SemaDeclCXX.cpp revision 9d0af360ec510c06967afd7a23b202ce5bad7301
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/STLExtras.h"
35#include <map>
36#include <set>
37
38using namespace clang;
39
40//===----------------------------------------------------------------------===//
41// CheckDefaultArgumentVisitor
42//===----------------------------------------------------------------------===//
43
44namespace {
45  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
46  /// the default argument of a parameter to determine whether it
47  /// contains any ill-formed subexpressions. For example, this will
48  /// diagnose the use of local variables or parameters within the
49  /// default argument expression.
50  class CheckDefaultArgumentVisitor
51    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
52    Expr *DefaultArg;
53    Sema *S;
54
55  public:
56    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
57      : DefaultArg(defarg), S(s) {}
58
59    bool VisitExpr(Expr *Node);
60    bool VisitDeclRefExpr(DeclRefExpr *DRE);
61    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
62  };
63
64  /// VisitExpr - Visit all of the children of this expression.
65  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
66    bool IsInvalid = false;
67    for (Stmt::child_range I = Node->children(); I; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// \brief Merge the exception specifications of two variable declarations.
387///
388/// This is called when there's a redeclaration of a VarDecl. The function
389/// checks if the redeclaration might have an exception specification and
390/// validates compatibility and merges the specs if necessary.
391void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
392  // Shortcut if exceptions are disabled.
393  if (!getLangOptions().CXXExceptions)
394    return;
395
396  assert(Context.hasSameType(New->getType(), Old->getType()) &&
397         "Should only be called if types are otherwise the same.");
398
399  QualType NewType = New->getType();
400  QualType OldType = Old->getType();
401
402  // We're only interested in pointers and references to functions, as well
403  // as pointers to member functions.
404  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
405    NewType = R->getPointeeType();
406    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
407  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
408    NewType = P->getPointeeType();
409    OldType = OldType->getAs<PointerType>()->getPointeeType();
410  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
411    NewType = M->getPointeeType();
412    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
413  }
414
415  if (!NewType->isFunctionProtoType())
416    return;
417
418  // There's lots of special cases for functions. For function pointers, system
419  // libraries are hopefully not as broken so that we don't need these
420  // workarounds.
421  if (CheckEquivalentExceptionSpec(
422        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
423        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
424    New->setInvalidDecl();
425  }
426}
427
428/// CheckCXXDefaultArguments - Verify that the default arguments for a
429/// function declaration are well-formed according to C++
430/// [dcl.fct.default].
431void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
432  unsigned NumParams = FD->getNumParams();
433  unsigned p;
434
435  // Find first parameter with a default argument
436  for (p = 0; p < NumParams; ++p) {
437    ParmVarDecl *Param = FD->getParamDecl(p);
438    if (Param->hasDefaultArg())
439      break;
440  }
441
442  // C++ [dcl.fct.default]p4:
443  //   In a given function declaration, all parameters
444  //   subsequent to a parameter with a default argument shall
445  //   have default arguments supplied in this or previous
446  //   declarations. A default argument shall not be redefined
447  //   by a later declaration (not even to the same value).
448  unsigned LastMissingDefaultArg = 0;
449  for (; p < NumParams; ++p) {
450    ParmVarDecl *Param = FD->getParamDecl(p);
451    if (!Param->hasDefaultArg()) {
452      if (Param->isInvalidDecl())
453        /* We already complained about this parameter. */;
454      else if (Param->getIdentifier())
455        Diag(Param->getLocation(),
456             diag::err_param_default_argument_missing_name)
457          << Param->getIdentifier();
458      else
459        Diag(Param->getLocation(),
460             diag::err_param_default_argument_missing);
461
462      LastMissingDefaultArg = p;
463    }
464  }
465
466  if (LastMissingDefaultArg > 0) {
467    // Some default arguments were missing. Clear out all of the
468    // default arguments up to (and including) the last missing
469    // default argument, so that we leave the function parameters
470    // in a semantically valid state.
471    for (p = 0; p <= LastMissingDefaultArg; ++p) {
472      ParmVarDecl *Param = FD->getParamDecl(p);
473      if (Param->hasDefaultArg()) {
474        Param->setDefaultArg(0);
475      }
476    }
477  }
478}
479
480/// isCurrentClassName - Determine whether the identifier II is the
481/// name of the class type currently being defined. In the case of
482/// nested classes, this will only return true if II is the name of
483/// the innermost class.
484bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
485                              const CXXScopeSpec *SS) {
486  assert(getLangOptions().CPlusPlus && "No class names in C!");
487
488  CXXRecordDecl *CurDecl;
489  if (SS && SS->isSet() && !SS->isInvalid()) {
490    DeclContext *DC = computeDeclContext(*SS, true);
491    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
492  } else
493    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
494
495  if (CurDecl && CurDecl->getIdentifier())
496    return &II == CurDecl->getIdentifier();
497  else
498    return false;
499}
500
501/// \brief Check the validity of a C++ base class specifier.
502///
503/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
504/// and returns NULL otherwise.
505CXXBaseSpecifier *
506Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
507                         SourceRange SpecifierRange,
508                         bool Virtual, AccessSpecifier Access,
509                         TypeSourceInfo *TInfo,
510                         SourceLocation EllipsisLoc) {
511  QualType BaseType = TInfo->getType();
512
513  // C++ [class.union]p1:
514  //   A union shall not have base classes.
515  if (Class->isUnion()) {
516    Diag(Class->getLocation(), diag::err_base_clause_on_union)
517      << SpecifierRange;
518    return 0;
519  }
520
521  if (EllipsisLoc.isValid() &&
522      !TInfo->getType()->containsUnexpandedParameterPack()) {
523    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
524      << TInfo->getTypeLoc().getSourceRange();
525    EllipsisLoc = SourceLocation();
526  }
527
528  if (BaseType->isDependentType())
529    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
530                                          Class->getTagKind() == TTK_Class,
531                                          Access, TInfo, EllipsisLoc);
532
533  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
534
535  // Base specifiers must be record types.
536  if (!BaseType->isRecordType()) {
537    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
538    return 0;
539  }
540
541  // C++ [class.union]p1:
542  //   A union shall not be used as a base class.
543  if (BaseType->isUnionType()) {
544    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
545    return 0;
546  }
547
548  // C++ [class.derived]p2:
549  //   The class-name in a base-specifier shall not be an incompletely
550  //   defined class.
551  if (RequireCompleteType(BaseLoc, BaseType,
552                          PDiag(diag::err_incomplete_base_class)
553                            << SpecifierRange)) {
554    Class->setInvalidDecl();
555    return 0;
556  }
557
558  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
559  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
560  assert(BaseDecl && "Record type has no declaration");
561  BaseDecl = BaseDecl->getDefinition();
562  assert(BaseDecl && "Base type is not incomplete, but has no definition");
563  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
564  assert(CXXBaseDecl && "Base type is not a C++ type");
565
566  // C++ [class.derived]p2:
567  //   If a class is marked with the class-virt-specifier final and it appears
568  //   as a base-type-specifier in a base-clause (10 class.derived), the program
569  //   is ill-formed.
570  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
571    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
572      << CXXBaseDecl->getDeclName();
573    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
574      << CXXBaseDecl->getDeclName();
575    return 0;
576  }
577
578  if (BaseDecl->isInvalidDecl())
579    Class->setInvalidDecl();
580
581  // Create the base specifier.
582  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
583                                        Class->getTagKind() == TTK_Class,
584                                        Access, TInfo, EllipsisLoc);
585}
586
587/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
588/// one entry in the base class list of a class specifier, for
589/// example:
590///    class foo : public bar, virtual private baz {
591/// 'public bar' and 'virtual private baz' are each base-specifiers.
592BaseResult
593Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
594                         bool Virtual, AccessSpecifier Access,
595                         ParsedType basetype, SourceLocation BaseLoc,
596                         SourceLocation EllipsisLoc) {
597  if (!classdecl)
598    return true;
599
600  AdjustDeclIfTemplate(classdecl);
601  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
602  if (!Class)
603    return true;
604
605  TypeSourceInfo *TInfo = 0;
606  GetTypeFromParser(basetype, &TInfo);
607
608  if (EllipsisLoc.isInvalid() &&
609      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
610                                      UPPC_BaseType))
611    return true;
612
613  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
614                                                      Virtual, Access, TInfo,
615                                                      EllipsisLoc))
616    return BaseSpec;
617
618  return true;
619}
620
621/// \brief Performs the actual work of attaching the given base class
622/// specifiers to a C++ class.
623bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
624                                unsigned NumBases) {
625 if (NumBases == 0)
626    return false;
627
628  // Used to keep track of which base types we have already seen, so
629  // that we can properly diagnose redundant direct base types. Note
630  // that the key is always the unqualified canonical type of the base
631  // class.
632  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
633
634  // Copy non-redundant base specifiers into permanent storage.
635  unsigned NumGoodBases = 0;
636  bool Invalid = false;
637  for (unsigned idx = 0; idx < NumBases; ++idx) {
638    QualType NewBaseType
639      = Context.getCanonicalType(Bases[idx]->getType());
640    NewBaseType = NewBaseType.getLocalUnqualifiedType();
641    if (!Class->hasObjectMember()) {
642      if (const RecordType *FDTTy =
643            NewBaseType.getTypePtr()->getAs<RecordType>())
644        if (FDTTy->getDecl()->hasObjectMember())
645          Class->setHasObjectMember(true);
646    }
647
648    if (KnownBaseTypes[NewBaseType]) {
649      // C++ [class.mi]p3:
650      //   A class shall not be specified as a direct base class of a
651      //   derived class more than once.
652      Diag(Bases[idx]->getSourceRange().getBegin(),
653           diag::err_duplicate_base_class)
654        << KnownBaseTypes[NewBaseType]->getType()
655        << Bases[idx]->getSourceRange();
656
657      // Delete the duplicate base class specifier; we're going to
658      // overwrite its pointer later.
659      Context.Deallocate(Bases[idx]);
660
661      Invalid = true;
662    } else {
663      // Okay, add this new base class.
664      KnownBaseTypes[NewBaseType] = Bases[idx];
665      Bases[NumGoodBases++] = Bases[idx];
666    }
667  }
668
669  // Attach the remaining base class specifiers to the derived class.
670  Class->setBases(Bases, NumGoodBases);
671
672  // Delete the remaining (good) base class specifiers, since their
673  // data has been copied into the CXXRecordDecl.
674  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
675    Context.Deallocate(Bases[idx]);
676
677  return Invalid;
678}
679
680/// ActOnBaseSpecifiers - Attach the given base specifiers to the
681/// class, after checking whether there are any duplicate base
682/// classes.
683void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
684                               unsigned NumBases) {
685  if (!ClassDecl || !Bases || !NumBases)
686    return;
687
688  AdjustDeclIfTemplate(ClassDecl);
689  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
690                       (CXXBaseSpecifier**)(Bases), NumBases);
691}
692
693static CXXRecordDecl *GetClassForType(QualType T) {
694  if (const RecordType *RT = T->getAs<RecordType>())
695    return cast<CXXRecordDecl>(RT->getDecl());
696  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
697    return ICT->getDecl();
698  else
699    return 0;
700}
701
702/// \brief Determine whether the type \p Derived is a C++ class that is
703/// derived from the type \p Base.
704bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
705  if (!getLangOptions().CPlusPlus)
706    return false;
707
708  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
709  if (!DerivedRD)
710    return false;
711
712  CXXRecordDecl *BaseRD = GetClassForType(Base);
713  if (!BaseRD)
714    return false;
715
716  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
717  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
718}
719
720/// \brief Determine whether the type \p Derived is a C++ class that is
721/// derived from the type \p Base.
722bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
723  if (!getLangOptions().CPlusPlus)
724    return false;
725
726  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
727  if (!DerivedRD)
728    return false;
729
730  CXXRecordDecl *BaseRD = GetClassForType(Base);
731  if (!BaseRD)
732    return false;
733
734  return DerivedRD->isDerivedFrom(BaseRD, Paths);
735}
736
737void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
738                              CXXCastPath &BasePathArray) {
739  assert(BasePathArray.empty() && "Base path array must be empty!");
740  assert(Paths.isRecordingPaths() && "Must record paths!");
741
742  const CXXBasePath &Path = Paths.front();
743
744  // We first go backward and check if we have a virtual base.
745  // FIXME: It would be better if CXXBasePath had the base specifier for
746  // the nearest virtual base.
747  unsigned Start = 0;
748  for (unsigned I = Path.size(); I != 0; --I) {
749    if (Path[I - 1].Base->isVirtual()) {
750      Start = I - 1;
751      break;
752    }
753  }
754
755  // Now add all bases.
756  for (unsigned I = Start, E = Path.size(); I != E; ++I)
757    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
758}
759
760/// \brief Determine whether the given base path includes a virtual
761/// base class.
762bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
763  for (CXXCastPath::const_iterator B = BasePath.begin(),
764                                BEnd = BasePath.end();
765       B != BEnd; ++B)
766    if ((*B)->isVirtual())
767      return true;
768
769  return false;
770}
771
772/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
773/// conversion (where Derived and Base are class types) is
774/// well-formed, meaning that the conversion is unambiguous (and
775/// that all of the base classes are accessible). Returns true
776/// and emits a diagnostic if the code is ill-formed, returns false
777/// otherwise. Loc is the location where this routine should point to
778/// if there is an error, and Range is the source range to highlight
779/// if there is an error.
780bool
781Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
782                                   unsigned InaccessibleBaseID,
783                                   unsigned AmbigiousBaseConvID,
784                                   SourceLocation Loc, SourceRange Range,
785                                   DeclarationName Name,
786                                   CXXCastPath *BasePath) {
787  // First, determine whether the path from Derived to Base is
788  // ambiguous. This is slightly more expensive than checking whether
789  // the Derived to Base conversion exists, because here we need to
790  // explore multiple paths to determine if there is an ambiguity.
791  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
792                     /*DetectVirtual=*/false);
793  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
794  assert(DerivationOkay &&
795         "Can only be used with a derived-to-base conversion");
796  (void)DerivationOkay;
797
798  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
799    if (InaccessibleBaseID) {
800      // Check that the base class can be accessed.
801      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
802                                   InaccessibleBaseID)) {
803        case AR_inaccessible:
804          return true;
805        case AR_accessible:
806        case AR_dependent:
807        case AR_delayed:
808          break;
809      }
810    }
811
812    // Build a base path if necessary.
813    if (BasePath)
814      BuildBasePathArray(Paths, *BasePath);
815    return false;
816  }
817
818  // We know that the derived-to-base conversion is ambiguous, and
819  // we're going to produce a diagnostic. Perform the derived-to-base
820  // search just one more time to compute all of the possible paths so
821  // that we can print them out. This is more expensive than any of
822  // the previous derived-to-base checks we've done, but at this point
823  // performance isn't as much of an issue.
824  Paths.clear();
825  Paths.setRecordingPaths(true);
826  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
827  assert(StillOkay && "Can only be used with a derived-to-base conversion");
828  (void)StillOkay;
829
830  // Build up a textual representation of the ambiguous paths, e.g.,
831  // D -> B -> A, that will be used to illustrate the ambiguous
832  // conversions in the diagnostic. We only print one of the paths
833  // to each base class subobject.
834  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
835
836  Diag(Loc, AmbigiousBaseConvID)
837  << Derived << Base << PathDisplayStr << Range << Name;
838  return true;
839}
840
841bool
842Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
843                                   SourceLocation Loc, SourceRange Range,
844                                   CXXCastPath *BasePath,
845                                   bool IgnoreAccess) {
846  return CheckDerivedToBaseConversion(Derived, Base,
847                                      IgnoreAccess ? 0
848                                       : diag::err_upcast_to_inaccessible_base,
849                                      diag::err_ambiguous_derived_to_base_conv,
850                                      Loc, Range, DeclarationName(),
851                                      BasePath);
852}
853
854
855/// @brief Builds a string representing ambiguous paths from a
856/// specific derived class to different subobjects of the same base
857/// class.
858///
859/// This function builds a string that can be used in error messages
860/// to show the different paths that one can take through the
861/// inheritance hierarchy to go from the derived class to different
862/// subobjects of a base class. The result looks something like this:
863/// @code
864/// struct D -> struct B -> struct A
865/// struct D -> struct C -> struct A
866/// @endcode
867std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
868  std::string PathDisplayStr;
869  std::set<unsigned> DisplayedPaths;
870  for (CXXBasePaths::paths_iterator Path = Paths.begin();
871       Path != Paths.end(); ++Path) {
872    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
873      // We haven't displayed a path to this particular base
874      // class subobject yet.
875      PathDisplayStr += "\n    ";
876      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
877      for (CXXBasePath::const_iterator Element = Path->begin();
878           Element != Path->end(); ++Element)
879        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
880    }
881  }
882
883  return PathDisplayStr;
884}
885
886//===----------------------------------------------------------------------===//
887// C++ class member Handling
888//===----------------------------------------------------------------------===//
889
890/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
891Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
892                                 SourceLocation ASLoc,
893                                 SourceLocation ColonLoc) {
894  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
895  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
896                                                  ASLoc, ColonLoc);
897  CurContext->addHiddenDecl(ASDecl);
898  return ASDecl;
899}
900
901/// CheckOverrideControl - Check C++0x override control semantics.
902void Sema::CheckOverrideControl(const Decl *D) {
903  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
904  if (!MD || !MD->isVirtual())
905    return;
906
907  if (MD->isDependentContext())
908    return;
909
910  // C++0x [class.virtual]p3:
911  //   If a virtual function is marked with the virt-specifier override and does
912  //   not override a member function of a base class,
913  //   the program is ill-formed.
914  bool HasOverriddenMethods =
915    MD->begin_overridden_methods() != MD->end_overridden_methods();
916  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
917    Diag(MD->getLocation(),
918                 diag::err_function_marked_override_not_overriding)
919      << MD->getDeclName();
920    return;
921  }
922
923  // C++0x [class.derived]p8:
924  //   In a class definition marked with the class-virt-specifier explicit,
925  //   if a virtual member function that is neither implicitly-declared nor a
926  //   destructor overrides a member function of a base class and it is not
927  //   marked with the virt-specifier override, the program is ill-formed.
928  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
929      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
930    llvm::SmallVector<const CXXMethodDecl*, 4>
931      OverriddenMethods(MD->begin_overridden_methods(),
932                        MD->end_overridden_methods());
933
934    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
935      << MD->getDeclName()
936      << (unsigned)OverriddenMethods.size();
937
938    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
939      Diag(OverriddenMethods[I]->getLocation(),
940           diag::note_overridden_virtual_function);
941  }
942}
943
944/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
945/// function overrides a virtual member function marked 'final', according to
946/// C++0x [class.virtual]p3.
947bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
948                                                  const CXXMethodDecl *Old) {
949  if (!Old->hasAttr<FinalAttr>())
950    return false;
951
952  Diag(New->getLocation(), diag::err_final_function_overridden)
953    << New->getDeclName();
954  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
955  return true;
956}
957
958/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
959/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
960/// bitfield width if there is one and 'InitExpr' specifies the initializer if
961/// any.
962Decl *
963Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
964                               MultiTemplateParamsArg TemplateParameterLists,
965                               ExprTy *BW, const VirtSpecifiers &VS,
966                               ExprTy *InitExpr, bool IsDefinition,
967                               bool Deleted) {
968  const DeclSpec &DS = D.getDeclSpec();
969  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
970  DeclarationName Name = NameInfo.getName();
971  SourceLocation Loc = NameInfo.getLoc();
972
973  // For anonymous bitfields, the location should point to the type.
974  if (Loc.isInvalid())
975    Loc = D.getSourceRange().getBegin();
976
977  Expr *BitWidth = static_cast<Expr*>(BW);
978  Expr *Init = static_cast<Expr*>(InitExpr);
979
980  assert(isa<CXXRecordDecl>(CurContext));
981  assert(!DS.isFriendSpecified());
982
983  bool isFunc = false;
984  if (D.isFunctionDeclarator())
985    isFunc = true;
986  else if (D.getNumTypeObjects() == 0 &&
987           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
988    QualType TDType = GetTypeFromParser(DS.getRepAsType());
989    isFunc = TDType->isFunctionType();
990  }
991
992  // C++ 9.2p6: A member shall not be declared to have automatic storage
993  // duration (auto, register) or with the extern storage-class-specifier.
994  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
995  // data members and cannot be applied to names declared const or static,
996  // and cannot be applied to reference members.
997  switch (DS.getStorageClassSpec()) {
998    case DeclSpec::SCS_unspecified:
999    case DeclSpec::SCS_typedef:
1000    case DeclSpec::SCS_static:
1001      // FALL THROUGH.
1002      break;
1003    case DeclSpec::SCS_mutable:
1004      if (isFunc) {
1005        if (DS.getStorageClassSpecLoc().isValid())
1006          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1007        else
1008          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1009
1010        // FIXME: It would be nicer if the keyword was ignored only for this
1011        // declarator. Otherwise we could get follow-up errors.
1012        D.getMutableDeclSpec().ClearStorageClassSpecs();
1013      }
1014      break;
1015    default:
1016      if (DS.getStorageClassSpecLoc().isValid())
1017        Diag(DS.getStorageClassSpecLoc(),
1018             diag::err_storageclass_invalid_for_member);
1019      else
1020        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1021      D.getMutableDeclSpec().ClearStorageClassSpecs();
1022  }
1023
1024  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1025                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1026                      !isFunc);
1027
1028  Decl *Member;
1029  if (isInstField) {
1030    CXXScopeSpec &SS = D.getCXXScopeSpec();
1031
1032
1033    if (SS.isSet() && !SS.isInvalid()) {
1034      // The user provided a superfluous scope specifier inside a class
1035      // definition:
1036      //
1037      // class X {
1038      //   int X::member;
1039      // };
1040      DeclContext *DC = 0;
1041      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1042        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1043        << Name << FixItHint::CreateRemoval(SS.getRange());
1044      else
1045        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1046          << Name << SS.getRange();
1047
1048      SS.clear();
1049    }
1050
1051    // FIXME: Check for template parameters!
1052    // FIXME: Check that the name is an identifier!
1053    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1054                         AS);
1055    assert(Member && "HandleField never returns null");
1056  } else {
1057    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1058    if (!Member) {
1059      return 0;
1060    }
1061
1062    // Non-instance-fields can't have a bitfield.
1063    if (BitWidth) {
1064      if (Member->isInvalidDecl()) {
1065        // don't emit another diagnostic.
1066      } else if (isa<VarDecl>(Member)) {
1067        // C++ 9.6p3: A bit-field shall not be a static member.
1068        // "static member 'A' cannot be a bit-field"
1069        Diag(Loc, diag::err_static_not_bitfield)
1070          << Name << BitWidth->getSourceRange();
1071      } else if (isa<TypedefDecl>(Member)) {
1072        // "typedef member 'x' cannot be a bit-field"
1073        Diag(Loc, diag::err_typedef_not_bitfield)
1074          << Name << BitWidth->getSourceRange();
1075      } else {
1076        // A function typedef ("typedef int f(); f a;").
1077        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1078        Diag(Loc, diag::err_not_integral_type_bitfield)
1079          << Name << cast<ValueDecl>(Member)->getType()
1080          << BitWidth->getSourceRange();
1081      }
1082
1083      BitWidth = 0;
1084      Member->setInvalidDecl();
1085    }
1086
1087    Member->setAccess(AS);
1088
1089    // If we have declared a member function template, set the access of the
1090    // templated declaration as well.
1091    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1092      FunTmpl->getTemplatedDecl()->setAccess(AS);
1093  }
1094
1095  if (VS.isOverrideSpecified()) {
1096    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1097    if (!MD || !MD->isVirtual()) {
1098      Diag(Member->getLocStart(),
1099           diag::override_keyword_only_allowed_on_virtual_member_functions)
1100        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1101    } else
1102      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1103  }
1104  if (VS.isFinalSpecified()) {
1105    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1106    if (!MD || !MD->isVirtual()) {
1107      Diag(Member->getLocStart(),
1108           diag::override_keyword_only_allowed_on_virtual_member_functions)
1109      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1110    } else
1111      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1112  }
1113
1114  if (VS.getLastLocation().isValid()) {
1115    // Update the end location of a method that has a virt-specifiers.
1116    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1117      MD->setRangeEnd(VS.getLastLocation());
1118  }
1119
1120  CheckOverrideControl(Member);
1121
1122  assert((Name || isInstField) && "No identifier for non-field ?");
1123
1124  if (Init)
1125    AddInitializerToDecl(Member, Init, false,
1126                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1127  if (Deleted) // FIXME: Source location is not very good.
1128    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1129
1130  FinalizeDeclaration(Member);
1131
1132  if (isInstField)
1133    FieldCollector->Add(cast<FieldDecl>(Member));
1134  return Member;
1135}
1136
1137/// \brief Find the direct and/or virtual base specifiers that
1138/// correspond to the given base type, for use in base initialization
1139/// within a constructor.
1140static bool FindBaseInitializer(Sema &SemaRef,
1141                                CXXRecordDecl *ClassDecl,
1142                                QualType BaseType,
1143                                const CXXBaseSpecifier *&DirectBaseSpec,
1144                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1145  // First, check for a direct base class.
1146  DirectBaseSpec = 0;
1147  for (CXXRecordDecl::base_class_const_iterator Base
1148         = ClassDecl->bases_begin();
1149       Base != ClassDecl->bases_end(); ++Base) {
1150    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1151      // We found a direct base of this type. That's what we're
1152      // initializing.
1153      DirectBaseSpec = &*Base;
1154      break;
1155    }
1156  }
1157
1158  // Check for a virtual base class.
1159  // FIXME: We might be able to short-circuit this if we know in advance that
1160  // there are no virtual bases.
1161  VirtualBaseSpec = 0;
1162  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1163    // We haven't found a base yet; search the class hierarchy for a
1164    // virtual base class.
1165    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1166                       /*DetectVirtual=*/false);
1167    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1168                              BaseType, Paths)) {
1169      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1170           Path != Paths.end(); ++Path) {
1171        if (Path->back().Base->isVirtual()) {
1172          VirtualBaseSpec = Path->back().Base;
1173          break;
1174        }
1175      }
1176    }
1177  }
1178
1179  return DirectBaseSpec || VirtualBaseSpec;
1180}
1181
1182/// ActOnMemInitializer - Handle a C++ member initializer.
1183MemInitResult
1184Sema::ActOnMemInitializer(Decl *ConstructorD,
1185                          Scope *S,
1186                          CXXScopeSpec &SS,
1187                          IdentifierInfo *MemberOrBase,
1188                          ParsedType TemplateTypeTy,
1189                          SourceLocation IdLoc,
1190                          SourceLocation LParenLoc,
1191                          ExprTy **Args, unsigned NumArgs,
1192                          SourceLocation RParenLoc,
1193                          SourceLocation EllipsisLoc) {
1194  if (!ConstructorD)
1195    return true;
1196
1197  AdjustDeclIfTemplate(ConstructorD);
1198
1199  CXXConstructorDecl *Constructor
1200    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1201  if (!Constructor) {
1202    // The user wrote a constructor initializer on a function that is
1203    // not a C++ constructor. Ignore the error for now, because we may
1204    // have more member initializers coming; we'll diagnose it just
1205    // once in ActOnMemInitializers.
1206    return true;
1207  }
1208
1209  CXXRecordDecl *ClassDecl = Constructor->getParent();
1210
1211  // C++ [class.base.init]p2:
1212  //   Names in a mem-initializer-id are looked up in the scope of the
1213  //   constructor's class and, if not found in that scope, are looked
1214  //   up in the scope containing the constructor's definition.
1215  //   [Note: if the constructor's class contains a member with the
1216  //   same name as a direct or virtual base class of the class, a
1217  //   mem-initializer-id naming the member or base class and composed
1218  //   of a single identifier refers to the class member. A
1219  //   mem-initializer-id for the hidden base class may be specified
1220  //   using a qualified name. ]
1221  if (!SS.getScopeRep() && !TemplateTypeTy) {
1222    // Look for a member, first.
1223    FieldDecl *Member = 0;
1224    DeclContext::lookup_result Result
1225      = ClassDecl->lookup(MemberOrBase);
1226    if (Result.first != Result.second) {
1227      Member = dyn_cast<FieldDecl>(*Result.first);
1228
1229      if (Member) {
1230        if (EllipsisLoc.isValid())
1231          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1232            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1233
1234        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1235                                    LParenLoc, RParenLoc);
1236      }
1237
1238      // Handle anonymous union case.
1239      if (IndirectFieldDecl* IndirectField
1240            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1241        if (EllipsisLoc.isValid())
1242          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1243            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1244
1245         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1246                                       NumArgs, IdLoc,
1247                                       LParenLoc, RParenLoc);
1248      }
1249    }
1250  }
1251  // It didn't name a member, so see if it names a class.
1252  QualType BaseType;
1253  TypeSourceInfo *TInfo = 0;
1254
1255  if (TemplateTypeTy) {
1256    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1257  } else {
1258    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1259    LookupParsedName(R, S, &SS);
1260
1261    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1262    if (!TyD) {
1263      if (R.isAmbiguous()) return true;
1264
1265      // We don't want access-control diagnostics here.
1266      R.suppressDiagnostics();
1267
1268      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1269        bool NotUnknownSpecialization = false;
1270        DeclContext *DC = computeDeclContext(SS, false);
1271        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1272          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1273
1274        if (!NotUnknownSpecialization) {
1275          // When the scope specifier can refer to a member of an unknown
1276          // specialization, we take it as a type name.
1277          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1278                                       SS.getWithLocInContext(Context),
1279                                       *MemberOrBase, IdLoc);
1280          if (BaseType.isNull())
1281            return true;
1282
1283          R.clear();
1284          R.setLookupName(MemberOrBase);
1285        }
1286      }
1287
1288      // If no results were found, try to correct typos.
