SemaDeclCXX.cpp revision 9da7201adeab345fc7da72bcfcf30e11774fb8c4
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  return Invalid;
262}
263
264/// CheckCXXDefaultArguments - Verify that the default arguments for a
265/// function declaration are well-formed according to C++
266/// [dcl.fct.default].
267void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
268  unsigned NumParams = FD->getNumParams();
269  unsigned p;
270
271  // Find first parameter with a default argument
272  for (p = 0; p < NumParams; ++p) {
273    ParmVarDecl *Param = FD->getParamDecl(p);
274    if (Param->getDefaultArg())
275      break;
276  }
277
278  // C++ [dcl.fct.default]p4:
279  //   In a given function declaration, all parameters
280  //   subsequent to a parameter with a default argument shall
281  //   have default arguments supplied in this or previous
282  //   declarations. A default argument shall not be redefined
283  //   by a later declaration (not even to the same value).
284  unsigned LastMissingDefaultArg = 0;
285  for(; p < NumParams; ++p) {
286    ParmVarDecl *Param = FD->getParamDecl(p);
287    if (!Param->getDefaultArg()) {
288      if (Param->isInvalidDecl())
289        /* We already complained about this parameter. */;
290      else if (Param->getIdentifier())
291        Diag(Param->getLocation(),
292             diag::err_param_default_argument_missing_name)
293          << Param->getIdentifier();
294      else
295        Diag(Param->getLocation(),
296             diag::err_param_default_argument_missing);
297
298      LastMissingDefaultArg = p;
299    }
300  }
301
302  if (LastMissingDefaultArg > 0) {
303    // Some default arguments were missing. Clear out all of the
304    // default arguments up to (and including) the last missing
305    // default argument, so that we leave the function parameters
306    // in a semantically valid state.
307    for (p = 0; p <= LastMissingDefaultArg; ++p) {
308      ParmVarDecl *Param = FD->getParamDecl(p);
309      if (Param->hasDefaultArg()) {
310        if (!Param->hasUnparsedDefaultArg())
311          Param->getDefaultArg()->Destroy(Context);
312        Param->setDefaultArg(0);
313      }
314    }
315  }
316}
317
318/// isCurrentClassName - Determine whether the identifier II is the
319/// name of the class type currently being defined. In the case of
320/// nested classes, this will only return true if II is the name of
321/// the innermost class.
322bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
323                              const CXXScopeSpec *SS) {
324  CXXRecordDecl *CurDecl;
325  if (SS && SS->isSet() && !SS->isInvalid()) {
326    DeclContext *DC = computeDeclContext(*SS);
327    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
328  } else
329    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
330
331  if (CurDecl)
332    return &II == CurDecl->getIdentifier();
333  else
334    return false;
335}
336
337/// \brief Check the validity of a C++ base class specifier.
338///
339/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
340/// and returns NULL otherwise.
341CXXBaseSpecifier *
342Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
343                         SourceRange SpecifierRange,
344                         bool Virtual, AccessSpecifier Access,
345                         QualType BaseType,
346                         SourceLocation BaseLoc) {
347  // C++ [class.union]p1:
348  //   A union shall not have base classes.
349  if (Class->isUnion()) {
350    Diag(Class->getLocation(), diag::err_base_clause_on_union)
351      << SpecifierRange;
352    return 0;
353  }
354
355  if (BaseType->isDependentType())
356    return new CXXBaseSpecifier(SpecifierRange, Virtual,
357                                Class->getTagKind() == RecordDecl::TK_class,
358                                Access, BaseType);
359
360  // Base specifiers must be record types.
361  if (!BaseType->isRecordType()) {
362    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
363    return 0;
364  }
365
366  // C++ [class.union]p1:
367  //   A union shall not be used as a base class.
368  if (BaseType->isUnionType()) {
369    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
370    return 0;
371  }
372
373  // C++ [class.derived]p2:
374  //   The class-name in a base-specifier shall not be an incompletely
375  //   defined class.
376  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
377                          SpecifierRange))
378    return 0;
379
380  // If the base class is polymorphic, the new one is, too.
381  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
382  assert(BaseDecl && "Record type has no declaration");
383  BaseDecl = BaseDecl->getDefinition(Context);
384  assert(BaseDecl && "Base type is not incomplete, but has no definition");
385  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
386    Class->setPolymorphic(true);
387
388  // C++ [dcl.init.aggr]p1:
389  //   An aggregate is [...] a class with [...] no base classes [...].
390  Class->setAggregate(false);
391  Class->setPOD(false);
392
393  if (Virtual) {
394    // C++ [class.ctor]p5:
395    //   A constructor is trivial if its class has no virtual base classes.
396    Class->setHasTrivialConstructor(false);
397  } else {
398    // C++ [class.ctor]p5:
399    //   A constructor is trivial if all the direct base classes of its
400    //   class have trivial constructors.
401    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
402                                    hasTrivialConstructor());
403  }
404
405  // C++ [class.ctor]p3:
406  //   A destructor is trivial if all the direct base classes of its class
407  //   have trivial destructors.
