SemaDeclCXX.cpp revision 9cda03ff7fc40b727d0cc44b1702dbae09d63f42
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include <map>
38#include <set>
39
40using namespace clang;
41
42//===----------------------------------------------------------------------===//
43// CheckDefaultArgumentVisitor
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
48  /// the default argument of a parameter to determine whether it
49  /// contains any ill-formed subexpressions. For example, this will
50  /// diagnose the use of local variables or parameters within the
51  /// default argument expression.
52  class CheckDefaultArgumentVisitor
53    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
54    Expr *DefaultArg;
55    Sema *S;
56
57  public:
58    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
59      : DefaultArg(defarg), S(s) {}
60
61    bool VisitExpr(Expr *Node);
62    bool VisitDeclRefExpr(DeclRefExpr *DRE);
63    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
64    bool VisitLambdaExpr(LambdaExpr *Lambda);
65  };
66
67  /// VisitExpr - Visit all of the children of this expression.
68  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
69    bool IsInvalid = false;
70    for (Stmt::child_range I = Node->children(); I; ++I)
71      IsInvalid |= Visit(*I);
72    return IsInvalid;
73  }
74
75  /// VisitDeclRefExpr - Visit a reference to a declaration, to
76  /// determine whether this declaration can be used in the default
77  /// argument expression.
78  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
79    NamedDecl *Decl = DRE->getDecl();
80    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p9
82      //   Default arguments are evaluated each time the function is
83      //   called. The order of evaluation of function arguments is
84      //   unspecified. Consequently, parameters of a function shall not
85      //   be used in default argument expressions, even if they are not
86      //   evaluated. Parameters of a function declared before a default
87      //   argument expression are in scope and can hide namespace and
88      //   class member names.
89      return S->Diag(DRE->getLocStart(),
90                     diag::err_param_default_argument_references_param)
91         << Param->getDeclName() << DefaultArg->getSourceRange();
92    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
93      // C++ [dcl.fct.default]p7
94      //   Local variables shall not be used in default argument
95      //   expressions.
96      if (VDecl->isLocalVarDecl())
97        return S->Diag(DRE->getLocStart(),
98                       diag::err_param_default_argument_references_local)
99          << VDecl->getDeclName() << DefaultArg->getSourceRange();
100    }
101
102    return false;
103  }
104
105  /// VisitCXXThisExpr - Visit a C++ "this" expression.
106  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
107    // C++ [dcl.fct.default]p8:
108    //   The keyword this shall not be used in a default argument of a
109    //   member function.
110    return S->Diag(ThisE->getLocStart(),
111                   diag::err_param_default_argument_references_this)
112               << ThisE->getSourceRange();
113  }
114
115  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
116    // C++11 [expr.lambda.prim]p13:
117    //   A lambda-expression appearing in a default argument shall not
118    //   implicitly or explicitly capture any entity.
119    if (Lambda->capture_begin() == Lambda->capture_end())
120      return false;
121
122    return S->Diag(Lambda->getLocStart(),
123                   diag::err_lambda_capture_default_arg);
124  }
125}
126
127void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
128  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
129  // If we have an MSAny or unknown spec already, don't bother.
130  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
131    return;
132
133  const FunctionProtoType *Proto
134    = Method->getType()->getAs<FunctionProtoType>();
135
136  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
137
138  // If this function can throw any exceptions, make a note of that.
139  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
140    ClearExceptions();
141    ComputedEST = EST;
142    return;
143  }
144
145  // FIXME: If the call to this decl is using any of its default arguments, we
146  // need to search them for potentially-throwing calls.
147
148  // If this function has a basic noexcept, it doesn't affect the outcome.
149  if (EST == EST_BasicNoexcept)
150    return;
151
152  // If we have a throw-all spec at this point, ignore the function.
153  if (ComputedEST == EST_None)
154    return;
155
156  // If we're still at noexcept(true) and there's a nothrow() callee,
157  // change to that specification.
158  if (EST == EST_DynamicNone) {
159    if (ComputedEST == EST_BasicNoexcept)
160      ComputedEST = EST_DynamicNone;
161    return;
162  }
163
164  // Check out noexcept specs.
165  if (EST == EST_ComputedNoexcept) {
166    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
167    assert(NR != FunctionProtoType::NR_NoNoexcept &&
168           "Must have noexcept result for EST_ComputedNoexcept.");
169    assert(NR != FunctionProtoType::NR_Dependent &&
170           "Should not generate implicit declarations for dependent cases, "
171           "and don't know how to handle them anyway.");
172
173    // noexcept(false) -> no spec on the new function
174    if (NR == FunctionProtoType::NR_Throw) {
175      ClearExceptions();
176      ComputedEST = EST_None;
177    }
178    // noexcept(true) won't change anything either.
179    return;
180  }
181
182  assert(EST == EST_Dynamic && "EST case not considered earlier.");
183  assert(ComputedEST != EST_None &&
184         "Shouldn't collect exceptions when throw-all is guaranteed.");
185  ComputedEST = EST_Dynamic;
186  // Record the exceptions in this function's exception specification.
187  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
188                                          EEnd = Proto->exception_end();
189       E != EEnd; ++E)
190    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
191      Exceptions.push_back(*E);
192}
193
194void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
195  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
196    return;
197
198  // FIXME:
199  //
200  // C++0x [except.spec]p14:
201  //   [An] implicit exception-specification specifies the type-id T if and
202  // only if T is allowed by the exception-specification of a function directly
203  // invoked by f's implicit definition; f shall allow all exceptions if any
204  // function it directly invokes allows all exceptions, and f shall allow no
205  // exceptions if every function it directly invokes allows no exceptions.
206  //
207  // Note in particular that if an implicit exception-specification is generated
208  // for a function containing a throw-expression, that specification can still
209  // be noexcept(true).
210  //
211  // Note also that 'directly invoked' is not defined in the standard, and there
212  // is no indication that we should only consider potentially-evaluated calls.
213  //
214  // Ultimately we should implement the intent of the standard: the exception
215  // specification should be the set of exceptions which can be thrown by the
216  // implicit definition. For now, we assume that any non-nothrow expression can
217  // throw any exception.
218
219  if (E->CanThrow(*Context))
220    ComputedEST = EST_None;
221}
222
223bool
224Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
225                              SourceLocation EqualLoc) {
226  if (RequireCompleteType(Param->getLocation(), Param->getType(),
227                          diag::err_typecheck_decl_incomplete_type)) {
228    Param->setInvalidDecl();
229    return true;
230  }
231
232  // C++ [dcl.fct.default]p5
233  //   A default argument expression is implicitly converted (clause
234  //   4) to the parameter type. The default argument expression has
235  //   the same semantic constraints as the initializer expression in
236  //   a declaration of a variable of the parameter type, using the
237  //   copy-initialization semantics (8.5).
238  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
239                                                                    Param);
240  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
241                                                           EqualLoc);
242  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
243  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
244                                      MultiExprArg(*this, &Arg, 1));
245  if (Result.isInvalid())
246    return true;
247  Arg = Result.takeAs<Expr>();
248
249  CheckImplicitConversions(Arg, EqualLoc);
250  Arg = MaybeCreateExprWithCleanups(Arg);
251
252  // Okay: add the default argument to the parameter
253  Param->setDefaultArg(Arg);
254
255  // We have already instantiated this parameter; provide each of the
256  // instantiations with the uninstantiated default argument.
257  UnparsedDefaultArgInstantiationsMap::iterator InstPos
258    = UnparsedDefaultArgInstantiations.find(Param);
259  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
260    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
261      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
262
263    // We're done tracking this parameter's instantiations.
264    UnparsedDefaultArgInstantiations.erase(InstPos);
265  }
266
267  return false;
268}
269
270/// ActOnParamDefaultArgument - Check whether the default argument
271/// provided for a function parameter is well-formed. If so, attach it
272/// to the parameter declaration.
273void
274Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
275                                Expr *DefaultArg) {
276  if (!param || !DefaultArg)
277    return;
278
279  ParmVarDecl *Param = cast<ParmVarDecl>(param);
280  UnparsedDefaultArgLocs.erase(Param);
281
282  // Default arguments are only permitted in C++
283  if (!getLangOpts().CPlusPlus) {
284    Diag(EqualLoc, diag::err_param_default_argument)
285      << DefaultArg->getSourceRange();
286    Param->setInvalidDecl();
287    return;
288  }
289
290  // Check for unexpanded parameter packs.
291  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check that the default argument is well-formed
297  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
298  if (DefaultArgChecker.Visit(DefaultArg)) {
299    Param->setInvalidDecl();
300    return;
301  }
302
303  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
304}
305
306/// ActOnParamUnparsedDefaultArgument - We've seen a default
307/// argument for a function parameter, but we can't parse it yet
308/// because we're inside a class definition. Note that this default
309/// argument will be parsed later.
310void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
311                                             SourceLocation EqualLoc,
312                                             SourceLocation ArgLoc) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317  if (Param)
318    Param->setUnparsedDefaultArg();
319
320  UnparsedDefaultArgLocs[Param] = ArgLoc;
321}
322
323/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
324/// the default argument for the parameter param failed.
325void Sema::ActOnParamDefaultArgumentError(Decl *param) {
326  if (!param)
327    return;
328
329  ParmVarDecl *Param = cast<ParmVarDecl>(param);
330
331  Param->setInvalidDecl();
332
333  UnparsedDefaultArgLocs.erase(Param);
334}
335
336/// CheckExtraCXXDefaultArguments - Check for any extra default
337/// arguments in the declarator, which is not a function declaration
338/// or definition and therefore is not permitted to have default
339/// arguments. This routine should be invoked for every declarator
340/// that is not a function declaration or definition.
341void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
342  // C++ [dcl.fct.default]p3
343  //   A default argument expression shall be specified only in the
344  //   parameter-declaration-clause of a function declaration or in a
345  //   template-parameter (14.1). It shall not be specified for a
346  //   parameter pack. If it is specified in a
347  //   parameter-declaration-clause, it shall not occur within a
348  //   declarator or abstract-declarator of a parameter-declaration.
349  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
350    DeclaratorChunk &chunk = D.getTypeObject(i);
351    if (chunk.Kind == DeclaratorChunk::Function) {
352      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
353        ParmVarDecl *Param =
354          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
355        if (Param->hasUnparsedDefaultArg()) {
356          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
357          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
358            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
359          delete Toks;
360          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
361        } else if (Param->getDefaultArg()) {
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << Param->getDefaultArg()->getSourceRange();
364          Param->setDefaultArg(0);
365        }
366      }
367    }
368  }
369}
370
371// MergeCXXFunctionDecl - Merge two declarations of the same C++
372// function, once we already know that they have the same
373// type. Subroutine of MergeFunctionDecl. Returns true if there was an
374// error, false otherwise.
375bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
376                                Scope *S) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    bool OldParamHasDfl = OldParam->hasDefaultArg();
402    bool NewParamHasDfl = NewParam->hasDefaultArg();
403
404    NamedDecl *ND = Old;
405    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
406      // Ignore default parameters of old decl if they are not in
407      // the same scope.
408      OldParamHasDfl = false;
409
410    if (OldParamHasDfl && NewParamHasDfl) {
411
412      unsigned DiagDefaultParamID =
413        diag::err_param_default_argument_redefinition;
414
415      // MSVC accepts that default parameters be redefined for member functions
416      // of template class. The new default parameter's value is ignored.
417      Invalid = true;
418      if (getLangOpts().MicrosoftExt) {
419        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
420        if (MD && MD->getParent()->getDescribedClassTemplate()) {
421          // Merge the old default argument into the new parameter.
422          NewParam->setHasInheritedDefaultArg();
423          if (OldParam->hasUninstantiatedDefaultArg())
424            NewParam->setUninstantiatedDefaultArg(
425                                      OldParam->getUninstantiatedDefaultArg());
426          else
427            NewParam->setDefaultArg(OldParam->getInit());
428          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
429          Invalid = false;
430        }
431      }
432
433      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
434      // hint here. Alternatively, we could walk the type-source information
435      // for NewParam to find the last source location in the type... but it
436      // isn't worth the effort right now. This is the kind of test case that
437      // is hard to get right:
438      //   int f(int);
439      //   void g(int (*fp)(int) = f);
440      //   void g(int (*fp)(int) = &f);
441      Diag(NewParam->getLocation(), DiagDefaultParamID)
442        << NewParam->getDefaultArgRange();
443
444      // Look for the function declaration where the default argument was
445      // actually written, which may be a declaration prior to Old.
446      for (FunctionDecl *Older = Old->getPreviousDecl();
447           Older; Older = Older->getPreviousDecl()) {
448        if (!Older->getParamDecl(p)->hasDefaultArg())
449          break;
450
451        OldParam = Older->getParamDecl(p);
452      }
453
454      Diag(OldParam->getLocation(), diag::note_previous_definition)
455        << OldParam->getDefaultArgRange();
456    } else if (OldParamHasDfl) {
457      // Merge the old default argument into the new parameter.
458      // It's important to use getInit() here;  getDefaultArg()
459      // strips off any top-level ExprWithCleanups.
460      NewParam->setHasInheritedDefaultArg();
461      if (OldParam->hasUninstantiatedDefaultArg())
462        NewParam->setUninstantiatedDefaultArg(
463                                      OldParam->getUninstantiatedDefaultArg());
464      else
465        NewParam->setDefaultArg(OldParam->getInit());
466    } else if (NewParamHasDfl) {
467      if (New->getDescribedFunctionTemplate()) {
468        // Paragraph 4, quoted above, only applies to non-template functions.
469        Diag(NewParam->getLocation(),
470             diag::err_param_default_argument_template_redecl)
471          << NewParam->getDefaultArgRange();
472        Diag(Old->getLocation(), diag::note_template_prev_declaration)
473          << false;
474      } else if (New->getTemplateSpecializationKind()
475                   != TSK_ImplicitInstantiation &&
476                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
477        // C++ [temp.expr.spec]p21:
478        //   Default function arguments shall not be specified in a declaration
479        //   or a definition for one of the following explicit specializations:
480        //     - the explicit specialization of a function template;
481        //     - the explicit specialization of a member function template;
482        //     - the explicit specialization of a member function of a class
483        //       template where the class template specialization to which the
484        //       member function specialization belongs is implicitly
485        //       instantiated.
486        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
487          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
488          << New->getDeclName()
489          << NewParam->getDefaultArgRange();
490      } else if (New->getDeclContext()->isDependentContext()) {
491        // C++ [dcl.fct.default]p6 (DR217):
492        //   Default arguments for a member function of a class template shall
493        //   be specified on the initial declaration of the member function
494        //   within the class template.
495        //
496        // Reading the tea leaves a bit in DR217 and its reference to DR205
497        // leads me to the conclusion that one cannot add default function
498        // arguments for an out-of-line definition of a member function of a
499        // dependent type.
500        int WhichKind = 2;
501        if (CXXRecordDecl *Record
502              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
503          if (Record->getDescribedClassTemplate())
504            WhichKind = 0;
505          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
506            WhichKind = 1;
507          else
508            WhichKind = 2;
509        }
510
511        Diag(NewParam->getLocation(),
512             diag::err_param_default_argument_member_template_redecl)
513          << WhichKind
514          << NewParam->getDefaultArgRange();
515      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
516        CXXSpecialMember NewSM = getSpecialMember(Ctor),
517                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
518        if (NewSM != OldSM) {
519          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
520            << NewParam->getDefaultArgRange() << NewSM;
521          Diag(Old->getLocation(), diag::note_previous_declaration_special)
522            << OldSM;
523        }
524      }
525    }
526  }
527
528  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
529  // template has a constexpr specifier then all its declarations shall
530  // contain the constexpr specifier.
531  if (New->isConstexpr() != Old->isConstexpr()) {
532    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
533      << New << New->isConstexpr();
534    Diag(Old->getLocation(), diag::note_previous_declaration);
535    Invalid = true;
536  }
537
538  if (CheckEquivalentExceptionSpec(Old, New))
539    Invalid = true;
540
541  return Invalid;
542}
543
544/// \brief Merge the exception specifications of two variable declarations.
545///
546/// This is called when there's a redeclaration of a VarDecl. The function
547/// checks if the redeclaration might have an exception specification and
548/// validates compatibility and merges the specs if necessary.
549void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
550  // Shortcut if exceptions are disabled.
551  if (!getLangOpts().CXXExceptions)
552    return;
553
554  assert(Context.hasSameType(New->getType(), Old->getType()) &&
555         "Should only be called if types are otherwise the same.");
556
557  QualType NewType = New->getType();
558  QualType OldType = Old->getType();
559
560  // We're only interested in pointers and references to functions, as well
561  // as pointers to member functions.
562  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
563    NewType = R->getPointeeType();
564    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
565  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
566    NewType = P->getPointeeType();
567    OldType = OldType->getAs<PointerType>()->getPointeeType();
568  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
569    NewType = M->getPointeeType();
570    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
571  }
572
573  if (!NewType->isFunctionProtoType())
574    return;
575
576  // There's lots of special cases for functions. For function pointers, system
577  // libraries are hopefully not as broken so that we don't need these
578  // workarounds.
579  if (CheckEquivalentExceptionSpec(
580        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
581        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
582    New->setInvalidDecl();
583  }
584}
585
586/// CheckCXXDefaultArguments - Verify that the default arguments for a
587/// function declaration are well-formed according to C++
588/// [dcl.fct.default].
589void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
590  unsigned NumParams = FD->getNumParams();
591  unsigned p;
592
593  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
594                  isa<CXXMethodDecl>(FD) &&
595                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
596
597  // Find first parameter with a default argument
598  for (p = 0; p < NumParams; ++p) {
599    ParmVarDecl *Param = FD->getParamDecl(p);
600    if (Param->hasDefaultArg()) {
601      // C++11 [expr.prim.lambda]p5:
602      //   [...] Default arguments (8.3.6) shall not be specified in the
603      //   parameter-declaration-clause of a lambda-declarator.
604      //
605      // FIXME: Core issue 974 strikes this sentence, we only provide an
606      // extension warning.
607      if (IsLambda)
608        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
609          << Param->getDefaultArgRange();
610      break;
611    }
612  }
613
614  // C++ [dcl.fct.default]p4:
615  //   In a given function declaration, all parameters
616  //   subsequent to a parameter with a default argument shall
617  //   have default arguments supplied in this or previous
618  //   declarations. A default argument shall not be redefined
619  //   by a later declaration (not even to the same value).
620  unsigned LastMissingDefaultArg = 0;
621  for (; p < NumParams; ++p) {
622    ParmVarDecl *Param = FD->getParamDecl(p);
623    if (!Param->hasDefaultArg()) {
624      if (Param->isInvalidDecl())
625        /* We already complained about this parameter. */;
626      else if (Param->getIdentifier())
627        Diag(Param->getLocation(),
628             diag::err_param_default_argument_missing_name)
629          << Param->getIdentifier();
630      else
631        Diag(Param->getLocation(),
632             diag::err_param_default_argument_missing);
633
634      LastMissingDefaultArg = p;
635    }
636  }
637
638  if (LastMissingDefaultArg > 0) {
639    // Some default arguments were missing. Clear out all of the
640    // default arguments up to (and including) the last missing
641    // default argument, so that we leave the function parameters
642    // in a semantically valid state.
643    for (p = 0; p <= LastMissingDefaultArg; ++p) {
644      ParmVarDecl *Param = FD->getParamDecl(p);
645      if (Param->hasDefaultArg()) {
646        Param->setDefaultArg(0);
647      }
648    }
649  }
650}
651
652// CheckConstexprParameterTypes - Check whether a function's parameter types
653// are all literal types. If so, return true. If not, produce a suitable
654// diagnostic and return false.
655static bool CheckConstexprParameterTypes(Sema &SemaRef,
656                                         const FunctionDecl *FD) {
657  unsigned ArgIndex = 0;
658  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
659  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
660       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
661    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
662    SourceLocation ParamLoc = PD->getLocation();
663    if (!(*i)->isDependentType() &&
664        SemaRef.RequireLiteralType(ParamLoc, *i,
665                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
666                                     << ArgIndex+1 << PD->getSourceRange()
667                                     << isa<CXXConstructorDecl>(FD)))
668      return false;
669  }
670  return true;
671}
672
673// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
674// the requirements of a constexpr function definition or a constexpr
675// constructor definition. If so, return true. If not, produce appropriate
676// diagnostics and return false.
677//
678// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
679bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
680  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
681  if (MD && MD->isInstance()) {
682    // C++11 [dcl.constexpr]p4:
683    //  The definition of a constexpr constructor shall satisfy the following
684    //  constraints:
685    //  - the class shall not have any virtual base classes;
686    const CXXRecordDecl *RD = MD->getParent();
687    if (RD->getNumVBases()) {
688      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
689        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
690        << RD->getNumVBases();
691      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
692             E = RD->vbases_end(); I != E; ++I)
693        Diag(I->getLocStart(),
694             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
695      return false;
696    }
697  }
698
699  if (!isa<CXXConstructorDecl>(NewFD)) {
700    // C++11 [dcl.constexpr]p3:
701    //  The definition of a constexpr function shall satisfy the following
702    //  constraints:
703    // - it shall not be virtual;
704    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
705    if (Method && Method->isVirtual()) {
706      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
707
708      // If it's not obvious why this function is virtual, find an overridden
709      // function which uses the 'virtual' keyword.
710      const CXXMethodDecl *WrittenVirtual = Method;
711      while (!WrittenVirtual->isVirtualAsWritten())
712        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
713      if (WrittenVirtual != Method)
714        Diag(WrittenVirtual->getLocation(),
715             diag::note_overridden_virtual_function);
716      return false;
717    }
718
719    // - its return type shall be a literal type;
720    QualType RT = NewFD->getResultType();
721    if (!RT->isDependentType() &&
722        RequireLiteralType(NewFD->getLocation(), RT,
723                           PDiag(diag::err_constexpr_non_literal_return)))
724      return false;
725  }
726
727  // - each of its parameter types shall be a literal type;
728  if (!CheckConstexprParameterTypes(*this, NewFD))
729    return false;
730
731  return true;
732}
733
734/// Check the given declaration statement is legal within a constexpr function
735/// body. C++0x [dcl.constexpr]p3,p4.
736///
737/// \return true if the body is OK, false if we have diagnosed a problem.
738static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
739                                   DeclStmt *DS) {
740  // C++0x [dcl.constexpr]p3 and p4:
741  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
742  //  contain only
743  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
744         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
745    switch ((*DclIt)->getKind()) {
746    case Decl::StaticAssert:
747    case Decl::Using:
748    case Decl::UsingShadow:
749    case Decl::UsingDirective:
750    case Decl::UnresolvedUsingTypename:
751      //   - static_assert-declarations
752      //   - using-declarations,
753      //   - using-directives,
754      continue;
755
756    case Decl::Typedef:
757    case Decl::TypeAlias: {
758      //   - typedef declarations and alias-declarations that do not define
759      //     classes or enumerations,
760      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
761      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
762        // Don't allow variably-modified types in constexpr functions.
763        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
764        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
765          << TL.getSourceRange() << TL.getType()
766          << isa<CXXConstructorDecl>(Dcl);
767        return false;
768      }
769      continue;
770    }
771
772    case Decl::Enum:
773    case Decl::CXXRecord:
774      // As an extension, we allow the declaration (but not the definition) of
775      // classes and enumerations in all declarations, not just in typedef and
776      // alias declarations.
777      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
778        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
779          << isa<CXXConstructorDecl>(Dcl);
780        return false;
781      }
782      continue;
783
784    case Decl::Var:
785      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
786        << isa<CXXConstructorDecl>(Dcl);
787      return false;
788
789    default:
790      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
791        << isa<CXXConstructorDecl>(Dcl);
792      return false;
793    }
794  }
795
796  return true;
797}
798
799/// Check that the given field is initialized within a constexpr constructor.
800///
801/// \param Dcl The constexpr constructor being checked.
802/// \param Field The field being checked. This may be a member of an anonymous
803///        struct or union nested within the class being checked.
804/// \param Inits All declarations, including anonymous struct/union members and
805///        indirect members, for which any initialization was provided.
806/// \param Diagnosed Set to true if an error is produced.
807static void CheckConstexprCtorInitializer(Sema &SemaRef,
808                                          const FunctionDecl *Dcl,
809                                          FieldDecl *Field,
810                                          llvm::SmallSet<Decl*, 16> &Inits,
811                                          bool &Diagnosed) {
812  if (Field->isUnnamedBitfield())
813    return;
814
815  if (Field->isAnonymousStructOrUnion() &&
816      Field->getType()->getAsCXXRecordDecl()->isEmpty())
817    return;
818
819  if (!Inits.count(Field)) {
820    if (!Diagnosed) {
821      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
822      Diagnosed = true;
823    }
824    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
825  } else if (Field->isAnonymousStructOrUnion()) {
826    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
827    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
828         I != E; ++I)
829      // If an anonymous union contains an anonymous struct of which any member
830      // is initialized, all members must be initialized.
831      if (!RD->isUnion() || Inits.count(*I))
832        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
833  }
834}
835
836/// Check the body for the given constexpr function declaration only contains
837/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
838///
839/// \return true if the body is OK, false if we have diagnosed a problem.
840bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
841  if (isa<CXXTryStmt>(Body)) {
842    // C++11 [dcl.constexpr]p3:
843    //  The definition of a constexpr function shall satisfy the following
844    //  constraints: [...]
845    // - its function-body shall be = delete, = default, or a
846    //   compound-statement
847    //
848    // C++11 [dcl.constexpr]p4:
849    //  In the definition of a constexpr constructor, [...]
850    // - its function-body shall not be a function-try-block;
851    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
852      << isa<CXXConstructorDecl>(Dcl);
853    return false;
854  }
855
856  // - its function-body shall be [...] a compound-statement that contains only
857  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
858
859  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
860  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
861         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
862    switch ((*BodyIt)->getStmtClass()) {
863    case Stmt::NullStmtClass:
864      //   - null statements,
865      continue;
866
867    case Stmt::DeclStmtClass:
868      //   - static_assert-declarations
869      //   - using-declarations,
870      //   - using-directives,
871      //   - typedef declarations and alias-declarations that do not define
872      //     classes or enumerations,
873      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
874        return false;
875      continue;
876
877    case Stmt::ReturnStmtClass:
878      //   - and exactly one return statement;
879      if (isa<CXXConstructorDecl>(Dcl))
880        break;
881
882      ReturnStmts.push_back((*BodyIt)->getLocStart());
883      continue;
884
885    default:
886      break;
887    }
888
889    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
890      << isa<CXXConstructorDecl>(Dcl);
891    return false;
892  }
893
894  if (const CXXConstructorDecl *Constructor
895        = dyn_cast<CXXConstructorDecl>(Dcl)) {
896    const CXXRecordDecl *RD = Constructor->getParent();
897    // DR1359:
898    // - every non-variant non-static data member and base class sub-object
899    //   shall be initialized;
900    // - if the class is a non-empty union, or for each non-empty anonymous
901    //   union member of a non-union class, exactly one non-static data member
902    //   shall be initialized;
903    if (RD->isUnion()) {
904      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946  } else {
947    if (ReturnStmts.empty()) {
948      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
949      return false;
950    }
951    if (ReturnStmts.size() > 1) {
952      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
953      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
954        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
955      return false;
956    }
957  }
958
959  // C++11 [dcl.constexpr]p5:
960  //   if no function argument values exist such that the function invocation
961  //   substitution would produce a constant expression, the program is
962  //   ill-formed; no diagnostic required.
963  // C++11 [dcl.constexpr]p3:
964  //   - every constructor call and implicit conversion used in initializing the
965  //     return value shall be one of those allowed in a constant expression.
966  // C++11 [dcl.constexpr]p4:
967  //   - every constructor involved in initializing non-static data members and
968  //     base class sub-objects shall be a constexpr constructor.
969  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
970  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
971    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
972      << isa<CXXConstructorDecl>(Dcl);
973    for (size_t I = 0, N = Diags.size(); I != N; ++I)
974      Diag(Diags[I].first, Diags[I].second);
975    return false;
976  }
977
978  return true;
979}
980
981/// isCurrentClassName - Determine whether the identifier II is the
982/// name of the class type currently being defined. In the case of
983/// nested classes, this will only return true if II is the name of
984/// the innermost class.
985bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
986                              const CXXScopeSpec *SS) {
987  assert(getLangOpts().CPlusPlus && "No class names in C!");
988
989  CXXRecordDecl *CurDecl;
990  if (SS && SS->isSet() && !SS->isInvalid()) {
991    DeclContext *DC = computeDeclContext(*SS, true);
992    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
993  } else
994    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
995
996  if (CurDecl && CurDecl->getIdentifier())
997    return &II == CurDecl->getIdentifier();
998  else
999    return false;
1000}
1001
1002/// \brief Check the validity of a C++ base class specifier.
1003///
1004/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1005/// and returns NULL otherwise.
1006CXXBaseSpecifier *
1007Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1008                         SourceRange SpecifierRange,
1009                         bool Virtual, AccessSpecifier Access,
1010                         TypeSourceInfo *TInfo,
1011                         SourceLocation EllipsisLoc) {
1012  QualType BaseType = TInfo->getType();
1013
1014  // C++ [class.union]p1:
1015  //   A union shall not have base classes.
1016  if (Class->isUnion()) {
1017    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1018      << SpecifierRange;
1019    return 0;
1020  }
1021
1022  if (EllipsisLoc.isValid() &&
1023      !TInfo->getType()->containsUnexpandedParameterPack()) {
1024    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1025      << TInfo->getTypeLoc().getSourceRange();
1026    EllipsisLoc = SourceLocation();
1027  }
1028
1029  if (BaseType->isDependentType())
1030    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1031                                          Class->getTagKind() == TTK_Class,
1032                                          Access, TInfo, EllipsisLoc);
1033
1034  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1035
1036  // Base specifiers must be record types.
1037  if (!BaseType->isRecordType()) {
1038    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1039    return 0;
1040  }
1041
1042  // C++ [class.union]p1:
1043  //   A union shall not be used as a base class.
1044  if (BaseType->isUnionType()) {
1045    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1046    return 0;
1047  }
1048
1049  // C++ [class.derived]p2:
1050  //   The class-name in a base-specifier shall not be an incompletely
1051  //   defined class.
1052  if (RequireCompleteType(BaseLoc, BaseType,
1053                          PDiag(diag::err_incomplete_base_class)
1054                            << SpecifierRange)) {
1055    Class->setInvalidDecl();
1056    return 0;
1057  }
1058
1059  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1060  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1061  assert(BaseDecl && "Record type has no declaration");
1062  BaseDecl = BaseDecl->getDefinition();
1063  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1064  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1065  assert(CXXBaseDecl && "Base type is not a C++ type");
1066
1067  // C++ [class]p3:
1068  //   If a class is marked final and it appears as a base-type-specifier in
1069  //   base-clause, the program is ill-formed.
1070  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1071    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1072      << CXXBaseDecl->getDeclName();
1073    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1074      << CXXBaseDecl->getDeclName();
1075    return 0;
1076  }
1077
1078  if (BaseDecl->isInvalidDecl())
1079    Class->setInvalidDecl();
1080
1081  // Create the base specifier.
1082  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1083                                        Class->getTagKind() == TTK_Class,
1084                                        Access, TInfo, EllipsisLoc);
1085}
1086
1087/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1088/// one entry in the base class list of a class specifier, for
1089/// example:
1090///    class foo : public bar, virtual private baz {
1091/// 'public bar' and 'virtual private baz' are each base-specifiers.
1092BaseResult
1093Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1094                         bool Virtual, AccessSpecifier Access,
1095                         ParsedType basetype, SourceLocation BaseLoc,
1096                         SourceLocation EllipsisLoc) {
1097  if (!classdecl)
1098    return true;
1099
1100  AdjustDeclIfTemplate(classdecl);
1101  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1102  if (!Class)
1103    return true;
1104
1105  TypeSourceInfo *TInfo = 0;
1106  GetTypeFromParser(basetype, &TInfo);
1107
1108  if (EllipsisLoc.isInvalid() &&
1109      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1110                                      UPPC_BaseType))
1111    return true;
1112
1113  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1114                                                      Virtual, Access, TInfo,
1115                                                      EllipsisLoc))
1116    return BaseSpec;
1117
1118  return true;
1119}
1120
1121/// \brief Performs the actual work of attaching the given base class
1122/// specifiers to a C++ class.
1123bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1124                                unsigned NumBases) {
1125 if (NumBases == 0)
1126    return false;
1127
1128  // Used to keep track of which base types we have already seen, so
1129  // that we can properly diagnose redundant direct base types. Note
1130  // that the key is always the unqualified canonical type of the base
1131  // class.
1132  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1133
1134  // Copy non-redundant base specifiers into permanent storage.
1135  unsigned NumGoodBases = 0;
1136  bool Invalid = false;
1137  for (unsigned idx = 0; idx < NumBases; ++idx) {
1138    QualType NewBaseType
1139      = Context.getCanonicalType(Bases[idx]->getType());
1140    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1141
1142    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1143    if (KnownBase) {
1144      // C++ [class.mi]p3:
1145      //   A class shall not be specified as a direct base class of a
1146      //   derived class more than once.
1147      Diag(Bases[idx]->getLocStart(),
1148           diag::err_duplicate_base_class)
1149        << KnownBase->getType()
1150        << Bases[idx]->getSourceRange();
1151
1152      // Delete the duplicate base class specifier; we're going to
1153      // overwrite its pointer later.
1154      Context.Deallocate(Bases[idx]);
1155
1156      Invalid = true;
1157    } else {
1158      // Okay, add this new base class.
1159      KnownBase = Bases[idx];
1160      Bases[NumGoodBases++] = Bases[idx];
1161      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1162        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1163          if (RD->hasAttr<WeakAttr>())
1164            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1165    }
1166  }
1167
1168  // Attach the remaining base class specifiers to the derived class.
1169  Class->setBases(Bases, NumGoodBases);
1170
1171  // Delete the remaining (good) base class specifiers, since their
1172  // data has been copied into the CXXRecordDecl.
1173  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1174    Context.Deallocate(Bases[idx]);
1175
1176  return Invalid;
1177}
1178
1179/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1180/// class, after checking whether there are any duplicate base
1181/// classes.
1182void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1183                               unsigned NumBases) {
1184  if (!ClassDecl || !Bases || !NumBases)
1185    return;
1186
1187  AdjustDeclIfTemplate(ClassDecl);
1188  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1189                       (CXXBaseSpecifier**)(Bases), NumBases);
1190}
1191
1192static CXXRecordDecl *GetClassForType(QualType T) {
1193  if (const RecordType *RT = T->getAs<RecordType>())
1194    return cast<CXXRecordDecl>(RT->getDecl());
1195  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1196    return ICT->getDecl();
1197  else
1198    return 0;
1199}
1200
1201/// \brief Determine whether the type \p Derived is a C++ class that is
1202/// derived from the type \p Base.
1203bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1204  if (!getLangOpts().CPlusPlus)
1205    return false;
1206
1207  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1208  if (!DerivedRD)
1209    return false;
1210
1211  CXXRecordDecl *BaseRD = GetClassForType(Base);
1212  if (!BaseRD)
1213    return false;
1214
1215  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1216  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1217}
1218
1219/// \brief Determine whether the type \p Derived is a C++ class that is
1220/// derived from the type \p Base.
1221bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1222  if (!getLangOpts().CPlusPlus)
1223    return false;
1224
1225  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1226  if (!DerivedRD)
1227    return false;
1228
1229  CXXRecordDecl *BaseRD = GetClassForType(Base);
1230  if (!BaseRD)
1231    return false;
1232
1233  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1234}
1235
1236void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1237                              CXXCastPath &BasePathArray) {
1238  assert(BasePathArray.empty() && "Base path array must be empty!");
1239  assert(Paths.isRecordingPaths() && "Must record paths!");
1240
1241  const CXXBasePath &Path = Paths.front();
1242
1243  // We first go backward and check if we have a virtual base.
1244  // FIXME: It would be better if CXXBasePath had the base specifier for
1245  // the nearest virtual base.
1246  unsigned Start = 0;
1247  for (unsigned I = Path.size(); I != 0; --I) {
1248    if (Path[I - 1].Base->isVirtual()) {
1249      Start = I - 1;
1250      break;
1251    }
1252  }
1253
1254  // Now add all bases.
1255  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1256    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1257}
1258
1259/// \brief Determine whether the given base path includes a virtual
1260/// base class.
1261bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1262  for (CXXCastPath::const_iterator B = BasePath.begin(),
1263                                BEnd = BasePath.end();
1264       B != BEnd; ++B)
1265    if ((*B)->isVirtual())
1266      return true;
1267
1268  return false;
1269}
1270
1271/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1272/// conversion (where Derived and Base are class types) is
1273/// well-formed, meaning that the conversion is unambiguous (and
1274/// that all of the base classes are accessible). Returns true
1275/// and emits a diagnostic if the code is ill-formed, returns false
1276/// otherwise. Loc is the location where this routine should point to
1277/// if there is an error, and Range is the source range to highlight
1278/// if there is an error.
1279bool
1280Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1281                                   unsigned InaccessibleBaseID,
1282                                   unsigned AmbigiousBaseConvID,
1283                                   SourceLocation Loc, SourceRange Range,
1284                                   DeclarationName Name,
1285                                   CXXCastPath *BasePath) {
1286  // First, determine whether the path from Derived to Base is
1287  // ambiguous. This is slightly more expensive than checking whether
1288  // the Derived to Base conversion exists, because here we need to
1289  // explore multiple paths to determine if there is an ambiguity.
1290  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1291                     /*DetectVirtual=*/false);
1292  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1293  assert(DerivationOkay &&
1294         "Can only be used with a derived-to-base conversion");
1295  (void)DerivationOkay;
1296
1297  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1298    if (InaccessibleBaseID) {
1299      // Check that the base class can be accessed.
1300      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1301                                   InaccessibleBaseID)) {
1302        case AR_inaccessible:
1303          return true;
1304        case AR_accessible:
1305        case AR_dependent:
1306        case AR_delayed:
1307          break;
1308      }
1309    }
1310
1311    // Build a base path if necessary.
1312    if (BasePath)
1313      BuildBasePathArray(Paths, *BasePath);
1314    return false;
1315  }
1316
1317  // We know that the derived-to-base conversion is ambiguous, and
1318  // we're going to produce a diagnostic. Perform the derived-to-base
1319  // search just one more time to compute all of the possible paths so
1320  // that we can print them out. This is more expensive than any of
1321  // the previous derived-to-base checks we've done, but at this point
1322  // performance isn't as much of an issue.
1323  Paths.clear();
1324  Paths.setRecordingPaths(true);
1325  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1326  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1327  (void)StillOkay;
1328
1329  // Build up a textual representation of the ambiguous paths, e.g.,
1330  // D -> B -> A, that will be used to illustrate the ambiguous
1331  // conversions in the diagnostic. We only print one of the paths
1332  // to each base class subobject.
1333  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1334
1335  Diag(Loc, AmbigiousBaseConvID)
1336  << Derived << Base << PathDisplayStr << Range << Name;
1337  return true;
1338}
1339
1340bool
1341Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1342                                   SourceLocation Loc, SourceRange Range,
1343                                   CXXCastPath *BasePath,
1344                                   bool IgnoreAccess) {
1345  return CheckDerivedToBaseConversion(Derived, Base,
1346                                      IgnoreAccess ? 0
1347                                       : diag::err_upcast_to_inaccessible_base,
1348                                      diag::err_ambiguous_derived_to_base_conv,
1349                                      Loc, Range, DeclarationName(),
1350                                      BasePath);
1351}
1352
1353
1354/// @brief Builds a string representing ambiguous paths from a
1355/// specific derived class to different subobjects of the same base
1356/// class.
1357///
1358/// This function builds a string that can be used in error messages
1359/// to show the different paths that one can take through the
1360/// inheritance hierarchy to go from the derived class to different
1361/// subobjects of a base class. The result looks something like this:
1362/// @code
1363/// struct D -> struct B -> struct A
1364/// struct D -> struct C -> struct A
1365/// @endcode
1366std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1367  std::string PathDisplayStr;
1368  std::set<unsigned> DisplayedPaths;
1369  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1370       Path != Paths.end(); ++Path) {
1371    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1372      // We haven't displayed a path to this particular base
1373      // class subobject yet.
1374      PathDisplayStr += "\n    ";
1375      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1376      for (CXXBasePath::const_iterator Element = Path->begin();
1377           Element != Path->end(); ++Element)
1378        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1379    }
1380  }
1381
1382  return PathDisplayStr;
1383}
1384
1385//===----------------------------------------------------------------------===//
1386// C++ class member Handling
1387//===----------------------------------------------------------------------===//
1388
1389/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1390bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1391                                SourceLocation ASLoc,
1392                                SourceLocation ColonLoc,
1393                                AttributeList *Attrs) {
1394  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1395  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1396                                                  ASLoc, ColonLoc);
1397  CurContext->addHiddenDecl(ASDecl);
1398  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1399}
1400
1401/// CheckOverrideControl - Check C++0x override control semantics.
1402void Sema::CheckOverrideControl(const Decl *D) {
1403  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1404  if (!MD || !MD->isVirtual())
1405    return;
1406
1407  if (MD->isDependentContext())
1408    return;
1409
1410  // C++0x [class.virtual]p3:
1411  //   If a virtual function is marked with the virt-specifier override and does
1412  //   not override a member function of a base class,
1413  //   the program is ill-formed.
1414  bool HasOverriddenMethods =
1415    MD->begin_overridden_methods() != MD->end_overridden_methods();
1416  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1417    Diag(MD->getLocation(),
1418                 diag::err_function_marked_override_not_overriding)
1419      << MD->getDeclName();
1420    return;
1421  }
1422}
1423
1424/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1425/// function overrides a virtual member function marked 'final', according to
1426/// C++0x [class.virtual]p3.
1427bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1428                                                  const CXXMethodDecl *Old) {
1429  if (!Old->hasAttr<FinalAttr>())
1430    return false;
1431
1432  Diag(New->getLocation(), diag::err_final_function_overridden)
1433    << New->getDeclName();
1434  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1435  return true;
1436}
1437
1438/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1439/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1440/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1441/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1442/// present but parsing it has been deferred.
1443Decl *
1444Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1445                               MultiTemplateParamsArg TemplateParameterLists,
1446                               Expr *BW, const VirtSpecifiers &VS,
1447                               bool HasDeferredInit) {
1448  const DeclSpec &DS = D.getDeclSpec();
1449  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1450  DeclarationName Name = NameInfo.getName();
1451  SourceLocation Loc = NameInfo.getLoc();
1452
1453  // For anonymous bitfields, the location should point to the type.