1289      if (R.empty() && BaseType.isNull() &&
1290          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1291          R.isSingleResult()) {
1292        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1293          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1294            // We have found a non-static data member with a similar
1295            // name to what was typed; complain and initialize that
1296            // member.
1297            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1298              << MemberOrBase << true << R.getLookupName()
1299              << FixItHint::CreateReplacement(R.getNameLoc(),
1300                                              R.getLookupName().getAsString());
1301            Diag(Member->getLocation(), diag::note_previous_decl)
1302              << Member->getDeclName();
1303
1304            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1305                                          LParenLoc, RParenLoc);
1306          }
1307        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1308          const CXXBaseSpecifier *DirectBaseSpec;
1309          const CXXBaseSpecifier *VirtualBaseSpec;
1310          if (FindBaseInitializer(*this, ClassDecl,
1311                                  Context.getTypeDeclType(Type),
1312                                  DirectBaseSpec, VirtualBaseSpec)) {
1313            // We have found a direct or virtual base class with a
1314            // similar name to what was typed; complain and initialize
1315            // that base class.
1316            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1317              << MemberOrBase << false << R.getLookupName()
1318              << FixItHint::CreateReplacement(R.getNameLoc(),
1319                                              R.getLookupName().getAsString());
1320
1321            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1322                                                             : VirtualBaseSpec;
1323            Diag(BaseSpec->getSourceRange().getBegin(),
1324                 diag::note_base_class_specified_here)
1325              << BaseSpec->getType()
1326              << BaseSpec->getSourceRange();
1327
1328            TyD = Type;
1329          }
1330        }
1331      }
1332
1333      if (!TyD && BaseType.isNull()) {
1334        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1335          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1336        return true;
1337      }
1338    }
1339
1340    if (BaseType.isNull()) {
1341      BaseType = Context.getTypeDeclType(TyD);
1342      if (SS.isSet()) {
1343        NestedNameSpecifier *Qualifier =
1344          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1345
1346        // FIXME: preserve source range information
1347        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1348      }
1349    }
1350  }
1351
1352  if (!TInfo)
1353    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1354
1355  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1356                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1357}
1358
1359/// Checks an initializer expression for use of uninitialized fields, such as
1360/// containing the field that is being initialized. Returns true if there is an
1361/// uninitialized field was used an updates the SourceLocation parameter; false
1362/// otherwise.
1363static bool InitExprContainsUninitializedFields(const Stmt *S,
1364                                                const ValueDecl *LhsField,
1365                                                SourceLocation *L) {
1366  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1367
1368  if (isa<CallExpr>(S)) {
1369    // Do not descend into function calls or constructors, as the use
1370    // of an uninitialized field may be valid. One would have to inspect
1371    // the contents of the function/ctor to determine if it is safe or not.
1372    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1373    // may be safe, depending on what the function/ctor does.
1374    return false;
1375  }
1376  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1377    const NamedDecl *RhsField = ME->getMemberDecl();
1378
1379    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1380      // The member expression points to a static data member.
1381      assert(VD->isStaticDataMember() &&
1382             "Member points to non-static data member!");
1383      (void)VD;
1384      return false;
1385    }
1386
1387    if (isa<EnumConstantDecl>(RhsField)) {
1388      // The member expression points to an enum.
1389      return false;
1390    }
1391
1392    if (RhsField == LhsField) {
1393      // Initializing a field with itself. Throw a warning.
1394      // But wait; there are exceptions!
1395      // Exception #1:  The field may not belong to this record.
1396      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1397      const Expr *base = ME->getBase();
1398      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1399        // Even though the field matches, it does not belong to this record.
1400        return false;
1401      }
1402      // None of the exceptions triggered; return true to indicate an
1403      // uninitialized field was used.
1404      *L = ME->getMemberLoc();
1405      return true;
1406    }
1407  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1408    // sizeof/alignof doesn't reference contents, do not warn.
1409    return false;
1410  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1411    // address-of doesn't reference contents (the pointer may be dereferenced
1412    // in the same expression but it would be rare; and weird).
1413    if (UOE->getOpcode() == UO_AddrOf)
1414      return false;
1415  }
1416  for (Stmt::const_child_range it = S->children(); it; ++it) {
1417    if (!*it) {
1418      // An expression such as 'member(arg ?: "")' may trigger this.
1419      continue;
1420    }
1421    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1422      return true;
1423  }
1424  return false;
1425}
1426
1427MemInitResult
1428Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1429                             unsigned NumArgs, SourceLocation IdLoc,
1430                             SourceLocation LParenLoc,
1431                             SourceLocation RParenLoc) {
1432  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1433  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1434  assert((DirectMember || IndirectMember) &&
1435         "Member must be a FieldDecl or IndirectFieldDecl");
1436
1437  if (Member->isInvalidDecl())
1438    return true;
1439
1440  // Diagnose value-uses of fields to initialize themselves, e.g.
1441  //   foo(foo)
1442  // where foo is not also a parameter to the constructor.
1443  // TODO: implement -Wuninitialized and fold this into that framework.
1444  for (unsigned i = 0; i < NumArgs; ++i) {
1445    SourceLocation L;
1446    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1447      // FIXME: Return true in the case when other fields are used before being
1448      // uninitialized. For example, let this field be the i'th field. When
1449      // initializing the i'th field, throw a warning if any of the >= i'th
1450      // fields are used, as they are not yet initialized.
1451      // Right now we are only handling the case where the i'th field uses
1452      // itself in its initializer.
1453      Diag(L, diag::warn_field_is_uninit);
1454    }
1455  }
1456
1457  bool HasDependentArg = false;
1458  for (unsigned i = 0; i < NumArgs; i++)
1459    HasDependentArg |= Args[i]->isTypeDependent();
1460
1461  Expr *Init;
1462  if (Member->getType()->isDependentType() || HasDependentArg) {
1463    // Can't check initialization for a member of dependent type or when
1464    // any of the arguments are type-dependent expressions.
1465    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1466                                       RParenLoc);
1467
1468    // Erase any temporaries within this evaluation context; we're not
1469    // going to track them in the AST, since we'll be rebuilding the
1470    // ASTs during template instantiation.
1471    ExprTemporaries.erase(
1472              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1473                          ExprTemporaries.end());
1474  } else {
1475    // Initialize the member.
1476    InitializedEntity MemberEntity =
1477      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1478                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1479    InitializationKind Kind =
1480      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1481
1482    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1483
1484    ExprResult MemberInit =
1485      InitSeq.Perform(*this, MemberEntity, Kind,
1486                      MultiExprArg(*this, Args, NumArgs), 0);
1487    if (MemberInit.isInvalid())
1488      return true;
1489
1490    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1491
1492    // C++0x [class.base.init]p7:
1493    //   The initialization of each base and member constitutes a
1494    //   full-expression.
1495    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1496    if (MemberInit.isInvalid())
1497      return true;
1498
1499    // If we are in a dependent context, template instantiation will
1500    // perform this type-checking again. Just save the arguments that we
1501    // received in a ParenListExpr.
1502    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1503    // of the information that we have about the member
1504    // initializer. However, deconstructing the ASTs is a dicey process,
1505    // and this approach is far more likely to get the corner cases right.
1506    if (CurContext->isDependentContext())
1507      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1508                                               RParenLoc);
1509    else
1510      Init = MemberInit.get();
1511  }
1512
1513  if (DirectMember) {
1514    return new (Context) CXXCtorInitializer(Context, DirectMember,
1515                                                    IdLoc, LParenLoc, Init,
1516                                                    RParenLoc);
1517  } else {
1518    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1519                                                    IdLoc, LParenLoc, Init,
1520                                                    RParenLoc);
1521  }
1522}
1523
1524MemInitResult
1525Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1526                                 Expr **Args, unsigned NumArgs,
1527                                 SourceLocation NameLoc,
1528                                 SourceLocation LParenLoc,
1529                                 SourceLocation RParenLoc,
1530                                 CXXRecordDecl *ClassDecl) {
1531  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1532  if (!LangOpts.CPlusPlus0x)
1533    return Diag(Loc, diag::err_delegation_0x_only)
1534      << TInfo->getTypeLoc().getLocalSourceRange();
1535  // Disable for 2.9.
1536  return Diag(Loc, diag::err_delegation_unimplemented)
1537    << TInfo->getTypeLoc().getLocalSourceRange();
1538#if 0
1539  // Initialize the object.
1540  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1541                                     QualType(ClassDecl->getTypeForDecl(), 0));
1542  InitializationKind Kind =
1543    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1544
1545  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1546
1547  ExprResult DelegationInit =
1548    InitSeq.Perform(*this, DelegationEntity, Kind,
1549                    MultiExprArg(*this, Args, NumArgs), 0);
1550  if (DelegationInit.isInvalid())
1551    return true;
1552
1553  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1554  CXXConstructorDecl *Constructor = ConExpr->getConstructor();
1555  assert(Constructor && "Delegating constructor with no target?");
1556
1557  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1558
1559  // C++0x [class.base.init]p7:
1560  //   The initialization of each base and member constitutes a
1561  //   full-expression.
1562  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1563  if (DelegationInit.isInvalid())
1564    return true;
1565
1566  // If we are in a dependent context, template instantiation will
1567  // perform this type-checking again. Just save the arguments that we
1568  // received in a ParenListExpr.
1569  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1570  // of the information that we have about the base
1571  // initializer. However, deconstructing the ASTs is a dicey process,
1572  // and this approach is far more likely to get the corner cases right.
1573  if (CurContext->isDependentContext()) {
1574    ExprResult Init
1575      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1576                                          NumArgs, RParenLoc));
1577    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1578                                            Constructor, Init.takeAs<Expr>(),
1579                                            RParenLoc);
1580  }
1581
1582  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1583                                          DelegationInit.takeAs<Expr>(),
1584                                          RParenLoc);
1585#endif
1586}
1587
1588MemInitResult
1589Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1590                           Expr **Args, unsigned NumArgs,
1591                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1592                           CXXRecordDecl *ClassDecl,
1593                           SourceLocation EllipsisLoc) {
1594  bool HasDependentArg = false;
1595  for (unsigned i = 0; i < NumArgs; i++)
1596    HasDependentArg |= Args[i]->isTypeDependent();
1597
1598  SourceLocation BaseLoc
1599    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1600
1601  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1602    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1603             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1604
1605  // C++ [class.base.init]p2:
1606  //   [...] Unless the mem-initializer-id names a nonstatic data
1607  //   member of the constructor's class or a direct or virtual base
1608  //   of that class, the mem-initializer is ill-formed. A
1609  //   mem-initializer-list can initialize a base class using any
1610  //   name that denotes that base class type.
1611  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1612
1613  if (EllipsisLoc.isValid()) {
1614    // This is a pack expansion.
1615    if (!BaseType->containsUnexpandedParameterPack())  {
1616      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1617        << SourceRange(BaseLoc, RParenLoc);
1618
1619      EllipsisLoc = SourceLocation();
1620    }
1621  } else {
1622    // Check for any unexpanded parameter packs.
1623    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1624      return true;
1625
1626    for (unsigned I = 0; I != NumArgs; ++I)
1627      if (DiagnoseUnexpandedParameterPack(Args[I]))
1628        return true;
1629  }
1630
1631  // Check for direct and virtual base classes.
1632  const CXXBaseSpecifier *DirectBaseSpec = 0;
1633  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1634  if (!Dependent) {
1635    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1636                                       BaseType))
1637      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1638                                        LParenLoc, RParenLoc, ClassDecl);
1639
1640    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1641                        VirtualBaseSpec);
1642
1643    // C++ [base.class.init]p2:
1644    // Unless the mem-initializer-id names a nonstatic data member of the
1645    // constructor's class or a direct or virtual base of that class, the
1646    // mem-initializer is ill-formed.
1647    if (!DirectBaseSpec && !VirtualBaseSpec) {
1648      // If the class has any dependent bases, then it's possible that
1649      // one of those types will resolve to the same type as
1650      // BaseType. Therefore, just treat this as a dependent base
1651      // class initialization.  FIXME: Should we try to check the
1652      // initialization anyway? It seems odd.
1653      if (ClassDecl->hasAnyDependentBases())
1654        Dependent = true;
1655      else
1656        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1657          << BaseType << Context.getTypeDeclType(ClassDecl)
1658          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1659    }
1660  }
1661
1662  if (Dependent) {
1663    // Can't check initialization for a base of dependent type or when
1664    // any of the arguments are type-dependent expressions.
1665    ExprResult BaseInit
1666      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1667                                          RParenLoc));
1668
1669    // Erase any temporaries within this evaluation context; we're not
1670    // going to track them in the AST, since we'll be rebuilding the
1671    // ASTs during template instantiation.
1672    ExprTemporaries.erase(
1673              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1674                          ExprTemporaries.end());
1675
1676    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1677                                                    /*IsVirtual=*/false,
1678                                                    LParenLoc,
1679                                                    BaseInit.takeAs<Expr>(),
1680                                                    RParenLoc,
1681                                                    EllipsisLoc);
1682  }
1683
1684  // C++ [base.class.init]p2:
1685  //   If a mem-initializer-id is ambiguous because it designates both
1686  //   a direct non-virtual base class and an inherited virtual base
1687  //   class, the mem-initializer is ill-formed.
1688  if (DirectBaseSpec && VirtualBaseSpec)
1689    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1690      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1691
1692  CXXBaseSpecifier *BaseSpec
1693    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1694  if (!BaseSpec)
1695    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1696
1697  // Initialize the base.
1698  InitializedEntity BaseEntity =
1699    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1700  InitializationKind Kind =
1701    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1702
1703  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1704
1705  ExprResult BaseInit =
1706    InitSeq.Perform(*this, BaseEntity, Kind,
1707                    MultiExprArg(*this, Args, NumArgs), 0);
1708  if (BaseInit.isInvalid())
1709    return true;
1710
1711  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1712
1713  // C++0x [class.base.init]p7:
1714  //   The initialization of each base and member constitutes a
1715  //   full-expression.
1716  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1717  if (BaseInit.isInvalid())
1718    return true;
1719
1720  // If we are in a dependent context, template instantiation will
1721  // perform this type-checking again. Just save the arguments that we
1722  // received in a ParenListExpr.
1723  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1724  // of the information that we have about the base
1725  // initializer. However, deconstructing the ASTs is a dicey process,
1726  // and this approach is far more likely to get the corner cases right.
1727  if (CurContext->isDependentContext()) {
1728    ExprResult Init
1729      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1730                                          RParenLoc));
1731    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1732                                                    BaseSpec->isVirtual(),
1733                                                    LParenLoc,
1734                                                    Init.takeAs<Expr>(),
1735                                                    RParenLoc,
1736                                                    EllipsisLoc);
1737  }
1738
1739  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1740                                                  BaseSpec->isVirtual(),
1741                                                  LParenLoc,
1742                                                  BaseInit.takeAs<Expr>(),
1743                                                  RParenLoc,
1744                                                  EllipsisLoc);
1745}
1746
1747/// ImplicitInitializerKind - How an implicit base or member initializer should
1748/// initialize its base or member.
1749enum ImplicitInitializerKind {
1750  IIK_Default,
1751  IIK_Copy,
1752  IIK_Move
1753};
1754
1755static bool
1756BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1757                             ImplicitInitializerKind ImplicitInitKind,
1758                             CXXBaseSpecifier *BaseSpec,
1759                             bool IsInheritedVirtualBase,
1760                             CXXCtorInitializer *&CXXBaseInit) {
1761  InitializedEntity InitEntity
1762    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1763                                        IsInheritedVirtualBase);
1764
1765  ExprResult BaseInit;
1766
1767  switch (ImplicitInitKind) {
1768  case IIK_Default: {
1769    InitializationKind InitKind
1770      = InitializationKind::CreateDefault(Constructor->getLocation());
1771    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1772    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1773                               MultiExprArg(SemaRef, 0, 0));
1774    break;
1775  }
1776
1777  case IIK_Copy: {
1778    ParmVarDecl *Param = Constructor->getParamDecl(0);
1779    QualType ParamType = Param->getType().getNonReferenceType();
1780
1781    Expr *CopyCtorArg =
1782      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1783                          Constructor->getLocation(), ParamType,
1784                          VK_LValue, 0);
1785
1786    // Cast to the base class to avoid ambiguities.
1787    QualType ArgTy =
1788      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1789                                       ParamType.getQualifiers());
1790
1791    CXXCastPath BasePath;
1792    BasePath.push_back(BaseSpec);
1793    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1794                              CK_UncheckedDerivedToBase,
1795                              VK_LValue, &BasePath);
1796
1797    InitializationKind InitKind
1798      = InitializationKind::CreateDirect(Constructor->getLocation(),
1799                                         SourceLocation(), SourceLocation());
1800    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1801                                   &CopyCtorArg, 1);
1802    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1803                               MultiExprArg(&CopyCtorArg, 1));
1804    break;
1805  }
1806
1807  case IIK_Move:
1808    assert(false && "Unhandled initializer kind!");
1809  }
1810
1811  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1812  if (BaseInit.isInvalid())
1813    return true;
1814
1815  CXXBaseInit =
1816    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1817               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1818                                                        SourceLocation()),
1819                                             BaseSpec->isVirtual(),
1820                                             SourceLocation(),
1821                                             BaseInit.takeAs<Expr>(),
1822                                             SourceLocation(),
1823                                             SourceLocation());
1824
1825  return false;
1826}
1827
1828static bool
1829BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1830                               ImplicitInitializerKind ImplicitInitKind,
1831                               FieldDecl *Field,
1832                               CXXCtorInitializer *&CXXMemberInit) {
1833  if (Field->isInvalidDecl())
1834    return true;
1835
1836  SourceLocation Loc = Constructor->getLocation();
1837
1838  if (ImplicitInitKind == IIK_Copy) {
1839    ParmVarDecl *Param = Constructor->getParamDecl(0);
1840    QualType ParamType = Param->getType().getNonReferenceType();
1841
1842    Expr *MemberExprBase =
1843      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1844                          Loc, ParamType, VK_LValue, 0);
1845
1846    // Build a reference to this field within the parameter.
1847    CXXScopeSpec SS;
1848    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1849                              Sema::LookupMemberName);
1850    MemberLookup.addDecl(Field, AS_public);
1851    MemberLookup.resolveKind();
1852    ExprResult CopyCtorArg
1853      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1854                                         ParamType, Loc,
1855                                         /*IsArrow=*/false,
1856                                         SS,
1857                                         /*FirstQualifierInScope=*/0,
1858                                         MemberLookup,
1859                                         /*TemplateArgs=*/0);
1860    if (CopyCtorArg.isInvalid())
1861      return true;
1862
1863    // When the field we are copying is an array, create index variables for
1864    // each dimension of the array. We use these index variables to subscript
1865    // the source array, and other clients (e.g., CodeGen) will perform the
1866    // necessary iteration with these index variables.
1867    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1868    QualType BaseType = Field->getType();
1869    QualType SizeType = SemaRef.Context.getSizeType();
1870    while (const ConstantArrayType *Array
1871                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1872      // Create the iteration variable for this array index.
1873      IdentifierInfo *IterationVarName = 0;
1874      {
1875        llvm::SmallString<8> Str;
1876        llvm::raw_svector_ostream OS(Str);
1877        OS << "__i" << IndexVariables.size();
1878        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1879      }
1880      VarDecl *IterationVar
1881        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1882                          IterationVarName, SizeType,
1883                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1884                          SC_None, SC_None);
1885      IndexVariables.push_back(IterationVar);
1886
1887      // Create a reference to the iteration variable.
1888      ExprResult IterationVarRef
1889        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1890      assert(!IterationVarRef.isInvalid() &&
1891             "Reference to invented variable cannot fail!");
1892
1893      // Subscript the array with this iteration variable.
1894      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1895                                                            Loc,
1896                                                        IterationVarRef.take(),
1897                                                            Loc);
1898      if (CopyCtorArg.isInvalid())
1899        return true;
1900
1901      BaseType = Array->getElementType();
1902    }
1903
1904    // Construct the entity that we will be initializing. For an array, this
1905    // will be first element in the array, which may require several levels
1906    // of array-subscript entities.
1907    llvm::SmallVector<InitializedEntity, 4> Entities;
1908    Entities.reserve(1 + IndexVariables.size());
1909    Entities.push_back(InitializedEntity::InitializeMember(Field));
1910    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1911      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1912                                                              0,
1913                                                              Entities.back()));
1914
1915    // Direct-initialize to use the copy constructor.
1916    InitializationKind InitKind =
1917      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1918
1919    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1920    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1921                                   &CopyCtorArgE, 1);
1922
1923    ExprResult MemberInit
1924      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1925                        MultiExprArg(&CopyCtorArgE, 1));
1926    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1927    if (MemberInit.isInvalid())
1928      return true;
1929
1930    CXXMemberInit
1931      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1932                                           MemberInit.takeAs<Expr>(), Loc,
1933                                           IndexVariables.data(),
1934                                           IndexVariables.size());
1935    return false;
1936  }
1937
1938  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1939
1940  QualType FieldBaseElementType =
1941    SemaRef.Context.getBaseElementType(Field->getType());
1942
1943  if (FieldBaseElementType->isRecordType()) {
1944    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1945    InitializationKind InitKind =
1946      InitializationKind::CreateDefault(Loc);
1947
1948    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1949    ExprResult MemberInit =
1950      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1951
1952    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1953    if (MemberInit.isInvalid())
1954      return true;
1955
1956    CXXMemberInit =
1957      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1958                                                       Field, Loc, Loc,
1959                                                       MemberInit.get(),
1960                                                       Loc);
1961    return false;
1962  }
1963
1964  if (FieldBaseElementType->isReferenceType()) {
1965    SemaRef.Diag(Constructor->getLocation(),
1966                 diag::err_uninitialized_member_in_ctor)
1967    << (int)Constructor->isImplicit()
1968    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1969    << 0 << Field->getDeclName();
1970    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1971    return true;
1972  }
1973
1974  if (FieldBaseElementType.isConstQualified()) {
1975    SemaRef.Diag(Constructor->getLocation(),
1976                 diag::err_uninitialized_member_in_ctor)
1977    << (int)Constructor->isImplicit()
1978    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1979    << 1 << Field->getDeclName();
1980    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1981    return true;
1982  }
1983
1984  // Nothing to initialize.
1985  CXXMemberInit = 0;
1986  return false;
1987}
1988
1989namespace {
1990struct BaseAndFieldInfo {
1991  Sema &S;
1992  CXXConstructorDecl *Ctor;
1993  bool AnyErrorsInInits;
1994  ImplicitInitializerKind IIK;
1995  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1996  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1997
1998  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1999    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2000    // FIXME: Handle implicit move constructors.
2001    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2002      IIK = IIK_Copy;
2003    else
2004      IIK = IIK_Default;
2005  }
2006};
2007}
2008
2009static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2010                                    FieldDecl *Top, FieldDecl *Field) {
2011
2012  // Overwhelmingly common case: we have a direct initializer for this field.
2013  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2014    Info.AllToInit.push_back(Init);
2015    return false;
2016  }
2017
2018  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2019    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2020    assert(FieldClassType && "anonymous struct/union without record type");
2021    CXXRecordDecl *FieldClassDecl
2022      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2023
2024    // Even though union members never have non-trivial default
2025    // constructions in C++03, we still build member initializers for aggregate
2026    // record types which can be union members, and C++0x allows non-trivial
2027    // default constructors for union members, so we ensure that only one
2028    // member is initialized for these.
2029    if (FieldClassDecl->isUnion()) {
2030      // First check for an explicit initializer for one field.
2031      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2032           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2033        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2034          Info.AllToInit.push_back(Init);
2035
2036          // Once we've initialized a field of an anonymous union, the union
2037          // field in the class is also initialized, so exit immediately.
2038          return false;
2039        } else if ((*FA)->isAnonymousStructOrUnion()) {
2040          if (CollectFieldInitializer(Info, Top, *FA))
2041            return true;
2042        }
2043      }
2044
2045      // Fallthrough and construct a default initializer for the union as
2046      // a whole, which can call its default constructor if such a thing exists
2047      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2048      // behavior going forward with C++0x, when anonymous unions there are
2049      // finalized, we should revisit this.
2050    } else {
2051      // For structs, we simply descend through to initialize all members where
2052      // necessary.
2053      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2054           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2055        if (CollectFieldInitializer(Info, Top, *FA))
2056          return true;
2057      }
2058    }
2059  }
2060
2061  // Don't try to build an implicit initializer if there were semantic
2062  // errors in any of the initializers (and therefore we might be
2063  // missing some that the user actually wrote).
2064  if (Info.AnyErrorsInInits)
2065    return false;
2066
2067  CXXCtorInitializer *Init = 0;
2068  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2069    return true;
2070
2071  if (Init)
2072    Info.AllToInit.push_back(Init);
2073
2074  return false;
2075}
2076
2077bool
2078Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2079                                  CXXCtorInitializer **Initializers,
2080                                  unsigned NumInitializers,
2081                                  bool AnyErrors) {
2082  if (Constructor->getDeclContext()->isDependentContext()) {
2083    // Just store the initializers as written, they will be checked during
2084    // instantiation.
2085    if (NumInitializers > 0) {
2086      Constructor->setNumCtorInitializers(NumInitializers);
2087      CXXCtorInitializer **baseOrMemberInitializers =
2088        new (Context) CXXCtorInitializer*[NumInitializers];
2089      memcpy(baseOrMemberInitializers, Initializers,
2090             NumInitializers * sizeof(CXXCtorInitializer*));
2091      Constructor->setCtorInitializers(baseOrMemberInitializers);
2092    }
2093
2094    return false;
2095  }
2096
2097  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2098
2099  // We need to build the initializer AST according to order of construction
2100  // and not what user specified in the Initializers list.
2101  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2102  if (!ClassDecl)
2103    return true;
2104
2105  bool HadError = false;
2106
2107  for (unsigned i = 0; i < NumInitializers; i++) {
2108    CXXCtorInitializer *Member = Initializers[i];
2109
2110    if (Member->isBaseInitializer())
2111      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2112    else
2113      Info.AllBaseFields[Member->getAnyMember()] = Member;
2114  }
2115
2116  // Keep track of the direct virtual bases.
2117  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2118  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2119       E = ClassDecl->bases_end(); I != E; ++I) {
2120    if (I->isVirtual())
2121      DirectVBases.insert(I);
2122  }
2123
2124  // Push virtual bases before others.
2125  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2126       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2127
2128    if (CXXCtorInitializer *Value
2129        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2130      Info.AllToInit.push_back(Value);
2131    } else if (!AnyErrors) {
2132      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2133      CXXCtorInitializer *CXXBaseInit;
2134      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2135                                       VBase, IsInheritedVirtualBase,
2136                                       CXXBaseInit)) {
2137        HadError = true;
2138        continue;
2139      }
2140
2141      Info.AllToInit.push_back(CXXBaseInit);
2142    }
2143  }
2144
2145  // Non-virtual bases.
2146  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2147       E = ClassDecl->bases_end(); Base != E; ++Base) {
2148    // Virtuals are in the virtual base list and already constructed.
2149    if (Base->isVirtual())
2150      continue;
2151
2152    if (CXXCtorInitializer *Value
2153          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2154      Info.AllToInit.push_back(Value);
2155    } else if (!AnyErrors) {
2156      CXXCtorInitializer *CXXBaseInit;
2157      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2158                                       Base, /*IsInheritedVirtualBase=*/false,
2159                                       CXXBaseInit)) {
2160        HadError = true;
2161        continue;
2162      }
2163
2164      Info.AllToInit.push_back(CXXBaseInit);
2165    }
2166  }
2167
2168  // Fields.
2169  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2170       E = ClassDecl->field_end(); Field != E; ++Field) {
2171    if ((*Field)->getType()->isIncompleteArrayType()) {
2172      assert(ClassDecl->hasFlexibleArrayMember() &&
2173             "Incomplete array type is not valid");
2174      continue;
2175    }
2176    if (CollectFieldInitializer(Info, *Field, *Field))
2177      HadError = true;
2178  }
2179
2180  NumInitializers = Info.AllToInit.size();
2181  if (NumInitializers > 0) {
2182    Constructor->setNumCtorInitializers(NumInitializers);
2183    CXXCtorInitializer **baseOrMemberInitializers =
2184      new (Context) CXXCtorInitializer*[NumInitializers];
2185    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2186           NumInitializers * sizeof(CXXCtorInitializer*));
2187    Constructor->setCtorInitializers(baseOrMemberInitializers);
2188
2189    // Constructors implicitly reference the base and member
2190    // destructors.
2191    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2192                                           Constructor->getParent());
2193  }
2194
2195  return HadError;
2196}
2197
2198static void *GetKeyForTopLevelField(FieldDecl *Field) {
2199  // For anonymous unions, use the class declaration as the key.
2200  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2201    if (RT->getDecl()->isAnonymousStructOrUnion())
2202      return static_cast<void *>(RT->getDecl());
2203  }
2204  return static_cast<void *>(Field);
2205}
2206
2207static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2208  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2209}
2210
2211static void *GetKeyForMember(ASTContext &Context,
2212                             CXXCtorInitializer *Member) {
2213  if (!Member->isAnyMemberInitializer())
2214    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2215
2216  // For fields injected into the class via declaration of an anonymous union,
2217  // use its anonymous union class declaration as the unique key.
2218  FieldDecl *Field = Member->getAnyMember();
2219
2220  // If the field is a member of an anonymous struct or union, our key
2221  // is the anonymous record decl that's a direct child of the class.
2222  RecordDecl *RD = Field->getParent();
2223  if (RD->isAnonymousStructOrUnion()) {
2224    while (true) {
2225      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2226      if (Parent->isAnonymousStructOrUnion())
2227        RD = Parent;
2228      else
2229        break;
2230    }
2231
2232    return static_cast<void *>(RD);
2233  }
2234
2235  return static_cast<void *>(Field);
2236}
2237
2238static void
2239DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2240                                  const CXXConstructorDecl *Constructor,
2241                                  CXXCtorInitializer **Inits,
2242                                  unsigned NumInits) {
2243  if (Constructor->getDeclContext()->isDependentContext())
2244    return;
2245
2246  // Don't check initializers order unless the warning is enabled at the
2247  // location of at least one initializer.
