too.
7308    if (!Previous.empty() && DC->Equals(CurContext)
7309        && !getLangOptions().CPlusPlus0x)
7310      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7311
7312    DCScope = getScopeForDeclContext(S, DC);
7313
7314  //   - There's a non-dependent scope specifier, in which case we
7315  //     compute it and do a previous lookup there for a function
7316  //     or function template.
7317  } else if (!SS.getScopeRep()->isDependent()) {
7318    DC = computeDeclContext(SS);
7319    if (!DC) return 0;
7320
7321    if (RequireCompleteDeclContext(SS, DC)) return 0;
7322
7323    LookupQualifiedName(Previous, DC);
7324
7325    // Ignore things found implicitly in the wrong scope.
7326    // TODO: better diagnostics for this case.  Suggesting the right
7327    // qualified scope would be nice...
7328    LookupResult::Filter F = Previous.makeFilter();
7329    while (F.hasNext()) {
7330      NamedDecl *D = F.next();
7331      if (!DC->InEnclosingNamespaceSetOf(
7332              D->getDeclContext()->getRedeclContext()))
7333        F.erase();
7334    }
7335    F.done();
7336
7337    if (Previous.empty()) {
7338      D.setInvalidType();
7339      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7340      return 0;
7341    }
7342
7343    // C++ [class.friend]p1: A friend of a class is a function or
7344    //   class that is not a member of the class . . .
7345    if (DC->Equals(CurContext))
7346      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7347
7348  //   - There's a scope specifier that does not match any template
7349  //     parameter lists, in which case we use some arbitrary context,
7350  //     create a method or method template, and wait for instantiation.
7351  //   - There's a scope specifier that does match some template
7352  //     parameter lists, which we don't handle right now.
7353  } else {
7354    DC = CurContext;
7355    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7356  }
7357
7358  if (!DC->isRecord()) {
7359    // This implies that it has to be an operator or function.
7360    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7361        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7362        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7363      Diag(Loc, diag::err_introducing_special_friend) <<
7364        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7365         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7366      return 0;
7367    }
7368  }
7369
7370  bool Redeclaration = false;
7371  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7372                                          move(TemplateParams),
7373                                          IsDefinition,
7374                                          Redeclaration);
7375  if (!ND) return 0;
7376
7377  assert(ND->getDeclContext() == DC);
7378  assert(ND->getLexicalDeclContext() == CurContext);
7379
7380  // Add the function declaration to the appropriate lookup tables,
7381  // adjusting the redeclarations list as necessary.  We don't
7382  // want to do this yet if the friending class is dependent.
7383  //
7384  // Also update the scope-based lookup if the target context's
7385  // lookup context is in lexical scope.
7386  if (!CurContext->isDependentContext()) {
7387    DC = DC->getRedeclContext();
7388    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7389    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7390      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7391  }
7392
7393  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7394                                       D.getIdentifierLoc(), ND,
7395                                       DS.getFriendSpecLoc());
7396  FrD->setAccess(AS_public);
7397  CurContext->addDecl(FrD);
7398
7399  if (ND->isInvalidDecl())
7400    FrD->setInvalidDecl();
7401  else {
7402    FunctionDecl *FD;
7403    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7404      FD = FTD->getTemplatedDecl();
7405    else
7406      FD = cast<FunctionDecl>(ND);
7407
7408    // Mark templated-scope function declarations as unsupported.
7409    if (FD->getNumTemplateParameterLists())
7410      FrD->setUnsupportedFriend(true);
7411  }
7412
7413  return ND;
7414}
7415
7416void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7417  AdjustDeclIfTemplate(Dcl);
7418
7419  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7420  if (!Fn) {
7421    Diag(DelLoc, diag::err_deleted_non_function);
7422    return;
7423  }
7424  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7425    Diag(DelLoc, diag::err_deleted_decl_not_first);
7426    Diag(Prev->getLocation(), diag::note_previous_declaration);
7427    // If the declaration wasn't the first, we delete the function anyway for
7428    // recovery.
