SemaDeclCXX.cpp revision 99e9b4d172f6877e6ba5ebe75bb8238721f5e01c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclVisitor.h"
20#include "clang/AST/TypeOrdering.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Template.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Lex/Preprocessor.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Support/Compiler.h"
28#include <algorithm> // for std::equal
29#include <map>
30#include <set>
31
32using namespace clang;
33
34//===----------------------------------------------------------------------===//
35// CheckDefaultArgumentVisitor
36//===----------------------------------------------------------------------===//
37
38namespace {
39  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
40  /// the default argument of a parameter to determine whether it
41  /// contains any ill-formed subexpressions. For example, this will
42  /// diagnose the use of local variables or parameters within the
43  /// default argument expression.
44  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
45    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
46    Expr *DefaultArg;
47    Sema *S;
48
49  public:
50    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
51      : DefaultArg(defarg), S(s) {}
52
53    bool VisitExpr(Expr *Node);
54    bool VisitDeclRefExpr(DeclRefExpr *DRE);
55    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
56  };
57
58  /// VisitExpr - Visit all of the children of this expression.
59  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
60    bool IsInvalid = false;
61    for (Stmt::child_iterator I = Node->child_begin(),
62         E = Node->child_end(); I != E; ++I)
63      IsInvalid |= Visit(*I);
64    return IsInvalid;
65  }
66
67  /// VisitDeclRefExpr - Visit a reference to a declaration, to
68  /// determine whether this declaration can be used in the default
69  /// argument expression.
70  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
71    NamedDecl *Decl = DRE->getDecl();
72    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
73      // C++ [dcl.fct.default]p9
74      //   Default arguments are evaluated each time the function is
75      //   called. The order of evaluation of function arguments is
76      //   unspecified. Consequently, parameters of a function shall not
77      //   be used in default argument expressions, even if they are not
78      //   evaluated. Parameters of a function declared before a default
79      //   argument expression are in scope and can hide namespace and
80      //   class member names.
81      return S->Diag(DRE->getSourceRange().getBegin(),
82                     diag::err_param_default_argument_references_param)
83         << Param->getDeclName() << DefaultArg->getSourceRange();
84    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p7
86      //   Local variables shall not be used in default argument
87      //   expressions.
88      if (VDecl->isBlockVarDecl())
89        return S->Diag(DRE->getSourceRange().getBegin(),
90                       diag::err_param_default_argument_references_local)
91          << VDecl->getDeclName() << DefaultArg->getSourceRange();
92    }
93
94    return false;
95  }
96
97  /// VisitCXXThisExpr - Visit a C++ "this" expression.
98  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
99    // C++ [dcl.fct.default]p8:
100    //   The keyword this shall not be used in a default argument of a
101    //   member function.
102    return S->Diag(ThisE->getSourceRange().getBegin(),
103                   diag::err_param_default_argument_references_this)
104               << ThisE->getSourceRange();
105  }
106}
107
108bool
109Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
110                              SourceLocation EqualLoc) {
111  QualType ParamType = Param->getType();
112
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
128                            Param->getDeclName(), /*DirectInit=*/false))
129    return true;
130
131  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
132
133  // Okay: add the default argument to the parameter
134  Param->setDefaultArg(Arg);
135
136  DefaultArg.release();
137
138  return false;
139}
140
141/// ActOnParamDefaultArgument - Check whether the default argument
142/// provided for a function parameter is well-formed. If so, attach it
143/// to the parameter declaration.
144void
145Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
146                                ExprArg defarg) {
147  if (!param || !defarg.get())
148    return;
149
150  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
151  UnparsedDefaultArgLocs.erase(Param);
152
153  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
154  QualType ParamType = Param->getType();
155
156  // Default arguments are only permitted in C++
157  if (!getLangOptions().CPlusPlus) {
158    Diag(EqualLoc, diag::err_param_default_argument)
159      << DefaultArg->getSourceRange();
160    Param->setInvalidDecl();
161    return;
162  }
163
164  // Check that the default argument is well-formed
165  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
166  if (DefaultArgChecker.Visit(DefaultArg.get())) {
167    Param->setInvalidDecl();
168    return;
169  }
170
171  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
172}
173
174/// ActOnParamUnparsedDefaultArgument - We've seen a default
175/// argument for a function parameter, but we can't parse it yet
176/// because we're inside a class definition. Note that this default
177/// argument will be parsed later.
178void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
179                                             SourceLocation EqualLoc,
180                                             SourceLocation ArgLoc) {
181  if (!param)
182    return;
183
184  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
185  if (Param)
186    Param->setUnparsedDefaultArg();
187
188  UnparsedDefaultArgLocs[Param] = ArgLoc;
189}
190
191/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
192/// the default argument for the parameter param failed.
193void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
194  if (!param)
195    return;
196
197  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
198
199  Param->setInvalidDecl();
200
201  UnparsedDefaultArgLocs.erase(Param);
202}
203
204/// CheckExtraCXXDefaultArguments - Check for any extra default
205/// arguments in the declarator, which is not a function declaration
206/// or definition and therefore is not permitted to have default
207/// arguments. This routine should be invoked for every declarator
208/// that is not a function declaration or definition.
209void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
210  // C++ [dcl.fct.default]p3
211  //   A default argument expression shall be specified only in the
212  //   parameter-declaration-clause of a function declaration or in a
213  //   template-parameter (14.1). It shall not be specified for a
214  //   parameter pack. If it is specified in a
215  //   parameter-declaration-clause, it shall not occur within a
216  //   declarator or abstract-declarator of a parameter-declaration.
217  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
218    DeclaratorChunk &chunk = D.getTypeObject(i);
219    if (chunk.Kind == DeclaratorChunk::Function) {
220      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
221        ParmVarDecl *Param =
222          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
223        if (Param->hasUnparsedDefaultArg()) {
224          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
225          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
226            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
227          delete Toks;
228          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
229        } else if (Param->getDefaultArg()) {
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << Param->getDefaultArg()->getSourceRange();
232          Param->setDefaultArg(0);
233        }
234      }
235    }
236  }
237}
238
239// MergeCXXFunctionDecl - Merge two declarations of the same C++
240// function, once we already know that they have the same
241// type. Subroutine of MergeFunctionDecl. Returns true if there was an
242// error, false otherwise.
243bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
244  bool Invalid = false;
245
246  // C++ [dcl.fct.default]p4:
247  //   For non-template functions, default arguments can be added in
248  //   later declarations of a function in the same
249  //   scope. Declarations in different scopes have completely
250  //   distinct sets of default arguments. That is, declarations in
251  //   inner scopes do not acquire default arguments from
252  //   declarations in outer scopes, and vice versa. In a given
253  //   function declaration, all parameters subsequent to a
254  //   parameter with a default argument shall have default
255  //   arguments supplied in this or previous declarations. A
256  //   default argument shall not be redefined by a later
257  //   declaration (not even to the same value).
258  //
259  // C++ [dcl.fct.default]p6:
260  //   Except for member functions of class templates, the default arguments
261  //   in a member function definition that appears outside of the class
262  //   definition are added to the set of default arguments provided by the
263  //   member function declaration in the class definition.
264  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
265    ParmVarDecl *OldParam = Old->getParamDecl(p);
266    ParmVarDecl *NewParam = New->getParamDecl(p);
267
268    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
269      // FIXME: If the parameter doesn't have an identifier then the location
270      // points to the '=' which means that the fixit hint won't remove any
271      // extra spaces between the type and the '='.
272      SourceLocation Begin = NewParam->getLocation();
273      if (NewParam->getIdentifier())
274        Begin = PP.getLocForEndOfToken(Begin);
275
276      Diag(NewParam->getLocation(),
277           diag::err_param_default_argument_redefinition)
278        << NewParam->getDefaultArgRange()
279        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
280                                                        NewParam->getLocEnd()));
281
282      // Look for the function declaration where the default argument was
283      // actually written, which may be a declaration prior to Old.
284      for (FunctionDecl *Older = Old->getPreviousDeclaration();
285           Older; Older = Older->getPreviousDeclaration()) {
286        if (!Older->getParamDecl(p)->hasDefaultArg())
287          break;
288
289        OldParam = Older->getParamDecl(p);
290      }
291
292      Diag(OldParam->getLocation(), diag::note_previous_definition)
293        << OldParam->getDefaultArgRange();
294      Invalid = true;
295    } else if (OldParam->hasDefaultArg()) {
296      // Merge the old default argument into the new parameter
297      if (OldParam->hasUninstantiatedDefaultArg())
298        NewParam->setUninstantiatedDefaultArg(
299                                      OldParam->getUninstantiatedDefaultArg());
300      else
301        NewParam->setDefaultArg(OldParam->getDefaultArg());
302    } else if (NewParam->hasDefaultArg()) {
303      if (New->getDescribedFunctionTemplate()) {
304        // Paragraph 4, quoted above, only applies to non-template functions.
305        Diag(NewParam->getLocation(),
306             diag::err_param_default_argument_template_redecl)
307          << NewParam->getDefaultArgRange();
308        Diag(Old->getLocation(), diag::note_template_prev_declaration)
309          << false;
310      } else if (New->getTemplateSpecializationKind()
311                   != TSK_ImplicitInstantiation &&
312                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
313        // C++ [temp.expr.spec]p21:
314        //   Default function arguments shall not be specified in a declaration
315        //   or a definition for one of the following explicit specializations:
316        //     - the explicit specialization of a function template;
317        //     - the explicit specialization of a member function template;
318        //     - the explicit specialization of a member function of a class
319        //       template where the class template specialization to which the
320        //       member function specialization belongs is implicitly
321        //       instantiated.
322        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
323          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
324          << New->getDeclName()
325          << NewParam->getDefaultArgRange();
326      } else if (New->getDeclContext()->isDependentContext()) {
327        // C++ [dcl.fct.default]p6 (DR217):
328        //   Default arguments for a member function of a class template shall
329        //   be specified on the initial declaration of the member function
330        //   within the class template.
331        //
332        // Reading the tea leaves a bit in DR217 and its reference to DR205
333        // leads me to the conclusion that one cannot add default function
334        // arguments for an out-of-line definition of a member function of a
335        // dependent type.
336        int WhichKind = 2;
337        if (CXXRecordDecl *Record
338              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
339          if (Record->getDescribedClassTemplate())
340            WhichKind = 0;
341          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
342            WhichKind = 1;
343          else
344            WhichKind = 2;
345        }
346
347        Diag(NewParam->getLocation(),
348             diag::err_param_default_argument_member_template_redecl)
349          << WhichKind
350          << NewParam->getDefaultArgRange();
351      }
352    }
353  }
354
355  if (CheckEquivalentExceptionSpec(
356          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
357          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
358    Invalid = true;
359  }
360
361  return Invalid;
362}
363
364/// CheckCXXDefaultArguments - Verify that the default arguments for a
365/// function declaration are well-formed according to C++
366/// [dcl.fct.default].
367void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
368  unsigned NumParams = FD->getNumParams();
369  unsigned p;
370
371  // Find first parameter with a default argument
372  for (p = 0; p < NumParams; ++p) {
373    ParmVarDecl *Param = FD->getParamDecl(p);
374    if (Param->hasDefaultArg())
375      break;
376  }
377
378  // C++ [dcl.fct.default]p4:
379  //   In a given function declaration, all parameters
380  //   subsequent to a parameter with a default argument shall
381  //   have default arguments supplied in this or previous
382  //   declarations. A default argument shall not be redefined
383  //   by a later declaration (not even to the same value).
384  unsigned LastMissingDefaultArg = 0;
385  for (; p < NumParams; ++p) {
386    ParmVarDecl *Param = FD->getParamDecl(p);
387    if (!Param->hasDefaultArg()) {
388      if (Param->isInvalidDecl())
389        /* We already complained about this parameter. */;
390      else if (Param->getIdentifier())
391        Diag(Param->getLocation(),
392             diag::err_param_default_argument_missing_name)
393          << Param->getIdentifier();
394      else
395        Diag(Param->getLocation(),
396             diag::err_param_default_argument_missing);
397
398      LastMissingDefaultArg = p;
399    }
400  }
401
402  if (LastMissingDefaultArg > 0) {
403    // Some default arguments were missing. Clear out all of the
404    // default arguments up to (and including) the last missing
405    // default argument, so that we leave the function parameters
406    // in a semantically valid state.
407    for (p = 0; p <= LastMissingDefaultArg; ++p) {
408      ParmVarDecl *Param = FD->getParamDecl(p);
409      if (Param->hasDefaultArg()) {
410        if (!Param->hasUnparsedDefaultArg())
411          Param->getDefaultArg()->Destroy(Context);
412        Param->setDefaultArg(0);
413      }
414    }
415  }
416}
417
418/// isCurrentClassName - Determine whether the identifier II is the
419/// name of the class type currently being defined. In the case of
420/// nested classes, this will only return true if II is the name of
421/// the innermost class.
422bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
423                              const CXXScopeSpec *SS) {
424  CXXRecordDecl *CurDecl;
425  if (SS && SS->isSet() && !SS->isInvalid()) {
426    DeclContext *DC = computeDeclContext(*SS, true);
427    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
428  } else
429    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
430
431  if (CurDecl)
432    return &II == CurDecl->getIdentifier();
433  else
434    return false;
435}
436
437/// \brief Check the validity of a C++ base class specifier.
438///
439/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
440/// and returns NULL otherwise.
441CXXBaseSpecifier *
442Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
443                         SourceRange SpecifierRange,
444                         bool Virtual, AccessSpecifier Access,
445                         QualType BaseType,
446                         SourceLocation BaseLoc) {
447  // C++ [class.union]p1:
448  //   A union shall not have base classes.
449  if (Class->isUnion()) {
450    Diag(Class->getLocation(), diag::err_base_clause_on_union)
451      << SpecifierRange;
452    return 0;
453  }
454
455  if (BaseType->isDependentType())
456    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
457                                Class->getTagKind() == RecordDecl::TK_class,
458                                Access, BaseType);
459
460  // Base specifiers must be record types.
461  if (!BaseType->isRecordType()) {
462    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
463    return 0;
464  }
465
466  // C++ [class.union]p1:
467  //   A union shall not be used as a base class.
468  if (BaseType->isUnionType()) {
469    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.derived]p2:
474  //   The class-name in a base-specifier shall not be an incompletely
475  //   defined class.
476  if (RequireCompleteType(BaseLoc, BaseType,
477                          PDiag(diag::err_incomplete_base_class)
478                            << SpecifierRange))
479    return 0;
480
481  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
482  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
483  assert(BaseDecl && "Record type has no declaration");
484  BaseDecl = BaseDecl->getDefinition(Context);
485  assert(BaseDecl && "Base type is not incomplete, but has no definition");
486  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
487  assert(CXXBaseDecl && "Base type is not a C++ type");
488  if (!CXXBaseDecl->isEmpty())
489    Class->setEmpty(false);
490  if (CXXBaseDecl->isPolymorphic())
491    Class->setPolymorphic(true);
492  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
493  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
494    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
495    Diag(CXXBaseDecl->getLocation(), diag::note_previous_class_decl)
496      << BaseType.getAsString();
497    return 0;
498  }
499
500  // C++ [dcl.init.aggr]p1:
501  //   An aggregate is [...] a class with [...] no base classes [...].
502  Class->setAggregate(false);
503  Class->setPOD(false);
504
505  if (Virtual) {
506    // C++ [class.ctor]p5:
507    //   A constructor is trivial if its class has no virtual base classes.
508    Class->setHasTrivialConstructor(false);
509
510    // C++ [class.copy]p6:
511    //   A copy constructor is trivial if its class has no virtual base classes.
512    Class->setHasTrivialCopyConstructor(false);
513
514    // C++ [class.copy]p11:
515    //   A copy assignment operator is trivial if its class has no virtual
516    //   base classes.
517    Class->setHasTrivialCopyAssignment(false);
518
519    // C++0x [meta.unary.prop] is_empty:
520    //    T is a class type, but not a union type, with ... no virtual base
521    //    classes
522    Class->setEmpty(false);
523  } else {
524    // C++ [class.ctor]p5:
525    //   A constructor is trivial if all the direct base classes of its
526    //   class have trivial constructors.
527    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
528      Class->setHasTrivialConstructor(false);
529
530    // C++ [class.copy]p6:
531    //   A copy constructor is trivial if all the direct base classes of its
532    //   class have trivial copy constructors.
533    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
534      Class->setHasTrivialCopyConstructor(false);
535
536    // C++ [class.copy]p11:
537    //   A copy assignment operator is trivial if all the direct base classes
538    //   of its class have trivial copy assignment operators.
539    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
540      Class->setHasTrivialCopyAssignment(false);
541  }
542
543  // C++ [class.ctor]p3:
544  //   A destructor is trivial if all the direct base classes of its class
545  //   have trivial destructors.
546  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
547    Class->setHasTrivialDestructor(false);
548
549  // Create the base specifier.
550  // FIXME: Allocate via ASTContext?
551  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
552                              Class->getTagKind() == RecordDecl::TK_class,
553                              Access, BaseType);
554}
555
556/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
557/// one entry in the base class list of a class specifier, for
558/// example:
559///    class foo : public bar, virtual private baz {
560/// 'public bar' and 'virtual private baz' are each base-specifiers.
561Sema::BaseResult
562Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
563                         bool Virtual, AccessSpecifier Access,
564                         TypeTy *basetype, SourceLocation BaseLoc) {
565  if (!classdecl)
566    return true;
567
568  AdjustDeclIfTemplate(classdecl);
569  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
570  QualType BaseType = GetTypeFromParser(basetype);
571  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
572                                                      Virtual, Access,
573                                                      BaseType, BaseLoc))
574    return BaseSpec;
575
576  return true;
577}
578
579/// \brief Performs the actual work of attaching the given base class
580/// specifiers to a C++ class.
581bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
582                                unsigned NumBases) {
583 if (NumBases == 0)
584    return false;
585
586  // Used to keep track of which base types we have already seen, so
587  // that we can properly diagnose redundant direct base types. Note
588  // that the key is always the unqualified canonical type of the base
589  // class.
590  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
591
592  // Copy non-redundant base specifiers into permanent storage.
593  unsigned NumGoodBases = 0;
594  bool Invalid = false;
595  for (unsigned idx = 0; idx < NumBases; ++idx) {
596    QualType NewBaseType
597      = Context.getCanonicalType(Bases[idx]->getType());
598    NewBaseType = NewBaseType.getLocalUnqualifiedType();
599
600    if (KnownBaseTypes[NewBaseType]) {
601      // C++ [class.mi]p3:
602      //   A class shall not be specified as a direct base class of a
603      //   derived class more than once.
604      Diag(Bases[idx]->getSourceRange().getBegin(),
605           diag::err_duplicate_base_class)
606        << KnownBaseTypes[NewBaseType]->getType()
607        << Bases[idx]->getSourceRange();
608
609      // Delete the duplicate base class specifier; we're going to
610      // overwrite its pointer later.
611      Context.Deallocate(Bases[idx]);
612
613      Invalid = true;
614    } else {
615      // Okay, add this new base class.
616      KnownBaseTypes[NewBaseType] = Bases[idx];
617      Bases[NumGoodBases++] = Bases[idx];
618    }
619  }
620
621  // Attach the remaining base class specifiers to the derived class.
622  Class->setBases(Context, Bases, NumGoodBases);
623
624  // Delete the remaining (good) base class specifiers, since their
625  // data has been copied into the CXXRecordDecl.
626  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
627    Context.Deallocate(Bases[idx]);
628
629  return Invalid;
630}
631
632/// ActOnBaseSpecifiers - Attach the given base specifiers to the
633/// class, after checking whether there are any duplicate base
634/// classes.
635void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
636                               unsigned NumBases) {
637  if (!ClassDecl || !Bases || !NumBases)
638    return;
639
640  AdjustDeclIfTemplate(ClassDecl);
641  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
642                       (CXXBaseSpecifier**)(Bases), NumBases);
643}
644
645/// \brief Determine whether the type \p Derived is a C++ class that is
646/// derived from the type \p Base.
647bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
648  if (!getLangOptions().CPlusPlus)
649    return false;
650
651  const RecordType *DerivedRT = Derived->getAs<RecordType>();
652  if (!DerivedRT)
653    return false;
654
655  const RecordType *BaseRT = Base->getAs<RecordType>();
656  if (!BaseRT)
657    return false;
658
659  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
660  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
661  return DerivedRD->isDerivedFrom(BaseRD);
662}
663
664/// \brief Determine whether the type \p Derived is a C++ class that is
665/// derived from the type \p Base.
666bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
667  if (!getLangOptions().CPlusPlus)
668    return false;
669
670  const RecordType *DerivedRT = Derived->getAs<RecordType>();
671  if (!DerivedRT)
672    return false;
673
674  const RecordType *BaseRT = Base->getAs<RecordType>();
675  if (!BaseRT)
676    return false;
677
678  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
679  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
680  return DerivedRD->isDerivedFrom(BaseRD, Paths);
681}
682
683/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
684/// conversion (where Derived and Base are class types) is
685/// well-formed, meaning that the conversion is unambiguous (and
686/// that all of the base classes are accessible). Returns true
687/// and emits a diagnostic if the code is ill-formed, returns false
688/// otherwise. Loc is the location where this routine should point to
689/// if there is an error, and Range is the source range to highlight
690/// if there is an error.
691bool
692Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
693                                   unsigned InaccessibleBaseID,
694                                   unsigned AmbigiousBaseConvID,
695                                   SourceLocation Loc, SourceRange Range,
696                                   DeclarationName Name) {
697  // First, determine whether the path from Derived to Base is
698  // ambiguous. This is slightly more expensive than checking whether
699  // the Derived to Base conversion exists, because here we need to
700  // explore multiple paths to determine if there is an ambiguity.
701  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
702                     /*DetectVirtual=*/false);
703  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
704  assert(DerivationOkay &&
705         "Can only be used with a derived-to-base conversion");
706  (void)DerivationOkay;
707
708  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
709    if (InaccessibleBaseID == 0)
710      return false;
711    // Check that the base class can be accessed.
712    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
713                                Name);
714  }
715
716  // We know that the derived-to-base conversion is ambiguous, and
717  // we're going to produce a diagnostic. Perform the derived-to-base
718  // search just one more time to compute all of the possible paths so
719  // that we can print them out. This is more expensive than any of
720  // the previous derived-to-base checks we've done, but at this point
721  // performance isn't as much of an issue.
722  Paths.clear();
723  Paths.setRecordingPaths(true);
724  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
725  assert(StillOkay && "Can only be used with a derived-to-base conversion");
726  (void)StillOkay;
727
728  // Build up a textual representation of the ambiguous paths, e.g.,
729  // D -> B -> A, that will be used to illustrate the ambiguous
730  // conversions in the diagnostic. We only print one of the paths
731  // to each base class subobject.
732  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
733
734  Diag(Loc, AmbigiousBaseConvID)
735  << Derived << Base << PathDisplayStr << Range << Name;
736  return true;
737}
738
739bool
740Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
741                                   SourceLocation Loc, SourceRange Range,
742                                   bool IgnoreAccess) {
743  return CheckDerivedToBaseConversion(Derived, Base,
744                                      IgnoreAccess ? 0 :
745                                        diag::err_conv_to_inaccessible_base,
746                                      diag::err_ambiguous_derived_to_base_conv,
747                                      Loc, Range, DeclarationName());
748}
749
750
751/// @brief Builds a string representing ambiguous paths from a
752/// specific derived class to different subobjects of the same base
753/// class.
754///
755/// This function builds a string that can be used in error messages
756/// to show the different paths that one can take through the
757/// inheritance hierarchy to go from the derived class to different
758/// subobjects of a base class. The result looks something like this:
759/// @code
760/// struct D -> struct B -> struct A
761/// struct D -> struct C -> struct A
762/// @endcode
763std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
764  std::string PathDisplayStr;
765  std::set<unsigned> DisplayedPaths;
766  for (CXXBasePaths::paths_iterator Path = Paths.begin();
767       Path != Paths.end(); ++Path) {
768    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
769      // We haven't displayed a path to this particular base
770      // class subobject yet.
771      PathDisplayStr += "\n    ";
772      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
773      for (CXXBasePath::const_iterator Element = Path->begin();
774           Element != Path->end(); ++Element)
775        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
776    }
777  }
778
779  return PathDisplayStr;
780}
781
782//===----------------------------------------------------------------------===//
783// C++ class member Handling
784//===----------------------------------------------------------------------===//
785
786/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
787/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
788/// bitfield width if there is one and 'InitExpr' specifies the initializer if
789/// any.
790Sema::DeclPtrTy
791Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
792                               MultiTemplateParamsArg TemplateParameterLists,
793                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
794                               bool Deleted) {
795  const DeclSpec &DS = D.getDeclSpec();
796  DeclarationName Name = GetNameForDeclarator(D);
797  Expr *BitWidth = static_cast<Expr*>(BW);
798  Expr *Init = static_cast<Expr*>(InitExpr);
799  SourceLocation Loc = D.getIdentifierLoc();
800
801  bool isFunc = D.isFunctionDeclarator();
802
803  assert(!DS.isFriendSpecified());
804
805  // C++ 9.2p6: A member shall not be declared to have automatic storage
806  // duration (auto, register) or with the extern storage-class-specifier.
807  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
808  // data members and cannot be applied to names declared const or static,
809  // and cannot be applied to reference members.
810  switch (DS.getStorageClassSpec()) {
811    case DeclSpec::SCS_unspecified:
812    case DeclSpec::SCS_typedef:
813    case DeclSpec::SCS_static:
814      // FALL THROUGH.
815      break;
816    case DeclSpec::SCS_mutable:
817      if (isFunc) {
818        if (DS.getStorageClassSpecLoc().isValid())
819          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
820        else
821          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
822
823        // FIXME: It would be nicer if the keyword was ignored only for this
824        // declarator. Otherwise we could get follow-up errors.
825        D.getMutableDeclSpec().ClearStorageClassSpecs();
826      } else {
827        QualType T = GetTypeForDeclarator(D, S);
828        diag::kind err = static_cast<diag::kind>(0);
829        if (T->isReferenceType())
830          err = diag::err_mutable_reference;
831        else if (T.isConstQualified())
832          err = diag::err_mutable_const;
833        if (err != 0) {
834          if (DS.getStorageClassSpecLoc().isValid())
835            Diag(DS.getStorageClassSpecLoc(), err);
836          else
837            Diag(DS.getThreadSpecLoc(), err);
838          // FIXME: It would be nicer if the keyword was ignored only for this
839          // declarator. Otherwise we could get follow-up errors.
840          D.getMutableDeclSpec().ClearStorageClassSpecs();
841        }
842      }
843      break;
844    default:
845      if (DS.getStorageClassSpecLoc().isValid())
846        Diag(DS.getStorageClassSpecLoc(),
847             diag::err_storageclass_invalid_for_member);
848      else
849        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
850      D.getMutableDeclSpec().ClearStorageClassSpecs();
851  }
852
853  if (!isFunc &&
854      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
855      D.getNumTypeObjects() == 0) {
856    // Check also for this case:
857    //
858    // typedef int f();
859    // f a;
860    //
861    QualType TDType = GetTypeFromParser(DS.getTypeRep());
862    isFunc = TDType->isFunctionType();
863  }
864
865  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
866                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
867                      !isFunc);
868
869  Decl *Member;
870  if (isInstField) {
871    // FIXME: Check for template parameters!
872    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
873                         AS);
874    assert(Member && "HandleField never returns null");
875  } else {
876    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
877               .getAs<Decl>();
878    if (!Member) {
879      if (BitWidth) DeleteExpr(BitWidth);
880      return DeclPtrTy();
881    }
882
883    // Non-instance-fields can't have a bitfield.
884    if (BitWidth) {
885      if (Member->isInvalidDecl()) {
886        // don't emit another diagnostic.
887      } else if (isa<VarDecl>(Member)) {
888        // C++ 9.6p3: A bit-field shall not be a static member.
889        // "static member 'A' cannot be a bit-field"
890        Diag(Loc, diag::err_static_not_bitfield)
891          << Name << BitWidth->getSourceRange();
892      } else if (isa<TypedefDecl>(Member)) {
893        // "typedef member 'x' cannot be a bit-field"
894        Diag(Loc, diag::err_typedef_not_bitfield)
895          << Name << BitWidth->getSourceRange();
896      } else {
897        // A function typedef ("typedef int f(); f a;").
898        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
899        Diag(Loc, diag::err_not_integral_type_bitfield)
900          << Name << cast<ValueDecl>(Member)->getType()
901          << BitWidth->getSourceRange();
902      }
903
904      DeleteExpr(BitWidth);
905      BitWidth = 0;
906      Member->setInvalidDecl();
907    }
908
909    Member->setAccess(AS);
910
911    // If we have declared a member function template, set the access of the
912    // templated declaration as well.
913    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
914      FunTmpl->getTemplatedDecl()->setAccess(AS);
915  }
916
917  assert((Name || isInstField) && "No identifier for non-field ?");
918
919  if (Init)
920    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
921  if (Deleted) // FIXME: Source location is not very good.
922    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
923
924  if (isInstField) {
925    FieldCollector->Add(cast<FieldDecl>(Member));
926    return DeclPtrTy();
927  }
928  return DeclPtrTy::make(Member);
929}
930
931/// ActOnMemInitializer - Handle a C++ member initializer.
932Sema::MemInitResult
933Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
934                          Scope *S,
935                          const CXXScopeSpec &SS,
936                          IdentifierInfo *MemberOrBase,
937                          TypeTy *TemplateTypeTy,
938                          SourceLocation IdLoc,
939                          SourceLocation LParenLoc,
940                          ExprTy **Args, unsigned NumArgs,
941                          SourceLocation *CommaLocs,
942                          SourceLocation RParenLoc) {
943  if (!ConstructorD)
944    return true;
945
946  AdjustDeclIfTemplate(ConstructorD);
947
948  CXXConstructorDecl *Constructor
949    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
950  if (!Constructor) {
951    // The user wrote a constructor initializer on a function that is
952    // not a C++ constructor. Ignore the error for now, because we may
953    // have more member initializers coming; we'll diagnose it just
954    // once in ActOnMemInitializers.
955    return true;
956  }
957
958  CXXRecordDecl *ClassDecl = Constructor->getParent();
959
960  // C++ [class.base.init]p2:
961  //   Names in a mem-initializer-id are looked up in the scope of the
962  //   constructor’s class and, if not found in that scope, are looked
963  //   up in the scope containing the constructor’s
964  //   definition. [Note: if the constructor’s class contains a member
965  //   with the same name as a direct or virtual base class of the
966  //   class, a mem-initializer-id naming the member or base class and
967  //   composed of a single identifier refers to the class member. A
968  //   mem-initializer-id for the hidden base class may be specified
969  //   using a qualified name. ]
970  if (!SS.getScopeRep() && !TemplateTypeTy) {
971    // Look for a member, first.
972    FieldDecl *Member = 0;
973    DeclContext::lookup_result Result
974      = ClassDecl->lookup(MemberOrBase);
975    if (Result.first != Result.second)
976      Member = dyn_cast<FieldDecl>(*Result.first);
977
978    // FIXME: Handle members of an anonymous union.
979
980    if (Member)
981      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
982                                    RParenLoc);
983  }
984  // It didn't name a member, so see if it names a class.
985  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
986                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
987  if (!BaseTy)
988    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
989      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
990
991  QualType BaseType = GetTypeFromParser(BaseTy);
992
993  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
994                              RParenLoc, ClassDecl);
995}
996
997/// Checks an initializer expression for use of uninitialized fields, such as
998/// containing the field that is being initialized. Returns true if there is an
999/// uninitialized field was used an updates the SourceLocation parameter; false
1000/// otherwise.
1001static bool InitExprContainsUninitializedFields(const Stmt* S,
1002                                                const FieldDecl* LhsField,
1003                                                SourceLocation* L) {
1004  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1005  if (ME) {
1006    const NamedDecl* RhsField = ME->getMemberDecl();
1007    if (RhsField == LhsField) {
1008      // Initializing a field with itself. Throw a warning.
1009      // But wait; there are exceptions!
1010      // Exception #1:  The field may not belong to this record.
1011      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1012      const Expr* base = ME->getBase();
1013      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1014        // Even though the field matches, it does not belong to this record.
1015        return false;
1016      }
1017      // None of the exceptions triggered; return true to indicate an
1018      // uninitialized field was used.
1019      *L = ME->getMemberLoc();
1020      return true;
1021    }
1022  }
1023  bool found = false;
1024  for (Stmt::const_child_iterator it = S->child_begin();
1025       it != S->child_end() && found == false;
1026       ++it) {
1027    if (isa<CallExpr>(S)) {
1028      // Do not descend into function calls or constructors, as the use
1029      // of an uninitialized field may be valid. One would have to inspect
1030      // the contents of the function/ctor to determine if it is safe or not.
1031      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1032      // may be safe, depending on what the function/ctor does.
1033      continue;
1034    }
1035    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1036  }
1037  return found;
1038}
1039
1040Sema::MemInitResult
1041Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1042                             unsigned NumArgs, SourceLocation IdLoc,
1043                             SourceLocation RParenLoc) {
1044  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1045  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1046  ExprTemporaries.clear();
1047
1048  // Diagnose value-uses of fields to initialize themselves, e.g.
1049  //   foo(foo)
1050  // where foo is not also a parameter to the constructor.
1051  // TODO: implement -Wuninitialized and fold this into that framework.
1052  for (unsigned i = 0; i < NumArgs; ++i) {
1053    SourceLocation L;
1054    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1055      // FIXME: Return true in the case when other fields are used before being
1056      // uninitialized. For example, let this field be the i'th field. When
1057      // initializing the i'th field, throw a warning if any of the >= i'th
1058      // fields are used, as they are not yet initialized.
1059      // Right now we are only handling the case where the i'th field uses
1060      // itself in its initializer.
1061      Diag(L, diag::warn_field_is_uninit);
1062    }
1063  }
1064
1065  bool HasDependentArg = false;
1066  for (unsigned i = 0; i < NumArgs; i++)
1067    HasDependentArg |= Args[i]->isTypeDependent();
1068
1069  CXXConstructorDecl *C = 0;
1070  QualType FieldType = Member->getType();
1071  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1072    FieldType = Array->getElementType();
1073  if (FieldType->isDependentType()) {
1074    // Can't check init for dependent type.
1075  } else if (FieldType->isRecordType()) {
1076    // Member is a record (struct/union/class), so pass the initializer
1077    // arguments down to the record's constructor.
1078    if (!HasDependentArg) {
1079      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1080
1081      C = PerformInitializationByConstructor(FieldType,
1082                                             MultiExprArg(*this,
1083                                                          (void**)Args,
1084                                                          NumArgs),
1085                                             IdLoc,
1086                                             SourceRange(IdLoc, RParenLoc),
1087                                             Member->getDeclName(), IK_Direct,
1088                                             ConstructorArgs);
1089
1090      if (C) {
1091        // Take over the constructor arguments as our own.
1092        NumArgs = ConstructorArgs.size();
1093        Args = (Expr **)ConstructorArgs.take();
1094      }
1095    }
1096  } else if (NumArgs != 1 && NumArgs != 0) {
1097    // The member type is not a record type (or an array of record
1098    // types), so it can be only be default- or copy-initialized.
1099    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1100                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1101  } else if (!HasDependentArg) {
1102    Expr *NewExp;
1103    if (NumArgs == 0) {
1104      if (FieldType->isReferenceType()) {
1105        Diag(IdLoc, diag::err_null_intialized_reference_member)
1106              << Member->getDeclName();
1107        return Diag(Member->getLocation(), diag::note_declared_at);
1108      }
1109      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1110      NumArgs = 1;
1111    }
1112    else
1113      NewExp = (Expr*)Args[0];
1114    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1115      return true;
1116    Args[0] = NewExp;
1117  }
1118
1119  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1120  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1121  ExprTemporaries.clear();
1122
1123  // FIXME: Perform direct initialization of the member.
1124  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1125                                                  NumArgs, C, IdLoc, RParenLoc);
1126}
1127
1128Sema::MemInitResult
1129Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1130                           unsigned NumArgs, SourceLocation IdLoc,
1131                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1132  bool HasDependentArg = false;
1133  for (unsigned i = 0; i < NumArgs; i++)
1134    HasDependentArg |= Args[i]->isTypeDependent();
1135
1136  if (!BaseType->isDependentType()) {
1137    if (!BaseType->isRecordType())
1138      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1139        << BaseType << SourceRange(IdLoc, RParenLoc);
1140
1141    // C++ [class.base.init]p2:
1142    //   [...] Unless the mem-initializer-id names a nonstatic data
1143    //   member of the constructor’s class or a direct or virtual base
1144    //   of that class, the mem-initializer is ill-formed. A
1145    //   mem-initializer-list can initialize a base class using any
1146    //   name that denotes that base class type.
1147
1148    // First, check for a direct base class.
1149    const CXXBaseSpecifier *DirectBaseSpec = 0;
1150    for (CXXRecordDecl::base_class_const_iterator Base =
1151         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1152      if (Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1153        // We found a direct base of this type. That's what we're
1154        // initializing.
1155        DirectBaseSpec = &*Base;
1156        break;
1157      }
1158    }
1159
1160    // Check for a virtual base class.
1161    // FIXME: We might be able to short-circuit this if we know in advance that
1162    // there are no virtual bases.
1163    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1164    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1165      // We haven't found a base yet; search the class hierarchy for a
1166      // virtual base class.
1167      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1168                         /*DetectVirtual=*/false);
1169      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1170        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1171             Path != Paths.end(); ++Path) {
1172          if (Path->back().Base->isVirtual()) {
1173            VirtualBaseSpec = Path->back().Base;
1174            break;
1175          }
1176        }
1177      }
1178    }
1179
1180    // C++ [base.class.init]p2:
1181    //   If a mem-initializer-id is ambiguous because it designates both
1182    //   a direct non-virtual base class and an inherited virtual base
1183    //   class, the mem-initializer is ill-formed.
1184    if (DirectBaseSpec && VirtualBaseSpec)
1185      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1186        << BaseType << SourceRange(IdLoc, RParenLoc);
1187    // C++ [base.class.init]p2:
1188    // Unless the mem-initializer-id names a nonstatic data membeer of the
1189    // constructor's class ot a direst or virtual base of that class, the
1190    // mem-initializer is ill-formed.
1191    if (!DirectBaseSpec && !VirtualBaseSpec)
1192      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1193      << BaseType << ClassDecl->getNameAsCString()
1194      << SourceRange(IdLoc, RParenLoc);
1195  }
1196
1197  CXXConstructorDecl *C = 0;
1198  if (!BaseType->isDependentType() && !HasDependentArg) {
1199    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1200                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1201    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1202
1203    C = PerformInitializationByConstructor(BaseType,
1204                                           MultiExprArg(*this,
1205                                                        (void**)Args, NumArgs),
1206                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1207                                           Name, IK_Direct,
1208                                           ConstructorArgs);
1209    if (C) {
1210      // Take over the constructor arguments as our own.
1211      NumArgs = ConstructorArgs.size();
1212      Args = (Expr **)ConstructorArgs.take();
1213    }
1214  }
1215
1216  // FIXME: CXXBaseOrMemberInitializer should only contain a single
1217  // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1218  ExprTemporaries.clear();
1219
1220  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1221                                                  NumArgs, C, IdLoc, RParenLoc);
1222}
1223
1224bool
1225Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1226                              CXXBaseOrMemberInitializer **Initializers,
1227                              unsigned NumInitializers,
1228                              bool IsImplicitConstructor) {
1229  // We need to build the initializer AST according to order of construction
1230  // and not what user specified in the Initializers list.
1231  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1232  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1233  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1234  bool HasDependentBaseInit = false;
1235  bool HadError = false;
1236
1237  for (unsigned i = 0; i < NumInitializers; i++) {
1238    CXXBaseOrMemberInitializer *Member = Initializers[i];
1239    if (Member->isBaseInitializer()) {
1240      if (Member->getBaseClass()->isDependentType())
1241        HasDependentBaseInit = true;
1242      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1243    } else {
1244      AllBaseFields[Member->getMember()] = Member;
1245    }
1246  }
1247
1248  if (HasDependentBaseInit) {
1249    // FIXME. This does not preserve the ordering of the initializers.
1250    // Try (with -Wreorder)
1251    // template<class X> struct A {};
1252    // template<class X> struct B : A<X> {
1253    //   B() : x1(10), A<X>() {}
1254    //   int x1;
1255    // };
1256    // B<int> x;
1257    // On seeing one dependent type, we should essentially exit this routine
1258    // while preserving user-declared initializer list. When this routine is
1259    // called during instantiatiation process, this routine will rebuild the
1260    // ordered initializer list correctly.