1454  if (Loc.isInvalid())
1455    Loc = D.getLocStart();
1456
1457  Expr *BitWidth = static_cast<Expr*>(BW);
1458
1459  assert(isa<CXXRecordDecl>(CurContext));
1460  assert(!DS.isFriendSpecified());
1461
1462  bool isFunc = D.isDeclarationOfFunction();
1463
1464  // C++ 9.2p6: A member shall not be declared to have automatic storage
1465  // duration (auto, register) or with the extern storage-class-specifier.
1466  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1467  // data members and cannot be applied to names declared const or static,
1468  // and cannot be applied to reference members.
1469  switch (DS.getStorageClassSpec()) {
1470    case DeclSpec::SCS_unspecified:
1471    case DeclSpec::SCS_typedef:
1472    case DeclSpec::SCS_static:
1473      // FALL THROUGH.
1474      break;
1475    case DeclSpec::SCS_mutable:
1476      if (isFunc) {
1477        if (DS.getStorageClassSpecLoc().isValid())
1478          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1479        else
1480          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1481
1482        // FIXME: It would be nicer if the keyword was ignored only for this
1483        // declarator. Otherwise we could get follow-up errors.
1484        D.getMutableDeclSpec().ClearStorageClassSpecs();
1485      }
1486      break;
1487    default:
1488      if (DS.getStorageClassSpecLoc().isValid())
1489        Diag(DS.getStorageClassSpecLoc(),
1490             diag::err_storageclass_invalid_for_member);
1491      else
1492        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1493      D.getMutableDeclSpec().ClearStorageClassSpecs();
1494  }
1495
1496  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1497                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1498                      !isFunc);
1499
1500  Decl *Member;
1501  if (isInstField) {
1502    CXXScopeSpec &SS = D.getCXXScopeSpec();
1503
1504    // Data members must have identifiers for names.
1505    if (Name.getNameKind() != DeclarationName::Identifier) {
1506      Diag(Loc, diag::err_bad_variable_name)
1507        << Name;
1508      return 0;
1509    }
1510
1511    IdentifierInfo *II = Name.getAsIdentifierInfo();
1512
1513    // Member field could not be with "template" keyword.
1514    // So TemplateParameterLists should be empty in this case.
1515    if (TemplateParameterLists.size()) {
1516      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1517      if (TemplateParams->size()) {
1518        // There is no such thing as a member field template.
1519        Diag(D.getIdentifierLoc(), diag::err_template_member)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      } else {
1524        // There is an extraneous 'template<>' for this member.
1525        Diag(TemplateParams->getTemplateLoc(),
1526            diag::err_template_member_noparams)
1527            << II
1528            << SourceRange(TemplateParams->getTemplateLoc(),
1529                TemplateParams->getRAngleLoc());
1530      }
1531      return 0;
1532    }
1533
1534    if (SS.isSet() && !SS.isInvalid()) {
1535      // The user provided a superfluous scope specifier inside a class
1536      // definition:
1537      //
1538      // class X {
1539      //   int X::member;
1540      // };
1541      DeclContext *DC = 0;
1542      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1543        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1544          << Name << FixItHint::CreateRemoval(SS.getRange());
1545      else
1546        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1547          << Name << SS.getRange();
1548
1549      SS.clear();
1550    }
1551
1552    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1553                         HasDeferredInit, AS);
1554    assert(Member && "HandleField never returns null");
1555  } else {
1556    assert(!HasDeferredInit);
1557
1558    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1559    if (!Member) {
1560      return 0;
1561    }
1562
1563    // Non-instance-fields can't have a bitfield.
1564    if (BitWidth) {
1565      if (Member->isInvalidDecl()) {
1566        // don't emit another diagnostic.
1567      } else if (isa<VarDecl>(Member)) {
1568        // C++ 9.6p3: A bit-field shall not be a static member.
1569        // "static member 'A' cannot be a bit-field"
1570        Diag(Loc, diag::err_static_not_bitfield)
1571          << Name << BitWidth->getSourceRange();
1572      } else if (isa<TypedefDecl>(Member)) {
1573        // "typedef member 'x' cannot be a bit-field"
1574        Diag(Loc, diag::err_typedef_not_bitfield)
1575          << Name << BitWidth->getSourceRange();
1576      } else {
1577        // A function typedef ("typedef int f(); f a;").
1578        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1579        Diag(Loc, diag::err_not_integral_type_bitfield)
1580          << Name << cast<ValueDecl>(Member)->getType()
1581          << BitWidth->getSourceRange();
1582      }
1583
1584      BitWidth = 0;
1585      Member->setInvalidDecl();
1586    }
1587
1588    Member->setAccess(AS);
1589
1590    // If we have declared a member function template, set the access of the
1591    // templated declaration as well.
1592    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1593      FunTmpl->getTemplatedDecl()->setAccess(AS);
1594  }
1595
1596  if (VS.isOverrideSpecified()) {
1597    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1598    if (!MD || !MD->isVirtual()) {
1599      Diag(Member->getLocStart(),
1600           diag::override_keyword_only_allowed_on_virtual_member_functions)
1601        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1602    } else
1603      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1604  }
1605  if (VS.isFinalSpecified()) {
1606    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1607    if (!MD || !MD->isVirtual()) {
1608      Diag(Member->getLocStart(),
1609           diag::override_keyword_only_allowed_on_virtual_member_functions)
1610      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1611    } else
1612      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1613  }
1614
1615  if (VS.getLastLocation().isValid()) {
1616    // Update the end location of a method that has a virt-specifiers.
1617    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1618      MD->setRangeEnd(VS.getLastLocation());
1619  }
1620
1621  CheckOverrideControl(Member);
1622
1623  assert((Name || isInstField) && "No identifier for non-field ?");
1624
1625  if (isInstField)
1626    FieldCollector->Add(cast<FieldDecl>(Member));
1627  return Member;
1628}
1629
1630/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1631/// in-class initializer for a non-static C++ class member, and after
1632/// instantiating an in-class initializer in a class template. Such actions
1633/// are deferred until the class is complete.
1634void
1635Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1636                                       Expr *InitExpr) {
1637  FieldDecl *FD = cast<FieldDecl>(D);
1638
1639  if (!InitExpr) {
1640    FD->setInvalidDecl();
1641    FD->removeInClassInitializer();
1642    return;
1643  }
1644
1645  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1646    FD->setInvalidDecl();
1647    FD->removeInClassInitializer();
1648    return;
1649  }
1650
1651  ExprResult Init = InitExpr;
1652  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1653    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1654      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1655        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1656    }
1657    Expr **Inits = &InitExpr;
1658    unsigned NumInits = 1;
1659    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1660    InitializationKind Kind = EqualLoc.isInvalid()
1661        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1662        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1663    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1664    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1665    if (Init.isInvalid()) {
1666      FD->setInvalidDecl();
1667      return;
1668    }
1669
1670    CheckImplicitConversions(Init.get(), EqualLoc);
1671  }
1672
1673  // C++0x [class.base.init]p7:
1674  //   The initialization of each base and member constitutes a
1675  //   full-expression.
1676  Init = MaybeCreateExprWithCleanups(Init);
1677  if (Init.isInvalid()) {
1678    FD->setInvalidDecl();
1679    return;
1680  }
1681
1682  InitExpr = Init.release();
1683
1684  FD->setInClassInitializer(InitExpr);
1685}
1686
1687/// \brief Find the direct and/or virtual base specifiers that
1688/// correspond to the given base type, for use in base initialization
1689/// within a constructor.
1690static bool FindBaseInitializer(Sema &SemaRef,
1691                                CXXRecordDecl *ClassDecl,
1692                                QualType BaseType,
1693                                const CXXBaseSpecifier *&DirectBaseSpec,
1694                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1695  // First, check for a direct base class.
1696  DirectBaseSpec = 0;
1697  for (CXXRecordDecl::base_class_const_iterator Base
1698         = ClassDecl->bases_begin();
1699       Base != ClassDecl->bases_end(); ++Base) {
1700    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1701      // We found a direct base of this type. That's what we're
1702      // initializing.
1703      DirectBaseSpec = &*Base;
1704      break;
1705    }
1706  }
1707
1708  // Check for a virtual base class.
1709  // FIXME: We might be able to short-circuit this if we know in advance that
1710  // there are no virtual bases.
1711  VirtualBaseSpec = 0;
1712  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1713    // We haven't found a base yet; search the class hierarchy for a
1714    // virtual base class.
1715    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1716                       /*DetectVirtual=*/false);
1717    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1718                              BaseType, Paths)) {
1719      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1720           Path != Paths.end(); ++Path) {
1721        if (Path->back().Base->isVirtual()) {
1722          VirtualBaseSpec = Path->back().Base;
1723          break;
1724        }
1725      }
1726    }
1727  }
1728
1729  return DirectBaseSpec || VirtualBaseSpec;
1730}
1731
1732/// \brief Handle a C++ member initializer using braced-init-list syntax.
1733MemInitResult
1734Sema::ActOnMemInitializer(Decl *ConstructorD,
1735                          Scope *S,
1736                          CXXScopeSpec &SS,
1737                          IdentifierInfo *MemberOrBase,
1738                          ParsedType TemplateTypeTy,
1739                          const DeclSpec &DS,
1740                          SourceLocation IdLoc,
1741                          Expr *InitList,
1742                          SourceLocation EllipsisLoc) {
1743  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1744                             DS, IdLoc, InitList,
1745                             EllipsisLoc);
1746}
1747
1748/// \brief Handle a C++ member initializer using parentheses syntax.
1749MemInitResult
1750Sema::ActOnMemInitializer(Decl *ConstructorD,
1751                          Scope *S,
1752                          CXXScopeSpec &SS,
1753                          IdentifierInfo *MemberOrBase,
1754                          ParsedType TemplateTypeTy,
1755                          const DeclSpec &DS,
1756                          SourceLocation IdLoc,
1757                          SourceLocation LParenLoc,
1758                          Expr **Args, unsigned NumArgs,
1759                          SourceLocation RParenLoc,
1760                          SourceLocation EllipsisLoc) {
1761  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1762                                           RParenLoc);
1763  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1764                             DS, IdLoc, List, EllipsisLoc);
1765}
1766
1767namespace {
1768
1769// Callback to only accept typo corrections that can be a valid C++ member
1770// intializer: either a non-static field member or a base class.
1771class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1772 public:
1773  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1774      : ClassDecl(ClassDecl) {}
1775
1776  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1777    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1778      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1779        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1780      else
1781        return isa<TypeDecl>(ND);
1782    }
1783    return false;
1784  }
1785
1786 private:
1787  CXXRecordDecl *ClassDecl;
1788};
1789
1790}
1791
1792/// \brief Handle a C++ member initializer.
1793MemInitResult
1794Sema::BuildMemInitializer(Decl *ConstructorD,
1795                          Scope *S,
1796                          CXXScopeSpec &SS,
1797                          IdentifierInfo *MemberOrBase,
1798                          ParsedType TemplateTypeTy,
1799                          const DeclSpec &DS,
1800                          SourceLocation IdLoc,
1801                          Expr *Init,
1802                          SourceLocation EllipsisLoc) {
1803  if (!ConstructorD)
1804    return true;
1805
1806  AdjustDeclIfTemplate(ConstructorD);
1807
1808  CXXConstructorDecl *Constructor
1809    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1810  if (!Constructor) {
1811    // The user wrote a constructor initializer on a function that is
1812    // not a C++ constructor. Ignore the error for now, because we may
1813    // have more member initializers coming; we'll diagnose it just
1814    // once in ActOnMemInitializers.
1815    return true;
1816  }
1817
1818  CXXRecordDecl *ClassDecl = Constructor->getParent();
1819
1820  // C++ [class.base.init]p2:
1821  //   Names in a mem-initializer-id are looked up in the scope of the
1822  //   constructor's class and, if not found in that scope, are looked
1823  //   up in the scope containing the constructor's definition.
1824  //   [Note: if the constructor's class contains a member with the
1825  //   same name as a direct or virtual base class of the class, a
1826  //   mem-initializer-id naming the member or base class and composed
1827  //   of a single identifier refers to the class member. A
1828  //   mem-initializer-id for the hidden base class may be specified
1829  //   using a qualified name. ]
1830  if (!SS.getScopeRep() && !TemplateTypeTy) {
1831    // Look for a member, first.
1832    DeclContext::lookup_result Result
1833      = ClassDecl->lookup(MemberOrBase);
1834    if (Result.first != Result.second) {
1835      ValueDecl *Member;
1836      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1837          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1838        if (EllipsisLoc.isValid())
1839          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1840            << MemberOrBase
1841            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1842
1843        return BuildMemberInitializer(Member, Init, IdLoc);
1844      }
1845    }
1846  }
1847  // It didn't name a member, so see if it names a class.
1848  QualType BaseType;
1849  TypeSourceInfo *TInfo = 0;
1850
1851  if (TemplateTypeTy) {
1852    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1853  } else if (DS.getTypeSpecType() == TST_decltype) {
1854    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1855  } else {
1856    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1857    LookupParsedName(R, S, &SS);
1858
1859    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1860    if (!TyD) {
1861      if (R.isAmbiguous()) return true;
1862
1863      // We don't want access-control diagnostics here.
1864      R.suppressDiagnostics();
1865
1866      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1867        bool NotUnknownSpecialization = false;
1868        DeclContext *DC = computeDeclContext(SS, false);
1869        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1870          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1871
1872        if (!NotUnknownSpecialization) {
1873          // When the scope specifier can refer to a member of an unknown
1874          // specialization, we take it as a type name.
1875          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1876                                       SS.getWithLocInContext(Context),
1877                                       *MemberOrBase, IdLoc);
1878          if (BaseType.isNull())
1879            return true;
1880
1881          R.clear();
1882          R.setLookupName(MemberOrBase);
1883        }
1884      }
1885
1886      // If no results were found, try to correct typos.
1887      TypoCorrection Corr;
1888      MemInitializerValidatorCCC Validator(ClassDecl);
1889      if (R.empty() && BaseType.isNull() &&
1890          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1891                              Validator, ClassDecl))) {
1892        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1893        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1894        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1895          // We have found a non-static data member with a similar
1896          // name to what was typed; complain and initialize that
1897          // member.
1898          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1899            << MemberOrBase << true << CorrectedQuotedStr
1900            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1901          Diag(Member->getLocation(), diag::note_previous_decl)
1902            << CorrectedQuotedStr;
1903
1904          return BuildMemberInitializer(Member, Init, IdLoc);
1905        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1906          const CXXBaseSpecifier *DirectBaseSpec;
1907          const CXXBaseSpecifier *VirtualBaseSpec;
1908          if (FindBaseInitializer(*this, ClassDecl,
1909                                  Context.getTypeDeclType(Type),
1910                                  DirectBaseSpec, VirtualBaseSpec)) {
1911            // We have found a direct or virtual base class with a
1912            // similar name to what was typed; complain and initialize
1913            // that base class.
1914            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1915              << MemberOrBase << false << CorrectedQuotedStr
1916              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1917
1918            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1919                                                             : VirtualBaseSpec;
1920            Diag(BaseSpec->getLocStart(),
1921                 diag::note_base_class_specified_here)
1922              << BaseSpec->getType()
1923              << BaseSpec->getSourceRange();
1924
1925            TyD = Type;
1926          }
1927        }
1928      }
1929
1930      if (!TyD && BaseType.isNull()) {
1931        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1932          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1933        return true;
1934      }
1935    }
1936
1937    if (BaseType.isNull()) {
1938      BaseType = Context.getTypeDeclType(TyD);
1939      if (SS.isSet()) {
1940        NestedNameSpecifier *Qualifier =
1941          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1942
1943        // FIXME: preserve source range information
1944        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1945      }
1946    }
1947  }
1948
1949  if (!TInfo)
1950    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1951
1952  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1953}
1954
1955/// Checks a member initializer expression for cases where reference (or
1956/// pointer) members are bound to by-value parameters (or their addresses).
1957static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1958                                               Expr *Init,
1959                                               SourceLocation IdLoc) {
1960  QualType MemberTy = Member->getType();
1961
1962  // We only handle pointers and references currently.
1963  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1964  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1965    return;
1966
1967  const bool IsPointer = MemberTy->isPointerType();
1968  if (IsPointer) {
1969    if (const UnaryOperator *Op
1970          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1971      // The only case we're worried about with pointers requires taking the
1972      // address.
1973      if (Op->getOpcode() != UO_AddrOf)
1974        return;
1975
1976      Init = Op->getSubExpr();
1977    } else {
1978      // We only handle address-of expression initializers for pointers.
1979      return;
1980    }
1981  }
1982
1983  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1984    // Taking the address of a temporary will be diagnosed as a hard error.
1985    if (IsPointer)
1986      return;
1987
1988    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1989      << Member << Init->getSourceRange();
1990  } else if (const DeclRefExpr *DRE
1991               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1992    // We only warn when referring to a non-reference parameter declaration.
1993    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1994    if (!Parameter || Parameter->getType()->isReferenceType())
1995      return;
1996
1997    S.Diag(Init->getExprLoc(),
1998           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1999                     : diag::warn_bind_ref_member_to_parameter)
2000      << Member << Parameter << Init->getSourceRange();
2001  } else {
2002    // Other initializers are fine.
2003    return;
2004  }
2005
2006  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2007    << (unsigned)IsPointer;
2008}
2009
2010/// Checks an initializer expression for use of uninitialized fields, such as
2011/// containing the field that is being initialized. Returns true if there is an
2012/// uninitialized field was used an updates the SourceLocation parameter; false
2013/// otherwise.
2014static bool InitExprContainsUninitializedFields(const Stmt *S,
2015                                                const ValueDecl *LhsField,
2016                                                SourceLocation *L) {
2017  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2018
2019  if (isa<CallExpr>(S)) {
2020    // Do not descend into function calls or constructors, as the use
2021    // of an uninitialized field may be valid. One would have to inspect
2022    // the contents of the function/ctor to determine if it is safe or not.
2023    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2024    // may be safe, depending on what the function/ctor does.
2025    return false;
2026  }
2027  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2028    const NamedDecl *RhsField = ME->getMemberDecl();
2029
2030    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2031      // The member expression points to a static data member.
2032      assert(VD->isStaticDataMember() &&
2033             "Member points to non-static data member!");
2034      (void)VD;
2035      return false;
2036    }
2037
2038    if (isa<EnumConstantDecl>(RhsField)) {
2039      // The member expression points to an enum.
2040      return false;
2041    }
2042
2043    if (RhsField == LhsField) {
2044      // Initializing a field with itself. Throw a warning.
2045      // But wait; there are exceptions!
2046      // Exception #1:  The field may not belong to this record.
2047      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2048      const Expr *base = ME->getBase();
2049      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2050        // Even though the field matches, it does not belong to this record.
2051        return false;
2052      }
2053      // None of the exceptions triggered; return true to indicate an
2054      // uninitialized field was used.
2055      *L = ME->getMemberLoc();
2056      return true;
2057    }
2058  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2059    // sizeof/alignof doesn't reference contents, do not warn.
2060    return false;
2061  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2062    // address-of doesn't reference contents (the pointer may be dereferenced
2063    // in the same expression but it would be rare; and weird).
2064    if (UOE->getOpcode() == UO_AddrOf)
2065      return false;
2066  }
2067  for (Stmt::const_child_range it = S->children(); it; ++it) {
2068    if (!*it) {
2069      // An expression such as 'member(arg ?: "")' may trigger this.
2070      continue;
2071    }
2072    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2073      return true;
2074  }
2075  return false;
2076}
2077
2078MemInitResult
2079Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2080                             SourceLocation IdLoc) {
2081  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2082  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2083  assert((DirectMember || IndirectMember) &&
2084         "Member must be a FieldDecl or IndirectFieldDecl");
2085
2086  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2087    return true;
2088
2089  if (Member->isInvalidDecl())
2090    return true;
2091
2092  // Diagnose value-uses of fields to initialize themselves, e.g.
2093  //   foo(foo)
2094  // where foo is not also a parameter to the constructor.
2095  // TODO: implement -Wuninitialized and fold this into that framework.
2096  Expr **Args;
2097  unsigned NumArgs;
2098  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2099    Args = ParenList->getExprs();
2100    NumArgs = ParenList->getNumExprs();
2101  } else {
2102    InitListExpr *InitList = cast<InitListExpr>(Init);
2103    Args = InitList->getInits();
2104    NumArgs = InitList->getNumInits();
2105  }
2106  for (unsigned i = 0; i < NumArgs; ++i) {
2107    SourceLocation L;
2108    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2109      // FIXME: Return true in the case when other fields are used before being
2110      // uninitialized. For example, let this field be the i'th field. When
2111      // initializing the i'th field, throw a warning if any of the >= i'th
2112      // fields are used, as they are not yet initialized.
2113      // Right now we are only handling the case where the i'th field uses
2114      // itself in its initializer.
2115      Diag(L, diag::warn_field_is_uninit);
2116    }
2117  }
2118
2119  SourceRange InitRange = Init->getSourceRange();
2120
2121  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2122    // Can't check initialization for a member of dependent type or when
2123    // any of the arguments are type-dependent expressions.
2124    DiscardCleanupsInEvaluationContext();
2125  } else {
2126    bool InitList = false;
2127    if (isa<InitListExpr>(Init)) {
2128      InitList = true;
2129      Args = &Init;
2130      NumArgs = 1;
2131
2132      if (isStdInitializerList(Member->getType(), 0)) {
2133        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2134            << /*at end of ctor*/1 << InitRange;
2135      }
2136    }
2137
2138    // Initialize the member.
2139    InitializedEntity MemberEntity =
2140      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2141                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2142    InitializationKind Kind =
2143      InitList ? InitializationKind::CreateDirectList(IdLoc)
2144               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2145                                                  InitRange.getEnd());
2146
2147    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2148    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2149                                            MultiExprArg(*this, Args, NumArgs),
2150                                            0);
2151    if (MemberInit.isInvalid())
2152      return true;
2153
2154    CheckImplicitConversions(MemberInit.get(),
2155                             InitRange.getBegin());
2156
2157    // C++0x [class.base.init]p7:
2158    //   The initialization of each base and member constitutes a
2159    //   full-expression.
2160    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2161    if (MemberInit.isInvalid())
2162      return true;
2163
2164    // If we are in a dependent context, template instantiation will
2165    // perform this type-checking again. Just save the arguments that we
2166    // received.
2167    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2168    // of the information that we have about the member
2169    // initializer. However, deconstructing the ASTs is a dicey process,
2170    // and this approach is far more likely to get the corner cases right.
2171    if (CurContext->isDependentContext()) {
2172      // The existing Init will do fine.
2173    } else {
2174      Init = MemberInit.get();
2175      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2176    }
2177  }
2178
2179  if (DirectMember) {
2180    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2181                                            InitRange.getBegin(), Init,
2182                                            InitRange.getEnd());
2183  } else {
2184    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2185                                            InitRange.getBegin(), Init,
2186                                            InitRange.getEnd());
2187  }
2188}
2189
2190MemInitResult
2191Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2192                                 CXXRecordDecl *ClassDecl) {
2193  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2194  if (!LangOpts.CPlusPlus0x)
2195    return Diag(NameLoc, diag::err_delegating_ctor)
2196      << TInfo->getTypeLoc().getLocalSourceRange();
2197  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2198
2199  bool InitList = true;
2200  Expr **Args = &Init;
2201  unsigned NumArgs = 1;
2202  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2203    InitList = false;
2204    Args = ParenList->getExprs();
2205    NumArgs = ParenList->getNumExprs();
2206  }
2207
2208  SourceRange InitRange = Init->getSourceRange();
2209  // Initialize the object.
2210  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2211                                     QualType(ClassDecl->getTypeForDecl(), 0));
2212  InitializationKind Kind =
2213    InitList ? InitializationKind::CreateDirectList(NameLoc)
2214             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2215                                                InitRange.getEnd());
2216  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2217  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2218                                              MultiExprArg(*this, Args,NumArgs),
2219                                              0);
2220  if (DelegationInit.isInvalid())
2221    return true;
2222
2223  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2224         "Delegating constructor with no target?");
2225
2226  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2227
2228  // C++0x [class.base.init]p7:
2229  //   The initialization of each base and member constitutes a
2230  //   full-expression.
2231  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2232  if (DelegationInit.isInvalid())
2233    return true;
2234
2235  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2236                                          DelegationInit.takeAs<Expr>(),
2237                                          InitRange.getEnd());
2238}
2239
2240MemInitResult
2241Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2242                           Expr *Init, CXXRecordDecl *ClassDecl,
2243                           SourceLocation EllipsisLoc) {
2244  SourceLocation BaseLoc
2245    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2246
2247  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2248    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2249             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2250
2251  // C++ [class.base.init]p2:
2252  //   [...] Unless the mem-initializer-id names a nonstatic data
2253  //   member of the constructor's class or a direct or virtual base
2254  //   of that class, the mem-initializer is ill-formed. A
2255  //   mem-initializer-list can initialize a base class using any
2256  //   name that denotes that base class type.
2257  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2258
2259  SourceRange InitRange = Init->getSourceRange();
2260  if (EllipsisLoc.isValid()) {
2261    // This is a pack expansion.
2262    if (!BaseType->containsUnexpandedParameterPack())  {
2263      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2264        << SourceRange(BaseLoc, InitRange.getEnd());
2265
2266      EllipsisLoc = SourceLocation();
2267    }
2268  } else {
2269    // Check for any unexpanded parameter packs.
2270    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2271      return true;
2272
2273    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2274      return true;
2275  }
2276
2277  // Check for direct and virtual base classes.
2278  const CXXBaseSpecifier *DirectBaseSpec = 0;
2279  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2280  if (!Dependent) {
2281    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2282                                       BaseType))
2283      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2284
2285    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2286                        VirtualBaseSpec);
2287
2288    // C++ [base.class.init]p2:
2289    // Unless the mem-initializer-id names a nonstatic data member of the
2290    // constructor's class or a direct or virtual base of that class, the
2291    // mem-initializer is ill-formed.
2292    if (!DirectBaseSpec && !VirtualBaseSpec) {
2293      // If the class has any dependent bases, then it's possible that
2294      // one of those types will resolve to the same type as
2295      // BaseType. Therefore, just treat this as a dependent base
2296      // class initialization.  FIXME: Should we try to check the
2297      // initialization anyway? It seems odd.
2298      if (ClassDecl->hasAnyDependentBases())
2299        Dependent = true;
2300      else
2301        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2302          << BaseType << Context.getTypeDeclType(ClassDecl)
2303          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2304    }
2305  }
2306
2307  if (Dependent) {
2308    DiscardCleanupsInEvaluationContext();
2309
2310    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2311                                            /*IsVirtual=*/false,
2312                                            InitRange.getBegin(), Init,
2313                                            InitRange.getEnd(), EllipsisLoc);
2314  }
2315
2316  // C++ [base.class.init]p2:
2317  //   If a mem-initializer-id is ambiguous because it designates both
2318  //   a direct non-virtual base class and an inherited virtual base
2319  //   class, the mem-initializer is ill-formed.
2320  if (DirectBaseSpec && VirtualBaseSpec)
2321    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2322      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2323
2324  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2325  if (!BaseSpec)
2326    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2327
2328  // Initialize the base.
2329  bool InitList = true;
2330  Expr **Args = &Init;
2331  unsigned NumArgs = 1;
2332  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2333    InitList = false;
2334    Args = ParenList->getExprs();
2335    NumArgs = ParenList->getNumExprs();
2336  }
2337
2338  InitializedEntity BaseEntity =
2339    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2340  InitializationKind Kind =
2341    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2342             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2343                                                InitRange.getEnd());
2344  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2345  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2346                                          MultiExprArg(*this, Args, NumArgs),
2347                                          0);
2348  if (BaseInit.isInvalid())
2349    return true;
2350
2351  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2352
2353  // C++0x [class.base.init]p7:
2354  //   The initialization of each base and member constitutes a
2355  //   full-expression.
2356  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2357  if (BaseInit.isInvalid())
2358    return true;
2359
2360  // If we are in a dependent context, template instantiation will
2361  // perform this type-checking again. Just save the arguments that we
2362  // received in a ParenListExpr.
2363  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2364  // of the information that we have about the base
2365  // initializer. However, deconstructing the ASTs is a dicey process,
2366  // and this approach is far more likely to get the corner cases right.
2367  if (CurContext->isDependentContext())
2368    BaseInit = Owned(Init);
2369
2370  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2371                                          BaseSpec->isVirtual(),
2372                                          InitRange.getBegin(),
2373                                          BaseInit.takeAs<Expr>(),
2374                                          InitRange.getEnd(), EllipsisLoc);
2375}
2376
2377// Create a static_cast\<T&&>(expr).
2378static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2379  QualType ExprType = E->getType();
2380  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2381  SourceLocation ExprLoc = E->getLocStart();
2382  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2383      TargetType, ExprLoc);
2384
2385  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2386                                   SourceRange(ExprLoc, ExprLoc),
2387                                   E->getSourceRange()).take();
2388}
2389
2390/// ImplicitInitializerKind - How an implicit base or member initializer should
2391/// initialize its base or member.
2392enum ImplicitInitializerKind {
2393  IIK_Default,
2394  IIK_Copy,
2395  IIK_Move
2396};
2397
2398static bool
2399BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2400                             ImplicitInitializerKind ImplicitInitKind,
2401                             CXXBaseSpecifier *BaseSpec,
2402                             bool IsInheritedVirtualBase,
2403                             CXXCtorInitializer *&CXXBaseInit) {
2404  InitializedEntity InitEntity
2405    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2406                                        IsInheritedVirtualBase);
2407
2408  ExprResult BaseInit;
2409
2410  switch (ImplicitInitKind) {
2411  case IIK_Default: {
2412    InitializationKind InitKind
2413      = InitializationKind::CreateDefault(Constructor->getLocation());
2414    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2415    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2416                               MultiExprArg(SemaRef, 0, 0));
2417    break;
2418  }
2419
2420  case IIK_Move:
2421  case IIK_Copy: {
2422    bool Moving = ImplicitInitKind == IIK_Move;
2423    ParmVarDecl *Param = Constructor->getParamDecl(0);
2424    QualType ParamType = Param->getType().getNonReferenceType();
2425
2426    Expr *CopyCtorArg =
2427      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2428                          SourceLocation(), Param, false,
2429                          Constructor->getLocation(), ParamType,
2430                          VK_LValue, 0);
2431
2432    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2433
2434    // Cast to the base class to avoid ambiguities.
2435    QualType ArgTy =
2436      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2437                                       ParamType.getQualifiers());
2438
2439    if (Moving) {
2440      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2441    }
2442
2443    CXXCastPath BasePath;
2444    BasePath.push_back(BaseSpec);
2445    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2446                                            CK_UncheckedDerivedToBase,
2447                                            Moving ? VK_XValue : VK_LValue,
2448                                            &BasePath).take();
2449
2450    InitializationKind InitKind
2451      = InitializationKind::CreateDirect(Constructor->getLocation(),
2452                                         SourceLocation(), SourceLocation());
2453    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2454                                   &CopyCtorArg, 1);
2455    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2456                               MultiExprArg(&CopyCtorArg, 1));
2457    break;
2458  }
2459  }
2460
2461  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2462  if (BaseInit.isInvalid())
2463    return true;
2464
2465  CXXBaseInit =
2466    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2467               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2468                                                        SourceLocation()),
2469                                             BaseSpec->isVirtual(),
2470                                             SourceLocation(),
2471                                             BaseInit.takeAs<Expr>(),
2472                                             SourceLocation(),
2473                                             SourceLocation());
2474
2475  return false;
2476}
2477
2478static bool RefersToRValueRef(Expr *MemRef) {
2479  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2480  return Referenced->getType()->isRValueReferenceType();
2481}
2482
2483static bool
2484BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2485                               ImplicitInitializerKind ImplicitInitKind,
2486                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2487                               CXXCtorInitializer *&CXXMemberInit) {
2488  if (Field->isInvalidDecl())
2489    return true;
2490
2491  SourceLocation Loc = Constructor->getLocation();
2492
2493  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2494    bool Moving = ImplicitInitKind == IIK_Move;
2495    ParmVarDecl *Param = Constructor->getParamDecl(0);
2496    QualType ParamType = Param->getType().getNonReferenceType();
2497
2498    // Suppress copying zero-width bitfields.
2499    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2500      return false;
2501
2502    Expr *MemberExprBase =
2503      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2504                          SourceLocation(), Param, false,
2505                          Loc, ParamType, VK_LValue, 0);
2506
2507    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2508
2509    if (Moving) {
2510      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2511    }
2512
2513    // Build a reference to this field within the parameter.
2514    CXXScopeSpec SS;
2515    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2516                              Sema::LookupMemberName);
2517    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2518                                  : cast<ValueDecl>(Field), AS_public);
2519    MemberLookup.resolveKind();
2520    ExprResult CtorArg
2521      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2522                                         ParamType, Loc,
2523                                         /*IsArrow=*/false,
2524                                         SS,
2525                                         /*TemplateKWLoc=*/SourceLocation(),
2526                                         /*FirstQualifierInScope=*/0,
2527                                         MemberLookup,
2528                                         /*TemplateArgs=*/0);
2529    if (CtorArg.isInvalid())
2530      return true;
2531
2532    // C++11 [class.copy]p15:
2533    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2534    //     with static_cast<T&&>(x.m);
2535    if (RefersToRValueRef(CtorArg.get())) {
2536      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2537    }
2538
2539    // When the field we are copying is an array, create index variables for
2540    // each dimension of the array. We use these index variables to subscript
2541    // the source array, and other clients (e.g., CodeGen) will perform the
2542    // necessary iteration with these index variables.
2543    SmallVector<VarDecl *, 4> IndexVariables;
2544    QualType BaseType = Field->getType();
2545    QualType SizeType = SemaRef.Context.getSizeType();
2546    bool InitializingArray = false;
2547    while (const ConstantArrayType *Array
2548                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2549      InitializingArray = true;
2550      // Create the iteration variable for this array index.
2551      IdentifierInfo *IterationVarName = 0;
2552      {
2553        SmallString<8> Str;
2554        llvm::raw_svector_ostream OS(Str);
2555        OS << "__i" << IndexVariables.size();
2556        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2557      }
2558      VarDecl *IterationVar
2559        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2560                          IterationVarName, SizeType,
2561                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2562                          SC_None, SC_None);
2563      IndexVariables.push_back(IterationVar);
2564
2565      // Create a reference to the iteration variable.
2566      ExprResult IterationVarRef
2567        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2568      assert(!IterationVarRef.isInvalid() &&
2569             "Reference to invented variable cannot fail!");
2570      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2571      assert(!IterationVarRef.isInvalid() &&
2572             "Conversion of invented variable cannot fail!");
2573
2574      // Subscript the array with this iteration variable.
2575      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2576                                                        IterationVarRef.take(),
2577                                                        Loc);
2578      if (CtorArg.isInvalid())
2579        return true;
2580
2581      BaseType = Array->getElementType();
2582    }
2583
2584    // The array subscript expression is an lvalue, which is wrong for moving.
2585    if (Moving && InitializingArray)
2586      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2587
2588    // Construct the entity that we will be initializing. For an array, this
2589    // will be first element in the array, which may require several levels
2590    // of array-subscript entities.
2591    SmallVector<InitializedEntity, 4> Entities;
2592    Entities.reserve(1 + IndexVariables.size());
2593    if (Indirect)
2594      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2595    else
2596      Entities.push_back(InitializedEntity::InitializeMember(Field));
2597    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2598      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2599                                                              0,
2600                                                              Entities.back()));
2601
2602    // Direct-initialize to use the copy constructor.
2603    InitializationKind InitKind =
2604      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2605
2606    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2607    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2608                                   &CtorArgE, 1);
2609
2610    ExprResult MemberInit
2611      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2612                        MultiExprArg(&CtorArgE, 1));
2613    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2614    if (MemberInit.isInvalid())
2615      return true;
2616
2617    if (Indirect) {
2618      assert(IndexVariables.size() == 0 &&
2619             "Indirect field improperly initialized");
2620      CXXMemberInit
2621        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2622                                                   Loc, Loc,
2623                                                   MemberInit.takeAs<Expr>(),
2624                                                   Loc);
2625    } else
2626      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2627                                                 Loc, MemberInit.takeAs<Expr>(),
2628                                                 Loc,
2629                                                 IndexVariables.data(),
2630                                                 IndexVariables.size());
2631    return false;
2632  }
2633
2634  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2635
2636  QualType FieldBaseElementType =
2637    SemaRef.Context.getBaseElementType(Field->getType());
2638
2639  if (FieldBaseElementType->isRecordType()) {
2640    InitializedEntity InitEntity
2641      = Indirect? InitializedEntity::InitializeMember(Indirect)
2642                : InitializedEntity::InitializeMember(Field);
2643    InitializationKind InitKind =
2644      InitializationKind::CreateDefault(Loc);
2645
2646    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2647    ExprResult MemberInit =
2648      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2649
2650    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2651    if (MemberInit.isInvalid())
2652      return true;
2653
2654    if (Indirect)
2655      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2656                                                               Indirect, Loc,
2657                                                               Loc,
2658                                                               MemberInit.get(),
2659                                                               Loc);
2660    else
2661      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2662                                                               Field, Loc, Loc,
2663                                                               MemberInit.get(),
2664                                                               Loc);
2665    return false;
2666  }
2667
2668  if (!Field->getParent()->isUnion()) {
2669    if (FieldBaseElementType->isReferenceType()) {
2670      SemaRef.Diag(Constructor->getLocation(),
2671                   diag::err_uninitialized_member_in_ctor)
2672      << (int)Constructor->isImplicit()
2673      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2674      << 0 << Field->getDeclName();
2675      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2676      return true;
2677    }
2678
2679    if (FieldBaseElementType.isConstQualified()) {
2680      SemaRef.Diag(Constructor->getLocation(),
2681                   diag::err_uninitialized_member_in_ctor)
2682      << (int)Constructor->isImplicit()
2683      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2684      << 1 << Field->getDeclName();
2685      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2686      return true;
2687    }
2688  }
2689
2690  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2691      FieldBaseElementType->isObjCRetainableType() &&
2692      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2693      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2694    // Instant objects:
2695    //   Default-initialize Objective-C pointers to NULL.
2696    CXXMemberInit
2697      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2698                                                 Loc, Loc,
2699                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2700                                                 Loc);
2701    return false;
2702  }
2703
2704  // Nothing to initialize.
2705  CXXMemberInit = 0;
2706  return false;
2707}
2708
2709namespace {
2710struct BaseAndFieldInfo {
2711  Sema &S;
2712  CXXConstructorDecl *Ctor;
2713  bool AnyErrorsInInits;
2714  ImplicitInitializerKind IIK;
2715  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2716  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2717
2718  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2719    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2720    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2721    if (Generated && Ctor->isCopyConstructor())
2722      IIK = IIK_Copy;
2723    else if (Generated && Ctor->isMoveConstructor())
2724      IIK = IIK_Move;
2725    else
2726      IIK = IIK_Default;
2727  }
2728
2729  bool isImplicitCopyOrMove() const {
2730    switch (IIK) {
2731    case IIK_Copy:
2732    case IIK_Move:
2733      return true;
2734
2735    case IIK_Default:
2736      return false;
2737    }
2738
2739    llvm_unreachable("Invalid ImplicitInitializerKind!");
2740  }
2741};
2742}
2743
2744/// \brief Determine whether the given indirect field declaration is somewhere
2745/// within an anonymous union.
2746static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2747  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2748                                      CEnd = F->chain_end();
2749       C != CEnd; ++C)
2750    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2751      if (Record->isUnion())
2752        return true;
2753
2754  return false;
2755}
2756
2757/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2758/// array type.
2759static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2760  if (T->isIncompleteArrayType())
2761    return true;
2762
2763  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2764    if (!ArrayT->getSize())
2765      return true;
2766
2767    T = ArrayT->getElementType();
2768  }
2769
2770  return false;
2771}
2772
2773static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2774                                    FieldDecl *Field,
2775                                    IndirectFieldDecl *Indirect = 0) {
2776
2777  // Overwhelmingly common case: we have a direct initializer for this field.
2778  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2779    Info.AllToInit.push_back(Init);
2780    return false;
2781  }
2782
2783  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2784  // has a brace-or-equal-initializer, the entity is initialized as specified
2785  // in [dcl.init].
2786  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2787    CXXCtorInitializer *Init;
2788    if (Indirect)
2789      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2790                                                      SourceLocation(),
2791                                                      SourceLocation(), 0,
2792                                                      SourceLocation());
2793    else
2794      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2795                                                      SourceLocation(),
2796                                                      SourceLocation(), 0,
2797                                                      SourceLocation());
2798    Info.AllToInit.push_back(Init);
2799    return false;
2800  }
2801
2802  // Don't build an implicit initializer for union members if none was
2803  // explicitly specified.
2804  if (Field->getParent()->isUnion() ||
2805      (Indirect && isWithinAnonymousUnion(Indirect)))
2806    return false;
2807
2808  // Don't initialize incomplete or zero-length arrays.
2809  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2810    return false;
2811
2812  // Don't try to build an implicit initializer if there were semantic
2813  // errors in any of the initializers (and therefore we might be
2814  // missing some that the user actually wrote).
2815  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2816    return false;
2817
2818  CXXCtorInitializer *Init = 0;
2819  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2820                                     Indirect, Init))
2821    return true;
2822
2823  if (Init)
2824    Info.AllToInit.push_back(Init);
2825
2826  return false;
2827}
2828
2829bool
2830Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2831                               CXXCtorInitializer *Initializer) {
2832  assert(Initializer->isDelegatingInitializer());
2833  Constructor->setNumCtorInitializers(1);
2834  CXXCtorInitializer **initializer =
2835    new (Context) CXXCtorInitializer*[1];
2836  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2837  Constructor->setCtorInitializers(initializer);
2838
2839  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2840    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2841    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2842  }
2843
2844  DelegatingCtorDecls.push_back(Constructor);
2845
2846  return false;
2847}
2848
2849bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2850                               CXXCtorInitializer **Initializers,
2851                               unsigned NumInitializers,
2852                               bool AnyErrors) {
2853  if (Constructor->isDependentContext()) {
2854    // Just store the initializers as written, they will be checked during
2855    // instantiation.
2856    if (NumInitializers > 0) {
2857      Constructor->setNumCtorInitializers(NumInitializers);
2858      CXXCtorInitializer **baseOrMemberInitializers =
2859        new (Context) CXXCtorInitializer*[NumInitializers];
2860      memcpy(baseOrMemberInitializers, Initializers,
2861             NumInitializers * sizeof(CXXCtorInitializer*));
2862      Constructor->setCtorInitializers(baseOrMemberInitializers);
2863    }
2864
2865    return false;
2866  }
2867
2868  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2869
2870  // We need to build the initializer AST according to order of construction
2871  // and not what user specified in the Initializers list.