7429  }
7430  Fn->setDeleted();
7431}
7432
7433static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7434  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7435    Stmt *SubStmt = *CI;
7436    if (!SubStmt)
7437      continue;
7438    if (isa<ReturnStmt>(SubStmt))
7439      Self.Diag(SubStmt->getSourceRange().getBegin(),
7440           diag::err_return_in_constructor_handler);
7441    if (!isa<Expr>(SubStmt))
7442      SearchForReturnInStmt(Self, SubStmt);
7443  }
7444}
7445
7446void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7447  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7448    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7449    SearchForReturnInStmt(*this, Handler);
7450  }
7451}
7452
7453bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7454                                             const CXXMethodDecl *Old) {
7455  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7456  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7457
7458  if (Context.hasSameType(NewTy, OldTy) ||
7459      NewTy->isDependentType() || OldTy->isDependentType())
7460    return false;
7461
7462  // Check if the return types are covariant
7463  QualType NewClassTy, OldClassTy;
7464
7465  /// Both types must be pointers or references to classes.
7466  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7467    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7468      NewClassTy = NewPT->getPointeeType();
7469      OldClassTy = OldPT->getPointeeType();
7470    }
7471  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7472    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7473      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7474        NewClassTy = NewRT->getPointeeType();
7475        OldClassTy = OldRT->getPointeeType();
7476      }
7477    }
7478  }
7479
7480  // The return types aren't either both pointers or references to a class type.
7481  if (NewClassTy.isNull()) {
7482    Diag(New->getLocation(),
7483         diag::err_different_return_type_for_overriding_virtual_function)
7484      << New->getDeclName() << NewTy << OldTy;
7485    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7486
7487    return true;
7488  }
7489
7490  // C++ [class.virtual]p6:
7491  //   If the return type of D::f differs from the return type of B::f, the
7492  //   class type in the return type of D::f shall be complete at the point of
7493  //   declaration of D::f or shall be the class type D.
7494  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7495    if (!RT->isBeingDefined() &&
7496        RequireCompleteType(New->getLocation(), NewClassTy,
7497                            PDiag(diag::err_covariant_return_incomplete)
7498                              << New->getDeclName()))
7499    return true;
7500  }
7501
7502  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7503    // Check if the new class derives from the old class.
7504    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7505      Diag(New->getLocation(),
7506           diag::err_covariant_return_not_derived)
7507      << New->getDeclName() << NewTy << OldTy;
7508      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7509      return true;
7510    }
7511
7512    // Check if we the conversion from derived to base is valid.
7513    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7514                    diag::err_covariant_return_inaccessible_base,
7515                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7516                    // FIXME: Should this point to the return type?
7517                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7518      // FIXME: this note won't trigger for delayed access control
7519      // diagnostics, and it's impossible to get an undelayed error
7520      // here from access control during the original parse because
7521      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7522      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7523      return true;
7524    }
7525  }
7526
7527  // The qualifiers of the return types must be the same.
7528  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7529    Diag(New->getLocation(),
7530         diag::err_covariant_return_type_different_qualifications)
7531    << New->getDeclName() << NewTy << OldTy;
7532    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7533    return true;
7534  };
7535
7536
7537  // The new class type must have the same or less qualifiers as the old type.
7538  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7539    Diag(New->getLocation(),
7540         diag::err_covariant_return_type_class_type_more_qualified)
7541    << New->getDeclName() << NewTy << OldTy;
7542    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7543    return true;
7544  };
7545
7546  return false;
7547}
7548
7549/// \brief Mark the given method pure.
7550///
7551/// \param Method the method to be marked pure.
7552///
7553/// \param InitRange the source range that covers the "0" initializer.
7554bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7555  SourceLocation EndLoc = InitRange.getEnd();
7556  if (EndLoc.isValid())
7557    Method->setRangeEnd(EndLoc);
7558
7559  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7560    Method->setPure();
7561    return false;
7562  }
7563
7564  if (!Method->isInvalidDecl())
7565    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7566      << Method->getDeclName() << InitRange;
7567  return true;
7568}
7569
7570/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7571/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7572/// is a fresh scope pushed for just this purpose.