1261
1262    // If we have a dependent base initialization, we can't determine the
1263    // association between initializers and bases; just dump the known
1264    // initializers into the list, and don't try to deal with other bases.
1265    for (unsigned i = 0; i < NumInitializers; i++) {
1266      CXXBaseOrMemberInitializer *Member = Initializers[i];
1267      if (Member->isBaseInitializer())
1268        AllToInit.push_back(Member);
1269    }
1270  } else {
1271    // Push virtual bases before others.
1272    for (CXXRecordDecl::base_class_iterator VBase =
1273         ClassDecl->vbases_begin(),
1274         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1275      if (VBase->getType()->isDependentType())
1276        continue;
1277      if (CXXBaseOrMemberInitializer *Value
1278            = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1279        AllToInit.push_back(Value);
1280      }
1281      else {
1282        CXXRecordDecl *VBaseDecl =
1283        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1284        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1285        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1286        if (!Ctor) {
1287          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1288            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1289            << 0 << VBase->getType();
1290          Diag(VBaseDecl->getLocation(), diag::note_previous_class_decl)
1291            << Context.getTagDeclType(VBaseDecl);
1292          HadError = true;
1293          continue;
1294        }
1295
1296        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1297        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1298                                    Constructor->getLocation(), CtorArgs))
1299          continue;
1300
1301        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1302
1303        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1304        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1305        ExprTemporaries.clear();
1306        CXXBaseOrMemberInitializer *Member =
1307          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1308                                                   CtorArgs.takeAs<Expr>(),
1309                                                   CtorArgs.size(), Ctor,
1310                                                   SourceLocation(),
1311                                                   SourceLocation());
1312        AllToInit.push_back(Member);
1313      }
1314    }
1315
1316    for (CXXRecordDecl::base_class_iterator Base =
1317         ClassDecl->bases_begin(),
1318         E = ClassDecl->bases_end(); Base != E; ++Base) {
1319      // Virtuals are in the virtual base list and already constructed.
1320      if (Base->isVirtual())
1321        continue;
1322      // Skip dependent types.
1323      if (Base->getType()->isDependentType())
1324        continue;
1325      if (CXXBaseOrMemberInitializer *Value
1326            = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1327        AllToInit.push_back(Value);
1328      }
1329      else {
1330        CXXRecordDecl *BaseDecl =
1331          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1332        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1333         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1334        if (!Ctor) {
1335          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1336            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1337            << 0 << Base->getType();
1338          Diag(BaseDecl->getLocation(), diag::note_previous_class_decl)
1339            << Context.getTagDeclType(BaseDecl);
1340          HadError = true;
1341          continue;
1342        }
1343
1344        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1345        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1346                                     Constructor->getLocation(), CtorArgs))
1347          continue;
1348
1349        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1350
1351        // FIXME: CXXBaseOrMemberInitializer should only contain a single
1352        // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1353        ExprTemporaries.clear();
1354        CXXBaseOrMemberInitializer *Member =
1355          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1356                                                   CtorArgs.takeAs<Expr>(),
1357                                                   CtorArgs.size(), Ctor,
1358                                                   SourceLocation(),
1359                                                   SourceLocation());
1360        AllToInit.push_back(Member);
1361      }
1362    }
1363  }
1364
1365  // non-static data members.
1366  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1367       E = ClassDecl->field_end(); Field != E; ++Field) {
1368    if ((*Field)->isAnonymousStructOrUnion()) {
1369      if (const RecordType *FieldClassType =
1370          Field->getType()->getAs<RecordType>()) {
1371        CXXRecordDecl *FieldClassDecl
1372          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1373        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1374            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1375          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1376            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1377            // set to the anonymous union data member used in the initializer
1378            // list.
1379            Value->setMember(*Field);
1380            Value->setAnonUnionMember(*FA);
1381            AllToInit.push_back(Value);
1382            break;
1383          }
1384        }
1385      }
1386      continue;
1387    }
1388    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1389      AllToInit.push_back(Value);
1390      continue;
1391    }
1392
1393    if ((*Field)->getType()->isDependentType())
1394      continue;
1395
1396    QualType FT = Context.getBaseElementType((*Field)->getType());
1397    if (const RecordType* RT = FT->getAs<RecordType>()) {
1398      CXXConstructorDecl *Ctor =
1399        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1400      if (!Ctor) {
1401        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1402          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1403          << 1 << (*Field)->getDeclName();
1404        Diag(Field->getLocation(), diag::note_field_decl);
1405        Diag(RT->getDecl()->getLocation(), diag::note_previous_class_decl)
1406          << Context.getTagDeclType(RT->getDecl());
1407        HadError = true;
1408        continue;
1409      }
1410
1411      if (FT.isConstQualified() && Ctor->isTrivial()) {
1412        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1413          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1414          << 1 << (*Field)->getDeclName();
1415        Diag((*Field)->getLocation(), diag::note_declared_at);
1416        HadError = true;
1417      }
1418
1419      // Don't create initializers for trivial constructors, since they don't
1420      // actually need to be run.
1421      if (Ctor->isTrivial())
1422        continue;
1423
1424      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1425      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1426                                  Constructor->getLocation(), CtorArgs))
1427        continue;
1428
1429      // FIXME: CXXBaseOrMemberInitializer should only contain a single
1430      // subexpression so we can wrap it in a CXXExprWithTemporaries if necessary.
1431      ExprTemporaries.clear();
1432      CXXBaseOrMemberInitializer *Member =
1433        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1434                                                 CtorArgs.size(), Ctor,
1435                                                 SourceLocation(),
1436                                                 SourceLocation());
1437
1438      AllToInit.push_back(Member);
1439      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1440    }
1441    else if (FT->isReferenceType()) {
1442      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1443        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1444        << 0 << (*Field)->getDeclName();
1445      Diag((*Field)->getLocation(), diag::note_declared_at);
1446      HadError = true;
1447    }
1448    else if (FT.isConstQualified()) {
1449      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1450        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1451        << 1 << (*Field)->getDeclName();
1452      Diag((*Field)->getLocation(), diag::note_declared_at);
1453      HadError = true;
1454    }
1455  }
1456
1457  NumInitializers = AllToInit.size();
1458  if (NumInitializers > 0) {
1459    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1460    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1461      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1462
1463    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1464    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1465      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1466  }
1467
1468  return HadError;
1469}
1470
1471static void *GetKeyForTopLevelField(FieldDecl *Field) {
1472  // For anonymous unions, use the class declaration as the key.
1473  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1474    if (RT->getDecl()->isAnonymousStructOrUnion())
1475      return static_cast<void *>(RT->getDecl());
1476  }
1477  return static_cast<void *>(Field);
1478}
1479
1480static void *GetKeyForBase(QualType BaseType) {
1481  if (const RecordType *RT = BaseType->getAs<RecordType>())
1482    return (void *)RT;
1483
1484  assert(0 && "Unexpected base type!");
1485  return 0;
1486}
1487
1488static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1489                             bool MemberMaybeAnon = false) {
1490  // For fields injected into the class via declaration of an anonymous union,
1491  // use its anonymous union class declaration as the unique key.
1492  if (Member->isMemberInitializer()) {
1493    FieldDecl *Field = Member->getMember();
1494
1495    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1496    // data member of the class. Data member used in the initializer list is
1497    // in AnonUnionMember field.
1498    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1499      Field = Member->getAnonUnionMember();
1500    if (Field->getDeclContext()->isRecord()) {
1501      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1502      if (RD->isAnonymousStructOrUnion())
1503        return static_cast<void *>(RD);
1504    }
1505    return static_cast<void *>(Field);
1506  }
1507
1508  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1509}
1510
1511/// ActOnMemInitializers - Handle the member initializers for a constructor.
1512void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1513                                SourceLocation ColonLoc,
1514                                MemInitTy **MemInits, unsigned NumMemInits) {
1515  if (!ConstructorDecl)
1516    return;
1517
1518  AdjustDeclIfTemplate(ConstructorDecl);
1519
1520  CXXConstructorDecl *Constructor
1521    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1522
1523  if (!Constructor) {
1524    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1525    return;
1526  }
1527
1528  if (!Constructor->isDependentContext()) {
1529    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1530    bool err = false;
1531    for (unsigned i = 0; i < NumMemInits; i++) {
1532      CXXBaseOrMemberInitializer *Member =
1533        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1534      void *KeyToMember = GetKeyForMember(Member);
1535      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1536      if (!PrevMember) {
1537        PrevMember = Member;
1538        continue;
1539      }
1540      if (FieldDecl *Field = Member->getMember())
1541        Diag(Member->getSourceLocation(),
1542             diag::error_multiple_mem_initialization)
1543        << Field->getNameAsString();
1544      else {
1545        Type *BaseClass = Member->getBaseClass();
1546        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1547        Diag(Member->getSourceLocation(),
1548             diag::error_multiple_base_initialization)
1549          << QualType(BaseClass, 0);
1550      }
1551      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1552        << 0;
1553      err = true;
1554    }
1555
1556    if (err)
1557      return;
1558  }
1559
1560  SetBaseOrMemberInitializers(Constructor,
1561                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1562                      NumMemInits, false);
1563
1564  if (Constructor->isDependentContext())
1565    return;
1566
1567  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1568      Diagnostic::Ignored &&
1569      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1570      Diagnostic::Ignored)
1571    return;
1572
1573  // Also issue warning if order of ctor-initializer list does not match order
1574  // of 1) base class declarations and 2) order of non-static data members.
1575  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1576
1577  CXXRecordDecl *ClassDecl
1578    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1579  // Push virtual bases before others.
1580  for (CXXRecordDecl::base_class_iterator VBase =
1581       ClassDecl->vbases_begin(),
1582       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1583    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1584
1585  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1586       E = ClassDecl->bases_end(); Base != E; ++Base) {
1587    // Virtuals are alread in the virtual base list and are constructed
1588    // first.
1589    if (Base->isVirtual())
1590      continue;
1591    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1592  }
1593
1594  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1595       E = ClassDecl->field_end(); Field != E; ++Field)
1596    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1597
1598  int Last = AllBaseOrMembers.size();
1599  int curIndex = 0;
1600  CXXBaseOrMemberInitializer *PrevMember = 0;
1601  for (unsigned i = 0; i < NumMemInits; i++) {
1602    CXXBaseOrMemberInitializer *Member =
1603      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1604    void *MemberInCtorList = GetKeyForMember(Member, true);
1605
1606    for (; curIndex < Last; curIndex++)
1607      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1608        break;
1609    if (curIndex == Last) {
1610      assert(PrevMember && "Member not in member list?!");
1611      // Initializer as specified in ctor-initializer list is out of order.
1612      // Issue a warning diagnostic.
1613      if (PrevMember->isBaseInitializer()) {
1614        // Diagnostics is for an initialized base class.
1615        Type *BaseClass = PrevMember->getBaseClass();
1616        Diag(PrevMember->getSourceLocation(),
1617             diag::warn_base_initialized)
1618          << QualType(BaseClass, 0);
1619      } else {
1620        FieldDecl *Field = PrevMember->getMember();
1621        Diag(PrevMember->getSourceLocation(),
1622             diag::warn_field_initialized)
1623          << Field->getNameAsString();
1624      }
1625      // Also the note!
1626      if (FieldDecl *Field = Member->getMember())
1627        Diag(Member->getSourceLocation(),
1628             diag::note_fieldorbase_initialized_here) << 0
1629          << Field->getNameAsString();
1630      else {
1631        Type *BaseClass = Member->getBaseClass();
1632        Diag(Member->getSourceLocation(),
1633             diag::note_fieldorbase_initialized_here) << 1
1634          << QualType(BaseClass, 0);
1635      }
1636      for (curIndex = 0; curIndex < Last; curIndex++)
1637        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1638          break;
1639    }
1640    PrevMember = Member;
1641  }
1642}
1643
1644void
1645Sema::MarkBaseAndMemberDestructorsReferenced(CXXDestructorDecl *Destructor) {
1646  // Ignore dependent destructors.
1647  if (Destructor->isDependentContext())
1648    return;
1649
1650  CXXRecordDecl *ClassDecl = Destructor->getParent();
1651
1652  // Non-static data members.
1653  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1654       E = ClassDecl->field_end(); I != E; ++I) {
1655    FieldDecl *Field = *I;
1656
1657    QualType FieldType = Context.getBaseElementType(Field->getType());
1658
1659    const RecordType* RT = FieldType->getAs<RecordType>();
1660    if (!RT)
1661      continue;
1662
1663    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1664    if (FieldClassDecl->hasTrivialDestructor())
1665      continue;
1666
1667    const CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1668    MarkDeclarationReferenced(Destructor->getLocation(),
1669                              const_cast<CXXDestructorDecl*>(Dtor));
1670  }
1671
1672  // Bases.
1673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1674       E = ClassDecl->bases_end(); Base != E; ++Base) {
1675    // Ignore virtual bases.
1676    if (Base->isVirtual())
1677      continue;
1678
1679    // Ignore trivial destructors.
1680    CXXRecordDecl *BaseClassDecl
1681      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1682    if (BaseClassDecl->hasTrivialDestructor())
1683      continue;
1684
1685    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1686    MarkDeclarationReferenced(Destructor->getLocation(),
1687                              const_cast<CXXDestructorDecl*>(Dtor));
1688  }
1689
1690  // Virtual bases.
1691  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1692       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1693    // Ignore trivial destructors.
1694    CXXRecordDecl *BaseClassDecl
1695      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1696    if (BaseClassDecl->hasTrivialDestructor())
1697      continue;
1698
1699    const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1700    MarkDeclarationReferenced(Destructor->getLocation(),
1701                              const_cast<CXXDestructorDecl*>(Dtor));
1702  }
1703}
1704
1705void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1706  if (!CDtorDecl)
1707    return;
1708
1709  AdjustDeclIfTemplate(CDtorDecl);
1710
1711  if (CXXConstructorDecl *Constructor
1712      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1713    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1714}
1715
1716namespace {
1717  /// PureVirtualMethodCollector - traverses a class and its superclasses
1718  /// and determines if it has any pure virtual methods.
1719  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1720    ASTContext &Context;
1721
1722  public:
1723    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1724
1725  private:
1726    MethodList Methods;
1727
1728    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1729
1730  public:
1731    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1732      : Context(Ctx) {
1733
1734      MethodList List;
1735      Collect(RD, List);
1736
1737      // Copy the temporary list to methods, and make sure to ignore any
1738      // null entries.
1739      for (size_t i = 0, e = List.size(); i != e; ++i) {
1740        if (List[i])
1741          Methods.push_back(List[i]);
1742      }
1743    }
1744
1745    bool empty() const { return Methods.empty(); }
1746
1747    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1748    MethodList::const_iterator methods_end() { return Methods.end(); }
1749  };
1750
1751  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1752                                           MethodList& Methods) {
1753    // First, collect the pure virtual methods for the base classes.
1754    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1755         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1756      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1757        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1758        if (BaseDecl && BaseDecl->isAbstract())
1759          Collect(BaseDecl, Methods);
1760      }
1761    }
1762
1763    // Next, zero out any pure virtual methods that this class overrides.
1764    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1765
1766    MethodSetTy OverriddenMethods;
1767    size_t MethodsSize = Methods.size();
1768
1769    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1770         i != e; ++i) {
1771      // Traverse the record, looking for methods.
1772      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1773        // If the method is pure virtual, add it to the methods vector.
1774        if (MD->isPure())
1775          Methods.push_back(MD);
1776
1777        // Record all the overridden methods in our set.
1778        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1779             E = MD->end_overridden_methods(); I != E; ++I) {
1780          // Keep track of the overridden methods.
1781          OverriddenMethods.insert(*I);
1782        }
1783      }
1784    }
1785
1786    // Now go through the methods and zero out all the ones we know are
1787    // overridden.
1788    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1789      if (OverriddenMethods.count(Methods[i]))
1790        Methods[i] = 0;
1791    }
1792
1793  }
1794}
1795
1796
1797bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1798                                  unsigned DiagID, AbstractDiagSelID SelID,
1799                                  const CXXRecordDecl *CurrentRD) {
1800  if (SelID == -1)
1801    return RequireNonAbstractType(Loc, T,
1802                                  PDiag(DiagID), CurrentRD);
1803  else
1804    return RequireNonAbstractType(Loc, T,
1805                                  PDiag(DiagID) << SelID, CurrentRD);
1806}
1807
1808bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1809                                  const PartialDiagnostic &PD,
1810                                  const CXXRecordDecl *CurrentRD) {
1811  if (!getLangOptions().CPlusPlus)
1812    return false;
1813
1814  if (const ArrayType *AT = Context.getAsArrayType(T))
1815    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1816                                  CurrentRD);
1817
1818  if (const PointerType *PT = T->getAs<PointerType>()) {
1819    // Find the innermost pointer type.
1820    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1821      PT = T;
1822
1823    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1824      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1825  }
1826
1827  const RecordType *RT = T->getAs<RecordType>();
1828  if (!RT)
1829    return false;
1830
1831  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1832  if (!RD)
1833    return false;
1834
1835  if (CurrentRD && CurrentRD != RD)
1836    return false;
1837
1838  if (!RD->isAbstract())
1839    return false;
1840
1841  Diag(Loc, PD) << RD->getDeclName();
1842
1843  // Check if we've already emitted the list of pure virtual functions for this
1844  // class.
1845  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1846    return true;
1847
1848  PureVirtualMethodCollector Collector(Context, RD);
1849
1850  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1851       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1852    const CXXMethodDecl *MD = *I;
1853
1854    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1855      MD->getDeclName();
1856  }
1857
1858  if (!PureVirtualClassDiagSet)
1859    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1860  PureVirtualClassDiagSet->insert(RD);
1861
1862  return true;
1863}
1864
1865namespace {
1866  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1867    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1868    Sema &SemaRef;
1869    CXXRecordDecl *AbstractClass;
1870
1871    bool VisitDeclContext(const DeclContext *DC) {
1872      bool Invalid = false;
1873
1874      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1875           E = DC->decls_end(); I != E; ++I)
1876        Invalid |= Visit(*I);
1877
1878      return Invalid;
1879    }
1880
1881  public:
1882    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1883      : SemaRef(SemaRef), AbstractClass(ac) {
1884        Visit(SemaRef.Context.getTranslationUnitDecl());
1885    }
1886
1887    bool VisitFunctionDecl(const FunctionDecl *FD) {
1888      if (FD->isThisDeclarationADefinition()) {
1889        // No need to do the check if we're in a definition, because it requires
1890        // that the return/param types are complete.
1891        // because that requires
1892        return VisitDeclContext(FD);
1893      }
1894
1895      // Check the return type.
1896      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1897      bool Invalid =
1898        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1899                                       diag::err_abstract_type_in_decl,
1900                                       Sema::AbstractReturnType,
1901                                       AbstractClass);
1902
1903      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1904           E = FD->param_end(); I != E; ++I) {
1905        const ParmVarDecl *VD = *I;
1906        Invalid |=
1907          SemaRef.RequireNonAbstractType(VD->getLocation(),
1908                                         VD->getOriginalType(),
1909                                         diag::err_abstract_type_in_decl,
1910                                         Sema::AbstractParamType,
1911                                         AbstractClass);
1912      }
1913
1914      return Invalid;
1915    }
1916
1917    bool VisitDecl(const Decl* D) {
1918      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1919        return VisitDeclContext(DC);
1920
1921      return false;
1922    }
1923  };
1924}
1925
1926void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1927                                             DeclPtrTy TagDecl,
1928                                             SourceLocation LBrac,
1929                                             SourceLocation RBrac) {
1930  if (!TagDecl)
1931    return;
1932
1933  AdjustDeclIfTemplate(TagDecl);
1934  ActOnFields(S, RLoc, TagDecl,
1935              (DeclPtrTy*)FieldCollector->getCurFields(),
1936              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1937
1938  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1939  if (!RD->isAbstract()) {
1940    // Collect all the pure virtual methods and see if this is an abstract
1941    // class after all.
1942    PureVirtualMethodCollector Collector(Context, RD);
1943    if (!Collector.empty())
1944      RD->setAbstract(true);
1945  }
1946
1947  if (RD->isAbstract())
1948    (void)AbstractClassUsageDiagnoser(*this, RD);
1949
1950  if (!RD->isDependentType() && !RD->isInvalidDecl())
1951    AddImplicitlyDeclaredMembersToClass(RD);
1952}
1953
1954/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1955/// special functions, such as the default constructor, copy
1956/// constructor, or destructor, to the given C++ class (C++
1957/// [special]p1).  This routine can only be executed just before the
1958/// definition of the class is complete.