2872  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2873  if (!ClassDecl)
2874    return true;
2875
2876  bool HadError = false;
2877
2878  for (unsigned i = 0; i < NumInitializers; i++) {
2879    CXXCtorInitializer *Member = Initializers[i];
2880
2881    if (Member->isBaseInitializer())
2882      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2883    else
2884      Info.AllBaseFields[Member->getAnyMember()] = Member;
2885  }
2886
2887  // Keep track of the direct virtual bases.
2888  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2889  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2890       E = ClassDecl->bases_end(); I != E; ++I) {
2891    if (I->isVirtual())
2892      DirectVBases.insert(I);
2893  }
2894
2895  // Push virtual bases before others.
2896  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2897       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2898
2899    if (CXXCtorInitializer *Value
2900        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2901      Info.AllToInit.push_back(Value);
2902    } else if (!AnyErrors) {
2903      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2904      CXXCtorInitializer *CXXBaseInit;
2905      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2906                                       VBase, IsInheritedVirtualBase,
2907                                       CXXBaseInit)) {
2908        HadError = true;
2909        continue;
2910      }
2911
2912      Info.AllToInit.push_back(CXXBaseInit);
2913    }
2914  }
2915
2916  // Non-virtual bases.
2917  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2918       E = ClassDecl->bases_end(); Base != E; ++Base) {
2919    // Virtuals are in the virtual base list and already constructed.
2920    if (Base->isVirtual())
2921      continue;
2922
2923    if (CXXCtorInitializer *Value
2924          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2925      Info.AllToInit.push_back(Value);
2926    } else if (!AnyErrors) {
2927      CXXCtorInitializer *CXXBaseInit;
2928      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2929                                       Base, /*IsInheritedVirtualBase=*/false,
2930                                       CXXBaseInit)) {
2931        HadError = true;
2932        continue;
2933      }
2934
2935      Info.AllToInit.push_back(CXXBaseInit);
2936    }
2937  }
2938
2939  // Fields.
2940  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2941                               MemEnd = ClassDecl->decls_end();
2942       Mem != MemEnd; ++Mem) {
2943    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2944      // C++ [class.bit]p2:
2945      //   A declaration for a bit-field that omits the identifier declares an
2946      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2947      //   initialized.
2948      if (F->isUnnamedBitfield())
2949        continue;
2950
2951      // If we're not generating the implicit copy/move constructor, then we'll
2952      // handle anonymous struct/union fields based on their individual
2953      // indirect fields.
2954      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2955        continue;
2956
2957      if (CollectFieldInitializer(*this, Info, F))
2958        HadError = true;
2959      continue;
2960    }
2961
2962    // Beyond this point, we only consider default initialization.
2963    if (Info.IIK != IIK_Default)
2964      continue;
2965
2966    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2967      if (F->getType()->isIncompleteArrayType()) {
2968        assert(ClassDecl->hasFlexibleArrayMember() &&
2969               "Incomplete array type is not valid");
2970        continue;
2971      }
2972
2973      // Initialize each field of an anonymous struct individually.
2974      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2975        HadError = true;
2976
2977      continue;
2978    }
2979  }
2980
2981  NumInitializers = Info.AllToInit.size();
2982  if (NumInitializers > 0) {
2983    Constructor->setNumCtorInitializers(NumInitializers);
2984    CXXCtorInitializer **baseOrMemberInitializers =
2985      new (Context) CXXCtorInitializer*[NumInitializers];
2986    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2987           NumInitializers * sizeof(CXXCtorInitializer*));
2988    Constructor->setCtorInitializers(baseOrMemberInitializers);
2989
2990    // Constructors implicitly reference the base and member
2991    // destructors.
2992    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2993                                           Constructor->getParent());
2994  }
2995
2996  return HadError;
2997}
2998
2999static void *GetKeyForTopLevelField(FieldDecl *Field) {
3000  // For anonymous unions, use the class declaration as the key.
3001  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3002    if (RT->getDecl()->isAnonymousStructOrUnion())
3003      return static_cast<void *>(RT->getDecl());
3004  }
3005  return static_cast<void *>(Field);
3006}
3007
3008static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3009  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3010}
3011
3012static void *GetKeyForMember(ASTContext &Context,
3013                             CXXCtorInitializer *Member) {
3014  if (!Member->isAnyMemberInitializer())
3015    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3016
3017  // For fields injected into the class via declaration of an anonymous union,
3018  // use its anonymous union class declaration as the unique key.
3019  FieldDecl *Field = Member->getAnyMember();
3020
3021  // If the field is a member of an anonymous struct or union, our key
3022  // is the anonymous record decl that's a direct child of the class.
3023  RecordDecl *RD = Field->getParent();
3024  if (RD->isAnonymousStructOrUnion()) {
3025    while (true) {
3026      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3027      if (Parent->isAnonymousStructOrUnion())
3028        RD = Parent;
3029      else
3030        break;
3031    }
3032
3033    return static_cast<void *>(RD);
3034  }
3035
3036  return static_cast<void *>(Field);
3037}
3038
3039static void
3040DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3041                                  const CXXConstructorDecl *Constructor,
3042                                  CXXCtorInitializer **Inits,
3043                                  unsigned NumInits) {
3044  if (Constructor->getDeclContext()->isDependentContext())
3045    return;
3046
3047  // Don't check initializers order unless the warning is enabled at the
3048  // location of at least one initializer.
3049  bool ShouldCheckOrder = false;
3050  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3051    CXXCtorInitializer *Init = Inits[InitIndex];
3052    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3053                                         Init->getSourceLocation())
3054          != DiagnosticsEngine::Ignored) {
3055      ShouldCheckOrder = true;
3056      break;
3057    }
3058  }
3059  if (!ShouldCheckOrder)
3060    return;
3061
3062  // Build the list of bases and members in the order that they'll
3063  // actually be initialized.  The explicit initializers should be in
3064  // this same order but may be missing things.
3065  SmallVector<const void*, 32> IdealInitKeys;
3066
3067  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3068
3069  // 1. Virtual bases.
3070  for (CXXRecordDecl::base_class_const_iterator VBase =
3071       ClassDecl->vbases_begin(),
3072       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3073    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3074
3075  // 2. Non-virtual bases.
3076  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3077       E = ClassDecl->bases_end(); Base != E; ++Base) {
3078    if (Base->isVirtual())
3079      continue;
3080    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3081  }
3082
3083  // 3. Direct fields.
3084  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3085       E = ClassDecl->field_end(); Field != E; ++Field) {
3086    if (Field->isUnnamedBitfield())
3087      continue;
3088
3089    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3090  }
3091
3092  unsigned NumIdealInits = IdealInitKeys.size();
3093  unsigned IdealIndex = 0;
3094
3095  CXXCtorInitializer *PrevInit = 0;
3096  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3097    CXXCtorInitializer *Init = Inits[InitIndex];
3098    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3099
3100    // Scan forward to try to find this initializer in the idealized
3101    // initializers list.
3102    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3103      if (InitKey == IdealInitKeys[IdealIndex])
3104        break;
3105
3106    // If we didn't find this initializer, it must be because we
3107    // scanned past it on a previous iteration.  That can only
3108    // happen if we're out of order;  emit a warning.
3109    if (IdealIndex == NumIdealInits && PrevInit) {
3110      Sema::SemaDiagnosticBuilder D =
3111        SemaRef.Diag(PrevInit->getSourceLocation(),
3112                     diag::warn_initializer_out_of_order);
3113
3114      if (PrevInit->isAnyMemberInitializer())
3115        D << 0 << PrevInit->getAnyMember()->getDeclName();
3116      else
3117        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3118
3119      if (Init->isAnyMemberInitializer())
3120        D << 0 << Init->getAnyMember()->getDeclName();
3121      else
3122        D << 1 << Init->getTypeSourceInfo()->getType();
3123
3124      // Move back to the initializer's location in the ideal list.
3125      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3126        if (InitKey == IdealInitKeys[IdealIndex])
3127          break;
3128
3129      assert(IdealIndex != NumIdealInits &&
3130             "initializer not found in initializer list");
3131    }
3132
3133    PrevInit = Init;
3134  }
3135}
3136
3137namespace {
3138bool CheckRedundantInit(Sema &S,
3139                        CXXCtorInitializer *Init,
3140                        CXXCtorInitializer *&PrevInit) {
3141  if (!PrevInit) {
3142    PrevInit = Init;
3143    return false;
3144  }
3145
3146  if (FieldDecl *Field = Init->getMember())
3147    S.Diag(Init->getSourceLocation(),
3148           diag::err_multiple_mem_initialization)
3149      << Field->getDeclName()
3150      << Init->getSourceRange();
3151  else {
3152    const Type *BaseClass = Init->getBaseClass();
3153    assert(BaseClass && "neither field nor base");
3154    S.Diag(Init->getSourceLocation(),
3155           diag::err_multiple_base_initialization)
3156      << QualType(BaseClass, 0)
3157      << Init->getSourceRange();
3158  }
3159  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3160    << 0 << PrevInit->getSourceRange();
3161
3162  return true;
3163}
3164
3165typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3166typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3167
3168bool CheckRedundantUnionInit(Sema &S,
3169                             CXXCtorInitializer *Init,
3170                             RedundantUnionMap &Unions) {
3171  FieldDecl *Field = Init->getAnyMember();
3172  RecordDecl *Parent = Field->getParent();
3173  NamedDecl *Child = Field;
3174
3175  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3176    if (Parent->isUnion()) {
3177      UnionEntry &En = Unions[Parent];
3178      if (En.first && En.first != Child) {
3179        S.Diag(Init->getSourceLocation(),
3180               diag::err_multiple_mem_union_initialization)
3181          << Field->getDeclName()
3182          << Init->getSourceRange();
3183        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3184          << 0 << En.second->getSourceRange();
3185        return true;
3186      }
3187      if (!En.first) {
3188        En.first = Child;
3189        En.second = Init;
3190      }
3191      if (!Parent->isAnonymousStructOrUnion())
3192        return false;
3193    }
3194
3195    Child = Parent;
3196    Parent = cast<RecordDecl>(Parent->getDeclContext());
3197  }
3198
3199  return false;
3200}
3201}
3202
3203/// ActOnMemInitializers - Handle the member initializers for a constructor.
3204void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3205                                SourceLocation ColonLoc,
3206                                CXXCtorInitializer **meminits,
3207                                unsigned NumMemInits,
3208                                bool AnyErrors) {
3209  if (!ConstructorDecl)
3210    return;
3211
3212  AdjustDeclIfTemplate(ConstructorDecl);
3213
3214  CXXConstructorDecl *Constructor
3215    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3216
3217  if (!Constructor) {
3218    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3219    return;
3220  }
3221
3222  CXXCtorInitializer **MemInits =
3223    reinterpret_cast<CXXCtorInitializer **>(meminits);
3224
3225  // Mapping for the duplicate initializers check.
3226  // For member initializers, this is keyed with a FieldDecl*.
3227  // For base initializers, this is keyed with a Type*.
3228  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3229
3230  // Mapping for the inconsistent anonymous-union initializers check.
3231  RedundantUnionMap MemberUnions;
3232
3233  bool HadError = false;
3234  for (unsigned i = 0; i < NumMemInits; i++) {
3235    CXXCtorInitializer *Init = MemInits[i];
3236
3237    // Set the source order index.
3238    Init->setSourceOrder(i);
3239
3240    if (Init->isAnyMemberInitializer()) {
3241      FieldDecl *Field = Init->getAnyMember();
3242      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3243          CheckRedundantUnionInit(*this, Init, MemberUnions))
3244        HadError = true;
3245    } else if (Init->isBaseInitializer()) {
3246      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3247      if (CheckRedundantInit(*this, Init, Members[Key]))
3248        HadError = true;
3249    } else {
3250      assert(Init->isDelegatingInitializer());
3251      // This must be the only initializer
3252      if (i != 0 || NumMemInits > 1) {
3253        Diag(MemInits[0]->getSourceLocation(),
3254             diag::err_delegating_initializer_alone)
3255          << MemInits[0]->getSourceRange();
3256        HadError = true;
3257        // We will treat this as being the only initializer.
3258      }
3259      SetDelegatingInitializer(Constructor, MemInits[i]);
3260      // Return immediately as the initializer is set.
3261      return;
3262    }
3263  }
3264
3265  if (HadError)
3266    return;
3267
3268  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3269
3270  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3271}
3272
3273void
3274Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3275                                             CXXRecordDecl *ClassDecl) {
3276  // Ignore dependent contexts. Also ignore unions, since their members never
3277  // have destructors implicitly called.
3278  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3279    return;
3280
3281  // FIXME: all the access-control diagnostics are positioned on the
3282  // field/base declaration.  That's probably good; that said, the
3283  // user might reasonably want to know why the destructor is being
3284  // emitted, and we currently don't say.
3285
3286  // Non-static data members.
3287  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3288       E = ClassDecl->field_end(); I != E; ++I) {
3289    FieldDecl *Field = *I;
3290    if (Field->isInvalidDecl())
3291      continue;
3292
3293    // Don't destroy incomplete or zero-length arrays.
3294    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3295      continue;
3296
3297    QualType FieldType = Context.getBaseElementType(Field->getType());
3298
3299    const RecordType* RT = FieldType->getAs<RecordType>();
3300    if (!RT)
3301      continue;
3302
3303    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3304    if (FieldClassDecl->isInvalidDecl())
3305      continue;
3306    if (FieldClassDecl->hasIrrelevantDestructor())
3307      continue;
3308    // The destructor for an implicit anonymous union member is never invoked.
3309    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3310      continue;
3311
3312    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3313    assert(Dtor && "No dtor found for FieldClassDecl!");
3314    CheckDestructorAccess(Field->getLocation(), Dtor,
3315                          PDiag(diag::err_access_dtor_field)
3316                            << Field->getDeclName()
3317                            << FieldType);
3318
3319    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3320    DiagnoseUseOfDecl(Dtor, Location);
3321  }
3322
3323  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3324
3325  // Bases.
3326  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3327       E = ClassDecl->bases_end(); Base != E; ++Base) {
3328    // Bases are always records in a well-formed non-dependent class.
3329    const RecordType *RT = Base->getType()->getAs<RecordType>();
3330
3331    // Remember direct virtual bases.
3332    if (Base->isVirtual())
3333      DirectVirtualBases.insert(RT);
3334
3335    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3336    // If our base class is invalid, we probably can't get its dtor anyway.
3337    if (BaseClassDecl->isInvalidDecl())
3338      continue;
3339    if (BaseClassDecl->hasIrrelevantDestructor())
3340      continue;
3341
3342    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3343    assert(Dtor && "No dtor found for BaseClassDecl!");
3344
3345    // FIXME: caret should be on the start of the class name
3346    CheckDestructorAccess(Base->getLocStart(), Dtor,
3347                          PDiag(diag::err_access_dtor_base)
3348                            << Base->getType()
3349                            << Base->getSourceRange());
3350
3351    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3352    DiagnoseUseOfDecl(Dtor, Location);
3353  }
3354
3355  // Virtual bases.
3356  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3357       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3358
3359    // Bases are always records in a well-formed non-dependent class.
3360    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3361
3362    // Ignore direct virtual bases.
3363    if (DirectVirtualBases.count(RT))
3364      continue;
3365
3366    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3367    // If our base class is invalid, we probably can't get its dtor anyway.
3368    if (BaseClassDecl->isInvalidDecl())
3369      continue;
3370    if (BaseClassDecl->hasIrrelevantDestructor())
3371      continue;
3372
3373    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3374    assert(Dtor && "No dtor found for BaseClassDecl!");
3375    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3376                          PDiag(diag::err_access_dtor_vbase)
3377                            << VBase->getType());
3378
3379    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3380    DiagnoseUseOfDecl(Dtor, Location);
3381  }
3382}
3383
3384void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3385  if (!CDtorDecl)
3386    return;
3387
3388  if (CXXConstructorDecl *Constructor
3389      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3390    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3391}
3392
3393bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3394                                  unsigned DiagID, AbstractDiagSelID SelID) {
3395  if (SelID == -1)
3396    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3397  else
3398    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3399}
3400
3401bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3402                                  const PartialDiagnostic &PD) {
3403  if (!getLangOpts().CPlusPlus)
3404    return false;
3405
3406  if (const ArrayType *AT = Context.getAsArrayType(T))
3407    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3408
3409  if (const PointerType *PT = T->getAs<PointerType>()) {
3410    // Find the innermost pointer type.
3411    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3412      PT = T;
3413
3414    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3415      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3416  }
3417
3418  const RecordType *RT = T->getAs<RecordType>();
3419  if (!RT)
3420    return false;
3421
3422  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3423
3424  // We can't answer whether something is abstract until it has a
3425  // definition.  If it's currently being defined, we'll walk back
3426  // over all the declarations when we have a full definition.
3427  const CXXRecordDecl *Def = RD->getDefinition();
3428  if (!Def || Def->isBeingDefined())
3429    return false;
3430
3431  if (!RD->isAbstract())
3432    return false;
3433
3434  Diag(Loc, PD) << RD->getDeclName();
3435  DiagnoseAbstractType(RD);
3436
3437  return true;
3438}
3439
3440void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3441  // Check if we've already emitted the list of pure virtual functions
3442  // for this class.
3443  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3444    return;
3445
3446  CXXFinalOverriderMap FinalOverriders;
3447  RD->getFinalOverriders(FinalOverriders);
3448
3449  // Keep a set of seen pure methods so we won't diagnose the same method
3450  // more than once.
3451  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3452
3453  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3454                                   MEnd = FinalOverriders.end();
3455       M != MEnd;
3456       ++M) {
3457    for (OverridingMethods::iterator SO = M->second.begin(),
3458                                  SOEnd = M->second.end();
3459         SO != SOEnd; ++SO) {
3460      // C++ [class.abstract]p4:
3461      //   A class is abstract if it contains or inherits at least one
3462      //   pure virtual function for which the final overrider is pure
3463      //   virtual.
3464
3465      //
3466      if (SO->second.size() != 1)
3467        continue;
3468
3469      if (!SO->second.front().Method->isPure())
3470        continue;
3471
3472      if (!SeenPureMethods.insert(SO->second.front().Method))
3473        continue;
3474
3475      Diag(SO->second.front().Method->getLocation(),
3476           diag::note_pure_virtual_function)
3477        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3478    }
3479  }
3480
3481  if (!PureVirtualClassDiagSet)
3482    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3483  PureVirtualClassDiagSet->insert(RD);
3484}
3485
3486namespace {
3487struct AbstractUsageInfo {
3488  Sema &S;
3489  CXXRecordDecl *Record;
3490  CanQualType AbstractType;
3491  bool Invalid;
3492
3493  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3494    : S(S), Record(Record),
3495      AbstractType(S.Context.getCanonicalType(
3496                   S.Context.getTypeDeclType(Record))),
3497      Invalid(false) {}
3498
3499  void DiagnoseAbstractType() {
3500    if (Invalid) return;
3501    S.DiagnoseAbstractType(Record);
3502    Invalid = true;
3503  }
3504
3505  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3506};
3507
3508struct CheckAbstractUsage {
3509  AbstractUsageInfo &Info;
3510  const NamedDecl *Ctx;
3511
3512  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3513    : Info(Info), Ctx(Ctx) {}
3514
3515  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3516    switch (TL.getTypeLocClass()) {
3517#define ABSTRACT_TYPELOC(CLASS, PARENT)
3518#define TYPELOC(CLASS, PARENT) \
3519    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3520#include "clang/AST/TypeLocNodes.def"
3521    }
3522  }
3523
3524  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3525    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3526    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3527      if (!TL.getArg(I))
3528        continue;
3529
3530      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3531      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3532    }
3533  }
3534
3535  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3536    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3537  }
3538
3539  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3540    // Visit the type parameters from a permissive context.
3541    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3542      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3543      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3544        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3545          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3546      // TODO: other template argument types?
3547    }
3548  }
3549
3550  // Visit pointee types from a permissive context.
3551#define CheckPolymorphic(Type) \
3552  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3553    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3554  }
3555  CheckPolymorphic(PointerTypeLoc)
3556  CheckPolymorphic(ReferenceTypeLoc)
3557  CheckPolymorphic(MemberPointerTypeLoc)
3558  CheckPolymorphic(BlockPointerTypeLoc)
3559  CheckPolymorphic(AtomicTypeLoc)
3560
3561  /// Handle all the types we haven't given a more specific
3562  /// implementation for above.
3563  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3564    // Every other kind of type that we haven't called out already
3565    // that has an inner type is either (1) sugar or (2) contains that
3566    // inner type in some way as a subobject.
3567    if (TypeLoc Next = TL.getNextTypeLoc())
3568      return Visit(Next, Sel);
3569
3570    // If there's no inner type and we're in a permissive context,
3571    // don't diagnose.
3572    if (Sel == Sema::AbstractNone) return;
3573
3574    // Check whether the type matches the abstract type.
3575    QualType T = TL.getType();
3576    if (T->isArrayType()) {
3577      Sel = Sema::AbstractArrayType;
3578      T = Info.S.Context.getBaseElementType(T);
3579    }
3580    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3581    if (CT != Info.AbstractType) return;
3582
3583    // It matched; do some magic.
3584    if (Sel == Sema::AbstractArrayType) {
3585      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3586        << T << TL.getSourceRange();
3587    } else {
3588      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3589        << Sel << T << TL.getSourceRange();
3590    }
3591    Info.DiagnoseAbstractType();
3592  }
3593};
3594
3595void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3596                                  Sema::AbstractDiagSelID Sel) {
3597  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3598}
3599
3600}
3601
3602/// Check for invalid uses of an abstract type in a method declaration.
3603static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3604                                    CXXMethodDecl *MD) {
3605  // No need to do the check on definitions, which require that
3606  // the return/param types be complete.
3607  if (MD->doesThisDeclarationHaveABody())
3608    return;
3609
3610  // For safety's sake, just ignore it if we don't have type source
3611  // information.  This should never happen for non-implicit methods,
3612  // but...
3613  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3614    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3615}
3616
3617/// Check for invalid uses of an abstract type within a class definition.
3618static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3619                                    CXXRecordDecl *RD) {
3620  for (CXXRecordDecl::decl_iterator
3621         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3622    Decl *D = *I;
3623    if (D->isImplicit()) continue;
3624
3625    // Methods and method templates.
3626    if (isa<CXXMethodDecl>(D)) {
3627      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3628    } else if (isa<FunctionTemplateDecl>(D)) {
3629      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3630      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3631
3632    // Fields and static variables.
3633    } else if (isa<FieldDecl>(D)) {
3634      FieldDecl *FD = cast<FieldDecl>(D);
3635      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3636        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3637    } else if (isa<VarDecl>(D)) {
3638      VarDecl *VD = cast<VarDecl>(D);
3639      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3640        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3641
3642    // Nested classes and class templates.
3643    } else if (isa<CXXRecordDecl>(D)) {
3644      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3645    } else if (isa<ClassTemplateDecl>(D)) {
3646      CheckAbstractClassUsage(Info,
3647                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3648    }
3649  }
3650}
3651
3652/// \brief Perform semantic checks on a class definition that has been
3653/// completing, introducing implicitly-declared members, checking for
3654/// abstract types, etc.
3655void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3656  if (!Record)
3657    return;
3658
3659  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3660    AbstractUsageInfo Info(*this, Record);
3661    CheckAbstractClassUsage(Info, Record);
3662  }
3663
3664  // If this is not an aggregate type and has no user-declared constructor,
3665  // complain about any non-static data members of reference or const scalar
3666  // type, since they will never get initializers.
3667  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3668      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3669      !Record->isLambda()) {
3670    bool Complained = false;
3671    for (RecordDecl::field_iterator F = Record->field_begin(),
3672                                 FEnd = Record->field_end();
3673         F != FEnd; ++F) {
3674      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3675        continue;
3676
3677      if (F->getType()->isReferenceType() ||
3678          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3679        if (!Complained) {
3680          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3681            << Record->getTagKind() << Record;
3682          Complained = true;
3683        }
3684
3685        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3686          << F->getType()->isReferenceType()
3687          << F->getDeclName();
3688      }
3689    }
3690  }
3691
3692  if (Record->isDynamicClass() && !Record->isDependentType())
3693    DynamicClasses.push_back(Record);
3694
3695  if (Record->getIdentifier()) {
3696    // C++ [class.mem]p13:
3697    //   If T is the name of a class, then each of the following shall have a
3698    //   name different from T:
3699    //     - every member of every anonymous union that is a member of class T.
3700    //
3701    // C++ [class.mem]p14:
3702    //   In addition, if class T has a user-declared constructor (12.1), every
3703    //   non-static data member of class T shall have a name different from T.
3704    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3705         R.first != R.second; ++R.first) {
3706      NamedDecl *D = *R.first;
3707      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3708          isa<IndirectFieldDecl>(D)) {
3709        Diag(D->getLocation(), diag::err_member_name_of_class)
3710          << D->getDeclName();
3711        break;
3712      }
3713    }
3714  }
3715
3716  // Warn if the class has virtual methods but non-virtual public destructor.
3717  if (Record->isPolymorphic() && !Record->isDependentType()) {
3718    CXXDestructorDecl *dtor = Record->getDestructor();
3719    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3720      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3721           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3722  }
3723
3724  // See if a method overloads virtual methods in a base
3725  /// class without overriding any.
3726  if (!Record->isDependentType()) {
3727    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3728                                     MEnd = Record->method_end();
3729         M != MEnd; ++M) {
3730      if (!(*M)->isStatic())
3731        DiagnoseHiddenVirtualMethods(Record, *M);
3732    }
3733  }
3734
3735  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3736  // function that is not a constructor declares that member function to be
3737  // const. [...] The class of which that function is a member shall be
3738  // a literal type.
3739  //
3740  // If the class has virtual bases, any constexpr members will already have
3741  // been diagnosed by the checks performed on the member declaration, so
3742  // suppress this (less useful) diagnostic.
3743  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3744      !Record->isLiteral() && !Record->getNumVBases()) {
3745    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3746                                     MEnd = Record->method_end();
3747         M != MEnd; ++M) {
3748      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3749        switch (Record->getTemplateSpecializationKind()) {
3750        case TSK_ImplicitInstantiation:
3751        case TSK_ExplicitInstantiationDeclaration:
3752        case TSK_ExplicitInstantiationDefinition:
3753          // If a template instantiates to a non-literal type, but its members
3754          // instantiate to constexpr functions, the template is technically
3755          // ill-formed, but we allow it for sanity.
3756          continue;
3757
3758        case TSK_Undeclared:
3759        case TSK_ExplicitSpecialization:
3760          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3761                             PDiag(diag::err_constexpr_method_non_literal));
3762          break;
3763        }
3764
3765        // Only produce one error per class.
3766        break;
3767      }
3768    }
3769  }
3770
3771  // Declare inherited constructors. We do this eagerly here because:
3772  // - The standard requires an eager diagnostic for conflicting inherited
3773  //   constructors from different classes.
3774  // - The lazy declaration of the other implicit constructors is so as to not
3775  //   waste space and performance on classes that are not meant to be
3776  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3777  //   have inherited constructors.
3778  DeclareInheritedConstructors(Record);
3779
3780  if (!Record->isDependentType())
3781    CheckExplicitlyDefaultedMethods(Record);
3782}
3783
3784void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3785  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3786                                      ME = Record->method_end();
3787       MI != ME; ++MI) {
3788    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3789      switch (getSpecialMember(*MI)) {
3790      case CXXDefaultConstructor:
3791        CheckExplicitlyDefaultedDefaultConstructor(
3792                                                  cast<CXXConstructorDecl>(*MI));
3793        break;
3794
3795      case CXXDestructor:
3796        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3797        break;
3798
3799      case CXXCopyConstructor:
3800        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3801        break;
3802
3803      case CXXCopyAssignment:
3804        CheckExplicitlyDefaultedCopyAssignment(*MI);
3805        break;
3806
3807      case CXXMoveConstructor:
3808        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3809        break;
3810
3811      case CXXMoveAssignment:
3812        CheckExplicitlyDefaultedMoveAssignment(*MI);
3813        break;
3814
3815      case CXXInvalid:
3816        llvm_unreachable("non-special member explicitly defaulted!");
3817      }
3818    }
3819  }
3820
3821}
3822
3823void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3824  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3825
3826  // Whether this was the first-declared instance of the constructor.
3827  // This affects whether we implicitly add an exception spec (and, eventually,
3828  // constexpr). It is also ill-formed to explicitly default a constructor such
3829  // that it would be deleted. (C++0x [decl.fct.def.default])
3830  bool First = CD == CD->getCanonicalDecl();
3831
3832  bool HadError = false;
3833  if (CD->getNumParams() != 0) {
3834    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3835      << CD->getSourceRange();
3836    HadError = true;
3837  }
3838
3839  ImplicitExceptionSpecification Spec
3840    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3841  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3842  if (EPI.ExceptionSpecType == EST_Delayed) {
3843    // Exception specification depends on some deferred part of the class. We'll
3844    // try again when the class's definition has been fully processed.
3845    return;
3846  }
3847  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3848                          *ExceptionType = Context.getFunctionType(
3849                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3850
3851  // C++11 [dcl.fct.def.default]p2:
3852  //   An explicitly-defaulted function may be declared constexpr only if it
3853  //   would have been implicitly declared as constexpr,
3854  // Do not apply this rule to templates, since core issue 1358 makes such
3855  // functions always instantiate to constexpr functions.
3856  if (CD->isConstexpr() &&
3857      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3858    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3859      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3860        << CXXDefaultConstructor;
3861      HadError = true;
3862    }
3863  }
3864  //   and may have an explicit exception-specification only if it is compatible
3865  //   with the exception-specification on the implicit declaration.
3866  if (CtorType->hasExceptionSpec()) {
3867    if (CheckEquivalentExceptionSpec(
3868          PDiag(diag::err_incorrect_defaulted_exception_spec)
3869            << CXXDefaultConstructor,
3870          PDiag(),
3871          ExceptionType, SourceLocation(),
3872          CtorType, CD->getLocation())) {
3873      HadError = true;
3874    }
3875  }
3876
3877  //   If a function is explicitly defaulted on its first declaration,
3878  if (First) {
3879    //  -- it is implicitly considered to be constexpr if the implicit
3880    //     definition would be,
3881    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3882
3883    //  -- it is implicitly considered to have the same
3884    //     exception-specification as if it had been implicitly declared
3885    //
3886    // FIXME: a compatible, but different, explicit exception specification
3887    // will be silently overridden. We should issue a warning if this happens.
3888    EPI.ExtInfo = CtorType->getExtInfo();
3889
3890    // Such a function is also trivial if the implicitly-declared function
3891    // would have been.
3892    CD->setTrivial(CD->getParent()->hasTrivialDefaultConstructor());
3893  }
3894
3895  if (HadError) {
3896    CD->setInvalidDecl();
3897    return;
3898  }
3899
3900  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3901    if (First) {
3902      CD->setDeletedAsWritten();
3903    } else {
3904      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3905        << CXXDefaultConstructor;
3906      CD->setInvalidDecl();
3907    }
3908  }
3909}
3910
3911void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3912  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3913
3914  // Whether this was the first-declared instance of the constructor.
3915  bool First = CD == CD->getCanonicalDecl();
3916
3917  bool HadError = false;
3918  if (CD->getNumParams() != 1) {
3919    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3920      << CD->getSourceRange();
3921    HadError = true;
3922  }
3923
3924  ImplicitExceptionSpecification Spec(Context);
3925  bool Const;
3926  llvm::tie(Spec, Const) =
3927    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3928
3929  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3930  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3931                          *ExceptionType = Context.getFunctionType(
3932                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3933
3934  // Check for parameter type matching.
3935  // This is a copy ctor so we know it's a cv-qualified reference to T.
3936  QualType ArgType = CtorType->getArgType(0);
3937  if (ArgType->getPointeeType().isVolatileQualified()) {
3938    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3939    HadError = true;
3940  }
3941  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3942    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3943    HadError = true;
3944  }
3945
3946  // C++11 [dcl.fct.def.default]p2:
3947  //   An explicitly-defaulted function may be declared constexpr only if it
3948  //   would have been implicitly declared as constexpr,
3949  // Do not apply this rule to templates, since core issue 1358 makes such
3950  // functions always instantiate to constexpr functions.
3951  if (CD->isConstexpr() &&
3952      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3953    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3954      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3955        << CXXCopyConstructor;
3956      HadError = true;
3957    }
3958  }
3959  //   and may have an explicit exception-specification only if it is compatible
3960  //   with the exception-specification on the implicit declaration.
3961  if (CtorType->hasExceptionSpec()) {
3962    if (CheckEquivalentExceptionSpec(
3963          PDiag(diag::err_incorrect_defaulted_exception_spec)
3964            << CXXCopyConstructor,
3965          PDiag(),
3966          ExceptionType, SourceLocation(),
3967          CtorType, CD->getLocation())) {
3968      HadError = true;
3969    }
3970  }
3971
3972  //   If a function is explicitly defaulted on its first declaration,
3973  if (First) {
3974    //  -- it is implicitly considered to be constexpr if the implicit
3975    //     definition would be,
3976    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3977
3978    //  -- it is implicitly considered to have the same
3979    //     exception-specification as if it had been implicitly declared, and
3980    //
3981    // FIXME: a compatible, but different, explicit exception specification
3982    // will be silently overridden. We should issue a warning if this happens.
3983    EPI.ExtInfo = CtorType->getExtInfo();
3984
3985    //  -- [...] it shall have the same parameter type as if it had been
3986    //     implicitly declared.
3987    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3988
3989    // Such a function is also trivial if the implicitly-declared function
3990    // would have been.
3991    CD->setTrivial(CD->getParent()->hasTrivialCopyConstructor());
3992  }
3993
3994  if (HadError) {
3995    CD->setInvalidDecl();
3996    return;
3997  }
3998
3999  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
4000    if (First) {
4001      CD->setDeletedAsWritten();
4002    } else {
4003      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4004        << CXXCopyConstructor;
4005      CD->setInvalidDecl();
4006    }
4007  }
4008}
4009
4010void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
4011  assert(MD->isExplicitlyDefaulted());
4012
4013  // Whether this was the first-declared instance of the operator
4014  bool First = MD == MD->getCanonicalDecl();
4015
4016  bool HadError = false;
4017  if (MD->getNumParams() != 1) {
4018    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4019      << MD->getSourceRange();
4020    HadError = true;
4021  }
4022
4023  QualType ReturnType =
4024    MD->getType()->getAs<FunctionType>()->getResultType();
4025  if (!ReturnType->isLValueReferenceType() ||
4026      !Context.hasSameType(
4027        Context.getCanonicalType(ReturnType->getPointeeType()),
4028        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4029    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4030    HadError = true;
4031  }
4032
4033  ImplicitExceptionSpecification Spec(Context);
4034  bool Const;
4035  llvm::tie(Spec, Const) =
4036    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4037
4038  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4039  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4040                          *ExceptionType = Context.getFunctionType(
4041                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4042
4043  QualType ArgType = OperType->getArgType(0);
4044  if (!ArgType->isLValueReferenceType()) {
4045    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4046    HadError = true;
4047  } else {
4048    if (ArgType->getPointeeType().isVolatileQualified()) {
4049      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4050      HadError = true;
4051    }
4052    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4053      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4054      HadError = true;
4055    }
4056  }
4057
4058  if (OperType->getTypeQuals()) {
4059    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4060    HadError = true;
4061  }
4062
4063  if (OperType->hasExceptionSpec()) {
4064    if (CheckEquivalentExceptionSpec(
4065          PDiag(diag::err_incorrect_defaulted_exception_spec)
4066            << CXXCopyAssignment,
4067          PDiag(),
4068          ExceptionType, SourceLocation(),
4069          OperType, MD->getLocation())) {
4070      HadError = true;
4071    }
4072  }
4073  if (First) {
4074    // We set the declaration to have the computed exception spec here.
4075    // We duplicate the one parameter type.
4076    EPI.RefQualifier = OperType->getRefQualifier();
4077    EPI.ExtInfo = OperType->getExtInfo();
4078    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4079
4080    // Such a function is also trivial if the implicitly-declared function
4081    // would have been.
4082    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
4083  }
4084
4085  if (HadError) {
4086    MD->setInvalidDecl();
4087    return;
4088  }
4089
4090  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4091    if (First) {
4092      MD->setDeletedAsWritten();
4093    } else {
4094      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4095        << CXXCopyAssignment;
4096      MD->setInvalidDecl();
4097    }
4098  }
4099}
4100
4101void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4102  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4103
4104  // Whether this was the first-declared instance of the constructor.
4105  bool First = CD == CD->getCanonicalDecl();
4106
4107  bool HadError = false;
4108  if (CD->getNumParams() != 1) {
4109    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4110      << CD->getSourceRange();
4111    HadError = true;
4112  }
4113
4114  ImplicitExceptionSpecification Spec(
4115      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4116
4117  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4118  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4119                          *ExceptionType = Context.getFunctionType(
4120                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4121
4122  // Check for parameter type matching.
4123  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4124  QualType ArgType = CtorType->getArgType(0);
4125  if (ArgType->getPointeeType().isVolatileQualified()) {
4126    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4127    HadError = true;
4128  }
4129  if (ArgType->getPointeeType().isConstQualified()) {
4130    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4131    HadError = true;
4132  }
4133
4134  // C++11 [dcl.fct.def.default]p2:
4135  //   An explicitly-defaulted function may be declared constexpr only if it
4136  //   would have been implicitly declared as constexpr,
4137  // Do not apply this rule to templates, since core issue 1358 makes such
4138  // functions always instantiate to constexpr functions.
4139  if (CD->isConstexpr() &&
4140      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4141    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4142      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4143        << CXXMoveConstructor;
4144      HadError = true;
4145    }
4146  }
4147  //   and may have an explicit exception-specification only if it is compatible
4148  //   with the exception-specification on the implicit declaration.
4149  if (CtorType->hasExceptionSpec()) {
4150    if (CheckEquivalentExceptionSpec(
4151          PDiag(diag::err_incorrect_defaulted_exception_spec)
4152            << CXXMoveConstructor,
4153          PDiag(),
4154          ExceptionType, SourceLocation(),
4155          CtorType, CD->getLocation())) {
4156      HadError = true;
4157    }
4158  }
4159
4160  //   If a function is explicitly defaulted on its first declaration,
4161  if (First) {
4162    //  -- it is implicitly considered to be constexpr if the implicit
4163    //     definition would be,
4164    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4165
4166    //  -- it is implicitly considered to have the same
4167    //     exception-specification as if it had been implicitly declared, and
4168    //
4169    // FIXME: a compatible, but different, explicit exception specification
4170    // will be silently overridden. We should issue a warning if this happens.
4171    EPI.ExtInfo = CtorType->getExtInfo();
4172
4173    //  -- [...] it shall have the same parameter type as if it had been
4174    //     implicitly declared.
4175    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4176
4177    // Such a function is also trivial if the implicitly-declared function
4178    // would have been.
4179    CD->setTrivial(CD->getParent()->hasTrivialMoveConstructor());
4180  }
4181
4182  if (HadError) {
4183    CD->setInvalidDecl();
4184    return;
4185  }
4186
4187  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4188    if (First) {
4189      CD->setDeletedAsWritten();
4190    } else {
4191      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4192        << CXXMoveConstructor;
4193      CD->setInvalidDecl();
4194    }
4195  }
4196}
4197
4198void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4199  assert(MD->isExplicitlyDefaulted());
4200
4201  // Whether this was the first-declared instance of the operator
4202  bool First = MD == MD->getCanonicalDecl();
4203
4204  bool HadError = false;
4205  if (MD->getNumParams() != 1) {
4206    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4207      << MD->getSourceRange();
4208    HadError = true;
4209  }
4210
4211  QualType ReturnType =
4212    MD->getType()->getAs<FunctionType>()->getResultType();
4213  if (!ReturnType->isLValueReferenceType() ||
4214      !Context.hasSameType(
4215        Context.getCanonicalType(ReturnType->getPointeeType()),
4216        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4217    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4218    HadError = true;
4219  }
4220
4221  ImplicitExceptionSpecification Spec(
4222      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4223
4224  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4225  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4226                          *ExceptionType = Context.getFunctionType(
4227                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4228
4229  QualType ArgType = OperType->getArgType(0);
4230  if (!ArgType->isRValueReferenceType()) {
4231    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4232    HadError = true;
4233  } else {
4234    if (ArgType->getPointeeType().isVolatileQualified()) {
4235      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4236      HadError = true;
4237    }
4238    if (ArgType->getPointeeType().isConstQualified()) {
4239      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4240      HadError = true;
4241    }
4242  }
4243
4244  if (OperType->getTypeQuals()) {
4245    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4246    HadError = true;
4247  }
4248
4249  if (OperType->hasExceptionSpec()) {
4250    if (CheckEquivalentExceptionSpec(
4251          PDiag(diag::err_incorrect_defaulted_exception_spec)
4252            << CXXMoveAssignment,
4253          PDiag(),
4254          ExceptionType, SourceLocation(),
4255          OperType, MD->getLocation())) {
4256      HadError = true;
4257    }
4258  }
4259  if (First) {
4260    // We set the declaration to have the computed exception spec here.
4261    // We duplicate the one parameter type.
4262    EPI.RefQualifier = OperType->getRefQualifier();
4263    EPI.ExtInfo = OperType->getExtInfo();
4264    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4265
4266    // Such a function is also trivial if the implicitly-declared function
4267    // would have been.
4268    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
4269  }
4270
4271  if (HadError) {
4272    MD->setInvalidDecl();
4273    return;
4274  }
4275
4276  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4277    if (First) {
4278      MD->setDeletedAsWritten();
4279    } else {
4280      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4281        << CXXMoveAssignment;
4282      MD->setInvalidDecl();
4283    }
4284  }
4285}
4286
4287void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4288  assert(DD->isExplicitlyDefaulted());
4289
4290  // Whether this was the first-declared instance of the destructor.
4291  bool First = DD == DD->getCanonicalDecl();
4292
4293  ImplicitExceptionSpecification Spec
4294    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4295  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4296  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4297                          *ExceptionType = Context.getFunctionType(
4298                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4299
4300  if (DtorType->hasExceptionSpec()) {
4301    if (CheckEquivalentExceptionSpec(
4302          PDiag(diag::err_incorrect_defaulted_exception_spec)
4303            << CXXDestructor,
4304          PDiag(),
4305          ExceptionType, SourceLocation(),
4306          DtorType, DD->getLocation())) {
4307      DD->setInvalidDecl();
4308      return;
4309    }
4310  }
4311  if (First) {
4312    // We set the declaration to have the computed exception spec here.