2248  bool ShouldCheckOrder = false;
2249  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2250    CXXCtorInitializer *Init = Inits[InitIndex];
2251    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2252                                         Init->getSourceLocation())
2253          != Diagnostic::Ignored) {
2254      ShouldCheckOrder = true;
2255      break;
2256    }
2257  }
2258  if (!ShouldCheckOrder)
2259    return;
2260
2261  // Build the list of bases and members in the order that they'll
2262  // actually be initialized.  The explicit initializers should be in
2263  // this same order but may be missing things.
2264  llvm::SmallVector<const void*, 32> IdealInitKeys;
2265
2266  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2267
2268  // 1. Virtual bases.
2269  for (CXXRecordDecl::base_class_const_iterator VBase =
2270       ClassDecl->vbases_begin(),
2271       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2272    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2273
2274  // 2. Non-virtual bases.
2275  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2276       E = ClassDecl->bases_end(); Base != E; ++Base) {
2277    if (Base->isVirtual())
2278      continue;
2279    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2280  }
2281
2282  // 3. Direct fields.
2283  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2284       E = ClassDecl->field_end(); Field != E; ++Field)
2285    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2286
2287  unsigned NumIdealInits = IdealInitKeys.size();
2288  unsigned IdealIndex = 0;
2289
2290  CXXCtorInitializer *PrevInit = 0;
2291  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2292    CXXCtorInitializer *Init = Inits[InitIndex];
2293    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2294
2295    // Scan forward to try to find this initializer in the idealized
2296    // initializers list.
2297    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2298      if (InitKey == IdealInitKeys[IdealIndex])
2299        break;
2300
2301    // If we didn't find this initializer, it must be because we
2302    // scanned past it on a previous iteration.  That can only
2303    // happen if we're out of order;  emit a warning.
2304    if (IdealIndex == NumIdealInits && PrevInit) {
2305      Sema::SemaDiagnosticBuilder D =
2306        SemaRef.Diag(PrevInit->getSourceLocation(),
2307                     diag::warn_initializer_out_of_order);
2308
2309      if (PrevInit->isAnyMemberInitializer())
2310        D << 0 << PrevInit->getAnyMember()->getDeclName();
2311      else
2312        D << 1 << PrevInit->getBaseClassInfo()->getType();
2313
2314      if (Init->isAnyMemberInitializer())
2315        D << 0 << Init->getAnyMember()->getDeclName();
2316      else
2317        D << 1 << Init->getBaseClassInfo()->getType();
2318
2319      // Move back to the initializer's location in the ideal list.
2320      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2321        if (InitKey == IdealInitKeys[IdealIndex])
2322          break;
2323
2324      assert(IdealIndex != NumIdealInits &&
2325             "initializer not found in initializer list");
2326    }
2327
2328    PrevInit = Init;
2329  }
2330}
2331
2332namespace {
2333bool CheckRedundantInit(Sema &S,
2334                        CXXCtorInitializer *Init,
2335                        CXXCtorInitializer *&PrevInit) {
2336  if (!PrevInit) {
2337    PrevInit = Init;
2338    return false;
2339  }
2340
2341  if (FieldDecl *Field = Init->getMember())
2342    S.Diag(Init->getSourceLocation(),
2343           diag::err_multiple_mem_initialization)
2344      << Field->getDeclName()
2345      << Init->getSourceRange();
2346  else {
2347    const Type *BaseClass = Init->getBaseClass();
2348    assert(BaseClass && "neither field nor base");
2349    S.Diag(Init->getSourceLocation(),
2350           diag::err_multiple_base_initialization)
2351      << QualType(BaseClass, 0)
2352      << Init->getSourceRange();
2353  }
2354  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2355    << 0 << PrevInit->getSourceRange();
2356
2357  return true;
2358}
2359
2360typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2361typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2362
2363bool CheckRedundantUnionInit(Sema &S,
2364                             CXXCtorInitializer *Init,
2365                             RedundantUnionMap &Unions) {
2366  FieldDecl *Field = Init->getAnyMember();
2367  RecordDecl *Parent = Field->getParent();
2368  if (!Parent->isAnonymousStructOrUnion())
2369    return false;
2370
2371  NamedDecl *Child = Field;
2372  do {
2373    if (Parent->isUnion()) {
2374      UnionEntry &En = Unions[Parent];
2375      if (En.first && En.first != Child) {
2376        S.Diag(Init->getSourceLocation(),
2377               diag::err_multiple_mem_union_initialization)
2378          << Field->getDeclName()
2379          << Init->getSourceRange();
2380        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2381          << 0 << En.second->getSourceRange();
2382        return true;
2383      } else if (!En.first) {
2384        En.first = Child;
2385        En.second = Init;
2386      }
2387    }
2388
2389    Child = Parent;
2390    Parent = cast<RecordDecl>(Parent->getDeclContext());
2391  } while (Parent->isAnonymousStructOrUnion());
2392
2393  return false;
2394}
2395}
2396
2397/// ActOnMemInitializers - Handle the member initializers for a constructor.
2398void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2399                                SourceLocation ColonLoc,
2400                                MemInitTy **meminits, unsigned NumMemInits,
2401                                bool AnyErrors) {
2402  if (!ConstructorDecl)
2403    return;
2404
2405  AdjustDeclIfTemplate(ConstructorDecl);
2406
2407  CXXConstructorDecl *Constructor
2408    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2409
2410  if (!Constructor) {
2411    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2412    return;
2413  }
2414
2415  CXXCtorInitializer **MemInits =
2416    reinterpret_cast<CXXCtorInitializer **>(meminits);
2417
2418  // Mapping for the duplicate initializers check.
2419  // For member initializers, this is keyed with a FieldDecl*.
2420  // For base initializers, this is keyed with a Type*.
2421  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2422
2423  // Mapping for the inconsistent anonymous-union initializers check.
2424  RedundantUnionMap MemberUnions;
2425
2426  bool HadError = false;
2427  for (unsigned i = 0; i < NumMemInits; i++) {
2428    CXXCtorInitializer *Init = MemInits[i];
2429
2430    // Set the source order index.
2431    Init->setSourceOrder(i);
2432
2433    if (Init->isAnyMemberInitializer()) {
2434      FieldDecl *Field = Init->getAnyMember();
2435      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2436          CheckRedundantUnionInit(*this, Init, MemberUnions))
2437        HadError = true;
2438    } else if (Init->isBaseInitializer()) {
2439      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2440      if (CheckRedundantInit(*this, Init, Members[Key]))
2441        HadError = true;
2442    } else {
2443      assert(Init->isDelegatingInitializer());
2444      // This must be the only initializer
2445      if (i != 0 || NumMemInits > 1) {
2446        Diag(MemInits[0]->getSourceLocation(),
2447             diag::err_delegating_initializer_alone)
2448          << MemInits[0]->getSourceRange();
2449        HadError = true;
2450      }
2451    }
2452  }
2453
2454  if (HadError)
2455    return;
2456
2457  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2458
2459  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2460}
2461
2462void
2463Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2464                                             CXXRecordDecl *ClassDecl) {
2465  // Ignore dependent contexts.
2466  if (ClassDecl->isDependentContext())
2467    return;
2468
2469  // FIXME: all the access-control diagnostics are positioned on the
2470  // field/base declaration.  That's probably good; that said, the
2471  // user might reasonably want to know why the destructor is being
2472  // emitted, and we currently don't say.
2473
2474  // Non-static data members.
2475  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2476       E = ClassDecl->field_end(); I != E; ++I) {
2477    FieldDecl *Field = *I;
2478    if (Field->isInvalidDecl())
2479      continue;
2480    QualType FieldType = Context.getBaseElementType(Field->getType());
2481
2482    const RecordType* RT = FieldType->getAs<RecordType>();
2483    if (!RT)
2484      continue;
2485
2486    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2487    if (FieldClassDecl->hasTrivialDestructor())
2488      continue;
2489
2490    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2491    CheckDestructorAccess(Field->getLocation(), Dtor,
2492                          PDiag(diag::err_access_dtor_field)
2493                            << Field->getDeclName()
2494                            << FieldType);
2495
2496    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2497  }
2498
2499  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2500
2501  // Bases.
2502  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2503       E = ClassDecl->bases_end(); Base != E; ++Base) {
2504    // Bases are always records in a well-formed non-dependent class.
2505    const RecordType *RT = Base->getType()->getAs<RecordType>();
2506
2507    // Remember direct virtual bases.
2508    if (Base->isVirtual())
2509      DirectVirtualBases.insert(RT);
2510
2511    // Ignore trivial destructors.
2512    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2513    if (BaseClassDecl->hasTrivialDestructor())
2514      continue;
2515
2516    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2517
2518    // FIXME: caret should be on the start of the class name
2519    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2520                          PDiag(diag::err_access_dtor_base)
2521                            << Base->getType()
2522                            << Base->getSourceRange());
2523
2524    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2525  }
2526
2527  // Virtual bases.
2528  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2529       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2530
2531    // Bases are always records in a well-formed non-dependent class.
2532    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2533
2534    // Ignore direct virtual bases.
2535    if (DirectVirtualBases.count(RT))
2536      continue;
2537
2538    // Ignore trivial destructors.
2539    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2540    if (BaseClassDecl->hasTrivialDestructor())
2541      continue;
2542
2543    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2544    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2545                          PDiag(diag::err_access_dtor_vbase)
2546                            << VBase->getType());
2547
2548    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2549  }
2550}
2551
2552void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2553  if (!CDtorDecl)
2554    return;
2555
2556  if (CXXConstructorDecl *Constructor
2557      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2558    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2559}
2560
2561bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2562                                  unsigned DiagID, AbstractDiagSelID SelID) {
2563  if (SelID == -1)
2564    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2565  else
2566    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2567}
2568
2569bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2570                                  const PartialDiagnostic &PD) {
2571  if (!getLangOptions().CPlusPlus)
2572    return false;
2573
2574  if (const ArrayType *AT = Context.getAsArrayType(T))
2575    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2576
2577  if (const PointerType *PT = T->getAs<PointerType>()) {
2578    // Find the innermost pointer type.
2579    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2580      PT = T;
2581
2582    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2583      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2584  }
2585
2586  const RecordType *RT = T->getAs<RecordType>();
2587  if (!RT)
2588    return false;
2589
2590  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2591
2592  // We can't answer whether something is abstract until it has a
2593  // definition.  If it's currently being defined, we'll walk back
2594  // over all the declarations when we have a full definition.
2595  const CXXRecordDecl *Def = RD->getDefinition();
2596  if (!Def || Def->isBeingDefined())
2597    return false;
2598
2599  if (!RD->isAbstract())
2600    return false;
2601
2602  Diag(Loc, PD) << RD->getDeclName();
2603  DiagnoseAbstractType(RD);
2604
2605  return true;
2606}
2607
2608void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2609  // Check if we've already emitted the list of pure virtual functions
2610  // for this class.
2611  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2612    return;
2613
2614  CXXFinalOverriderMap FinalOverriders;
2615  RD->getFinalOverriders(FinalOverriders);
2616
2617  // Keep a set of seen pure methods so we won't diagnose the same method
2618  // more than once.
2619  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2620
2621  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2622                                   MEnd = FinalOverriders.end();
2623       M != MEnd;
2624       ++M) {
2625    for (OverridingMethods::iterator SO = M->second.begin(),
2626                                  SOEnd = M->second.end();
2627         SO != SOEnd; ++SO) {
2628      // C++ [class.abstract]p4:
2629      //   A class is abstract if it contains or inherits at least one
2630      //   pure virtual function for which the final overrider is pure
2631      //   virtual.
2632
2633      //
2634      if (SO->second.size() != 1)
2635        continue;
2636
2637      if (!SO->second.front().Method->isPure())
2638        continue;
2639
2640      if (!SeenPureMethods.insert(SO->second.front().Method))
2641        continue;
2642
2643      Diag(SO->second.front().Method->getLocation(),
2644           diag::note_pure_virtual_function)
2645        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2646    }
2647  }
2648
2649  if (!PureVirtualClassDiagSet)
2650    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2651  PureVirtualClassDiagSet->insert(RD);
2652}
2653
2654namespace {
2655struct AbstractUsageInfo {
2656  Sema &S;
2657  CXXRecordDecl *Record;
2658  CanQualType AbstractType;
2659  bool Invalid;
2660
2661  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2662    : S(S), Record(Record),
2663      AbstractType(S.Context.getCanonicalType(
2664                   S.Context.getTypeDeclType(Record))),
2665      Invalid(false) {}
2666
2667  void DiagnoseAbstractType() {
2668    if (Invalid) return;
2669    S.DiagnoseAbstractType(Record);
2670    Invalid = true;
2671  }
2672
2673  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2674};
2675
2676struct CheckAbstractUsage {
2677  AbstractUsageInfo &Info;
2678  const NamedDecl *Ctx;
2679
2680  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2681    : Info(Info), Ctx(Ctx) {}
2682
2683  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2684    switch (TL.getTypeLocClass()) {
2685#define ABSTRACT_TYPELOC(CLASS, PARENT)
2686#define TYPELOC(CLASS, PARENT) \
2687    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2688#include "clang/AST/TypeLocNodes.def"
2689    }
2690  }
2691
2692  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2693    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2694    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2695      if (!TL.getArg(I))
2696        continue;
2697
2698      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2699      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2700    }
2701  }
2702
2703  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2704    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2705  }
2706
2707  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2708    // Visit the type parameters from a permissive context.
2709    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2710      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2711      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2712        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2713          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2714      // TODO: other template argument types?
2715    }
2716  }
2717
2718  // Visit pointee types from a permissive context.
2719#define CheckPolymorphic(Type) \
2720  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2721    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2722  }
2723  CheckPolymorphic(PointerTypeLoc)
2724  CheckPolymorphic(ReferenceTypeLoc)
2725  CheckPolymorphic(MemberPointerTypeLoc)
2726  CheckPolymorphic(BlockPointerTypeLoc)
2727
2728  /// Handle all the types we haven't given a more specific
2729  /// implementation for above.
2730  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2731    // Every other kind of type that we haven't called out already
2732    // that has an inner type is either (1) sugar or (2) contains that
2733    // inner type in some way as a subobject.
2734    if (TypeLoc Next = TL.getNextTypeLoc())
2735      return Visit(Next, Sel);
2736
2737    // If there's no inner type and we're in a permissive context,
2738    // don't diagnose.
2739    if (Sel == Sema::AbstractNone) return;
2740
2741    // Check whether the type matches the abstract type.
2742    QualType T = TL.getType();
2743    if (T->isArrayType()) {
2744      Sel = Sema::AbstractArrayType;
2745      T = Info.S.Context.getBaseElementType(T);
2746    }
2747    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2748    if (CT != Info.AbstractType) return;
2749
2750    // It matched; do some magic.
2751    if (Sel == Sema::AbstractArrayType) {
2752      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2753        << T << TL.getSourceRange();
2754    } else {
2755      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2756        << Sel << T << TL.getSourceRange();
2757    }
2758    Info.DiagnoseAbstractType();
2759  }
2760};
2761
2762void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2763                                  Sema::AbstractDiagSelID Sel) {
2764  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2765}
2766
2767}
2768
2769/// Check for invalid uses of an abstract type in a method declaration.
2770static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2771                                    CXXMethodDecl *MD) {
2772  // No need to do the check on definitions, which require that
2773  // the return/param types be complete.
2774  if (MD->isThisDeclarationADefinition())
2775    return;
2776
2777  // For safety's sake, just ignore it if we don't have type source
2778  // information.  This should never happen for non-implicit methods,
2779  // but...
2780  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2781    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2782}
2783
2784/// Check for invalid uses of an abstract type within a class definition.
2785static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2786                                    CXXRecordDecl *RD) {
2787  for (CXXRecordDecl::decl_iterator
2788         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2789    Decl *D = *I;
2790    if (D->isImplicit()) continue;
2791
2792    // Methods and method templates.
2793    if (isa<CXXMethodDecl>(D)) {
2794      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2795    } else if (isa<FunctionTemplateDecl>(D)) {
2796      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2797      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2798
2799    // Fields and static variables.
2800    } else if (isa<FieldDecl>(D)) {
2801      FieldDecl *FD = cast<FieldDecl>(D);
2802      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2803        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2804    } else if (isa<VarDecl>(D)) {
2805      VarDecl *VD = cast<VarDecl>(D);
2806      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2807        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2808
2809    // Nested classes and class templates.
2810    } else if (isa<CXXRecordDecl>(D)) {
2811      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2812    } else if (isa<ClassTemplateDecl>(D)) {
2813      CheckAbstractClassUsage(Info,
2814                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2815    }
2816  }
2817}
2818
2819/// \brief Perform semantic checks on a class definition that has been
2820/// completing, introducing implicitly-declared members, checking for
2821/// abstract types, etc.
2822void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2823  if (!Record)
2824    return;
2825
2826  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2827    AbstractUsageInfo Info(*this, Record);
2828    CheckAbstractClassUsage(Info, Record);
2829  }
2830
2831  // If this is not an aggregate type and has no user-declared constructor,
2832  // complain about any non-static data members of reference or const scalar
2833  // type, since they will never get initializers.
2834  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2835      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2836    bool Complained = false;
2837    for (RecordDecl::field_iterator F = Record->field_begin(),
2838                                 FEnd = Record->field_end();
2839         F != FEnd; ++F) {
2840      if (F->getType()->isReferenceType() ||
2841          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2842        if (!Complained) {
2843          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2844            << Record->getTagKind() << Record;
2845          Complained = true;
2846        }
2847
2848        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2849          << F->getType()->isReferenceType()
2850          << F->getDeclName();
2851      }
2852    }
2853  }
2854
2855  if (Record->isDynamicClass() && !Record->isDependentType())
2856    DynamicClasses.push_back(Record);
2857
2858  if (Record->getIdentifier()) {
2859    // C++ [class.mem]p13:
2860    //   If T is the name of a class, then each of the following shall have a
2861    //   name different from T:
2862    //     - every member of every anonymous union that is a member of class T.
2863    //
2864    // C++ [class.mem]p14:
2865    //   In addition, if class T has a user-declared constructor (12.1), every
2866    //   non-static data member of class T shall have a name different from T.
2867    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2868         R.first != R.second; ++R.first) {
2869      NamedDecl *D = *R.first;
2870      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2871          isa<IndirectFieldDecl>(D)) {
2872        Diag(D->getLocation(), diag::err_member_name_of_class)
2873          << D->getDeclName();
2874        break;
2875      }
2876    }
2877  }
2878
2879  // Warn if the class has virtual methods but non-virtual public destructor.
2880  if (Record->isPolymorphic() && !Record->isDependentType()) {
2881    CXXDestructorDecl *dtor = Record->getDestructor();
2882    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2883      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2884           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2885  }
2886
2887  // See if a method overloads virtual methods in a base
2888  /// class without overriding any.
2889  if (!Record->isDependentType()) {
2890    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2891                                     MEnd = Record->method_end();
2892         M != MEnd; ++M) {
2893      if (!(*M)->isStatic())
2894        DiagnoseHiddenVirtualMethods(Record, *M);
2895    }
2896  }
2897
2898  // Declare inherited constructors. We do this eagerly here because:
2899  // - The standard requires an eager diagnostic for conflicting inherited
2900  //   constructors from different classes.
2901  // - The lazy declaration of the other implicit constructors is so as to not
2902  //   waste space and performance on classes that are not meant to be
2903  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2904  //   have inherited constructors.
2905  DeclareInheritedConstructors(Record);
2906}
2907
2908/// \brief Data used with FindHiddenVirtualMethod
2909namespace {
2910  struct FindHiddenVirtualMethodData {
2911    Sema *S;
2912    CXXMethodDecl *Method;
2913    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2914    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2915  };
2916}
2917
2918/// \brief Member lookup function that determines whether a given C++
2919/// method overloads virtual methods in a base class without overriding any,
2920/// to be used with CXXRecordDecl::lookupInBases().
2921static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2922                                    CXXBasePath &Path,
2923                                    void *UserData) {
2924  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2925
2926  FindHiddenVirtualMethodData &Data
2927    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2928
2929  DeclarationName Name = Data.Method->getDeclName();
2930  assert(Name.getNameKind() == DeclarationName::Identifier);
2931
2932  bool foundSameNameMethod = false;
2933  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2934  for (Path.Decls = BaseRecord->lookup(Name);
2935       Path.Decls.first != Path.Decls.second;
2936       ++Path.Decls.first) {
2937    NamedDecl *D = *Path.Decls.first;
2938    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2939      MD = MD->getCanonicalDecl();
2940      foundSameNameMethod = true;
2941      // Interested only in hidden virtual methods.
2942      if (!MD->isVirtual())
2943        continue;
2944      // If the method we are checking overrides a method from its base
2945      // don't warn about the other overloaded methods.
2946      if (!Data.S->IsOverload(Data.Method, MD, false))
2947        return true;
2948      // Collect the overload only if its hidden.
2949      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2950        overloadedMethods.push_back(MD);
2951    }
2952  }
2953
2954  if (foundSameNameMethod)
2955    Data.OverloadedMethods.append(overloadedMethods.begin(),
2956                                   overloadedMethods.end());
2957  return foundSameNameMethod;
2958}
2959
2960/// \brief See if a method overloads virtual methods in a base class without
2961/// overriding any.
2962void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2963  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2964                               MD->getLocation()) == Diagnostic::Ignored)
2965    return;
2966  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2967    return;
2968
2969  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2970                     /*bool RecordPaths=*/false,
2971                     /*bool DetectVirtual=*/false);
2972  FindHiddenVirtualMethodData Data;
2973  Data.Method = MD;
2974  Data.S = this;
2975
2976  // Keep the base methods that were overriden or introduced in the subclass
2977  // by 'using' in a set. A base method not in this set is hidden.
2978  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2979       res.first != res.second; ++res.first) {
2980    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2981      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2982                                          E = MD->end_overridden_methods();
2983           I != E; ++I)
2984        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2985    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2986      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2987        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2988  }
2989
2990  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2991      !Data.OverloadedMethods.empty()) {
2992    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2993      << MD << (Data.OverloadedMethods.size() > 1);
2994
2995    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2996      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2997      Diag(overloadedMD->getLocation(),
2998           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2999    }
3000  }
3001}
3002
3003void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
3004                                             Decl *TagDecl,
3005                                             SourceLocation LBrac,
3006                                             SourceLocation RBrac,
3007                                             AttributeList *AttrList) {
3008  if (!TagDecl)
3009    return;
3010
3011  AdjustDeclIfTemplate(TagDecl);
3012
3013  ActOnFields(S, RLoc, TagDecl,
3014              // strict aliasing violation!
3015              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
3016              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
3017
3018  CheckCompletedCXXClass(
3019                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
3020}
3021
3022namespace {
3023  /// \brief Helper class that collects exception specifications for
3024  /// implicitly-declared special member functions.
3025  class ImplicitExceptionSpecification {
3026    ASTContext &Context;
3027    // We order exception specifications thus:
3028    // noexcept is the most restrictive, but is only used in C++0x.
3029    // throw() comes next.
3030    // Then a throw(collected exceptions)
3031    // Finally no specification.
3032    // throw(...) is used instead if any called function uses it.
3033    ExceptionSpecificationType ComputedEST;
3034    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
3035    llvm::SmallVector<QualType, 4> Exceptions;
3036
3037    void ClearExceptions() {
3038      ExceptionsSeen.clear();
3039      Exceptions.clear();
3040    }
3041
3042  public:
3043    explicit ImplicitExceptionSpecification(ASTContext &Context)
3044      : Context(Context), ComputedEST(EST_BasicNoexcept) {
3045      if (!Context.getLangOptions().CPlusPlus0x)
3046        ComputedEST = EST_DynamicNone;
3047    }
3048
3049    /// \brief Get the computed exception specification type.
3050    ExceptionSpecificationType getExceptionSpecType() const {
3051      assert(ComputedEST != EST_ComputedNoexcept &&
3052             "noexcept(expr) should not be a possible result");
3053      return ComputedEST;
3054    }
3055
3056    /// \brief The number of exceptions in the exception specification.
3057    unsigned size() const { return Exceptions.size(); }
3058
3059    /// \brief The set of exceptions in the exception specification.
3060    const QualType *data() const { return Exceptions.data(); }
3061
3062    /// \brief Integrate another called method into the collected data.
3063    void CalledDecl(CXXMethodDecl *Method) {
3064      // If we have an MSAny spec already, don't bother.
3065      if (!Method || ComputedEST == EST_MSAny)
3066        return;
3067
3068      const FunctionProtoType *Proto
3069        = Method->getType()->getAs<FunctionProtoType>();
3070
3071      ExceptionSpecificationType EST = Proto->getExceptionSpecType();
3072
3073      // If this function can throw any exceptions, make a note of that.
3074      if (EST == EST_MSAny || EST == EST_None) {
3075        ClearExceptions();
3076        ComputedEST = EST;
3077        return;
3078      }
3079
3080      // If this function has a basic noexcept, it doesn't affect the outcome.
3081      if (EST == EST_BasicNoexcept)
3082        return;
3083
3084      // If we have a throw-all spec at this point, ignore the function.
3085      if (ComputedEST == EST_None)
3086        return;
3087
3088      // If we're still at noexcept(true) and there's a nothrow() callee,
3089      // change to that specification.
3090      if (EST == EST_DynamicNone) {
3091        if (ComputedEST == EST_BasicNoexcept)
3092          ComputedEST = EST_DynamicNone;
3093        return;
3094      }
3095
3096      // Check out noexcept specs.
3097      if (EST == EST_ComputedNoexcept) {
3098        FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec();
3099        assert(NR != FunctionProtoType::NR_NoNoexcept &&
3100               "Must have noexcept result for EST_ComputedNoexcept.");
3101        assert(NR != FunctionProtoType::NR_Dependent &&
3102               "Should not generate implicit declarations for dependent cases, "
3103               "and don't know how to handle them anyway.");
3104
3105        // noexcept(false) -> no spec on the new function
3106        if (NR == FunctionProtoType::NR_Throw) {
3107          ClearExceptions();
3108          ComputedEST = EST_None;
3109        }
3110        // noexcept(true) won't change anything either.
3111        return;
3112      }
3113
3114      assert(EST == EST_Dynamic && "EST case not considered earlier.");
3115      assert(ComputedEST != EST_None &&
3116             "Shouldn't collect exceptions when throw-all is guaranteed.");
3117      ComputedEST = EST_Dynamic;
3118      // Record the exceptions in this function's exception specification.
3119      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
3120                                              EEnd = Proto->exception_end();
3121           E != EEnd; ++E)
3122        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
3123          Exceptions.push_back(*E);
3124    }
3125  };
3126}
3127
3128
3129/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3130/// special functions, such as the default constructor, copy
3131/// constructor, or destructor, to the given C++ class (C++
3132/// [special]p1).  This routine can only be executed just before the
3133/// definition of the class is complete.
3134void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3135  if (!ClassDecl->hasUserDeclaredConstructor())
3136    ++ASTContext::NumImplicitDefaultConstructors;
3137
3138  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3139    ++ASTContext::NumImplicitCopyConstructors;
3140
3141  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3142    ++ASTContext::NumImplicitCopyAssignmentOperators;
3143
3144    // If we have a dynamic class, then the copy assignment operator may be
3145    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3146    // it shows up in the right place in the vtable and that we diagnose
3147    // problems with the implicit exception specification.
3148    if (ClassDecl->isDynamicClass())
3149      DeclareImplicitCopyAssignment(ClassDecl);
3150  }
3151
3152  if (!ClassDecl->hasUserDeclaredDestructor()) {
3153    ++ASTContext::NumImplicitDestructors;
3154
3155    // If we have a dynamic class, then the destructor may be virtual, so we
3156    // have to declare the destructor immediately. This ensures that, e.g., it
3157    // shows up in the right place in the vtable and that we diagnose problems
3158    // with the implicit exception specification.
3159    if (ClassDecl->isDynamicClass())
3160      DeclareImplicitDestructor(ClassDecl);
3161  }
3162}
3163
3164void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3165  if (!D)
3166    return;
3167
3168  TemplateParameterList *Params = 0;
3169  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3170    Params = Template->getTemplateParameters();
3171  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3172           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3173    Params = PartialSpec->getTemplateParameters();
3174  else
3175    return;
3176
3177  for (TemplateParameterList::iterator Param = Params->begin(),
3178                                    ParamEnd = Params->end();
3179       Param != ParamEnd; ++Param) {
3180    NamedDecl *Named = cast<NamedDecl>(*Param);
3181    if (Named->getDeclName()) {
3182      S->AddDecl(Named);
3183      IdResolver.AddDecl(Named);
3184    }
3185  }
3186}
3187
3188void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3189  if (!RecordD) return;
3190  AdjustDeclIfTemplate(RecordD);
3191  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3192  PushDeclContext(S, Record);
3193}
3194
3195void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3196  if (!RecordD) return;
3197  PopDeclContext();
3198}
3199
3200/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3201/// parsing a top-level (non-nested) C++ class, and we are now
3202/// parsing those parts of the given Method declaration that could
3203/// not be parsed earlier (C++ [class.mem]p2), such as default
3204/// arguments. This action should enter the scope of the given
3205/// Method declaration as if we had just parsed the qualified method
3206/// name. However, it should not bring the parameters into scope;
3207/// that will be performed by ActOnDelayedCXXMethodParameter.
3208void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3209}
3210
3211/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3212/// C++ method declaration. We're (re-)introducing the given
3213/// function parameter into scope for use in parsing later parts of
3214/// the method declaration. For example, we could see an
3215/// ActOnParamDefaultArgument event for this parameter.