1959void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1960  CanQualType ClassType
1961    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1962
1963  // FIXME: Implicit declarations have exception specifications, which are
1964  // the union of the specifications of the implicitly called functions.
1965
1966  if (!ClassDecl->hasUserDeclaredConstructor()) {
1967    // C++ [class.ctor]p5:
1968    //   A default constructor for a class X is a constructor of class X
1969    //   that can be called without an argument. If there is no
1970    //   user-declared constructor for class X, a default constructor is
1971    //   implicitly declared. An implicitly-declared default constructor
1972    //   is an inline public member of its class.
1973    DeclarationName Name
1974      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1975    CXXConstructorDecl *DefaultCon =
1976      CXXConstructorDecl::Create(Context, ClassDecl,
1977                                 ClassDecl->getLocation(), Name,
1978                                 Context.getFunctionType(Context.VoidTy,
1979                                                         0, 0, false, 0),
1980                                 /*DInfo=*/0,
1981                                 /*isExplicit=*/false,
1982                                 /*isInline=*/true,
1983                                 /*isImplicitlyDeclared=*/true);
1984    DefaultCon->setAccess(AS_public);
1985    DefaultCon->setImplicit();
1986    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1987    ClassDecl->addDecl(DefaultCon);
1988  }
1989
1990  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1991    // C++ [class.copy]p4:
1992    //   If the class definition does not explicitly declare a copy
1993    //   constructor, one is declared implicitly.
1994
1995    // C++ [class.copy]p5:
1996    //   The implicitly-declared copy constructor for a class X will
1997    //   have the form
1998    //
1999    //       X::X(const X&)
2000    //
2001    //   if
2002    bool HasConstCopyConstructor = true;
2003
2004    //     -- each direct or virtual base class B of X has a copy
2005    //        constructor whose first parameter is of type const B& or
2006    //        const volatile B&, and
2007    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2008         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2009      const CXXRecordDecl *BaseClassDecl
2010        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2011      HasConstCopyConstructor
2012        = BaseClassDecl->hasConstCopyConstructor(Context);
2013    }
2014
2015    //     -- for all the nonstatic data members of X that are of a
2016    //        class type M (or array thereof), each such class type
2017    //        has a copy constructor whose first parameter is of type
2018    //        const M& or const volatile M&.
2019    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2020         HasConstCopyConstructor && Field != ClassDecl->field_end();
2021         ++Field) {
2022      QualType FieldType = (*Field)->getType();
2023      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2024        FieldType = Array->getElementType();
2025      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2026        const CXXRecordDecl *FieldClassDecl
2027          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2028        HasConstCopyConstructor
2029          = FieldClassDecl->hasConstCopyConstructor(Context);
2030      }
2031    }
2032
2033    //   Otherwise, the implicitly declared copy constructor will have
2034    //   the form
2035    //
2036    //       X::X(X&)
2037    QualType ArgType = ClassType;
2038    if (HasConstCopyConstructor)
2039      ArgType = ArgType.withConst();
2040    ArgType = Context.getLValueReferenceType(ArgType);
2041
2042    //   An implicitly-declared copy constructor is an inline public
2043    //   member of its class.
2044    DeclarationName Name
2045      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2046    CXXConstructorDecl *CopyConstructor
2047      = CXXConstructorDecl::Create(Context, ClassDecl,
2048                                   ClassDecl->getLocation(), Name,
2049                                   Context.getFunctionType(Context.VoidTy,
2050                                                           &ArgType, 1,
2051                                                           false, 0),
2052                                   /*DInfo=*/0,
2053                                   /*isExplicit=*/false,
2054                                   /*isInline=*/true,
2055                                   /*isImplicitlyDeclared=*/true);
2056    CopyConstructor->setAccess(AS_public);
2057    CopyConstructor->setImplicit();
2058    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2059
2060    // Add the parameter to the constructor.
2061    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2062                                                 ClassDecl->getLocation(),
2063                                                 /*IdentifierInfo=*/0,
2064                                                 ArgType, /*DInfo=*/0,
2065                                                 VarDecl::None, 0);
2066    CopyConstructor->setParams(Context, &FromParam, 1);
2067    ClassDecl->addDecl(CopyConstructor);
2068  }
2069
2070  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2071    // Note: The following rules are largely analoguous to the copy
2072    // constructor rules. Note that virtual bases are not taken into account
2073    // for determining the argument type of the operator. Note also that
2074    // operators taking an object instead of a reference are allowed.
2075    //
2076    // C++ [class.copy]p10:
2077    //   If the class definition does not explicitly declare a copy
2078    //   assignment operator, one is declared implicitly.
2079    //   The implicitly-defined copy assignment operator for a class X
2080    //   will have the form
2081    //
2082    //       X& X::operator=(const X&)
2083    //
2084    //   if
2085    bool HasConstCopyAssignment = true;
2086
2087    //       -- each direct base class B of X has a copy assignment operator
2088    //          whose parameter is of type const B&, const volatile B& or B,
2089    //          and
2090    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2091         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2092      assert(!Base->getType()->isDependentType() &&
2093            "Cannot generate implicit members for class with dependent bases.");
2094      const CXXRecordDecl *BaseClassDecl
2095        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2096      const CXXMethodDecl *MD = 0;
2097      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2098                                                                     MD);
2099    }
2100
2101    //       -- for all the nonstatic data members of X that are of a class
2102    //          type M (or array thereof), each such class type has a copy
2103    //          assignment operator whose parameter is of type const M&,
2104    //          const volatile M& or M.
2105    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2106         HasConstCopyAssignment && Field != ClassDecl->field_end();
2107         ++Field) {
2108      QualType FieldType = (*Field)->getType();
2109      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2110        FieldType = Array->getElementType();
2111      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2112        const CXXRecordDecl *FieldClassDecl
2113          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2114        const CXXMethodDecl *MD = 0;
2115        HasConstCopyAssignment
2116          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2117      }
2118    }
2119
2120    //   Otherwise, the implicitly declared copy assignment operator will
2121    //   have the form
2122    //
2123    //       X& X::operator=(X&)
2124    QualType ArgType = ClassType;
2125    QualType RetType = Context.getLValueReferenceType(ArgType);
2126    if (HasConstCopyAssignment)
2127      ArgType = ArgType.withConst();
2128    ArgType = Context.getLValueReferenceType(ArgType);
2129
2130    //   An implicitly-declared copy assignment operator is an inline public
2131    //   member of its class.
2132    DeclarationName Name =
2133      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2134    CXXMethodDecl *CopyAssignment =
2135      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2136                            Context.getFunctionType(RetType, &ArgType, 1,
2137                                                    false, 0),
2138                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2139    CopyAssignment->setAccess(AS_public);
2140    CopyAssignment->setImplicit();
2141    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2142    CopyAssignment->setCopyAssignment(true);
2143
2144    // Add the parameter to the operator.
2145    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2146                                                 ClassDecl->getLocation(),
2147                                                 /*IdentifierInfo=*/0,
2148                                                 ArgType, /*DInfo=*/0,
2149                                                 VarDecl::None, 0);
2150    CopyAssignment->setParams(Context, &FromParam, 1);
2151
2152    // Don't call addedAssignmentOperator. There is no way to distinguish an
2153    // implicit from an explicit assignment operator.
2154    ClassDecl->addDecl(CopyAssignment);
2155  }
2156
2157  if (!ClassDecl->hasUserDeclaredDestructor()) {
2158    // C++ [class.dtor]p2:
2159    //   If a class has no user-declared destructor, a destructor is
2160    //   declared implicitly. An implicitly-declared destructor is an
2161    //   inline public member of its class.
2162    DeclarationName Name
2163      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2164    CXXDestructorDecl *Destructor
2165      = CXXDestructorDecl::Create(Context, ClassDecl,
2166                                  ClassDecl->getLocation(), Name,
2167                                  Context.getFunctionType(Context.VoidTy,
2168                                                          0, 0, false, 0),
2169                                  /*isInline=*/true,
2170                                  /*isImplicitlyDeclared=*/true);
2171    Destructor->setAccess(AS_public);
2172    Destructor->setImplicit();
2173    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2174    ClassDecl->addDecl(Destructor);
2175  }
2176}
2177
2178void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2179  Decl *D = TemplateD.getAs<Decl>();
2180  if (!D)
2181    return;
2182
2183  TemplateParameterList *Params = 0;
2184  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2185    Params = Template->getTemplateParameters();
2186  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2187           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2188    Params = PartialSpec->getTemplateParameters();
2189  else
2190    return;
2191
2192  for (TemplateParameterList::iterator Param = Params->begin(),
2193                                    ParamEnd = Params->end();
2194       Param != ParamEnd; ++Param) {
2195    NamedDecl *Named = cast<NamedDecl>(*Param);
2196    if (Named->getDeclName()) {
2197      S->AddDecl(DeclPtrTy::make(Named));
2198      IdResolver.AddDecl(Named);
2199    }
2200  }
2201}
2202
2203/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2204/// parsing a top-level (non-nested) C++ class, and we are now
2205/// parsing those parts of the given Method declaration that could
2206/// not be parsed earlier (C++ [class.mem]p2), such as default
2207/// arguments. This action should enter the scope of the given
2208/// Method declaration as if we had just parsed the qualified method
2209/// name. However, it should not bring the parameters into scope;
2210/// that will be performed by ActOnDelayedCXXMethodParameter.
2211void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2212  if (!MethodD)
2213    return;
2214
2215  AdjustDeclIfTemplate(MethodD);
2216
2217  CXXScopeSpec SS;
2218  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2219  QualType ClassTy
2220    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2221  SS.setScopeRep(
2222    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2223  ActOnCXXEnterDeclaratorScope(S, SS);
2224}
2225
2226/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2227/// C++ method declaration. We're (re-)introducing the given
2228/// function parameter into scope for use in parsing later parts of
2229/// the method declaration. For example, we could see an
2230/// ActOnParamDefaultArgument event for this parameter.
2231void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2232  if (!ParamD)
2233    return;
2234
2235  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2236
2237  // If this parameter has an unparsed default argument, clear it out
2238  // to make way for the parsed default argument.
2239  if (Param->hasUnparsedDefaultArg())
2240    Param->setDefaultArg(0);
2241
2242  S->AddDecl(DeclPtrTy::make(Param));
2243  if (Param->getDeclName())
2244    IdResolver.AddDecl(Param);
2245}
2246
2247/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2248/// processing the delayed method declaration for Method. The method
2249/// declaration is now considered finished. There may be a separate
2250/// ActOnStartOfFunctionDef action later (not necessarily
2251/// immediately!) for this method, if it was also defined inside the
2252/// class body.
2253void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2254  if (!MethodD)
2255    return;
2256
2257  AdjustDeclIfTemplate(MethodD);
2258
2259  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2260  CXXScopeSpec SS;
2261  QualType ClassTy
2262    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2263  SS.setScopeRep(
2264    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2265  ActOnCXXExitDeclaratorScope(S, SS);
2266
2267  // Now that we have our default arguments, check the constructor
2268  // again. It could produce additional diagnostics or affect whether
2269  // the class has implicitly-declared destructors, among other
2270  // things.
2271  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2272    CheckConstructor(Constructor);
2273
2274  // Check the default arguments, which we may have added.
2275  if (!Method->isInvalidDecl())
2276    CheckCXXDefaultArguments(Method);
2277}
2278
2279/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2280/// the well-formedness of the constructor declarator @p D with type @p
2281/// R. If there are any errors in the declarator, this routine will
2282/// emit diagnostics and set the invalid bit to true.  In any case, the type
2283/// will be updated to reflect a well-formed type for the constructor and
2284/// returned.
2285QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2286                                          FunctionDecl::StorageClass &SC) {
2287  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2288
2289  // C++ [class.ctor]p3:
2290  //   A constructor shall not be virtual (10.3) or static (9.4). A
2291  //   constructor can be invoked for a const, volatile or const
2292  //   volatile object. A constructor shall not be declared const,
2293  //   volatile, or const volatile (9.3.2).
2294  if (isVirtual) {
2295    if (!D.isInvalidType())
2296      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2297        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2298        << SourceRange(D.getIdentifierLoc());
2299    D.setInvalidType();
2300  }
2301  if (SC == FunctionDecl::Static) {
2302    if (!D.isInvalidType())
2303      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2304        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2305        << SourceRange(D.getIdentifierLoc());
2306    D.setInvalidType();
2307    SC = FunctionDecl::None;
2308  }
2309
2310  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2311  if (FTI.TypeQuals != 0) {
2312    if (FTI.TypeQuals & Qualifiers::Const)
2313      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2314        << "const" << SourceRange(D.getIdentifierLoc());
2315    if (FTI.TypeQuals & Qualifiers::Volatile)
2316      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2317        << "volatile" << SourceRange(D.getIdentifierLoc());
2318    if (FTI.TypeQuals & Qualifiers::Restrict)
2319      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2320        << "restrict" << SourceRange(D.getIdentifierLoc());
2321  }
2322
2323  // Rebuild the function type "R" without any type qualifiers (in
2324  // case any of the errors above fired) and with "void" as the
2325  // return type, since constructors don't have return types. We
2326  // *always* have to do this, because GetTypeForDeclarator will
2327  // put in a result type of "int" when none was specified.
2328  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2329  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2330                                 Proto->getNumArgs(),
2331                                 Proto->isVariadic(), 0);
2332}
2333
2334/// CheckConstructor - Checks a fully-formed constructor for
2335/// well-formedness, issuing any diagnostics required. Returns true if
2336/// the constructor declarator is invalid.
2337void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2338  CXXRecordDecl *ClassDecl
2339    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2340  if (!ClassDecl)
2341    return Constructor->setInvalidDecl();
2342
2343  // C++ [class.copy]p3:
2344  //   A declaration of a constructor for a class X is ill-formed if
2345  //   its first parameter is of type (optionally cv-qualified) X and
2346  //   either there are no other parameters or else all other
2347  //   parameters have default arguments.
2348  if (!Constructor->isInvalidDecl() &&
2349      ((Constructor->getNumParams() == 1) ||
2350       (Constructor->getNumParams() > 1 &&
2351        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2352      Constructor->getTemplateSpecializationKind()
2353                                              != TSK_ImplicitInstantiation) {
2354    QualType ParamType = Constructor->getParamDecl(0)->getType();
2355    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2356    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2357      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2358      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2359        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2360
2361      // FIXME: Rather that making the constructor invalid, we should endeavor
2362      // to fix the type.
2363      Constructor->setInvalidDecl();
2364    }
2365  }
2366
2367  // Notify the class that we've added a constructor.
2368  ClassDecl->addedConstructor(Context, Constructor);
2369}
2370
2371/// CheckDestructor - Checks a fully-formed destructor for
2372/// well-formedness, issuing any diagnostics required.
2373void Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2374  CXXRecordDecl *RD = Destructor->getParent();
2375
2376  if (Destructor->isVirtual()) {
2377    SourceLocation Loc;
2378
2379    if (!Destructor->isImplicit())
2380      Loc = Destructor->getLocation();
2381    else
2382      Loc = RD->getLocation();
2383
2384    // If we have a virtual destructor, look up the deallocation function
2385    FunctionDecl *OperatorDelete = 0;
2386    DeclarationName Name =
2387    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2388    if (!FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2389      Destructor->setOperatorDelete(OperatorDelete);
2390  }
2391}
2392
2393static inline bool
2394FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2395  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2396          FTI.ArgInfo[0].Param &&
2397          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2398}
2399
2400/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2401/// the well-formednes of the destructor declarator @p D with type @p
2402/// R. If there are any errors in the declarator, this routine will
2403/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2404/// will be updated to reflect a well-formed type for the destructor and
2405/// returned.
2406QualType Sema::CheckDestructorDeclarator(Declarator &D,
2407                                         FunctionDecl::StorageClass& SC) {
2408  // C++ [class.dtor]p1:
2409  //   [...] A typedef-name that names a class is a class-name
2410  //   (7.1.3); however, a typedef-name that names a class shall not
2411  //   be used as the identifier in the declarator for a destructor
2412  //   declaration.
2413  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2414  if (isa<TypedefType>(DeclaratorType)) {
2415    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2416      << DeclaratorType;
2417    D.setInvalidType();
2418  }
2419
2420  // C++ [class.dtor]p2:
2421  //   A destructor is used to destroy objects of its class type. A
2422  //   destructor takes no parameters, and no return type can be
2423  //   specified for it (not even void). The address of a destructor
2424  //   shall not be taken. A destructor shall not be static. A
2425  //   destructor can be invoked for a const, volatile or const
2426  //   volatile object. A destructor shall not be declared const,
2427  //   volatile or const volatile (9.3.2).
2428  if (SC == FunctionDecl::Static) {
2429    if (!D.isInvalidType())
2430      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2431        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2432        << SourceRange(D.getIdentifierLoc());
2433    SC = FunctionDecl::None;
2434    D.setInvalidType();
2435  }
2436  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2437    // Destructors don't have return types, but the parser will
2438    // happily parse something like:
2439    //
2440    //   class X {
2441    //     float ~X();
2442    //   };
2443    //
2444    // The return type will be eliminated later.
2445    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2446      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2447      << SourceRange(D.getIdentifierLoc());
2448  }
2449
2450  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2451  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2452    if (FTI.TypeQuals & Qualifiers::Const)
2453      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2454        << "const" << SourceRange(D.getIdentifierLoc());
2455    if (FTI.TypeQuals & Qualifiers::Volatile)
2456      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2457        << "volatile" << SourceRange(D.getIdentifierLoc());
2458    if (FTI.TypeQuals & Qualifiers::Restrict)
2459      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2460        << "restrict" << SourceRange(D.getIdentifierLoc());
2461    D.setInvalidType();
2462  }
2463
2464  // Make sure we don't have any parameters.
2465  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2466    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2467
2468    // Delete the parameters.
2469    FTI.freeArgs();
2470    D.setInvalidType();
2471  }
2472
2473  // Make sure the destructor isn't variadic.
2474  if (FTI.isVariadic) {
2475    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2476    D.setInvalidType();
2477  }
2478
2479  // Rebuild the function type "R" without any type qualifiers or
2480  // parameters (in case any of the errors above fired) and with
2481  // "void" as the return type, since destructors don't have return
2482  // types. We *always* have to do this, because GetTypeForDeclarator
2483  // will put in a result type of "int" when none was specified.
2484  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2485}
2486
2487/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2488/// well-formednes of the conversion function declarator @p D with
2489/// type @p R. If there are any errors in the declarator, this routine
2490/// will emit diagnostics and return true. Otherwise, it will return
2491/// false. Either way, the type @p R will be updated to reflect a
2492/// well-formed type for the conversion operator.
2493void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2494                                     FunctionDecl::StorageClass& SC) {
2495  // C++ [class.conv.fct]p1:
2496  //   Neither parameter types nor return type can be specified. The
2497  //   type of a conversion function (8.3.5) is "function taking no
2498  //   parameter returning conversion-type-id."
2499  if (SC == FunctionDecl::Static) {
2500    if (!D.isInvalidType())
2501      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2502        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2503        << SourceRange(D.getIdentifierLoc());
2504    D.setInvalidType();
2505    SC = FunctionDecl::None;
2506  }
2507  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2508    // Conversion functions don't have return types, but the parser will
2509    // happily parse something like:
2510    //
2511    //   class X {
2512    //     float operator bool();
2513    //   };
2514    //
2515    // The return type will be changed later anyway.
2516    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2517      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2518      << SourceRange(D.getIdentifierLoc());
2519  }
2520
2521  // Make sure we don't have any parameters.
2522  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2523    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2524
2525    // Delete the parameters.
2526    D.getTypeObject(0).Fun.freeArgs();
2527    D.setInvalidType();
2528  }
2529
2530  // Make sure the conversion function isn't variadic.
2531  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2532    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2533    D.setInvalidType();
2534  }
2535
2536  // C++ [class.conv.fct]p4:
2537  //   The conversion-type-id shall not represent a function type nor
2538  //   an array type.