7573///
7574/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7575/// static data member of class X, names should be looked up in the scope of
7576/// class X.
7577void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7578  // If there is no declaration, there was an error parsing it.
7579  if (D == 0) return;
7580
7581  // We should only get called for declarations with scope specifiers, like:
7582  //   int foo::bar;
7583  assert(D->isOutOfLine());
7584  EnterDeclaratorContext(S, D->getDeclContext());
7585}
7586
7587/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7588/// initializer for the out-of-line declaration 'D'.
7589void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7590  // If there is no declaration, there was an error parsing it.
7591  if (D == 0) return;
7592
7593  assert(D->isOutOfLine());
7594  ExitDeclaratorContext(S);
7595}
7596
7597/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7598/// C++ if/switch/while/for statement.
7599/// e.g: "if (int x = f()) {...}"
7600DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7601  // C++ 6.4p2:
7602  // The declarator shall not specify a function or an array.
7603  // The type-specifier-seq shall not contain typedef and shall not declare a
7604  // new class or enumeration.
7605  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7606         "Parser allowed 'typedef' as storage class of condition decl.");
7607
7608  TagDecl *OwnedTag = 0;
7609  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7610  QualType Ty = TInfo->getType();
7611
7612  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7613                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7614                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7615    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7616      << D.getSourceRange();
7617    return DeclResult();
7618  } else if (OwnedTag && OwnedTag->isDefinition()) {
7619    // The type-specifier-seq shall not declare a new class or enumeration.
7620    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7621  }
7622
7623  Decl *Dcl = ActOnDeclarator(S, D);
7624  if (!Dcl)
7625    return DeclResult();
7626
7627  return Dcl;
7628}
7629
7630void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7631                          bool DefinitionRequired) {
7632  // Ignore any vtable uses in unevaluated operands or for classes that do
7633  // not have a vtable.
7634  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7635      CurContext->isDependentContext() ||
7636      ExprEvalContexts.back().Context == Unevaluated)
7637    return;
7638
7639  // Try to insert this class into the map.
7640  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7641  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7642    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7643  if (!Pos.second) {
7644    // If we already had an entry, check to see if we are promoting this vtable
7645    // to required a definition. If so, we need to reappend to the VTableUses
7646    // list, since we may have already processed the first entry.
7647    if (DefinitionRequired && !Pos.first->second) {
7648      Pos.first->second = true;
7649    } else {
7650      // Otherwise, we can early exit.
7651      return;
7652    }
7653  }
7654
7655  // Local classes need to have their virtual members marked
7656  // immediately. For all other classes, we mark their virtual members
7657  // at the end of the translation unit.
7658  if (Class->isLocalClass())
7659    MarkVirtualMembersReferenced(Loc, Class);
7660  else
7661    VTableUses.push_back(std::make_pair(Class, Loc));
7662}
7663
7664bool Sema::DefineUsedVTables() {
7665  if (VTableUses.empty())
7666    return false;
7667
7668  // Note: The VTableUses vector could grow as a result of marking
7669  // the members of a class as "used", so we check the size each
7670  // time through the loop and prefer indices (with are stable) to
7671  // iterators (which are not).
7672  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7673    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7674    if (!Class)
7675      continue;
7676
7677    SourceLocation Loc = VTableUses[I].second;
7678
7679    // If this class has a key function, but that key function is
7680    // defined in another translation unit, we don't need to emit the
7681    // vtable even though we're using it.
7682    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7683    if (KeyFunction && !KeyFunction->hasBody()) {
7684      switch (KeyFunction->getTemplateSpecializationKind()) {
7685      case TSK_Undeclared:
7686      case TSK_ExplicitSpecialization:
7687      case TSK_ExplicitInstantiationDeclaration:
7688        // The key function is in another translation unit.
7689        continue;
7690
7691      case TSK_ExplicitInstantiationDefinition:
7692      case TSK_ImplicitInstantiation:
7693        // We will be instantiating the key function.