3216void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3217  if (!ParamD)
3218    return;
3219
3220  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3221
3222  // If this parameter has an unparsed default argument, clear it out
3223  // to make way for the parsed default argument.
3224  if (Param->hasUnparsedDefaultArg())
3225    Param->setDefaultArg(0);
3226
3227  S->AddDecl(Param);
3228  if (Param->getDeclName())
3229    IdResolver.AddDecl(Param);
3230}
3231
3232/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3233/// processing the delayed method declaration for Method. The method
3234/// declaration is now considered finished. There may be a separate
3235/// ActOnStartOfFunctionDef action later (not necessarily
3236/// immediately!) for this method, if it was also defined inside the
3237/// class body.
3238void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3239  if (!MethodD)
3240    return;
3241
3242  AdjustDeclIfTemplate(MethodD);
3243
3244  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3245
3246  // Now that we have our default arguments, check the constructor
3247  // again. It could produce additional diagnostics or affect whether
3248  // the class has implicitly-declared destructors, among other
3249  // things.
3250  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3251    CheckConstructor(Constructor);
3252
3253  // Check the default arguments, which we may have added.
3254  if (!Method->isInvalidDecl())
3255    CheckCXXDefaultArguments(Method);
3256}
3257
3258/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3259/// the well-formedness of the constructor declarator @p D with type @p
3260/// R. If there are any errors in the declarator, this routine will
3261/// emit diagnostics and set the invalid bit to true.  In any case, the type
3262/// will be updated to reflect a well-formed type for the constructor and
3263/// returned.
3264QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3265                                          StorageClass &SC) {
3266  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3267
3268  // C++ [class.ctor]p3:
3269  //   A constructor shall not be virtual (10.3) or static (9.4). A
3270  //   constructor can be invoked for a const, volatile or const
3271  //   volatile object. A constructor shall not be declared const,
3272  //   volatile, or const volatile (9.3.2).
3273  if (isVirtual) {
3274    if (!D.isInvalidType())
3275      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3276        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3277        << SourceRange(D.getIdentifierLoc());
3278    D.setInvalidType();
3279  }
3280  if (SC == SC_Static) {
3281    if (!D.isInvalidType())
3282      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3283        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3284        << SourceRange(D.getIdentifierLoc());
3285    D.setInvalidType();
3286    SC = SC_None;
3287  }
3288
3289  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3290  if (FTI.TypeQuals != 0) {
3291    if (FTI.TypeQuals & Qualifiers::Const)
3292      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3293        << "const" << SourceRange(D.getIdentifierLoc());
3294    if (FTI.TypeQuals & Qualifiers::Volatile)
3295      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3296        << "volatile" << SourceRange(D.getIdentifierLoc());
3297    if (FTI.TypeQuals & Qualifiers::Restrict)
3298      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3299        << "restrict" << SourceRange(D.getIdentifierLoc());
3300    D.setInvalidType();
3301  }
3302
3303  // C++0x [class.ctor]p4:
3304  //   A constructor shall not be declared with a ref-qualifier.
3305  if (FTI.hasRefQualifier()) {
3306    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3307      << FTI.RefQualifierIsLValueRef
3308      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3309    D.setInvalidType();
3310  }
3311
3312  // Rebuild the function type "R" without any type qualifiers (in
3313  // case any of the errors above fired) and with "void" as the
3314  // return type, since constructors don't have return types.
3315  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3316  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3317    return R;
3318
3319  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3320  EPI.TypeQuals = 0;
3321  EPI.RefQualifier = RQ_None;
3322
3323  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3324                                 Proto->getNumArgs(), EPI);
3325}
3326
3327/// CheckConstructor - Checks a fully-formed constructor for
3328/// well-formedness, issuing any diagnostics required. Returns true if
3329/// the constructor declarator is invalid.
3330void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3331  CXXRecordDecl *ClassDecl
3332    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3333  if (!ClassDecl)
3334    return Constructor->setInvalidDecl();
3335
3336  // C++ [class.copy]p3:
3337  //   A declaration of a constructor for a class X is ill-formed if
3338  //   its first parameter is of type (optionally cv-qualified) X and
3339  //   either there are no other parameters or else all other
3340  //   parameters have default arguments.
3341  if (!Constructor->isInvalidDecl() &&
3342      ((Constructor->getNumParams() == 1) ||
3343       (Constructor->getNumParams() > 1 &&
3344        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3345      Constructor->getTemplateSpecializationKind()
3346                                              != TSK_ImplicitInstantiation) {
3347    QualType ParamType = Constructor->getParamDecl(0)->getType();
3348    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3349    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3350      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3351      const char *ConstRef
3352        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3353                                                        : " const &";
3354      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3355        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3356
3357      // FIXME: Rather that making the constructor invalid, we should endeavor
3358      // to fix the type.
3359      Constructor->setInvalidDecl();
3360    }
3361  }
3362}
3363
3364/// CheckDestructor - Checks a fully-formed destructor definition for
3365/// well-formedness, issuing any diagnostics required.  Returns true
3366/// on error.
3367bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3368  CXXRecordDecl *RD = Destructor->getParent();
3369
3370  if (Destructor->isVirtual()) {
3371    SourceLocation Loc;
3372
3373    if (!Destructor->isImplicit())
3374      Loc = Destructor->getLocation();
3375    else
3376      Loc = RD->getLocation();
3377
3378    // If we have a virtual destructor, look up the deallocation function
3379    FunctionDecl *OperatorDelete = 0;
3380    DeclarationName Name =
3381    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3382    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3383      return true;
3384
3385    MarkDeclarationReferenced(Loc, OperatorDelete);
3386
3387    Destructor->setOperatorDelete(OperatorDelete);
3388  }
3389
3390  return false;
3391}
3392
3393static inline bool
3394FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3395  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3396          FTI.ArgInfo[0].Param &&
3397          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3398}
3399
3400/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3401/// the well-formednes of the destructor declarator @p D with type @p
3402/// R. If there are any errors in the declarator, this routine will
3403/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3404/// will be updated to reflect a well-formed type for the destructor and
3405/// returned.
3406QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3407                                         StorageClass& SC) {
3408  // C++ [class.dtor]p1:
3409  //   [...] A typedef-name that names a class is a class-name
3410  //   (7.1.3); however, a typedef-name that names a class shall not
3411  //   be used as the identifier in the declarator for a destructor
3412  //   declaration.
3413  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3414  if (isa<TypedefType>(DeclaratorType))
3415    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3416      << DeclaratorType;
3417
3418  // C++ [class.dtor]p2:
3419  //   A destructor is used to destroy objects of its class type. A
3420  //   destructor takes no parameters, and no return type can be
3421  //   specified for it (not even void). The address of a destructor
3422  //   shall not be taken. A destructor shall not be static. A
3423  //   destructor can be invoked for a const, volatile or const
3424  //   volatile object. A destructor shall not be declared const,
3425  //   volatile or const volatile (9.3.2).
3426  if (SC == SC_Static) {
3427    if (!D.isInvalidType())
3428      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3429        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3430        << SourceRange(D.getIdentifierLoc())
3431        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3432
3433    SC = SC_None;
3434  }
3435  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3436    // Destructors don't have return types, but the parser will
3437    // happily parse something like:
3438    //
3439    //   class X {
3440    //     float ~X();
3441    //   };
3442    //
3443    // The return type will be eliminated later.
3444    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3445      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3446      << SourceRange(D.getIdentifierLoc());
3447  }
3448
3449  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3450  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3451    if (FTI.TypeQuals & Qualifiers::Const)
3452      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3453        << "const" << SourceRange(D.getIdentifierLoc());
3454    if (FTI.TypeQuals & Qualifiers::Volatile)
3455      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3456        << "volatile" << SourceRange(D.getIdentifierLoc());
3457    if (FTI.TypeQuals & Qualifiers::Restrict)
3458      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3459        << "restrict" << SourceRange(D.getIdentifierLoc());
3460    D.setInvalidType();
3461  }
3462
3463  // C++0x [class.dtor]p2:
3464  //   A destructor shall not be declared with a ref-qualifier.
3465  if (FTI.hasRefQualifier()) {
3466    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3467      << FTI.RefQualifierIsLValueRef
3468      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3469    D.setInvalidType();
3470  }
3471
3472  // Make sure we don't have any parameters.
3473  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3474    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3475
3476    // Delete the parameters.
3477    FTI.freeArgs();
3478    D.setInvalidType();
3479  }
3480
3481  // Make sure the destructor isn't variadic.
3482  if (FTI.isVariadic) {
3483    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3484    D.setInvalidType();
3485  }
3486
3487  // Rebuild the function type "R" without any type qualifiers or
3488  // parameters (in case any of the errors above fired) and with
3489  // "void" as the return type, since destructors don't have return
3490  // types.
3491  if (!D.isInvalidType())
3492    return R;
3493
3494  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3495  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3496  EPI.Variadic = false;
3497  EPI.TypeQuals = 0;
3498  EPI.RefQualifier = RQ_None;
3499  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3500}
3501
3502/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3503/// well-formednes of the conversion function declarator @p D with
3504/// type @p R. If there are any errors in the declarator, this routine
3505/// will emit diagnostics and return true. Otherwise, it will return
3506/// false. Either way, the type @p R will be updated to reflect a
3507/// well-formed type for the conversion operator.
3508void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3509                                     StorageClass& SC) {
3510  // C++ [class.conv.fct]p1:
3511  //   Neither parameter types nor return type can be specified. The
3512  //   type of a conversion function (8.3.5) is "function taking no
3513  //   parameter returning conversion-type-id."
3514  if (SC == SC_Static) {
3515    if (!D.isInvalidType())
3516      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3517        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3518        << SourceRange(D.getIdentifierLoc());
3519    D.setInvalidType();
3520    SC = SC_None;
3521  }
3522
3523  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3524
3525  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3526    // Conversion functions don't have return types, but the parser will
3527    // happily parse something like:
3528    //
3529    //   class X {
3530    //     float operator bool();
3531    //   };
3532    //
3533    // The return type will be changed later anyway.
3534    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3535      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3536      << SourceRange(D.getIdentifierLoc());
3537    D.setInvalidType();
3538  }
3539
3540  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3541
3542  // Make sure we don't have any parameters.
3543  if (Proto->getNumArgs() > 0) {
3544    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3545
3546    // Delete the parameters.
3547    D.getFunctionTypeInfo().freeArgs();
3548    D.setInvalidType();
3549  } else if (Proto->isVariadic()) {
3550    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3551    D.setInvalidType();
3552  }
3553
3554  // Diagnose "&operator bool()" and other such nonsense.  This
3555  // is actually a gcc extension which we don't support.
3556  if (Proto->getResultType() != ConvType) {
3557    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3558      << Proto->getResultType();
3559    D.setInvalidType();
3560    ConvType = Proto->getResultType();
3561  }
3562
3563  // C++ [class.conv.fct]p4:
3564  //   The conversion-type-id shall not represent a function type nor
3565  //   an array type.
3566  if (ConvType->isArrayType()) {
3567    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3568    ConvType = Context.getPointerType(ConvType);
3569    D.setInvalidType();
3570  } else if (ConvType->isFunctionType()) {
3571    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3572    ConvType = Context.getPointerType(ConvType);
3573    D.setInvalidType();
3574  }
3575
3576  // Rebuild the function type "R" without any parameters (in case any
3577  // of the errors above fired) and with the conversion type as the
3578  // return type.
3579  if (D.isInvalidType())
3580    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3581
3582  // C++0x explicit conversion operators.
3583  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3584    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3585         diag::warn_explicit_conversion_functions)
3586      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3587}
3588
3589/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3590/// the declaration of the given C++ conversion function. This routine
3591/// is responsible for recording the conversion function in the C++
3592/// class, if possible.
3593Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3594  assert(Conversion && "Expected to receive a conversion function declaration");
3595
3596  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3597
3598  // Make sure we aren't redeclaring the conversion function.
3599  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3600
3601  // C++ [class.conv.fct]p1:
3602  //   [...] A conversion function is never used to convert a
3603  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3604  //   same object type (or a reference to it), to a (possibly
3605  //   cv-qualified) base class of that type (or a reference to it),
3606  //   or to (possibly cv-qualified) void.
3607  // FIXME: Suppress this warning if the conversion function ends up being a
3608  // virtual function that overrides a virtual function in a base class.
3609  QualType ClassType
3610    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3611  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3612    ConvType = ConvTypeRef->getPointeeType();
3613  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3614      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3615    /* Suppress diagnostics for instantiations. */;
3616  else if (ConvType->isRecordType()) {
3617    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3618    if (ConvType == ClassType)
3619      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3620        << ClassType;
3621    else if (IsDerivedFrom(ClassType, ConvType))
3622      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3623        <<  ClassType << ConvType;
3624  } else if (ConvType->isVoidType()) {
3625    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3626      << ClassType << ConvType;
3627  }
3628
3629  if (FunctionTemplateDecl *ConversionTemplate
3630                                = Conversion->getDescribedFunctionTemplate())
3631    return ConversionTemplate;
3632
3633  return Conversion;
3634}
3635
3636//===----------------------------------------------------------------------===//
3637// Namespace Handling
3638//===----------------------------------------------------------------------===//
3639
3640
3641
3642/// ActOnStartNamespaceDef - This is called at the start of a namespace
3643/// definition.
3644Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3645                                   SourceLocation InlineLoc,
3646                                   SourceLocation NamespaceLoc,
3647                                   SourceLocation IdentLoc,
3648                                   IdentifierInfo *II,
3649                                   SourceLocation LBrace,
3650                                   AttributeList *AttrList) {
3651  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
3652  // For anonymous namespace, take the location of the left brace.
3653  SourceLocation Loc = II ? IdentLoc : LBrace;
3654  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3655                                                 StartLoc, Loc, II);
3656  Namespc->setInline(InlineLoc.isValid());
3657
3658  Scope *DeclRegionScope = NamespcScope->getParent();
3659
3660  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3661
3662  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3663    PushNamespaceVisibilityAttr(Attr);
3664
3665  if (II) {
3666    // C++ [namespace.def]p2:
3667    //   The identifier in an original-namespace-definition shall not
3668    //   have been previously defined in the declarative region in
3669    //   which the original-namespace-definition appears. The
3670    //   identifier in an original-namespace-definition is the name of
3671    //   the namespace. Subsequently in that declarative region, it is
3672    //   treated as an original-namespace-name.
3673    //
3674    // Since namespace names are unique in their scope, and we don't
3675    // look through using directives, just
3676    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3677    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3678
3679    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3680      // This is an extended namespace definition.
3681      if (Namespc->isInline() != OrigNS->isInline()) {
3682        // inline-ness must match
3683        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3684          << Namespc->isInline();
3685        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3686        Namespc->setInvalidDecl();
3687        // Recover by ignoring the new namespace's inline status.
3688        Namespc->setInline(OrigNS->isInline());
3689      }
3690
3691      // Attach this namespace decl to the chain of extended namespace
3692      // definitions.
3693      OrigNS->setNextNamespace(Namespc);
3694      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3695
3696      // Remove the previous declaration from the scope.
3697      if (DeclRegionScope->isDeclScope(OrigNS)) {
3698        IdResolver.RemoveDecl(OrigNS);
3699        DeclRegionScope->RemoveDecl(OrigNS);
3700      }
3701    } else if (PrevDecl) {
3702      // This is an invalid name redefinition.
3703      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3704       << Namespc->getDeclName();
3705      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3706      Namespc->setInvalidDecl();
3707      // Continue on to push Namespc as current DeclContext and return it.
3708    } else if (II->isStr("std") &&
3709               CurContext->getRedeclContext()->isTranslationUnit()) {
3710      // This is the first "real" definition of the namespace "std", so update
3711      // our cache of the "std" namespace to point at this definition.
3712      if (NamespaceDecl *StdNS = getStdNamespace()) {
3713        // We had already defined a dummy namespace "std". Link this new
3714        // namespace definition to the dummy namespace "std".
3715        StdNS->setNextNamespace(Namespc);
3716        StdNS->setLocation(IdentLoc);
3717        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3718      }
3719
3720      // Make our StdNamespace cache point at the first real definition of the
3721      // "std" namespace.
3722      StdNamespace = Namespc;
3723    }
3724
3725    PushOnScopeChains(Namespc, DeclRegionScope);
3726  } else {
3727    // Anonymous namespaces.
3728    assert(Namespc->isAnonymousNamespace());
3729
3730    // Link the anonymous namespace into its parent.
3731    NamespaceDecl *PrevDecl;
3732    DeclContext *Parent = CurContext->getRedeclContext();
3733    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3734      PrevDecl = TU->getAnonymousNamespace();
3735      TU->setAnonymousNamespace(Namespc);
3736    } else {
3737      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3738      PrevDecl = ND->getAnonymousNamespace();
3739      ND->setAnonymousNamespace(Namespc);
3740    }
3741
3742    // Link the anonymous namespace with its previous declaration.
3743    if (PrevDecl) {
3744      assert(PrevDecl->isAnonymousNamespace());
3745      assert(!PrevDecl->getNextNamespace());
3746      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3747      PrevDecl->setNextNamespace(Namespc);
3748
3749      if (Namespc->isInline() != PrevDecl->isInline()) {
3750        // inline-ness must match
3751        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3752          << Namespc->isInline();
3753        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3754        Namespc->setInvalidDecl();
3755        // Recover by ignoring the new namespace's inline status.
3756        Namespc->setInline(PrevDecl->isInline());
3757      }
3758    }
3759
3760    CurContext->addDecl(Namespc);
3761
3762    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3763    //   behaves as if it were replaced by
3764    //     namespace unique { /* empty body */ }
3765    //     using namespace unique;
3766    //     namespace unique { namespace-body }
3767    //   where all occurrences of 'unique' in a translation unit are
3768    //   replaced by the same identifier and this identifier differs
3769    //   from all other identifiers in the entire program.
3770
3771    // We just create the namespace with an empty name and then add an
3772    // implicit using declaration, just like the standard suggests.
3773    //
3774    // CodeGen enforces the "universally unique" aspect by giving all
3775    // declarations semantically contained within an anonymous
3776    // namespace internal linkage.
3777
3778    if (!PrevDecl) {
3779      UsingDirectiveDecl* UD
3780        = UsingDirectiveDecl::Create(Context, CurContext,
3781                                     /* 'using' */ LBrace,
3782                                     /* 'namespace' */ SourceLocation(),
3783                                     /* qualifier */ NestedNameSpecifierLoc(),
3784                                     /* identifier */ SourceLocation(),
3785                                     Namespc,
3786                                     /* Ancestor */ CurContext);
3787      UD->setImplicit();
3788      CurContext->addDecl(UD);
3789    }
3790  }
3791
3792  // Although we could have an invalid decl (i.e. the namespace name is a
3793  // redefinition), push it as current DeclContext and try to continue parsing.
3794  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3795  // for the namespace has the declarations that showed up in that particular
3796  // namespace definition.
3797  PushDeclContext(NamespcScope, Namespc);
3798  return Namespc;
3799}
3800
3801/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3802/// is a namespace alias, returns the namespace it points to.
3803static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3804  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3805    return AD->getNamespace();
3806  return dyn_cast_or_null<NamespaceDecl>(D);
3807}
3808
3809/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3810/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3811void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3812  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3813  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3814  Namespc->setRBraceLoc(RBrace);
3815  PopDeclContext();
3816  if (Namespc->hasAttr<VisibilityAttr>())
3817    PopPragmaVisibility();
3818}
3819
3820CXXRecordDecl *Sema::getStdBadAlloc() const {
3821  return cast_or_null<CXXRecordDecl>(
3822                                  StdBadAlloc.get(Context.getExternalSource()));
3823}
3824
3825NamespaceDecl *Sema::getStdNamespace() const {
3826  return cast_or_null<NamespaceDecl>(
3827                                 StdNamespace.get(Context.getExternalSource()));
3828}
3829
3830/// \brief Retrieve the special "std" namespace, which may require us to
3831/// implicitly define the namespace.
3832NamespaceDecl *Sema::getOrCreateStdNamespace() {
3833  if (!StdNamespace) {
3834    // The "std" namespace has not yet been defined, so build one implicitly.
3835    StdNamespace = NamespaceDecl::Create(Context,
3836                                         Context.getTranslationUnitDecl(),
3837                                         SourceLocation(), SourceLocation(),
3838                                         &PP.getIdentifierTable().get("std"));
3839    getStdNamespace()->setImplicit(true);
3840  }
3841
3842  return getStdNamespace();
3843}
3844
3845Decl *Sema::ActOnUsingDirective(Scope *S,
3846                                          SourceLocation UsingLoc,
3847                                          SourceLocation NamespcLoc,
3848                                          CXXScopeSpec &SS,
3849                                          SourceLocation IdentLoc,
3850                                          IdentifierInfo *NamespcName,
3851                                          AttributeList *AttrList) {
3852  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3853  assert(NamespcName && "Invalid NamespcName.");
3854  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3855
3856  // This can only happen along a recovery path.
3857  while (S->getFlags() & Scope::TemplateParamScope)
3858    S = S->getParent();
3859  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3860
3861  UsingDirectiveDecl *UDir = 0;
3862  NestedNameSpecifier *Qualifier = 0;
3863  if (SS.isSet())
3864    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3865
3866  // Lookup namespace name.
3867  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3868  LookupParsedName(R, S, &SS);
3869  if (R.isAmbiguous())
3870    return 0;
3871
3872  if (R.empty()) {
3873    // Allow "using namespace std;" or "using namespace ::std;" even if
3874    // "std" hasn't been defined yet, for GCC compatibility.
3875    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3876        NamespcName->isStr("std")) {
3877      Diag(IdentLoc, diag::ext_using_undefined_std);
3878      R.addDecl(getOrCreateStdNamespace());
3879      R.resolveKind();
3880    }
3881    // Otherwise, attempt typo correction.
3882    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3883                                                       CTC_NoKeywords, 0)) {
3884      if (R.getAsSingle<NamespaceDecl>() ||
3885          R.getAsSingle<NamespaceAliasDecl>()) {
3886        if (DeclContext *DC = computeDeclContext(SS, false))
3887          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3888            << NamespcName << DC << Corrected << SS.getRange()
3889            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3890        else
3891          Diag(IdentLoc, diag::err_using_directive_suggest)
3892            << NamespcName << Corrected
3893            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3894        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3895          << Corrected;
3896
3897        NamespcName = Corrected.getAsIdentifierInfo();
3898      } else {
3899        R.clear();
3900        R.setLookupName(NamespcName);
3901      }
3902    }
3903  }
3904
3905  if (!R.empty()) {
3906    NamedDecl *Named = R.getFoundDecl();
3907    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3908        && "expected namespace decl");
3909    // C++ [namespace.udir]p1:
3910    //   A using-directive specifies that the names in the nominated
3911    //   namespace can be used in the scope in which the
3912    //   using-directive appears after the using-directive. During
3913    //   unqualified name lookup (3.4.1), the names appear as if they
3914    //   were declared in the nearest enclosing namespace which
3915    //   contains both the using-directive and the nominated
3916    //   namespace. [Note: in this context, "contains" means "contains
3917    //   directly or indirectly". ]
3918
3919    // Find enclosing context containing both using-directive and
3920    // nominated namespace.
3921    NamespaceDecl *NS = getNamespaceDecl(Named);
3922    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3923    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3924      CommonAncestor = CommonAncestor->getParent();
3925
3926    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3927                                      SS.getWithLocInContext(Context),
3928                                      IdentLoc, Named, CommonAncestor);
3929    PushUsingDirective(S, UDir);
3930  } else {
3931    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3932  }
3933
3934  // FIXME: We ignore attributes for now.
3935  return UDir;
3936}
3937
3938void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3939  // If scope has associated entity, then using directive is at namespace
3940  // or translation unit scope. We add UsingDirectiveDecls, into
3941  // it's lookup structure.
3942  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3943    Ctx->addDecl(UDir);
3944  else
3945    // Otherwise it is block-sope. using-directives will affect lookup
3946    // only to the end of scope.
3947    S->PushUsingDirective(UDir);
3948}
3949
3950
3951Decl *Sema::ActOnUsingDeclaration(Scope *S,
3952                                  AccessSpecifier AS,
3953                                  bool HasUsingKeyword,
3954                                  SourceLocation UsingLoc,
3955                                  CXXScopeSpec &SS,
3956                                  UnqualifiedId &Name,
3957                                  AttributeList *AttrList,
3958                                  bool IsTypeName,
3959                                  SourceLocation TypenameLoc) {
3960  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3961
3962  switch (Name.getKind()) {
3963  case UnqualifiedId::IK_Identifier:
3964  case UnqualifiedId::IK_OperatorFunctionId:
3965  case UnqualifiedId::IK_LiteralOperatorId:
3966  case UnqualifiedId::IK_ConversionFunctionId:
3967    break;
3968
3969  case UnqualifiedId::IK_ConstructorName:
3970  case UnqualifiedId::IK_ConstructorTemplateId:
3971    // C++0x inherited constructors.
3972    if (getLangOptions().CPlusPlus0x) break;
3973
3974    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3975      << SS.getRange();
3976    return 0;
3977
3978  case UnqualifiedId::IK_DestructorName:
3979    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3980      << SS.getRange();
3981    return 0;
3982
3983  case UnqualifiedId::IK_TemplateId:
3984    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3985      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3986    return 0;
3987  }
3988
3989  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3990  DeclarationName TargetName = TargetNameInfo.getName();
3991  if (!TargetName)
3992    return 0;
3993
3994  // Warn about using declarations.
3995  // TODO: store that the declaration was written without 'using' and
3996  // talk about access decls instead of using decls in the
3997  // diagnostics.
3998  if (!HasUsingKeyword) {
3999    UsingLoc = Name.getSourceRange().getBegin();
4000
4001    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4002      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4003  }
4004
4005  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
4006      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
4007    return 0;
4008
4009  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
4010                                        TargetNameInfo, AttrList,
4011                                        /* IsInstantiation */ false,
4012                                        IsTypeName, TypenameLoc);
4013  if (UD)
4014    PushOnScopeChains(UD, S, /*AddToContext*/ false);
4015
4016  return UD;
4017}
4018
4019/// \brief Determine whether a using declaration considers the given
4020/// declarations as "equivalent", e.g., if they are redeclarations of
4021/// the same entity or are both typedefs of the same type.
4022static bool
4023IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
4024                         bool &SuppressRedeclaration) {
4025  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
4026    SuppressRedeclaration = false;
4027    return true;
4028  }
4029
4030  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
4031    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
4032      SuppressRedeclaration = true;
4033      return Context.hasSameType(TD1->getUnderlyingType(),
4034                                 TD2->getUnderlyingType());
4035    }
4036
4037  return false;
4038}
4039
4040
4041/// Determines whether to create a using shadow decl for a particular
4042/// decl, given the set of decls existing prior to this using lookup.
4043bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
4044                                const LookupResult &Previous) {
4045  // Diagnose finding a decl which is not from a base class of the
4046  // current class.  We do this now because there are cases where this
4047  // function will silently decide not to build a shadow decl, which
4048  // will pre-empt further diagnostics.
4049  //
4050  // We don't need to do this in C++0x because we do the check once on
4051  // the qualifier.
4052  //
4053  // FIXME: diagnose the following if we care enough:
4054  //   struct A { int foo; };
4055  //   struct B : A { using A::foo; };
4056  //   template <class T> struct C : A {};
4057  //   template <class T> struct D : C<T> { using B::foo; } // <---
4058  // This is invalid (during instantiation) in C++03 because B::foo
4059  // resolves to the using decl in B, which is not a base class of D<T>.
4060  // We can't diagnose it immediately because C<T> is an unknown
4061  // specialization.  The UsingShadowDecl in D<T> then points directly
4062  // to A::foo, which will look well-formed when we instantiate.
4063  // The right solution is to not collapse the shadow-decl chain.
4064  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
4065    DeclContext *OrigDC = Orig->getDeclContext();
4066
4067    // Handle enums and anonymous structs.
4068    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
4069    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
4070    while (OrigRec->isAnonymousStructOrUnion())
4071      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
4072
4073    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
4074      if (OrigDC == CurContext) {
4075        Diag(Using->getLocation(),
4076             diag::err_using_decl_nested_name_specifier_is_current_class)
4077          << Using->getQualifierLoc().getSourceRange();
4078        Diag(Orig->getLocation(), diag::note_using_decl_target);
4079        return true;
4080      }
4081
4082      Diag(Using->getQualifierLoc().getBeginLoc(),
4083           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4084        << Using->getQualifier()
4085        << cast<CXXRecordDecl>(CurContext)
4086        << Using->getQualifierLoc().getSourceRange();
4087      Diag(Orig->getLocation(), diag::note_using_decl_target);
4088      return true;
4089    }
4090  }
4091
4092  if (Previous.empty()) return false;
4093
4094  NamedDecl *Target = Orig;
4095  if (isa<UsingShadowDecl>(Target))
4096    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4097
4098  // If the target happens to be one of the previous declarations, we
4099  // don't have a conflict.
4100  //
4101  // FIXME: but we might be increasing its access, in which case we
4102  // should redeclare it.
4103  NamedDecl *NonTag = 0, *Tag = 0;
4104  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4105         I != E; ++I) {
4106    NamedDecl *D = (*I)->getUnderlyingDecl();
4107    bool Result;
4108    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4109      return Result;
4110
4111    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4112  }
4113
4114  if (Target->isFunctionOrFunctionTemplate()) {
4115    FunctionDecl *FD;
4116    if (isa<FunctionTemplateDecl>(Target))
4117      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4118    else
4119      FD = cast<FunctionDecl>(Target);
4120
4121    NamedDecl *OldDecl = 0;
4122    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4123    case Ovl_Overload:
4124      return false;
4125
4126    case Ovl_NonFunction:
4127      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4128      break;
4129
4130    // We found a decl with the exact signature.
4131    case Ovl_Match:
4132      // If we're in a record, we want to hide the target, so we
4133      // return true (without a diagnostic) to tell the caller not to
4134      // build a shadow decl.