408  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
409                                 hasTrivialDestructor());
410
411  // Create the base specifier.
412  // FIXME: Allocate via ASTContext?
413  return new CXXBaseSpecifier(SpecifierRange, Virtual,
414                              Class->getTagKind() == RecordDecl::TK_class,
415                              Access, BaseType);
416}
417
418/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
419/// one entry in the base class list of a class specifier, for
420/// example:
421///    class foo : public bar, virtual private baz {
422/// 'public bar' and 'virtual private baz' are each base-specifiers.
423Sema::BaseResult
424Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
425                         bool Virtual, AccessSpecifier Access,
426                         TypeTy *basetype, SourceLocation BaseLoc) {
427  if (!classdecl)
428    return true;
429
430  AdjustDeclIfTemplate(classdecl);
431  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
432  QualType BaseType = QualType::getFromOpaquePtr(basetype);
433  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
434                                                      Virtual, Access,
435                                                      BaseType, BaseLoc))
436    return BaseSpec;
437
438  return true;
439}
440
441/// \brief Performs the actual work of attaching the given base class
442/// specifiers to a C++ class.
443bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
444                                unsigned NumBases) {
445 if (NumBases == 0)
446    return false;
447
448  // Used to keep track of which base types we have already seen, so
449  // that we can properly diagnose redundant direct base types. Note
450  // that the key is always the unqualified canonical type of the base
451  // class.
452  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
453
454  // Copy non-redundant base specifiers into permanent storage.
455  unsigned NumGoodBases = 0;
456  bool Invalid = false;
457  for (unsigned idx = 0; idx < NumBases; ++idx) {
458    QualType NewBaseType
459      = Context.getCanonicalType(Bases[idx]->getType());
460    NewBaseType = NewBaseType.getUnqualifiedType();
461
462    if (KnownBaseTypes[NewBaseType]) {
463      // C++ [class.mi]p3:
464      //   A class shall not be specified as a direct base class of a
465      //   derived class more than once.
466      Diag(Bases[idx]->getSourceRange().getBegin(),
467           diag::err_duplicate_base_class)
468        << KnownBaseTypes[NewBaseType]->getType()
469        << Bases[idx]->getSourceRange();
470
471      // Delete the duplicate base class specifier; we're going to
472      // overwrite its pointer later.
473      delete Bases[idx];
474
475      Invalid = true;
476    } else {
477      // Okay, add this new base class.
478      KnownBaseTypes[NewBaseType] = Bases[idx];
479      Bases[NumGoodBases++] = Bases[idx];
480    }
481  }
482
483  // Attach the remaining base class specifiers to the derived class.
484  Class->setBases(Bases, NumGoodBases);
485
486  // Delete the remaining (good) base class specifiers, since their
487  // data has been copied into the CXXRecordDecl.
488  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
489    delete Bases[idx];
490
491  return Invalid;
492}
493
494/// ActOnBaseSpecifiers - Attach the given base specifiers to the
495/// class, after checking whether there are any duplicate base
496/// classes.
497void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
498                               unsigned NumBases) {
499  if (!ClassDecl || !Bases || !NumBases)
500    return;
501
502  AdjustDeclIfTemplate(ClassDecl);
503  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
504                       (CXXBaseSpecifier**)(Bases), NumBases);
505}
506
507//===----------------------------------------------------------------------===//
508// C++ class member Handling
509//===----------------------------------------------------------------------===//
510
511/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
512/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
513/// bitfield width if there is one and 'InitExpr' specifies the initializer if
514/// any.
515Sema::DeclPtrTy
516Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
517                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
518  const DeclSpec &DS = D.getDeclSpec();
519  DeclarationName Name = GetNameForDeclarator(D);
520  Expr *BitWidth = static_cast<Expr*>(BW);
521  Expr *Init = static_cast<Expr*>(InitExpr);
522  SourceLocation Loc = D.getIdentifierLoc();
523
524  bool isFunc = D.isFunctionDeclarator();
525
526  // C++ 9.2p6: A member shall not be declared to have automatic storage
527  // duration (auto, register) or with the extern storage-class-specifier.
528  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
529  // data members and cannot be applied to names declared const or static,
530  // and cannot be applied to reference members.
531  switch (DS.getStorageClassSpec()) {
532    case DeclSpec::SCS_unspecified:
533    case DeclSpec::SCS_typedef:
534    case DeclSpec::SCS_static:
535      // FALL THROUGH.
536      break;
537    case DeclSpec::SCS_mutable:
538      if (isFunc) {
539        if (DS.getStorageClassSpecLoc().isValid())
540          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
541        else
542          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
543
544        // FIXME: It would be nicer if the keyword was ignored only for this
545        // declarator. Otherwise we could get follow-up errors.