4313    // There are no parameters.
4314    EPI.ExtInfo = DtorType->getExtInfo();
4315    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4316
4317    // Such a function is also trivial if the implicitly-declared function
4318    // would have been.
4319    DD->setTrivial(DD->getParent()->hasTrivialDestructor());
4320  }
4321
4322  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4323    if (First) {
4324      DD->setDeletedAsWritten();
4325    } else {
4326      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4327        << CXXDestructor;
4328      DD->setInvalidDecl();
4329    }
4330  }
4331}
4332
4333namespace {
4334struct SpecialMemberDeletionInfo {
4335  Sema &S;
4336  CXXMethodDecl *MD;
4337  Sema::CXXSpecialMember CSM;
4338
4339  // Properties of the special member, computed for convenience.
4340  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4341  SourceLocation Loc;
4342
4343  bool AllFieldsAreConst;
4344
4345  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4346                            Sema::CXXSpecialMember CSM)
4347    : S(S), MD(MD), CSM(CSM),
4348      IsConstructor(false), IsAssignment(false), IsMove(false),
4349      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4350      AllFieldsAreConst(true) {
4351    switch (CSM) {
4352      case Sema::CXXDefaultConstructor:
4353      case Sema::CXXCopyConstructor:
4354        IsConstructor = true;
4355        break;
4356      case Sema::CXXMoveConstructor:
4357        IsConstructor = true;
4358        IsMove = true;
4359        break;
4360      case Sema::CXXCopyAssignment:
4361        IsAssignment = true;
4362        break;
4363      case Sema::CXXMoveAssignment:
4364        IsAssignment = true;
4365        IsMove = true;
4366        break;
4367      case Sema::CXXDestructor:
4368        break;
4369      case Sema::CXXInvalid:
4370        llvm_unreachable("invalid special member kind");
4371    }
4372
4373    if (MD->getNumParams()) {
4374      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4375      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4376    }
4377  }
4378
4379  bool inUnion() const { return MD->getParent()->isUnion(); }
4380
4381  /// Look up the corresponding special member in the given class.
4382  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4383    unsigned TQ = MD->getTypeQualifiers();
4384    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4385                                 MD->getRefQualifier() == RQ_RValue,
4386                                 TQ & Qualifiers::Const,
4387                                 TQ & Qualifiers::Volatile);
4388  }
4389
4390  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, FieldDecl *Field);
4391
4392  bool shouldDeleteForBase(CXXRecordDecl *BaseDecl, bool IsVirtualBase);
4393  bool shouldDeleteForField(FieldDecl *FD);
4394  bool shouldDeleteForAllConstMembers();
4395};
4396}
4397
4398/// Check whether we should delete a special member function due to having a
4399/// direct or virtual base class or static data member of class type M.
4400bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4401    CXXRecordDecl *Class, FieldDecl *Field) {
4402  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
4403  // -- any direct or virtual base class [...] has a type with a destructor
4404  //    that is deleted or inaccessible
4405  if (!IsAssignment) {
4406    CXXDestructorDecl *Dtor = S.LookupDestructor(Class);
4407    if (Dtor->isDeleted())
4408      return true;
4409    if (S.CheckDestructorAccess(Loc, Dtor, S.PDiag()) != Sema::AR_accessible)
4410      return true;
4411
4412    // C++11 [class.dtor]p5:
4413    // -- X is a union-like class that has a variant member with a non-trivial
4414    //    destructor
4415    if (CSM == Sema::CXXDestructor && Field && Field->getParent()->isUnion() &&
4416        !Dtor->isTrivial())
4417      return true;
4418  }
4419
4420  // C++11 [class.ctor]p5:
4421  // -- any direct or virtual base class [...] has class type M [...] and
4422  //    either M has no default constructor or overload resolution as applied
4423  //    to M's default constructor results in an ambiguity or in a function
4424  //    that is deleted or inaccessible
4425  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4426  // -- a direct or virtual base class B that cannot be copied/moved because
4427  //    overload resolution, as applied to B's corresponding special member,
4428  //    results in an ambiguity or a function that is deleted or inaccessible
4429  //    from the defaulted special member
4430  // FIXME: in-class initializers should be handled here
4431  if (CSM != Sema::CXXDestructor) {
4432    Sema::SpecialMemberOverloadResult *SMOR = lookupIn(Class);
4433    if (!SMOR->hasSuccess())
4434      return true;
4435
4436    CXXMethodDecl *Member = SMOR->getMethod();
4437    // A member of a union must have a trivial corresponding special member.
4438    if (Field && Field->getParent()->isUnion() && !Member->isTrivial())
4439      return true;
4440
4441    if (IsConstructor) {
4442      CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(Member);
4443      if (S.CheckConstructorAccess(Loc, Ctor, Ctor->getAccess(), S.PDiag())
4444            != Sema::AR_accessible)
4445        return true;
4446
4447      // -- for the move constructor, a [...] direct or virtual base class with
4448      //    a type that does not have a move constructor and is not trivially
4449      //    copyable.
4450      if (IsMove && !Ctor->isMoveConstructor() && !Class->isTriviallyCopyable())
4451        return true;
4452    } else {
4453      assert(IsAssignment && "unexpected kind of special member");
4454      if (S.CheckDirectMemberAccess(Loc, Member, S.PDiag())
4455            != Sema::AR_accessible)
4456        return true;
4457
4458      // -- for the move assignment operator, a direct base class with a type
4459      //    that does not have a move assignment operator and is not trivially
4460      //    copyable.
4461      if (IsMove && !Member->isMoveAssignmentOperator() &&
4462          !Class->isTriviallyCopyable())
4463        return true;
4464    }
4465  }
4466
4467  return false;
4468}
4469
4470/// Check whether we should delete a special member function due to the class
4471/// having a particular direct or virtual base class.
4472bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXRecordDecl *BaseDecl,
4473                                                    bool IsVirtualBase) {
4474  // C++11 [class.copy]p23:
4475  // -- for the move assignment operator, any direct or indirect virtual
4476  //    base class.
4477  if (CSM == Sema::CXXMoveAssignment && IsVirtualBase)
4478    return true;
4479
4480  if (shouldDeleteForClassSubobject(BaseDecl, 0))
4481    return true;
4482
4483  return false;
4484}
4485
4486/// Check whether we should delete a special member function due to the class
4487/// having a particular non-static data member.
4488bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4489  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4490  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4491
4492  if (CSM == Sema::CXXDefaultConstructor) {
4493    // For a default constructor, all references must be initialized in-class
4494    // and, if a union, it must have a non-const member.
4495    if (FieldType->isReferenceType() && !FD->hasInClassInitializer())
4496      return true;
4497
4498    if (inUnion() && !FieldType.isConstQualified())
4499      AllFieldsAreConst = false;
4500
4501    // C++11 [class.ctor]p5: any non-variant non-static data member of
4502    // const-qualified type (or array thereof) with no
4503    // brace-or-equal-initializer does not have a user-provided default
4504    // constructor.
4505    if (!inUnion() && FieldType.isConstQualified() &&
4506        !FD->hasInClassInitializer() &&
4507        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor()))
4508      return true;
4509  } else if (CSM == Sema::CXXCopyConstructor) {
4510    // For a copy constructor, data members must not be of rvalue reference
4511    // type.
4512    if (FieldType->isRValueReferenceType())
4513      return true;
4514  } else if (IsAssignment) {
4515    // For an assignment operator, data members must not be of reference type.
4516    if (FieldType->isReferenceType())
4517      return true;
4518  }
4519
4520  if (FieldRecord) {
4521    // Some additional restrictions exist on the variant members.
4522    if (!inUnion() && FieldRecord->isUnion() &&
4523        FieldRecord->isAnonymousStructOrUnion()) {
4524      bool AllVariantFieldsAreConst = true;
4525
4526      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4527                                         UE = FieldRecord->field_end();
4528           UI != UE; ++UI) {
4529        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4530
4531        if (!UnionFieldType.isConstQualified())
4532          AllVariantFieldsAreConst = false;
4533
4534        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4535        if (UnionFieldRecord &&
4536            shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4537          return true;
4538      }
4539
4540      // At least one member in each anonymous union must be non-const
4541      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4542          FieldRecord->field_begin() != FieldRecord->field_end())
4543        return true;
4544
4545      // Don't try to initialize the anonymous union
4546      // This is technically non-conformant, but sanity demands it.
4547      return false;
4548    }
4549
4550    // When checking a constructor, the field's destructor must be accessible
4551    // and not deleted.
4552    if (IsConstructor) {
4553      CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4554      if (FieldDtor->isDeleted())
4555        return true;
4556      if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4557          Sema::AR_accessible)
4558        return true;
4559    }
4560
4561    // Check that the corresponding member of the field is accessible,
4562    // unique, and non-deleted. We don't do this if it has an explicit
4563    // initialization when default-constructing.
4564    if (!(CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())) {
4565      Sema::SpecialMemberOverloadResult *SMOR = lookupIn(FieldRecord);
4566      if (!SMOR->hasSuccess())
4567        return true;
4568
4569      CXXMethodDecl *FieldMember = SMOR->getMethod();
4570
4571      // We need the corresponding member of a union to be trivial so that
4572      // we can safely process all members simultaneously.
4573      if (inUnion() && !FieldMember->isTrivial())
4574        return true;
4575
4576      if (IsConstructor) {
4577        CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4578        if (S.CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4579                                     S.PDiag()) != Sema::AR_accessible)
4580        return true;
4581
4582        // For a move operation, the corresponding operation must actually
4583        // be a move operation (and not a copy selected by overload
4584        // resolution) unless we are working on a trivially copyable class.
4585        if (IsMove && !FieldCtor->isMoveConstructor() &&
4586            !FieldRecord->isTriviallyCopyable())
4587          return true;
4588      } else if (CSM == Sema::CXXDestructor) {
4589        CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4590        if (FieldDtor->isDeleted())
4591          return true;
4592        if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4593            Sema::AR_accessible)
4594          return true;
4595      } else {
4596        assert(IsAssignment && "unexpected kind of special member");
4597        if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4598              != Sema::AR_accessible)
4599          return true;
4600
4601        // -- for the move assignment operator, a non-static data member with a
4602        //    type that does not have a move assignment operator and is not
4603        //    trivially copyable.
4604        if (IsMove && !FieldMember->isMoveAssignmentOperator() &&
4605            !FieldRecord->isTriviallyCopyable())
4606          return true;
4607      }
4608    }
4609  } else if (IsAssignment && FieldType.isConstQualified()) {
4610    // C++11 [class.copy]p23:
4611    // -- a non-static data member of const non-class type (or array thereof)
4612    return true;
4613  }
4614
4615  return false;
4616}
4617
4618/// C++11 [class.ctor] p5:
4619///   A defaulted default constructor for a class X is defined as deleted if
4620/// X is a union and all of its variant members are of const-qualified type.
4621bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4622  // This is a silly definition, because it gives an empty union a deleted
4623  // default constructor. Don't do that.
4624  return CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4625    (MD->getParent()->field_begin() != MD->getParent()->field_end());
4626}
4627
4628/// Determine whether a defaulted special member function should be defined as
4629/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4630/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4631bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4632  assert(!MD->isInvalidDecl());
4633  CXXRecordDecl *RD = MD->getParent();
4634  assert(!RD->isDependentType() && "do deletion after instantiation");
4635  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4636    return false;
4637
4638  // FIXME: Provide the ability to diagnose why a special member was deleted.
4639
4640  // C++11 [expr.lambda.prim]p19:
4641  //   The closure type associated with a lambda-expression has a
4642  //   deleted (8.4.3) default constructor and a deleted copy
4643  //   assignment operator.
4644  if (RD->isLambda() &&
4645      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment))
4646    return true;
4647
4648  // C++11 [class.dtor]p5:
4649  // -- for a virtual destructor, lookup of the non-array deallocation function
4650  //    results in an ambiguity or in a function that is deleted or inaccessible
4651  if (CSM == Sema::CXXDestructor && MD->isVirtual()) {
4652    FunctionDecl *OperatorDelete = 0;
4653    DeclarationName Name =
4654      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4655    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4656                                 OperatorDelete, false))
4657      return true;
4658  }
4659
4660  // For an anonymous struct or union, the copy and assignment special members
4661  // will never be used, so skip the check. For an anonymous union declared at
4662  // namespace scope, the constructor and destructor are used.
4663  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4664      RD->isAnonymousStructOrUnion())
4665    return false;
4666
4667  // Do access control from the special member function
4668  ContextRAII MethodContext(*this, MD);
4669
4670  SpecialMemberDeletionInfo SMI(*this, MD, CSM);
4671
4672  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4673                                          BE = RD->bases_end(); BI != BE; ++BI)
4674    if (!BI->isVirtual() &&
4675        SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), false))
4676      return true;
4677
4678  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4679                                          BE = RD->vbases_end(); BI != BE; ++BI)
4680    if (SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), true))
4681      return true;
4682
4683  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4684                                     FE = RD->field_end(); FI != FE; ++FI)
4685    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4686        SMI.shouldDeleteForField(*FI))
4687      return true;
4688
4689  if (SMI.shouldDeleteForAllConstMembers())
4690    return true;
4691
4692  return false;
4693}
4694
4695/// \brief Data used with FindHiddenVirtualMethod
4696namespace {
4697  struct FindHiddenVirtualMethodData {
4698    Sema *S;
4699    CXXMethodDecl *Method;
4700    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4701    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4702  };
4703}
4704
4705/// \brief Member lookup function that determines whether a given C++
4706/// method overloads virtual methods in a base class without overriding any,
4707/// to be used with CXXRecordDecl::lookupInBases().
4708static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4709                                    CXXBasePath &Path,
4710                                    void *UserData) {
4711  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4712
4713  FindHiddenVirtualMethodData &Data
4714    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4715
4716  DeclarationName Name = Data.Method->getDeclName();
4717  assert(Name.getNameKind() == DeclarationName::Identifier);
4718
4719  bool foundSameNameMethod = false;
4720  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4721  for (Path.Decls = BaseRecord->lookup(Name);
4722       Path.Decls.first != Path.Decls.second;
4723       ++Path.Decls.first) {
4724    NamedDecl *D = *Path.Decls.first;
4725    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4726      MD = MD->getCanonicalDecl();
4727      foundSameNameMethod = true;
4728      // Interested only in hidden virtual methods.
4729      if (!MD->isVirtual())
4730        continue;
4731      // If the method we are checking overrides a method from its base
4732      // don't warn about the other overloaded methods.
4733      if (!Data.S->IsOverload(Data.Method, MD, false))
4734        return true;
4735      // Collect the overload only if its hidden.
4736      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4737        overloadedMethods.push_back(MD);
4738    }
4739  }
4740
4741  if (foundSameNameMethod)
4742    Data.OverloadedMethods.append(overloadedMethods.begin(),
4743                                   overloadedMethods.end());
4744  return foundSameNameMethod;
4745}
4746
4747/// \brief See if a method overloads virtual methods in a base class without
4748/// overriding any.
4749void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4750  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4751                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4752    return;
4753  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4754    return;
4755
4756  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4757                     /*bool RecordPaths=*/false,
4758                     /*bool DetectVirtual=*/false);
4759  FindHiddenVirtualMethodData Data;
4760  Data.Method = MD;
4761  Data.S = this;
4762
4763  // Keep the base methods that were overriden or introduced in the subclass
4764  // by 'using' in a set. A base method not in this set is hidden.
4765  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4766       res.first != res.second; ++res.first) {
4767    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4768      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4769                                          E = MD->end_overridden_methods();
4770           I != E; ++I)
4771        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4772    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4773      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4774        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4775  }
4776
4777  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4778      !Data.OverloadedMethods.empty()) {
4779    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4780      << MD << (Data.OverloadedMethods.size() > 1);
4781
4782    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4783      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4784      Diag(overloadedMD->getLocation(),
4785           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4786    }
4787  }
4788}
4789
4790void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4791                                             Decl *TagDecl,
4792                                             SourceLocation LBrac,
4793                                             SourceLocation RBrac,
4794                                             AttributeList *AttrList) {
4795  if (!TagDecl)
4796    return;
4797
4798  AdjustDeclIfTemplate(TagDecl);
4799
4800  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4801              // strict aliasing violation!
4802              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4803              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4804
4805  CheckCompletedCXXClass(
4806                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4807}
4808
4809/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4810/// special functions, such as the default constructor, copy
4811/// constructor, or destructor, to the given C++ class (C++
4812/// [special]p1).  This routine can only be executed just before the
4813/// definition of the class is complete.
4814void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4815  if (!ClassDecl->hasUserDeclaredConstructor())
4816    ++ASTContext::NumImplicitDefaultConstructors;
4817
4818  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4819    ++ASTContext::NumImplicitCopyConstructors;
4820
4821  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4822    ++ASTContext::NumImplicitMoveConstructors;
4823
4824  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4825    ++ASTContext::NumImplicitCopyAssignmentOperators;
4826
4827    // If we have a dynamic class, then the copy assignment operator may be
4828    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4829    // it shows up in the right place in the vtable and that we diagnose
4830    // problems with the implicit exception specification.
4831    if (ClassDecl->isDynamicClass())
4832      DeclareImplicitCopyAssignment(ClassDecl);
4833  }
4834
4835  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
4836    ++ASTContext::NumImplicitMoveAssignmentOperators;
4837
4838    // Likewise for the move assignment operator.
4839    if (ClassDecl->isDynamicClass())
4840      DeclareImplicitMoveAssignment(ClassDecl);
4841  }
4842
4843  if (!ClassDecl->hasUserDeclaredDestructor()) {
4844    ++ASTContext::NumImplicitDestructors;
4845
4846    // If we have a dynamic class, then the destructor may be virtual, so we
4847    // have to declare the destructor immediately. This ensures that, e.g., it
4848    // shows up in the right place in the vtable and that we diagnose problems
4849    // with the implicit exception specification.
4850    if (ClassDecl->isDynamicClass())
4851      DeclareImplicitDestructor(ClassDecl);
4852  }
4853}
4854
4855void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4856  if (!D)
4857    return;
4858
4859  int NumParamList = D->getNumTemplateParameterLists();
4860  for (int i = 0; i < NumParamList; i++) {
4861    TemplateParameterList* Params = D->getTemplateParameterList(i);
4862    for (TemplateParameterList::iterator Param = Params->begin(),
4863                                      ParamEnd = Params->end();
4864          Param != ParamEnd; ++Param) {
4865      NamedDecl *Named = cast<NamedDecl>(*Param);
4866      if (Named->getDeclName()) {
4867        S->AddDecl(Named);
4868        IdResolver.AddDecl(Named);
4869      }
4870    }
4871  }
4872}
4873
4874void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4875  if (!D)
4876    return;
4877
4878  TemplateParameterList *Params = 0;
4879  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4880    Params = Template->getTemplateParameters();
4881  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4882           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4883    Params = PartialSpec->getTemplateParameters();
4884  else
4885    return;
4886
4887  for (TemplateParameterList::iterator Param = Params->begin(),
4888                                    ParamEnd = Params->end();
4889       Param != ParamEnd; ++Param) {
4890    NamedDecl *Named = cast<NamedDecl>(*Param);
4891    if (Named->getDeclName()) {
4892      S->AddDecl(Named);
4893      IdResolver.AddDecl(Named);
4894    }
4895  }
4896}
4897
4898void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4899  if (!RecordD) return;
4900  AdjustDeclIfTemplate(RecordD);
4901  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4902  PushDeclContext(S, Record);
4903}
4904
4905void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4906  if (!RecordD) return;
4907  PopDeclContext();
4908}
4909
4910/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4911/// parsing a top-level (non-nested) C++ class, and we are now
4912/// parsing those parts of the given Method declaration that could
4913/// not be parsed earlier (C++ [class.mem]p2), such as default
4914/// arguments. This action should enter the scope of the given
4915/// Method declaration as if we had just parsed the qualified method
4916/// name. However, it should not bring the parameters into scope;
4917/// that will be performed by ActOnDelayedCXXMethodParameter.
4918void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4919}
4920
4921/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4922/// C++ method declaration. We're (re-)introducing the given
4923/// function parameter into scope for use in parsing later parts of
4924/// the method declaration. For example, we could see an
4925/// ActOnParamDefaultArgument event for this parameter.
4926void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4927  if (!ParamD)
4928    return;
4929
4930  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4931
4932  // If this parameter has an unparsed default argument, clear it out
4933  // to make way for the parsed default argument.
4934  if (Param->hasUnparsedDefaultArg())
4935    Param->setDefaultArg(0);
4936
4937  S->AddDecl(Param);
4938  if (Param->getDeclName())
4939    IdResolver.AddDecl(Param);
4940}
4941
4942/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4943/// processing the delayed method declaration for Method. The method
4944/// declaration is now considered finished. There may be a separate
4945/// ActOnStartOfFunctionDef action later (not necessarily
4946/// immediately!) for this method, if it was also defined inside the
4947/// class body.
4948void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4949  if (!MethodD)
4950    return;
4951
4952  AdjustDeclIfTemplate(MethodD);
4953
4954  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4955
4956  // Now that we have our default arguments, check the constructor
4957  // again. It could produce additional diagnostics or affect whether
4958  // the class has implicitly-declared destructors, among other
4959  // things.
4960  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4961    CheckConstructor(Constructor);
4962
4963  // Check the default arguments, which we may have added.
4964  if (!Method->isInvalidDecl())
4965    CheckCXXDefaultArguments(Method);
4966}
4967
4968/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4969/// the well-formedness of the constructor declarator @p D with type @p
4970/// R. If there are any errors in the declarator, this routine will
4971/// emit diagnostics and set the invalid bit to true.  In any case, the type
4972/// will be updated to reflect a well-formed type for the constructor and
4973/// returned.
4974QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4975                                          StorageClass &SC) {
4976  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4977
4978  // C++ [class.ctor]p3:
4979  //   A constructor shall not be virtual (10.3) or static (9.4). A
4980  //   constructor can be invoked for a const, volatile or const
4981  //   volatile object. A constructor shall not be declared const,
4982  //   volatile, or const volatile (9.3.2).
4983  if (isVirtual) {
4984    if (!D.isInvalidType())
4985      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4986        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4987        << SourceRange(D.getIdentifierLoc());
4988    D.setInvalidType();
4989  }
4990  if (SC == SC_Static) {
4991    if (!D.isInvalidType())
4992      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4993        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4994        << SourceRange(D.getIdentifierLoc());
4995    D.setInvalidType();
4996    SC = SC_None;
4997  }
4998
4999  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5000  if (FTI.TypeQuals != 0) {
5001    if (FTI.TypeQuals & Qualifiers::Const)
5002      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5003        << "const" << SourceRange(D.getIdentifierLoc());
5004    if (FTI.TypeQuals & Qualifiers::Volatile)
5005      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5006        << "volatile" << SourceRange(D.getIdentifierLoc());
5007    if (FTI.TypeQuals & Qualifiers::Restrict)
5008      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5009        << "restrict" << SourceRange(D.getIdentifierLoc());
5010    D.setInvalidType();
5011  }
5012
5013  // C++0x [class.ctor]p4:
5014  //   A constructor shall not be declared with a ref-qualifier.
5015  if (FTI.hasRefQualifier()) {
5016    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5017      << FTI.RefQualifierIsLValueRef
5018      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5019    D.setInvalidType();
5020  }
5021
5022  // Rebuild the function type "R" without any type qualifiers (in
5023  // case any of the errors above fired) and with "void" as the
5024  // return type, since constructors don't have return types.
5025  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5026  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5027    return R;
5028
5029  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5030  EPI.TypeQuals = 0;
5031  EPI.RefQualifier = RQ_None;
5032
5033  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5034                                 Proto->getNumArgs(), EPI);
5035}
5036
5037/// CheckConstructor - Checks a fully-formed constructor for
5038/// well-formedness, issuing any diagnostics required. Returns true if
5039/// the constructor declarator is invalid.
5040void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5041  CXXRecordDecl *ClassDecl
5042    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5043  if (!ClassDecl)
5044    return Constructor->setInvalidDecl();
5045
5046  // C++ [class.copy]p3:
5047  //   A declaration of a constructor for a class X is ill-formed if
5048  //   its first parameter is of type (optionally cv-qualified) X and
5049  //   either there are no other parameters or else all other
5050  //   parameters have default arguments.
5051  if (!Constructor->isInvalidDecl() &&
5052      ((Constructor->getNumParams() == 1) ||
5053       (Constructor->getNumParams() > 1 &&
5054        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5055      Constructor->getTemplateSpecializationKind()
5056                                              != TSK_ImplicitInstantiation) {
5057    QualType ParamType = Constructor->getParamDecl(0)->getType();
5058    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5059    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5060      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5061      const char *ConstRef
5062        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5063                                                        : " const &";
5064      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5065        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5066
5067      // FIXME: Rather that making the constructor invalid, we should endeavor
5068      // to fix the type.
5069      Constructor->setInvalidDecl();
5070    }
5071  }
5072}
5073
5074/// CheckDestructor - Checks a fully-formed destructor definition for
5075/// well-formedness, issuing any diagnostics required.  Returns true
5076/// on error.
5077bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5078  CXXRecordDecl *RD = Destructor->getParent();
5079
5080  if (Destructor->isVirtual()) {
5081    SourceLocation Loc;
5082
5083    if (!Destructor->isImplicit())
5084      Loc = Destructor->getLocation();
5085    else
5086      Loc = RD->getLocation();
5087
5088    // If we have a virtual destructor, look up the deallocation function
5089    FunctionDecl *OperatorDelete = 0;
5090    DeclarationName Name =
5091    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5092    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5093      return true;
5094
5095    MarkFunctionReferenced(Loc, OperatorDelete);
5096
5097    Destructor->setOperatorDelete(OperatorDelete);
5098  }
5099
5100  return false;
5101}
5102
5103static inline bool
5104FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5105  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5106          FTI.ArgInfo[0].Param &&
5107          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5108}
5109
5110/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5111/// the well-formednes of the destructor declarator @p D with type @p
5112/// R. If there are any errors in the declarator, this routine will
5113/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5114/// will be updated to reflect a well-formed type for the destructor and
5115/// returned.
5116QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5117                                         StorageClass& SC) {
5118  // C++ [class.dtor]p1:
5119  //   [...] A typedef-name that names a class is a class-name
5120  //   (7.1.3); however, a typedef-name that names a class shall not
5121  //   be used as the identifier in the declarator for a destructor
5122  //   declaration.
5123  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5124  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5125    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5126      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5127  else if (const TemplateSpecializationType *TST =
5128             DeclaratorType->getAs<TemplateSpecializationType>())
5129    if (TST->isTypeAlias())
5130      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5131        << DeclaratorType << 1;
5132
5133  // C++ [class.dtor]p2:
5134  //   A destructor is used to destroy objects of its class type. A
5135  //   destructor takes no parameters, and no return type can be
5136  //   specified for it (not even void). The address of a destructor
5137  //   shall not be taken. A destructor shall not be static. A
5138  //   destructor can be invoked for a const, volatile or const
5139  //   volatile object. A destructor shall not be declared const,
5140  //   volatile or const volatile (9.3.2).
5141  if (SC == SC_Static) {
5142    if (!D.isInvalidType())
5143      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5144        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5145        << SourceRange(D.getIdentifierLoc())
5146        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5147
5148    SC = SC_None;
5149  }
5150  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5151    // Destructors don't have return types, but the parser will
5152    // happily parse something like:
5153    //
5154    //   class X {
5155    //     float ~X();
5156    //   };
5157    //
5158    // The return type will be eliminated later.
5159    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5160      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5161      << SourceRange(D.getIdentifierLoc());
5162  }
5163
5164  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5165  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5166    if (FTI.TypeQuals & Qualifiers::Const)
5167      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5168        << "const" << SourceRange(D.getIdentifierLoc());
5169    if (FTI.TypeQuals & Qualifiers::Volatile)
5170      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5171        << "volatile" << SourceRange(D.getIdentifierLoc());
5172    if (FTI.TypeQuals & Qualifiers::Restrict)
5173      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5174        << "restrict" << SourceRange(D.getIdentifierLoc());
5175    D.setInvalidType();
5176  }
5177
5178  // C++0x [class.dtor]p2:
5179  //   A destructor shall not be declared with a ref-qualifier.
5180  if (FTI.hasRefQualifier()) {
5181    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5182      << FTI.RefQualifierIsLValueRef
5183      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5184    D.setInvalidType();
5185  }
5186
5187  // Make sure we don't have any parameters.
5188  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5189    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5190
5191    // Delete the parameters.
5192    FTI.freeArgs();
5193    D.setInvalidType();
5194  }
5195
5196  // Make sure the destructor isn't variadic.
5197  if (FTI.isVariadic) {
5198    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5199    D.setInvalidType();
5200  }
5201
5202  // Rebuild the function type "R" without any type qualifiers or
5203  // parameters (in case any of the errors above fired) and with
5204  // "void" as the return type, since destructors don't have return
5205  // types.
5206  if (!D.isInvalidType())
5207    return R;
5208
5209  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5210  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5211  EPI.Variadic = false;
5212  EPI.TypeQuals = 0;
5213  EPI.RefQualifier = RQ_None;
5214  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5215}
5216
5217/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5218/// well-formednes of the conversion function declarator @p D with
5219/// type @p R. If there are any errors in the declarator, this routine
5220/// will emit diagnostics and return true. Otherwise, it will return
5221/// false. Either way, the type @p R will be updated to reflect a
5222/// well-formed type for the conversion operator.
5223void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5224                                     StorageClass& SC) {
5225  // C++ [class.conv.fct]p1:
5226  //   Neither parameter types nor return type can be specified. The
5227  //   type of a conversion function (8.3.5) is "function taking no
5228  //   parameter returning conversion-type-id."
5229  if (SC == SC_Static) {
5230    if (!D.isInvalidType())
5231      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5232        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5233        << SourceRange(D.getIdentifierLoc());
5234    D.setInvalidType();
5235    SC = SC_None;
5236  }
5237
5238  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5239
5240  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5241    // Conversion functions don't have return types, but the parser will
5242    // happily parse something like:
5243    //
5244    //   class X {
5245    //     float operator bool();
5246    //   };
5247    //
5248    // The return type will be changed later anyway.
5249    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5250      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5251      << SourceRange(D.getIdentifierLoc());
5252    D.setInvalidType();
5253  }
5254
5255  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5256
5257  // Make sure we don't have any parameters.
5258  if (Proto->getNumArgs() > 0) {
5259    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5260
5261    // Delete the parameters.
5262    D.getFunctionTypeInfo().freeArgs();
5263    D.setInvalidType();
5264  } else if (Proto->isVariadic()) {
5265    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5266    D.setInvalidType();
5267  }
5268
5269  // Diagnose "&operator bool()" and other such nonsense.  This
5270  // is actually a gcc extension which we don't support.
5271  if (Proto->getResultType() != ConvType) {
5272    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5273      << Proto->getResultType();
5274    D.setInvalidType();
5275    ConvType = Proto->getResultType();
5276  }
5277
5278  // C++ [class.conv.fct]p4:
5279  //   The conversion-type-id shall not represent a function type nor
5280  //   an array type.
5281  if (ConvType->isArrayType()) {
5282    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5283    ConvType = Context.getPointerType(ConvType);
5284    D.setInvalidType();
5285  } else if (ConvType->isFunctionType()) {
5286    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5287    ConvType = Context.getPointerType(ConvType);
5288    D.setInvalidType();
5289  }
5290
5291  // Rebuild the function type "R" without any parameters (in case any
5292  // of the errors above fired) and with the conversion type as the
5293  // return type.
5294  if (D.isInvalidType())
5295    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5296
5297  // C++0x explicit conversion operators.
5298  if (D.getDeclSpec().isExplicitSpecified())
5299    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5300         getLangOpts().CPlusPlus0x ?
5301           diag::warn_cxx98_compat_explicit_conversion_functions :
5302           diag::ext_explicit_conversion_functions)
5303      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5304}
5305
5306/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5307/// the declaration of the given C++ conversion function. This routine
5308/// is responsible for recording the conversion function in the C++
5309/// class, if possible.
5310Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5311  assert(Conversion && "Expected to receive a conversion function declaration");
5312
5313  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5314
5315  // Make sure we aren't redeclaring the conversion function.
5316  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5317
5318  // C++ [class.conv.fct]p1:
5319  //   [...] A conversion function is never used to convert a
5320  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5321  //   same object type (or a reference to it), to a (possibly
5322  //   cv-qualified) base class of that type (or a reference to it),
5323  //   or to (possibly cv-qualified) void.
5324  // FIXME: Suppress this warning if the conversion function ends up being a
5325  // virtual function that overrides a virtual function in a base class.
5326  QualType ClassType
5327    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5328  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5329    ConvType = ConvTypeRef->getPointeeType();
5330  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5331      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5332    /* Suppress diagnostics for instantiations. */;
5333  else if (ConvType->isRecordType()) {
5334    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5335    if (ConvType == ClassType)
5336      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5337        << ClassType;
5338    else if (IsDerivedFrom(ClassType, ConvType))
5339      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5340        <<  ClassType << ConvType;
5341  } else if (ConvType->isVoidType()) {
5342    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5343      << ClassType << ConvType;
5344  }
5345
5346  if (FunctionTemplateDecl *ConversionTemplate
5347                                = Conversion->getDescribedFunctionTemplate())
5348    return ConversionTemplate;
5349
5350  return Conversion;
5351}
5352
5353//===----------------------------------------------------------------------===//
5354// Namespace Handling
5355//===----------------------------------------------------------------------===//
5356
5357
5358
5359/// ActOnStartNamespaceDef - This is called at the start of a namespace
5360/// definition.
5361Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5362                                   SourceLocation InlineLoc,
5363                                   SourceLocation NamespaceLoc,
5364                                   SourceLocation IdentLoc,
5365                                   IdentifierInfo *II,
5366                                   SourceLocation LBrace,
5367                                   AttributeList *AttrList) {
5368  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5369  // For anonymous namespace, take the location of the left brace.
5370  SourceLocation Loc = II ? IdentLoc : LBrace;
5371  bool IsInline = InlineLoc.isValid();
5372  bool IsInvalid = false;
5373  bool IsStd = false;
5374  bool AddToKnown = false;
5375  Scope *DeclRegionScope = NamespcScope->getParent();
5376
5377  NamespaceDecl *PrevNS = 0;
5378  if (II) {
5379    // C++ [namespace.def]p2:
5380    //   The identifier in an original-namespace-definition shall not
5381    //   have been previously defined in the declarative region in
5382    //   which the original-namespace-definition appears. The
5383    //   identifier in an original-namespace-definition is the name of
5384    //   the namespace. Subsequently in that declarative region, it is
5385    //   treated as an original-namespace-name.
5386    //
5387    // Since namespace names are unique in their scope, and we don't
5388    // look through using directives, just look for any ordinary names.
5389
5390    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5391    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5392    Decl::IDNS_Namespace;
5393    NamedDecl *PrevDecl = 0;
5394    for (DeclContext::lookup_result R
5395         = CurContext->getRedeclContext()->lookup(II);
5396         R.first != R.second; ++R.first) {
5397      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5398        PrevDecl = *R.first;
5399        break;
5400      }
5401    }
5402
5403    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5404
5405    if (PrevNS) {
5406      // This is an extended namespace definition.
5407      if (IsInline != PrevNS->isInline()) {
5408        // inline-ness must match
5409        if (PrevNS->isInline()) {
5410          // The user probably just forgot the 'inline', so suggest that it
5411          // be added back.
5412          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5413            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5414        } else {
5415          Diag(Loc, diag::err_inline_namespace_mismatch)
5416            << IsInline;
5417        }
5418        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5419
5420        IsInline = PrevNS->isInline();
5421      }
5422    } else if (PrevDecl) {
5423      // This is an invalid name redefinition.
5424      Diag(Loc, diag::err_redefinition_different_kind)
5425        << II;
5426      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5427      IsInvalid = true;
5428      // Continue on to push Namespc as current DeclContext and return it.
5429    } else if (II->isStr("std") &&
5430               CurContext->getRedeclContext()->isTranslationUnit()) {
5431      // This is the first "real" definition of the namespace "std", so update
5432      // our cache of the "std" namespace to point at this definition.
5433      PrevNS = getStdNamespace();
5434      IsStd = true;
5435      AddToKnown = !IsInline;
5436    } else {
5437      // We've seen this namespace for the first time.
5438      AddToKnown = !IsInline;
5439    }
5440  } else {
5441    // Anonymous namespaces.
5442
5443    // Determine whether the parent already has an anonymous namespace.
5444    DeclContext *Parent = CurContext->getRedeclContext();
5445    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5446      PrevNS = TU->getAnonymousNamespace();
5447    } else {
5448      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5449      PrevNS = ND->getAnonymousNamespace();
5450    }
5451
5452    if (PrevNS && IsInline != PrevNS->isInline()) {
5453      // inline-ness must match
5454      Diag(Loc, diag::err_inline_namespace_mismatch)
5455        << IsInline;
5456      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5457
5458      // Recover by ignoring the new namespace's inline status.
5459      IsInline = PrevNS->isInline();
5460    }
5461  }
5462
5463  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5464                                                 StartLoc, Loc, II, PrevNS);
5465  if (IsInvalid)
5466    Namespc->setInvalidDecl();
5467
5468  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5469
5470  // FIXME: Should we be merging attributes?
5471  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5472    PushNamespaceVisibilityAttr(Attr, Loc);
5473
5474  if (IsStd)
5475    StdNamespace = Namespc;
5476  if (AddToKnown)
5477    KnownNamespaces[Namespc] = false;
5478
5479  if (II) {
5480    PushOnScopeChains(Namespc, DeclRegionScope);
5481  } else {
5482    // Link the anonymous namespace into its parent.
5483    DeclContext *Parent = CurContext->getRedeclContext();
5484    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5485      TU->setAnonymousNamespace(Namespc);
5486    } else {
5487      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5488    }
5489
5490    CurContext->addDecl(Namespc);
5491
5492    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5493    //   behaves as if it were replaced by
5494    //     namespace unique { /* empty body */ }
5495    //     using namespace unique;
5496    //     namespace unique { namespace-body }
5497    //   where all occurrences of 'unique' in a translation unit are
5498    //   replaced by the same identifier and this identifier differs
5499    //   from all other identifiers in the entire program.
5500
5501    // We just create the namespace with an empty name and then add an
5502    // implicit using declaration, just like the standard suggests.
5503    //
5504    // CodeGen enforces the "universally unique" aspect by giving all
5505    // declarations semantically contained within an anonymous
5506    // namespace internal linkage.
5507
5508    if (!PrevNS) {
5509      UsingDirectiveDecl* UD
5510        = UsingDirectiveDecl::Create(Context, CurContext,
5511                                     /* 'using' */ LBrace,
5512                                     /* 'namespace' */ SourceLocation(),
5513                                     /* qualifier */ NestedNameSpecifierLoc(),
5514                                     /* identifier */ SourceLocation(),
5515                                     Namespc,
5516                                     /* Ancestor */ CurContext);
5517      UD->setImplicit();
5518      CurContext->addDecl(UD);
5519    }
5520  }
5521
5522  // Although we could have an invalid decl (i.e. the namespace name is a
5523  // redefinition), push it as current DeclContext and try to continue parsing.
5524  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5525  // for the namespace has the declarations that showed up in that particular
5526  // namespace definition.
5527  PushDeclContext(NamespcScope, Namespc);
5528  return Namespc;
5529}
5530
5531/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5532/// is a namespace alias, returns the namespace it points to.
5533static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5534  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5535    return AD->getNamespace();
5536  return dyn_cast_or_null<NamespaceDecl>(D);
5537}
5538
5539/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5540/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5541void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5542  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5543  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5544  Namespc->setRBraceLoc(RBrace);
5545  PopDeclContext();
5546  if (Namespc->hasAttr<VisibilityAttr>())
5547    PopPragmaVisibility(true, RBrace);
5548}
5549
5550CXXRecordDecl *Sema::getStdBadAlloc() const {
5551  return cast_or_null<CXXRecordDecl>(
5552                                  StdBadAlloc.get(Context.getExternalSource()));
5553}
5554
5555NamespaceDecl *Sema::getStdNamespace() const {
5556  return cast_or_null<NamespaceDecl>(
5557                                 StdNamespace.get(Context.getExternalSource()));
5558}
5559
5560/// \brief Retrieve the special "std" namespace, which may require us to
5561/// implicitly define the namespace.
5562NamespaceDecl *Sema::getOrCreateStdNamespace() {
5563  if (!StdNamespace) {
5564    // The "std" namespace has not yet been defined, so build one implicitly.
5565    StdNamespace = NamespaceDecl::Create(Context,
5566                                         Context.getTranslationUnitDecl(),
5567                                         /*Inline=*/false,
5568                                         SourceLocation(), SourceLocation(),
5569                                         &PP.getIdentifierTable().get("std"),
5570                                         /*PrevDecl=*/0);
5571    getStdNamespace()->setImplicit(true);
5572  }
5573
5574  return getStdNamespace();
5575}
5576
5577bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5578  assert(getLangOpts().CPlusPlus &&
5579         "Looking for std::initializer_list outside of C++.");
5580
5581  // We're looking for implicit instantiations of
5582  // template <typename E> class std::initializer_list.
5583
5584  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5585    return false;
5586
5587  ClassTemplateDecl *Template = 0;
5588  const TemplateArgument *Arguments = 0;
5589
5590  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5591
5592    ClassTemplateSpecializationDecl *Specialization =
5593        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5594    if (!Specialization)
5595      return false;
5596
5597    Template = Specialization->getSpecializedTemplate();
5598    Arguments = Specialization->getTemplateArgs().data();
5599  } else if (const TemplateSpecializationType *TST =
5600                 Ty->getAs<TemplateSpecializationType>()) {
5601    Template = dyn_cast_or_null<ClassTemplateDecl>(
5602        TST->getTemplateName().getAsTemplateDecl());
5603    Arguments = TST->getArgs();
5604  }
5605  if (!Template)
5606    return false;
5607
5608  if (!StdInitializerList) {
5609    // Haven't recognized std::initializer_list yet, maybe this is it.
5610    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5611    if (TemplateClass->getIdentifier() !=
5612            &PP.getIdentifierTable().get("initializer_list") ||
5613        !getStdNamespace()->InEnclosingNamespaceSetOf(
5614            TemplateClass->getDeclContext()))
5615      return false;
5616    // This is a template called std::initializer_list, but is it the right
5617    // template?
5618    TemplateParameterList *Params = Template->getTemplateParameters();
5619    if (Params->getMinRequiredArguments() != 1)
5620      return false;
5621    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5622      return false;
5623
5624    // It's the right template.