7694        break;
7695      }
7696    } else if (!KeyFunction) {
7697      // If we have a class with no key function that is the subject
7698      // of an explicit instantiation declaration, suppress the
7699      // vtable; it will live with the explicit instantiation
7700      // definition.
7701      bool IsExplicitInstantiationDeclaration
7702        = Class->getTemplateSpecializationKind()
7703                                      == TSK_ExplicitInstantiationDeclaration;
7704      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7705                                 REnd = Class->redecls_end();
7706           R != REnd; ++R) {
7707        TemplateSpecializationKind TSK
7708          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7709        if (TSK == TSK_ExplicitInstantiationDeclaration)
7710          IsExplicitInstantiationDeclaration = true;
7711        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7712          IsExplicitInstantiationDeclaration = false;
7713          break;
7714        }
7715      }
7716
7717      if (IsExplicitInstantiationDeclaration)
7718        continue;
7719    }
7720
7721    // Mark all of the virtual members of this class as referenced, so
7722    // that we can build a vtable. Then, tell the AST consumer that a
7723    // vtable for this class is required.
7724    MarkVirtualMembersReferenced(Loc, Class);
7725    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7726    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7727
7728    // Optionally warn if we're emitting a weak vtable.
7729    if (Class->getLinkage() == ExternalLinkage &&
7730        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7731      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7732        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7733    }
7734  }
7735  VTableUses.clear();
7736
7737  return true;
7738}
7739
7740void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7741                                        const CXXRecordDecl *RD) {
7742  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7743       e = RD->method_end(); i != e; ++i) {
7744    CXXMethodDecl *MD = *i;
7745
7746    // C++ [basic.def.odr]p2:
7747    //   [...] A virtual member function is used if it is not pure. [...]
7748    if (MD->isVirtual() && !MD->isPure())
7749      MarkDeclarationReferenced(Loc, MD);
7750  }
7751
7752  // Only classes that have virtual bases need a VTT.
7753  if (RD->getNumVBases() == 0)
7754    return;
7755
7756  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7757           e = RD->bases_end(); i != e; ++i) {
7758    const CXXRecordDecl *Base =
7759        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7760    if (Base->getNumVBases() == 0)
7761      continue;
7762    MarkVirtualMembersReferenced(Loc, Base);
7763  }
7764}
7765
7766/// SetIvarInitializers - This routine builds initialization ASTs for the
7767/// Objective-C implementation whose ivars need be initialized.
7768void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7769  if (!getLangOptions().CPlusPlus)
7770    return;
7771  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7772    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7773    CollectIvarsToConstructOrDestruct(OID, ivars);
7774    if (ivars.empty())
7775      return;
7776    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7777    for (unsigned i = 0; i < ivars.size(); i++) {
7778      FieldDecl *Field = ivars[i];
7779      if (Field->isInvalidDecl())
7780        continue;
7781
7782      CXXCtorInitializer *Member;
7783      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7784      InitializationKind InitKind =
7785        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7786
7787      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7788      ExprResult MemberInit =
7789        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7790      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7791      // Note, MemberInit could actually come back empty if no initialization
7792      // is required (e.g., because it would call a trivial default constructor)
7793      if (!MemberInit.get() || MemberInit.isInvalid())
7794        continue;
7795
7796      Member =
7797        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7798                                         SourceLocation(),
7799                                         MemberInit.takeAs<Expr>(),
7800                                         SourceLocation());
7801      AllToInit.push_back(Member);
7802
7803      // Be sure that the destructor is accessible and is marked as referenced.
7804      if (const RecordType *RecordTy
7805                  = Context.getBaseElementType(Field->getType())
7806                                                        ->getAs<RecordType>()) {
7807                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7808        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7809          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7810          CheckDestructorAccess(Field->getLocation(), Destructor,
7811                            PDiag(diag::err_access_dtor_ivar)
7812                              << Context.getBaseElementType(Field->getType()));
7813        }
7814      }
7815    }
7816    ObjCImplementation->setIvarInitializers(Context,
7817                                            AllToInit.data(), AllToInit.size());
7818  }
7819}
7820