4135      if (CurContext->isRecord())
4136        return true;
4137
4138      // If we're not in a record, this is an error.
4139      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4140      break;
4141    }
4142
4143    Diag(Target->getLocation(), diag::note_using_decl_target);
4144    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4145    return true;
4146  }
4147
4148  // Target is not a function.
4149
4150  if (isa<TagDecl>(Target)) {
4151    // No conflict between a tag and a non-tag.
4152    if (!Tag) return false;
4153
4154    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4155    Diag(Target->getLocation(), diag::note_using_decl_target);
4156    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4157    return true;
4158  }
4159
4160  // No conflict between a tag and a non-tag.
4161  if (!NonTag) return false;
4162
4163  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4164  Diag(Target->getLocation(), diag::note_using_decl_target);
4165  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4166  return true;
4167}
4168
4169/// Builds a shadow declaration corresponding to a 'using' declaration.
4170UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4171                                            UsingDecl *UD,
4172                                            NamedDecl *Orig) {
4173
4174  // If we resolved to another shadow declaration, just coalesce them.
4175  NamedDecl *Target = Orig;
4176  if (isa<UsingShadowDecl>(Target)) {
4177    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4178    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4179  }
4180
4181  UsingShadowDecl *Shadow
4182    = UsingShadowDecl::Create(Context, CurContext,
4183                              UD->getLocation(), UD, Target);
4184  UD->addShadowDecl(Shadow);
4185
4186  Shadow->setAccess(UD->getAccess());
4187  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4188    Shadow->setInvalidDecl();
4189
4190  if (S)
4191    PushOnScopeChains(Shadow, S);
4192  else
4193    CurContext->addDecl(Shadow);
4194
4195
4196  return Shadow;
4197}
4198
4199/// Hides a using shadow declaration.  This is required by the current
4200/// using-decl implementation when a resolvable using declaration in a
4201/// class is followed by a declaration which would hide or override
4202/// one or more of the using decl's targets; for example:
4203///
4204///   struct Base { void foo(int); };
4205///   struct Derived : Base {
4206///     using Base::foo;
4207///     void foo(int);
4208///   };
4209///
4210/// The governing language is C++03 [namespace.udecl]p12:
4211///
4212///   When a using-declaration brings names from a base class into a
4213///   derived class scope, member functions in the derived class
4214///   override and/or hide member functions with the same name and
4215///   parameter types in a base class (rather than conflicting).
4216///
4217/// There are two ways to implement this:
4218///   (1) optimistically create shadow decls when they're not hidden
4219///       by existing declarations, or
4220///   (2) don't create any shadow decls (or at least don't make them
4221///       visible) until we've fully parsed/instantiated the class.
4222/// The problem with (1) is that we might have to retroactively remove
4223/// a shadow decl, which requires several O(n) operations because the
4224/// decl structures are (very reasonably) not designed for removal.
4225/// (2) avoids this but is very fiddly and phase-dependent.
4226void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4227  if (Shadow->getDeclName().getNameKind() ==
4228        DeclarationName::CXXConversionFunctionName)
4229    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4230
4231  // Remove it from the DeclContext...
4232  Shadow->getDeclContext()->removeDecl(Shadow);
4233
4234  // ...and the scope, if applicable...
4235  if (S) {
4236    S->RemoveDecl(Shadow);
4237    IdResolver.RemoveDecl(Shadow);
4238  }
4239
4240  // ...and the using decl.
4241  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4242
4243  // TODO: complain somehow if Shadow was used.  It shouldn't
4244  // be possible for this to happen, because...?
4245}
4246
4247/// Builds a using declaration.
4248///
4249/// \param IsInstantiation - Whether this call arises from an
4250///   instantiation of an unresolved using declaration.  We treat
4251///   the lookup differently for these declarations.
4252NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4253                                       SourceLocation UsingLoc,
4254                                       CXXScopeSpec &SS,
4255                                       const DeclarationNameInfo &NameInfo,
4256                                       AttributeList *AttrList,
4257                                       bool IsInstantiation,
4258                                       bool IsTypeName,
4259                                       SourceLocation TypenameLoc) {
4260  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4261  SourceLocation IdentLoc = NameInfo.getLoc();
4262  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4263
4264  // FIXME: We ignore attributes for now.
4265
4266  if (SS.isEmpty()) {
4267    Diag(IdentLoc, diag::err_using_requires_qualname);
4268    return 0;
4269  }
4270
4271  // Do the redeclaration lookup in the current scope.
4272  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4273                        ForRedeclaration);
4274  Previous.setHideTags(false);
4275  if (S) {
4276    LookupName(Previous, S);
4277
4278    // It is really dumb that we have to do this.
4279    LookupResult::Filter F = Previous.makeFilter();
4280    while (F.hasNext()) {
4281      NamedDecl *D = F.next();
4282      if (!isDeclInScope(D, CurContext, S))
4283        F.erase();
4284    }
4285    F.done();
4286  } else {
4287    assert(IsInstantiation && "no scope in non-instantiation");
4288    assert(CurContext->isRecord() && "scope not record in instantiation");
4289    LookupQualifiedName(Previous, CurContext);
4290  }
4291
4292  // Check for invalid redeclarations.
4293  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4294    return 0;
4295
4296  // Check for bad qualifiers.
4297  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4298    return 0;
4299
4300  DeclContext *LookupContext = computeDeclContext(SS);
4301  NamedDecl *D;
4302  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4303  if (!LookupContext) {
4304    if (IsTypeName) {
4305      // FIXME: not all declaration name kinds are legal here
4306      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4307                                              UsingLoc, TypenameLoc,
4308                                              QualifierLoc,
4309                                              IdentLoc, NameInfo.getName());
4310    } else {
4311      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4312                                           QualifierLoc, NameInfo);
4313    }
4314  } else {
4315    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4316                          NameInfo, IsTypeName);
4317  }
4318  D->setAccess(AS);
4319  CurContext->addDecl(D);
4320
4321  if (!LookupContext) return D;
4322  UsingDecl *UD = cast<UsingDecl>(D);
4323
4324  if (RequireCompleteDeclContext(SS, LookupContext)) {
4325    UD->setInvalidDecl();
4326    return UD;
4327  }
4328
4329  // Constructor inheriting using decls get special treatment.
4330  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4331    if (CheckInheritedConstructorUsingDecl(UD))
4332      UD->setInvalidDecl();
4333    return UD;
4334  }
4335
4336  // Otherwise, look up the target name.
4337
4338  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4339
4340  // Unlike most lookups, we don't always want to hide tag
4341  // declarations: tag names are visible through the using declaration
4342  // even if hidden by ordinary names, *except* in a dependent context
4343  // where it's important for the sanity of two-phase lookup.
4344  if (!IsInstantiation)
4345    R.setHideTags(false);
4346
4347  LookupQualifiedName(R, LookupContext);
4348
4349  if (R.empty()) {
4350    Diag(IdentLoc, diag::err_no_member)
4351      << NameInfo.getName() << LookupContext << SS.getRange();
4352    UD->setInvalidDecl();
4353    return UD;
4354  }
4355
4356  if (R.isAmbiguous()) {
4357    UD->setInvalidDecl();
4358    return UD;
4359  }
4360
4361  if (IsTypeName) {
4362    // If we asked for a typename and got a non-type decl, error out.
4363    if (!R.getAsSingle<TypeDecl>()) {
4364      Diag(IdentLoc, diag::err_using_typename_non_type);
4365      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4366        Diag((*I)->getUnderlyingDecl()->getLocation(),
4367             diag::note_using_decl_target);
4368      UD->setInvalidDecl();
4369      return UD;
4370    }
4371  } else {
4372    // If we asked for a non-typename and we got a type, error out,
4373    // but only if this is an instantiation of an unresolved using
4374    // decl.  Otherwise just silently find the type name.
4375    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4376      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4377      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4378      UD->setInvalidDecl();
4379      return UD;
4380    }
4381  }
4382
4383  // C++0x N2914 [namespace.udecl]p6:
4384  // A using-declaration shall not name a namespace.
4385  if (R.getAsSingle<NamespaceDecl>()) {
4386    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4387      << SS.getRange();
4388    UD->setInvalidDecl();
4389    return UD;
4390  }
4391
4392  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4393    if (!CheckUsingShadowDecl(UD, *I, Previous))
4394      BuildUsingShadowDecl(S, UD, *I);
4395  }
4396
4397  return UD;
4398}
4399
4400/// Additional checks for a using declaration referring to a constructor name.
4401bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4402  if (UD->isTypeName()) {
4403    // FIXME: Cannot specify typename when specifying constructor
4404    return true;
4405  }
4406
4407  const Type *SourceType = UD->getQualifier()->getAsType();
4408  assert(SourceType &&
4409         "Using decl naming constructor doesn't have type in scope spec.");
4410  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4411
4412  // Check whether the named type is a direct base class.
4413  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4414  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4415  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4416       BaseIt != BaseE; ++BaseIt) {
4417    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4418    if (CanonicalSourceType == BaseType)
4419      break;
4420  }
4421
4422  if (BaseIt == BaseE) {
4423    // Did not find SourceType in the bases.
4424    Diag(UD->getUsingLocation(),
4425         diag::err_using_decl_constructor_not_in_direct_base)
4426      << UD->getNameInfo().getSourceRange()
4427      << QualType(SourceType, 0) << TargetClass;
4428    return true;
4429  }
4430
4431  BaseIt->setInheritConstructors();
4432
4433  return false;
4434}
4435
4436/// Checks that the given using declaration is not an invalid
4437/// redeclaration.  Note that this is checking only for the using decl
4438/// itself, not for any ill-formedness among the UsingShadowDecls.
4439bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4440                                       bool isTypeName,
4441                                       const CXXScopeSpec &SS,
4442                                       SourceLocation NameLoc,
4443                                       const LookupResult &Prev) {
4444  // C++03 [namespace.udecl]p8:
4445  // C++0x [namespace.udecl]p10:
4446  //   A using-declaration is a declaration and can therefore be used
4447  //   repeatedly where (and only where) multiple declarations are
4448  //   allowed.
4449  //
4450  // That's in non-member contexts.
4451  if (!CurContext->getRedeclContext()->isRecord())
4452    return false;
4453
4454  NestedNameSpecifier *Qual
4455    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4456
4457  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4458    NamedDecl *D = *I;
4459
4460    bool DTypename;
4461    NestedNameSpecifier *DQual;
4462    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4463      DTypename = UD->isTypeName();
4464      DQual = UD->getQualifier();
4465    } else if (UnresolvedUsingValueDecl *UD
4466                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4467      DTypename = false;
4468      DQual = UD->getQualifier();
4469    } else if (UnresolvedUsingTypenameDecl *UD
4470                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4471      DTypename = true;
4472      DQual = UD->getQualifier();
4473    } else continue;
4474
4475    // using decls differ if one says 'typename' and the other doesn't.
4476    // FIXME: non-dependent using decls?
4477    if (isTypeName != DTypename) continue;
4478
4479    // using decls differ if they name different scopes (but note that
4480    // template instantiation can cause this check to trigger when it
4481    // didn't before instantiation).
4482    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4483        Context.getCanonicalNestedNameSpecifier(DQual))
4484      continue;
4485
4486    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4487    Diag(D->getLocation(), diag::note_using_decl) << 1;
4488    return true;
4489  }
4490
4491  return false;
4492}
4493
4494
4495/// Checks that the given nested-name qualifier used in a using decl
4496/// in the current context is appropriately related to the current
4497/// scope.  If an error is found, diagnoses it and returns true.
4498bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4499                                   const CXXScopeSpec &SS,
4500                                   SourceLocation NameLoc) {
4501  DeclContext *NamedContext = computeDeclContext(SS);
4502
4503  if (!CurContext->isRecord()) {
4504    // C++03 [namespace.udecl]p3:
4505    // C++0x [namespace.udecl]p8:
4506    //   A using-declaration for a class member shall be a member-declaration.
4507
4508    // If we weren't able to compute a valid scope, it must be a
4509    // dependent class scope.
4510    if (!NamedContext || NamedContext->isRecord()) {
4511      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4512        << SS.getRange();
4513      return true;
4514    }
4515
4516    // Otherwise, everything is known to be fine.
4517    return false;
4518  }
4519
4520  // The current scope is a record.
4521
4522  // If the named context is dependent, we can't decide much.
4523  if (!NamedContext) {
4524    // FIXME: in C++0x, we can diagnose if we can prove that the
4525    // nested-name-specifier does not refer to a base class, which is
4526    // still possible in some cases.
4527
4528    // Otherwise we have to conservatively report that things might be
4529    // okay.
4530    return false;
4531  }
4532
4533  if (!NamedContext->isRecord()) {
4534    // Ideally this would point at the last name in the specifier,
4535    // but we don't have that level of source info.
4536    Diag(SS.getRange().getBegin(),
4537         diag::err_using_decl_nested_name_specifier_is_not_class)
4538      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4539    return true;
4540  }
4541
4542  if (!NamedContext->isDependentContext() &&
4543      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4544    return true;
4545
4546  if (getLangOptions().CPlusPlus0x) {
4547    // C++0x [namespace.udecl]p3:
4548    //   In a using-declaration used as a member-declaration, the
4549    //   nested-name-specifier shall name a base class of the class
4550    //   being defined.
4551
4552    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4553                                 cast<CXXRecordDecl>(NamedContext))) {
4554      if (CurContext == NamedContext) {
4555        Diag(NameLoc,
4556             diag::err_using_decl_nested_name_specifier_is_current_class)
4557          << SS.getRange();
4558        return true;
4559      }
4560
4561      Diag(SS.getRange().getBegin(),
4562           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4563        << (NestedNameSpecifier*) SS.getScopeRep()
4564        << cast<CXXRecordDecl>(CurContext)
4565        << SS.getRange();
4566      return true;
4567    }
4568
4569    return false;
4570  }
4571
4572  // C++03 [namespace.udecl]p4:
4573  //   A using-declaration used as a member-declaration shall refer
4574  //   to a member of a base class of the class being defined [etc.].
4575
4576  // Salient point: SS doesn't have to name a base class as long as
4577  // lookup only finds members from base classes.  Therefore we can
4578  // diagnose here only if we can prove that that can't happen,
4579  // i.e. if the class hierarchies provably don't intersect.
4580
4581  // TODO: it would be nice if "definitely valid" results were cached
4582  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4583  // need to be repeated.
4584
4585  struct UserData {
4586    llvm::DenseSet<const CXXRecordDecl*> Bases;
4587
4588    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4589      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4590      Data->Bases.insert(Base);
4591      return true;
4592    }
4593
4594    bool hasDependentBases(const CXXRecordDecl *Class) {
4595      return !Class->forallBases(collect, this);
4596    }
4597
4598    /// Returns true if the base is dependent or is one of the
4599    /// accumulated base classes.
4600    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4601      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4602      return !Data->Bases.count(Base);
4603    }
4604
4605    bool mightShareBases(const CXXRecordDecl *Class) {
4606      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4607    }
4608  };
4609
4610  UserData Data;
4611
4612  // Returns false if we find a dependent base.
4613  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4614    return false;
4615
4616  // Returns false if the class has a dependent base or if it or one
4617  // of its bases is present in the base set of the current context.
4618  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4619    return false;
4620
4621  Diag(SS.getRange().getBegin(),
4622       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4623    << (NestedNameSpecifier*) SS.getScopeRep()
4624    << cast<CXXRecordDecl>(CurContext)
4625    << SS.getRange();
4626
4627  return true;
4628}
4629
4630Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4631                                             SourceLocation NamespaceLoc,
4632                                             SourceLocation AliasLoc,
4633                                             IdentifierInfo *Alias,
4634                                             CXXScopeSpec &SS,
4635                                             SourceLocation IdentLoc,
4636                                             IdentifierInfo *Ident) {
4637
4638  // Lookup the namespace name.
4639  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4640  LookupParsedName(R, S, &SS);
4641
4642  // Check if we have a previous declaration with the same name.
4643  NamedDecl *PrevDecl
4644    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4645                       ForRedeclaration);
4646  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4647    PrevDecl = 0;
4648
4649  if (PrevDecl) {
4650    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4651      // We already have an alias with the same name that points to the same
4652      // namespace, so don't create a new one.
4653      // FIXME: At some point, we'll want to create the (redundant)
4654      // declaration to maintain better source information.
4655      if (!R.isAmbiguous() && !R.empty() &&
4656          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4657        return 0;
4658    }
4659
4660    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4661      diag::err_redefinition_different_kind;
4662    Diag(AliasLoc, DiagID) << Alias;
4663    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4664    return 0;
4665  }
4666
4667  if (R.isAmbiguous())
4668    return 0;
4669
4670  if (R.empty()) {
4671    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4672                                                CTC_NoKeywords, 0)) {
4673      if (R.getAsSingle<NamespaceDecl>() ||
4674          R.getAsSingle<NamespaceAliasDecl>()) {
4675        if (DeclContext *DC = computeDeclContext(SS, false))
4676          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4677            << Ident << DC << Corrected << SS.getRange()
4678            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4679        else
4680          Diag(IdentLoc, diag::err_using_directive_suggest)
4681            << Ident << Corrected
4682            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4683
4684        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4685          << Corrected;
4686
4687        Ident = Corrected.getAsIdentifierInfo();
4688      } else {
4689        R.clear();
4690        R.setLookupName(Ident);
4691      }
4692    }
4693
4694    if (R.empty()) {
4695      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4696      return 0;
4697    }
4698  }
4699
4700  NamespaceAliasDecl *AliasDecl =
4701    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4702                               Alias, SS.getWithLocInContext(Context),
4703                               IdentLoc, R.getFoundDecl());
4704
4705  PushOnScopeChains(AliasDecl, S);
4706  return AliasDecl;
4707}
4708
4709namespace {
4710  /// \brief Scoped object used to handle the state changes required in Sema
4711  /// to implicitly define the body of a C++ member function;
4712  class ImplicitlyDefinedFunctionScope {
4713    Sema &S;
4714    Sema::ContextRAII SavedContext;
4715
4716  public:
4717    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4718      : S(S), SavedContext(S, Method)
4719    {
4720      S.PushFunctionScope();
4721      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4722    }
4723
4724    ~ImplicitlyDefinedFunctionScope() {
4725      S.PopExpressionEvaluationContext();
4726      S.PopFunctionOrBlockScope();
4727    }
4728  };
4729}
4730
4731static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4732                                                       CXXRecordDecl *D) {
4733  ASTContext &Context = Self.Context;
4734  QualType ClassType = Context.getTypeDeclType(D);
4735  DeclarationName ConstructorName
4736    = Context.DeclarationNames.getCXXConstructorName(
4737                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4738
4739  DeclContext::lookup_const_iterator Con, ConEnd;
4740  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4741       Con != ConEnd; ++Con) {
4742    // FIXME: In C++0x, a constructor template can be a default constructor.
4743    if (isa<FunctionTemplateDecl>(*Con))
4744      continue;
4745
4746    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4747    if (Constructor->isDefaultConstructor())
4748      return Constructor;
4749  }
4750  return 0;
4751}
4752
4753CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4754                                                     CXXRecordDecl *ClassDecl) {
4755  // C++ [class.ctor]p5:
4756  //   A default constructor for a class X is a constructor of class X
4757  //   that can be called without an argument. If there is no
4758  //   user-declared constructor for class X, a default constructor is
4759  //   implicitly declared. An implicitly-declared default constructor
4760  //   is an inline public member of its class.
4761  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4762         "Should not build implicit default constructor!");
4763
4764  // C++ [except.spec]p14:
4765  //   An implicitly declared special member function (Clause 12) shall have an
4766  //   exception-specification. [...]
4767  ImplicitExceptionSpecification ExceptSpec(Context);
4768
4769  // Direct base-class constructors.
4770  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4771                                       BEnd = ClassDecl->bases_end();
4772       B != BEnd; ++B) {
4773    if (B->isVirtual()) // Handled below.
4774      continue;
4775
4776    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4777      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4778      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4779        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4780      else if (CXXConstructorDecl *Constructor
4781                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4782        ExceptSpec.CalledDecl(Constructor);
4783    }
4784  }
4785
4786  // Virtual base-class constructors.
4787  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4788                                       BEnd = ClassDecl->vbases_end();
4789       B != BEnd; ++B) {
4790    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4791      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4792      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4793        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4794      else if (CXXConstructorDecl *Constructor
4795                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4796        ExceptSpec.CalledDecl(Constructor);
4797    }
4798  }
4799
4800  // Field constructors.
4801  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4802                               FEnd = ClassDecl->field_end();
4803       F != FEnd; ++F) {
4804    if (const RecordType *RecordTy
4805              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4806      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4807      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4808        ExceptSpec.CalledDecl(
4809                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4810      else if (CXXConstructorDecl *Constructor
4811                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4812        ExceptSpec.CalledDecl(Constructor);
4813    }
4814  }
4815
4816  FunctionProtoType::ExtProtoInfo EPI;
4817  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
4818  EPI.NumExceptions = ExceptSpec.size();
4819  EPI.Exceptions = ExceptSpec.data();
4820
4821  // Create the actual constructor declaration.
4822  CanQualType ClassType
4823    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4824  SourceLocation ClassLoc = ClassDecl->getLocation();
4825  DeclarationName Name
4826    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4827  DeclarationNameInfo NameInfo(Name, ClassLoc);
4828  CXXConstructorDecl *DefaultCon
4829    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
4830                                 Context.getFunctionType(Context.VoidTy,
4831                                                         0, 0, EPI),
4832                                 /*TInfo=*/0,
4833                                 /*isExplicit=*/false,
4834                                 /*isInline=*/true,
4835                                 /*isImplicitlyDeclared=*/true);
4836  DefaultCon->setAccess(AS_public);
4837  DefaultCon->setImplicit();
4838  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4839
4840  // Note that we have declared this constructor.
4841  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4842
4843  if (Scope *S = getScopeForContext(ClassDecl))
4844    PushOnScopeChains(DefaultCon, S, false);
4845  ClassDecl->addDecl(DefaultCon);
4846
4847  return DefaultCon;
4848}
4849
4850void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4851                                            CXXConstructorDecl *Constructor) {
4852  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4853          !Constructor->isUsed(false)) &&
4854    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4855
4856  CXXRecordDecl *ClassDecl = Constructor->getParent();
4857  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4858
4859  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4860  DiagnosticErrorTrap Trap(Diags);
4861  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4862      Trap.hasErrorOccurred()) {
4863    Diag(CurrentLocation, diag::note_member_synthesized_at)
4864      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4865    Constructor->setInvalidDecl();
4866    return;
4867  }
4868
4869  SourceLocation Loc = Constructor->getLocation();
4870  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4871
4872  Constructor->setUsed();
4873  MarkVTableUsed(CurrentLocation, ClassDecl);
4874}
4875
4876void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4877  // We start with an initial pass over the base classes to collect those that
4878  // inherit constructors from. If there are none, we can forgo all further
4879  // processing.
4880  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4881  BasesVector BasesToInheritFrom;
4882  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4883                                          BaseE = ClassDecl->bases_end();
4884         BaseIt != BaseE; ++BaseIt) {
4885    if (BaseIt->getInheritConstructors()) {
4886      QualType Base = BaseIt->getType();
4887      if (Base->isDependentType()) {
4888        // If we inherit constructors from anything that is dependent, just
4889        // abort processing altogether. We'll get another chance for the
4890        // instantiations.
4891        return;
4892      }
4893      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4894    }
4895  }
4896  if (BasesToInheritFrom.empty())
4897    return;
4898
4899  // Now collect the constructors that we already have in the current class.
4900  // Those take precedence over inherited constructors.
4901  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4902  //   unless there is a user-declared constructor with the same signature in
4903  //   the class where the using-declaration appears.
4904  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4905  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4906                                    CtorE = ClassDecl->ctor_end();
4907       CtorIt != CtorE; ++CtorIt) {
4908    ExistingConstructors.insert(
4909        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4910  }
4911
4912  Scope *S = getScopeForContext(ClassDecl);
4913  DeclarationName CreatedCtorName =
4914      Context.DeclarationNames.getCXXConstructorName(
4915          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4916
4917  // Now comes the true work.
4918  // First, we keep a map from constructor types to the base that introduced
4919  // them. Needed for finding conflicting constructors. We also keep the
4920  // actually inserted declarations in there, for pretty diagnostics.
4921  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4922  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4923  ConstructorToSourceMap InheritedConstructors;
4924  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4925                             BaseE = BasesToInheritFrom.end();
4926       BaseIt != BaseE; ++BaseIt) {
4927    const RecordType *Base = *BaseIt;
4928    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4929    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4930    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4931                                      CtorE = BaseDecl->ctor_end();
4932         CtorIt != CtorE; ++CtorIt) {
4933      // Find the using declaration for inheriting this base's constructors.
4934      DeclarationName Name =
4935          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4936      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4937          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4938      SourceLocation UsingLoc = UD ? UD->getLocation() :
4939                                     ClassDecl->getLocation();
4940
4941      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4942      //   from the class X named in the using-declaration consists of actual
4943      //   constructors and notional constructors that result from the
4944      //   transformation of defaulted parameters as follows:
4945      //   - all non-template default constructors of X, and
4946      //   - for each non-template constructor of X that has at least one
4947      //     parameter with a default argument, the set of constructors that
4948      //     results from omitting any ellipsis parameter specification and
4949      //     successively omitting parameters with a default argument from the
4950      //     end of the parameter-type-list.
4951      CXXConstructorDecl *BaseCtor = *CtorIt;
4952      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4953      const FunctionProtoType *BaseCtorType =
4954          BaseCtor->getType()->getAs<FunctionProtoType>();
4955
4956      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4957                    maxParams = BaseCtor->getNumParams();
4958           params <= maxParams; ++params) {
4959        // Skip default constructors. They're never inherited.
4960        if (params == 0)
4961          continue;
4962        // Skip copy and move constructors for the same reason.
4963        if (CanBeCopyOrMove && params == 1)
4964          continue;
4965
4966        // Build up a function type for this particular constructor.
4967        // FIXME: The working paper does not consider that the exception spec
4968        // for the inheriting constructor might be larger than that of the
4969        // source. This code doesn't yet, either.
4970        const Type *NewCtorType;
4971        if (params == maxParams)
4972          NewCtorType = BaseCtorType;
4973        else {
4974          llvm::SmallVector<QualType, 16> Args;
4975          for (unsigned i = 0; i < params; ++i) {
4976            Args.push_back(BaseCtorType->getArgType(i));
4977          }
4978          FunctionProtoType::ExtProtoInfo ExtInfo =
4979              BaseCtorType->getExtProtoInfo();
4980          ExtInfo.Variadic = false;
4981          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4982                                                Args.data(), params, ExtInfo)
4983                       .getTypePtr();
4984        }
4985        const Type *CanonicalNewCtorType =
4986            Context.getCanonicalType(NewCtorType);
4987
4988        // Now that we have the type, first check if the class already has a
4989        // constructor with this signature.
4990        if (ExistingConstructors.count(CanonicalNewCtorType))
4991          continue;
4992
4993        // Then we check if we have already declared an inherited constructor
4994        // with this signature.
4995        std::pair<ConstructorToSourceMap::iterator, bool> result =
4996            InheritedConstructors.insert(std::make_pair(
4997                CanonicalNewCtorType,
4998                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
4999        if (!result.second) {
5000          // Already in the map. If it came from a different class, that's an
5001          // error. Not if it's from the same.
5002          CanQualType PreviousBase = result.first->second.first;
5003          if (CanonicalBase != PreviousBase) {
5004            const CXXConstructorDecl *PrevCtor = result.first->second.second;
5005            const CXXConstructorDecl *PrevBaseCtor =
5006                PrevCtor->getInheritedConstructor();
5007            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
5008
5009            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
5010            Diag(BaseCtor->getLocation(),
5011                 diag::note_using_decl_constructor_conflict_current_ctor);
5012            Diag(PrevBaseCtor->getLocation(),
5013                 diag::note_using_decl_constructor_conflict_previous_ctor);
5014            Diag(PrevCtor->getLocation(),
5015                 diag::note_using_decl_constructor_conflict_previous_using);
5016          }
5017          continue;
5018        }
5019
5020        // OK, we're there, now add the constructor.
5021        // C++0x [class.inhctor]p8: [...] that would be performed by a
5022        //   user-writtern inline constructor [...]
5023        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
5024        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
5025            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
5026            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
5027            /*ImplicitlyDeclared=*/true);
5028        NewCtor->setAccess(BaseCtor->getAccess());
5029
5030        // Build up the parameter decls and add them.
5031        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
5032        for (unsigned i = 0; i < params; ++i) {
5033          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
5034                                                   UsingLoc, UsingLoc,
5035                                                   /*IdentifierInfo=*/0,
5036                                                   BaseCtorType->getArgType(i),
5037                                                   /*TInfo=*/0, SC_None,
5038                                                   SC_None, /*DefaultArg=*/0));
5039        }
5040        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
5041        NewCtor->setInheritedConstructor(BaseCtor);
5042
5043        PushOnScopeChains(NewCtor, S, false);
5044        ClassDecl->addDecl(NewCtor);
5045        result.first->second.second = NewCtor;
5046      }
5047    }
5048  }
5049}
5050
5051CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
5052  // C++ [class.dtor]p2:
5053  //   If a class has no user-declared destructor, a destructor is
5054  //   declared implicitly. An implicitly-declared destructor is an
5055  //   inline public member of its class.
5056
5057  // C++ [except.spec]p14:
5058  //   An implicitly declared special member function (Clause 12) shall have
5059  //   an exception-specification.
5060  ImplicitExceptionSpecification ExceptSpec(Context);
5061
5062  // Direct base-class destructors.
5063  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5064                                       BEnd = ClassDecl->bases_end();
5065       B != BEnd; ++B) {
5066    if (B->isVirtual()) // Handled below.