2539  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2540  if (ConvType->isArrayType()) {
2541    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2542    ConvType = Context.getPointerType(ConvType);
2543    D.setInvalidType();
2544  } else if (ConvType->isFunctionType()) {
2545    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2546    ConvType = Context.getPointerType(ConvType);
2547    D.setInvalidType();
2548  }
2549
2550  // Rebuild the function type "R" without any parameters (in case any
2551  // of the errors above fired) and with the conversion type as the
2552  // return type.
2553  R = Context.getFunctionType(ConvType, 0, 0, false,
2554                              R->getAs<FunctionProtoType>()->getTypeQuals());
2555
2556  // C++0x explicit conversion operators.
2557  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2558    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2559         diag::warn_explicit_conversion_functions)
2560      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2561}
2562
2563/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2564/// the declaration of the given C++ conversion function. This routine
2565/// is responsible for recording the conversion function in the C++
2566/// class, if possible.
2567Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2568  assert(Conversion && "Expected to receive a conversion function declaration");
2569
2570  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2571
2572  // Make sure we aren't redeclaring the conversion function.
2573  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2574
2575  // C++ [class.conv.fct]p1:
2576  //   [...] A conversion function is never used to convert a
2577  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2578  //   same object type (or a reference to it), to a (possibly
2579  //   cv-qualified) base class of that type (or a reference to it),
2580  //   or to (possibly cv-qualified) void.
2581  // FIXME: Suppress this warning if the conversion function ends up being a
2582  // virtual function that overrides a virtual function in a base class.
2583  QualType ClassType
2584    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2585  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2586    ConvType = ConvTypeRef->getPointeeType();
2587  if (ConvType->isRecordType()) {
2588    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2589    if (ConvType == ClassType)
2590      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2591        << ClassType;
2592    else if (IsDerivedFrom(ClassType, ConvType))
2593      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2594        <<  ClassType << ConvType;
2595  } else if (ConvType->isVoidType()) {
2596    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2597      << ClassType << ConvType;
2598  }
2599
2600  if (Conversion->getPreviousDeclaration()) {
2601    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2602    if (FunctionTemplateDecl *ConversionTemplate
2603          = Conversion->getDescribedFunctionTemplate())
2604      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2605    if (ClassDecl->replaceConversion(ExpectedPrevDecl, Conversion))
2606      return DeclPtrTy::make(Conversion);
2607    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2608  } else if (FunctionTemplateDecl *ConversionTemplate
2609               = Conversion->getDescribedFunctionTemplate())
2610    ClassDecl->addConversionFunction(ConversionTemplate);
2611  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2612    ClassDecl->addConversionFunction(Conversion);
2613
2614  return DeclPtrTy::make(Conversion);
2615}
2616
2617//===----------------------------------------------------------------------===//
2618// Namespace Handling
2619//===----------------------------------------------------------------------===//
2620
2621/// ActOnStartNamespaceDef - This is called at the start of a namespace
2622/// definition.
2623Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2624                                             SourceLocation IdentLoc,
2625                                             IdentifierInfo *II,
2626                                             SourceLocation LBrace) {
2627  NamespaceDecl *Namespc =
2628      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2629  Namespc->setLBracLoc(LBrace);
2630
2631  Scope *DeclRegionScope = NamespcScope->getParent();
2632
2633  if (II) {
2634    // C++ [namespace.def]p2:
2635    // The identifier in an original-namespace-definition shall not have been
2636    // previously defined in the declarative region in which the
2637    // original-namespace-definition appears. The identifier in an
2638    // original-namespace-definition is the name of the namespace. Subsequently
2639    // in that declarative region, it is treated as an original-namespace-name.
2640
2641    NamedDecl *PrevDecl
2642      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2643                         ForRedeclaration);
2644
2645    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2646      // This is an extended namespace definition.
2647      // Attach this namespace decl to the chain of extended namespace
2648      // definitions.
2649      OrigNS->setNextNamespace(Namespc);
2650      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2651
2652      // Remove the previous declaration from the scope.
2653      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2654        IdResolver.RemoveDecl(OrigNS);
2655        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2656      }
2657    } else if (PrevDecl) {
2658      // This is an invalid name redefinition.
2659      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2660       << Namespc->getDeclName();
2661      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2662      Namespc->setInvalidDecl();
2663      // Continue on to push Namespc as current DeclContext and return it.
2664    } else if (II->isStr("std") &&
2665               CurContext->getLookupContext()->isTranslationUnit()) {
2666      // This is the first "real" definition of the namespace "std", so update
2667      // our cache of the "std" namespace to point at this definition.
2668      if (StdNamespace) {
2669        // We had already defined a dummy namespace "std". Link this new
2670        // namespace definition to the dummy namespace "std".
2671        StdNamespace->setNextNamespace(Namespc);
2672        StdNamespace->setLocation(IdentLoc);
2673        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2674      }
2675
2676      // Make our StdNamespace cache point at the first real definition of the
2677      // "std" namespace.
2678      StdNamespace = Namespc;
2679    }
2680
2681    PushOnScopeChains(Namespc, DeclRegionScope);
2682  } else {
2683    // Anonymous namespaces.
2684
2685    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2686    //   behaves as if it were replaced by
2687    //     namespace unique { /* empty body */ }
2688    //     using namespace unique;
2689    //     namespace unique { namespace-body }
2690    //   where all occurrences of 'unique' in a translation unit are
2691    //   replaced by the same identifier and this identifier differs
2692    //   from all other identifiers in the entire program.
2693
2694    // We just create the namespace with an empty name and then add an
2695    // implicit using declaration, just like the standard suggests.
2696    //
2697    // CodeGen enforces the "universally unique" aspect by giving all
2698    // declarations semantically contained within an anonymous
2699    // namespace internal linkage.
2700
2701    assert(Namespc->isAnonymousNamespace());
2702    CurContext->addDecl(Namespc);
2703
2704    UsingDirectiveDecl* UD
2705      = UsingDirectiveDecl::Create(Context, CurContext,
2706                                   /* 'using' */ LBrace,
2707                                   /* 'namespace' */ SourceLocation(),
2708                                   /* qualifier */ SourceRange(),
2709                                   /* NNS */ NULL,
2710                                   /* identifier */ SourceLocation(),
2711                                   Namespc,
2712                                   /* Ancestor */ CurContext);
2713    UD->setImplicit();
2714    CurContext->addDecl(UD);
2715  }
2716
2717  // Although we could have an invalid decl (i.e. the namespace name is a
2718  // redefinition), push it as current DeclContext and try to continue parsing.
2719  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2720  // for the namespace has the declarations that showed up in that particular
2721  // namespace definition.
2722  PushDeclContext(NamespcScope, Namespc);
2723  return DeclPtrTy::make(Namespc);
2724}
2725
2726/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2727/// is a namespace alias, returns the namespace it points to.
2728static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2729  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2730    return AD->getNamespace();
2731  return dyn_cast_or_null<NamespaceDecl>(D);
2732}
2733
2734/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2735/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2736void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2737  Decl *Dcl = D.getAs<Decl>();
2738  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2739  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2740  Namespc->setRBracLoc(RBrace);
2741  PopDeclContext();
2742}
2743
2744Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2745                                          SourceLocation UsingLoc,
2746                                          SourceLocation NamespcLoc,
2747                                          const CXXScopeSpec &SS,
2748                                          SourceLocation IdentLoc,
2749                                          IdentifierInfo *NamespcName,
2750                                          AttributeList *AttrList) {
2751  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2752  assert(NamespcName && "Invalid NamespcName.");
2753  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2754  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2755
2756  UsingDirectiveDecl *UDir = 0;
2757
2758  // Lookup namespace name.
2759  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
2760  LookupParsedName(R, S, &SS);
2761  if (R.isAmbiguous())
2762    return DeclPtrTy();
2763
2764  if (!R.empty()) {
2765    NamedDecl *Named = R.getFoundDecl();
2766    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
2767        && "expected namespace decl");
2768    // C++ [namespace.udir]p1:
2769    //   A using-directive specifies that the names in the nominated
2770    //   namespace can be used in the scope in which the
2771    //   using-directive appears after the using-directive. During
2772    //   unqualified name lookup (3.4.1), the names appear as if they
2773    //   were declared in the nearest enclosing namespace which
2774    //   contains both the using-directive and the nominated
2775    //   namespace. [Note: in this context, "contains" means "contains
2776    //   directly or indirectly". ]
2777
2778    // Find enclosing context containing both using-directive and
2779    // nominated namespace.
2780    NamespaceDecl *NS = getNamespaceDecl(Named);
2781    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2782    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2783      CommonAncestor = CommonAncestor->getParent();
2784
2785    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
2786                                      SS.getRange(),
2787                                      (NestedNameSpecifier *)SS.getScopeRep(),
2788                                      IdentLoc, Named, CommonAncestor);
2789    PushUsingDirective(S, UDir);
2790  } else {
2791    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2792  }
2793
2794  // FIXME: We ignore attributes for now.
2795  delete AttrList;
2796  return DeclPtrTy::make(UDir);
2797}
2798
2799void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2800  // If scope has associated entity, then using directive is at namespace
2801  // or translation unit scope. We add UsingDirectiveDecls, into
2802  // it's lookup structure.
2803  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2804    Ctx->addDecl(UDir);
2805  else
2806    // Otherwise it is block-sope. using-directives will affect lookup
2807    // only to the end of scope.
2808    S->PushUsingDirective(DeclPtrTy::make(UDir));
2809}
2810
2811
2812Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2813                                            AccessSpecifier AS,
2814                                            SourceLocation UsingLoc,
2815                                            const CXXScopeSpec &SS,
2816                                            UnqualifiedId &Name,
2817                                            AttributeList *AttrList,
2818                                            bool IsTypeName,
2819                                            SourceLocation TypenameLoc) {
2820  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2821
2822  switch (Name.getKind()) {
2823  case UnqualifiedId::IK_Identifier:
2824  case UnqualifiedId::IK_OperatorFunctionId:
2825  case UnqualifiedId::IK_ConversionFunctionId:
2826    break;
2827
2828  case UnqualifiedId::IK_ConstructorName:
2829    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2830      << SS.getRange();
2831    return DeclPtrTy();
2832
2833  case UnqualifiedId::IK_DestructorName:
2834    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2835      << SS.getRange();
2836    return DeclPtrTy();
2837
2838  case UnqualifiedId::IK_TemplateId:
2839    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2840      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2841    return DeclPtrTy();
2842  }
2843
2844  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2845  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
2846                                        Name.getSourceRange().getBegin(),
2847                                        TargetName, AttrList,
2848                                        /* IsInstantiation */ false,
2849                                        IsTypeName, TypenameLoc);
2850  if (UD) {
2851    PushOnScopeChains(UD, S);
2852    UD->setAccess(AS);
2853  }
2854
2855  return DeclPtrTy::make(UD);
2856}
2857
2858/// Builds a shadow declaration corresponding to a 'using' declaration.
2859static UsingShadowDecl *BuildUsingShadowDecl(Sema &SemaRef, Scope *S,
2860                                             AccessSpecifier AS,
2861                                             UsingDecl *UD, NamedDecl *Orig) {
2862  // FIXME: diagnose hiding, collisions
2863
2864  // If we resolved to another shadow declaration, just coalesce them.
2865  if (isa<UsingShadowDecl>(Orig)) {
2866    Orig = cast<UsingShadowDecl>(Orig)->getTargetDecl();
2867    assert(!isa<UsingShadowDecl>(Orig) && "nested shadow declaration");
2868  }
2869
2870  UsingShadowDecl *Shadow
2871    = UsingShadowDecl::Create(SemaRef.Context, SemaRef.CurContext,
2872                              UD->getLocation(), UD, Orig);
2873  UD->addShadowDecl(Shadow);
2874
2875  if (S)
2876    SemaRef.PushOnScopeChains(Shadow, S);
2877  else
2878    SemaRef.CurContext->addDecl(Shadow);
2879  Shadow->setAccess(AS);
2880
2881  return Shadow;
2882}
2883
2884/// Builds a using declaration.
2885///
2886/// \param IsInstantiation - Whether this call arises from an
2887///   instantiation of an unresolved using declaration.  We treat
2888///   the lookup differently for these declarations.
2889NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
2890                                       SourceLocation UsingLoc,
2891                                       const CXXScopeSpec &SS,
2892                                       SourceLocation IdentLoc,
2893                                       DeclarationName Name,
2894                                       AttributeList *AttrList,
2895                                       bool IsInstantiation,
2896                                       bool IsTypeName,
2897                                       SourceLocation TypenameLoc) {
2898  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2899  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2900
2901  // FIXME: We ignore attributes for now.
2902  delete AttrList;
2903
2904  if (SS.isEmpty()) {
2905    Diag(IdentLoc, diag::err_using_requires_qualname);
2906    return 0;
2907  }
2908
2909  NestedNameSpecifier *NNS =
2910    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2911
2912  DeclContext *LookupContext = computeDeclContext(SS);
2913  if (!LookupContext) {
2914    if (IsTypeName) {
2915      return UnresolvedUsingTypenameDecl::Create(Context, CurContext,
2916                                                 UsingLoc, TypenameLoc,
2917                                                 SS.getRange(), NNS,
2918                                                 IdentLoc, Name);
2919    } else {
2920      return UnresolvedUsingValueDecl::Create(Context, CurContext,
2921                                              UsingLoc, SS.getRange(), NNS,
2922                                              IdentLoc, Name);
2923    }
2924  }
2925
2926  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2927    // C++0x N2914 [namespace.udecl]p3:
2928    // A using-declaration used as a member-declaration shall refer to a member
2929    // of a base class of the class being defined, shall refer to a member of an
2930    // anonymous union that is a member of a base class of the class being
2931    // defined, or shall refer to an enumerator for an enumeration type that is
2932    // a member of a base class of the class being defined.
2933
2934    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2935    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2936      Diag(SS.getRange().getBegin(),
2937           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2938        << NNS << RD->getDeclName();
2939      return 0;
2940    }
2941  } else {
2942    // C++0x N2914 [namespace.udecl]p8:
2943    // A using-declaration for a class member shall be a member-declaration.
2944    if (isa<CXXRecordDecl>(LookupContext)) {
2945      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2946        << SS.getRange();
2947      return 0;
2948    }
2949  }
2950
2951  // Look up the target name.  Unlike most lookups, we do not want to
2952  // hide tag declarations: tag names are visible through the using
2953  // declaration even if hidden by ordinary names.
2954  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
2955
2956  // We don't hide tags behind ordinary decls if we're in a
2957  // non-dependent context, but in a dependent context, this is
2958  // important for the stability of two-phase lookup.
2959  if (!IsInstantiation)
2960    R.setHideTags(false);
2961
2962  LookupQualifiedName(R, LookupContext);
2963
2964  if (R.empty()) {
2965    Diag(IdentLoc, diag::err_no_member)
2966      << Name << LookupContext << SS.getRange();
2967    return 0;
2968  }
2969
2970  if (R.isAmbiguous())
2971    return 0;
2972
2973  if (IsTypeName) {
2974    // If we asked for a typename and got a non-type decl, error out.
2975    if (R.getResultKind() != LookupResult::Found
2976        || !isa<TypeDecl>(R.getFoundDecl())) {
2977      Diag(IdentLoc, diag::err_using_typename_non_type);
2978      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
2979        Diag((*I)->getUnderlyingDecl()->getLocation(),
2980             diag::note_using_decl_target);
2981      return 0;
2982    }
2983  } else {
2984    // If we asked for a non-typename and we got a type, error out,
2985    // but only if this is an instantiation of an unresolved using
2986    // decl.  Otherwise just silently find the type name.
2987    if (IsInstantiation &&
2988        R.getResultKind() == LookupResult::Found &&
2989        isa<TypeDecl>(R.getFoundDecl())) {
2990      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
2991      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
2992      return 0;
2993    }
2994  }
2995
2996  // C++0x N2914 [namespace.udecl]p6:
2997  // A using-declaration shall not name a namespace.
2998  if (R.getResultKind() == LookupResult::Found
2999      && isa<NamespaceDecl>(R.getFoundDecl())) {
3000    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3001      << SS.getRange();
3002    return 0;
3003  }
3004
3005  UsingDecl *UD = UsingDecl::Create(Context, CurContext, IdentLoc,
3006                                    SS.getRange(), UsingLoc, NNS, Name,
3007                                    IsTypeName);
3008
3009  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3010    BuildUsingShadowDecl(*this, S, AS, UD, *I);
3011
3012  return UD;
3013}
3014
3015Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3016                                             SourceLocation NamespaceLoc,
3017                                             SourceLocation AliasLoc,
3018                                             IdentifierInfo *Alias,
3019                                             const CXXScopeSpec &SS,
3020                                             SourceLocation IdentLoc,
3021                                             IdentifierInfo *Ident) {
3022
3023  // Lookup the namespace name.
3024  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3025  LookupParsedName(R, S, &SS);
3026
3027  // Check if we have a previous declaration with the same name.
3028  if (NamedDecl *PrevDecl
3029        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3030    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3031      // We already have an alias with the same name that points to the same
3032      // namespace, so don't create a new one.
3033      if (!R.isAmbiguous() && !R.empty() &&
3034          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
3035        return DeclPtrTy();
3036    }
3037
3038    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3039      diag::err_redefinition_different_kind;
3040    Diag(AliasLoc, DiagID) << Alias;
3041    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3042    return DeclPtrTy();
3043  }
3044
3045  if (R.isAmbiguous())
3046    return DeclPtrTy();
3047
3048  if (R.empty()) {
3049    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3050    return DeclPtrTy();
3051  }
3052
3053  NamespaceAliasDecl *AliasDecl =
3054    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3055                               Alias, SS.getRange(),
3056                               (NestedNameSpecifier *)SS.getScopeRep(),
3057                               IdentLoc, R.getFoundDecl());
3058
3059  CurContext->addDecl(AliasDecl);
3060  return DeclPtrTy::make(AliasDecl);
3061}
3062
3063void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3064                                            CXXConstructorDecl *Constructor) {
3065  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3066          !Constructor->isUsed()) &&
3067    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3068
3069  CXXRecordDecl *ClassDecl
3070    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3071  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3072
3073  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
3074    Diag(CurrentLocation, diag::note_ctor_synthesized_at)
3075      << Context.getTagDeclType(ClassDecl);
3076    Constructor->setInvalidDecl();
3077  } else {
3078    Constructor->setUsed();
3079  }
3080  return;
3081}
3082
3083void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3084                                    CXXDestructorDecl *Destructor) {
3085  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3086         "DefineImplicitDestructor - call it for implicit default dtor");
3087  CXXRecordDecl *ClassDecl = Destructor->getParent();
3088  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3089  // C++ [class.dtor] p5
3090  // Before the implicitly-declared default destructor for a class is
3091  // implicitly defined, all the implicitly-declared default destructors
3092  // for its base class and its non-static data members shall have been
3093  // implicitly defined.
3094  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3095       E = ClassDecl->bases_end(); Base != E; ++Base) {
3096    CXXRecordDecl *BaseClassDecl
3097      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3098    if (!BaseClassDecl->hasTrivialDestructor()) {
3099      if (CXXDestructorDecl *BaseDtor =
3100          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3101        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3102      else
3103        assert(false &&
3104               "DefineImplicitDestructor - missing dtor in a base class");
3105    }
3106  }
3107
3108  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3109       E = ClassDecl->field_end(); Field != E; ++Field) {
3110    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3111    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3112      FieldType = Array->getElementType();
3113    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3114      CXXRecordDecl *FieldClassDecl
3115        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3116      if (!FieldClassDecl->hasTrivialDestructor()) {
3117        if (CXXDestructorDecl *FieldDtor =
3118            const_cast<CXXDestructorDecl*>(
3119                                        FieldClassDecl->getDestructor(Context)))
3120          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3121        else
3122          assert(false &&
3123          "DefineImplicitDestructor - missing dtor in class of a data member");
3124      }
3125    }
3126  }
3127  Destructor->setUsed();
3128}
3129
3130void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3131                                          CXXMethodDecl *MethodDecl) {
3132  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3133          MethodDecl->getOverloadedOperator() == OO_Equal &&
3134          !MethodDecl->isUsed()) &&
3135         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3136
3137  CXXRecordDecl *ClassDecl
3138    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3139
3140  // C++[class.copy] p12
3141  // Before the implicitly-declared copy assignment operator for a class is
3142  // implicitly defined, all implicitly-declared copy assignment operators
3143  // for its direct base classes and its nonstatic data members shall have
3144  // been implicitly defined.