5625    StdInitializerList = Template;
5626  }
5627
5628  if (Template != StdInitializerList)
5629    return false;
5630
5631  // This is an instance of std::initializer_list. Find the argument type.
5632  if (Element)
5633    *Element = Arguments[0].getAsType();
5634  return true;
5635}
5636
5637static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5638  NamespaceDecl *Std = S.getStdNamespace();
5639  if (!Std) {
5640    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5641    return 0;
5642  }
5643
5644  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5645                      Loc, Sema::LookupOrdinaryName);
5646  if (!S.LookupQualifiedName(Result, Std)) {
5647    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5648    return 0;
5649  }
5650  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5651  if (!Template) {
5652    Result.suppressDiagnostics();
5653    // We found something weird. Complain about the first thing we found.
5654    NamedDecl *Found = *Result.begin();
5655    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5656    return 0;
5657  }
5658
5659  // We found some template called std::initializer_list. Now verify that it's
5660  // correct.
5661  TemplateParameterList *Params = Template->getTemplateParameters();
5662  if (Params->getMinRequiredArguments() != 1 ||
5663      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5664    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5665    return 0;
5666  }
5667
5668  return Template;
5669}
5670
5671QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5672  if (!StdInitializerList) {
5673    StdInitializerList = LookupStdInitializerList(*this, Loc);
5674    if (!StdInitializerList)
5675      return QualType();
5676  }
5677
5678  TemplateArgumentListInfo Args(Loc, Loc);
5679  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5680                                       Context.getTrivialTypeSourceInfo(Element,
5681                                                                        Loc)));
5682  return Context.getCanonicalType(
5683      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5684}
5685
5686bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5687  // C++ [dcl.init.list]p2:
5688  //   A constructor is an initializer-list constructor if its first parameter
5689  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5690  //   std::initializer_list<E> for some type E, and either there are no other
5691  //   parameters or else all other parameters have default arguments.
5692  if (Ctor->getNumParams() < 1 ||
5693      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5694    return false;
5695
5696  QualType ArgType = Ctor->getParamDecl(0)->getType();
5697  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5698    ArgType = RT->getPointeeType().getUnqualifiedType();
5699
5700  return isStdInitializerList(ArgType, 0);
5701}
5702
5703/// \brief Determine whether a using statement is in a context where it will be
5704/// apply in all contexts.
5705static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5706  switch (CurContext->getDeclKind()) {
5707    case Decl::TranslationUnit:
5708      return true;
5709    case Decl::LinkageSpec:
5710      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5711    default:
5712      return false;
5713  }
5714}
5715
5716namespace {
5717
5718// Callback to only accept typo corrections that are namespaces.
5719class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5720 public:
5721  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5722    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5723      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5724    }
5725    return false;
5726  }
5727};
5728
5729}
5730
5731static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5732                                       CXXScopeSpec &SS,
5733                                       SourceLocation IdentLoc,
5734                                       IdentifierInfo *Ident) {
5735  NamespaceValidatorCCC Validator;
5736  R.clear();
5737  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5738                                               R.getLookupKind(), Sc, &SS,
5739                                               Validator)) {
5740    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5741    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5742    if (DeclContext *DC = S.computeDeclContext(SS, false))
5743      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5744        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5745        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5746    else
5747      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5748        << Ident << CorrectedQuotedStr
5749        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5750
5751    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5752         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5753
5754    Ident = Corrected.getCorrectionAsIdentifierInfo();
5755    R.addDecl(Corrected.getCorrectionDecl());
5756    return true;
5757  }
5758  return false;
5759}
5760
5761Decl *Sema::ActOnUsingDirective(Scope *S,
5762                                          SourceLocation UsingLoc,
5763                                          SourceLocation NamespcLoc,
5764                                          CXXScopeSpec &SS,
5765                                          SourceLocation IdentLoc,
5766                                          IdentifierInfo *NamespcName,
5767                                          AttributeList *AttrList) {
5768  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5769  assert(NamespcName && "Invalid NamespcName.");
5770  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5771
5772  // This can only happen along a recovery path.
5773  while (S->getFlags() & Scope::TemplateParamScope)
5774    S = S->getParent();
5775  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5776
5777  UsingDirectiveDecl *UDir = 0;
5778  NestedNameSpecifier *Qualifier = 0;
5779  if (SS.isSet())
5780    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5781
5782  // Lookup namespace name.
5783  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5784  LookupParsedName(R, S, &SS);
5785  if (R.isAmbiguous())
5786    return 0;
5787
5788  if (R.empty()) {
5789    R.clear();
5790    // Allow "using namespace std;" or "using namespace ::std;" even if
5791    // "std" hasn't been defined yet, for GCC compatibility.
5792    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5793        NamespcName->isStr("std")) {
5794      Diag(IdentLoc, diag::ext_using_undefined_std);
5795      R.addDecl(getOrCreateStdNamespace());
5796      R.resolveKind();
5797    }
5798    // Otherwise, attempt typo correction.
5799    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5800  }
5801
5802  if (!R.empty()) {
5803    NamedDecl *Named = R.getFoundDecl();
5804    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5805        && "expected namespace decl");
5806    // C++ [namespace.udir]p1:
5807    //   A using-directive specifies that the names in the nominated
5808    //   namespace can be used in the scope in which the
5809    //   using-directive appears after the using-directive. During
5810    //   unqualified name lookup (3.4.1), the names appear as if they
5811    //   were declared in the nearest enclosing namespace which
5812    //   contains both the using-directive and the nominated
5813    //   namespace. [Note: in this context, "contains" means "contains
5814    //   directly or indirectly". ]
5815
5816    // Find enclosing context containing both using-directive and
5817    // nominated namespace.
5818    NamespaceDecl *NS = getNamespaceDecl(Named);
5819    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5820    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5821      CommonAncestor = CommonAncestor->getParent();
5822
5823    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5824                                      SS.getWithLocInContext(Context),
5825                                      IdentLoc, Named, CommonAncestor);
5826
5827    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5828        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5829      Diag(IdentLoc, diag::warn_using_directive_in_header);
5830    }
5831
5832    PushUsingDirective(S, UDir);
5833  } else {
5834    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5835  }
5836
5837  // FIXME: We ignore attributes for now.
5838  return UDir;
5839}
5840
5841void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5842  // If the scope has an associated entity and the using directive is at
5843  // namespace or translation unit scope, add the UsingDirectiveDecl into
5844  // its lookup structure so qualified name lookup can find it.
5845  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5846  if (Ctx && !Ctx->isFunctionOrMethod())
5847    Ctx->addDecl(UDir);
5848  else
5849    // Otherwise, it is at block sope. The using-directives will affect lookup
5850    // only to the end of the scope.
5851    S->PushUsingDirective(UDir);
5852}
5853
5854
5855Decl *Sema::ActOnUsingDeclaration(Scope *S,
5856                                  AccessSpecifier AS,
5857                                  bool HasUsingKeyword,
5858                                  SourceLocation UsingLoc,
5859                                  CXXScopeSpec &SS,
5860                                  UnqualifiedId &Name,
5861                                  AttributeList *AttrList,
5862                                  bool IsTypeName,
5863                                  SourceLocation TypenameLoc) {
5864  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5865
5866  switch (Name.getKind()) {
5867  case UnqualifiedId::IK_ImplicitSelfParam:
5868  case UnqualifiedId::IK_Identifier:
5869  case UnqualifiedId::IK_OperatorFunctionId:
5870  case UnqualifiedId::IK_LiteralOperatorId:
5871  case UnqualifiedId::IK_ConversionFunctionId:
5872    break;
5873
5874  case UnqualifiedId::IK_ConstructorName:
5875  case UnqualifiedId::IK_ConstructorTemplateId:
5876    // C++0x inherited constructors.
5877    Diag(Name.getLocStart(),
5878         getLangOpts().CPlusPlus0x ?
5879           diag::warn_cxx98_compat_using_decl_constructor :
5880           diag::err_using_decl_constructor)
5881      << SS.getRange();
5882
5883    if (getLangOpts().CPlusPlus0x) break;
5884
5885    return 0;
5886
5887  case UnqualifiedId::IK_DestructorName:
5888    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5889      << SS.getRange();
5890    return 0;
5891
5892  case UnqualifiedId::IK_TemplateId:
5893    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5894      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5895    return 0;
5896  }
5897
5898  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5899  DeclarationName TargetName = TargetNameInfo.getName();
5900  if (!TargetName)
5901    return 0;
5902
5903  // Warn about using declarations.
5904  // TODO: store that the declaration was written without 'using' and
5905  // talk about access decls instead of using decls in the
5906  // diagnostics.
5907  if (!HasUsingKeyword) {
5908    UsingLoc = Name.getLocStart();
5909
5910    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5911      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5912  }
5913
5914  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5915      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5916    return 0;
5917
5918  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5919                                        TargetNameInfo, AttrList,
5920                                        /* IsInstantiation */ false,
5921                                        IsTypeName, TypenameLoc);
5922  if (UD)
5923    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5924
5925  return UD;
5926}
5927
5928/// \brief Determine whether a using declaration considers the given
5929/// declarations as "equivalent", e.g., if they are redeclarations of
5930/// the same entity or are both typedefs of the same type.
5931static bool
5932IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5933                         bool &SuppressRedeclaration) {
5934  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5935    SuppressRedeclaration = false;
5936    return true;
5937  }
5938
5939  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5940    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5941      SuppressRedeclaration = true;
5942      return Context.hasSameType(TD1->getUnderlyingType(),
5943                                 TD2->getUnderlyingType());
5944    }
5945
5946  return false;
5947}
5948
5949
5950/// Determines whether to create a using shadow decl for a particular
5951/// decl, given the set of decls existing prior to this using lookup.
5952bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5953                                const LookupResult &Previous) {
5954  // Diagnose finding a decl which is not from a base class of the
5955  // current class.  We do this now because there are cases where this
5956  // function will silently decide not to build a shadow decl, which
5957  // will pre-empt further diagnostics.
5958  //
5959  // We don't need to do this in C++0x because we do the check once on
5960  // the qualifier.
5961  //
5962  // FIXME: diagnose the following if we care enough:
5963  //   struct A { int foo; };
5964  //   struct B : A { using A::foo; };
5965  //   template <class T> struct C : A {};
5966  //   template <class T> struct D : C<T> { using B::foo; } // <---
5967  // This is invalid (during instantiation) in C++03 because B::foo
5968  // resolves to the using decl in B, which is not a base class of D<T>.
5969  // We can't diagnose it immediately because C<T> is an unknown
5970  // specialization.  The UsingShadowDecl in D<T> then points directly
5971  // to A::foo, which will look well-formed when we instantiate.
5972  // The right solution is to not collapse the shadow-decl chain.
5973  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5974    DeclContext *OrigDC = Orig->getDeclContext();
5975
5976    // Handle enums and anonymous structs.
5977    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5978    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5979    while (OrigRec->isAnonymousStructOrUnion())
5980      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5981
5982    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5983      if (OrigDC == CurContext) {
5984        Diag(Using->getLocation(),
5985             diag::err_using_decl_nested_name_specifier_is_current_class)
5986          << Using->getQualifierLoc().getSourceRange();
5987        Diag(Orig->getLocation(), diag::note_using_decl_target);
5988        return true;
5989      }
5990
5991      Diag(Using->getQualifierLoc().getBeginLoc(),
5992           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5993        << Using->getQualifier()
5994        << cast<CXXRecordDecl>(CurContext)
5995        << Using->getQualifierLoc().getSourceRange();
5996      Diag(Orig->getLocation(), diag::note_using_decl_target);
5997      return true;
5998    }
5999  }
6000
6001  if (Previous.empty()) return false;
6002
6003  NamedDecl *Target = Orig;
6004  if (isa<UsingShadowDecl>(Target))
6005    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6006
6007  // If the target happens to be one of the previous declarations, we
6008  // don't have a conflict.
6009  //
6010  // FIXME: but we might be increasing its access, in which case we
6011  // should redeclare it.
6012  NamedDecl *NonTag = 0, *Tag = 0;
6013  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6014         I != E; ++I) {
6015    NamedDecl *D = (*I)->getUnderlyingDecl();
6016    bool Result;
6017    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6018      return Result;
6019
6020    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6021  }
6022
6023  if (Target->isFunctionOrFunctionTemplate()) {
6024    FunctionDecl *FD;
6025    if (isa<FunctionTemplateDecl>(Target))
6026      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6027    else
6028      FD = cast<FunctionDecl>(Target);
6029
6030    NamedDecl *OldDecl = 0;
6031    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6032    case Ovl_Overload:
6033      return false;
6034
6035    case Ovl_NonFunction:
6036      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6037      break;
6038
6039    // We found a decl with the exact signature.
6040    case Ovl_Match:
6041      // If we're in a record, we want to hide the target, so we
6042      // return true (without a diagnostic) to tell the caller not to
6043      // build a shadow decl.
6044      if (CurContext->isRecord())
6045        return true;
6046
6047      // If we're not in a record, this is an error.
6048      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6049      break;
6050    }
6051
6052    Diag(Target->getLocation(), diag::note_using_decl_target);
6053    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6054    return true;
6055  }
6056
6057  // Target is not a function.
6058
6059  if (isa<TagDecl>(Target)) {
6060    // No conflict between a tag and a non-tag.
6061    if (!Tag) return false;
6062
6063    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6064    Diag(Target->getLocation(), diag::note_using_decl_target);
6065    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6066    return true;
6067  }
6068
6069  // No conflict between a tag and a non-tag.
6070  if (!NonTag) return false;
6071
6072  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6073  Diag(Target->getLocation(), diag::note_using_decl_target);
6074  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6075  return true;
6076}
6077
6078/// Builds a shadow declaration corresponding to a 'using' declaration.
6079UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6080                                            UsingDecl *UD,
6081                                            NamedDecl *Orig) {
6082
6083  // If we resolved to another shadow declaration, just coalesce them.
6084  NamedDecl *Target = Orig;
6085  if (isa<UsingShadowDecl>(Target)) {
6086    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6087    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6088  }
6089
6090  UsingShadowDecl *Shadow
6091    = UsingShadowDecl::Create(Context, CurContext,
6092                              UD->getLocation(), UD, Target);
6093  UD->addShadowDecl(Shadow);
6094
6095  Shadow->setAccess(UD->getAccess());
6096  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6097    Shadow->setInvalidDecl();
6098
6099  if (S)
6100    PushOnScopeChains(Shadow, S);
6101  else
6102    CurContext->addDecl(Shadow);
6103
6104
6105  return Shadow;
6106}
6107
6108/// Hides a using shadow declaration.  This is required by the current
6109/// using-decl implementation when a resolvable using declaration in a
6110/// class is followed by a declaration which would hide or override
6111/// one or more of the using decl's targets; for example:
6112///
6113///   struct Base { void foo(int); };
6114///   struct Derived : Base {
6115///     using Base::foo;
6116///     void foo(int);
6117///   };
6118///
6119/// The governing language is C++03 [namespace.udecl]p12:
6120///
6121///   When a using-declaration brings names from a base class into a
6122///   derived class scope, member functions in the derived class
6123///   override and/or hide member functions with the same name and
6124///   parameter types in a base class (rather than conflicting).
6125///
6126/// There are two ways to implement this:
6127///   (1) optimistically create shadow decls when they're not hidden
6128///       by existing declarations, or
6129///   (2) don't create any shadow decls (or at least don't make them
6130///       visible) until we've fully parsed/instantiated the class.
6131/// The problem with (1) is that we might have to retroactively remove
6132/// a shadow decl, which requires several O(n) operations because the
6133/// decl structures are (very reasonably) not designed for removal.
6134/// (2) avoids this but is very fiddly and phase-dependent.
6135void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6136  if (Shadow->getDeclName().getNameKind() ==
6137        DeclarationName::CXXConversionFunctionName)
6138    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6139
6140  // Remove it from the DeclContext...
6141  Shadow->getDeclContext()->removeDecl(Shadow);
6142
6143  // ...and the scope, if applicable...
6144  if (S) {
6145    S->RemoveDecl(Shadow);
6146    IdResolver.RemoveDecl(Shadow);
6147  }
6148
6149  // ...and the using decl.
6150  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6151
6152  // TODO: complain somehow if Shadow was used.  It shouldn't
6153  // be possible for this to happen, because...?
6154}
6155
6156/// Builds a using declaration.
6157///
6158/// \param IsInstantiation - Whether this call arises from an
6159///   instantiation of an unresolved using declaration.  We treat
6160///   the lookup differently for these declarations.
6161NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6162                                       SourceLocation UsingLoc,
6163                                       CXXScopeSpec &SS,
6164                                       const DeclarationNameInfo &NameInfo,
6165                                       AttributeList *AttrList,
6166                                       bool IsInstantiation,
6167                                       bool IsTypeName,
6168                                       SourceLocation TypenameLoc) {
6169  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6170  SourceLocation IdentLoc = NameInfo.getLoc();
6171  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6172
6173  // FIXME: We ignore attributes for now.
6174
6175  if (SS.isEmpty()) {
6176    Diag(IdentLoc, diag::err_using_requires_qualname);
6177    return 0;
6178  }
6179
6180  // Do the redeclaration lookup in the current scope.
6181  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6182                        ForRedeclaration);
6183  Previous.setHideTags(false);
6184  if (S) {
6185    LookupName(Previous, S);
6186
6187    // It is really dumb that we have to do this.
6188    LookupResult::Filter F = Previous.makeFilter();
6189    while (F.hasNext()) {
6190      NamedDecl *D = F.next();
6191      if (!isDeclInScope(D, CurContext, S))
6192        F.erase();
6193    }
6194    F.done();
6195  } else {
6196    assert(IsInstantiation && "no scope in non-instantiation");
6197    assert(CurContext->isRecord() && "scope not record in instantiation");
6198    LookupQualifiedName(Previous, CurContext);
6199  }
6200
6201  // Check for invalid redeclarations.
6202  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6203    return 0;
6204
6205  // Check for bad qualifiers.
6206  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6207    return 0;
6208
6209  DeclContext *LookupContext = computeDeclContext(SS);
6210  NamedDecl *D;
6211  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6212  if (!LookupContext) {
6213    if (IsTypeName) {
6214      // FIXME: not all declaration name kinds are legal here
6215      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6216                                              UsingLoc, TypenameLoc,
6217                                              QualifierLoc,
6218                                              IdentLoc, NameInfo.getName());
6219    } else {
6220      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6221                                           QualifierLoc, NameInfo);
6222    }
6223  } else {
6224    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6225                          NameInfo, IsTypeName);
6226  }
6227  D->setAccess(AS);
6228  CurContext->addDecl(D);
6229
6230  if (!LookupContext) return D;
6231  UsingDecl *UD = cast<UsingDecl>(D);
6232
6233  if (RequireCompleteDeclContext(SS, LookupContext)) {
6234    UD->setInvalidDecl();
6235    return UD;
6236  }
6237
6238  // Constructor inheriting using decls get special treatment.
6239  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6240    if (CheckInheritedConstructorUsingDecl(UD))
6241      UD->setInvalidDecl();
6242    return UD;
6243  }
6244
6245  // Otherwise, look up the target name.
6246
6247  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6248
6249  // Unlike most lookups, we don't always want to hide tag
6250  // declarations: tag names are visible through the using declaration
6251  // even if hidden by ordinary names, *except* in a dependent context
6252  // where it's important for the sanity of two-phase lookup.
6253  if (!IsInstantiation)
6254    R.setHideTags(false);
6255
6256  LookupQualifiedName(R, LookupContext);
6257
6258  if (R.empty()) {
6259    Diag(IdentLoc, diag::err_no_member)
6260      << NameInfo.getName() << LookupContext << SS.getRange();
6261    UD->setInvalidDecl();
6262    return UD;
6263  }
6264
6265  if (R.isAmbiguous()) {
6266    UD->setInvalidDecl();
6267    return UD;
6268  }
6269
6270  if (IsTypeName) {
6271    // If we asked for a typename and got a non-type decl, error out.
6272    if (!R.getAsSingle<TypeDecl>()) {
6273      Diag(IdentLoc, diag::err_using_typename_non_type);
6274      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6275        Diag((*I)->getUnderlyingDecl()->getLocation(),
6276             diag::note_using_decl_target);
6277      UD->setInvalidDecl();
6278      return UD;
6279    }
6280  } else {
6281    // If we asked for a non-typename and we got a type, error out,
6282    // but only if this is an instantiation of an unresolved using
6283    // decl.  Otherwise just silently find the type name.
6284    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6285      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6286      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6287      UD->setInvalidDecl();
6288      return UD;
6289    }
6290  }
6291
6292  // C++0x N2914 [namespace.udecl]p6:
6293  // A using-declaration shall not name a namespace.
6294  if (R.getAsSingle<NamespaceDecl>()) {
6295    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6296      << SS.getRange();
6297    UD->setInvalidDecl();
6298    return UD;
6299  }
6300
6301  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6302    if (!CheckUsingShadowDecl(UD, *I, Previous))
6303      BuildUsingShadowDecl(S, UD, *I);
6304  }
6305
6306  return UD;
6307}
6308
6309/// Additional checks for a using declaration referring to a constructor name.
6310bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6311  if (UD->isTypeName()) {
6312    // FIXME: Cannot specify typename when specifying constructor
6313    return true;
6314  }
6315
6316  const Type *SourceType = UD->getQualifier()->getAsType();
6317  assert(SourceType &&
6318         "Using decl naming constructor doesn't have type in scope spec.");
6319  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6320
6321  // Check whether the named type is a direct base class.
6322  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6323  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6324  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6325       BaseIt != BaseE; ++BaseIt) {
6326    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6327    if (CanonicalSourceType == BaseType)
6328      break;
6329  }
6330
6331  if (BaseIt == BaseE) {
6332    // Did not find SourceType in the bases.
6333    Diag(UD->getUsingLocation(),
6334         diag::err_using_decl_constructor_not_in_direct_base)
6335      << UD->getNameInfo().getSourceRange()
6336      << QualType(SourceType, 0) << TargetClass;
6337    return true;
6338  }
6339
6340  BaseIt->setInheritConstructors();
6341
6342  return false;
6343}
6344
6345/// Checks that the given using declaration is not an invalid
6346/// redeclaration.  Note that this is checking only for the using decl
6347/// itself, not for any ill-formedness among the UsingShadowDecls.
6348bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6349                                       bool isTypeName,
6350                                       const CXXScopeSpec &SS,
6351                                       SourceLocation NameLoc,
6352                                       const LookupResult &Prev) {
6353  // C++03 [namespace.udecl]p8:
6354  // C++0x [namespace.udecl]p10:
6355  //   A using-declaration is a declaration and can therefore be used
6356  //   repeatedly where (and only where) multiple declarations are
6357  //   allowed.
6358  //
6359  // That's in non-member contexts.
6360  if (!CurContext->getRedeclContext()->isRecord())
6361    return false;
6362
6363  NestedNameSpecifier *Qual
6364    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6365
6366  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6367    NamedDecl *D = *I;
6368
6369    bool DTypename;
6370    NestedNameSpecifier *DQual;
6371    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6372      DTypename = UD->isTypeName();
6373      DQual = UD->getQualifier();
6374    } else if (UnresolvedUsingValueDecl *UD
6375                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6376      DTypename = false;
6377      DQual = UD->getQualifier();
6378    } else if (UnresolvedUsingTypenameDecl *UD
6379                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6380      DTypename = true;
6381      DQual = UD->getQualifier();
6382    } else continue;
6383
6384    // using decls differ if one says 'typename' and the other doesn't.
6385    // FIXME: non-dependent using decls?
6386    if (isTypeName != DTypename) continue;
6387
6388    // using decls differ if they name different scopes (but note that
6389    // template instantiation can cause this check to trigger when it
6390    // didn't before instantiation).
6391    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6392        Context.getCanonicalNestedNameSpecifier(DQual))
6393      continue;
6394
6395    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6396    Diag(D->getLocation(), diag::note_using_decl) << 1;
6397    return true;
6398  }
6399
6400  return false;
6401}
6402
6403
6404/// Checks that the given nested-name qualifier used in a using decl
6405/// in the current context is appropriately related to the current
6406/// scope.  If an error is found, diagnoses it and returns true.
6407bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6408                                   const CXXScopeSpec &SS,
6409                                   SourceLocation NameLoc) {
6410  DeclContext *NamedContext = computeDeclContext(SS);
6411
6412  if (!CurContext->isRecord()) {
6413    // C++03 [namespace.udecl]p3:
6414    // C++0x [namespace.udecl]p8:
6415    //   A using-declaration for a class member shall be a member-declaration.
6416
6417    // If we weren't able to compute a valid scope, it must be a
6418    // dependent class scope.
6419    if (!NamedContext || NamedContext->isRecord()) {
6420      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6421        << SS.getRange();
6422      return true;
6423    }
6424
6425    // Otherwise, everything is known to be fine.
6426    return false;
6427  }
6428
6429  // The current scope is a record.
6430
6431  // If the named context is dependent, we can't decide much.
6432  if (!NamedContext) {
6433    // FIXME: in C++0x, we can diagnose if we can prove that the
6434    // nested-name-specifier does not refer to a base class, which is
6435    // still possible in some cases.
6436
6437    // Otherwise we have to conservatively report that things might be
6438    // okay.
6439    return false;
6440  }
6441
6442  if (!NamedContext->isRecord()) {
6443    // Ideally this would point at the last name in the specifier,
6444    // but we don't have that level of source info.
6445    Diag(SS.getRange().getBegin(),
6446         diag::err_using_decl_nested_name_specifier_is_not_class)
6447      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6448    return true;
6449  }
6450
6451  if (!NamedContext->isDependentContext() &&
6452      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6453    return true;
6454
6455  if (getLangOpts().CPlusPlus0x) {
6456    // C++0x [namespace.udecl]p3:
6457    //   In a using-declaration used as a member-declaration, the
6458    //   nested-name-specifier shall name a base class of the class
6459    //   being defined.
6460
6461    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6462                                 cast<CXXRecordDecl>(NamedContext))) {
6463      if (CurContext == NamedContext) {
6464        Diag(NameLoc,
6465             diag::err_using_decl_nested_name_specifier_is_current_class)
6466          << SS.getRange();
6467        return true;
6468      }
6469
6470      Diag(SS.getRange().getBegin(),
6471           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6472        << (NestedNameSpecifier*) SS.getScopeRep()
6473        << cast<CXXRecordDecl>(CurContext)
6474        << SS.getRange();
6475      return true;
6476    }
6477
6478    return false;
6479  }
6480
6481  // C++03 [namespace.udecl]p4:
6482  //   A using-declaration used as a member-declaration shall refer
6483  //   to a member of a base class of the class being defined [etc.].
6484
6485  // Salient point: SS doesn't have to name a base class as long as
6486  // lookup only finds members from base classes.  Therefore we can
6487  // diagnose here only if we can prove that that can't happen,
6488  // i.e. if the class hierarchies provably don't intersect.
6489
6490  // TODO: it would be nice if "definitely valid" results were cached
6491  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6492  // need to be repeated.
6493
6494  struct UserData {
6495    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6496
6497    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6498      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6499      Data->Bases.insert(Base);
6500      return true;
6501    }
6502
6503    bool hasDependentBases(const CXXRecordDecl *Class) {
6504      return !Class->forallBases(collect, this);
6505    }
6506
6507    /// Returns true if the base is dependent or is one of the
6508    /// accumulated base classes.
6509    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6510      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6511      return !Data->Bases.count(Base);
6512    }
6513
6514    bool mightShareBases(const CXXRecordDecl *Class) {
6515      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6516    }
6517  };
6518
6519  UserData Data;
6520
6521  // Returns false if we find a dependent base.
6522  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6523    return false;
6524
6525  // Returns false if the class has a dependent base or if it or one
6526  // of its bases is present in the base set of the current context.
6527  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6528    return false;
6529
6530  Diag(SS.getRange().getBegin(),
6531       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6532    << (NestedNameSpecifier*) SS.getScopeRep()
6533    << cast<CXXRecordDecl>(CurContext)
6534    << SS.getRange();
6535
6536  return true;
6537}
6538
6539Decl *Sema::ActOnAliasDeclaration(Scope *S,
6540                                  AccessSpecifier AS,
6541                                  MultiTemplateParamsArg TemplateParamLists,
6542                                  SourceLocation UsingLoc,
6543                                  UnqualifiedId &Name,
6544                                  TypeResult Type) {
6545  // Skip up to the relevant declaration scope.
6546  while (S->getFlags() & Scope::TemplateParamScope)
6547    S = S->getParent();
6548  assert((S->getFlags() & Scope::DeclScope) &&
6549         "got alias-declaration outside of declaration scope");
6550
6551  if (Type.isInvalid())
6552    return 0;
6553
6554  bool Invalid = false;
6555  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6556  TypeSourceInfo *TInfo = 0;
6557  GetTypeFromParser(Type.get(), &TInfo);
6558
6559  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6560    return 0;
6561
6562  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6563                                      UPPC_DeclarationType)) {
6564    Invalid = true;
6565    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6566                                             TInfo->getTypeLoc().getBeginLoc());
6567  }
6568
6569  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6570  LookupName(Previous, S);
6571
6572  // Warn about shadowing the name of a template parameter.
6573  if (Previous.isSingleResult() &&
6574      Previous.getFoundDecl()->isTemplateParameter()) {
6575    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6576    Previous.clear();
6577  }
6578
6579  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6580         "name in alias declaration must be an identifier");
6581  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6582                                               Name.StartLocation,
6583                                               Name.Identifier, TInfo);
6584
6585  NewTD->setAccess(AS);
6586
6587  if (Invalid)
6588    NewTD->setInvalidDecl();
6589
6590  CheckTypedefForVariablyModifiedType(S, NewTD);
6591  Invalid |= NewTD->isInvalidDecl();
6592
6593  bool Redeclaration = false;
6594
6595  NamedDecl *NewND;
6596  if (TemplateParamLists.size()) {
6597    TypeAliasTemplateDecl *OldDecl = 0;
6598    TemplateParameterList *OldTemplateParams = 0;
6599
6600    if (TemplateParamLists.size() != 1) {
6601      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6602        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6603         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6604    }
6605    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6606
6607    // Only consider previous declarations in the same scope.
6608    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6609                         /*ExplicitInstantiationOrSpecialization*/false);
6610    if (!Previous.empty()) {
6611      Redeclaration = true;
6612
6613      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6614      if (!OldDecl && !Invalid) {
6615        Diag(UsingLoc, diag::err_redefinition_different_kind)
6616          << Name.Identifier;
6617
6618        NamedDecl *OldD = Previous.getRepresentativeDecl();
6619        if (OldD->getLocation().isValid())
6620          Diag(OldD->getLocation(), diag::note_previous_definition);
6621
6622        Invalid = true;
6623      }
6624
6625      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6626        if (TemplateParameterListsAreEqual(TemplateParams,
6627                                           OldDecl->getTemplateParameters(),
6628                                           /*Complain=*/true,
6629                                           TPL_TemplateMatch))
6630          OldTemplateParams = OldDecl->getTemplateParameters();
6631        else
6632          Invalid = true;
6633
6634        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6635        if (!Invalid &&
6636            !Context.hasSameType(OldTD->getUnderlyingType(),
6637                                 NewTD->getUnderlyingType())) {
6638          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6639          // but we can't reasonably accept it.
6640          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6641            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6642          if (OldTD->getLocation().isValid())
6643            Diag(OldTD->getLocation(), diag::note_previous_definition);
6644          Invalid = true;
6645        }
6646      }
6647    }
6648
6649    // Merge any previous default template arguments into our parameters,
6650    // and check the parameter list.
6651    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6652                                   TPC_TypeAliasTemplate))
6653      return 0;
6654
6655    TypeAliasTemplateDecl *NewDecl =
6656      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6657                                    Name.Identifier, TemplateParams,
6658                                    NewTD);
6659
6660    NewDecl->setAccess(AS);
6661
6662    if (Invalid)
6663      NewDecl->setInvalidDecl();
6664    else if (OldDecl)
6665      NewDecl->setPreviousDeclaration(OldDecl);
6666
6667    NewND = NewDecl;
6668  } else {
6669    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6670    NewND = NewTD;
6671  }
6672
6673  if (!Redeclaration)
6674    PushOnScopeChains(NewND, S);
6675
6676  return NewND;
6677}
6678
6679Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6680                                             SourceLocation NamespaceLoc,
6681                                             SourceLocation AliasLoc,
6682                                             IdentifierInfo *Alias,
6683                                             CXXScopeSpec &SS,
6684                                             SourceLocation IdentLoc,
6685                                             IdentifierInfo *Ident) {
6686
6687  // Lookup the namespace name.
6688  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6689  LookupParsedName(R, S, &SS);
6690
6691  // Check if we have a previous declaration with the same name.
6692  NamedDecl *PrevDecl
6693    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6694                       ForRedeclaration);
6695  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6696    PrevDecl = 0;
6697
6698  if (PrevDecl) {
6699    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6700      // We already have an alias with the same name that points to the same
6701      // namespace, so don't create a new one.
6702      // FIXME: At some point, we'll want to create the (redundant)
6703      // declaration to maintain better source information.
6704      if (!R.isAmbiguous() && !R.empty() &&
6705          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6706        return 0;
6707    }
6708
6709    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6710      diag::err_redefinition_different_kind;
6711    Diag(AliasLoc, DiagID) << Alias;
6712    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6713    return 0;
6714  }
6715
6716  if (R.isAmbiguous())
6717    return 0;
6718
6719  if (R.empty()) {
6720    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6721      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6722      return 0;
6723    }
6724  }
6725
6726  NamespaceAliasDecl *AliasDecl =
6727    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6728                               Alias, SS.getWithLocInContext(Context),
6729                               IdentLoc, R.getFoundDecl());
6730
6731  PushOnScopeChains(AliasDecl, S);
6732  return AliasDecl;
6733}
6734
6735namespace {
6736  /// \brief Scoped object used to handle the state changes required in Sema
6737  /// to implicitly define the body of a C++ member function;
6738  class ImplicitlyDefinedFunctionScope {
6739    Sema &S;
6740    Sema::ContextRAII SavedContext;
6741
6742  public:
6743    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6744      : S(S), SavedContext(S, Method)
6745    {
6746      S.PushFunctionScope();
6747      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6748    }
6749
6750    ~ImplicitlyDefinedFunctionScope() {
6751      S.PopExpressionEvaluationContext();
6752      S.PopFunctionScopeInfo();
6753    }
6754  };
6755}
6756
6757Sema::ImplicitExceptionSpecification
6758Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6759  // C++ [except.spec]p14:
6760  //   An implicitly declared special member function (Clause 12) shall have an
6761  //   exception-specification. [...]
6762  ImplicitExceptionSpecification ExceptSpec(Context);
6763  if (ClassDecl->isInvalidDecl())
6764    return ExceptSpec;
6765
6766  // Direct base-class constructors.
6767  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6768                                       BEnd = ClassDecl->bases_end();
6769       B != BEnd; ++B) {
6770    if (B->isVirtual()) // Handled below.
6771      continue;
6772
6773    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6774      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6775      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6776      // If this is a deleted function, add it anyway. This might be conformant
6777      // with the standard. This might not. I'm not sure. It might not matter.
6778      if (Constructor)
6779        ExceptSpec.CalledDecl(Constructor);
6780    }
6781  }
6782
6783  // Virtual base-class constructors.
6784  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6785                                       BEnd = ClassDecl->vbases_end();
6786       B != BEnd; ++B) {
6787    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6788      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6789      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6790      // If this is a deleted function, add it anyway. This might be conformant
6791      // with the standard. This might not. I'm not sure. It might not matter.
6792      if (Constructor)
6793        ExceptSpec.CalledDecl(Constructor);
6794    }
6795  }
6796
6797  // Field constructors.
6798  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6799                               FEnd = ClassDecl->field_end();
6800       F != FEnd; ++F) {
6801    if (F->hasInClassInitializer()) {
6802      if (Expr *E = F->getInClassInitializer())
6803        ExceptSpec.CalledExpr(E);
6804      else if (!F->isInvalidDecl())
6805        ExceptSpec.SetDelayed();
6806    } else if (const RecordType *RecordTy
6807              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6808      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6809      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6810      // If this is a deleted function, add it anyway. This might be conformant
6811      // with the standard. This might not. I'm not sure. It might not matter.
6812      // In particular, the problem is that this function never gets called. It
6813      // might just be ill-formed because this function attempts to refer to
6814      // a deleted function here.
6815      if (Constructor)
6816        ExceptSpec.CalledDecl(Constructor);
6817    }
6818  }
6819
6820  return ExceptSpec;
6821}
6822
6823CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6824                                                     CXXRecordDecl *ClassDecl) {
6825  // C++ [class.ctor]p5:
6826  //   A default constructor for a class X is a constructor of class X
6827  //   that can be called without an argument. If there is no
6828  //   user-declared constructor for class X, a default constructor is
6829  //   implicitly declared. An implicitly-declared default constructor
6830  //   is an inline public member of its class.
6831  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6832         "Should not build implicit default constructor!");
6833
6834  ImplicitExceptionSpecification Spec =
6835    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6836  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6837
6838  // Create the actual constructor declaration.
6839  CanQualType ClassType
6840    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6841  SourceLocation ClassLoc = ClassDecl->getLocation();
6842  DeclarationName Name
6843    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6844  DeclarationNameInfo NameInfo(Name, ClassLoc);
6845  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6846      Context, ClassDecl, ClassLoc, NameInfo,
6847      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6848      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6849      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6850        getLangOpts().CPlusPlus0x);
6851  DefaultCon->setAccess(AS_public);
6852  DefaultCon->setDefaulted();
6853  DefaultCon->setImplicit();
6854  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6855
6856  // Note that we have declared this constructor.
6857  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6858
6859  if (Scope *S = getScopeForContext(ClassDecl))
6860    PushOnScopeChains(DefaultCon, S, false);
6861  ClassDecl->addDecl(DefaultCon);
6862
6863  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6864    DefaultCon->setDeletedAsWritten();
6865
6866  return DefaultCon;
6867}
6868
6869void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6870                                            CXXConstructorDecl *Constructor) {
6871  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6872          !Constructor->doesThisDeclarationHaveABody() &&
6873          !Constructor->isDeleted()) &&
6874    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6875
6876  CXXRecordDecl *ClassDecl = Constructor->getParent();
6877  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6878
6879  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6880  DiagnosticErrorTrap Trap(Diags);
6881  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6882      Trap.hasErrorOccurred()) {
6883    Diag(CurrentLocation, diag::note_member_synthesized_at)
6884      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6885    Constructor->setInvalidDecl();
6886    return;
6887  }
6888
6889  SourceLocation Loc = Constructor->getLocation();
6890  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6891
6892  Constructor->setUsed();
6893  MarkVTableUsed(CurrentLocation, ClassDecl);
6894
6895  if (ASTMutationListener *L = getASTMutationListener()) {
6896    L->CompletedImplicitDefinition(Constructor);
6897  }
6898}
6899
6900/// Get any existing defaulted default constructor for the given class. Do not
6901/// implicitly define one if it does not exist.
6902static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6903                                                             CXXRecordDecl *D) {
6904  ASTContext &Context = Self.Context;
6905  QualType ClassType = Context.getTypeDeclType(D);
6906  DeclarationName ConstructorName
6907    = Context.DeclarationNames.getCXXConstructorName(
6908                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6909
6910  DeclContext::lookup_const_iterator Con, ConEnd;
6911  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6912       Con != ConEnd; ++Con) {
6913    // A function template cannot be defaulted.
6914    if (isa<FunctionTemplateDecl>(*Con))
6915      continue;
6916
6917    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6918    if (Constructor->isDefaultConstructor())
6919      return Constructor->isDefaulted() ? Constructor : 0;
6920  }
6921  return 0;
6922}
6923
6924void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6925  if (!D) return;
6926  AdjustDeclIfTemplate(D);
6927
6928  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6929  CXXConstructorDecl *CtorDecl
6930    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6931
6932  if (!CtorDecl) return;
6933
6934  // Compute the exception specification for the default constructor.
6935  const FunctionProtoType *CtorTy =
6936    CtorDecl->getType()->castAs<FunctionProtoType>();
6937  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6938    ImplicitExceptionSpecification Spec =
6939      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6940    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6941    assert(EPI.ExceptionSpecType != EST_Delayed);
6942
6943    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6944  }
6945
6946  // If the default constructor is explicitly defaulted, checking the exception
6947  // specification is deferred until now.
6948  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6949      !ClassDecl->isDependentType())
6950    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6951}
6952
6953void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6954  // We start with an initial pass over the base classes to collect those that
6955  // inherit constructors from. If there are none, we can forgo all further
6956  // processing.
6957  typedef SmallVector<const RecordType *, 4> BasesVector;
6958  BasesVector BasesToInheritFrom;
6959  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6960                                          BaseE = ClassDecl->bases_end();
6961         BaseIt != BaseE; ++BaseIt) {
6962    if (BaseIt->getInheritConstructors()) {
6963      QualType Base = BaseIt->getType();
6964      if (Base->isDependentType()) {
6965        // If we inherit constructors from anything that is dependent, just
6966        // abort processing altogether. We'll get another chance for the
6967        // instantiations.
6968        return;
6969      }
6970      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6971    }
6972  }
6973  if (BasesToInheritFrom.empty())
6974    return;
6975
6976  // Now collect the constructors that we already have in the current class.
6977  // Those take precedence over inherited constructors.
6978  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6979  //   unless there is a user-declared constructor with the same signature in
6980  //   the class where the using-declaration appears.
6981  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6982  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6983                                    CtorE = ClassDecl->ctor_end();
6984       CtorIt != CtorE; ++CtorIt) {
6985    ExistingConstructors.insert(
6986        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6987  }
6988
6989  Scope *S = getScopeForContext(ClassDecl);
6990  DeclarationName CreatedCtorName =
6991      Context.DeclarationNames.getCXXConstructorName(
6992          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6993
6994  // Now comes the true work.
6995  // First, we keep a map from constructor types to the base that introduced
6996  // them. Needed for finding conflicting constructors. We also keep the
6997  // actually inserted declarations in there, for pretty diagnostics.
6998  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6999  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7000  ConstructorToSourceMap InheritedConstructors;
7001  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7002                             BaseE = BasesToInheritFrom.end();
7003       BaseIt != BaseE; ++BaseIt) {
7004    const RecordType *Base = *BaseIt;
7005    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7006    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7007    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7008                                      CtorE = BaseDecl->ctor_end();
7009         CtorIt != CtorE; ++CtorIt) {
7010      // Find the using declaration for inheriting this base's constructors.