5067      continue;
5068
5069    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5070      ExceptSpec.CalledDecl(
5071                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5072  }
5073
5074  // Virtual base-class destructors.
5075  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5076                                       BEnd = ClassDecl->vbases_end();
5077       B != BEnd; ++B) {
5078    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5079      ExceptSpec.CalledDecl(
5080                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5081  }
5082
5083  // Field destructors.
5084  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5085                               FEnd = ClassDecl->field_end();
5086       F != FEnd; ++F) {
5087    if (const RecordType *RecordTy
5088        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
5089      ExceptSpec.CalledDecl(
5090                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
5091  }
5092
5093  // Create the actual destructor declaration.
5094  FunctionProtoType::ExtProtoInfo EPI;
5095  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5096  EPI.NumExceptions = ExceptSpec.size();
5097  EPI.Exceptions = ExceptSpec.data();
5098  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5099
5100  CanQualType ClassType
5101    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5102  SourceLocation ClassLoc = ClassDecl->getLocation();
5103  DeclarationName Name
5104    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5105  DeclarationNameInfo NameInfo(Name, ClassLoc);
5106  CXXDestructorDecl *Destructor
5107      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5108                                  /*isInline=*/true,
5109                                  /*isImplicitlyDeclared=*/true);
5110  Destructor->setAccess(AS_public);
5111  Destructor->setImplicit();
5112  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5113
5114  // Note that we have declared this destructor.
5115  ++ASTContext::NumImplicitDestructorsDeclared;
5116
5117  // Introduce this destructor into its scope.
5118  if (Scope *S = getScopeForContext(ClassDecl))
5119    PushOnScopeChains(Destructor, S, false);
5120  ClassDecl->addDecl(Destructor);
5121
5122  // This could be uniqued if it ever proves significant.
5123  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5124
5125  AddOverriddenMethods(ClassDecl, Destructor);
5126
5127  return Destructor;
5128}
5129
5130void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5131                                    CXXDestructorDecl *Destructor) {
5132  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
5133         "DefineImplicitDestructor - call it for implicit default dtor");
5134  CXXRecordDecl *ClassDecl = Destructor->getParent();
5135  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
5136
5137  if (Destructor->isInvalidDecl())
5138    return;
5139
5140  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
5141
5142  DiagnosticErrorTrap Trap(Diags);
5143  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5144                                         Destructor->getParent());
5145
5146  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
5147    Diag(CurrentLocation, diag::note_member_synthesized_at)
5148      << CXXDestructor << Context.getTagDeclType(ClassDecl);
5149
5150    Destructor->setInvalidDecl();
5151    return;
5152  }
5153
5154  SourceLocation Loc = Destructor->getLocation();
5155  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5156
5157  Destructor->setUsed();
5158  MarkVTableUsed(CurrentLocation, ClassDecl);
5159}
5160
5161/// \brief Builds a statement that copies the given entity from \p From to
5162/// \c To.
5163///
5164/// This routine is used to copy the members of a class with an
5165/// implicitly-declared copy assignment operator. When the entities being
5166/// copied are arrays, this routine builds for loops to copy them.
5167///
5168/// \param S The Sema object used for type-checking.
5169///
5170/// \param Loc The location where the implicit copy is being generated.
5171///
5172/// \param T The type of the expressions being copied. Both expressions must
5173/// have this type.
5174///
5175/// \param To The expression we are copying to.
5176///
5177/// \param From The expression we are copying from.
5178///
5179/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5180/// Otherwise, it's a non-static member subobject.
5181///
5182/// \param Depth Internal parameter recording the depth of the recursion.
5183///
5184/// \returns A statement or a loop that copies the expressions.
5185static StmtResult
5186BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5187                      Expr *To, Expr *From,
5188                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5189  // C++0x [class.copy]p30:
5190  //   Each subobject is assigned in the manner appropriate to its type:
5191  //
5192  //     - if the subobject is of class type, the copy assignment operator
5193  //       for the class is used (as if by explicit qualification; that is,
5194  //       ignoring any possible virtual overriding functions in more derived
5195  //       classes);
5196  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5197    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5198
5199    // Look for operator=.
5200    DeclarationName Name
5201      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5202    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5203    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5204
5205    // Filter out any result that isn't a copy-assignment operator.
5206    LookupResult::Filter F = OpLookup.makeFilter();
5207    while (F.hasNext()) {
5208      NamedDecl *D = F.next();
5209      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5210        if (Method->isCopyAssignmentOperator())
5211          continue;
5212
5213      F.erase();
5214    }
5215    F.done();
5216
5217    // Suppress the protected check (C++ [class.protected]) for each of the
5218    // assignment operators we found. This strange dance is required when
5219    // we're assigning via a base classes's copy-assignment operator. To
5220    // ensure that we're getting the right base class subobject (without
5221    // ambiguities), we need to cast "this" to that subobject type; to
5222    // ensure that we don't go through the virtual call mechanism, we need
5223    // to qualify the operator= name with the base class (see below). However,
5224    // this means that if the base class has a protected copy assignment
5225    // operator, the protected member access check will fail. So, we
5226    // rewrite "protected" access to "public" access in this case, since we
5227    // know by construction that we're calling from a derived class.
5228    if (CopyingBaseSubobject) {
5229      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5230           L != LEnd; ++L) {
5231        if (L.getAccess() == AS_protected)
5232          L.setAccess(AS_public);
5233      }
5234    }
5235
5236    // Create the nested-name-specifier that will be used to qualify the
5237    // reference to operator=; this is required to suppress the virtual
5238    // call mechanism.
5239    CXXScopeSpec SS;
5240    SS.MakeTrivial(S.Context,
5241                   NestedNameSpecifier::Create(S.Context, 0, false,
5242                                               T.getTypePtr()),
5243                   Loc);
5244
5245    // Create the reference to operator=.
5246    ExprResult OpEqualRef
5247      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5248                                   /*FirstQualifierInScope=*/0, OpLookup,
5249                                   /*TemplateArgs=*/0,
5250                                   /*SuppressQualifierCheck=*/true);
5251    if (OpEqualRef.isInvalid())
5252      return StmtError();
5253
5254    // Build the call to the assignment operator.
5255
5256    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5257                                                  OpEqualRef.takeAs<Expr>(),
5258                                                  Loc, &From, 1, Loc);
5259    if (Call.isInvalid())
5260      return StmtError();
5261
5262    return S.Owned(Call.takeAs<Stmt>());
5263  }
5264
5265  //     - if the subobject is of scalar type, the built-in assignment
5266  //       operator is used.
5267  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5268  if (!ArrayTy) {
5269    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5270    if (Assignment.isInvalid())
5271      return StmtError();
5272
5273    return S.Owned(Assignment.takeAs<Stmt>());
5274  }
5275
5276  //     - if the subobject is an array, each element is assigned, in the
5277  //       manner appropriate to the element type;
5278
5279  // Construct a loop over the array bounds, e.g.,
5280  //
5281  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5282  //
5283  // that will copy each of the array elements.
5284  QualType SizeType = S.Context.getSizeType();
5285
5286  // Create the iteration variable.
5287  IdentifierInfo *IterationVarName = 0;
5288  {
5289    llvm::SmallString<8> Str;
5290    llvm::raw_svector_ostream OS(Str);
5291    OS << "__i" << Depth;
5292    IterationVarName = &S.Context.Idents.get(OS.str());
5293  }
5294  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
5295                                          IterationVarName, SizeType,
5296                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5297                                          SC_None, SC_None);
5298
5299  // Initialize the iteration variable to zero.
5300  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5301  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5302
5303  // Create a reference to the iteration variable; we'll use this several
5304  // times throughout.
5305  Expr *IterationVarRef
5306    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5307  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5308
5309  // Create the DeclStmt that holds the iteration variable.
5310  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5311
5312  // Create the comparison against the array bound.
5313  llvm::APInt Upper
5314    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5315  Expr *Comparison
5316    = new (S.Context) BinaryOperator(IterationVarRef,
5317                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5318                                     BO_NE, S.Context.BoolTy,
5319                                     VK_RValue, OK_Ordinary, Loc);
5320
5321  // Create the pre-increment of the iteration variable.
5322  Expr *Increment
5323    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5324                                    VK_LValue, OK_Ordinary, Loc);
5325
5326  // Subscript the "from" and "to" expressions with the iteration variable.
5327  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5328                                                         IterationVarRef, Loc));
5329  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5330                                                       IterationVarRef, Loc));
5331
5332  // Build the copy for an individual element of the array.
5333  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5334                                          To, From, CopyingBaseSubobject,
5335                                          Depth + 1);
5336  if (Copy.isInvalid())
5337    return StmtError();
5338
5339  // Construct the loop that copies all elements of this array.
5340  return S.ActOnForStmt(Loc, Loc, InitStmt,
5341                        S.MakeFullExpr(Comparison),
5342                        0, S.MakeFullExpr(Increment),
5343                        Loc, Copy.take());
5344}
5345
5346/// \brief Determine whether the given class has a copy assignment operator
5347/// that accepts a const-qualified argument.
5348static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5349  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5350
5351  if (!Class->hasDeclaredCopyAssignment())
5352    S.DeclareImplicitCopyAssignment(Class);
5353
5354  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5355  DeclarationName OpName
5356    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5357
5358  DeclContext::lookup_const_iterator Op, OpEnd;
5359  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5360    // C++ [class.copy]p9:
5361    //   A user-declared copy assignment operator is a non-static non-template
5362    //   member function of class X with exactly one parameter of type X, X&,
5363    //   const X&, volatile X& or const volatile X&.
5364    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5365    if (!Method)
5366      continue;
5367
5368    if (Method->isStatic())
5369      continue;
5370    if (Method->getPrimaryTemplate())
5371      continue;
5372    const FunctionProtoType *FnType =
5373    Method->getType()->getAs<FunctionProtoType>();
5374    assert(FnType && "Overloaded operator has no prototype.");
5375    // Don't assert on this; an invalid decl might have been left in the AST.
5376    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5377      continue;
5378    bool AcceptsConst = true;
5379    QualType ArgType = FnType->getArgType(0);
5380    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5381      ArgType = Ref->getPointeeType();
5382      // Is it a non-const lvalue reference?
5383      if (!ArgType.isConstQualified())
5384        AcceptsConst = false;
5385    }
5386    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5387      continue;
5388
5389    // We have a single argument of type cv X or cv X&, i.e. we've found the
5390    // copy assignment operator. Return whether it accepts const arguments.
5391    return AcceptsConst;
5392  }
5393  assert(Class->isInvalidDecl() &&
5394         "No copy assignment operator declared in valid code.");
5395  return false;
5396}
5397
5398CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5399  // Note: The following rules are largely analoguous to the copy
5400  // constructor rules. Note that virtual bases are not taken into account
5401  // for determining the argument type of the operator. Note also that
5402  // operators taking an object instead of a reference are allowed.
5403
5404
5405  // C++ [class.copy]p10:
5406  //   If the class definition does not explicitly declare a copy
5407  //   assignment operator, one is declared implicitly.
5408  //   The implicitly-defined copy assignment operator for a class X
5409  //   will have the form
5410  //
5411  //       X& X::operator=(const X&)
5412  //
5413  //   if
5414  bool HasConstCopyAssignment = true;
5415
5416  //       -- each direct base class B of X has a copy assignment operator
5417  //          whose parameter is of type const B&, const volatile B& or B,
5418  //          and
5419  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5420                                       BaseEnd = ClassDecl->bases_end();
5421       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5422    assert(!Base->getType()->isDependentType() &&
5423           "Cannot generate implicit members for class with dependent bases.");
5424    const CXXRecordDecl *BaseClassDecl
5425      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5426    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5427  }
5428
5429  //       -- for all the nonstatic data members of X that are of a class
5430  //          type M (or array thereof), each such class type has a copy
5431  //          assignment operator whose parameter is of type const M&,
5432  //          const volatile M& or M.
5433  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5434                                  FieldEnd = ClassDecl->field_end();
5435       HasConstCopyAssignment && Field != FieldEnd;
5436       ++Field) {
5437    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5438    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5439      const CXXRecordDecl *FieldClassDecl
5440        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5441      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5442    }
5443  }
5444
5445  //   Otherwise, the implicitly declared copy assignment operator will
5446  //   have the form
5447  //
5448  //       X& X::operator=(X&)
5449  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5450  QualType RetType = Context.getLValueReferenceType(ArgType);
5451  if (HasConstCopyAssignment)
5452    ArgType = ArgType.withConst();
5453  ArgType = Context.getLValueReferenceType(ArgType);
5454
5455  // C++ [except.spec]p14:
5456  //   An implicitly declared special member function (Clause 12) shall have an
5457  //   exception-specification. [...]
5458  ImplicitExceptionSpecification ExceptSpec(Context);
5459  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5460                                       BaseEnd = ClassDecl->bases_end();
5461       Base != BaseEnd; ++Base) {
5462    CXXRecordDecl *BaseClassDecl
5463      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5464
5465    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5466      DeclareImplicitCopyAssignment(BaseClassDecl);
5467
5468    if (CXXMethodDecl *CopyAssign
5469           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5470      ExceptSpec.CalledDecl(CopyAssign);
5471  }
5472  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5473                                  FieldEnd = ClassDecl->field_end();
5474       Field != FieldEnd;
5475       ++Field) {
5476    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5477    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5478      CXXRecordDecl *FieldClassDecl
5479        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5480
5481      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5482        DeclareImplicitCopyAssignment(FieldClassDecl);
5483
5484      if (CXXMethodDecl *CopyAssign
5485            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5486        ExceptSpec.CalledDecl(CopyAssign);
5487    }
5488  }
5489
5490  //   An implicitly-declared copy assignment operator is an inline public
5491  //   member of its class.
5492  FunctionProtoType::ExtProtoInfo EPI;
5493  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5494  EPI.NumExceptions = ExceptSpec.size();
5495  EPI.Exceptions = ExceptSpec.data();
5496  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5497  SourceLocation ClassLoc = ClassDecl->getLocation();
5498  DeclarationNameInfo NameInfo(Name, ClassLoc);
5499  CXXMethodDecl *CopyAssignment
5500    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5501                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5502                            /*TInfo=*/0, /*isStatic=*/false,
5503                            /*StorageClassAsWritten=*/SC_None,
5504                            /*isInline=*/true,
5505                            SourceLocation());
5506  CopyAssignment->setAccess(AS_public);
5507  CopyAssignment->setImplicit();
5508  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5509
5510  // Add the parameter to the operator.
5511  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5512                                               ClassLoc, ClassLoc, /*Id=*/0,
5513                                               ArgType, /*TInfo=*/0,
5514                                               SC_None,
5515                                               SC_None, 0);
5516  CopyAssignment->setParams(&FromParam, 1);
5517
5518  // Note that we have added this copy-assignment operator.
5519  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5520
5521  if (Scope *S = getScopeForContext(ClassDecl))
5522    PushOnScopeChains(CopyAssignment, S, false);
5523  ClassDecl->addDecl(CopyAssignment);
5524
5525  AddOverriddenMethods(ClassDecl, CopyAssignment);
5526  return CopyAssignment;
5527}
5528
5529void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5530                                        CXXMethodDecl *CopyAssignOperator) {
5531  assert((CopyAssignOperator->isImplicit() &&
5532          CopyAssignOperator->isOverloadedOperator() &&
5533          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5534          !CopyAssignOperator->isUsed(false)) &&
5535         "DefineImplicitCopyAssignment called for wrong function");
5536
5537  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5538
5539  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5540    CopyAssignOperator->setInvalidDecl();
5541    return;
5542  }
5543
5544  CopyAssignOperator->setUsed();
5545
5546  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5547  DiagnosticErrorTrap Trap(Diags);
5548
5549  // C++0x [class.copy]p30:
5550  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5551  //   for a non-union class X performs memberwise copy assignment of its
5552  //   subobjects. The direct base classes of X are assigned first, in the
5553  //   order of their declaration in the base-specifier-list, and then the
5554  //   immediate non-static data members of X are assigned, in the order in
5555  //   which they were declared in the class definition.
5556
5557  // The statements that form the synthesized function body.
5558  ASTOwningVector<Stmt*> Statements(*this);
5559
5560  // The parameter for the "other" object, which we are copying from.
5561  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5562  Qualifiers OtherQuals = Other->getType().getQualifiers();
5563  QualType OtherRefType = Other->getType();
5564  if (const LValueReferenceType *OtherRef
5565                                = OtherRefType->getAs<LValueReferenceType>()) {
5566    OtherRefType = OtherRef->getPointeeType();
5567    OtherQuals = OtherRefType.getQualifiers();
5568  }
5569
5570  // Our location for everything implicitly-generated.
5571  SourceLocation Loc = CopyAssignOperator->getLocation();
5572
5573  // Construct a reference to the "other" object. We'll be using this
5574  // throughout the generated ASTs.
5575  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5576  assert(OtherRef && "Reference to parameter cannot fail!");
5577
5578  // Construct the "this" pointer. We'll be using this throughout the generated
5579  // ASTs.
5580  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5581  assert(This && "Reference to this cannot fail!");
5582
5583  // Assign base classes.
5584  bool Invalid = false;
5585  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5586       E = ClassDecl->bases_end(); Base != E; ++Base) {
5587    // Form the assignment:
5588    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5589    QualType BaseType = Base->getType().getUnqualifiedType();
5590    if (!BaseType->isRecordType()) {
5591      Invalid = true;
5592      continue;
5593    }
5594
5595    CXXCastPath BasePath;
5596    BasePath.push_back(Base);
5597
5598    // Construct the "from" expression, which is an implicit cast to the
5599    // appropriately-qualified base type.
5600    Expr *From = OtherRef;
5601    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5602                      CK_UncheckedDerivedToBase,
5603                      VK_LValue, &BasePath);
5604
5605    // Dereference "this".
5606    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5607
5608    // Implicitly cast "this" to the appropriately-qualified base type.
5609    Expr *ToE = To.takeAs<Expr>();
5610    ImpCastExprToType(ToE,
5611                      Context.getCVRQualifiedType(BaseType,
5612                                      CopyAssignOperator->getTypeQualifiers()),
5613                      CK_UncheckedDerivedToBase,
5614                      VK_LValue, &BasePath);
5615    To = Owned(ToE);
5616
5617    // Build the copy.
5618    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5619                                            To.get(), From,
5620                                            /*CopyingBaseSubobject=*/true);
5621    if (Copy.isInvalid()) {
5622      Diag(CurrentLocation, diag::note_member_synthesized_at)
5623        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5624      CopyAssignOperator->setInvalidDecl();
5625      return;
5626    }
5627
5628    // Success! Record the copy.
5629    Statements.push_back(Copy.takeAs<Expr>());
5630  }
5631
5632  // \brief Reference to the __builtin_memcpy function.
5633  Expr *BuiltinMemCpyRef = 0;
5634  // \brief Reference to the __builtin_objc_memmove_collectable function.
5635  Expr *CollectableMemCpyRef = 0;
5636
5637  // Assign non-static members.
5638  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5639                                  FieldEnd = ClassDecl->field_end();
5640       Field != FieldEnd; ++Field) {
5641    // Check for members of reference type; we can't copy those.
5642    if (Field->getType()->isReferenceType()) {
5643      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5644        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5645      Diag(Field->getLocation(), diag::note_declared_at);
5646      Diag(CurrentLocation, diag::note_member_synthesized_at)
5647        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5648      Invalid = true;
5649      continue;
5650    }
5651
5652    // Check for members of const-qualified, non-class type.
5653    QualType BaseType = Context.getBaseElementType(Field->getType());
5654    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5655      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5656        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5657      Diag(Field->getLocation(), diag::note_declared_at);
5658      Diag(CurrentLocation, diag::note_member_synthesized_at)
5659        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5660      Invalid = true;
5661      continue;
5662    }
5663
5664    QualType FieldType = Field->getType().getNonReferenceType();
5665    if (FieldType->isIncompleteArrayType()) {
5666      assert(ClassDecl->hasFlexibleArrayMember() &&
5667             "Incomplete array type is not valid");
5668      continue;
5669    }
5670
5671    // Build references to the field in the object we're copying from and to.
5672    CXXScopeSpec SS; // Intentionally empty
5673    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5674                              LookupMemberName);
5675    MemberLookup.addDecl(*Field);
5676    MemberLookup.resolveKind();
5677    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5678                                               Loc, /*IsArrow=*/false,
5679                                               SS, 0, MemberLookup, 0);
5680    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5681                                             Loc, /*IsArrow=*/true,
5682                                             SS, 0, MemberLookup, 0);
5683    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5684    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5685
5686    // If the field should be copied with __builtin_memcpy rather than via
5687    // explicit assignments, do so. This optimization only applies for arrays
5688    // of scalars and arrays of class type with trivial copy-assignment
5689    // operators.
5690    if (FieldType->isArrayType() &&
5691        (!BaseType->isRecordType() ||
5692         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5693           ->hasTrivialCopyAssignment())) {
5694      // Compute the size of the memory buffer to be copied.
5695      QualType SizeType = Context.getSizeType();
5696      llvm::APInt Size(Context.getTypeSize(SizeType),
5697                       Context.getTypeSizeInChars(BaseType).getQuantity());
5698      for (const ConstantArrayType *Array
5699              = Context.getAsConstantArrayType(FieldType);
5700           Array;
5701           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5702        llvm::APInt ArraySize
5703          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5704        Size *= ArraySize;
5705      }
5706
5707      // Take the address of the field references for "from" and "to".
5708      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5709      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5710
5711      bool NeedsCollectableMemCpy =
5712          (BaseType->isRecordType() &&
5713           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5714
5715      if (NeedsCollectableMemCpy) {
5716        if (!CollectableMemCpyRef) {
5717          // Create a reference to the __builtin_objc_memmove_collectable function.
5718          LookupResult R(*this,
5719                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5720                         Loc, LookupOrdinaryName);
5721          LookupName(R, TUScope, true);
5722
5723          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5724          if (!CollectableMemCpy) {
5725            // Something went horribly wrong earlier, and we will have
5726            // complained about it.
5727            Invalid = true;
5728            continue;
5729          }
5730
5731          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5732                                                  CollectableMemCpy->getType(),
5733                                                  VK_LValue, Loc, 0).take();
5734          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5735        }
5736      }
5737      // Create a reference to the __builtin_memcpy builtin function.
5738      else if (!BuiltinMemCpyRef) {
5739        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5740                       LookupOrdinaryName);
5741        LookupName(R, TUScope, true);
5742
5743        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5744        if (!BuiltinMemCpy) {
5745          // Something went horribly wrong earlier, and we will have complained
5746          // about it.
5747          Invalid = true;
5748          continue;
5749        }
5750
5751        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5752                                            BuiltinMemCpy->getType(),
5753                                            VK_LValue, Loc, 0).take();
5754        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5755      }
5756
5757      ASTOwningVector<Expr*> CallArgs(*this);
5758      CallArgs.push_back(To.takeAs<Expr>());
5759      CallArgs.push_back(From.takeAs<Expr>());
5760      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5761      ExprResult Call = ExprError();
5762      if (NeedsCollectableMemCpy)
5763        Call = ActOnCallExpr(/*Scope=*/0,
5764                             CollectableMemCpyRef,
5765                             Loc, move_arg(CallArgs),
5766                             Loc);
5767      else
5768        Call = ActOnCallExpr(/*Scope=*/0,
5769                             BuiltinMemCpyRef,
5770                             Loc, move_arg(CallArgs),
5771                             Loc);
5772
5773      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5774      Statements.push_back(Call.takeAs<Expr>());
5775      continue;
5776    }
5777
5778    // Build the copy of this field.
5779    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5780                                                  To.get(), From.get(),
5781                                              /*CopyingBaseSubobject=*/false);
5782    if (Copy.isInvalid()) {
5783      Diag(CurrentLocation, diag::note_member_synthesized_at)
5784        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5785      CopyAssignOperator->setInvalidDecl();
5786      return;
5787    }
5788
5789    // Success! Record the copy.
5790    Statements.push_back(Copy.takeAs<Stmt>());
5791  }
5792
5793  if (!Invalid) {
5794    // Add a "return *this;"
5795    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5796
5797    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5798    if (Return.isInvalid())
5799      Invalid = true;
5800    else {
5801      Statements.push_back(Return.takeAs<Stmt>());
5802
5803      if (Trap.hasErrorOccurred()) {
5804        Diag(CurrentLocation, diag::note_member_synthesized_at)
5805          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5806        Invalid = true;
5807      }
5808    }
5809  }
5810
5811  if (Invalid) {
5812    CopyAssignOperator->setInvalidDecl();
5813    return;
5814  }
5815
5816  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5817                                            /*isStmtExpr=*/false);
5818  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5819  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5820}
5821
5822CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5823                                                    CXXRecordDecl *ClassDecl) {
5824  // C++ [class.copy]p4:
5825  //   If the class definition does not explicitly declare a copy
5826  //   constructor, one is declared implicitly.
5827
5828  // C++ [class.copy]p5:
5829  //   The implicitly-declared copy constructor for a class X will
5830  //   have the form
5831  //
5832  //       X::X(const X&)
5833  //
5834  //   if
5835  bool HasConstCopyConstructor = true;
5836
5837  //     -- each direct or virtual base class B of X has a copy
5838  //        constructor whose first parameter is of type const B& or
5839  //        const volatile B&, and
5840  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5841                                       BaseEnd = ClassDecl->bases_end();
5842       HasConstCopyConstructor && Base != BaseEnd;
5843       ++Base) {
5844    // Virtual bases are handled below.
5845    if (Base->isVirtual())
5846      continue;
5847
5848    CXXRecordDecl *BaseClassDecl
5849      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5850    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5851      DeclareImplicitCopyConstructor(BaseClassDecl);
5852
5853    HasConstCopyConstructor
5854      = BaseClassDecl->hasConstCopyConstructor(Context);
5855  }
5856
5857  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5858                                       BaseEnd = ClassDecl->vbases_end();
5859       HasConstCopyConstructor && Base != BaseEnd;
5860       ++Base) {
5861    CXXRecordDecl *BaseClassDecl
5862      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5863    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5864      DeclareImplicitCopyConstructor(BaseClassDecl);
5865
5866    HasConstCopyConstructor
5867      = BaseClassDecl->hasConstCopyConstructor(Context);
5868  }
5869
5870  //     -- for all the nonstatic data members of X that are of a
5871  //        class type M (or array thereof), each such class type
5872  //        has a copy constructor whose first parameter is of type
5873  //        const M& or const volatile M&.
5874  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5875                                  FieldEnd = ClassDecl->field_end();
5876       HasConstCopyConstructor && Field != FieldEnd;
5877       ++Field) {
5878    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5879    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5880      CXXRecordDecl *FieldClassDecl
5881        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5882      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5883        DeclareImplicitCopyConstructor(FieldClassDecl);
5884
5885      HasConstCopyConstructor
5886        = FieldClassDecl->hasConstCopyConstructor(Context);
5887    }
5888  }
5889
5890  //   Otherwise, the implicitly declared copy constructor will have
5891  //   the form
5892  //
5893  //       X::X(X&)
5894  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5895  QualType ArgType = ClassType;
5896  if (HasConstCopyConstructor)
5897    ArgType = ArgType.withConst();
5898  ArgType = Context.getLValueReferenceType(ArgType);
5899
5900  // C++ [except.spec]p14:
5901  //   An implicitly declared special member function (Clause 12) shall have an
5902  //   exception-specification. [...]
5903  ImplicitExceptionSpecification ExceptSpec(Context);
5904  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5905  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5906                                       BaseEnd = ClassDecl->bases_end();
5907       Base != BaseEnd;
5908       ++Base) {
5909    // Virtual bases are handled below.
5910    if (Base->isVirtual())
5911      continue;
5912
5913    CXXRecordDecl *BaseClassDecl
5914      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5915    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5916      DeclareImplicitCopyConstructor(BaseClassDecl);
5917
5918    if (CXXConstructorDecl *CopyConstructor
5919                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5920      ExceptSpec.CalledDecl(CopyConstructor);
5921  }
5922  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5923                                       BaseEnd = ClassDecl->vbases_end();
5924       Base != BaseEnd;
5925       ++Base) {
5926    CXXRecordDecl *BaseClassDecl
5927      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5928    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5929      DeclareImplicitCopyConstructor(BaseClassDecl);
5930
5931    if (CXXConstructorDecl *CopyConstructor
5932                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5933      ExceptSpec.CalledDecl(CopyConstructor);
5934  }
5935  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5936                                  FieldEnd = ClassDecl->field_end();
5937       Field != FieldEnd;
5938       ++Field) {
5939    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5940    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5941      CXXRecordDecl *FieldClassDecl
5942        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5943      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5944        DeclareImplicitCopyConstructor(FieldClassDecl);
5945
5946      if (CXXConstructorDecl *CopyConstructor
5947                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5948        ExceptSpec.CalledDecl(CopyConstructor);
5949    }
5950  }
5951
5952  //   An implicitly-declared copy constructor is an inline public
5953  //   member of its class.
5954  FunctionProtoType::ExtProtoInfo EPI;
5955  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5956  EPI.NumExceptions = ExceptSpec.size();
5957  EPI.Exceptions = ExceptSpec.data();
5958  DeclarationName Name
5959    = Context.DeclarationNames.getCXXConstructorName(
5960                                           Context.getCanonicalType(ClassType));
5961  SourceLocation ClassLoc = ClassDecl->getLocation();
5962  DeclarationNameInfo NameInfo(Name, ClassLoc);
5963  CXXConstructorDecl *CopyConstructor
5964    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5965                                 Context.getFunctionType(Context.VoidTy,
5966                                                         &ArgType, 1, EPI),
5967                                 /*TInfo=*/0,
5968                                 /*isExplicit=*/false,
5969                                 /*isInline=*/true,
5970                                 /*isImplicitlyDeclared=*/true);
5971  CopyConstructor->setAccess(AS_public);
5972  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5973
5974  // Note that we have declared this constructor.