3145  bool err = false;
3146  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3147       E = ClassDecl->bases_end(); Base != E; ++Base) {
3148    CXXRecordDecl *BaseClassDecl
3149      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3150    if (CXXMethodDecl *BaseAssignOpMethod =
3151          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3152      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3153  }
3154  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3155       E = ClassDecl->field_end(); Field != E; ++Field) {
3156    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3157    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3158      FieldType = Array->getElementType();
3159    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3160      CXXRecordDecl *FieldClassDecl
3161        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3162      if (CXXMethodDecl *FieldAssignOpMethod =
3163          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3164        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3165    } else if (FieldType->isReferenceType()) {
3166      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3167      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3168      Diag(Field->getLocation(), diag::note_declared_at);
3169      Diag(CurrentLocation, diag::note_first_required_here);
3170      err = true;
3171    } else if (FieldType.isConstQualified()) {
3172      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3173      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3174      Diag(Field->getLocation(), diag::note_declared_at);
3175      Diag(CurrentLocation, diag::note_first_required_here);
3176      err = true;
3177    }
3178  }
3179  if (!err)
3180    MethodDecl->setUsed();
3181}
3182
3183CXXMethodDecl *
3184Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3185                              CXXRecordDecl *ClassDecl) {
3186  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3187  QualType RHSType(LHSType);
3188  // If class's assignment operator argument is const/volatile qualified,
3189  // look for operator = (const/volatile B&). Otherwise, look for
3190  // operator = (B&).
3191  RHSType = Context.getCVRQualifiedType(RHSType,
3192                                     ParmDecl->getType().getCVRQualifiers());
3193  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3194                                                          LHSType,
3195                                                          SourceLocation()));
3196  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3197                                                          RHSType,
3198                                                          SourceLocation()));
3199  Expr *Args[2] = { &*LHS, &*RHS };
3200  OverloadCandidateSet CandidateSet;
3201  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3202                              CandidateSet);
3203  OverloadCandidateSet::iterator Best;
3204  if (BestViableFunction(CandidateSet,
3205                         ClassDecl->getLocation(), Best) == OR_Success)
3206    return cast<CXXMethodDecl>(Best->Function);
3207  assert(false &&
3208         "getAssignOperatorMethod - copy assignment operator method not found");
3209  return 0;
3210}
3211
3212void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3213                                   CXXConstructorDecl *CopyConstructor,
3214                                   unsigned TypeQuals) {
3215  assert((CopyConstructor->isImplicit() &&
3216          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3217          !CopyConstructor->isUsed()) &&
3218         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3219
3220  CXXRecordDecl *ClassDecl
3221    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3222  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3223  // C++ [class.copy] p209
3224  // Before the implicitly-declared copy constructor for a class is
3225  // implicitly defined, all the implicitly-declared copy constructors
3226  // for its base class and its non-static data members shall have been
3227  // implicitly defined.
3228  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3229       Base != ClassDecl->bases_end(); ++Base) {
3230    CXXRecordDecl *BaseClassDecl
3231      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3232    if (CXXConstructorDecl *BaseCopyCtor =
3233        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3234      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3235  }
3236  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3237                                  FieldEnd = ClassDecl->field_end();
3238       Field != FieldEnd; ++Field) {
3239    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3240    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3241      FieldType = Array->getElementType();
3242    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3243      CXXRecordDecl *FieldClassDecl
3244        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3245      if (CXXConstructorDecl *FieldCopyCtor =
3246          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3247        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3248    }
3249  }
3250  CopyConstructor->setUsed();
3251}
3252
3253Sema::OwningExprResult
3254Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3255                            CXXConstructorDecl *Constructor,
3256                            MultiExprArg ExprArgs) {
3257  bool Elidable = false;
3258
3259  // C++ [class.copy]p15:
3260  //   Whenever a temporary class object is copied using a copy constructor, and
3261  //   this object and the copy have the same cv-unqualified type, an
3262  //   implementation is permitted to treat the original and the copy as two
3263  //   different ways of referring to the same object and not perform a copy at
3264  //   all, even if the class copy constructor or destructor have side effects.
3265
3266  // FIXME: Is this enough?
3267  if (Constructor->isCopyConstructor(Context)) {
3268    Expr *E = ((Expr **)ExprArgs.get())[0];
3269    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3270      E = BE->getSubExpr();
3271    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3272      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3273        E = ICE->getSubExpr();
3274
3275    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3276      Elidable = true;
3277  }
3278
3279  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3280                               Elidable, move(ExprArgs));
3281}
3282
3283/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3284/// including handling of its default argument expressions.
3285Sema::OwningExprResult
3286Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3287                            CXXConstructorDecl *Constructor, bool Elidable,
3288                            MultiExprArg ExprArgs) {
3289  unsigned NumExprs = ExprArgs.size();
3290  Expr **Exprs = (Expr **)ExprArgs.release();
3291
3292  MarkDeclarationReferenced(ConstructLoc, Constructor);
3293  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3294                                        Elidable, Exprs, NumExprs));
3295}
3296
3297Sema::OwningExprResult
3298Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3299                                  QualType Ty,
3300                                  SourceLocation TyBeginLoc,
3301                                  MultiExprArg Args,
3302                                  SourceLocation RParenLoc) {
3303  unsigned NumExprs = Args.size();
3304  Expr **Exprs = (Expr **)Args.release();
3305
3306  MarkDeclarationReferenced(TyBeginLoc, Constructor);
3307  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3308                                                    TyBeginLoc, Exprs,
3309                                                    NumExprs, RParenLoc));
3310}
3311
3312
3313bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3314                                        CXXConstructorDecl *Constructor,
3315                                        MultiExprArg Exprs) {
3316  OwningExprResult TempResult =
3317    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3318                          move(Exprs));
3319  if (TempResult.isInvalid())
3320    return true;
3321
3322  Expr *Temp = TempResult.takeAs<Expr>();
3323  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3324  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3325  VD->setInit(Context, Temp);
3326
3327  return false;
3328}
3329
3330void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3331  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3332                                  DeclInitType->getAs<RecordType>()->getDecl());
3333  if (!ClassDecl->hasTrivialDestructor())
3334    if (CXXDestructorDecl *Destructor =
3335        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3336      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3337}
3338
3339/// AddCXXDirectInitializerToDecl - This action is called immediately after
3340/// ActOnDeclarator, when a C++ direct initializer is present.
3341/// e.g: "int x(1);"
3342void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3343                                         SourceLocation LParenLoc,
3344                                         MultiExprArg Exprs,
3345                                         SourceLocation *CommaLocs,
3346                                         SourceLocation RParenLoc) {
3347  unsigned NumExprs = Exprs.size();
3348  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3349  Decl *RealDecl = Dcl.getAs<Decl>();
3350
3351  // If there is no declaration, there was an error parsing it.  Just ignore
3352  // the initializer.
3353  if (RealDecl == 0)
3354    return;
3355
3356  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3357  if (!VDecl) {
3358    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3359    RealDecl->setInvalidDecl();
3360    return;
3361  }
3362
3363  // We will represent direct-initialization similarly to copy-initialization:
3364  //    int x(1);  -as-> int x = 1;
3365  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3366  //
3367  // Clients that want to distinguish between the two forms, can check for
3368  // direct initializer using VarDecl::hasCXXDirectInitializer().
3369  // A major benefit is that clients that don't particularly care about which
3370  // exactly form was it (like the CodeGen) can handle both cases without
3371  // special case code.
3372
3373  // If either the declaration has a dependent type or if any of the expressions
3374  // is type-dependent, we represent the initialization via a ParenListExpr for
3375  // later use during template instantiation.
3376  if (VDecl->getType()->isDependentType() ||
3377      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3378    // Let clients know that initialization was done with a direct initializer.
3379    VDecl->setCXXDirectInitializer(true);
3380
3381    // Store the initialization expressions as a ParenListExpr.
3382    unsigned NumExprs = Exprs.size();
3383    VDecl->setInit(Context,
3384                   new (Context) ParenListExpr(Context, LParenLoc,
3385                                               (Expr **)Exprs.release(),
3386                                               NumExprs, RParenLoc));
3387    return;
3388  }
3389
3390
3391  // C++ 8.5p11:
3392  // The form of initialization (using parentheses or '=') is generally
3393  // insignificant, but does matter when the entity being initialized has a
3394  // class type.
3395  QualType DeclInitType = VDecl->getType();
3396  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3397    DeclInitType = Context.getBaseElementType(Array);
3398
3399  // FIXME: This isn't the right place to complete the type.
3400  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3401                          diag::err_typecheck_decl_incomplete_type)) {
3402    VDecl->setInvalidDecl();
3403    return;
3404  }
3405
3406  if (VDecl->getType()->isRecordType()) {
3407    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3408
3409    CXXConstructorDecl *Constructor
3410      = PerformInitializationByConstructor(DeclInitType,
3411                                           move(Exprs),
3412                                           VDecl->getLocation(),
3413                                           SourceRange(VDecl->getLocation(),
3414                                                       RParenLoc),
3415                                           VDecl->getDeclName(),
3416                                           IK_Direct,
3417                                           ConstructorArgs);
3418    if (!Constructor)
3419      RealDecl->setInvalidDecl();
3420    else {
3421      VDecl->setCXXDirectInitializer(true);
3422      if (InitializeVarWithConstructor(VDecl, Constructor,
3423                                       move_arg(ConstructorArgs)))
3424        RealDecl->setInvalidDecl();
3425      FinalizeVarWithDestructor(VDecl, DeclInitType);
3426    }
3427    return;
3428  }
3429
3430  if (NumExprs > 1) {
3431    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3432      << SourceRange(VDecl->getLocation(), RParenLoc);
3433    RealDecl->setInvalidDecl();
3434    return;
3435  }
3436
3437  // Let clients know that initialization was done with a direct initializer.
3438  VDecl->setCXXDirectInitializer(true);
3439
3440  assert(NumExprs == 1 && "Expected 1 expression");
3441  // Set the init expression, handles conversions.
3442  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3443                       /*DirectInit=*/true);
3444}
3445
3446/// \brief Add the applicable constructor candidates for an initialization
3447/// by constructor.
3448static void AddConstructorInitializationCandidates(Sema &SemaRef,
3449                                                   QualType ClassType,
3450                                                   Expr **Args,
3451                                                   unsigned NumArgs,
3452                                                  Sema::InitializationKind Kind,
3453                                           OverloadCandidateSet &CandidateSet) {
3454  // C++ [dcl.init]p14:
3455  //   If the initialization is direct-initialization, or if it is
3456  //   copy-initialization where the cv-unqualified version of the
3457  //   source type is the same class as, or a derived class of, the
3458  //   class of the destination, constructors are considered. The
3459  //   applicable constructors are enumerated (13.3.1.3), and the
3460  //   best one is chosen through overload resolution (13.3). The
3461  //   constructor so selected is called to initialize the object,
3462  //   with the initializer expression(s) as its argument(s). If no
3463  //   constructor applies, or the overload resolution is ambiguous,
3464  //   the initialization is ill-formed.
3465  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3466  assert(ClassRec && "Can only initialize a class type here");
3467
3468  // FIXME: When we decide not to synthesize the implicitly-declared
3469  // constructors, we'll need to make them appear here.
3470
3471  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3472  DeclarationName ConstructorName
3473    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
3474              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
3475  DeclContext::lookup_const_iterator Con, ConEnd;
3476  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3477       Con != ConEnd; ++Con) {
3478    // Find the constructor (which may be a template).
3479    CXXConstructorDecl *Constructor = 0;
3480    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3481    if (ConstructorTmpl)
3482      Constructor
3483      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3484    else
3485      Constructor = cast<CXXConstructorDecl>(*Con);
3486
3487    if ((Kind == Sema::IK_Direct) ||
3488        (Kind == Sema::IK_Copy &&
3489         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3490        (Kind == Sema::IK_Default && Constructor->isDefaultConstructor())) {
3491      if (ConstructorTmpl)
3492        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl,
3493                                             /*ExplicitArgs*/ 0,
3494                                             Args, NumArgs, CandidateSet);
3495      else
3496        SemaRef.AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3497    }
3498  }
3499}
3500
3501/// \brief Attempt to perform initialization by constructor
3502/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
3503/// copy-initialization.
3504///
3505/// This routine determines whether initialization by constructor is possible,
3506/// but it does not emit any diagnostics in the case where the initialization
3507/// is ill-formed.
3508///
3509/// \param ClassType the type of the object being initialized, which must have
3510/// class type.
3511///
3512/// \param Args the arguments provided to initialize the object
3513///
3514/// \param NumArgs the number of arguments provided to initialize the object
3515///
3516/// \param Kind the type of initialization being performed
3517///
3518/// \returns the constructor used to initialize the object, if successful.
3519/// Otherwise, emits a diagnostic and returns NULL.
3520CXXConstructorDecl *
3521Sema::TryInitializationByConstructor(QualType ClassType,
3522                                     Expr **Args, unsigned NumArgs,
3523                                     SourceLocation Loc,
3524                                     InitializationKind Kind) {
3525  // Build the overload candidate set
3526  OverloadCandidateSet CandidateSet;
3527  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3528                                         CandidateSet);
3529
3530  // Determine whether we found a constructor we can use.
3531  OverloadCandidateSet::iterator Best;
3532  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3533    case OR_Success:
3534    case OR_Deleted:
3535      // We found a constructor. Return it.
3536      return cast<CXXConstructorDecl>(Best->Function);
3537
3538    case OR_No_Viable_Function:
3539    case OR_Ambiguous:
3540      // Overload resolution failed. Return nothing.
3541      return 0;
3542  }
3543
3544  // Silence GCC warning
3545  return 0;
3546}
3547
3548/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3549/// may occur as part of direct-initialization or copy-initialization.
3550///
3551/// \param ClassType the type of the object being initialized, which must have
3552/// class type.
3553///
3554/// \param ArgsPtr the arguments provided to initialize the object
3555///
3556/// \param Loc the source location where the initialization occurs
3557///
3558/// \param Range the source range that covers the entire initialization
3559///
3560/// \param InitEntity the name of the entity being initialized, if known
3561///
3562/// \param Kind the type of initialization being performed
3563///
3564/// \param ConvertedArgs a vector that will be filled in with the
3565/// appropriately-converted arguments to the constructor (if initialization
3566/// succeeded).
3567///
3568/// \returns the constructor used to initialize the object, if successful.
3569/// Otherwise, emits a diagnostic and returns NULL.
3570CXXConstructorDecl *
3571Sema::PerformInitializationByConstructor(QualType ClassType,
3572                                         MultiExprArg ArgsPtr,
3573                                         SourceLocation Loc, SourceRange Range,
3574                                         DeclarationName InitEntity,
3575                                         InitializationKind Kind,
3576                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3577
3578  // Build the overload candidate set
3579  Expr **Args = (Expr **)ArgsPtr.get();
3580  unsigned NumArgs = ArgsPtr.size();
3581  OverloadCandidateSet CandidateSet;
3582  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
3583                                         CandidateSet);
3584
3585  OverloadCandidateSet::iterator Best;
3586  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3587  case OR_Success:
3588    // We found a constructor. Break out so that we can convert the arguments
3589    // appropriately.
3590    break;
3591
3592  case OR_No_Viable_Function:
3593    if (InitEntity)
3594      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3595        << InitEntity << Range;
3596    else
3597      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3598        << ClassType << Range;
3599    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3600    return 0;
3601
3602  case OR_Ambiguous:
3603    if (InitEntity)
3604      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3605    else
3606      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3607    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3608    return 0;
3609
3610  case OR_Deleted:
3611    if (InitEntity)
3612      Diag(Loc, diag::err_ovl_deleted_init)
3613        << Best->Function->isDeleted()
3614        << InitEntity << Range;
3615    else
3616      Diag(Loc, diag::err_ovl_deleted_init)
3617        << Best->Function->isDeleted()
3618        << InitEntity << Range;
3619    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3620    return 0;
3621  }
3622
3623  // Convert the arguments, fill in default arguments, etc.
3624  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3625  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3626    return 0;
3627
3628  return Constructor;
3629}
3630
3631/// \brief Given a constructor and the set of arguments provided for the
3632/// constructor, convert the arguments and add any required default arguments
3633/// to form a proper call to this constructor.
3634///
3635/// \returns true if an error occurred, false otherwise.
3636bool
3637Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3638                              MultiExprArg ArgsPtr,
3639                              SourceLocation Loc,
3640                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3641  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3642  unsigned NumArgs = ArgsPtr.size();
3643  Expr **Args = (Expr **)ArgsPtr.get();
3644
3645  const FunctionProtoType *Proto
3646    = Constructor->getType()->getAs<FunctionProtoType>();
3647  assert(Proto && "Constructor without a prototype?");
3648  unsigned NumArgsInProto = Proto->getNumArgs();
3649
3650  // If too few arguments are available, we'll fill in the rest with defaults.
3651  if (NumArgs < NumArgsInProto)
3652    ConvertedArgs.reserve(NumArgsInProto);
3653  else
3654    ConvertedArgs.reserve(NumArgs);
3655
3656  VariadicCallType CallType =
3657    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
3658  llvm::SmallVector<Expr *, 8> AllArgs;
3659  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
3660                                        Proto, 0, Args, NumArgs, AllArgs,
3661                                        CallType);
3662  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
3663    ConvertedArgs.push_back(AllArgs[i]);
3664  return Invalid;
3665}
3666
3667/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3668/// determine whether they are reference-related,
3669/// reference-compatible, reference-compatible with added
3670/// qualification, or incompatible, for use in C++ initialization by
3671/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3672/// type, and the first type (T1) is the pointee type of the reference
3673/// type being initialized.
3674Sema::ReferenceCompareResult
3675Sema::CompareReferenceRelationship(SourceLocation Loc,
3676                                   QualType OrigT1, QualType OrigT2,
3677                                   bool& DerivedToBase) {
3678  assert(!OrigT1->isReferenceType() &&
3679    "T1 must be the pointee type of the reference type");
3680  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3681
3682  QualType T1 = Context.getCanonicalType(OrigT1);
3683  QualType T2 = Context.getCanonicalType(OrigT2);
3684  QualType UnqualT1 = T1.getLocalUnqualifiedType();
3685  QualType UnqualT2 = T2.getLocalUnqualifiedType();
3686
3687  // C++ [dcl.init.ref]p4:
3688  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3689  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3690  //   T1 is a base class of T2.
3691  if (UnqualT1 == UnqualT2)
3692    DerivedToBase = false;
3693  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3694           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3695           IsDerivedFrom(UnqualT2, UnqualT1))
3696    DerivedToBase = true;
3697  else
3698    return Ref_Incompatible;
3699
3700  // At this point, we know that T1 and T2 are reference-related (at
3701  // least).
3702
3703  // C++ [dcl.init.ref]p4:
3704  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3705  //   reference-related to T2 and cv1 is the same cv-qualification
3706  //   as, or greater cv-qualification than, cv2. For purposes of
3707  //   overload resolution, cases for which cv1 is greater
3708  //   cv-qualification than cv2 are identified as
3709  //   reference-compatible with added qualification (see 13.3.3.2).
3710  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3711    return Ref_Compatible;
3712  else if (T1.isMoreQualifiedThan(T2))
3713    return Ref_Compatible_With_Added_Qualification;
3714  else
3715    return Ref_Related;
3716}
3717
3718/// CheckReferenceInit - Check the initialization of a reference
3719/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3720/// the initializer (either a simple initializer or an initializer
3721/// list), and DeclType is the type of the declaration. When ICS is
3722/// non-null, this routine will compute the implicit conversion
3723/// sequence according to C++ [over.ics.ref] and will not produce any
3724/// diagnostics; when ICS is null, it will emit diagnostics when any
3725/// errors are found. Either way, a return value of true indicates
3726/// that there was a failure, a return value of false indicates that
3727/// the reference initialization succeeded.
3728///
3729/// When @p SuppressUserConversions, user-defined conversions are
3730/// suppressed.
3731/// When @p AllowExplicit, we also permit explicit user-defined
3732/// conversion functions.
3733/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3734/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
3735/// This is used when this is called from a C-style cast.
3736bool
3737Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3738                         SourceLocation DeclLoc,
3739                         bool SuppressUserConversions,
3740                         bool AllowExplicit, bool ForceRValue,
3741                         ImplicitConversionSequence *ICS,
3742                         bool IgnoreBaseAccess) {
3743  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3744
3745  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3746  QualType T2 = Init->getType();
3747
3748  // If the initializer is the address of an overloaded function, try
3749  // to resolve the overloaded function. If all goes well, T2 is the
3750  // type of the resulting function.