7011      DeclarationName Name =
7012          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7013      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7014          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7015      SourceLocation UsingLoc = UD ? UD->getLocation() :
7016                                     ClassDecl->getLocation();
7017
7018      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7019      //   from the class X named in the using-declaration consists of actual
7020      //   constructors and notional constructors that result from the
7021      //   transformation of defaulted parameters as follows:
7022      //   - all non-template default constructors of X, and
7023      //   - for each non-template constructor of X that has at least one
7024      //     parameter with a default argument, the set of constructors that
7025      //     results from omitting any ellipsis parameter specification and
7026      //     successively omitting parameters with a default argument from the
7027      //     end of the parameter-type-list.
7028      CXXConstructorDecl *BaseCtor = *CtorIt;
7029      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7030      const FunctionProtoType *BaseCtorType =
7031          BaseCtor->getType()->getAs<FunctionProtoType>();
7032
7033      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7034                    maxParams = BaseCtor->getNumParams();
7035           params <= maxParams; ++params) {
7036        // Skip default constructors. They're never inherited.
7037        if (params == 0)
7038          continue;
7039        // Skip copy and move constructors for the same reason.
7040        if (CanBeCopyOrMove && params == 1)
7041          continue;
7042
7043        // Build up a function type for this particular constructor.
7044        // FIXME: The working paper does not consider that the exception spec
7045        // for the inheriting constructor might be larger than that of the
7046        // source. This code doesn't yet, either. When it does, this code will
7047        // need to be delayed until after exception specifications and in-class
7048        // member initializers are attached.
7049        const Type *NewCtorType;
7050        if (params == maxParams)
7051          NewCtorType = BaseCtorType;
7052        else {
7053          SmallVector<QualType, 16> Args;
7054          for (unsigned i = 0; i < params; ++i) {
7055            Args.push_back(BaseCtorType->getArgType(i));
7056          }
7057          FunctionProtoType::ExtProtoInfo ExtInfo =
7058              BaseCtorType->getExtProtoInfo();
7059          ExtInfo.Variadic = false;
7060          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7061                                                Args.data(), params, ExtInfo)
7062                       .getTypePtr();
7063        }
7064        const Type *CanonicalNewCtorType =
7065            Context.getCanonicalType(NewCtorType);
7066
7067        // Now that we have the type, first check if the class already has a
7068        // constructor with this signature.
7069        if (ExistingConstructors.count(CanonicalNewCtorType))
7070          continue;
7071
7072        // Then we check if we have already declared an inherited constructor
7073        // with this signature.
7074        std::pair<ConstructorToSourceMap::iterator, bool> result =
7075            InheritedConstructors.insert(std::make_pair(
7076                CanonicalNewCtorType,
7077                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7078        if (!result.second) {
7079          // Already in the map. If it came from a different class, that's an
7080          // error. Not if it's from the same.
7081          CanQualType PreviousBase = result.first->second.first;
7082          if (CanonicalBase != PreviousBase) {
7083            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7084            const CXXConstructorDecl *PrevBaseCtor =
7085                PrevCtor->getInheritedConstructor();
7086            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7087
7088            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7089            Diag(BaseCtor->getLocation(),
7090                 diag::note_using_decl_constructor_conflict_current_ctor);
7091            Diag(PrevBaseCtor->getLocation(),
7092                 diag::note_using_decl_constructor_conflict_previous_ctor);
7093            Diag(PrevCtor->getLocation(),
7094                 diag::note_using_decl_constructor_conflict_previous_using);
7095          }
7096          continue;
7097        }
7098
7099        // OK, we're there, now add the constructor.
7100        // C++0x [class.inhctor]p8: [...] that would be performed by a
7101        //   user-written inline constructor [...]
7102        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7103        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7104            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7105            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7106            /*ImplicitlyDeclared=*/true,
7107            // FIXME: Due to a defect in the standard, we treat inherited
7108            // constructors as constexpr even if that makes them ill-formed.
7109            /*Constexpr=*/BaseCtor->isConstexpr());
7110        NewCtor->setAccess(BaseCtor->getAccess());
7111
7112        // Build up the parameter decls and add them.
7113        SmallVector<ParmVarDecl *, 16> ParamDecls;
7114        for (unsigned i = 0; i < params; ++i) {
7115          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7116                                                   UsingLoc, UsingLoc,
7117                                                   /*IdentifierInfo=*/0,
7118                                                   BaseCtorType->getArgType(i),
7119                                                   /*TInfo=*/0, SC_None,
7120                                                   SC_None, /*DefaultArg=*/0));
7121        }
7122        NewCtor->setParams(ParamDecls);
7123        NewCtor->setInheritedConstructor(BaseCtor);
7124
7125        PushOnScopeChains(NewCtor, S, false);
7126        ClassDecl->addDecl(NewCtor);
7127        result.first->second.second = NewCtor;
7128      }
7129    }
7130  }
7131}
7132
7133Sema::ImplicitExceptionSpecification
7134Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7135  // C++ [except.spec]p14:
7136  //   An implicitly declared special member function (Clause 12) shall have
7137  //   an exception-specification.
7138  ImplicitExceptionSpecification ExceptSpec(Context);
7139  if (ClassDecl->isInvalidDecl())
7140    return ExceptSpec;
7141
7142  // Direct base-class destructors.
7143  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7144                                       BEnd = ClassDecl->bases_end();
7145       B != BEnd; ++B) {
7146    if (B->isVirtual()) // Handled below.
7147      continue;
7148
7149    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7150      ExceptSpec.CalledDecl(
7151                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7152  }
7153
7154  // Virtual base-class destructors.
7155  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7156                                       BEnd = ClassDecl->vbases_end();
7157       B != BEnd; ++B) {
7158    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7159      ExceptSpec.CalledDecl(
7160                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7161  }
7162
7163  // Field destructors.
7164  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7165                               FEnd = ClassDecl->field_end();
7166       F != FEnd; ++F) {
7167    if (const RecordType *RecordTy
7168        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7169      ExceptSpec.CalledDecl(
7170                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7171  }
7172
7173  return ExceptSpec;
7174}
7175
7176CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7177  // C++ [class.dtor]p2:
7178  //   If a class has no user-declared destructor, a destructor is
7179  //   declared implicitly. An implicitly-declared destructor is an
7180  //   inline public member of its class.
7181
7182  ImplicitExceptionSpecification Spec =
7183      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7184  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7185
7186  // Create the actual destructor declaration.
7187  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7188
7189  CanQualType ClassType
7190    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7191  SourceLocation ClassLoc = ClassDecl->getLocation();
7192  DeclarationName Name
7193    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7194  DeclarationNameInfo NameInfo(Name, ClassLoc);
7195  CXXDestructorDecl *Destructor
7196      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7197                                  /*isInline=*/true,
7198                                  /*isImplicitlyDeclared=*/true);
7199  Destructor->setAccess(AS_public);
7200  Destructor->setDefaulted();
7201  Destructor->setImplicit();
7202  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7203
7204  // Note that we have declared this destructor.
7205  ++ASTContext::NumImplicitDestructorsDeclared;
7206
7207  // Introduce this destructor into its scope.
7208  if (Scope *S = getScopeForContext(ClassDecl))
7209    PushOnScopeChains(Destructor, S, false);
7210  ClassDecl->addDecl(Destructor);
7211
7212  // This could be uniqued if it ever proves significant.
7213  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7214
7215  AddOverriddenMethods(ClassDecl, Destructor);
7216
7217  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7218    Destructor->setDeletedAsWritten();
7219
7220  return Destructor;
7221}
7222
7223void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7224                                    CXXDestructorDecl *Destructor) {
7225  assert((Destructor->isDefaulted() &&
7226          !Destructor->doesThisDeclarationHaveABody() &&
7227          !Destructor->isDeleted()) &&
7228         "DefineImplicitDestructor - call it for implicit default dtor");
7229  CXXRecordDecl *ClassDecl = Destructor->getParent();
7230  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7231
7232  if (Destructor->isInvalidDecl())
7233    return;
7234
7235  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7236
7237  DiagnosticErrorTrap Trap(Diags);
7238  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7239                                         Destructor->getParent());
7240
7241  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7242    Diag(CurrentLocation, diag::note_member_synthesized_at)
7243      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7244
7245    Destructor->setInvalidDecl();
7246    return;
7247  }
7248
7249  SourceLocation Loc = Destructor->getLocation();
7250  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7251  Destructor->setImplicitlyDefined(true);
7252  Destructor->setUsed();
7253  MarkVTableUsed(CurrentLocation, ClassDecl);
7254
7255  if (ASTMutationListener *L = getASTMutationListener()) {
7256    L->CompletedImplicitDefinition(Destructor);
7257  }
7258}
7259
7260void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7261                                         CXXDestructorDecl *destructor) {
7262  // C++11 [class.dtor]p3:
7263  //   A declaration of a destructor that does not have an exception-
7264  //   specification is implicitly considered to have the same exception-
7265  //   specification as an implicit declaration.
7266  const FunctionProtoType *dtorType = destructor->getType()->
7267                                        getAs<FunctionProtoType>();
7268  if (dtorType->hasExceptionSpec())
7269    return;
7270
7271  ImplicitExceptionSpecification exceptSpec =
7272      ComputeDefaultedDtorExceptionSpec(classDecl);
7273
7274  // Replace the destructor's type, building off the existing one. Fortunately,
7275  // the only thing of interest in the destructor type is its extended info.
7276  // The return and arguments are fixed.
7277  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7278  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7279  epi.NumExceptions = exceptSpec.size();
7280  epi.Exceptions = exceptSpec.data();
7281  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7282
7283  destructor->setType(ty);
7284
7285  // FIXME: If the destructor has a body that could throw, and the newly created
7286  // spec doesn't allow exceptions, we should emit a warning, because this
7287  // change in behavior can break conforming C++03 programs at runtime.
7288  // However, we don't have a body yet, so it needs to be done somewhere else.
7289}
7290
7291/// \brief Builds a statement that copies/moves the given entity from \p From to
7292/// \c To.
7293///
7294/// This routine is used to copy/move the members of a class with an
7295/// implicitly-declared copy/move assignment operator. When the entities being
7296/// copied are arrays, this routine builds for loops to copy them.
7297///
7298/// \param S The Sema object used for type-checking.
7299///
7300/// \param Loc The location where the implicit copy/move is being generated.
7301///
7302/// \param T The type of the expressions being copied/moved. Both expressions
7303/// must have this type.
7304///
7305/// \param To The expression we are copying/moving to.
7306///
7307/// \param From The expression we are copying/moving from.
7308///
7309/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7310/// Otherwise, it's a non-static member subobject.
7311///
7312/// \param Copying Whether we're copying or moving.
7313///
7314/// \param Depth Internal parameter recording the depth of the recursion.
7315///
7316/// \returns A statement or a loop that copies the expressions.
7317static StmtResult
7318BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7319                      Expr *To, Expr *From,
7320                      bool CopyingBaseSubobject, bool Copying,
7321                      unsigned Depth = 0) {
7322  // C++0x [class.copy]p28:
7323  //   Each subobject is assigned in the manner appropriate to its type:
7324  //
7325  //     - if the subobject is of class type, as if by a call to operator= with
7326  //       the subobject as the object expression and the corresponding
7327  //       subobject of x as a single function argument (as if by explicit
7328  //       qualification; that is, ignoring any possible virtual overriding
7329  //       functions in more derived classes);
7330  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7331    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7332
7333    // Look for operator=.
7334    DeclarationName Name
7335      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7336    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7337    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7338
7339    // Filter out any result that isn't a copy/move-assignment operator.
7340    LookupResult::Filter F = OpLookup.makeFilter();
7341    while (F.hasNext()) {
7342      NamedDecl *D = F.next();
7343      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7344        if (Copying ? Method->isCopyAssignmentOperator() :
7345                      Method->isMoveAssignmentOperator())
7346          continue;
7347
7348      F.erase();
7349    }
7350    F.done();
7351
7352    // Suppress the protected check (C++ [class.protected]) for each of the
7353    // assignment operators we found. This strange dance is required when
7354    // we're assigning via a base classes's copy-assignment operator. To
7355    // ensure that we're getting the right base class subobject (without
7356    // ambiguities), we need to cast "this" to that subobject type; to
7357    // ensure that we don't go through the virtual call mechanism, we need
7358    // to qualify the operator= name with the base class (see below). However,
7359    // this means that if the base class has a protected copy assignment
7360    // operator, the protected member access check will fail. So, we
7361    // rewrite "protected" access to "public" access in this case, since we
7362    // know by construction that we're calling from a derived class.
7363    if (CopyingBaseSubobject) {
7364      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7365           L != LEnd; ++L) {
7366        if (L.getAccess() == AS_protected)
7367          L.setAccess(AS_public);
7368      }
7369    }
7370
7371    // Create the nested-name-specifier that will be used to qualify the
7372    // reference to operator=; this is required to suppress the virtual
7373    // call mechanism.
7374    CXXScopeSpec SS;
7375    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7376    SS.MakeTrivial(S.Context,
7377                   NestedNameSpecifier::Create(S.Context, 0, false,
7378                                               CanonicalT),
7379                   Loc);
7380
7381    // Create the reference to operator=.
7382    ExprResult OpEqualRef
7383      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7384                                   /*TemplateKWLoc=*/SourceLocation(),
7385                                   /*FirstQualifierInScope=*/0,
7386                                   OpLookup,
7387                                   /*TemplateArgs=*/0,
7388                                   /*SuppressQualifierCheck=*/true);
7389    if (OpEqualRef.isInvalid())
7390      return StmtError();
7391
7392    // Build the call to the assignment operator.
7393
7394    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7395                                                  OpEqualRef.takeAs<Expr>(),
7396                                                  Loc, &From, 1, Loc);
7397    if (Call.isInvalid())
7398      return StmtError();
7399
7400    return S.Owned(Call.takeAs<Stmt>());
7401  }
7402
7403  //     - if the subobject is of scalar type, the built-in assignment
7404  //       operator is used.
7405  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7406  if (!ArrayTy) {
7407    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7408    if (Assignment.isInvalid())
7409      return StmtError();
7410
7411    return S.Owned(Assignment.takeAs<Stmt>());
7412  }
7413
7414  //     - if the subobject is an array, each element is assigned, in the
7415  //       manner appropriate to the element type;
7416
7417  // Construct a loop over the array bounds, e.g.,
7418  //
7419  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7420  //
7421  // that will copy each of the array elements.
7422  QualType SizeType = S.Context.getSizeType();
7423
7424  // Create the iteration variable.
7425  IdentifierInfo *IterationVarName = 0;
7426  {
7427    SmallString<8> Str;
7428    llvm::raw_svector_ostream OS(Str);
7429    OS << "__i" << Depth;
7430    IterationVarName = &S.Context.Idents.get(OS.str());
7431  }
7432  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7433                                          IterationVarName, SizeType,
7434                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7435                                          SC_None, SC_None);
7436
7437  // Initialize the iteration variable to zero.
7438  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7439  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7440
7441  // Create a reference to the iteration variable; we'll use this several
7442  // times throughout.
7443  Expr *IterationVarRef
7444    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7445  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7446  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7447  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7448
7449  // Create the DeclStmt that holds the iteration variable.
7450  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7451
7452  // Create the comparison against the array bound.
7453  llvm::APInt Upper
7454    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7455  Expr *Comparison
7456    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7457                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7458                                     BO_NE, S.Context.BoolTy,
7459                                     VK_RValue, OK_Ordinary, Loc);
7460
7461  // Create the pre-increment of the iteration variable.
7462  Expr *Increment
7463    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7464                                    VK_LValue, OK_Ordinary, Loc);
7465
7466  // Subscript the "from" and "to" expressions with the iteration variable.
7467  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7468                                                         IterationVarRefRVal,
7469                                                         Loc));
7470  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7471                                                       IterationVarRefRVal,
7472                                                       Loc));
7473  if (!Copying) // Cast to rvalue
7474    From = CastForMoving(S, From);
7475
7476  // Build the copy/move for an individual element of the array.
7477  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7478                                          To, From, CopyingBaseSubobject,
7479                                          Copying, Depth + 1);
7480  if (Copy.isInvalid())
7481    return StmtError();
7482
7483  // Construct the loop that copies all elements of this array.
7484  return S.ActOnForStmt(Loc, Loc, InitStmt,
7485                        S.MakeFullExpr(Comparison),
7486                        0, S.MakeFullExpr(Increment),
7487                        Loc, Copy.take());
7488}
7489
7490std::pair<Sema::ImplicitExceptionSpecification, bool>
7491Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7492                                                   CXXRecordDecl *ClassDecl) {
7493  if (ClassDecl->isInvalidDecl())
7494    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7495
7496  // C++ [class.copy]p10:
7497  //   If the class definition does not explicitly declare a copy
7498  //   assignment operator, one is declared implicitly.
7499  //   The implicitly-defined copy assignment operator for a class X
7500  //   will have the form
7501  //
7502  //       X& X::operator=(const X&)
7503  //
7504  //   if
7505  bool HasConstCopyAssignment = true;
7506
7507  //       -- each direct base class B of X has a copy assignment operator
7508  //          whose parameter is of type const B&, const volatile B& or B,
7509  //          and
7510  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7511                                       BaseEnd = ClassDecl->bases_end();
7512       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7513    // We'll handle this below
7514    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7515      continue;
7516
7517    assert(!Base->getType()->isDependentType() &&
7518           "Cannot generate implicit members for class with dependent bases.");
7519    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7520    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7521                            &HasConstCopyAssignment);
7522  }
7523
7524  // In C++11, the above citation has "or virtual" added
7525  if (LangOpts.CPlusPlus0x) {
7526    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7527                                         BaseEnd = ClassDecl->vbases_end();
7528         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7529      assert(!Base->getType()->isDependentType() &&
7530             "Cannot generate implicit members for class with dependent bases.");
7531      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7532      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7533                              &HasConstCopyAssignment);
7534    }
7535  }
7536
7537  //       -- for all the nonstatic data members of X that are of a class
7538  //          type M (or array thereof), each such class type has a copy
7539  //          assignment operator whose parameter is of type const M&,
7540  //          const volatile M& or M.
7541  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7542                                  FieldEnd = ClassDecl->field_end();
7543       HasConstCopyAssignment && Field != FieldEnd;
7544       ++Field) {
7545    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7546    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7547      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7548                              &HasConstCopyAssignment);
7549    }
7550  }
7551
7552  //   Otherwise, the implicitly declared copy assignment operator will
7553  //   have the form
7554  //
7555  //       X& X::operator=(X&)
7556
7557  // C++ [except.spec]p14:
7558  //   An implicitly declared special member function (Clause 12) shall have an
7559  //   exception-specification. [...]
7560
7561  // It is unspecified whether or not an implicit copy assignment operator
7562  // attempts to deduplicate calls to assignment operators of virtual bases are
7563  // made. As such, this exception specification is effectively unspecified.
7564  // Based on a similar decision made for constness in C++0x, we're erring on
7565  // the side of assuming such calls to be made regardless of whether they
7566  // actually happen.
7567  ImplicitExceptionSpecification ExceptSpec(Context);
7568  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7569  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7570                                       BaseEnd = ClassDecl->bases_end();
7571       Base != BaseEnd; ++Base) {
7572    if (Base->isVirtual())
7573      continue;
7574
7575    CXXRecordDecl *BaseClassDecl
7576      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7577    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7578                                                            ArgQuals, false, 0))
7579      ExceptSpec.CalledDecl(CopyAssign);
7580  }
7581
7582  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7583                                       BaseEnd = ClassDecl->vbases_end();
7584       Base != BaseEnd; ++Base) {
7585    CXXRecordDecl *BaseClassDecl
7586      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7587    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7588                                                            ArgQuals, false, 0))
7589      ExceptSpec.CalledDecl(CopyAssign);
7590  }
7591
7592  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7593                                  FieldEnd = ClassDecl->field_end();
7594       Field != FieldEnd;
7595       ++Field) {
7596    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7597    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7598      if (CXXMethodDecl *CopyAssign =
7599          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7600        ExceptSpec.CalledDecl(CopyAssign);
7601    }
7602  }
7603
7604  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7605}
7606
7607CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7608  // Note: The following rules are largely analoguous to the copy
7609  // constructor rules. Note that virtual bases are not taken into account
7610  // for determining the argument type of the operator. Note also that
7611  // operators taking an object instead of a reference are allowed.
7612
7613  ImplicitExceptionSpecification Spec(Context);
7614  bool Const;
7615  llvm::tie(Spec, Const) =
7616    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7617
7618  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7619  QualType RetType = Context.getLValueReferenceType(ArgType);
7620  if (Const)
7621    ArgType = ArgType.withConst();
7622  ArgType = Context.getLValueReferenceType(ArgType);
7623
7624  //   An implicitly-declared copy assignment operator is an inline public
7625  //   member of its class.
7626  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7627  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7628  SourceLocation ClassLoc = ClassDecl->getLocation();
7629  DeclarationNameInfo NameInfo(Name, ClassLoc);
7630  CXXMethodDecl *CopyAssignment
7631    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7632                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7633                            /*TInfo=*/0, /*isStatic=*/false,
7634                            /*StorageClassAsWritten=*/SC_None,
7635                            /*isInline=*/true, /*isConstexpr=*/false,
7636                            SourceLocation());
7637  CopyAssignment->setAccess(AS_public);
7638  CopyAssignment->setDefaulted();
7639  CopyAssignment->setImplicit();
7640  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7641
7642  // Add the parameter to the operator.
7643  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7644                                               ClassLoc, ClassLoc, /*Id=*/0,
7645                                               ArgType, /*TInfo=*/0,
7646                                               SC_None,
7647                                               SC_None, 0);
7648  CopyAssignment->setParams(FromParam);
7649
7650  // Note that we have added this copy-assignment operator.
7651  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7652
7653  if (Scope *S = getScopeForContext(ClassDecl))
7654    PushOnScopeChains(CopyAssignment, S, false);
7655  ClassDecl->addDecl(CopyAssignment);
7656
7657  // C++0x [class.copy]p19:
7658  //   ....  If the class definition does not explicitly declare a copy
7659  //   assignment operator, there is no user-declared move constructor, and
7660  //   there is no user-declared move assignment operator, a copy assignment
7661  //   operator is implicitly declared as defaulted.
7662  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7663          !getLangOpts().MicrosoftMode) ||
7664      ClassDecl->hasUserDeclaredMoveAssignment() ||
7665      ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7666    CopyAssignment->setDeletedAsWritten();
7667
7668  AddOverriddenMethods(ClassDecl, CopyAssignment);
7669  return CopyAssignment;
7670}
7671
7672void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7673                                        CXXMethodDecl *CopyAssignOperator) {
7674  assert((CopyAssignOperator->isDefaulted() &&
7675          CopyAssignOperator->isOverloadedOperator() &&
7676          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7677          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7678          !CopyAssignOperator->isDeleted()) &&
7679         "DefineImplicitCopyAssignment called for wrong function");
7680
7681  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7682
7683  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7684    CopyAssignOperator->setInvalidDecl();
7685    return;
7686  }
7687
7688  CopyAssignOperator->setUsed();
7689
7690  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7691  DiagnosticErrorTrap Trap(Diags);
7692
7693  // C++0x [class.copy]p30:
7694  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7695  //   for a non-union class X performs memberwise copy assignment of its
7696  //   subobjects. The direct base classes of X are assigned first, in the
7697  //   order of their declaration in the base-specifier-list, and then the
7698  //   immediate non-static data members of X are assigned, in the order in
7699  //   which they were declared in the class definition.
7700
7701  // The statements that form the synthesized function body.
7702  ASTOwningVector<Stmt*> Statements(*this);
7703
7704  // The parameter for the "other" object, which we are copying from.
7705  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7706  Qualifiers OtherQuals = Other->getType().getQualifiers();
7707  QualType OtherRefType = Other->getType();
7708  if (const LValueReferenceType *OtherRef
7709                                = OtherRefType->getAs<LValueReferenceType>()) {
7710    OtherRefType = OtherRef->getPointeeType();
7711    OtherQuals = OtherRefType.getQualifiers();
7712  }
7713
7714  // Our location for everything implicitly-generated.
7715  SourceLocation Loc = CopyAssignOperator->getLocation();
7716
7717  // Construct a reference to the "other" object. We'll be using this
7718  // throughout the generated ASTs.
7719  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7720  assert(OtherRef && "Reference to parameter cannot fail!");
7721
7722  // Construct the "this" pointer. We'll be using this throughout the generated
7723  // ASTs.
7724  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7725  assert(This && "Reference to this cannot fail!");
7726
7727  // Assign base classes.
7728  bool Invalid = false;
7729  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7730       E = ClassDecl->bases_end(); Base != E; ++Base) {
7731    // Form the assignment:
7732    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7733    QualType BaseType = Base->getType().getUnqualifiedType();
7734    if (!BaseType->isRecordType()) {
7735      Invalid = true;
7736      continue;
7737    }
7738
7739    CXXCastPath BasePath;
7740    BasePath.push_back(Base);
7741
7742    // Construct the "from" expression, which is an implicit cast to the
7743    // appropriately-qualified base type.
7744    Expr *From = OtherRef;
7745    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7746                             CK_UncheckedDerivedToBase,
7747                             VK_LValue, &BasePath).take();
7748
7749    // Dereference "this".
7750    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7751
7752    // Implicitly cast "this" to the appropriately-qualified base type.
7753    To = ImpCastExprToType(To.take(),
7754                           Context.getCVRQualifiedType(BaseType,
7755                                     CopyAssignOperator->getTypeQualifiers()),
7756                           CK_UncheckedDerivedToBase,
7757                           VK_LValue, &BasePath);
7758
7759    // Build the copy.
7760    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7761                                            To.get(), From,
7762                                            /*CopyingBaseSubobject=*/true,
7763                                            /*Copying=*/true);
7764    if (Copy.isInvalid()) {
7765      Diag(CurrentLocation, diag::note_member_synthesized_at)
7766        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7767      CopyAssignOperator->setInvalidDecl();
7768      return;
7769    }
7770
7771    // Success! Record the copy.
7772    Statements.push_back(Copy.takeAs<Expr>());
7773  }
7774
7775  // \brief Reference to the __builtin_memcpy function.
7776  Expr *BuiltinMemCpyRef = 0;
7777  // \brief Reference to the __builtin_objc_memmove_collectable function.
7778  Expr *CollectableMemCpyRef = 0;
7779
7780  // Assign non-static members.
7781  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7782                                  FieldEnd = ClassDecl->field_end();
7783       Field != FieldEnd; ++Field) {
7784    if (Field->isUnnamedBitfield())
7785      continue;
7786
7787    // Check for members of reference type; we can't copy those.
7788    if (Field->getType()->isReferenceType()) {
7789      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7790        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7791      Diag(Field->getLocation(), diag::note_declared_at);
7792      Diag(CurrentLocation, diag::note_member_synthesized_at)
7793        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7794      Invalid = true;
7795      continue;
7796    }
7797
7798    // Check for members of const-qualified, non-class type.
7799    QualType BaseType = Context.getBaseElementType(Field->getType());
7800    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7801      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7802        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7803      Diag(Field->getLocation(), diag::note_declared_at);
7804      Diag(CurrentLocation, diag::note_member_synthesized_at)
7805        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7806      Invalid = true;
7807      continue;
7808    }
7809
7810    // Suppress assigning zero-width bitfields.
7811    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7812      continue;
7813
7814    QualType FieldType = Field->getType().getNonReferenceType();
7815    if (FieldType->isIncompleteArrayType()) {
7816      assert(ClassDecl->hasFlexibleArrayMember() &&
7817             "Incomplete array type is not valid");
7818      continue;
7819    }
7820
7821    // Build references to the field in the object we're copying from and to.
7822    CXXScopeSpec SS; // Intentionally empty
7823    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7824                              LookupMemberName);
7825    MemberLookup.addDecl(*Field);
7826    MemberLookup.resolveKind();
7827    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7828                                               Loc, /*IsArrow=*/false,
7829                                               SS, SourceLocation(), 0,
7830                                               MemberLookup, 0);
7831    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7832                                             Loc, /*IsArrow=*/true,
7833                                             SS, SourceLocation(), 0,
7834                                             MemberLookup, 0);
7835    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7836    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7837
7838    // If the field should be copied with __builtin_memcpy rather than via
7839    // explicit assignments, do so. This optimization only applies for arrays
7840    // of scalars and arrays of class type with trivial copy-assignment
7841    // operators.
7842    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7843        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7844      // Compute the size of the memory buffer to be copied.
7845      QualType SizeType = Context.getSizeType();
7846      llvm::APInt Size(Context.getTypeSize(SizeType),
7847                       Context.getTypeSizeInChars(BaseType).getQuantity());
7848      for (const ConstantArrayType *Array
7849              = Context.getAsConstantArrayType(FieldType);
7850           Array;
7851           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7852        llvm::APInt ArraySize
7853          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7854        Size *= ArraySize;
7855      }
7856
7857      // Take the address of the field references for "from" and "to".
7858      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7859      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7860
7861      bool NeedsCollectableMemCpy =
7862          (BaseType->isRecordType() &&
7863           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7864
7865      if (NeedsCollectableMemCpy) {
7866        if (!CollectableMemCpyRef) {
7867          // Create a reference to the __builtin_objc_memmove_collectable function.
7868          LookupResult R(*this,
7869                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7870                         Loc, LookupOrdinaryName);
7871          LookupName(R, TUScope, true);
7872
7873          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7874          if (!CollectableMemCpy) {
7875            // Something went horribly wrong earlier, and we will have
7876            // complained about it.
7877            Invalid = true;
7878            continue;
7879          }
7880
7881          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7882                                                  CollectableMemCpy->getType(),
7883                                                  VK_LValue, Loc, 0).take();
7884          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7885        }
7886      }
7887      // Create a reference to the __builtin_memcpy builtin function.
7888      else if (!BuiltinMemCpyRef) {
7889        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7890                       LookupOrdinaryName);
7891        LookupName(R, TUScope, true);
7892
7893        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7894        if (!BuiltinMemCpy) {
7895          // Something went horribly wrong earlier, and we will have complained
7896          // about it.
7897          Invalid = true;
7898          continue;
7899        }
7900
7901        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7902                                            BuiltinMemCpy->getType(),
7903                                            VK_LValue, Loc, 0).take();
7904        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7905      }
7906
7907      ASTOwningVector<Expr*> CallArgs(*this);
7908      CallArgs.push_back(To.takeAs<Expr>());
7909      CallArgs.push_back(From.takeAs<Expr>());
7910      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7911      ExprResult Call = ExprError();
7912      if (NeedsCollectableMemCpy)
7913        Call = ActOnCallExpr(/*Scope=*/0,
7914                             CollectableMemCpyRef,
7915                             Loc, move_arg(CallArgs),
7916                             Loc);
7917      else
7918        Call = ActOnCallExpr(/*Scope=*/0,
7919                             BuiltinMemCpyRef,
7920                             Loc, move_arg(CallArgs),
7921                             Loc);
7922
7923      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7924      Statements.push_back(Call.takeAs<Expr>());
7925      continue;
7926    }
7927
7928    // Build the copy of this field.
7929    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7930                                            To.get(), From.get(),
7931                                            /*CopyingBaseSubobject=*/false,
7932                                            /*Copying=*/true);
7933    if (Copy.isInvalid()) {
7934      Diag(CurrentLocation, diag::note_member_synthesized_at)
7935        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7936      CopyAssignOperator->setInvalidDecl();
7937      return;
7938    }
7939
7940    // Success! Record the copy.
7941    Statements.push_back(Copy.takeAs<Stmt>());
7942  }
7943
7944  if (!Invalid) {
7945    // Add a "return *this;"
7946    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7947
7948    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7949    if (Return.isInvalid())
7950      Invalid = true;
7951    else {
7952      Statements.push_back(Return.takeAs<Stmt>());
7953
7954      if (Trap.hasErrorOccurred()) {
7955        Diag(CurrentLocation, diag::note_member_synthesized_at)
7956          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7957        Invalid = true;
7958      }
7959    }
7960  }
7961
7962  if (Invalid) {
7963    CopyAssignOperator->setInvalidDecl();
7964    return;
7965  }
7966
7967  StmtResult Body;
7968  {
7969    CompoundScopeRAII CompoundScope(*this);
7970    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7971                             /*isStmtExpr=*/false);
7972    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7973  }
7974  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7975
7976  if (ASTMutationListener *L = getASTMutationListener()) {
7977    L->CompletedImplicitDefinition(CopyAssignOperator);
7978  }
7979}
7980
7981Sema::ImplicitExceptionSpecification
7982Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7983  ImplicitExceptionSpecification ExceptSpec(Context);
7984
7985  if (ClassDecl->isInvalidDecl())
7986    return ExceptSpec;
7987
7988  // C++0x [except.spec]p14:
7989  //   An implicitly declared special member function (Clause 12) shall have an
7990  //   exception-specification. [...]
7991
7992  // It is unspecified whether or not an implicit move assignment operator
7993  // attempts to deduplicate calls to assignment operators of virtual bases are
7994  // made. As such, this exception specification is effectively unspecified.
7995  // Based on a similar decision made for constness in C++0x, we're erring on
7996  // the side of assuming such calls to be made regardless of whether they
7997  // actually happen.
7998  // Note that a move constructor is not implicitly declared when there are
7999  // virtual bases, but it can still be user-declared and explicitly defaulted.
8000  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8001                                       BaseEnd = ClassDecl->bases_end();
8002       Base != BaseEnd; ++Base) {
8003    if (Base->isVirtual())
8004      continue;
8005
8006    CXXRecordDecl *BaseClassDecl
8007      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8008    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8009                                                           false, 0))
8010      ExceptSpec.CalledDecl(MoveAssign);
8011  }
8012
8013  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8014                                       BaseEnd = ClassDecl->vbases_end();
8015       Base != BaseEnd; ++Base) {
8016    CXXRecordDecl *BaseClassDecl
8017      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8018    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8019                                                           false, 0))
8020      ExceptSpec.CalledDecl(MoveAssign);
8021  }
8022
8023  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8024                                  FieldEnd = ClassDecl->field_end();
8025       Field != FieldEnd;
8026       ++Field) {
8027    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8028    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8029      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8030                                                             false, 0))
8031        ExceptSpec.CalledDecl(MoveAssign);
8032    }
8033  }
8034
8035  return ExceptSpec;
8036}
8037
8038CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8039  // Note: The following rules are largely analoguous to the move
8040  // constructor rules.
8041
8042  ImplicitExceptionSpecification Spec(
8043      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8044
8045  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8046  QualType RetType = Context.getLValueReferenceType(ArgType);
8047  ArgType = Context.getRValueReferenceType(ArgType);
8048
8049  //   An implicitly-declared move assignment operator is an inline public
8050  //   member of its class.
8051  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8052  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8053  SourceLocation ClassLoc = ClassDecl->getLocation();
8054  DeclarationNameInfo NameInfo(Name, ClassLoc);
8055  CXXMethodDecl *MoveAssignment
8056    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8057                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8058                            /*TInfo=*/0, /*isStatic=*/false,
8059                            /*StorageClassAsWritten=*/SC_None,
8060                            /*isInline=*/true,
8061                            /*isConstexpr=*/false,
8062                            SourceLocation());
8063  MoveAssignment->setAccess(AS_public);
8064  MoveAssignment->setDefaulted();
8065  MoveAssignment->setImplicit();
8066  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8067
8068  // Add the parameter to the operator.
8069  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8070                                               ClassLoc, ClassLoc, /*Id=*/0,
8071                                               ArgType, /*TInfo=*/0,
8072                                               SC_None,
8073                                               SC_None, 0);
8074  MoveAssignment->setParams(FromParam);
8075
8076  // Note that we have added this copy-assignment operator.
8077  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8078
8079  // C++0x [class.copy]p9:
8080  //   If the definition of a class X does not explicitly declare a move
8081  //   assignment operator, one will be implicitly declared as defaulted if and
8082  //   only if:
8083  //   [...]
8084  //   - the move assignment operator would not be implicitly defined as
8085  //     deleted.
8086  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8087    // Cache this result so that we don't try to generate this over and over
8088    // on every lookup, leaking memory and wasting time.
8089    ClassDecl->setFailedImplicitMoveAssignment();
8090    return 0;
8091  }
8092
8093  if (Scope *S = getScopeForContext(ClassDecl))
8094    PushOnScopeChains(MoveAssignment, S, false);
8095  ClassDecl->addDecl(MoveAssignment);
8096
8097  AddOverriddenMethods(ClassDecl, MoveAssignment);
8098  return MoveAssignment;
8099}
8100
8101void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8102                                        CXXMethodDecl *MoveAssignOperator) {
8103  assert((MoveAssignOperator->isDefaulted() &&
8104          MoveAssignOperator->isOverloadedOperator() &&
8105          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8106          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8107          !MoveAssignOperator->isDeleted()) &&
8108         "DefineImplicitMoveAssignment called for wrong function");
8109
8110  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8111
8112  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8113    MoveAssignOperator->setInvalidDecl();
8114    return;
8115  }
8116
8117  MoveAssignOperator->setUsed();
8118
8119  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8120  DiagnosticErrorTrap Trap(Diags);
8121
8122  // C++0x [class.copy]p28:
8123  //   The implicitly-defined or move assignment operator for a non-union class
8124  //   X performs memberwise move assignment of its subobjects. The direct base
8125  //   classes of X are assigned first, in the order of their declaration in the
8126  //   base-specifier-list, and then the immediate non-static data members of X
8127  //   are assigned, in the order in which they were declared in the class
8128  //   definition.
8129
8130  // The statements that form the synthesized function body.
8131  ASTOwningVector<Stmt*> Statements(*this);
8132
8133  // The parameter for the "other" object, which we are move from.
8134  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8135  QualType OtherRefType = Other->getType()->
8136      getAs<RValueReferenceType>()->getPointeeType();
8137  assert(OtherRefType.getQualifiers() == 0 &&
8138         "Bad argument type of defaulted move assignment");
8139
8140  // Our location for everything implicitly-generated.
8141  SourceLocation Loc = MoveAssignOperator->getLocation();
8142
8143  // Construct a reference to the "other" object. We'll be using this
8144  // throughout the generated ASTs.
8145  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8146  assert(OtherRef && "Reference to parameter cannot fail!");
8147  // Cast to rvalue.
8148  OtherRef = CastForMoving(*this, OtherRef);
8149
8150  // Construct the "this" pointer. We'll be using this throughout the generated
8151  // ASTs.
8152  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8153  assert(This && "Reference to this cannot fail!");
8154
8155  // Assign base classes.
8156  bool Invalid = false;
8157  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8158       E = ClassDecl->bases_end(); Base != E; ++Base) {
8159    // Form the assignment:
8160    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8161    QualType BaseType = Base->getType().getUnqualifiedType();
8162    if (!BaseType->isRecordType()) {
8163      Invalid = true;
8164      continue;
8165    }
8166
8167    CXXCastPath BasePath;
8168    BasePath.push_back(Base);
8169
8170    // Construct the "from" expression, which is an implicit cast to the
8171    // appropriately-qualified base type.
8172    Expr *From = OtherRef;
8173    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8174                             VK_XValue, &BasePath).take();
8175
8176    // Dereference "this".
8177    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8178
8179    // Implicitly cast "this" to the appropriately-qualified base type.
8180    To = ImpCastExprToType(To.take(),
8181                           Context.getCVRQualifiedType(BaseType,
8182                                     MoveAssignOperator->getTypeQualifiers()),
8183                           CK_UncheckedDerivedToBase,
8184                           VK_LValue, &BasePath);
8185
8186    // Build the move.
8187    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8188                                            To.get(), From,
8189                                            /*CopyingBaseSubobject=*/true,
8190                                            /*Copying=*/false);
8191    if (Move.isInvalid()) {
8192      Diag(CurrentLocation, diag::note_member_synthesized_at)
8193        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8194      MoveAssignOperator->setInvalidDecl();
8195      return;
8196    }
8197
8198    // Success! Record the move.
8199    Statements.push_back(Move.takeAs<Expr>());
8200  }
8201
8202  // \brief Reference to the __builtin_memcpy function.
8203  Expr *BuiltinMemCpyRef = 0;
8204  // \brief Reference to the __builtin_objc_memmove_collectable function.
8205  Expr *CollectableMemCpyRef = 0;
8206
8207  // Assign non-static members.
8208  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8209                                  FieldEnd = ClassDecl->field_end();
8210       Field != FieldEnd; ++Field) {
8211    if (Field->isUnnamedBitfield())
8212      continue;
8213
8214    // Check for members of reference type; we can't move those.
8215    if (Field->getType()->isReferenceType()) {
8216      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8217        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8218      Diag(Field->getLocation(), diag::note_declared_at);
8219      Diag(CurrentLocation, diag::note_member_synthesized_at)
8220        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8221      Invalid = true;
8222      continue;
8223    }
8224
8225    // Check for members of const-qualified, non-class type.
8226    QualType BaseType = Context.getBaseElementType(Field->getType());
8227    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8228      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8229        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8230      Diag(Field->getLocation(), diag::note_declared_at);
8231      Diag(CurrentLocation, diag::note_member_synthesized_at)
8232        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8233      Invalid = true;
8234      continue;
8235    }
8236
8237    // Suppress assigning zero-width bitfields.
8238    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8239      continue;
8240
8241    QualType FieldType = Field->getType().getNonReferenceType();
8242    if (FieldType->isIncompleteArrayType()) {
8243      assert(ClassDecl->hasFlexibleArrayMember() &&
8244             "Incomplete array type is not valid");
8245      continue;
8246    }
8247
8248    // Build references to the field in the object we're copying from and to.
8249    CXXScopeSpec SS; // Intentionally empty
8250    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8251                              LookupMemberName);
8252    MemberLookup.addDecl(*Field);
8253    MemberLookup.resolveKind();
8254    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8255                                               Loc, /*IsArrow=*/false,
8256                                               SS, SourceLocation(), 0,
8257                                               MemberLookup, 0);
8258    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8259                                             Loc, /*IsArrow=*/true,
8260                                             SS, SourceLocation(), 0,
8261                                             MemberLookup, 0);
8262    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8263    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8264
8265    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8266        "Member reference with rvalue base must be rvalue except for reference "
8267        "members, which aren't allowed for move assignment.");
8268
8269    // If the field should be copied with __builtin_memcpy rather than via
8270    // explicit assignments, do so. This optimization only applies for arrays
8271    // of scalars and arrays of class type with trivial move-assignment
8272    // operators.
8273    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8274        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8275      // Compute the size of the memory buffer to be copied.