5975  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5976
5977  // Add the parameter to the constructor.
5978  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5979                                               ClassLoc, ClassLoc,
5980                                               /*IdentifierInfo=*/0,
5981                                               ArgType, /*TInfo=*/0,
5982                                               SC_None,
5983                                               SC_None, 0);
5984  CopyConstructor->setParams(&FromParam, 1);
5985  if (Scope *S = getScopeForContext(ClassDecl))
5986    PushOnScopeChains(CopyConstructor, S, false);
5987  ClassDecl->addDecl(CopyConstructor);
5988
5989  return CopyConstructor;
5990}
5991
5992void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5993                                   CXXConstructorDecl *CopyConstructor,
5994                                   unsigned TypeQuals) {
5995  assert((CopyConstructor->isImplicit() &&
5996          CopyConstructor->isCopyConstructor(TypeQuals) &&
5997          !CopyConstructor->isUsed(false)) &&
5998         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5999
6000  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
6001  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
6002
6003  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
6004  DiagnosticErrorTrap Trap(Diags);
6005
6006  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
6007      Trap.hasErrorOccurred()) {
6008    Diag(CurrentLocation, diag::note_member_synthesized_at)
6009      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
6010    CopyConstructor->setInvalidDecl();
6011  }  else {
6012    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
6013                                               CopyConstructor->getLocation(),
6014                                               MultiStmtArg(*this, 0, 0),
6015                                               /*isStmtExpr=*/false)
6016                                                              .takeAs<Stmt>());
6017  }
6018
6019  CopyConstructor->setUsed();
6020}
6021
6022ExprResult
6023Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6024                            CXXConstructorDecl *Constructor,
6025                            MultiExprArg ExprArgs,
6026                            bool RequiresZeroInit,
6027                            unsigned ConstructKind,
6028                            SourceRange ParenRange) {
6029  bool Elidable = false;
6030
6031  // C++0x [class.copy]p34:
6032  //   When certain criteria are met, an implementation is allowed to
6033  //   omit the copy/move construction of a class object, even if the
6034  //   copy/move constructor and/or destructor for the object have
6035  //   side effects. [...]
6036  //     - when a temporary class object that has not been bound to a
6037  //       reference (12.2) would be copied/moved to a class object
6038  //       with the same cv-unqualified type, the copy/move operation
6039  //       can be omitted by constructing the temporary object
6040  //       directly into the target of the omitted copy/move
6041  if (ConstructKind == CXXConstructExpr::CK_Complete &&
6042      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
6043    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
6044    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
6045  }
6046
6047  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
6048                               Elidable, move(ExprArgs), RequiresZeroInit,
6049                               ConstructKind, ParenRange);
6050}
6051
6052/// BuildCXXConstructExpr - Creates a complete call to a constructor,
6053/// including handling of its default argument expressions.
6054ExprResult
6055Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6056                            CXXConstructorDecl *Constructor, bool Elidable,
6057                            MultiExprArg ExprArgs,
6058                            bool RequiresZeroInit,
6059                            unsigned ConstructKind,
6060                            SourceRange ParenRange) {
6061  unsigned NumExprs = ExprArgs.size();
6062  Expr **Exprs = (Expr **)ExprArgs.release();
6063
6064  MarkDeclarationReferenced(ConstructLoc, Constructor);
6065  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
6066                                        Constructor, Elidable, Exprs, NumExprs,
6067                                        RequiresZeroInit,
6068              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
6069                                        ParenRange));
6070}
6071
6072bool Sema::InitializeVarWithConstructor(VarDecl *VD,
6073                                        CXXConstructorDecl *Constructor,
6074                                        MultiExprArg Exprs) {
6075  // FIXME: Provide the correct paren SourceRange when available.
6076  ExprResult TempResult =
6077    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
6078                          move(Exprs), false, CXXConstructExpr::CK_Complete,
6079                          SourceRange());
6080  if (TempResult.isInvalid())
6081    return true;
6082
6083  Expr *Temp = TempResult.takeAs<Expr>();
6084  CheckImplicitConversions(Temp, VD->getLocation());
6085  MarkDeclarationReferenced(VD->getLocation(), Constructor);
6086  Temp = MaybeCreateExprWithCleanups(Temp);
6087  VD->setInit(Temp);
6088
6089  return false;
6090}
6091
6092void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6093  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6094  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
6095      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
6096    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6097    MarkDeclarationReferenced(VD->getLocation(), Destructor);
6098    CheckDestructorAccess(VD->getLocation(), Destructor,
6099                          PDiag(diag::err_access_dtor_var)
6100                            << VD->getDeclName()
6101                            << VD->getType());
6102
6103    // TODO: this should be re-enabled for static locals by !CXAAtExit
6104    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
6105      Diag(VD->getLocation(), diag::warn_global_destructor);
6106  }
6107}
6108
6109/// AddCXXDirectInitializerToDecl - This action is called immediately after
6110/// ActOnDeclarator, when a C++ direct initializer is present.
6111/// e.g: "int x(1);"
6112void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
6113                                         SourceLocation LParenLoc,
6114                                         MultiExprArg Exprs,
6115                                         SourceLocation RParenLoc,
6116                                         bool TypeMayContainAuto) {
6117  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
6118
6119  // If there is no declaration, there was an error parsing it.  Just ignore
6120  // the initializer.
6121  if (RealDecl == 0)
6122    return;
6123
6124  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6125  if (!VDecl) {
6126    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6127    RealDecl->setInvalidDecl();
6128    return;
6129  }
6130
6131  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6132  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6133    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
6134    if (Exprs.size() > 1) {
6135      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
6136           diag::err_auto_var_init_multiple_expressions)
6137        << VDecl->getDeclName() << VDecl->getType()
6138        << VDecl->getSourceRange();
6139      RealDecl->setInvalidDecl();
6140      return;
6141    }
6142
6143    Expr *Init = Exprs.get()[0];
6144    QualType DeducedType;
6145    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
6146      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
6147        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
6148        << Init->getSourceRange();
6149      RealDecl->setInvalidDecl();
6150      return;
6151    }
6152    VDecl->setType(DeducedType);
6153
6154    // If this is a redeclaration, check that the type we just deduced matches
6155    // the previously declared type.
6156    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6157      MergeVarDeclTypes(VDecl, Old);
6158  }
6159
6160  // We will represent direct-initialization similarly to copy-initialization:
6161  //    int x(1);  -as-> int x = 1;
6162  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6163  //
6164  // Clients that want to distinguish between the two forms, can check for
6165  // direct initializer using VarDecl::hasCXXDirectInitializer().
6166  // A major benefit is that clients that don't particularly care about which
6167  // exactly form was it (like the CodeGen) can handle both cases without
6168  // special case code.
6169
6170  // C++ 8.5p11:
6171  // The form of initialization (using parentheses or '=') is generally
6172  // insignificant, but does matter when the entity being initialized has a
6173  // class type.
6174
6175  if (!VDecl->getType()->isDependentType() &&
6176      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6177                          diag::err_typecheck_decl_incomplete_type)) {
6178    VDecl->setInvalidDecl();
6179    return;
6180  }
6181
6182  // The variable can not have an abstract class type.
6183  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6184                             diag::err_abstract_type_in_decl,
6185                             AbstractVariableType))
6186    VDecl->setInvalidDecl();
6187
6188  const VarDecl *Def;
6189  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6190    Diag(VDecl->getLocation(), diag::err_redefinition)
6191    << VDecl->getDeclName();
6192    Diag(Def->getLocation(), diag::note_previous_definition);
6193    VDecl->setInvalidDecl();
6194    return;
6195  }
6196
6197  // C++ [class.static.data]p4
6198  //   If a static data member is of const integral or const
6199  //   enumeration type, its declaration in the class definition can
6200  //   specify a constant-initializer which shall be an integral
6201  //   constant expression (5.19). In that case, the member can appear
6202  //   in integral constant expressions. The member shall still be
6203  //   defined in a namespace scope if it is used in the program and the
6204  //   namespace scope definition shall not contain an initializer.
6205  //
6206  // We already performed a redefinition check above, but for static
6207  // data members we also need to check whether there was an in-class
6208  // declaration with an initializer.
6209  const VarDecl* PrevInit = 0;
6210  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6211    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6212    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6213    return;
6214  }
6215
6216  bool IsDependent = false;
6217  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6218    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6219      VDecl->setInvalidDecl();
6220      return;
6221    }
6222
6223    if (Exprs.get()[I]->isTypeDependent())
6224      IsDependent = true;
6225  }
6226
6227  // If either the declaration has a dependent type or if any of the
6228  // expressions is type-dependent, we represent the initialization
6229  // via a ParenListExpr for later use during template instantiation.
6230  if (VDecl->getType()->isDependentType() || IsDependent) {
6231    // Let clients know that initialization was done with a direct initializer.
6232    VDecl->setCXXDirectInitializer(true);
6233
6234    // Store the initialization expressions as a ParenListExpr.
6235    unsigned NumExprs = Exprs.size();
6236    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6237                                               (Expr **)Exprs.release(),
6238                                               NumExprs, RParenLoc));
6239    return;
6240  }
6241
6242  // Capture the variable that is being initialized and the style of
6243  // initialization.
6244  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6245
6246  // FIXME: Poor source location information.
6247  InitializationKind Kind
6248    = InitializationKind::CreateDirect(VDecl->getLocation(),
6249                                       LParenLoc, RParenLoc);
6250
6251  InitializationSequence InitSeq(*this, Entity, Kind,
6252                                 Exprs.get(), Exprs.size());
6253  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6254  if (Result.isInvalid()) {
6255    VDecl->setInvalidDecl();
6256    return;
6257  }
6258
6259  CheckImplicitConversions(Result.get(), LParenLoc);
6260
6261  Result = MaybeCreateExprWithCleanups(Result);
6262  VDecl->setInit(Result.takeAs<Expr>());
6263  VDecl->setCXXDirectInitializer(true);
6264
6265  CheckCompleteVariableDeclaration(VDecl);
6266}
6267
6268/// \brief Given a constructor and the set of arguments provided for the
6269/// constructor, convert the arguments and add any required default arguments
6270/// to form a proper call to this constructor.
6271///
6272/// \returns true if an error occurred, false otherwise.
6273bool
6274Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6275                              MultiExprArg ArgsPtr,
6276                              SourceLocation Loc,
6277                              ASTOwningVector<Expr*> &ConvertedArgs) {
6278  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6279  unsigned NumArgs = ArgsPtr.size();
6280  Expr **Args = (Expr **)ArgsPtr.get();
6281
6282  const FunctionProtoType *Proto
6283    = Constructor->getType()->getAs<FunctionProtoType>();
6284  assert(Proto && "Constructor without a prototype?");
6285  unsigned NumArgsInProto = Proto->getNumArgs();
6286
6287  // If too few arguments are available, we'll fill in the rest with defaults.
6288  if (NumArgs < NumArgsInProto)
6289    ConvertedArgs.reserve(NumArgsInProto);
6290  else
6291    ConvertedArgs.reserve(NumArgs);
6292
6293  VariadicCallType CallType =
6294    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6295  llvm::SmallVector<Expr *, 8> AllArgs;
6296  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6297                                        Proto, 0, Args, NumArgs, AllArgs,
6298                                        CallType);
6299  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6300    ConvertedArgs.push_back(AllArgs[i]);
6301  return Invalid;
6302}
6303
6304static inline bool
6305CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6306                                       const FunctionDecl *FnDecl) {
6307  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6308  if (isa<NamespaceDecl>(DC)) {
6309    return SemaRef.Diag(FnDecl->getLocation(),
6310                        diag::err_operator_new_delete_declared_in_namespace)
6311      << FnDecl->getDeclName();
6312  }
6313
6314  if (isa<TranslationUnitDecl>(DC) &&
6315      FnDecl->getStorageClass() == SC_Static) {
6316    return SemaRef.Diag(FnDecl->getLocation(),
6317                        diag::err_operator_new_delete_declared_static)
6318      << FnDecl->getDeclName();
6319  }
6320
6321  return false;
6322}
6323
6324static inline bool
6325CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6326                            CanQualType ExpectedResultType,
6327                            CanQualType ExpectedFirstParamType,
6328                            unsigned DependentParamTypeDiag,
6329                            unsigned InvalidParamTypeDiag) {
6330  QualType ResultType =
6331    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6332
6333  // Check that the result type is not dependent.
6334  if (ResultType->isDependentType())
6335    return SemaRef.Diag(FnDecl->getLocation(),
6336                        diag::err_operator_new_delete_dependent_result_type)
6337    << FnDecl->getDeclName() << ExpectedResultType;
6338
6339  // Check that the result type is what we expect.
6340  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6341    return SemaRef.Diag(FnDecl->getLocation(),
6342                        diag::err_operator_new_delete_invalid_result_type)
6343    << FnDecl->getDeclName() << ExpectedResultType;
6344
6345  // A function template must have at least 2 parameters.
6346  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6347    return SemaRef.Diag(FnDecl->getLocation(),
6348                      diag::err_operator_new_delete_template_too_few_parameters)
6349        << FnDecl->getDeclName();
6350
6351  // The function decl must have at least 1 parameter.
6352  if (FnDecl->getNumParams() == 0)
6353    return SemaRef.Diag(FnDecl->getLocation(),
6354                        diag::err_operator_new_delete_too_few_parameters)
6355      << FnDecl->getDeclName();
6356
6357  // Check the the first parameter type is not dependent.
6358  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6359  if (FirstParamType->isDependentType())
6360    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6361      << FnDecl->getDeclName() << ExpectedFirstParamType;
6362
6363  // Check that the first parameter type is what we expect.
6364  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6365      ExpectedFirstParamType)
6366    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6367    << FnDecl->getDeclName() << ExpectedFirstParamType;
6368
6369  return false;
6370}
6371
6372static bool
6373CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6374  // C++ [basic.stc.dynamic.allocation]p1:
6375  //   A program is ill-formed if an allocation function is declared in a
6376  //   namespace scope other than global scope or declared static in global
6377  //   scope.
6378  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6379    return true;
6380
6381  CanQualType SizeTy =
6382    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6383
6384  // C++ [basic.stc.dynamic.allocation]p1:
6385  //  The return type shall be void*. The first parameter shall have type
6386  //  std::size_t.
6387  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6388                                  SizeTy,
6389                                  diag::err_operator_new_dependent_param_type,
6390                                  diag::err_operator_new_param_type))
6391    return true;
6392
6393  // C++ [basic.stc.dynamic.allocation]p1:
6394  //  The first parameter shall not have an associated default argument.
6395  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6396    return SemaRef.Diag(FnDecl->getLocation(),
6397                        diag::err_operator_new_default_arg)
6398      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6399
6400  return false;
6401}
6402
6403static bool
6404CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6405  // C++ [basic.stc.dynamic.deallocation]p1:
6406  //   A program is ill-formed if deallocation functions are declared in a
6407  //   namespace scope other than global scope or declared static in global
6408  //   scope.
6409  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6410    return true;
6411
6412  // C++ [basic.stc.dynamic.deallocation]p2:
6413  //   Each deallocation function shall return void and its first parameter
6414  //   shall be void*.
6415  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6416                                  SemaRef.Context.VoidPtrTy,
6417                                 diag::err_operator_delete_dependent_param_type,
6418                                 diag::err_operator_delete_param_type))
6419    return true;
6420
6421  return false;
6422}
6423
6424/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6425/// of this overloaded operator is well-formed. If so, returns false;
6426/// otherwise, emits appropriate diagnostics and returns true.
6427bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6428  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6429         "Expected an overloaded operator declaration");
6430
6431  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6432
6433  // C++ [over.oper]p5:
6434  //   The allocation and deallocation functions, operator new,
6435  //   operator new[], operator delete and operator delete[], are
6436  //   described completely in 3.7.3. The attributes and restrictions
6437  //   found in the rest of this subclause do not apply to them unless
6438  //   explicitly stated in 3.7.3.
6439  if (Op == OO_Delete || Op == OO_Array_Delete)
6440    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6441
6442  if (Op == OO_New || Op == OO_Array_New)
6443    return CheckOperatorNewDeclaration(*this, FnDecl);
6444
6445  // C++ [over.oper]p6:
6446  //   An operator function shall either be a non-static member
6447  //   function or be a non-member function and have at least one
6448  //   parameter whose type is a class, a reference to a class, an
6449  //   enumeration, or a reference to an enumeration.
6450  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6451    if (MethodDecl->isStatic())
6452      return Diag(FnDecl->getLocation(),
6453                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6454  } else {
6455    bool ClassOrEnumParam = false;
6456    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6457                                   ParamEnd = FnDecl->param_end();
6458         Param != ParamEnd; ++Param) {
6459      QualType ParamType = (*Param)->getType().getNonReferenceType();
6460      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6461          ParamType->isEnumeralType()) {
6462        ClassOrEnumParam = true;
6463        break;
6464      }
6465    }
6466
6467    if (!ClassOrEnumParam)
6468      return Diag(FnDecl->getLocation(),
6469                  diag::err_operator_overload_needs_class_or_enum)
6470        << FnDecl->getDeclName();
6471  }
6472
6473  // C++ [over.oper]p8:
6474  //   An operator function cannot have default arguments (8.3.6),
6475  //   except where explicitly stated below.
6476  //
6477  // Only the function-call operator allows default arguments
6478  // (C++ [over.call]p1).
6479  if (Op != OO_Call) {
6480    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6481         Param != FnDecl->param_end(); ++Param) {
6482      if ((*Param)->hasDefaultArg())
6483        return Diag((*Param)->getLocation(),
6484                    diag::err_operator_overload_default_arg)
6485          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6486    }
6487  }
6488
6489  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6490    { false, false, false }
6491#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6492    , { Unary, Binary, MemberOnly }
6493#include "clang/Basic/OperatorKinds.def"
6494  };
6495
6496  bool CanBeUnaryOperator = OperatorUses[Op][0];
6497  bool CanBeBinaryOperator = OperatorUses[Op][1];
6498  bool MustBeMemberOperator = OperatorUses[Op][2];
6499
6500  // C++ [over.oper]p8:
6501  //   [...] Operator functions cannot have more or fewer parameters
6502  //   than the number required for the corresponding operator, as
6503  //   described in the rest of this subclause.
6504  unsigned NumParams = FnDecl->getNumParams()
6505                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6506  if (Op != OO_Call &&
6507      ((NumParams == 1 && !CanBeUnaryOperator) ||
6508       (NumParams == 2 && !CanBeBinaryOperator) ||
6509       (NumParams < 1) || (NumParams > 2))) {
6510    // We have the wrong number of parameters.
6511    unsigned ErrorKind;
6512    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6513      ErrorKind = 2;  // 2 -> unary or binary.
6514    } else if (CanBeUnaryOperator) {
6515      ErrorKind = 0;  // 0 -> unary
6516    } else {
6517      assert(CanBeBinaryOperator &&
6518             "All non-call overloaded operators are unary or binary!");
6519      ErrorKind = 1;  // 1 -> binary
6520    }
6521
6522    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6523      << FnDecl->getDeclName() << NumParams << ErrorKind;
6524  }
6525
6526  // Overloaded operators other than operator() cannot be variadic.
6527  if (Op != OO_Call &&
6528      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6529    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6530      << FnDecl->getDeclName();
6531  }
6532
6533  // Some operators must be non-static member functions.
6534  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6535    return Diag(FnDecl->getLocation(),
6536                diag::err_operator_overload_must_be_member)
6537      << FnDecl->getDeclName();
6538  }
6539
6540  // C++ [over.inc]p1:
6541  //   The user-defined function called operator++ implements the
6542  //   prefix and postfix ++ operator. If this function is a member
6543  //   function with no parameters, or a non-member function with one
6544  //   parameter of class or enumeration type, it defines the prefix
6545  //   increment operator ++ for objects of that type. If the function
6546  //   is a member function with one parameter (which shall be of type
6547  //   int) or a non-member function with two parameters (the second
6548  //   of which shall be of type int), it defines the postfix
6549  //   increment operator ++ for objects of that type.
6550  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6551    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6552    bool ParamIsInt = false;
6553    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6554      ParamIsInt = BT->getKind() == BuiltinType::Int;
6555
6556    if (!ParamIsInt)
6557      return Diag(LastParam->getLocation(),
6558                  diag::err_operator_overload_post_incdec_must_be_int)
6559        << LastParam->getType() << (Op == OO_MinusMinus);
6560  }
6561
6562  return false;
6563}
6564
6565/// CheckLiteralOperatorDeclaration - Check whether the declaration
6566/// of this literal operator function is well-formed. If so, returns
6567/// false; otherwise, emits appropriate diagnostics and returns true.
6568bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6569  DeclContext *DC = FnDecl->getDeclContext();
6570  Decl::Kind Kind = DC->getDeclKind();
6571  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6572      Kind != Decl::LinkageSpec) {
6573    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6574      << FnDecl->getDeclName();
6575    return true;
6576  }
6577
6578  bool Valid = false;
6579
6580  // template <char...> type operator "" name() is the only valid template
6581  // signature, and the only valid signature with no parameters.
6582  if (FnDecl->param_size() == 0) {
6583    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6584      // Must have only one template parameter
6585      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6586      if (Params->size() == 1) {
6587        NonTypeTemplateParmDecl *PmDecl =
6588          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6589
6590        // The template parameter must be a char parameter pack.
6591        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6592            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6593          Valid = true;
6594      }
6595    }
6596  } else {
6597    // Check the first parameter
6598    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6599
6600    QualType T = (*Param)->getType();
6601
6602    // unsigned long long int, long double, and any character type are allowed
6603    // as the only parameters.
6604    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6605        Context.hasSameType(T, Context.LongDoubleTy) ||
6606        Context.hasSameType(T, Context.CharTy) ||
6607        Context.hasSameType(T, Context.WCharTy) ||
6608        Context.hasSameType(T, Context.Char16Ty) ||
6609        Context.hasSameType(T, Context.Char32Ty)) {
6610      if (++Param == FnDecl->param_end())
6611        Valid = true;
6612      goto FinishedParams;
6613    }
6614
6615    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6616    const PointerType *PT = T->getAs<PointerType>();
6617    if (!PT)
6618      goto FinishedParams;
6619    T = PT->getPointeeType();
6620    if (!T.isConstQualified())
6621      goto FinishedParams;
6622    T = T.getUnqualifiedType();
6623
6624    // Move on to the second parameter;
6625    ++Param;
6626
6627    // If there is no second parameter, the first must be a const char *
6628    if (Param == FnDecl->param_end()) {
6629      if (Context.hasSameType(T, Context.CharTy))
6630        Valid = true;
6631      goto FinishedParams;
6632    }
6633
6634    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6635    // are allowed as the first parameter to a two-parameter function
6636    if (!(Context.hasSameType(T, Context.CharTy) ||
6637          Context.hasSameType(T, Context.WCharTy) ||
6638          Context.hasSameType(T, Context.Char16Ty) ||
6639          Context.hasSameType(T, Context.Char32Ty)))
6640      goto FinishedParams;
6641
6642    // The second and final parameter must be an std::size_t
6643    T = (*Param)->getType().getUnqualifiedType();
6644    if (Context.hasSameType(T, Context.getSizeType()) &&
6645        ++Param == FnDecl->param_end())
6646      Valid = true;
6647  }
6648
6649  // FIXME: This diagnostic is absolutely terrible.
6650FinishedParams:
6651  if (!Valid) {
6652    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6653      << FnDecl->getDeclName();
6654    return true;
6655  }
6656
6657  return false;
6658}
6659
6660/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6661/// linkage specification, including the language and (if present)
6662/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6663/// the location of the language string literal, which is provided
6664/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6665/// the '{' brace. Otherwise, this linkage specification does not
6666/// have any braces.
6667Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6668                                           SourceLocation LangLoc,
6669                                           llvm::StringRef Lang,
6670                                           SourceLocation LBraceLoc) {
6671  LinkageSpecDecl::LanguageIDs Language;
6672  if (Lang == "\"C\"")
6673    Language = LinkageSpecDecl::lang_c;
6674  else if (Lang == "\"C++\"")
6675    Language = LinkageSpecDecl::lang_cxx;
6676  else {
6677    Diag(LangLoc, diag::err_bad_language);
6678    return 0;
6679  }
6680
6681  // FIXME: Add all the various semantics of linkage specifications
6682
6683  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6684                                               ExternLoc, LangLoc, Language);
6685  CurContext->addDecl(D);
6686  PushDeclContext(S, D);
6687  return D;
6688}
6689
6690/// ActOnFinishLinkageSpecification - Complete the definition of
6691/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6692/// valid, it's the position of the closing '}' brace in a linkage
6693/// specification that uses braces.
6694Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6695                                            Decl *LinkageSpec,
6696                                            SourceLocation RBraceLoc) {
6697  if (LinkageSpec) {
6698    if (RBraceLoc.isValid()) {
6699      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
6700      LSDecl->setRBraceLoc(RBraceLoc);
6701    }
6702    PopDeclContext();
6703  }
6704  return LinkageSpec;
6705}
6706
6707/// \brief Perform semantic analysis for the variable declaration that
6708/// occurs within a C++ catch clause, returning the newly-created
6709/// variable.
6710VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6711                                         TypeSourceInfo *TInfo,
6712                                         SourceLocation StartLoc,
6713                                         SourceLocation Loc,
6714                                         IdentifierInfo *Name) {
6715  bool Invalid = false;
6716  QualType ExDeclType = TInfo->getType();
6717
6718  // Arrays and functions decay.
6719  if (ExDeclType->isArrayType())
6720    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6721  else if (ExDeclType->isFunctionType())
6722    ExDeclType = Context.getPointerType(ExDeclType);
6723
6724  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6725  // The exception-declaration shall not denote a pointer or reference to an
6726  // incomplete type, other than [cv] void*.
6727  // N2844 forbids rvalue references.
6728  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6729    Diag(Loc, diag::err_catch_rvalue_ref);
6730    Invalid = true;
6731  }
6732
6733  // GCC allows catching pointers and references to incomplete types
6734  // as an extension; so do we, but we warn by default.
6735
6736  QualType BaseType = ExDeclType;
6737  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6738  unsigned DK = diag::err_catch_incomplete;
6739  bool IncompleteCatchIsInvalid = true;
6740  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6741    BaseType = Ptr->getPointeeType();
6742    Mode = 1;
6743    DK = diag::ext_catch_incomplete_ptr;
6744    IncompleteCatchIsInvalid = false;
6745  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6746    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6747    BaseType = Ref->getPointeeType();
6748    Mode = 2;
6749    DK = diag::ext_catch_incomplete_ref;
6750    IncompleteCatchIsInvalid = false;
6751  }
6752  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6753      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6754      IncompleteCatchIsInvalid)
6755    Invalid = true;
6756
6757  if (!Invalid && !ExDeclType->isDependentType() &&
6758      RequireNonAbstractType(Loc, ExDeclType,
6759                             diag::err_abstract_type_in_decl,
6760                             AbstractVariableType))
6761    Invalid = true;
6762
6763  // Only the non-fragile NeXT runtime currently supports C++ catches
6764  // of ObjC types, and no runtime supports catching ObjC types by value.
6765  if (!Invalid && getLangOptions().ObjC1) {
6766    QualType T = ExDeclType;
6767    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6768      T = RT->getPointeeType();
6769
6770    if (T->isObjCObjectType()) {
6771      Diag(Loc, diag::err_objc_object_catch);
6772      Invalid = true;
6773    } else if (T->isObjCObjectPointerType()) {
6774      if (!getLangOptions().NeXTRuntime) {
6775        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6776        Invalid = true;
6777      } else if (!getLangOptions().ObjCNonFragileABI) {
6778        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6779        Invalid = true;
6780      }
6781    }
6782  }
6783
6784  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
6785                                    ExDeclType, TInfo, SC_None, SC_None);
6786  ExDecl->setExceptionVariable(true);
6787
6788  if (!Invalid) {
6789    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6790      // C++ [except.handle]p16:
6791      //   The object declared in an exception-declaration or, if the
6792      //   exception-declaration does not specify a name, a temporary (12.2) is
6793      //   copy-initialized (8.5) from the exception object. [...]
6794      //   The object is destroyed when the handler exits, after the destruction
6795      //   of any automatic objects initialized within the handler.
6796      //
6797      // We just pretend to initialize the object with itself, then make sure
6798      // it can be destroyed later.
6799      QualType initType = ExDeclType;
6800
6801      InitializedEntity entity =
6802        InitializedEntity::InitializeVariable(ExDecl);
6803      InitializationKind initKind =
6804        InitializationKind::CreateCopy(Loc, SourceLocation());
6805
6806      Expr *opaqueValue =
6807        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6808      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6809      ExprResult result = sequence.Perform(*this, entity, initKind,
6810                                           MultiExprArg(&opaqueValue, 1));
6811      if (result.isInvalid())
6812        Invalid = true;
6813      else {
6814        // If the constructor used was non-trivial, set this as the
6815        // "initializer".
6816        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6817        if (!construct->getConstructor()->isTrivial()) {
6818          Expr *init = MaybeCreateExprWithCleanups(construct);
6819          ExDecl->setInit(init);
6820        }
6821
6822        // And make sure it's destructable.
6823        FinalizeVarWithDestructor(ExDecl, recordType);
6824      }
6825    }
6826  }
6827
6828  if (Invalid)
6829    ExDecl->setInvalidDecl();
6830
6831  return ExDecl;
6832}
6833
6834/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6835/// handler.
6836Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6837  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6838  bool Invalid = D.isInvalidType();
6839
6840  // Check for unexpanded parameter packs.
6841  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6842                                               UPPC_ExceptionType)) {
6843    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6844                                             D.getIdentifierLoc());
6845    Invalid = true;
6846  }
6847
6848  IdentifierInfo *II = D.getIdentifier();
6849  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6850                                             LookupOrdinaryName,
6851                                             ForRedeclaration)) {
6852    // The scope should be freshly made just for us. There is just no way
6853    // it contains any previous declaration.