3751  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3752    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3753                                                          ICS != 0);
3754    if (Fn) {
3755      // Since we're performing this reference-initialization for
3756      // real, update the initializer with the resulting function.
3757      if (!ICS) {
3758        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3759          return true;
3760
3761        Init = FixOverloadedFunctionReference(Init, Fn);
3762      }
3763
3764      T2 = Fn->getType();
3765    }
3766  }
3767
3768  // Compute some basic properties of the types and the initializer.
3769  bool isRValRef = DeclType->isRValueReferenceType();
3770  bool DerivedToBase = false;
3771  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3772                                                  Init->isLvalue(Context);
3773  ReferenceCompareResult RefRelationship
3774    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3775
3776  // Most paths end in a failed conversion.
3777  if (ICS)
3778    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3779
3780  // C++ [dcl.init.ref]p5:
3781  //   A reference to type "cv1 T1" is initialized by an expression
3782  //   of type "cv2 T2" as follows:
3783
3784  //     -- If the initializer expression
3785
3786  // Rvalue references cannot bind to lvalues (N2812).
3787  // There is absolutely no situation where they can. In particular, note that
3788  // this is ill-formed, even if B has a user-defined conversion to A&&:
3789  //   B b;
3790  //   A&& r = b;
3791  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3792    if (!ICS)
3793      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3794        << Init->getSourceRange();
3795    return true;
3796  }
3797
3798  bool BindsDirectly = false;
3799  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3800  //          reference-compatible with "cv2 T2," or
3801  //
3802  // Note that the bit-field check is skipped if we are just computing
3803  // the implicit conversion sequence (C++ [over.best.ics]p2).
3804  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3805      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3806    BindsDirectly = true;
3807
3808    if (ICS) {
3809      // C++ [over.ics.ref]p1:
3810      //   When a parameter of reference type binds directly (8.5.3)
3811      //   to an argument expression, the implicit conversion sequence
3812      //   is the identity conversion, unless the argument expression
3813      //   has a type that is a derived class of the parameter type,
3814      //   in which case the implicit conversion sequence is a
3815      //   derived-to-base Conversion (13.3.3.1).
3816      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3817      ICS->Standard.First = ICK_Identity;
3818      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3819      ICS->Standard.Third = ICK_Identity;
3820      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3821      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3822      ICS->Standard.ReferenceBinding = true;
3823      ICS->Standard.DirectBinding = true;
3824      ICS->Standard.RRefBinding = false;
3825      ICS->Standard.CopyConstructor = 0;
3826
3827      // Nothing more to do: the inaccessibility/ambiguity check for
3828      // derived-to-base conversions is suppressed when we're
3829      // computing the implicit conversion sequence (C++
3830      // [over.best.ics]p2).
3831      return false;
3832    } else {
3833      // Perform the conversion.
3834      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3835      if (DerivedToBase)
3836        CK = CastExpr::CK_DerivedToBase;
3837      else if(CheckExceptionSpecCompatibility(Init, T1))
3838        return true;
3839      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3840    }
3841  }
3842
3843  //       -- has a class type (i.e., T2 is a class type) and can be
3844  //          implicitly converted to an lvalue of type "cv3 T3,"
3845  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3846  //          92) (this conversion is selected by enumerating the
3847  //          applicable conversion functions (13.3.1.6) and choosing
3848  //          the best one through overload resolution (13.3)),
3849  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3850      !RequireCompleteType(DeclLoc, T2, 0)) {
3851    CXXRecordDecl *T2RecordDecl
3852      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3853
3854    OverloadCandidateSet CandidateSet;
3855    const UnresolvedSet *Conversions
3856      = T2RecordDecl->getVisibleConversionFunctions();
3857    for (UnresolvedSet::iterator I = Conversions->begin(),
3858           E = Conversions->end(); I != E; ++I) {
3859      FunctionTemplateDecl *ConvTemplate
3860        = dyn_cast<FunctionTemplateDecl>(*I);
3861      CXXConversionDecl *Conv;
3862      if (ConvTemplate)
3863        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3864      else
3865        Conv = cast<CXXConversionDecl>(*I);
3866
3867      // If the conversion function doesn't return a reference type,
3868      // it can't be considered for this conversion.
3869      if (Conv->getConversionType()->isLValueReferenceType() &&
3870          (AllowExplicit || !Conv->isExplicit())) {
3871        if (ConvTemplate)
3872          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3873                                         CandidateSet);
3874        else
3875          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3876      }
3877    }
3878
3879    OverloadCandidateSet::iterator Best;
3880    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3881    case OR_Success:
3882      // This is a direct binding.
3883      BindsDirectly = true;
3884
3885      if (ICS) {
3886        // C++ [over.ics.ref]p1:
3887        //
3888        //   [...] If the parameter binds directly to the result of
3889        //   applying a conversion function to the argument
3890        //   expression, the implicit conversion sequence is a
3891        //   user-defined conversion sequence (13.3.3.1.2), with the
3892        //   second standard conversion sequence either an identity
3893        //   conversion or, if the conversion function returns an
3894        //   entity of a type that is a derived class of the parameter
3895        //   type, a derived-to-base Conversion.
3896        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3897        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3898        ICS->UserDefined.After = Best->FinalConversion;
3899        ICS->UserDefined.ConversionFunction = Best->Function;
3900        ICS->UserDefined.EllipsisConversion = false;
3901        assert(ICS->UserDefined.After.ReferenceBinding &&
3902               ICS->UserDefined.After.DirectBinding &&
3903               "Expected a direct reference binding!");
3904        return false;
3905      } else {
3906        OwningExprResult InitConversion =
3907          BuildCXXCastArgument(DeclLoc, QualType(),
3908                               CastExpr::CK_UserDefinedConversion,
3909                               cast<CXXMethodDecl>(Best->Function),
3910                               Owned(Init));
3911        Init = InitConversion.takeAs<Expr>();
3912
3913        if (CheckExceptionSpecCompatibility(Init, T1))
3914          return true;
3915        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3916                          /*isLvalue=*/true);
3917      }
3918      break;
3919
3920    case OR_Ambiguous:
3921      if (ICS) {
3922        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3923             Cand != CandidateSet.end(); ++Cand)
3924          if (Cand->Viable)
3925            ICS->ConversionFunctionSet.push_back(Cand->Function);
3926        break;
3927      }
3928      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3929            << Init->getSourceRange();
3930      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3931      return true;
3932
3933    case OR_No_Viable_Function:
3934    case OR_Deleted:
3935      // There was no suitable conversion, or we found a deleted
3936      // conversion; continue with other checks.
3937      break;
3938    }
3939  }
3940
3941  if (BindsDirectly) {
3942    // C++ [dcl.init.ref]p4:
3943    //   [...] In all cases where the reference-related or
3944    //   reference-compatible relationship of two types is used to
3945    //   establish the validity of a reference binding, and T1 is a
3946    //   base class of T2, a program that necessitates such a binding
3947    //   is ill-formed if T1 is an inaccessible (clause 11) or
3948    //   ambiguous (10.2) base class of T2.
3949    //
3950    // Note that we only check this condition when we're allowed to
3951    // complain about errors, because we should not be checking for
3952    // ambiguity (or inaccessibility) unless the reference binding
3953    // actually happens.
3954    if (DerivedToBase)
3955      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3956                                          Init->getSourceRange(),
3957                                          IgnoreBaseAccess);
3958    else
3959      return false;
3960  }
3961
3962  //     -- Otherwise, the reference shall be to a non-volatile const
3963  //        type (i.e., cv1 shall be const), or the reference shall be an
3964  //        rvalue reference and the initializer expression shall be an rvalue.
3965  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3966    if (!ICS)
3967      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3968        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3969        << T2 << Init->getSourceRange();
3970    return true;
3971  }
3972
3973  //       -- If the initializer expression is an rvalue, with T2 a
3974  //          class type, and "cv1 T1" is reference-compatible with
3975  //          "cv2 T2," the reference is bound in one of the
3976  //          following ways (the choice is implementation-defined):
3977  //
3978  //          -- The reference is bound to the object represented by
3979  //             the rvalue (see 3.10) or to a sub-object within that
3980  //             object.
3981  //
3982  //          -- A temporary of type "cv1 T2" [sic] is created, and
3983  //             a constructor is called to copy the entire rvalue
3984  //             object into the temporary. The reference is bound to
3985  //             the temporary or to a sub-object within the
3986  //             temporary.
3987  //
3988  //          The constructor that would be used to make the copy
3989  //          shall be callable whether or not the copy is actually
3990  //          done.
3991  //
3992  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3993  // freedom, so we will always take the first option and never build
3994  // a temporary in this case. FIXME: We will, however, have to check
3995  // for the presence of a copy constructor in C++98/03 mode.
3996  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3997      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3998    if (ICS) {
3999      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
4000      ICS->Standard.First = ICK_Identity;
4001      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4002      ICS->Standard.Third = ICK_Identity;
4003      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4004      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
4005      ICS->Standard.ReferenceBinding = true;
4006      ICS->Standard.DirectBinding = false;
4007      ICS->Standard.RRefBinding = isRValRef;
4008      ICS->Standard.CopyConstructor = 0;
4009    } else {
4010      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4011      if (DerivedToBase)
4012        CK = CastExpr::CK_DerivedToBase;
4013      else if(CheckExceptionSpecCompatibility(Init, T1))
4014        return true;
4015      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4016    }
4017    return false;
4018  }
4019
4020  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4021  //          initialized from the initializer expression using the
4022  //          rules for a non-reference copy initialization (8.5). The
4023  //          reference is then bound to the temporary. If T1 is
4024  //          reference-related to T2, cv1 must be the same
4025  //          cv-qualification as, or greater cv-qualification than,
4026  //          cv2; otherwise, the program is ill-formed.
4027  if (RefRelationship == Ref_Related) {
4028    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4029    // we would be reference-compatible or reference-compatible with
4030    // added qualification. But that wasn't the case, so the reference
4031    // initialization fails.
4032    if (!ICS)
4033      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4034        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
4035        << T2 << Init->getSourceRange();
4036    return true;
4037  }
4038
4039  // If at least one of the types is a class type, the types are not
4040  // related, and we aren't allowed any user conversions, the
4041  // reference binding fails. This case is important for breaking
4042  // recursion, since TryImplicitConversion below will attempt to
4043  // create a temporary through the use of a copy constructor.
4044  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4045      (T1->isRecordType() || T2->isRecordType())) {
4046    if (!ICS)
4047      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4048        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
4049    return true;
4050  }
4051
4052  // Actually try to convert the initializer to T1.
4053  if (ICS) {
4054    // C++ [over.ics.ref]p2:
4055    //
4056    //   When a parameter of reference type is not bound directly to
4057    //   an argument expression, the conversion sequence is the one
4058    //   required to convert the argument expression to the
4059    //   underlying type of the reference according to
4060    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4061    //   to copy-initializing a temporary of the underlying type with
4062    //   the argument expression. Any difference in top-level
4063    //   cv-qualification is subsumed by the initialization itself
4064    //   and does not constitute a conversion.
4065    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4066                                 /*AllowExplicit=*/false,
4067                                 /*ForceRValue=*/false,
4068                                 /*InOverloadResolution=*/false);
4069
4070    // Of course, that's still a reference binding.
4071    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
4072      ICS->Standard.ReferenceBinding = true;
4073      ICS->Standard.RRefBinding = isRValRef;
4074    } else if (ICS->ConversionKind ==
4075              ImplicitConversionSequence::UserDefinedConversion) {
4076      ICS->UserDefined.After.ReferenceBinding = true;
4077      ICS->UserDefined.After.RRefBinding = isRValRef;
4078    }
4079    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
4080  } else {
4081    ImplicitConversionSequence Conversions;
4082    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
4083                                                   false, false,
4084                                                   Conversions);
4085    if (badConversion) {
4086      if ((Conversions.ConversionKind  ==
4087            ImplicitConversionSequence::BadConversion)
4088          && !Conversions.ConversionFunctionSet.empty()) {
4089        Diag(DeclLoc,
4090             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4091        for (int j = Conversions.ConversionFunctionSet.size()-1;
4092             j >= 0; j--) {
4093          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
4094          Diag(Func->getLocation(), diag::err_ovl_candidate);
4095        }
4096      }
4097      else {
4098        if (isRValRef)
4099          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4100            << Init->getSourceRange();
4101        else
4102          Diag(DeclLoc, diag::err_invalid_initialization)
4103            << DeclType << Init->getType() << Init->getSourceRange();
4104      }
4105    }
4106    return badConversion;
4107  }
4108}
4109
4110/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4111/// of this overloaded operator is well-formed. If so, returns false;
4112/// otherwise, emits appropriate diagnostics and returns true.
4113bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4114  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4115         "Expected an overloaded operator declaration");
4116
4117  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4118
4119  // C++ [over.oper]p5:
4120  //   The allocation and deallocation functions, operator new,
4121  //   operator new[], operator delete and operator delete[], are
4122  //   described completely in 3.7.3. The attributes and restrictions
4123  //   found in the rest of this subclause do not apply to them unless
4124  //   explicitly stated in 3.7.3.
4125  // FIXME: Write a separate routine for checking this. For now, just allow it.
4126  if (Op == OO_Delete || Op == OO_Array_Delete)
4127    return false;
4128
4129  if (Op == OO_New || Op == OO_Array_New) {
4130    bool ret = false;
4131    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4132      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4133      QualType T = Context.getCanonicalType((*Param)->getType());
4134      if (!T->isDependentType() && SizeTy != T) {
4135        Diag(FnDecl->getLocation(),
4136             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4137              << SizeTy;
4138        ret = true;
4139      }
4140    }
4141    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4142    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4143      return Diag(FnDecl->getLocation(),
4144                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4145                  << static_cast<QualType>(Context.VoidPtrTy);
4146    return ret;
4147  }
4148
4149  // C++ [over.oper]p6:
4150  //   An operator function shall either be a non-static member
4151  //   function or be a non-member function and have at least one
4152  //   parameter whose type is a class, a reference to a class, an
4153  //   enumeration, or a reference to an enumeration.
4154  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4155    if (MethodDecl->isStatic())
4156      return Diag(FnDecl->getLocation(),
4157                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4158  } else {
4159    bool ClassOrEnumParam = false;
4160    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4161                                   ParamEnd = FnDecl->param_end();
4162         Param != ParamEnd; ++Param) {
4163      QualType ParamType = (*Param)->getType().getNonReferenceType();
4164      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4165          ParamType->isEnumeralType()) {
4166        ClassOrEnumParam = true;
4167        break;
4168      }
4169    }
4170
4171    if (!ClassOrEnumParam)
4172      return Diag(FnDecl->getLocation(),
4173                  diag::err_operator_overload_needs_class_or_enum)
4174        << FnDecl->getDeclName();
4175  }
4176
4177  // C++ [over.oper]p8:
4178  //   An operator function cannot have default arguments (8.3.6),
4179  //   except where explicitly stated below.
4180  //
4181  // Only the function-call operator allows default arguments
4182  // (C++ [over.call]p1).
4183  if (Op != OO_Call) {
4184    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4185         Param != FnDecl->param_end(); ++Param) {
4186      if ((*Param)->hasUnparsedDefaultArg())
4187        return Diag((*Param)->getLocation(),
4188                    diag::err_operator_overload_default_arg)
4189          << FnDecl->getDeclName();
4190      else if (Expr *DefArg = (*Param)->getDefaultArg())
4191        return Diag((*Param)->getLocation(),
4192                    diag::err_operator_overload_default_arg)
4193          << FnDecl->getDeclName() << DefArg->getSourceRange();
4194    }
4195  }
4196
4197  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4198    { false, false, false }
4199#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4200    , { Unary, Binary, MemberOnly }
4201#include "clang/Basic/OperatorKinds.def"
4202  };
4203
4204  bool CanBeUnaryOperator = OperatorUses[Op][0];
4205  bool CanBeBinaryOperator = OperatorUses[Op][1];
4206  bool MustBeMemberOperator = OperatorUses[Op][2];
4207
4208  // C++ [over.oper]p8:
4209  //   [...] Operator functions cannot have more or fewer parameters
4210  //   than the number required for the corresponding operator, as
4211  //   described in the rest of this subclause.
4212  unsigned NumParams = FnDecl->getNumParams()
4213                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4214  if (Op != OO_Call &&
4215      ((NumParams == 1 && !CanBeUnaryOperator) ||
4216       (NumParams == 2 && !CanBeBinaryOperator) ||
4217       (NumParams < 1) || (NumParams > 2))) {
4218    // We have the wrong number of parameters.
4219    unsigned ErrorKind;
4220    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4221      ErrorKind = 2;  // 2 -> unary or binary.
4222    } else if (CanBeUnaryOperator) {
4223      ErrorKind = 0;  // 0 -> unary
4224    } else {
4225      assert(CanBeBinaryOperator &&
4226             "All non-call overloaded operators are unary or binary!");
4227      ErrorKind = 1;  // 1 -> binary
4228    }
4229
4230    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4231      << FnDecl->getDeclName() << NumParams << ErrorKind;
4232  }
4233
4234  // Overloaded operators other than operator() cannot be variadic.
4235  if (Op != OO_Call &&
4236      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4237    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4238      << FnDecl->getDeclName();
4239  }
4240
4241  // Some operators must be non-static member functions.
4242  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4243    return Diag(FnDecl->getLocation(),
4244                diag::err_operator_overload_must_be_member)
4245      << FnDecl->getDeclName();
4246  }
4247
4248  // C++ [over.inc]p1:
4249  //   The user-defined function called operator++ implements the
4250  //   prefix and postfix ++ operator. If this function is a member
4251  //   function with no parameters, or a non-member function with one
4252  //   parameter of class or enumeration type, it defines the prefix
4253  //   increment operator ++ for objects of that type. If the function
4254  //   is a member function with one parameter (which shall be of type
4255  //   int) or a non-member function with two parameters (the second
4256  //   of which shall be of type int), it defines the postfix
4257  //   increment operator ++ for objects of that type.
4258  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4259    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4260    bool ParamIsInt = false;
4261    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4262      ParamIsInt = BT->getKind() == BuiltinType::Int;
4263
4264    if (!ParamIsInt)
4265      return Diag(LastParam->getLocation(),
4266                  diag::err_operator_overload_post_incdec_must_be_int)
4267        << LastParam->getType() << (Op == OO_MinusMinus);
4268  }
4269
4270  // Notify the class if it got an assignment operator.
4271  if (Op == OO_Equal) {
4272    // Would have returned earlier otherwise.
4273    assert(isa<CXXMethodDecl>(FnDecl) &&
4274      "Overloaded = not member, but not filtered.");
4275    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4276    Method->getParent()->addedAssignmentOperator(Context, Method);
4277  }
4278
4279  return false;
4280}
4281
4282/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4283/// linkage specification, including the language and (if present)
4284/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4285/// the location of the language string literal, which is provided
4286/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4287/// the '{' brace. Otherwise, this linkage specification does not
4288/// have any braces.
4289Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4290                                                     SourceLocation ExternLoc,
4291                                                     SourceLocation LangLoc,
4292                                                     const char *Lang,
4293                                                     unsigned StrSize,
4294                                                     SourceLocation LBraceLoc) {
4295  LinkageSpecDecl::LanguageIDs Language;
4296  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4297    Language = LinkageSpecDecl::lang_c;
4298  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4299    Language = LinkageSpecDecl::lang_cxx;
4300  else {
4301    Diag(LangLoc, diag::err_bad_language);
4302    return DeclPtrTy();
4303  }
4304
4305  // FIXME: Add all the various semantics of linkage specifications
4306
4307  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4308                                               LangLoc, Language,
4309                                               LBraceLoc.isValid());
4310  CurContext->addDecl(D);
4311  PushDeclContext(S, D);
4312  return DeclPtrTy::make(D);
4313}
4314
4315/// ActOnFinishLinkageSpecification - Completely the definition of
4316/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4317/// valid, it's the position of the closing '}' brace in a linkage
4318/// specification that uses braces.
4319Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4320                                                      DeclPtrTy LinkageSpec,
4321                                                      SourceLocation RBraceLoc) {
4322  if (LinkageSpec)
4323    PopDeclContext();
4324  return LinkageSpec;
4325}
4326
4327/// \brief Perform semantic analysis for the variable declaration that
4328/// occurs within a C++ catch clause, returning the newly-created
4329/// variable.