8276      QualType SizeType = Context.getSizeType();
8277      llvm::APInt Size(Context.getTypeSize(SizeType),
8278                       Context.getTypeSizeInChars(BaseType).getQuantity());
8279      for (const ConstantArrayType *Array
8280              = Context.getAsConstantArrayType(FieldType);
8281           Array;
8282           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8283        llvm::APInt ArraySize
8284          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8285        Size *= ArraySize;
8286      }
8287
8288      // Take the address of the field references for "from" and "to". We
8289      // directly construct UnaryOperators here because semantic analysis
8290      // does not permit us to take the address of an xvalue.
8291      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8292                             Context.getPointerType(From.get()->getType()),
8293                             VK_RValue, OK_Ordinary, Loc);
8294      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8295                           Context.getPointerType(To.get()->getType()),
8296                           VK_RValue, OK_Ordinary, Loc);
8297
8298      bool NeedsCollectableMemCpy =
8299          (BaseType->isRecordType() &&
8300           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8301
8302      if (NeedsCollectableMemCpy) {
8303        if (!CollectableMemCpyRef) {
8304          // Create a reference to the __builtin_objc_memmove_collectable function.
8305          LookupResult R(*this,
8306                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8307                         Loc, LookupOrdinaryName);
8308          LookupName(R, TUScope, true);
8309
8310          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8311          if (!CollectableMemCpy) {
8312            // Something went horribly wrong earlier, and we will have
8313            // complained about it.
8314            Invalid = true;
8315            continue;
8316          }
8317
8318          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8319                                                  CollectableMemCpy->getType(),
8320                                                  VK_LValue, Loc, 0).take();
8321          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8322        }
8323      }
8324      // Create a reference to the __builtin_memcpy builtin function.
8325      else if (!BuiltinMemCpyRef) {
8326        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8327                       LookupOrdinaryName);
8328        LookupName(R, TUScope, true);
8329
8330        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8331        if (!BuiltinMemCpy) {
8332          // Something went horribly wrong earlier, and we will have complained
8333          // about it.
8334          Invalid = true;
8335          continue;
8336        }
8337
8338        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8339                                            BuiltinMemCpy->getType(),
8340                                            VK_LValue, Loc, 0).take();
8341        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8342      }
8343
8344      ASTOwningVector<Expr*> CallArgs(*this);
8345      CallArgs.push_back(To.takeAs<Expr>());
8346      CallArgs.push_back(From.takeAs<Expr>());
8347      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8348      ExprResult Call = ExprError();
8349      if (NeedsCollectableMemCpy)
8350        Call = ActOnCallExpr(/*Scope=*/0,
8351                             CollectableMemCpyRef,
8352                             Loc, move_arg(CallArgs),
8353                             Loc);
8354      else
8355        Call = ActOnCallExpr(/*Scope=*/0,
8356                             BuiltinMemCpyRef,
8357                             Loc, move_arg(CallArgs),
8358                             Loc);
8359
8360      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8361      Statements.push_back(Call.takeAs<Expr>());
8362      continue;
8363    }
8364
8365    // Build the move of this field.
8366    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8367                                            To.get(), From.get(),
8368                                            /*CopyingBaseSubobject=*/false,
8369                                            /*Copying=*/false);
8370    if (Move.isInvalid()) {
8371      Diag(CurrentLocation, diag::note_member_synthesized_at)
8372        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8373      MoveAssignOperator->setInvalidDecl();
8374      return;
8375    }
8376
8377    // Success! Record the copy.
8378    Statements.push_back(Move.takeAs<Stmt>());
8379  }
8380
8381  if (!Invalid) {
8382    // Add a "return *this;"
8383    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8384
8385    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8386    if (Return.isInvalid())
8387      Invalid = true;
8388    else {
8389      Statements.push_back(Return.takeAs<Stmt>());
8390
8391      if (Trap.hasErrorOccurred()) {
8392        Diag(CurrentLocation, diag::note_member_synthesized_at)
8393          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8394        Invalid = true;
8395      }
8396    }
8397  }
8398
8399  if (Invalid) {
8400    MoveAssignOperator->setInvalidDecl();
8401    return;
8402  }
8403
8404  StmtResult Body;
8405  {
8406    CompoundScopeRAII CompoundScope(*this);
8407    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8408                             /*isStmtExpr=*/false);
8409    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8410  }
8411  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8412
8413  if (ASTMutationListener *L = getASTMutationListener()) {
8414    L->CompletedImplicitDefinition(MoveAssignOperator);
8415  }
8416}
8417
8418std::pair<Sema::ImplicitExceptionSpecification, bool>
8419Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8420  if (ClassDecl->isInvalidDecl())
8421    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8422
8423  // C++ [class.copy]p5:
8424  //   The implicitly-declared copy constructor for a class X will
8425  //   have the form
8426  //
8427  //       X::X(const X&)
8428  //
8429  //   if
8430  // FIXME: It ought to be possible to store this on the record.
8431  bool HasConstCopyConstructor = true;
8432
8433  //     -- each direct or virtual base class B of X has a copy
8434  //        constructor whose first parameter is of type const B& or
8435  //        const volatile B&, and
8436  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8437                                       BaseEnd = ClassDecl->bases_end();
8438       HasConstCopyConstructor && Base != BaseEnd;
8439       ++Base) {
8440    // Virtual bases are handled below.
8441    if (Base->isVirtual())
8442      continue;
8443
8444    CXXRecordDecl *BaseClassDecl
8445      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8446    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8447                             &HasConstCopyConstructor);
8448  }
8449
8450  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8451                                       BaseEnd = ClassDecl->vbases_end();
8452       HasConstCopyConstructor && Base != BaseEnd;
8453       ++Base) {
8454    CXXRecordDecl *BaseClassDecl
8455      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8456    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8457                             &HasConstCopyConstructor);
8458  }
8459
8460  //     -- for all the nonstatic data members of X that are of a
8461  //        class type M (or array thereof), each such class type
8462  //        has a copy constructor whose first parameter is of type
8463  //        const M& or const volatile M&.
8464  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8465                                  FieldEnd = ClassDecl->field_end();
8466       HasConstCopyConstructor && Field != FieldEnd;
8467       ++Field) {
8468    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8469    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8470      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8471                               &HasConstCopyConstructor);
8472    }
8473  }
8474  //   Otherwise, the implicitly declared copy constructor will have
8475  //   the form
8476  //
8477  //       X::X(X&)
8478
8479  // C++ [except.spec]p14:
8480  //   An implicitly declared special member function (Clause 12) shall have an
8481  //   exception-specification. [...]
8482  ImplicitExceptionSpecification ExceptSpec(Context);
8483  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8484  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8485                                       BaseEnd = ClassDecl->bases_end();
8486       Base != BaseEnd;
8487       ++Base) {
8488    // Virtual bases are handled below.
8489    if (Base->isVirtual())
8490      continue;
8491
8492    CXXRecordDecl *BaseClassDecl
8493      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8494    if (CXXConstructorDecl *CopyConstructor =
8495          LookupCopyingConstructor(BaseClassDecl, Quals))
8496      ExceptSpec.CalledDecl(CopyConstructor);
8497  }
8498  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8499                                       BaseEnd = ClassDecl->vbases_end();
8500       Base != BaseEnd;
8501       ++Base) {
8502    CXXRecordDecl *BaseClassDecl
8503      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8504    if (CXXConstructorDecl *CopyConstructor =
8505          LookupCopyingConstructor(BaseClassDecl, Quals))
8506      ExceptSpec.CalledDecl(CopyConstructor);
8507  }
8508  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8509                                  FieldEnd = ClassDecl->field_end();
8510       Field != FieldEnd;
8511       ++Field) {
8512    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8513    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8514      if (CXXConstructorDecl *CopyConstructor =
8515        LookupCopyingConstructor(FieldClassDecl, Quals))
8516      ExceptSpec.CalledDecl(CopyConstructor);
8517    }
8518  }
8519
8520  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8521}
8522
8523CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8524                                                    CXXRecordDecl *ClassDecl) {
8525  // C++ [class.copy]p4:
8526  //   If the class definition does not explicitly declare a copy
8527  //   constructor, one is declared implicitly.
8528
8529  ImplicitExceptionSpecification Spec(Context);
8530  bool Const;
8531  llvm::tie(Spec, Const) =
8532    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8533
8534  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8535  QualType ArgType = ClassType;
8536  if (Const)
8537    ArgType = ArgType.withConst();
8538  ArgType = Context.getLValueReferenceType(ArgType);
8539
8540  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8541
8542  DeclarationName Name
8543    = Context.DeclarationNames.getCXXConstructorName(
8544                                           Context.getCanonicalType(ClassType));
8545  SourceLocation ClassLoc = ClassDecl->getLocation();
8546  DeclarationNameInfo NameInfo(Name, ClassLoc);
8547
8548  //   An implicitly-declared copy constructor is an inline public
8549  //   member of its class.
8550  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8551      Context, ClassDecl, ClassLoc, NameInfo,
8552      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8553      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8554      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8555        getLangOpts().CPlusPlus0x);
8556  CopyConstructor->setAccess(AS_public);
8557  CopyConstructor->setDefaulted();
8558  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8559
8560  // Note that we have declared this constructor.
8561  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8562
8563  // Add the parameter to the constructor.
8564  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8565                                               ClassLoc, ClassLoc,
8566                                               /*IdentifierInfo=*/0,
8567                                               ArgType, /*TInfo=*/0,
8568                                               SC_None,
8569                                               SC_None, 0);
8570  CopyConstructor->setParams(FromParam);
8571
8572  if (Scope *S = getScopeForContext(ClassDecl))
8573    PushOnScopeChains(CopyConstructor, S, false);
8574  ClassDecl->addDecl(CopyConstructor);
8575
8576  // C++11 [class.copy]p8:
8577  //   ... If the class definition does not explicitly declare a copy
8578  //   constructor, there is no user-declared move constructor, and there is no
8579  //   user-declared move assignment operator, a copy constructor is implicitly
8580  //   declared as defaulted.
8581  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8582      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8583          !getLangOpts().MicrosoftMode) ||
8584      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8585    CopyConstructor->setDeletedAsWritten();
8586
8587  return CopyConstructor;
8588}
8589
8590void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8591                                   CXXConstructorDecl *CopyConstructor) {
8592  assert((CopyConstructor->isDefaulted() &&
8593          CopyConstructor->isCopyConstructor() &&
8594          !CopyConstructor->doesThisDeclarationHaveABody() &&
8595          !CopyConstructor->isDeleted()) &&
8596         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8597
8598  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8599  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8600
8601  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8602  DiagnosticErrorTrap Trap(Diags);
8603
8604  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8605      Trap.hasErrorOccurred()) {
8606    Diag(CurrentLocation, diag::note_member_synthesized_at)
8607      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8608    CopyConstructor->setInvalidDecl();
8609  }  else {
8610    Sema::CompoundScopeRAII CompoundScope(*this);
8611    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8612                                               CopyConstructor->getLocation(),
8613                                               MultiStmtArg(*this, 0, 0),
8614                                               /*isStmtExpr=*/false)
8615                                                              .takeAs<Stmt>());
8616    CopyConstructor->setImplicitlyDefined(true);
8617  }
8618
8619  CopyConstructor->setUsed();
8620  if (ASTMutationListener *L = getASTMutationListener()) {
8621    L->CompletedImplicitDefinition(CopyConstructor);
8622  }
8623}
8624
8625Sema::ImplicitExceptionSpecification
8626Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8627  // C++ [except.spec]p14:
8628  //   An implicitly declared special member function (Clause 12) shall have an
8629  //   exception-specification. [...]
8630  ImplicitExceptionSpecification ExceptSpec(Context);
8631  if (ClassDecl->isInvalidDecl())
8632    return ExceptSpec;
8633
8634  // Direct base-class constructors.
8635  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8636                                       BEnd = ClassDecl->bases_end();
8637       B != BEnd; ++B) {
8638    if (B->isVirtual()) // Handled below.
8639      continue;
8640
8641    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8642      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8643      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8644      // If this is a deleted function, add it anyway. This might be conformant
8645      // with the standard. This might not. I'm not sure. It might not matter.
8646      if (Constructor)
8647        ExceptSpec.CalledDecl(Constructor);
8648    }
8649  }
8650
8651  // Virtual base-class constructors.
8652  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8653                                       BEnd = ClassDecl->vbases_end();
8654       B != BEnd; ++B) {
8655    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8656      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8657      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8658      // If this is a deleted function, add it anyway. This might be conformant
8659      // with the standard. This might not. I'm not sure. It might not matter.
8660      if (Constructor)
8661        ExceptSpec.CalledDecl(Constructor);
8662    }
8663  }
8664
8665  // Field constructors.
8666  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8667                               FEnd = ClassDecl->field_end();
8668       F != FEnd; ++F) {
8669    if (const RecordType *RecordTy
8670              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8671      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8672      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8673      // If this is a deleted function, add it anyway. This might be conformant
8674      // with the standard. This might not. I'm not sure. It might not matter.
8675      // In particular, the problem is that this function never gets called. It
8676      // might just be ill-formed because this function attempts to refer to
8677      // a deleted function here.
8678      if (Constructor)
8679        ExceptSpec.CalledDecl(Constructor);
8680    }
8681  }
8682
8683  return ExceptSpec;
8684}
8685
8686CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8687                                                    CXXRecordDecl *ClassDecl) {
8688  ImplicitExceptionSpecification Spec(
8689      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8690
8691  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8692  QualType ArgType = Context.getRValueReferenceType(ClassType);
8693
8694  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8695
8696  DeclarationName Name
8697    = Context.DeclarationNames.getCXXConstructorName(
8698                                           Context.getCanonicalType(ClassType));
8699  SourceLocation ClassLoc = ClassDecl->getLocation();
8700  DeclarationNameInfo NameInfo(Name, ClassLoc);
8701
8702  // C++0x [class.copy]p11:
8703  //   An implicitly-declared copy/move constructor is an inline public
8704  //   member of its class.
8705  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8706      Context, ClassDecl, ClassLoc, NameInfo,
8707      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8708      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8709      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8710        getLangOpts().CPlusPlus0x);
8711  MoveConstructor->setAccess(AS_public);
8712  MoveConstructor->setDefaulted();
8713  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8714
8715  // Add the parameter to the constructor.
8716  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8717                                               ClassLoc, ClassLoc,
8718                                               /*IdentifierInfo=*/0,
8719                                               ArgType, /*TInfo=*/0,
8720                                               SC_None,
8721                                               SC_None, 0);
8722  MoveConstructor->setParams(FromParam);
8723
8724  // C++0x [class.copy]p9:
8725  //   If the definition of a class X does not explicitly declare a move
8726  //   constructor, one will be implicitly declared as defaulted if and only if:
8727  //   [...]
8728  //   - the move constructor would not be implicitly defined as deleted.
8729  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8730    // Cache this result so that we don't try to generate this over and over
8731    // on every lookup, leaking memory and wasting time.
8732    ClassDecl->setFailedImplicitMoveConstructor();
8733    return 0;
8734  }
8735
8736  // Note that we have declared this constructor.
8737  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8738
8739  if (Scope *S = getScopeForContext(ClassDecl))
8740    PushOnScopeChains(MoveConstructor, S, false);
8741  ClassDecl->addDecl(MoveConstructor);
8742
8743  return MoveConstructor;
8744}
8745
8746void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8747                                   CXXConstructorDecl *MoveConstructor) {
8748  assert((MoveConstructor->isDefaulted() &&
8749          MoveConstructor->isMoveConstructor() &&
8750          !MoveConstructor->doesThisDeclarationHaveABody() &&
8751          !MoveConstructor->isDeleted()) &&
8752         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8753
8754  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8755  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8756
8757  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8758  DiagnosticErrorTrap Trap(Diags);
8759
8760  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8761      Trap.hasErrorOccurred()) {
8762    Diag(CurrentLocation, diag::note_member_synthesized_at)
8763      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8764    MoveConstructor->setInvalidDecl();
8765  }  else {
8766    Sema::CompoundScopeRAII CompoundScope(*this);
8767    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8768                                               MoveConstructor->getLocation(),
8769                                               MultiStmtArg(*this, 0, 0),
8770                                               /*isStmtExpr=*/false)
8771                                                              .takeAs<Stmt>());
8772    MoveConstructor->setImplicitlyDefined(true);
8773  }
8774
8775  MoveConstructor->setUsed();
8776
8777  if (ASTMutationListener *L = getASTMutationListener()) {
8778    L->CompletedImplicitDefinition(MoveConstructor);
8779  }
8780}
8781
8782bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8783  return FD->isDeleted() &&
8784         (FD->isDefaulted() || FD->isImplicit()) &&
8785         isa<CXXMethodDecl>(FD);
8786}
8787
8788/// \brief Mark the call operator of the given lambda closure type as "used".
8789static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8790  CXXMethodDecl *CallOperator
8791    = cast<CXXMethodDecl>(
8792        *Lambda->lookup(
8793          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8794  CallOperator->setReferenced();
8795  CallOperator->setUsed();
8796}
8797
8798void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8799       SourceLocation CurrentLocation,
8800       CXXConversionDecl *Conv)
8801{
8802  CXXRecordDecl *Lambda = Conv->getParent();
8803
8804  // Make sure that the lambda call operator is marked used.
8805  markLambdaCallOperatorUsed(*this, Lambda);
8806
8807  Conv->setUsed();
8808
8809  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8810  DiagnosticErrorTrap Trap(Diags);
8811
8812  // Return the address of the __invoke function.
8813  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8814  CXXMethodDecl *Invoke
8815    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8816  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8817                                       VK_LValue, Conv->getLocation()).take();
8818  assert(FunctionRef && "Can't refer to __invoke function?");
8819  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8820  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8821                                           Conv->getLocation(),
8822                                           Conv->getLocation()));
8823
8824  // Fill in the __invoke function with a dummy implementation. IR generation
8825  // will fill in the actual details.
8826  Invoke->setUsed();
8827  Invoke->setReferenced();
8828  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8829                                             Conv->getLocation()));
8830
8831  if (ASTMutationListener *L = getASTMutationListener()) {
8832    L->CompletedImplicitDefinition(Conv);
8833    L->CompletedImplicitDefinition(Invoke);
8834  }
8835}
8836
8837void Sema::DefineImplicitLambdaToBlockPointerConversion(
8838       SourceLocation CurrentLocation,
8839       CXXConversionDecl *Conv)
8840{
8841  Conv->setUsed();
8842
8843  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8844  DiagnosticErrorTrap Trap(Diags);
8845
8846  // Copy-initialize the lambda object as needed to capture it.
8847  Expr *This = ActOnCXXThis(CurrentLocation).take();
8848  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8849
8850  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8851                                                        Conv->getLocation(),
8852                                                        Conv, DerefThis);
8853
8854  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8855  // behavior.  Note that only the general conversion function does this
8856  // (since it's unusable otherwise); in the case where we inline the
8857  // block literal, it has block literal lifetime semantics.
8858  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8859    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8860                                          CK_CopyAndAutoreleaseBlockObject,
8861                                          BuildBlock.get(), 0, VK_RValue);
8862
8863  if (BuildBlock.isInvalid()) {
8864    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8865    Conv->setInvalidDecl();
8866    return;
8867  }
8868
8869  // Create the return statement that returns the block from the conversion
8870  // function.
8871  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8872  if (Return.isInvalid()) {
8873    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8874    Conv->setInvalidDecl();
8875    return;
8876  }
8877
8878  // Set the body of the conversion function.
8879  Stmt *ReturnS = Return.take();
8880  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8881                                           Conv->getLocation(),
8882                                           Conv->getLocation()));
8883
8884  // We're done; notify the mutation listener, if any.
8885  if (ASTMutationListener *L = getASTMutationListener()) {
8886    L->CompletedImplicitDefinition(Conv);
8887  }
8888}
8889
8890/// \brief Determine whether the given list arguments contains exactly one
8891/// "real" (non-default) argument.
8892static bool hasOneRealArgument(MultiExprArg Args) {
8893  switch (Args.size()) {
8894  case 0:
8895    return false;
8896
8897  default:
8898    if (!Args.get()[1]->isDefaultArgument())
8899      return false;
8900
8901    // fall through
8902  case 1:
8903    return !Args.get()[0]->isDefaultArgument();
8904  }
8905
8906  return false;
8907}
8908
8909ExprResult
8910Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8911                            CXXConstructorDecl *Constructor,
8912                            MultiExprArg ExprArgs,
8913                            bool HadMultipleCandidates,
8914                            bool RequiresZeroInit,
8915                            unsigned ConstructKind,
8916                            SourceRange ParenRange) {
8917  bool Elidable = false;
8918
8919  // C++0x [class.copy]p34:
8920  //   When certain criteria are met, an implementation is allowed to
8921  //   omit the copy/move construction of a class object, even if the
8922  //   copy/move constructor and/or destructor for the object have
8923  //   side effects. [...]
8924  //     - when a temporary class object that has not been bound to a
8925  //       reference (12.2) would be copied/moved to a class object
8926  //       with the same cv-unqualified type, the copy/move operation
8927  //       can be omitted by constructing the temporary object
8928  //       directly into the target of the omitted copy/move
8929  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8930      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
8931    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8932    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8933  }
8934
8935  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8936                               Elidable, move(ExprArgs), HadMultipleCandidates,
8937                               RequiresZeroInit, ConstructKind, ParenRange);
8938}
8939
8940/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8941/// including handling of its default argument expressions.
8942ExprResult
8943Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8944                            CXXConstructorDecl *Constructor, bool Elidable,
8945                            MultiExprArg ExprArgs,
8946                            bool HadMultipleCandidates,
8947                            bool RequiresZeroInit,
8948                            unsigned ConstructKind,
8949                            SourceRange ParenRange) {
8950  unsigned NumExprs = ExprArgs.size();
8951  Expr **Exprs = (Expr **)ExprArgs.release();
8952
8953  for (specific_attr_iterator<NonNullAttr>
8954           i = Constructor->specific_attr_begin<NonNullAttr>(),
8955           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8956    const NonNullAttr *NonNull = *i;
8957    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8958  }
8959
8960  MarkFunctionReferenced(ConstructLoc, Constructor);
8961  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8962                                        Constructor, Elidable, Exprs, NumExprs,
8963                                        HadMultipleCandidates, /*FIXME*/false,
8964                                        RequiresZeroInit,
8965              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8966                                        ParenRange));
8967}
8968
8969bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8970                                        CXXConstructorDecl *Constructor,
8971                                        MultiExprArg Exprs,
8972                                        bool HadMultipleCandidates) {
8973  // FIXME: Provide the correct paren SourceRange when available.
8974  ExprResult TempResult =
8975    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8976                          move(Exprs), HadMultipleCandidates, false,
8977                          CXXConstructExpr::CK_Complete, SourceRange());
8978  if (TempResult.isInvalid())
8979    return true;
8980
8981  Expr *Temp = TempResult.takeAs<Expr>();
8982  CheckImplicitConversions(Temp, VD->getLocation());
8983  MarkFunctionReferenced(VD->getLocation(), Constructor);
8984  Temp = MaybeCreateExprWithCleanups(Temp);
8985  VD->setInit(Temp);
8986
8987  return false;
8988}
8989
8990void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8991  if (VD->isInvalidDecl()) return;
8992
8993  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8994  if (ClassDecl->isInvalidDecl()) return;
8995  if (ClassDecl->hasIrrelevantDestructor()) return;
8996  if (ClassDecl->isDependentContext()) return;
8997
8998  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8999  MarkFunctionReferenced(VD->getLocation(), Destructor);
9000  CheckDestructorAccess(VD->getLocation(), Destructor,
9001                        PDiag(diag::err_access_dtor_var)
9002                        << VD->getDeclName()
9003                        << VD->getType());
9004  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9005
9006  if (!VD->hasGlobalStorage()) return;
9007
9008  // Emit warning for non-trivial dtor in global scope (a real global,
9009  // class-static, function-static).
9010  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9011
9012  // TODO: this should be re-enabled for static locals by !CXAAtExit
9013  if (!VD->isStaticLocal())
9014    Diag(VD->getLocation(), diag::warn_global_destructor);
9015}
9016
9017/// \brief Given a constructor and the set of arguments provided for the
9018/// constructor, convert the arguments and add any required default arguments
9019/// to form a proper call to this constructor.
9020///
9021/// \returns true if an error occurred, false otherwise.
9022bool
9023Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9024                              MultiExprArg ArgsPtr,
9025                              SourceLocation Loc,
9026                              ASTOwningVector<Expr*> &ConvertedArgs,
9027                              bool AllowExplicit) {
9028  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9029  unsigned NumArgs = ArgsPtr.size();
9030  Expr **Args = (Expr **)ArgsPtr.get();
9031
9032  const FunctionProtoType *Proto
9033    = Constructor->getType()->getAs<FunctionProtoType>();
9034  assert(Proto && "Constructor without a prototype?");
9035  unsigned NumArgsInProto = Proto->getNumArgs();
9036
9037  // If too few arguments are available, we'll fill in the rest with defaults.
9038  if (NumArgs < NumArgsInProto)
9039    ConvertedArgs.reserve(NumArgsInProto);
9040  else
9041    ConvertedArgs.reserve(NumArgs);
9042
9043  VariadicCallType CallType =
9044    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9045  SmallVector<Expr *, 8> AllArgs;
9046  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9047                                        Proto, 0, Args, NumArgs, AllArgs,
9048                                        CallType, AllowExplicit);
9049  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9050
9051  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9052
9053  // FIXME: Missing call to CheckFunctionCall or equivalent
9054
9055  return Invalid;
9056}
9057
9058static inline bool
9059CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9060                                       const FunctionDecl *FnDecl) {
9061  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9062  if (isa<NamespaceDecl>(DC)) {
9063    return SemaRef.Diag(FnDecl->getLocation(),
9064                        diag::err_operator_new_delete_declared_in_namespace)
9065      << FnDecl->getDeclName();
9066  }
9067
9068  if (isa<TranslationUnitDecl>(DC) &&
9069      FnDecl->getStorageClass() == SC_Static) {
9070    return SemaRef.Diag(FnDecl->getLocation(),
9071                        diag::err_operator_new_delete_declared_static)
9072      << FnDecl->getDeclName();
9073  }
9074
9075  return false;
9076}
9077
9078static inline bool
9079CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9080                            CanQualType ExpectedResultType,
9081                            CanQualType ExpectedFirstParamType,
9082                            unsigned DependentParamTypeDiag,
9083                            unsigned InvalidParamTypeDiag) {
9084  QualType ResultType =
9085    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9086
9087  // Check that the result type is not dependent.
9088  if (ResultType->isDependentType())
9089    return SemaRef.Diag(FnDecl->getLocation(),
9090                        diag::err_operator_new_delete_dependent_result_type)
9091    << FnDecl->getDeclName() << ExpectedResultType;
9092
9093  // Check that the result type is what we expect.
9094  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9095    return SemaRef.Diag(FnDecl->getLocation(),
9096                        diag::err_operator_new_delete_invalid_result_type)
9097    << FnDecl->getDeclName() << ExpectedResultType;
9098
9099  // A function template must have at least 2 parameters.
9100  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9101    return SemaRef.Diag(FnDecl->getLocation(),
9102                      diag::err_operator_new_delete_template_too_few_parameters)
9103        << FnDecl->getDeclName();
9104
9105  // The function decl must have at least 1 parameter.
9106  if (FnDecl->getNumParams() == 0)
9107    return SemaRef.Diag(FnDecl->getLocation(),
9108                        diag::err_operator_new_delete_too_few_parameters)
9109      << FnDecl->getDeclName();
9110
9111  // Check the the first parameter type is not dependent.
9112  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9113  if (FirstParamType->isDependentType())
9114    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9115      << FnDecl->getDeclName() << ExpectedFirstParamType;
9116
9117  // Check that the first parameter type is what we expect.
9118  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9119      ExpectedFirstParamType)
9120    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9121    << FnDecl->getDeclName() << ExpectedFirstParamType;
9122
9123  return false;
9124}
9125
9126static bool
9127CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9128  // C++ [basic.stc.dynamic.allocation]p1:
9129  //   A program is ill-formed if an allocation function is declared in a
9130  //   namespace scope other than global scope or declared static in global
9131  //   scope.
9132  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9133    return true;
9134
9135  CanQualType SizeTy =
9136    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9137
9138  // C++ [basic.stc.dynamic.allocation]p1:
9139  //  The return type shall be void*. The first parameter shall have type
9140  //  std::size_t.
9141  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9142                                  SizeTy,
9143                                  diag::err_operator_new_dependent_param_type,
9144                                  diag::err_operator_new_param_type))
9145    return true;
9146
9147  // C++ [basic.stc.dynamic.allocation]p1:
9148  //  The first parameter shall not have an associated default argument.
9149  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9150    return SemaRef.Diag(FnDecl->getLocation(),
9151                        diag::err_operator_new_default_arg)
9152      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9153
9154  return false;
9155}
9156
9157static bool
9158CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9159  // C++ [basic.stc.dynamic.deallocation]p1:
9160  //   A program is ill-formed if deallocation functions are declared in a
9161  //   namespace scope other than global scope or declared static in global
9162  //   scope.
9163  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9164    return true;
9165
9166  // C++ [basic.stc.dynamic.deallocation]p2:
9167  //   Each deallocation function shall return void and its first parameter
9168  //   shall be void*.
9169  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9170                                  SemaRef.Context.VoidPtrTy,
9171                                 diag::err_operator_delete_dependent_param_type,
9172                                 diag::err_operator_delete_param_type))
9173    return true;
9174
9175  return false;
9176}
9177
9178/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9179/// of this overloaded operator is well-formed. If so, returns false;
9180/// otherwise, emits appropriate diagnostics and returns true.
9181bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9182  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9183         "Expected an overloaded operator declaration");
9184
9185  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9186
9187  // C++ [over.oper]p5:
9188  //   The allocation and deallocation functions, operator new,
9189  //   operator new[], operator delete and operator delete[], are
9190  //   described completely in 3.7.3. The attributes and restrictions
9191  //   found in the rest of this subclause do not apply to them unless
9192  //   explicitly stated in 3.7.3.
9193  if (Op == OO_Delete || Op == OO_Array_Delete)
9194    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9195
9196  if (Op == OO_New || Op == OO_Array_New)
9197    return CheckOperatorNewDeclaration(*this, FnDecl);
9198
9199  // C++ [over.oper]p6:
9200  //   An operator function shall either be a non-static member
9201  //   function or be a non-member function and have at least one
9202  //   parameter whose type is a class, a reference to a class, an
9203  //   enumeration, or a reference to an enumeration.
9204  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9205    if (MethodDecl->isStatic())
9206      return Diag(FnDecl->getLocation(),
9207                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9208  } else {
9209    bool ClassOrEnumParam = false;
9210    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9211                                   ParamEnd = FnDecl->param_end();
9212         Param != ParamEnd; ++Param) {
9213      QualType ParamType = (*Param)->getType().getNonReferenceType();
9214      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9215          ParamType->isEnumeralType()) {
9216        ClassOrEnumParam = true;
9217        break;
9218      }
9219    }
9220
9221    if (!ClassOrEnumParam)
9222      return Diag(FnDecl->getLocation(),
9223                  diag::err_operator_overload_needs_class_or_enum)
9224        << FnDecl->getDeclName();
9225  }
9226
9227  // C++ [over.oper]p8:
9228  //   An operator function cannot have default arguments (8.3.6),
9229  //   except where explicitly stated below.
9230  //
9231  // Only the function-call operator allows default arguments
9232  // (C++ [over.call]p1).
9233  if (Op != OO_Call) {
9234    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9235         Param != FnDecl->param_end(); ++Param) {
9236      if ((*Param)->hasDefaultArg())
9237        return Diag((*Param)->getLocation(),
9238                    diag::err_operator_overload_default_arg)
9239          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9240    }
9241  }
9242
9243  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9244    { false, false, false }
9245#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9246    , { Unary, Binary, MemberOnly }
9247#include "clang/Basic/OperatorKinds.def"
9248  };
9249
9250  bool CanBeUnaryOperator = OperatorUses[Op][0];
9251  bool CanBeBinaryOperator = OperatorUses[Op][1];
9252  bool MustBeMemberOperator = OperatorUses[Op][2];
9253
9254  // C++ [over.oper]p8:
9255  //   [...] Operator functions cannot have more or fewer parameters
9256  //   than the number required for the corresponding operator, as
9257  //   described in the rest of this subclause.
9258  unsigned NumParams = FnDecl->getNumParams()
9259                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9260  if (Op != OO_Call &&
9261      ((NumParams == 1 && !CanBeUnaryOperator) ||
9262       (NumParams == 2 && !CanBeBinaryOperator) ||
9263       (NumParams < 1) || (NumParams > 2))) {
9264    // We have the wrong number of parameters.
9265    unsigned ErrorKind;
9266    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9267      ErrorKind = 2;  // 2 -> unary or binary.
9268    } else if (CanBeUnaryOperator) {
9269      ErrorKind = 0;  // 0 -> unary
9270    } else {
9271      assert(CanBeBinaryOperator &&
9272             "All non-call overloaded operators are unary or binary!");
9273      ErrorKind = 1;  // 1 -> binary
9274    }
9275
9276    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9277      << FnDecl->getDeclName() << NumParams << ErrorKind;
9278  }
9279
9280  // Overloaded operators other than operator() cannot be variadic.
9281  if (Op != OO_Call &&
9282      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9283    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9284      << FnDecl->getDeclName();
9285  }
9286
9287  // Some operators must be non-static member functions.
9288  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9289    return Diag(FnDecl->getLocation(),
9290                diag::err_operator_overload_must_be_member)
9291      << FnDecl->getDeclName();
9292  }
9293
9294  // C++ [over.inc]p1:
9295  //   The user-defined function called operator++ implements the
9296  //   prefix and postfix ++ operator. If this function is a member
9297  //   function with no parameters, or a non-member function with one
9298  //   parameter of class or enumeration type, it defines the prefix
9299  //   increment operator ++ for objects of that type. If the function
9300  //   is a member function with one parameter (which shall be of type
9301  //   int) or a non-member function with two parameters (the second
9302  //   of which shall be of type int), it defines the postfix
9303  //   increment operator ++ for objects of that type.
9304  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9305    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9306    bool ParamIsInt = false;
9307    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9308      ParamIsInt = BT->getKind() == BuiltinType::Int;
9309
9310    if (!ParamIsInt)
9311      return Diag(LastParam->getLocation(),
9312                  diag::err_operator_overload_post_incdec_must_be_int)
9313        << LastParam->getType() << (Op == OO_MinusMinus);
9314  }
9315
9316  return false;
9317}
9318
9319/// CheckLiteralOperatorDeclaration - Check whether the declaration
9320/// of this literal operator function is well-formed. If so, returns
9321/// false; otherwise, emits appropriate diagnostics and returns true.
9322bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9323  if (isa<CXXMethodDecl>(FnDecl)) {
9324    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9325      << FnDecl->getDeclName();
9326    return true;
9327  }
9328
9329  if (FnDecl->isExternC()) {
9330    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9331    return true;
9332  }
9333
9334  bool Valid = false;
9335
9336  // This might be the definition of a literal operator template.
9337  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9338  // This might be a specialization of a literal operator template.
9339  if (!TpDecl)
9340    TpDecl = FnDecl->getPrimaryTemplate();
9341
9342  // template <char...> type operator "" name() is the only valid template
9343  // signature, and the only valid signature with no parameters.
9344  if (TpDecl) {
9345    if (FnDecl->param_size() == 0) {
9346      // Must have only one template parameter
9347      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9348      if (Params->size() == 1) {
9349        NonTypeTemplateParmDecl *PmDecl =
9350          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9351
9352        // The template parameter must be a char parameter pack.
9353        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9354            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9355          Valid = true;
9356      }
9357    }
9358  } else if (FnDecl->param_size()) {
9359    // Check the first parameter
9360    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9361
9362    QualType T = (*Param)->getType().getUnqualifiedType();
9363
9364    // unsigned long long int, long double, and any character type are allowed
9365    // as the only parameters.
9366    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9367        Context.hasSameType(T, Context.LongDoubleTy) ||
9368        Context.hasSameType(T, Context.CharTy) ||
9369        Context.hasSameType(T, Context.WCharTy) ||
9370        Context.hasSameType(T, Context.Char16Ty) ||
9371        Context.hasSameType(T, Context.Char32Ty)) {
9372      if (++Param == FnDecl->param_end())
9373        Valid = true;
9374      goto FinishedParams;
9375    }
9376
9377    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9378    const PointerType *PT = T->getAs<PointerType>();
9379    if (!PT)
9380      goto FinishedParams;
9381    T = PT->getPointeeType();
9382    if (!T.isConstQualified() || T.isVolatileQualified())
9383      goto FinishedParams;
9384    T = T.getUnqualifiedType();
9385
9386    // Move on to the second parameter;
9387    ++Param;
9388
9389    // If there is no second parameter, the first must be a const char *
9390    if (Param == FnDecl->param_end()) {
9391      if (Context.hasSameType(T, Context.CharTy))
9392        Valid = true;
9393      goto FinishedParams;
9394    }
9395
9396    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9397    // are allowed as the first parameter to a two-parameter function
9398    if (!(Context.hasSameType(T, Context.CharTy) ||
9399          Context.hasSameType(T, Context.WCharTy) ||
9400          Context.hasSameType(T, Context.Char16Ty) ||
9401          Context.hasSameType(T, Context.Char32Ty)))
9402      goto FinishedParams;
9403
9404    // The second and final parameter must be an std::size_t
9405    T = (*Param)->getType().getUnqualifiedType();
9406    if (Context.hasSameType(T, Context.getSizeType()) &&
9407        ++Param == FnDecl->param_end())
9408      Valid = true;
9409  }
9410
9411  // FIXME: This diagnostic is absolutely terrible.
9412FinishedParams:
9413  if (!Valid) {
9414    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9415      << FnDecl->getDeclName();
9416    return true;
9417  }
9418
9419  // A parameter-declaration-clause containing a default argument is not
9420  // equivalent to any of the permitted forms.
9421  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9422                                    ParamEnd = FnDecl->param_end();
9423       Param != ParamEnd; ++Param) {
9424    if ((*Param)->hasDefaultArg()) {
9425      Diag((*Param)->getDefaultArgRange().getBegin(),
9426           diag::err_literal_operator_default_argument)
9427        << (*Param)->getDefaultArgRange();
9428      break;
9429    }
9430  }
9431
9432  StringRef LiteralName
9433    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9434  if (LiteralName[0] != '_') {
9435    // C++11 [usrlit.suffix]p1:
9436    //   Literal suffix identifiers that do not start with an underscore
9437    //   are reserved for future standardization.
9438    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9439  }
9440
9441  return false;
9442}
9443
9444/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9445/// linkage specification, including the language and (if present)
9446/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9447/// the location of the language string literal, which is provided
9448/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9449/// the '{' brace. Otherwise, this linkage specification does not
9450/// have any braces.
9451Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9452                                           SourceLocation LangLoc,
9453                                           StringRef Lang,
9454                                           SourceLocation LBraceLoc) {
9455  LinkageSpecDecl::LanguageIDs Language;
9456  if (Lang == "\"C\"")
9457    Language = LinkageSpecDecl::lang_c;
9458  else if (Lang == "\"C++\"")
9459    Language = LinkageSpecDecl::lang_cxx;
9460  else {
9461    Diag(LangLoc, diag::err_bad_language);
9462    return 0;
9463  }
9464
9465  // FIXME: Add all the various semantics of linkage specifications
9466
9467  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9468                                               ExternLoc, LangLoc, Language);
9469  CurContext->addDecl(D);
9470  PushDeclContext(S, D);
9471  return D;
9472}
9473
9474/// ActOnFinishLinkageSpecification - Complete the definition of
9475/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9476/// valid, it's the position of the closing '}' brace in a linkage
9477/// specification that uses braces.
9478Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9479                                            Decl *LinkageSpec,
9480                                            SourceLocation RBraceLoc) {
9481  if (LinkageSpec) {
9482    if (RBraceLoc.isValid()) {
9483      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9484      LSDecl->setRBraceLoc(RBraceLoc);
9485    }
9486    PopDeclContext();
9487  }
9488  return LinkageSpec;
9489}
9490
9491/// \brief Perform semantic analysis for the variable declaration that
9492/// occurs within a C++ catch clause, returning the newly-created
9493/// variable.
9494VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9495                                         TypeSourceInfo *TInfo,
9496                                         SourceLocation StartLoc,
9497                                         SourceLocation Loc,
9498                                         IdentifierInfo *Name) {
9499  bool Invalid = false;
9500  QualType ExDeclType = TInfo->getType();
9501
9502  // Arrays and functions decay.
9503  if (ExDeclType->isArrayType())
9504    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9505  else if (ExDeclType->isFunctionType())
9506    ExDeclType = Context.getPointerType(ExDeclType);
9507
9508  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9509  // The exception-declaration shall not denote a pointer or reference to an
9510  // incomplete type, other than [cv] void*.
9511  // N2844 forbids rvalue references.
9512  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9513    Diag(Loc, diag::err_catch_rvalue_ref);
9514    Invalid = true;
9515  }
9516
9517  QualType BaseType = ExDeclType;
9518  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9519  unsigned DK = diag::err_catch_incomplete;
9520  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9521    BaseType = Ptr->getPointeeType();
9522    Mode = 1;
9523    DK = diag::err_catch_incomplete_ptr;
9524  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9525    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9526    BaseType = Ref->getPointeeType();
9527    Mode = 2;
9528    DK = diag::err_catch_incomplete_ref;
9529  }
9530  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9531      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9532    Invalid = true;
9533
9534  if (!Invalid && !ExDeclType->isDependentType() &&
9535      RequireNonAbstractType(Loc, ExDeclType,
9536                             diag::err_abstract_type_in_decl,
9537                             AbstractVariableType))
9538    Invalid = true;
9539
9540  // Only the non-fragile NeXT runtime currently supports C++ catches
9541  // of ObjC types, and no runtime supports catching ObjC types by value.
9542  if (!Invalid && getLangOpts().ObjC1) {
9543    QualType T = ExDeclType;
9544    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9545      T = RT->getPointeeType();
9546
9547    if (T->isObjCObjectType()) {
9548      Diag(Loc, diag::err_objc_object_catch);
9549      Invalid = true;
9550    } else if (T->isObjCObjectPointerType()) {
9551      if (!getLangOpts().ObjCNonFragileABI)
9552        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9553    }
9554  }
9555
9556  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9557                                    ExDeclType, TInfo, SC_None, SC_None);
9558  ExDecl->setExceptionVariable(true);
9559
9560  // In ARC, infer 'retaining' for variables of retainable type.