6854    assert(!S->isDeclScope(PrevDecl));
6855    if (PrevDecl->isTemplateParameter()) {
6856      // Maybe we will complain about the shadowed template parameter.
6857      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6858    }
6859  }
6860
6861  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6862    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6863      << D.getCXXScopeSpec().getRange();
6864    Invalid = true;
6865  }
6866
6867  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6868                                              D.getSourceRange().getBegin(),
6869                                              D.getIdentifierLoc(),
6870                                              D.getIdentifier());
6871  if (Invalid)
6872    ExDecl->setInvalidDecl();
6873
6874  // Add the exception declaration into this scope.
6875  if (II)
6876    PushOnScopeChains(ExDecl, S);
6877  else
6878    CurContext->addDecl(ExDecl);
6879
6880  ProcessDeclAttributes(S, ExDecl, D);
6881  return ExDecl;
6882}
6883
6884Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
6885                                         Expr *AssertExpr,
6886                                         Expr *AssertMessageExpr_,
6887                                         SourceLocation RParenLoc) {
6888  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6889
6890  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6891    llvm::APSInt Value(32);
6892    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6893      Diag(StaticAssertLoc,
6894           diag::err_static_assert_expression_is_not_constant) <<
6895        AssertExpr->getSourceRange();
6896      return 0;
6897    }
6898
6899    if (Value == 0) {
6900      Diag(StaticAssertLoc, diag::err_static_assert_failed)
6901        << AssertMessage->getString() << AssertExpr->getSourceRange();
6902    }
6903  }
6904
6905  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6906    return 0;
6907
6908  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
6909                                        AssertExpr, AssertMessage, RParenLoc);
6910
6911  CurContext->addDecl(Decl);
6912  return Decl;
6913}
6914
6915/// \brief Perform semantic analysis of the given friend type declaration.
6916///
6917/// \returns A friend declaration that.
6918FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6919                                      TypeSourceInfo *TSInfo) {
6920  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6921
6922  QualType T = TSInfo->getType();
6923  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6924
6925  if (!getLangOptions().CPlusPlus0x) {
6926    // C++03 [class.friend]p2:
6927    //   An elaborated-type-specifier shall be used in a friend declaration
6928    //   for a class.*
6929    //
6930    //   * The class-key of the elaborated-type-specifier is required.
6931    if (!ActiveTemplateInstantiations.empty()) {
6932      // Do not complain about the form of friend template types during
6933      // template instantiation; we will already have complained when the
6934      // template was declared.
6935    } else if (!T->isElaboratedTypeSpecifier()) {
6936      // If we evaluated the type to a record type, suggest putting
6937      // a tag in front.
6938      if (const RecordType *RT = T->getAs<RecordType>()) {
6939        RecordDecl *RD = RT->getDecl();
6940
6941        std::string InsertionText = std::string(" ") + RD->getKindName();
6942
6943        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6944          << (unsigned) RD->getTagKind()
6945          << T
6946          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6947                                        InsertionText);
6948      } else {
6949        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6950          << T
6951          << SourceRange(FriendLoc, TypeRange.getEnd());
6952      }
6953    } else if (T->getAs<EnumType>()) {
6954      Diag(FriendLoc, diag::ext_enum_friend)
6955        << T
6956        << SourceRange(FriendLoc, TypeRange.getEnd());
6957    }
6958  }
6959
6960  // C++0x [class.friend]p3:
6961  //   If the type specifier in a friend declaration designates a (possibly
6962  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6963  //   the friend declaration is ignored.
6964
6965  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6966  // in [class.friend]p3 that we do not implement.
6967
6968  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6969}
6970
6971/// Handle a friend tag declaration where the scope specifier was
6972/// templated.
6973Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6974                                    unsigned TagSpec, SourceLocation TagLoc,
6975                                    CXXScopeSpec &SS,
6976                                    IdentifierInfo *Name, SourceLocation NameLoc,
6977                                    AttributeList *Attr,
6978                                    MultiTemplateParamsArg TempParamLists) {
6979  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6980
6981  bool isExplicitSpecialization = false;
6982  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6983  bool Invalid = false;
6984
6985  if (TemplateParameterList *TemplateParams
6986        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6987                                                  TempParamLists.get(),
6988                                                  TempParamLists.size(),
6989                                                  /*friend*/ true,
6990                                                  isExplicitSpecialization,
6991                                                  Invalid)) {
6992    --NumMatchedTemplateParamLists;
6993
6994    if (TemplateParams->size() > 0) {
6995      // This is a declaration of a class template.
6996      if (Invalid)
6997        return 0;
6998
6999      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
7000                                SS, Name, NameLoc, Attr,
7001                                TemplateParams, AS_public,
7002                                NumMatchedTemplateParamLists,
7003                   (TemplateParameterList**) TempParamLists.release()).take();
7004    } else {
7005      // The "template<>" header is extraneous.
7006      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7007        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7008      isExplicitSpecialization = true;
7009    }
7010  }
7011
7012  if (Invalid) return 0;
7013
7014  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
7015
7016  bool isAllExplicitSpecializations = true;
7017  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
7018    if (TempParamLists.get()[I]->size()) {
7019      isAllExplicitSpecializations = false;
7020      break;
7021    }
7022  }
7023
7024  // FIXME: don't ignore attributes.
7025
7026  // If it's explicit specializations all the way down, just forget
7027  // about the template header and build an appropriate non-templated
7028  // friend.  TODO: for source fidelity, remember the headers.
7029  if (isAllExplicitSpecializations) {
7030    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7031    ElaboratedTypeKeyword Keyword
7032      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7033    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
7034                                   *Name, NameLoc);
7035    if (T.isNull())
7036      return 0;
7037
7038    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7039    if (isa<DependentNameType>(T)) {
7040      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7041      TL.setKeywordLoc(TagLoc);
7042      TL.setQualifierLoc(QualifierLoc);
7043      TL.setNameLoc(NameLoc);
7044    } else {
7045      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
7046      TL.setKeywordLoc(TagLoc);
7047      TL.setQualifierLoc(QualifierLoc);
7048      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
7049    }
7050
7051    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7052                                            TSI, FriendLoc);
7053    Friend->setAccess(AS_public);
7054    CurContext->addDecl(Friend);
7055    return Friend;
7056  }
7057
7058  // Handle the case of a templated-scope friend class.  e.g.
7059  //   template <class T> class A<T>::B;
7060  // FIXME: we don't support these right now.
7061  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7062  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
7063  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7064  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7065  TL.setKeywordLoc(TagLoc);
7066  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7067  TL.setNameLoc(NameLoc);
7068
7069  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7070                                          TSI, FriendLoc);
7071  Friend->setAccess(AS_public);
7072  Friend->setUnsupportedFriend(true);
7073  CurContext->addDecl(Friend);
7074  return Friend;
7075}
7076
7077
7078/// Handle a friend type declaration.  This works in tandem with
7079/// ActOnTag.
7080///
7081/// Notes on friend class templates:
7082///
7083/// We generally treat friend class declarations as if they were
7084/// declaring a class.  So, for example, the elaborated type specifier
7085/// in a friend declaration is required to obey the restrictions of a
7086/// class-head (i.e. no typedefs in the scope chain), template
7087/// parameters are required to match up with simple template-ids, &c.
7088/// However, unlike when declaring a template specialization, it's
7089/// okay to refer to a template specialization without an empty
7090/// template parameter declaration, e.g.
7091///   friend class A<T>::B<unsigned>;
7092/// We permit this as a special case; if there are any template
7093/// parameters present at all, require proper matching, i.e.
7094///   template <> template <class T> friend class A<int>::B;
7095Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7096                                MultiTemplateParamsArg TempParams) {
7097  SourceLocation Loc = DS.getSourceRange().getBegin();
7098
7099  assert(DS.isFriendSpecified());
7100  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7101
7102  // Try to convert the decl specifier to a type.  This works for
7103  // friend templates because ActOnTag never produces a ClassTemplateDecl
7104  // for a TUK_Friend.
7105  Declarator TheDeclarator(DS, Declarator::MemberContext);
7106  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
7107  QualType T = TSI->getType();
7108  if (TheDeclarator.isInvalidType())
7109    return 0;
7110
7111  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
7112    return 0;
7113
7114  // This is definitely an error in C++98.  It's probably meant to
7115  // be forbidden in C++0x, too, but the specification is just
7116  // poorly written.
7117  //
7118  // The problem is with declarations like the following:
7119  //   template <T> friend A<T>::foo;
7120  // where deciding whether a class C is a friend or not now hinges
7121  // on whether there exists an instantiation of A that causes
7122  // 'foo' to equal C.  There are restrictions on class-heads
7123  // (which we declare (by fiat) elaborated friend declarations to
7124  // be) that makes this tractable.
7125  //
7126  // FIXME: handle "template <> friend class A<T>;", which
7127  // is possibly well-formed?  Who even knows?
7128  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
7129    Diag(Loc, diag::err_tagless_friend_type_template)
7130      << DS.getSourceRange();
7131    return 0;
7132  }
7133
7134  // C++98 [class.friend]p1: A friend of a class is a function
7135  //   or class that is not a member of the class . . .
7136  // This is fixed in DR77, which just barely didn't make the C++03
7137  // deadline.  It's also a very silly restriction that seriously
7138  // affects inner classes and which nobody else seems to implement;
7139  // thus we never diagnose it, not even in -pedantic.
7140  //
7141  // But note that we could warn about it: it's always useless to
7142  // friend one of your own members (it's not, however, worthless to
7143  // friend a member of an arbitrary specialization of your template).
7144
7145  Decl *D;
7146  if (unsigned NumTempParamLists = TempParams.size())
7147    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
7148                                   NumTempParamLists,
7149                                   TempParams.release(),
7150                                   TSI,
7151                                   DS.getFriendSpecLoc());
7152  else
7153    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
7154
7155  if (!D)
7156    return 0;
7157
7158  D->setAccess(AS_public);
7159  CurContext->addDecl(D);
7160
7161  return D;
7162}
7163
7164Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7165                                    MultiTemplateParamsArg TemplateParams) {
7166  const DeclSpec &DS = D.getDeclSpec();
7167
7168  assert(DS.isFriendSpecified());
7169  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7170
7171  SourceLocation Loc = D.getIdentifierLoc();
7172  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7173  QualType T = TInfo->getType();
7174
7175  // C++ [class.friend]p1
7176  //   A friend of a class is a function or class....
7177  // Note that this sees through typedefs, which is intended.
7178  // It *doesn't* see through dependent types, which is correct
7179  // according to [temp.arg.type]p3:
7180  //   If a declaration acquires a function type through a
7181  //   type dependent on a template-parameter and this causes
7182  //   a declaration that does not use the syntactic form of a
7183  //   function declarator to have a function type, the program
7184  //   is ill-formed.
7185  if (!T->isFunctionType()) {
7186    Diag(Loc, diag::err_unexpected_friend);
7187
7188    // It might be worthwhile to try to recover by creating an
7189    // appropriate declaration.
7190    return 0;
7191  }
7192
7193  // C++ [namespace.memdef]p3
7194  //  - If a friend declaration in a non-local class first declares a
7195  //    class or function, the friend class or function is a member
7196  //    of the innermost enclosing namespace.
7197  //  - The name of the friend is not found by simple name lookup
7198  //    until a matching declaration is provided in that namespace
7199  //    scope (either before or after the class declaration granting
7200  //    friendship).
7201  //  - If a friend function is called, its name may be found by the
7202  //    name lookup that considers functions from namespaces and
7203  //    classes associated with the types of the function arguments.
7204  //  - When looking for a prior declaration of a class or a function
7205  //    declared as a friend, scopes outside the innermost enclosing
7206  //    namespace scope are not considered.
7207
7208  CXXScopeSpec &SS = D.getCXXScopeSpec();
7209  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7210  DeclarationName Name = NameInfo.getName();
7211  assert(Name);
7212
7213  // Check for unexpanded parameter packs.
7214  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7215      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7216      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7217    return 0;
7218
7219  // The context we found the declaration in, or in which we should
7220  // create the declaration.
7221  DeclContext *DC;
7222  Scope *DCScope = S;
7223  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7224                        ForRedeclaration);
7225
7226  // FIXME: there are different rules in local classes
7227
7228  // There are four cases here.
7229  //   - There's no scope specifier, in which case we just go to the
7230  //     appropriate scope and look for a function or function template
7231  //     there as appropriate.
7232  // Recover from invalid scope qualifiers as if they just weren't there.
7233  if (SS.isInvalid() || !SS.isSet()) {
7234    // C++0x [namespace.memdef]p3:
7235    //   If the name in a friend declaration is neither qualified nor
7236    //   a template-id and the declaration is a function or an
7237    //   elaborated-type-specifier, the lookup to determine whether
7238    //   the entity has been previously declared shall not consider
7239    //   any scopes outside the innermost enclosing namespace.
7240    // C++0x [class.friend]p11:
7241    //   If a friend declaration appears in a local class and the name
7242    //   specified is an unqualified name, a prior declaration is
7243    //   looked up without considering scopes that are outside the
7244    //   innermost enclosing non-class scope. For a friend function
7245    //   declaration, if there is no prior declaration, the program is
7246    //   ill-formed.
7247    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7248    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7249
7250    // Find the appropriate context according to the above.
7251    DC = CurContext;
7252    while (true) {
7253      // Skip class contexts.  If someone can cite chapter and verse
7254      // for this behavior, that would be nice --- it's what GCC and
7255      // EDG do, and it seems like a reasonable intent, but the spec
7256      // really only says that checks for unqualified existing
7257      // declarations should stop at the nearest enclosing namespace,
7258      // not that they should only consider the nearest enclosing
7259      // namespace.
7260      while (DC->isRecord())
7261        DC = DC->getParent();
7262
7263      LookupQualifiedName(Previous, DC);
7264
7265      // TODO: decide what we think about using declarations.
7266      if (isLocal || !Previous.empty())
7267        break;
7268
7269      if (isTemplateId) {
7270        if (isa<TranslationUnitDecl>(DC)) break;
7271      } else {
7272        if (DC->isFileContext()) break;
7273      }
7274      DC = DC->getParent();
7275    }
7276
7277    // C++ [class.friend]p1: A friend of a class is a function or
7278    //   class that is not a member of the class . . .
7279    // C++0x changes this for both friend types and functions.
7280    // Most C++ 98 compilers do seem to give an error here, so
7281    // we do, too.
7282    if (!Previous.empty() && DC->Equals(CurContext)
7283        && !getLangOptions().CPlusPlus0x)
7284      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7285
7286    DCScope = getScopeForDeclContext(S, DC);
7287
7288  //   - There's a non-dependent scope specifier, in which case we
7289  //     compute it and do a previous lookup there for a function
7290  //     or function template.
7291  } else if (!SS.getScopeRep()->isDependent()) {
7292    DC = computeDeclContext(SS);
7293    if (!DC) return 0;
7294
7295    if (RequireCompleteDeclContext(SS, DC)) return 0;
7296
7297    LookupQualifiedName(Previous, DC);
7298
7299    // Ignore things found implicitly in the wrong scope.
7300    // TODO: better diagnostics for this case.  Suggesting the right
7301    // qualified scope would be nice...
7302    LookupResult::Filter F = Previous.makeFilter();
7303    while (F.hasNext()) {
7304      NamedDecl *D = F.next();
7305      if (!DC->InEnclosingNamespaceSetOf(
7306              D->getDeclContext()->getRedeclContext()))
7307        F.erase();
7308    }
7309    F.done();
7310
7311    if (Previous.empty()) {
7312      D.setInvalidType();
7313      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7314      return 0;
7315    }
7316
7317    // C++ [class.friend]p1: A friend of a class is a function or
7318    //   class that is not a member of the class . . .
7319    if (DC->Equals(CurContext))
7320      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7321
7322  //   - There's a scope specifier that does not match any template
7323  //     parameter lists, in which case we use some arbitrary context,
7324  //     create a method or method template, and wait for instantiation.
7325  //   - There's a scope specifier that does match some template
7326  //     parameter lists, which we don't handle right now.
7327  } else {
7328    DC = CurContext;
7329    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7330  }
7331
7332  if (!DC->isRecord()) {
7333    // This implies that it has to be an operator or function.
7334    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7335        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7336        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7337      Diag(Loc, diag::err_introducing_special_friend) <<
7338        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7339         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7340      return 0;
7341    }
7342  }
7343
7344  bool Redeclaration = false;
7345  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7346                                          move(TemplateParams),
7347                                          IsDefinition,
7348                                          Redeclaration);
7349  if (!ND) return 0;
7350
7351  assert(ND->getDeclContext() == DC);
7352  assert(ND->getLexicalDeclContext() == CurContext);
7353
7354  // Add the function declaration to the appropriate lookup tables,
7355  // adjusting the redeclarations list as necessary.  We don't
7356  // want to do this yet if the friending class is dependent.
7357  //
7358  // Also update the scope-based lookup if the target context's
7359  // lookup context is in lexical scope.
7360  if (!CurContext->isDependentContext()) {
7361    DC = DC->getRedeclContext();
7362    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7363    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7364      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7365  }
7366
7367  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7368                                       D.getIdentifierLoc(), ND,
7369                                       DS.getFriendSpecLoc());
7370  FrD->setAccess(AS_public);
7371  CurContext->addDecl(FrD);
7372
7373  if (ND->isInvalidDecl())
7374    FrD->setInvalidDecl();
7375  else {
7376    FunctionDecl *FD;
7377    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7378      FD = FTD->getTemplatedDecl();
7379    else
7380      FD = cast<FunctionDecl>(ND);
7381
7382    // Mark templated-scope function declarations as unsupported.
7383    if (FD->getNumTemplateParameterLists())
7384      FrD->setUnsupportedFriend(true);
7385  }
7386
7387  return ND;
7388}
7389
7390void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7391  AdjustDeclIfTemplate(Dcl);
7392
7393  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7394  if (!Fn) {
7395    Diag(DelLoc, diag::err_deleted_non_function);
7396    return;
7397  }
7398  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7399    Diag(DelLoc, diag::err_deleted_decl_not_first);
7400    Diag(Prev->getLocation(), diag::note_previous_declaration);
7401    // If the declaration wasn't the first, we delete the function anyway for
7402    // recovery.
7403  }
7404  Fn->setDeleted();
7405}
7406
7407static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7408  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7409    Stmt *SubStmt = *CI;
7410    if (!SubStmt)
7411      continue;
7412    if (isa<ReturnStmt>(SubStmt))
7413      Self.Diag(SubStmt->getSourceRange().getBegin(),
7414           diag::err_return_in_constructor_handler);
7415    if (!isa<Expr>(SubStmt))
7416      SearchForReturnInStmt(Self, SubStmt);
7417  }
7418}
7419
7420void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7421  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7422    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7423    SearchForReturnInStmt(*this, Handler);
7424  }
7425}
7426
7427bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7428                                             const CXXMethodDecl *Old) {
7429  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7430  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7431
7432  if (Context.hasSameType(NewTy, OldTy) ||
7433      NewTy->isDependentType() || OldTy->isDependentType())
7434    return false;
7435
7436  // Check if the return types are covariant
7437  QualType NewClassTy, OldClassTy;
7438
7439  /// Both types must be pointers or references to classes.
7440  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7441    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7442      NewClassTy = NewPT->getPointeeType();
7443      OldClassTy = OldPT->getPointeeType();
7444    }
7445  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7446    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7447      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7448        NewClassTy = NewRT->getPointeeType();
7449        OldClassTy = OldRT->getPointeeType();
7450      }
7451    }
7452  }
7453
7454  // The return types aren't either both pointers or references to a class type.
7455  if (NewClassTy.isNull()) {
7456    Diag(New->getLocation(),
7457         diag::err_different_return_type_for_overriding_virtual_function)
7458      << New->getDeclName() << NewTy << OldTy;
7459    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7460
7461    return true;
7462  }
7463
7464  // C++ [class.virtual]p6:
7465  //   If the return type of D::f differs from the return type of B::f, the
7466  //   class type in the return type of D::f shall be complete at the point of
7467  //   declaration of D::f or shall be the class type D.
7468  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7469    if (!RT->isBeingDefined() &&
7470        RequireCompleteType(New->getLocation(), NewClassTy,
7471                            PDiag(diag::err_covariant_return_incomplete)
7472                              << New->getDeclName()))
7473    return true;
7474  }
7475
7476  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7477    // Check if the new class derives from the old class.
7478    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7479      Diag(New->getLocation(),
7480           diag::err_covariant_return_not_derived)
7481      << New->getDeclName() << NewTy << OldTy;
7482      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7483      return true;
7484    }
7485
7486    // Check if we the conversion from derived to base is valid.
7487    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7488                    diag::err_covariant_return_inaccessible_base,
7489                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7490                    // FIXME: Should this point to the return type?
7491                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7492      // FIXME: this note won't trigger for delayed access control
7493      // diagnostics, and it's impossible to get an undelayed error
7494      // here from access control during the original parse because
7495      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7496      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7497      return true;
7498    }
7499  }
7500
7501  // The qualifiers of the return types must be the same.
7502  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7503    Diag(New->getLocation(),
7504         diag::err_covariant_return_type_different_qualifications)
7505    << New->getDeclName() << NewTy << OldTy;
7506    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7507    return true;
7508  };
7509
7510
7511  // The new class type must have the same or less qualifiers as the old type.
7512  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7513    Diag(New->getLocation(),
7514         diag::err_covariant_return_type_class_type_more_qualified)
7515    << New->getDeclName() << NewTy << OldTy;
7516    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7517    return true;
7518  };
7519
7520  return false;
7521}
7522
7523/// \brief Mark the given method pure.
7524///
7525/// \param Method the method to be marked pure.
7526///
7527/// \param InitRange the source range that covers the "0" initializer.
7528bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7529  SourceLocation EndLoc = InitRange.getEnd();
7530  if (EndLoc.isValid())
7531    Method->setRangeEnd(EndLoc);
7532
7533  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7534    Method->setPure();
7535    return false;
7536  }
7537
7538  if (!Method->isInvalidDecl())
7539    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7540      << Method->getDeclName() << InitRange;
7541  return true;
7542}
7543
7544/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7545/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7546/// is a fresh scope pushed for just this purpose.
7547///
7548/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7549/// static data member of class X, names should be looked up in the scope of
7550/// class X.
7551void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7552  // If there is no declaration, there was an error parsing it.
7553  if (D == 0) return;
7554
7555  // We should only get called for declarations with scope specifiers, like:
7556  //   int foo::bar;
7557  assert(D->isOutOfLine());
7558  EnterDeclaratorContext(S, D->getDeclContext());
7559}
7560
7561/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7562/// initializer for the out-of-line declaration 'D'.
7563void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7564  // If there is no declaration, there was an error parsing it.
7565  if (D == 0) return;
7566
7567  assert(D->isOutOfLine());
7568  ExitDeclaratorContext(S);
7569}
7570
7571/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7572/// C++ if/switch/while/for statement.
7573/// e.g: "if (int x = f()) {...}"
7574DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7575  // C++ 6.4p2:
7576  // The declarator shall not specify a function or an array.
7577  // The type-specifier-seq shall not contain typedef and shall not declare a
7578  // new class or enumeration.
7579  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7580         "Parser allowed 'typedef' as storage class of condition decl.");
7581
7582  TagDecl *OwnedTag = 0;
7583  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7584  QualType Ty = TInfo->getType();
7585
7586  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7587                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7588                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7589    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7590      << D.getSourceRange();
7591    return DeclResult();
7592  } else if (OwnedTag && OwnedTag->isDefinition()) {
7593    // The type-specifier-seq shall not declare a new class or enumeration.
7594    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7595  }
7596
7597  Decl *Dcl = ActOnDeclarator(S, D);
7598  if (!Dcl)
7599    return DeclResult();
7600
7601  return Dcl;
7602}
7603
7604void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7605                          bool DefinitionRequired) {
7606  // Ignore any vtable uses in unevaluated operands or for classes that do
7607  // not have a vtable.
7608  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7609      CurContext->isDependentContext() ||
7610      ExprEvalContexts.back().Context == Unevaluated)
7611    return;
7612
7613  // Try to insert this class into the map.
7614  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7615  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7616    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7617  if (!Pos.second) {
7618    // If we already had an entry, check to see if we are promoting this vtable
7619    // to required a definition. If so, we need to reappend to the VTableUses
7620    // list, since we may have already processed the first entry.
7621    if (DefinitionRequired && !Pos.first->second) {
7622      Pos.first->second = true;
7623    } else {
7624      // Otherwise, we can early exit.
7625      return;
7626    }
7627  }
7628
7629  // Local classes need to have their virtual members marked
7630  // immediately. For all other classes, we mark their virtual members
7631  // at the end of the translation unit.
7632  if (Class->isLocalClass())
7633    MarkVirtualMembersReferenced(Loc, Class);
7634  else
7635    VTableUses.push_back(std::make_pair(Class, Loc));
7636}
7637
7638bool Sema::DefineUsedVTables() {
7639  if (VTableUses.empty())
7640    return false;
7641
7642  // Note: The VTableUses vector could grow as a result of marking
7643  // the members of a class as "used", so we check the size each
7644  // time through the loop and prefer indices (with are stable) to
7645  // iterators (which are not).
7646  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7647    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7648    if (!Class)
7649      continue;
7650
7651    SourceLocation Loc = VTableUses[I].second;
7652
7653    // If this class has a key function, but that key function is
7654    // defined in another translation unit, we don't need to emit the
7655    // vtable even though we're using it.
7656    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7657    if (KeyFunction && !KeyFunction->hasBody()) {
7658      switch (KeyFunction->getTemplateSpecializationKind()) {
7659      case TSK_Undeclared:
7660      case TSK_ExplicitSpecialization:
7661      case TSK_ExplicitInstantiationDeclaration:
7662        // The key function is in another translation unit.
7663        continue;
7664
7665      case TSK_ExplicitInstantiationDefinition:
7666      case TSK_ImplicitInstantiation:
7667        // We will be instantiating the key function.
7668        break;
7669      }
7670    } else if (!KeyFunction) {
7671      // If we have a class with no key function that is the subject
7672      // of an explicit instantiation declaration, suppress the
7673      // vtable; it will live with the explicit instantiation
7674      // definition.
7675      bool IsExplicitInstantiationDeclaration
7676        = Class->getTemplateSpecializationKind()
7677                                      == TSK_ExplicitInstantiationDeclaration;
7678      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7679                                 REnd = Class->redecls_end();
7680           R != REnd; ++R) {
7681        TemplateSpecializationKind TSK
7682          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7683        if (TSK == TSK_ExplicitInstantiationDeclaration)
7684          IsExplicitInstantiationDeclaration = true;
7685        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7686          IsExplicitInstantiationDeclaration = false;
7687          break;
7688        }
7689      }
7690
7691      if (IsExplicitInstantiationDeclaration)
7692        continue;
7693    }
7694
7695    // Mark all of the virtual members of this class as referenced, so
7696    // that we can build a vtable. Then, tell the AST consumer that a
7697    // vtable for this class is required.
7698    MarkVirtualMembersReferenced(Loc, Class);
7699    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7700    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7701
7702    // Optionally warn if we're emitting a weak vtable.
7703    if (Class->getLinkage() == ExternalLinkage &&
7704        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7705      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7706        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7707    }
7708  }
7709  VTableUses.clear();
7710
7711  return true;
7712}
7713
7714void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7715                                        const CXXRecordDecl *RD) {
7716  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7717       e = RD->method_end(); i != e; ++i) {
7718    CXXMethodDecl *MD = *i;
7719
7720    // C++ [basic.def.odr]p2:
7721    //   [...] A virtual member function is used if it is not pure. [...]
7722    if (MD->isVirtual() && !MD->isPure())
7723      MarkDeclarationReferenced(Loc, MD);
7724  }
7725
7726  // Only classes that have virtual bases need a VTT.
7727  if (RD->getNumVBases() == 0)
7728    return;
7729
7730  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7731           e = RD->bases_end(); i != e; ++i) {
7732    const CXXRecordDecl *Base =
7733        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7734    if (Base->getNumVBases() == 0)
7735      continue;
7736    MarkVirtualMembersReferenced(Loc, Base);
7737  }
7738}
7739
7740/// SetIvarInitializers - This routine builds initialization ASTs for the
7741/// Objective-C implementation whose ivars need be initialized.
7742void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7743  if (!getLangOptions().CPlusPlus)
7744    return;
7745  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7746    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7747    CollectIvarsToConstructOrDestruct(OID, ivars);
7748    if (ivars.empty())
7749      return;
7750    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7751    for (unsigned i = 0; i < ivars.size(); i++) {
7752      FieldDecl *Field = ivars[i];
7753      if (Field->isInvalidDecl())
7754        continue;
7755
7756      CXXCtorInitializer *Member;
7757      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7758      InitializationKind InitKind =
7759        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7760
7761      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7762      ExprResult MemberInit =
7763        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7764      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7765      // Note, MemberInit could actually come back empty if no initialization
7766      // is required (e.g., because it would call a trivial default constructor)
7767      if (!MemberInit.get() || MemberInit.isInvalid())
7768        continue;
7769
7770      Member =
7771        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7772                                         SourceLocation(),
7773                                         MemberInit.takeAs<Expr>(),
7774                                         SourceLocation());
7775      AllToInit.push_back(Member);
7776
7777      // Be sure that the destructor is accessible and is marked as referenced.
7778      if (const RecordType *RecordTy
7779                  = Context.getBaseElementType(Field->getType())
7780                                                        ->getAs<RecordType>()) {
7781                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7782        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7783          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7784          CheckDestructorAccess(Field->getLocation(), Destructor,
7785                            PDiag(diag::err_access_dtor_ivar)
7786                              << Context.getBaseElementType(Field->getType()));
7787        }
7788      }
7789    }
7790    ObjCImplementation->setIvarInitializers(Context,
7791                                            AllToInit.data(), AllToInit.size());
7792  }
7793}
7794