4330VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4331                                         DeclaratorInfo *DInfo,
4332                                         IdentifierInfo *Name,
4333                                         SourceLocation Loc,
4334                                         SourceRange Range) {
4335  bool Invalid = false;
4336
4337  // Arrays and functions decay.
4338  if (ExDeclType->isArrayType())
4339    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4340  else if (ExDeclType->isFunctionType())
4341    ExDeclType = Context.getPointerType(ExDeclType);
4342
4343  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4344  // The exception-declaration shall not denote a pointer or reference to an
4345  // incomplete type, other than [cv] void*.
4346  // N2844 forbids rvalue references.
4347  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4348    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4349    Invalid = true;
4350  }
4351
4352  QualType BaseType = ExDeclType;
4353  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4354  unsigned DK = diag::err_catch_incomplete;
4355  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4356    BaseType = Ptr->getPointeeType();
4357    Mode = 1;
4358    DK = diag::err_catch_incomplete_ptr;
4359  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4360    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4361    BaseType = Ref->getPointeeType();
4362    Mode = 2;
4363    DK = diag::err_catch_incomplete_ref;
4364  }
4365  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4366      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4367    Invalid = true;
4368
4369  if (!Invalid && !ExDeclType->isDependentType() &&
4370      RequireNonAbstractType(Loc, ExDeclType,
4371                             diag::err_abstract_type_in_decl,
4372                             AbstractVariableType))
4373    Invalid = true;
4374
4375  // FIXME: Need to test for ability to copy-construct and destroy the
4376  // exception variable.
4377
4378  // FIXME: Need to check for abstract classes.
4379
4380  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4381                                    Name, ExDeclType, DInfo, VarDecl::None);
4382
4383  if (Invalid)
4384    ExDecl->setInvalidDecl();
4385
4386  return ExDecl;
4387}
4388
4389/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4390/// handler.
4391Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4392  DeclaratorInfo *DInfo = 0;
4393  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4394
4395  bool Invalid = D.isInvalidType();
4396  IdentifierInfo *II = D.getIdentifier();
4397  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4398    // The scope should be freshly made just for us. There is just no way
4399    // it contains any previous declaration.
4400    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4401    if (PrevDecl->isTemplateParameter()) {
4402      // Maybe we will complain about the shadowed template parameter.
4403      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4404    }
4405  }
4406
4407  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4408    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4409      << D.getCXXScopeSpec().getRange();
4410    Invalid = true;
4411  }
4412
4413  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4414                                              D.getIdentifier(),
4415                                              D.getIdentifierLoc(),
4416                                            D.getDeclSpec().getSourceRange());
4417
4418  if (Invalid)
4419    ExDecl->setInvalidDecl();
4420
4421  // Add the exception declaration into this scope.
4422  if (II)
4423    PushOnScopeChains(ExDecl, S);
4424  else
4425    CurContext->addDecl(ExDecl);
4426
4427  ProcessDeclAttributes(S, ExDecl, D);
4428  return DeclPtrTy::make(ExDecl);
4429}
4430
4431Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4432                                                   ExprArg assertexpr,
4433                                                   ExprArg assertmessageexpr) {
4434  Expr *AssertExpr = (Expr *)assertexpr.get();
4435  StringLiteral *AssertMessage =
4436    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4437
4438  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4439    llvm::APSInt Value(32);
4440    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4441      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4442        AssertExpr->getSourceRange();
4443      return DeclPtrTy();
4444    }
4445
4446    if (Value == 0) {
4447      std::string str(AssertMessage->getStrData(),
4448                      AssertMessage->getByteLength());
4449      Diag(AssertLoc, diag::err_static_assert_failed)
4450        << str << AssertExpr->getSourceRange();
4451    }
4452  }
4453
4454  assertexpr.release();
4455  assertmessageexpr.release();
4456  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4457                                        AssertExpr, AssertMessage);
4458
4459  CurContext->addDecl(Decl);
4460  return DeclPtrTy::make(Decl);
4461}
4462
4463/// Handle a friend type declaration.  This works in tandem with
4464/// ActOnTag.
4465///
4466/// Notes on friend class templates:
4467///
4468/// We generally treat friend class declarations as if they were
4469/// declaring a class.  So, for example, the elaborated type specifier
4470/// in a friend declaration is required to obey the restrictions of a
4471/// class-head (i.e. no typedefs in the scope chain), template
4472/// parameters are required to match up with simple template-ids, &c.
4473/// However, unlike when declaring a template specialization, it's
4474/// okay to refer to a template specialization without an empty
4475/// template parameter declaration, e.g.
4476///   friend class A<T>::B<unsigned>;
4477/// We permit this as a special case; if there are any template
4478/// parameters present at all, require proper matching, i.e.
4479///   template <> template <class T> friend class A<int>::B;
4480Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4481                                          MultiTemplateParamsArg TempParams) {
4482  SourceLocation Loc = DS.getSourceRange().getBegin();
4483
4484  assert(DS.isFriendSpecified());
4485  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4486
4487  // Try to convert the decl specifier to a type.  This works for
4488  // friend templates because ActOnTag never produces a ClassTemplateDecl
4489  // for a TUK_Friend.
4490  Declarator TheDeclarator(DS, Declarator::MemberContext);
4491  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4492  if (TheDeclarator.isInvalidType())
4493    return DeclPtrTy();
4494
4495  // This is definitely an error in C++98.  It's probably meant to
4496  // be forbidden in C++0x, too, but the specification is just
4497  // poorly written.
4498  //
4499  // The problem is with declarations like the following:
4500  //   template <T> friend A<T>::foo;
4501  // where deciding whether a class C is a friend or not now hinges
4502  // on whether there exists an instantiation of A that causes
4503  // 'foo' to equal C.  There are restrictions on class-heads
4504  // (which we declare (by fiat) elaborated friend declarations to
4505  // be) that makes this tractable.
4506  //
4507  // FIXME: handle "template <> friend class A<T>;", which
4508  // is possibly well-formed?  Who even knows?
4509  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4510    Diag(Loc, diag::err_tagless_friend_type_template)
4511      << DS.getSourceRange();
4512    return DeclPtrTy();
4513  }
4514
4515  // C++ [class.friend]p2:
4516  //   An elaborated-type-specifier shall be used in a friend declaration
4517  //   for a class.*
4518  //   * The class-key of the elaborated-type-specifier is required.
4519  // This is one of the rare places in Clang where it's legitimate to
4520  // ask about the "spelling" of the type.
4521  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4522    // If we evaluated the type to a record type, suggest putting
4523    // a tag in front.
4524    if (const RecordType *RT = T->getAs<RecordType>()) {
4525      RecordDecl *RD = RT->getDecl();
4526
4527      std::string InsertionText = std::string(" ") + RD->getKindName();
4528
4529      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4530        << (unsigned) RD->getTagKind()
4531        << T
4532        << SourceRange(DS.getFriendSpecLoc())
4533        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4534                                                 InsertionText);
4535      return DeclPtrTy();
4536    }else {
4537      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4538          << DS.getSourceRange();
4539      return DeclPtrTy();
4540    }
4541  }
4542
4543  // Enum types cannot be friends.
4544  if (T->getAs<EnumType>()) {
4545    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4546      << SourceRange(DS.getFriendSpecLoc());
4547    return DeclPtrTy();
4548  }
4549
4550  // C++98 [class.friend]p1: A friend of a class is a function
4551  //   or class that is not a member of the class . . .
4552  // But that's a silly restriction which nobody implements for
4553  // inner classes, and C++0x removes it anyway, so we only report
4554  // this (as a warning) if we're being pedantic.
4555  if (!getLangOptions().CPlusPlus0x)
4556    if (const RecordType *RT = T->getAs<RecordType>())
4557      if (RT->getDecl()->getDeclContext() == CurContext)
4558        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4559
4560  Decl *D;
4561  if (TempParams.size())
4562    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4563                                   TempParams.size(),
4564                                 (TemplateParameterList**) TempParams.release(),
4565                                   T.getTypePtr(),
4566                                   DS.getFriendSpecLoc());
4567  else
4568    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4569                           DS.getFriendSpecLoc());
4570  D->setAccess(AS_public);
4571  CurContext->addDecl(D);
4572
4573  return DeclPtrTy::make(D);
4574}
4575
4576Sema::DeclPtrTy
4577Sema::ActOnFriendFunctionDecl(Scope *S,
4578                              Declarator &D,
4579                              bool IsDefinition,
4580                              MultiTemplateParamsArg TemplateParams) {
4581  const DeclSpec &DS = D.getDeclSpec();
4582
4583  assert(DS.isFriendSpecified());
4584  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4585
4586  SourceLocation Loc = D.getIdentifierLoc();
4587  DeclaratorInfo *DInfo = 0;
4588  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4589
4590  // C++ [class.friend]p1
4591  //   A friend of a class is a function or class....
4592  // Note that this sees through typedefs, which is intended.
4593  // It *doesn't* see through dependent types, which is correct
4594  // according to [temp.arg.type]p3:
4595  //   If a declaration acquires a function type through a
4596  //   type dependent on a template-parameter and this causes
4597  //   a declaration that does not use the syntactic form of a
4598  //   function declarator to have a function type, the program
4599  //   is ill-formed.
4600  if (!T->isFunctionType()) {
4601    Diag(Loc, diag::err_unexpected_friend);
4602
4603    // It might be worthwhile to try to recover by creating an
4604    // appropriate declaration.
4605    return DeclPtrTy();
4606  }
4607
4608  // C++ [namespace.memdef]p3
4609  //  - If a friend declaration in a non-local class first declares a
4610  //    class or function, the friend class or function is a member
4611  //    of the innermost enclosing namespace.
4612  //  - The name of the friend is not found by simple name lookup
4613  //    until a matching declaration is provided in that namespace
4614  //    scope (either before or after the class declaration granting
4615  //    friendship).
4616  //  - If a friend function is called, its name may be found by the
4617  //    name lookup that considers functions from namespaces and
4618  //    classes associated with the types of the function arguments.
4619  //  - When looking for a prior declaration of a class or a function
4620  //    declared as a friend, scopes outside the innermost enclosing
4621  //    namespace scope are not considered.
4622
4623  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4624  DeclarationName Name = GetNameForDeclarator(D);
4625  assert(Name);
4626
4627  // The context we found the declaration in, or in which we should
4628  // create the declaration.
4629  DeclContext *DC;
4630
4631  // FIXME: handle local classes
4632
4633  // Recover from invalid scope qualifiers as if they just weren't there.
4634  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
4635                        ForRedeclaration);
4636  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4637    // FIXME: RequireCompleteDeclContext
4638    DC = computeDeclContext(ScopeQual);
4639
4640    // FIXME: handle dependent contexts
4641    if (!DC) return DeclPtrTy();
4642
4643    LookupQualifiedName(Previous, DC);
4644
4645    // If searching in that context implicitly found a declaration in
4646    // a different context, treat it like it wasn't found at all.
4647    // TODO: better diagnostics for this case.  Suggesting the right
4648    // qualified scope would be nice...
4649    // FIXME: getRepresentativeDecl() is not right here at all
4650    if (Previous.empty() ||
4651        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
4652      D.setInvalidType();
4653      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4654      return DeclPtrTy();
4655    }
4656
4657    // C++ [class.friend]p1: A friend of a class is a function or
4658    //   class that is not a member of the class . . .
4659    if (DC->Equals(CurContext))
4660      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4661
4662  // Otherwise walk out to the nearest namespace scope looking for matches.
4663  } else {
4664    // TODO: handle local class contexts.
4665
4666    DC = CurContext;
4667    while (true) {
4668      // Skip class contexts.  If someone can cite chapter and verse
4669      // for this behavior, that would be nice --- it's what GCC and
4670      // EDG do, and it seems like a reasonable intent, but the spec
4671      // really only says that checks for unqualified existing
4672      // declarations should stop at the nearest enclosing namespace,
4673      // not that they should only consider the nearest enclosing
4674      // namespace.
4675      while (DC->isRecord())
4676        DC = DC->getParent();
4677
4678      LookupQualifiedName(Previous, DC);
4679
4680      // TODO: decide what we think about using declarations.
4681      if (!Previous.empty())
4682        break;
4683
4684      if (DC->isFileContext()) break;
4685      DC = DC->getParent();
4686    }
4687
4688    // C++ [class.friend]p1: A friend of a class is a function or
4689    //   class that is not a member of the class . . .
4690    // C++0x changes this for both friend types and functions.
4691    // Most C++ 98 compilers do seem to give an error here, so
4692    // we do, too.
4693    if (!Previous.empty() && DC->Equals(CurContext)
4694        && !getLangOptions().CPlusPlus0x)
4695      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4696  }
4697
4698  if (DC->isFileContext()) {
4699    // This implies that it has to be an operator or function.
4700    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4701        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4702        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4703      Diag(Loc, diag::err_introducing_special_friend) <<
4704        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4705         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4706      return DeclPtrTy();
4707    }
4708  }
4709
4710  bool Redeclaration = false;
4711  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, Previous,
4712                                          move(TemplateParams),
4713                                          IsDefinition,
4714                                          Redeclaration);
4715  if (!ND) return DeclPtrTy();
4716
4717  assert(ND->getDeclContext() == DC);
4718  assert(ND->getLexicalDeclContext() == CurContext);
4719
4720  // Add the function declaration to the appropriate lookup tables,
4721  // adjusting the redeclarations list as necessary.  We don't
4722  // want to do this yet if the friending class is dependent.
4723  //
4724  // Also update the scope-based lookup if the target context's
4725  // lookup context is in lexical scope.
4726  if (!CurContext->isDependentContext()) {
4727    DC = DC->getLookupContext();
4728    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4729    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4730      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4731  }
4732
4733  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4734                                       D.getIdentifierLoc(), ND,
4735                                       DS.getFriendSpecLoc());
4736  FrD->setAccess(AS_public);
4737  CurContext->addDecl(FrD);
4738
4739  return DeclPtrTy::make(ND);
4740}
4741
4742void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4743  AdjustDeclIfTemplate(dcl);
4744
4745  Decl *Dcl = dcl.getAs<Decl>();
4746  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4747  if (!Fn) {
4748    Diag(DelLoc, diag::err_deleted_non_function);
4749    return;
4750  }
4751  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4752    Diag(DelLoc, diag::err_deleted_decl_not_first);
4753    Diag(Prev->getLocation(), diag::note_previous_declaration);
4754    // If the declaration wasn't the first, we delete the function anyway for
4755    // recovery.
4756  }
4757  Fn->setDeleted();
4758}
4759
4760static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4761  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4762       ++CI) {
4763    Stmt *SubStmt = *CI;
4764    if (!SubStmt)
4765      continue;
4766    if (isa<ReturnStmt>(SubStmt))
4767      Self.Diag(SubStmt->getSourceRange().getBegin(),
4768           diag::err_return_in_constructor_handler);
4769    if (!isa<Expr>(SubStmt))
4770      SearchForReturnInStmt(Self, SubStmt);
4771  }
4772}
4773
4774void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4775  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4776    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4777    SearchForReturnInStmt(*this, Handler);
4778  }
4779}
4780
4781bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4782                                             const CXXMethodDecl *Old) {
4783  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4784  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4785
4786  QualType CNewTy = Context.getCanonicalType(NewTy);
4787  QualType COldTy = Context.getCanonicalType(OldTy);
4788
4789  if (CNewTy == COldTy &&
4790      CNewTy.getLocalCVRQualifiers() == COldTy.getLocalCVRQualifiers())
4791    return false;
4792
4793  // Check if the return types are covariant
4794  QualType NewClassTy, OldClassTy;
4795
4796  /// Both types must be pointers or references to classes.
4797  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4798    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4799      NewClassTy = NewPT->getPointeeType();
4800      OldClassTy = OldPT->getPointeeType();
4801    }
4802  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4803    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4804      NewClassTy = NewRT->getPointeeType();
4805      OldClassTy = OldRT->getPointeeType();
4806    }
4807  }
4808
4809  // The return types aren't either both pointers or references to a class type.
4810  if (NewClassTy.isNull()) {
4811    Diag(New->getLocation(),
4812         diag::err_different_return_type_for_overriding_virtual_function)
4813      << New->getDeclName() << NewTy << OldTy;
4814    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4815
4816    return true;
4817  }
4818
4819  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
4820    // Check if the new class derives from the old class.
4821    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4822      Diag(New->getLocation(),
4823           diag::err_covariant_return_not_derived)
4824      << New->getDeclName() << NewTy << OldTy;
4825      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4826      return true;
4827    }
4828
4829    // Check if we the conversion from derived to base is valid.
4830    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4831                      diag::err_covariant_return_inaccessible_base,
4832                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4833                      // FIXME: Should this point to the return type?
4834                      New->getLocation(), SourceRange(), New->getDeclName())) {
4835      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4836      return true;
4837    }
4838  }
4839
4840  // The qualifiers of the return types must be the same.
4841  if (CNewTy.getLocalCVRQualifiers() != COldTy.getLocalCVRQualifiers()) {
4842    Diag(New->getLocation(),
4843         diag::err_covariant_return_type_different_qualifications)
4844    << New->getDeclName() << NewTy << OldTy;
4845    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4846    return true;
4847  };
4848
4849
4850  // The new class type must have the same or less qualifiers as the old type.
4851  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4852    Diag(New->getLocation(),
4853         diag::err_covariant_return_type_class_type_more_qualified)
4854    << New->getDeclName() << NewTy << OldTy;
4855    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4856    return true;
4857  };
4858
4859  return false;
4860}
4861
4862bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
4863                                             const CXXMethodDecl *Old)
4864{
4865  if (Old->hasAttr<FinalAttr>()) {
4866    Diag(New->getLocation(), diag::err_final_function_overridden)
4867      << New->getDeclName();
4868    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4869    return true;
4870  }
4871
4872  return false;
4873}
4874
4875/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4876/// initializer for the declaration 'Dcl'.
4877/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4878/// static data member of class X, names should be looked up in the scope of
4879/// class X.
4880void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4881  AdjustDeclIfTemplate(Dcl);
4882
4883  Decl *D = Dcl.getAs<Decl>();
4884  // If there is no declaration, there was an error parsing it.
4885  if (D == 0)
4886    return;
4887
4888  // Check whether it is a declaration with a nested name specifier like
4889  // int foo::bar;
4890  if (!D->isOutOfLine())
4891    return;
4892
4893  // C++ [basic.lookup.unqual]p13
4894  //
4895  // A name used in the definition of a static data member of class X
4896  // (after the qualified-id of the static member) is looked up as if the name
4897  // was used in a member function of X.
4898
4899  // Change current context into the context of the initializing declaration.
4900  EnterDeclaratorContext(S, D->getDeclContext());
4901}
4902
4903/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4904/// initializer for the declaration 'Dcl'.
4905void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4906  AdjustDeclIfTemplate(Dcl);
4907
4908  Decl *D = Dcl.getAs<Decl>();
4909  // If there is no declaration, there was an error parsing it.
4910  if (D == 0)
4911    return;
4912
4913  // Check whether it is a declaration with a nested name specifier like
4914  // int foo::bar;
4915  if (!D->isOutOfLine())
4916    return;
4917
4918  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4919  ExitDeclaratorContext(S);
4920}
4921
4922/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
4923/// C++ if/switch/while/for statement.
4924/// e.g: "if (int x = f()) {...}"
4925Action::DeclResult
4926Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
4927  // C++ 6.4p2:
4928  // The declarator shall not specify a function or an array.
4929  // The type-specifier-seq shall not contain typedef and shall not declare a
4930  // new class or enumeration.
4931  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
4932         "Parser allowed 'typedef' as storage class of condition decl.");
4933
4934  DeclaratorInfo *DInfo = 0;
4935  TagDecl *OwnedTag = 0;
4936  QualType Ty = GetTypeForDeclarator(D, S, &DInfo, &OwnedTag);
4937
4938  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
4939                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
4940                              // would be created and CXXConditionDeclExpr wants a VarDecl.
4941    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
4942      << D.getSourceRange();
4943    return DeclResult();
4944  } else if (OwnedTag && OwnedTag->isDefinition()) {
4945    // The type-specifier-seq shall not declare a new class or enumeration.
4946    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
4947  }
4948
4949  DeclPtrTy Dcl = ActOnDeclarator(S, D);
4950  if (!Dcl)
4951    return DeclResult();
4952
4953  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
4954  VD->setDeclaredInCondition(true);
4955  return Dcl;
4956}
4957