9561  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9562    Invalid = true;
9563
9564  if (!Invalid && !ExDeclType->isDependentType()) {
9565    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9566      // C++ [except.handle]p16:
9567      //   The object declared in an exception-declaration or, if the
9568      //   exception-declaration does not specify a name, a temporary (12.2) is
9569      //   copy-initialized (8.5) from the exception object. [...]
9570      //   The object is destroyed when the handler exits, after the destruction
9571      //   of any automatic objects initialized within the handler.
9572      //
9573      // We just pretend to initialize the object with itself, then make sure
9574      // it can be destroyed later.
9575      QualType initType = ExDeclType;
9576
9577      InitializedEntity entity =
9578        InitializedEntity::InitializeVariable(ExDecl);
9579      InitializationKind initKind =
9580        InitializationKind::CreateCopy(Loc, SourceLocation());
9581
9582      Expr *opaqueValue =
9583        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9584      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9585      ExprResult result = sequence.Perform(*this, entity, initKind,
9586                                           MultiExprArg(&opaqueValue, 1));
9587      if (result.isInvalid())
9588        Invalid = true;
9589      else {
9590        // If the constructor used was non-trivial, set this as the
9591        // "initializer".
9592        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9593        if (!construct->getConstructor()->isTrivial()) {
9594          Expr *init = MaybeCreateExprWithCleanups(construct);
9595          ExDecl->setInit(init);
9596        }
9597
9598        // And make sure it's destructable.
9599        FinalizeVarWithDestructor(ExDecl, recordType);
9600      }
9601    }
9602  }
9603
9604  if (Invalid)
9605    ExDecl->setInvalidDecl();
9606
9607  return ExDecl;
9608}
9609
9610/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9611/// handler.
9612Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9613  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9614  bool Invalid = D.isInvalidType();
9615
9616  // Check for unexpanded parameter packs.
9617  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9618                                               UPPC_ExceptionType)) {
9619    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9620                                             D.getIdentifierLoc());
9621    Invalid = true;
9622  }
9623
9624  IdentifierInfo *II = D.getIdentifier();
9625  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9626                                             LookupOrdinaryName,
9627                                             ForRedeclaration)) {
9628    // The scope should be freshly made just for us. There is just no way
9629    // it contains any previous declaration.
9630    assert(!S->isDeclScope(PrevDecl));
9631    if (PrevDecl->isTemplateParameter()) {
9632      // Maybe we will complain about the shadowed template parameter.
9633      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9634      PrevDecl = 0;
9635    }
9636  }
9637
9638  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9639    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9640      << D.getCXXScopeSpec().getRange();
9641    Invalid = true;
9642  }
9643
9644  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9645                                              D.getLocStart(),
9646                                              D.getIdentifierLoc(),
9647                                              D.getIdentifier());
9648  if (Invalid)
9649    ExDecl->setInvalidDecl();
9650
9651  // Add the exception declaration into this scope.
9652  if (II)
9653    PushOnScopeChains(ExDecl, S);
9654  else
9655    CurContext->addDecl(ExDecl);
9656
9657  ProcessDeclAttributes(S, ExDecl, D);
9658  return ExDecl;
9659}
9660
9661Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9662                                         Expr *AssertExpr,
9663                                         Expr *AssertMessageExpr_,
9664                                         SourceLocation RParenLoc) {
9665  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9666
9667  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9668    // In a static_assert-declaration, the constant-expression shall be a
9669    // constant expression that can be contextually converted to bool.
9670    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9671    if (Converted.isInvalid())
9672      return 0;
9673
9674    llvm::APSInt Cond;
9675    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9676          PDiag(diag::err_static_assert_expression_is_not_constant),
9677          /*AllowFold=*/false).isInvalid())
9678      return 0;
9679
9680    if (!Cond) {
9681      llvm::SmallString<256> MsgBuffer;
9682      llvm::raw_svector_ostream Msg(MsgBuffer);
9683      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9684      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9685        << Msg.str() << AssertExpr->getSourceRange();
9686    }
9687  }
9688
9689  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9690    return 0;
9691
9692  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9693                                        AssertExpr, AssertMessage, RParenLoc);
9694
9695  CurContext->addDecl(Decl);
9696  return Decl;
9697}
9698
9699/// \brief Perform semantic analysis of the given friend type declaration.
9700///
9701/// \returns A friend declaration that.
9702FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9703                                      SourceLocation FriendLoc,
9704                                      TypeSourceInfo *TSInfo) {
9705  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9706
9707  QualType T = TSInfo->getType();
9708  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9709
9710  // C++03 [class.friend]p2:
9711  //   An elaborated-type-specifier shall be used in a friend declaration
9712  //   for a class.*
9713  //
9714  //   * The class-key of the elaborated-type-specifier is required.
9715  if (!ActiveTemplateInstantiations.empty()) {
9716    // Do not complain about the form of friend template types during
9717    // template instantiation; we will already have complained when the
9718    // template was declared.
9719  } else if (!T->isElaboratedTypeSpecifier()) {
9720    // If we evaluated the type to a record type, suggest putting
9721    // a tag in front.
9722    if (const RecordType *RT = T->getAs<RecordType>()) {
9723      RecordDecl *RD = RT->getDecl();
9724
9725      std::string InsertionText = std::string(" ") + RD->getKindName();
9726
9727      Diag(TypeRange.getBegin(),
9728           getLangOpts().CPlusPlus0x ?
9729             diag::warn_cxx98_compat_unelaborated_friend_type :
9730             diag::ext_unelaborated_friend_type)
9731        << (unsigned) RD->getTagKind()
9732        << T
9733        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9734                                      InsertionText);
9735    } else {
9736      Diag(FriendLoc,
9737           getLangOpts().CPlusPlus0x ?
9738             diag::warn_cxx98_compat_nonclass_type_friend :
9739             diag::ext_nonclass_type_friend)
9740        << T
9741        << SourceRange(FriendLoc, TypeRange.getEnd());
9742    }
9743  } else if (T->getAs<EnumType>()) {
9744    Diag(FriendLoc,
9745         getLangOpts().CPlusPlus0x ?
9746           diag::warn_cxx98_compat_enum_friend :
9747           diag::ext_enum_friend)
9748      << T
9749      << SourceRange(FriendLoc, TypeRange.getEnd());
9750  }
9751
9752  // C++0x [class.friend]p3:
9753  //   If the type specifier in a friend declaration designates a (possibly
9754  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9755  //   the friend declaration is ignored.
9756
9757  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9758  // in [class.friend]p3 that we do not implement.
9759
9760  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9761}
9762
9763/// Handle a friend tag declaration where the scope specifier was
9764/// templated.
9765Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9766                                    unsigned TagSpec, SourceLocation TagLoc,
9767                                    CXXScopeSpec &SS,
9768                                    IdentifierInfo *Name, SourceLocation NameLoc,
9769                                    AttributeList *Attr,
9770                                    MultiTemplateParamsArg TempParamLists) {
9771  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9772
9773  bool isExplicitSpecialization = false;
9774  bool Invalid = false;
9775
9776  if (TemplateParameterList *TemplateParams
9777        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9778                                                  TempParamLists.get(),
9779                                                  TempParamLists.size(),
9780                                                  /*friend*/ true,
9781                                                  isExplicitSpecialization,
9782                                                  Invalid)) {
9783    if (TemplateParams->size() > 0) {
9784      // This is a declaration of a class template.
9785      if (Invalid)
9786        return 0;
9787
9788      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9789                                SS, Name, NameLoc, Attr,
9790                                TemplateParams, AS_public,
9791                                /*ModulePrivateLoc=*/SourceLocation(),
9792                                TempParamLists.size() - 1,
9793                   (TemplateParameterList**) TempParamLists.release()).take();
9794    } else {
9795      // The "template<>" header is extraneous.
9796      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9797        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9798      isExplicitSpecialization = true;
9799    }
9800  }
9801
9802  if (Invalid) return 0;
9803
9804  bool isAllExplicitSpecializations = true;
9805  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9806    if (TempParamLists.get()[I]->size()) {
9807      isAllExplicitSpecializations = false;
9808      break;
9809    }
9810  }
9811
9812  // FIXME: don't ignore attributes.
9813
9814  // If it's explicit specializations all the way down, just forget
9815  // about the template header and build an appropriate non-templated
9816  // friend.  TODO: for source fidelity, remember the headers.
9817  if (isAllExplicitSpecializations) {
9818    if (SS.isEmpty()) {
9819      bool Owned = false;
9820      bool IsDependent = false;
9821      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9822                      Attr, AS_public,
9823                      /*ModulePrivateLoc=*/SourceLocation(),
9824                      MultiTemplateParamsArg(), Owned, IsDependent,
9825                      /*ScopedEnumKWLoc=*/SourceLocation(),
9826                      /*ScopedEnumUsesClassTag=*/false,
9827                      /*UnderlyingType=*/TypeResult());
9828    }
9829
9830    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9831    ElaboratedTypeKeyword Keyword
9832      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9833    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9834                                   *Name, NameLoc);
9835    if (T.isNull())
9836      return 0;
9837
9838    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9839    if (isa<DependentNameType>(T)) {
9840      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9841      TL.setElaboratedKeywordLoc(TagLoc);
9842      TL.setQualifierLoc(QualifierLoc);
9843      TL.setNameLoc(NameLoc);
9844    } else {
9845      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9846      TL.setElaboratedKeywordLoc(TagLoc);
9847      TL.setQualifierLoc(QualifierLoc);
9848      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9849    }
9850
9851    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9852                                            TSI, FriendLoc);
9853    Friend->setAccess(AS_public);
9854    CurContext->addDecl(Friend);
9855    return Friend;
9856  }
9857
9858  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9859
9860
9861
9862  // Handle the case of a templated-scope friend class.  e.g.
9863  //   template <class T> class A<T>::B;
9864  // FIXME: we don't support these right now.
9865  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9866  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9867  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9868  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9869  TL.setElaboratedKeywordLoc(TagLoc);
9870  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9871  TL.setNameLoc(NameLoc);
9872
9873  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9874                                          TSI, FriendLoc);
9875  Friend->setAccess(AS_public);
9876  Friend->setUnsupportedFriend(true);
9877  CurContext->addDecl(Friend);
9878  return Friend;
9879}
9880
9881
9882/// Handle a friend type declaration.  This works in tandem with
9883/// ActOnTag.
9884///
9885/// Notes on friend class templates:
9886///
9887/// We generally treat friend class declarations as if they were
9888/// declaring a class.  So, for example, the elaborated type specifier
9889/// in a friend declaration is required to obey the restrictions of a
9890/// class-head (i.e. no typedefs in the scope chain), template
9891/// parameters are required to match up with simple template-ids, &c.
9892/// However, unlike when declaring a template specialization, it's
9893/// okay to refer to a template specialization without an empty
9894/// template parameter declaration, e.g.
9895///   friend class A<T>::B<unsigned>;
9896/// We permit this as a special case; if there are any template
9897/// parameters present at all, require proper matching, i.e.
9898///   template <> template <class T> friend class A<int>::B;
9899Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9900                                MultiTemplateParamsArg TempParams) {
9901  SourceLocation Loc = DS.getLocStart();
9902
9903  assert(DS.isFriendSpecified());
9904  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9905
9906  // Try to convert the decl specifier to a type.  This works for
9907  // friend templates because ActOnTag never produces a ClassTemplateDecl
9908  // for a TUK_Friend.
9909  Declarator TheDeclarator(DS, Declarator::MemberContext);
9910  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9911  QualType T = TSI->getType();
9912  if (TheDeclarator.isInvalidType())
9913    return 0;
9914
9915  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9916    return 0;
9917
9918  // This is definitely an error in C++98.  It's probably meant to
9919  // be forbidden in C++0x, too, but the specification is just
9920  // poorly written.
9921  //
9922  // The problem is with declarations like the following:
9923  //   template <T> friend A<T>::foo;
9924  // where deciding whether a class C is a friend or not now hinges
9925  // on whether there exists an instantiation of A that causes
9926  // 'foo' to equal C.  There are restrictions on class-heads
9927  // (which we declare (by fiat) elaborated friend declarations to
9928  // be) that makes this tractable.
9929  //
9930  // FIXME: handle "template <> friend class A<T>;", which
9931  // is possibly well-formed?  Who even knows?
9932  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9933    Diag(Loc, diag::err_tagless_friend_type_template)
9934      << DS.getSourceRange();
9935    return 0;
9936  }
9937
9938  // C++98 [class.friend]p1: A friend of a class is a function
9939  //   or class that is not a member of the class . . .
9940  // This is fixed in DR77, which just barely didn't make the C++03
9941  // deadline.  It's also a very silly restriction that seriously
9942  // affects inner classes and which nobody else seems to implement;
9943  // thus we never diagnose it, not even in -pedantic.
9944  //
9945  // But note that we could warn about it: it's always useless to
9946  // friend one of your own members (it's not, however, worthless to
9947  // friend a member of an arbitrary specialization of your template).
9948
9949  Decl *D;
9950  if (unsigned NumTempParamLists = TempParams.size())
9951    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9952                                   NumTempParamLists,
9953                                   TempParams.release(),
9954                                   TSI,
9955                                   DS.getFriendSpecLoc());
9956  else
9957    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9958
9959  if (!D)
9960    return 0;
9961
9962  D->setAccess(AS_public);
9963  CurContext->addDecl(D);
9964
9965  return D;
9966}
9967
9968Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9969                                    MultiTemplateParamsArg TemplateParams) {
9970  const DeclSpec &DS = D.getDeclSpec();
9971
9972  assert(DS.isFriendSpecified());
9973  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9974
9975  SourceLocation Loc = D.getIdentifierLoc();
9976  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9977
9978  // C++ [class.friend]p1
9979  //   A friend of a class is a function or class....
9980  // Note that this sees through typedefs, which is intended.
9981  // It *doesn't* see through dependent types, which is correct
9982  // according to [temp.arg.type]p3:
9983  //   If a declaration acquires a function type through a
9984  //   type dependent on a template-parameter and this causes
9985  //   a declaration that does not use the syntactic form of a
9986  //   function declarator to have a function type, the program
9987  //   is ill-formed.
9988  if (!TInfo->getType()->isFunctionType()) {
9989    Diag(Loc, diag::err_unexpected_friend);
9990
9991    // It might be worthwhile to try to recover by creating an
9992    // appropriate declaration.
9993    return 0;
9994  }
9995
9996  // C++ [namespace.memdef]p3
9997  //  - If a friend declaration in a non-local class first declares a
9998  //    class or function, the friend class or function is a member
9999  //    of the innermost enclosing namespace.
10000  //  - The name of the friend is not found by simple name lookup
10001  //    until a matching declaration is provided in that namespace
10002  //    scope (either before or after the class declaration granting
10003  //    friendship).
10004  //  - If a friend function is called, its name may be found by the
10005  //    name lookup that considers functions from namespaces and
10006  //    classes associated with the types of the function arguments.
10007  //  - When looking for a prior declaration of a class or a function
10008  //    declared as a friend, scopes outside the innermost enclosing
10009  //    namespace scope are not considered.
10010
10011  CXXScopeSpec &SS = D.getCXXScopeSpec();
10012  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10013  DeclarationName Name = NameInfo.getName();
10014  assert(Name);
10015
10016  // Check for unexpanded parameter packs.
10017  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10018      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10019      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10020    return 0;
10021
10022  // The context we found the declaration in, or in which we should
10023  // create the declaration.
10024  DeclContext *DC;
10025  Scope *DCScope = S;
10026  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10027                        ForRedeclaration);
10028
10029  // FIXME: there are different rules in local classes
10030
10031  // There are four cases here.
10032  //   - There's no scope specifier, in which case we just go to the
10033  //     appropriate scope and look for a function or function template
10034  //     there as appropriate.
10035  // Recover from invalid scope qualifiers as if they just weren't there.
10036  if (SS.isInvalid() || !SS.isSet()) {
10037    // C++0x [namespace.memdef]p3:
10038    //   If the name in a friend declaration is neither qualified nor
10039    //   a template-id and the declaration is a function or an
10040    //   elaborated-type-specifier, the lookup to determine whether
10041    //   the entity has been previously declared shall not consider
10042    //   any scopes outside the innermost enclosing namespace.
10043    // C++0x [class.friend]p11:
10044    //   If a friend declaration appears in a local class and the name
10045    //   specified is an unqualified name, a prior declaration is
10046    //   looked up without considering scopes that are outside the
10047    //   innermost enclosing non-class scope. For a friend function
10048    //   declaration, if there is no prior declaration, the program is
10049    //   ill-formed.
10050    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10051    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10052
10053    // Find the appropriate context according to the above.
10054    DC = CurContext;
10055    while (true) {
10056      // Skip class contexts.  If someone can cite chapter and verse
10057      // for this behavior, that would be nice --- it's what GCC and
10058      // EDG do, and it seems like a reasonable intent, but the spec
10059      // really only says that checks for unqualified existing
10060      // declarations should stop at the nearest enclosing namespace,
10061      // not that they should only consider the nearest enclosing
10062      // namespace.
10063      while (DC->isRecord())
10064        DC = DC->getParent();
10065
10066      LookupQualifiedName(Previous, DC);
10067
10068      // TODO: decide what we think about using declarations.
10069      if (isLocal || !Previous.empty())
10070        break;
10071
10072      if (isTemplateId) {
10073        if (isa<TranslationUnitDecl>(DC)) break;
10074      } else {
10075        if (DC->isFileContext()) break;
10076      }
10077      DC = DC->getParent();
10078    }
10079
10080    // C++ [class.friend]p1: A friend of a class is a function or
10081    //   class that is not a member of the class . . .
10082    // C++11 changes this for both friend types and functions.
10083    // Most C++ 98 compilers do seem to give an error here, so
10084    // we do, too.
10085    if (!Previous.empty() && DC->Equals(CurContext))
10086      Diag(DS.getFriendSpecLoc(),
10087           getLangOpts().CPlusPlus0x ?
10088             diag::warn_cxx98_compat_friend_is_member :
10089             diag::err_friend_is_member);
10090
10091    DCScope = getScopeForDeclContext(S, DC);
10092
10093    // C++ [class.friend]p6:
10094    //   A function can be defined in a friend declaration of a class if and
10095    //   only if the class is a non-local class (9.8), the function name is
10096    //   unqualified, and the function has namespace scope.
10097    if (isLocal && D.isFunctionDefinition()) {
10098      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10099    }
10100
10101  //   - There's a non-dependent scope specifier, in which case we
10102  //     compute it and do a previous lookup there for a function
10103  //     or function template.
10104  } else if (!SS.getScopeRep()->isDependent()) {
10105    DC = computeDeclContext(SS);
10106    if (!DC) return 0;
10107
10108    if (RequireCompleteDeclContext(SS, DC)) return 0;
10109
10110    LookupQualifiedName(Previous, DC);
10111
10112    // Ignore things found implicitly in the wrong scope.
10113    // TODO: better diagnostics for this case.  Suggesting the right
10114    // qualified scope would be nice...
10115    LookupResult::Filter F = Previous.makeFilter();
10116    while (F.hasNext()) {
10117      NamedDecl *D = F.next();
10118      if (!DC->InEnclosingNamespaceSetOf(
10119              D->getDeclContext()->getRedeclContext()))
10120        F.erase();
10121    }
10122    F.done();
10123
10124    if (Previous.empty()) {
10125      D.setInvalidType();
10126      Diag(Loc, diag::err_qualified_friend_not_found)
10127          << Name << TInfo->getType();
10128      return 0;
10129    }
10130
10131    // C++ [class.friend]p1: A friend of a class is a function or
10132    //   class that is not a member of the class . . .
10133    if (DC->Equals(CurContext))
10134      Diag(DS.getFriendSpecLoc(),
10135           getLangOpts().CPlusPlus0x ?
10136             diag::warn_cxx98_compat_friend_is_member :
10137             diag::err_friend_is_member);
10138
10139    if (D.isFunctionDefinition()) {
10140      // C++ [class.friend]p6:
10141      //   A function can be defined in a friend declaration of a class if and
10142      //   only if the class is a non-local class (9.8), the function name is
10143      //   unqualified, and the function has namespace scope.
10144      SemaDiagnosticBuilder DB
10145        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10146
10147      DB << SS.getScopeRep();
10148      if (DC->isFileContext())
10149        DB << FixItHint::CreateRemoval(SS.getRange());
10150      SS.clear();
10151    }
10152
10153  //   - There's a scope specifier that does not match any template
10154  //     parameter lists, in which case we use some arbitrary context,
10155  //     create a method or method template, and wait for instantiation.
10156  //   - There's a scope specifier that does match some template
10157  //     parameter lists, which we don't handle right now.
10158  } else {
10159    if (D.isFunctionDefinition()) {
10160      // C++ [class.friend]p6:
10161      //   A function can be defined in a friend declaration of a class if and
10162      //   only if the class is a non-local class (9.8), the function name is
10163      //   unqualified, and the function has namespace scope.
10164      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10165        << SS.getScopeRep();
10166    }
10167
10168    DC = CurContext;
10169    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10170  }
10171
10172  if (!DC->isRecord()) {
10173    // This implies that it has to be an operator or function.
10174    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10175        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10176        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10177      Diag(Loc, diag::err_introducing_special_friend) <<
10178        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10179         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10180      return 0;
10181    }
10182  }
10183
10184  // FIXME: This is an egregious hack to cope with cases where the scope stack
10185  // does not contain the declaration context, i.e., in an out-of-line
10186  // definition of a class.
10187  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10188  if (!DCScope) {
10189    FakeDCScope.setEntity(DC);
10190    DCScope = &FakeDCScope;
10191  }
10192
10193  bool AddToScope = true;
10194  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10195                                          move(TemplateParams), AddToScope);
10196  if (!ND) return 0;
10197
10198  assert(ND->getDeclContext() == DC);
10199  assert(ND->getLexicalDeclContext() == CurContext);
10200
10201  // Add the function declaration to the appropriate lookup tables,
10202  // adjusting the redeclarations list as necessary.  We don't
10203  // want to do this yet if the friending class is dependent.
10204  //
10205  // Also update the scope-based lookup if the target context's
10206  // lookup context is in lexical scope.
10207  if (!CurContext->isDependentContext()) {
10208    DC = DC->getRedeclContext();
10209    DC->makeDeclVisibleInContext(ND);
10210    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10211      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10212  }
10213
10214  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10215                                       D.getIdentifierLoc(), ND,
10216                                       DS.getFriendSpecLoc());
10217  FrD->setAccess(AS_public);
10218  CurContext->addDecl(FrD);
10219
10220  if (ND->isInvalidDecl())
10221    FrD->setInvalidDecl();
10222  else {
10223    FunctionDecl *FD;
10224    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10225      FD = FTD->getTemplatedDecl();
10226    else
10227      FD = cast<FunctionDecl>(ND);
10228
10229    // Mark templated-scope function declarations as unsupported.
10230    if (FD->getNumTemplateParameterLists())
10231      FrD->setUnsupportedFriend(true);
10232  }
10233
10234  return ND;
10235}
10236
10237void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10238  AdjustDeclIfTemplate(Dcl);
10239
10240  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10241  if (!Fn) {
10242    Diag(DelLoc, diag::err_deleted_non_function);
10243    return;
10244  }
10245  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10246    Diag(DelLoc, diag::err_deleted_decl_not_first);
10247    Diag(Prev->getLocation(), diag::note_previous_declaration);
10248    // If the declaration wasn't the first, we delete the function anyway for
10249    // recovery.
10250  }
10251  Fn->setDeletedAsWritten();
10252
10253  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10254  if (!MD)
10255    return;
10256
10257  // A deleted special member function is trivial if the corresponding
10258  // implicitly-declared function would have been.
10259  switch (getSpecialMember(MD)) {
10260  case CXXInvalid:
10261    break;
10262  case CXXDefaultConstructor:
10263    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10264    break;
10265  case CXXCopyConstructor:
10266    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10267    break;
10268  case CXXMoveConstructor:
10269    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10270    break;
10271  case CXXCopyAssignment:
10272    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10273    break;
10274  case CXXMoveAssignment:
10275    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10276    break;
10277  case CXXDestructor:
10278    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10279    break;
10280  }
10281}
10282
10283void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10284  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10285
10286  if (MD) {
10287    if (MD->getParent()->isDependentType()) {
10288      MD->setDefaulted();
10289      MD->setExplicitlyDefaulted();
10290      return;
10291    }
10292
10293    CXXSpecialMember Member = getSpecialMember(MD);
10294    if (Member == CXXInvalid) {
10295      Diag(DefaultLoc, diag::err_default_special_members);
10296      return;
10297    }
10298
10299    MD->setDefaulted();
10300    MD->setExplicitlyDefaulted();
10301
10302    // If this definition appears within the record, do the checking when
10303    // the record is complete.
10304    const FunctionDecl *Primary = MD;
10305    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10306      // Find the uninstantiated declaration that actually had the '= default'
10307      // on it.
10308      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10309
10310    if (Primary == Primary->getCanonicalDecl())
10311      return;
10312
10313    switch (Member) {
10314    case CXXDefaultConstructor: {
10315      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10316      CheckExplicitlyDefaultedDefaultConstructor(CD);
10317      if (!CD->isInvalidDecl())
10318        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10319      break;
10320    }
10321
10322    case CXXCopyConstructor: {
10323      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10324      CheckExplicitlyDefaultedCopyConstructor(CD);
10325      if (!CD->isInvalidDecl())
10326        DefineImplicitCopyConstructor(DefaultLoc, CD);
10327      break;
10328    }
10329
10330    case CXXCopyAssignment: {
10331      CheckExplicitlyDefaultedCopyAssignment(MD);
10332      if (!MD->isInvalidDecl())
10333        DefineImplicitCopyAssignment(DefaultLoc, MD);
10334      break;
10335    }
10336
10337    case CXXDestructor: {
10338      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10339      CheckExplicitlyDefaultedDestructor(DD);
10340      if (!DD->isInvalidDecl())
10341        DefineImplicitDestructor(DefaultLoc, DD);
10342      break;
10343    }
10344
10345    case CXXMoveConstructor: {
10346      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10347      CheckExplicitlyDefaultedMoveConstructor(CD);
10348      if (!CD->isInvalidDecl())
10349        DefineImplicitMoveConstructor(DefaultLoc, CD);
10350      break;
10351    }
10352
10353    case CXXMoveAssignment: {
10354      CheckExplicitlyDefaultedMoveAssignment(MD);
10355      if (!MD->isInvalidDecl())
10356        DefineImplicitMoveAssignment(DefaultLoc, MD);
10357      break;
10358    }
10359
10360    case CXXInvalid:
10361      llvm_unreachable("Invalid special member.");
10362    }
10363  } else {
10364    Diag(DefaultLoc, diag::err_default_special_members);
10365  }
10366}
10367
10368static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10369  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10370    Stmt *SubStmt = *CI;
10371    if (!SubStmt)
10372      continue;
10373    if (isa<ReturnStmt>(SubStmt))
10374      Self.Diag(SubStmt->getLocStart(),
10375           diag::err_return_in_constructor_handler);
10376    if (!isa<Expr>(SubStmt))
10377      SearchForReturnInStmt(Self, SubStmt);
10378  }
10379}
10380
10381void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10382  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10383    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10384    SearchForReturnInStmt(*this, Handler);
10385  }
10386}
10387
10388bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10389                                             const CXXMethodDecl *Old) {
10390  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10391  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10392
10393  if (Context.hasSameType(NewTy, OldTy) ||
10394      NewTy->isDependentType() || OldTy->isDependentType())
10395    return false;
10396
10397  // Check if the return types are covariant
10398  QualType NewClassTy, OldClassTy;
10399
10400  /// Both types must be pointers or references to classes.
10401  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10402    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10403      NewClassTy = NewPT->getPointeeType();
10404      OldClassTy = OldPT->getPointeeType();
10405    }
10406  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10407    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10408      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10409        NewClassTy = NewRT->getPointeeType();
10410        OldClassTy = OldRT->getPointeeType();
10411      }
10412    }
10413  }
10414
10415  // The return types aren't either both pointers or references to a class type.
10416  if (NewClassTy.isNull()) {
10417    Diag(New->getLocation(),
10418         diag::err_different_return_type_for_overriding_virtual_function)
10419      << New->getDeclName() << NewTy << OldTy;
10420    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10421
10422    return true;
10423  }
10424
10425  // C++ [class.virtual]p6:
10426  //   If the return type of D::f differs from the return type of B::f, the
10427  //   class type in the return type of D::f shall be complete at the point of
10428  //   declaration of D::f or shall be the class type D.
10429  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10430    if (!RT->isBeingDefined() &&
10431        RequireCompleteType(New->getLocation(), NewClassTy,
10432                            PDiag(diag::err_covariant_return_incomplete)
10433                              << New->getDeclName()))
10434    return true;
10435  }
10436
10437  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10438    // Check if the new class derives from the old class.
10439    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10440      Diag(New->getLocation(),
10441           diag::err_covariant_return_not_derived)
10442      << New->getDeclName() << NewTy << OldTy;
10443      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10444      return true;
10445    }
10446
10447    // Check if we the conversion from derived to base is valid.
10448    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10449                    diag::err_covariant_return_inaccessible_base,
10450                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10451                    // FIXME: Should this point to the return type?
10452                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10453      // FIXME: this note won't trigger for delayed access control
10454      // diagnostics, and it's impossible to get an undelayed error
10455      // here from access control during the original parse because
10456      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10457      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10458      return true;
10459    }
10460  }
10461
10462  // The qualifiers of the return types must be the same.
10463  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10464    Diag(New->getLocation(),
10465         diag::err_covariant_return_type_different_qualifications)
10466    << New->getDeclName() << NewTy << OldTy;
10467    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10468    return true;
10469  };
10470
10471
10472  // The new class type must have the same or less qualifiers as the old type.
10473  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10474    Diag(New->getLocation(),
10475         diag::err_covariant_return_type_class_type_more_qualified)
10476    << New->getDeclName() << NewTy << OldTy;
10477    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10478    return true;
10479  };
10480
10481  return false;
10482}
10483
10484/// \brief Mark the given method pure.
10485///
10486/// \param Method the method to be marked pure.
10487///
10488/// \param InitRange the source range that covers the "0" initializer.
10489bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10490  SourceLocation EndLoc = InitRange.getEnd();
10491  if (EndLoc.isValid())
10492    Method->setRangeEnd(EndLoc);
10493
10494  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10495    Method->setPure();
10496    return false;
10497  }
10498
10499  if (!Method->isInvalidDecl())
10500    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10501      << Method->getDeclName() << InitRange;
10502  return true;
10503}
10504
10505/// \brief Determine whether the given declaration is a static data member.
10506static bool isStaticDataMember(Decl *D) {
10507  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10508  if (!Var)
10509    return false;
10510
10511  return Var->isStaticDataMember();
10512}
10513/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10514/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10515/// is a fresh scope pushed for just this purpose.
10516///
10517/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10518/// static data member of class X, names should be looked up in the scope of
10519/// class X.
10520void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10521  // If there is no declaration, there was an error parsing it.
10522  if (D == 0 || D->isInvalidDecl()) return;
10523
10524  // We should only get called for declarations with scope specifiers, like:
10525  //   int foo::bar;
10526  assert(D->isOutOfLine());
10527  EnterDeclaratorContext(S, D->getDeclContext());
10528
10529  // If we are parsing the initializer for a static data member, push a
10530  // new expression evaluation context that is associated with this static
10531  // data member.
10532  if (isStaticDataMember(D))
10533    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10534}
10535
10536/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10537/// initializer for the out-of-line declaration 'D'.
10538void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10539  // If there is no declaration, there was an error parsing it.
10540  if (D == 0 || D->isInvalidDecl()) return;
10541
10542  if (isStaticDataMember(D))
10543    PopExpressionEvaluationContext();
10544
10545  assert(D->isOutOfLine());
10546  ExitDeclaratorContext(S);
10547}
10548
10549/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10550/// C++ if/switch/while/for statement.
10551/// e.g: "if (int x = f()) {...}"
10552DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10553  // C++ 6.4p2:
10554  // The declarator shall not specify a function or an array.
10555  // The type-specifier-seq shall not contain typedef and shall not declare a
10556  // new class or enumeration.
10557  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10558         "Parser allowed 'typedef' as storage class of condition decl.");
10559
10560  Decl *Dcl = ActOnDeclarator(S, D);
10561  if (!Dcl)
10562    return true;
10563
10564  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10565    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10566      << D.getSourceRange();
10567    return true;
10568  }
10569
10570  return Dcl;
10571}
10572
10573void Sema::LoadExternalVTableUses() {
10574  if (!ExternalSource)
10575    return;
10576
10577  SmallVector<ExternalVTableUse, 4> VTables;
10578  ExternalSource->ReadUsedVTables(VTables);
10579  SmallVector<VTableUse, 4> NewUses;
10580  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10581    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10582      = VTablesUsed.find(VTables[I].Record);
10583    // Even if a definition wasn't required before, it may be required now.
10584    if (Pos != VTablesUsed.end()) {
10585      if (!Pos->second && VTables[I].DefinitionRequired)
10586        Pos->second = true;
10587      continue;
10588    }
10589
10590    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10591    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10592  }
10593
10594  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10595}
10596
10597void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10598                          bool DefinitionRequired) {
10599  // Ignore any vtable uses in unevaluated operands or for classes that do
10600  // not have a vtable.
10601  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10602      CurContext->isDependentContext() ||
10603      ExprEvalContexts.back().Context == Unevaluated)
10604    return;
10605
10606  // Try to insert this class into the map.
10607  LoadExternalVTableUses();
10608  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10609  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10610    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10611  if (!Pos.second) {
10612    // If we already had an entry, check to see if we are promoting this vtable
10613    // to required a definition. If so, we need to reappend to the VTableUses
10614    // list, since we may have already processed the first entry.
10615    if (DefinitionRequired && !Pos.first->second) {
10616      Pos.first->second = true;
10617    } else {
10618      // Otherwise, we can early exit.
10619      return;
10620    }
10621  }
10622
10623  // Local classes need to have their virtual members marked
10624  // immediately. For all other classes, we mark their virtual members
10625  // at the end of the translation unit.
10626  if (Class->isLocalClass())
10627    MarkVirtualMembersReferenced(Loc, Class);
10628  else
10629    VTableUses.push_back(std::make_pair(Class, Loc));
10630}
10631
10632bool Sema::DefineUsedVTables() {
10633  LoadExternalVTableUses();
10634  if (VTableUses.empty())
10635    return false;
10636
10637  // Note: The VTableUses vector could grow as a result of marking
10638  // the members of a class as "used", so we check the size each
10639  // time through the loop and prefer indices (with are stable) to
10640  // iterators (which are not).
10641  bool DefinedAnything = false;
10642  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10643    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10644    if (!Class)
10645      continue;
10646
10647    SourceLocation Loc = VTableUses[I].second;
10648
10649    // If this class has a key function, but that key function is
10650    // defined in another translation unit, we don't need to emit the
10651    // vtable even though we're using it.
10652    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10653    if (KeyFunction && !KeyFunction->hasBody()) {
10654      switch (KeyFunction->getTemplateSpecializationKind()) {
10655      case TSK_Undeclared:
10656      case TSK_ExplicitSpecialization:
10657      case TSK_ExplicitInstantiationDeclaration:
10658        // The key function is in another translation unit.
10659        continue;
10660
10661      case TSK_ExplicitInstantiationDefinition:
10662      case TSK_ImplicitInstantiation:
10663        // We will be instantiating the key function.
10664        break;
10665      }
10666    } else if (!KeyFunction) {
10667      // If we have a class with no key function that is the subject
10668      // of an explicit instantiation declaration, suppress the
10669      // vtable; it will live with the explicit instantiation
10670      // definition.
10671      bool IsExplicitInstantiationDeclaration
10672        = Class->getTemplateSpecializationKind()
10673                                      == TSK_ExplicitInstantiationDeclaration;
10674      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10675                                 REnd = Class->redecls_end();
10676           R != REnd; ++R) {
10677        TemplateSpecializationKind TSK
10678          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10679        if (TSK == TSK_ExplicitInstantiationDeclaration)
10680          IsExplicitInstantiationDeclaration = true;
10681        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10682          IsExplicitInstantiationDeclaration = false;
10683          break;
10684        }
10685      }
10686
10687      if (IsExplicitInstantiationDeclaration)
10688        continue;
10689    }
10690
10691    // Mark all of the virtual members of this class as referenced, so
10692    // that we can build a vtable. Then, tell the AST consumer that a
10693    // vtable for this class is required.
10694    DefinedAnything = true;
10695    MarkVirtualMembersReferenced(Loc, Class);
10696    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10697    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10698
10699    // Optionally warn if we're emitting a weak vtable.
10700    if (Class->getLinkage() == ExternalLinkage &&
10701        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10702      const FunctionDecl *KeyFunctionDef = 0;
10703      if (!KeyFunction ||
10704          (KeyFunction->hasBody(KeyFunctionDef) &&
10705           KeyFunctionDef->isInlined()))
10706        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10707             TSK_ExplicitInstantiationDefinition
10708             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10709          << Class;
10710    }
10711  }
10712  VTableUses.clear();
10713
10714  return DefinedAnything;
10715}
10716
10717void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10718                                        const CXXRecordDecl *RD) {
10719  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10720       e = RD->method_end(); i != e; ++i) {
10721    CXXMethodDecl *MD = *i;
10722
10723    // C++ [basic.def.odr]p2:
10724    //   [...] A virtual member function is used if it is not pure. [...]
10725    if (MD->isVirtual() && !MD->isPure())
10726      MarkFunctionReferenced(Loc, MD);
10727  }
10728
10729  // Only classes that have virtual bases need a VTT.
10730  if (RD->getNumVBases() == 0)
10731    return;
10732
10733  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10734           e = RD->bases_end(); i != e; ++i) {
10735    const CXXRecordDecl *Base =
10736        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10737    if (Base->getNumVBases() == 0)
10738      continue;
10739    MarkVirtualMembersReferenced(Loc, Base);
10740  }
10741}
10742
10743/// SetIvarInitializers - This routine builds initialization ASTs for the
10744/// Objective-C implementation whose ivars need be initialized.
10745void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10746  if (!getLangOpts().CPlusPlus)
10747    return;
10748  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10749    SmallVector<ObjCIvarDecl*, 8> ivars;
10750    CollectIvarsToConstructOrDestruct(OID, ivars);
10751    if (ivars.empty())
10752      return;
10753    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10754    for (unsigned i = 0; i < ivars.size(); i++) {
10755      FieldDecl *Field = ivars[i];
10756      if (Field->isInvalidDecl())
10757        continue;
10758
10759      CXXCtorInitializer *Member;
10760      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10761      InitializationKind InitKind =
10762        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10763
10764      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10765      ExprResult MemberInit =
10766        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10767      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10768      // Note, MemberInit could actually come back empty if no initialization
10769      // is required (e.g., because it would call a trivial default constructor)
10770      if (!MemberInit.get() || MemberInit.isInvalid())
10771        continue;
10772
10773      Member =
10774        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10775                                         SourceLocation(),
10776                                         MemberInit.takeAs<Expr>(),
10777                                         SourceLocation());
10778      AllToInit.push_back(Member);
10779
10780      // Be sure that the destructor is accessible and is marked as referenced.
10781      if (const RecordType *RecordTy
10782                  = Context.getBaseElementType(Field->getType())
10783                                                        ->getAs<RecordType>()) {
10784                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10785        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10786          MarkFunctionReferenced(Field->getLocation(), Destructor);
10787          CheckDestructorAccess(Field->getLocation(), Destructor,
10788                            PDiag(diag::err_access_dtor_ivar)
10789                              << Context.getBaseElementType(Field->getType()));
10790        }
10791      }
10792    }
10793    ObjCImplementation->setIvarInitializers(Context,
10794                                            AllToInit.data(), AllToInit.size());
10795  }
10796}
10797
10798static
10799void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10800                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10801                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10802                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10803                           Sema &S) {
10804  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10805                                                   CE = Current.end();
10806  if (Ctor->isInvalidDecl())
10807    return;
10808
10809  const FunctionDecl *FNTarget = 0;
10810  CXXConstructorDecl *Target;
10811
10812  // We ignore the result here since if we don't have a body, Target will be
10813  // null below.
10814  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10815  Target
10816= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10817
10818  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10819                     // Avoid dereferencing a null pointer here.
10820                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10821
10822  if (!Current.insert(Canonical))
10823    return;
10824
10825  // We know that beyond here, we aren't chaining into a cycle.
10826  if (!Target || !Target->isDelegatingConstructor() ||
10827      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10828    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10829      Valid.insert(*CI);
10830    Current.clear();
10831  // We've hit a cycle.
10832  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10833             Current.count(TCanonical)) {
10834    // If we haven't diagnosed this cycle yet, do so now.
10835    if (!Invalid.count(TCanonical)) {
10836      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10837             diag::warn_delegating_ctor_cycle)
10838        << Ctor;
10839
10840      // Don't add a note for a function delegating directo to itself.
10841      if (TCanonical != Canonical)
10842        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10843
10844      CXXConstructorDecl *C = Target;
10845      while (C->getCanonicalDecl() != Canonical) {
10846        (void)C->getTargetConstructor()->hasBody(FNTarget);
10847        assert(FNTarget && "Ctor cycle through bodiless function");
10848
10849        C
10850       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10851        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10852      }
10853    }
10854
10855    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10856      Invalid.insert(*CI);
10857    Current.clear();
10858  } else {
10859    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10860  }
10861}
10862
10863
10864void Sema::CheckDelegatingCtorCycles() {
10865  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10866
10867  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10868                                                   CE = Current.end();
10869
10870  for (DelegatingCtorDeclsType::iterator
10871         I = DelegatingCtorDecls.begin(ExternalSource),
10872         E = DelegatingCtorDecls.end();
10873       I != E; ++I) {
10874   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10875  }
10876
10877  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10878    (*CI)->setInvalidDecl();
10879}
10880
10881/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10882Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10883  // Implicitly declared functions (e.g. copy constructors) are
10884  // __host__ __device__
10885  if (D->isImplicit())
10886    return CFT_HostDevice;
10887
10888  if (D->hasAttr<CUDAGlobalAttr>())
10889    return CFT_Global;
10890
10891  if (D->hasAttr<CUDADeviceAttr>()) {
10892    if (D->hasAttr<CUDAHostAttr>())
10893      return CFT_HostDevice;
10894    else
10895      return CFT_Device;
10896  }
10897
10898  return CFT_Host;
10899}
10900
10901bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10902                           CUDAFunctionTarget CalleeTarget) {
10903  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10904  // Callable from the device only."
10905  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10906    return true;
10907
10908  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10909  // Callable from the host only."
10910  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10911  // Callable from the host only."
10912  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10913      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10914    return true;
10915
10916  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10917    return true;
10918
10919  return false;
10920}
10921