546        D.getMutableDeclSpec().ClearStorageClassSpecs();
547      } else {
548        QualType T = GetTypeForDeclarator(D, S);
549        diag::kind err = static_cast<diag::kind>(0);
550        if (T->isReferenceType())
551          err = diag::err_mutable_reference;
552        else if (T.isConstQualified())
553          err = diag::err_mutable_const;
554        if (err != 0) {
555          if (DS.getStorageClassSpecLoc().isValid())
556            Diag(DS.getStorageClassSpecLoc(), err);
557          else
558            Diag(DS.getThreadSpecLoc(), err);
559          // FIXME: It would be nicer if the keyword was ignored only for this
560          // declarator. Otherwise we could get follow-up errors.
561          D.getMutableDeclSpec().ClearStorageClassSpecs();
562        }
563      }
564      break;
565    default:
566      if (DS.getStorageClassSpecLoc().isValid())
567        Diag(DS.getStorageClassSpecLoc(),
568             diag::err_storageclass_invalid_for_member);
569      else
570        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
571      D.getMutableDeclSpec().ClearStorageClassSpecs();
572  }
573
574  if (!isFunc &&
575      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
576      D.getNumTypeObjects() == 0) {
577    // Check also for this case:
578    //
579    // typedef int f();
580    // f a;
581    //
582    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
583    isFunc = TDType->isFunctionType();
584  }
585
586  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
587                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
588                      !isFunc);
589
590  Decl *Member;
591  if (isInstField) {
592    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
593                         AS);
594    assert(Member && "HandleField never returns null");
595  } else {
596    Member = ActOnDeclarator(S, D).getAs<Decl>();
597    if (!Member) {
598      if (BitWidth) DeleteExpr(BitWidth);
599      return DeclPtrTy();
600    }
601
602    // Non-instance-fields can't have a bitfield.
603    if (BitWidth) {
604      if (Member->isInvalidDecl()) {
605        // don't emit another diagnostic.
606      } else if (isa<VarDecl>(Member)) {
607        // C++ 9.6p3: A bit-field shall not be a static member.
608        // "static member 'A' cannot be a bit-field"
609        Diag(Loc, diag::err_static_not_bitfield)
610          << Name << BitWidth->getSourceRange();
611      } else if (isa<TypedefDecl>(Member)) {
612        // "typedef member 'x' cannot be a bit-field"
613        Diag(Loc, diag::err_typedef_not_bitfield)
614          << Name << BitWidth->getSourceRange();
615      } else {
616        // A function typedef ("typedef int f(); f a;").
617        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
618        Diag(Loc, diag::err_not_integral_type_bitfield)
619          << Name << cast<ValueDecl>(Member)->getType()
620          << BitWidth->getSourceRange();
621      }
622
623      DeleteExpr(BitWidth);
624      BitWidth = 0;
625      Member->setInvalidDecl();
626    }
627
628    Member->setAccess(AS);
629  }
630
631  assert((Name || isInstField) && "No identifier for non-field ?");
632
633  if (Init)
634    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
635  if (Deleted) // FIXME: Source location is not very good.
636    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
637
638  if (isInstField) {
639    FieldCollector->Add(cast<FieldDecl>(Member));
640    return DeclPtrTy();
641  }
642  return DeclPtrTy::make(Member);
643}
644
645/// ActOnMemInitializer - Handle a C++ member initializer.
646Sema::MemInitResult
647Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
648                          Scope *S,
649                          IdentifierInfo *MemberOrBase,
650                          SourceLocation IdLoc,
651                          SourceLocation LParenLoc,
652                          ExprTy **Args, unsigned NumArgs,
653                          SourceLocation *CommaLocs,
654                          SourceLocation RParenLoc) {
655  if (!ConstructorD)
656    return true;
657
658  CXXConstructorDecl *Constructor
659    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
660  if (!Constructor) {
661    // The user wrote a constructor initializer on a function that is
662    // not a C++ constructor. Ignore the error for now, because we may
663    // have more member initializers coming; we'll diagnose it just
664    // once in ActOnMemInitializers.
665    return true;
666  }
667
668  CXXRecordDecl *ClassDecl = Constructor->getParent();
669
670  // C++ [class.base.init]p2:
671  //   Names in a mem-initializer-id are looked up in the scope of the
672  //   constructor’s class and, if not found in that scope, are looked
673  //   up in the scope containing the constructor’s
674  //   definition. [Note: if the constructor’s class contains a member
675  //   with the same name as a direct or virtual base class of the
676  //   class, a mem-initializer-id naming the member or base class and
677  //   composed of a single identifier refers to the class member. A
678  //   mem-initializer-id for the hidden base class may be specified
679  //   using a qualified name. ]
680  // Look for a member, first.
681  FieldDecl *Member = 0;
682  DeclContext::lookup_result Result
683    = ClassDecl->lookup(MemberOrBase);
684  if (Result.first != Result.second)
685    Member = dyn_cast<FieldDecl>(*Result.first);
686
687  // FIXME: Handle members of an anonymous union.
688
689  if (Member) {
690    // FIXME: Perform direct initialization of the member.
691    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
692                                          IdLoc);
693  }
694
695  // It didn't name a member, so see if it names a class.
696  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
697  if (!BaseTy)
698    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
699      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
700
701  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
702  if (!BaseType->isRecordType())
703    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
704      << BaseType << SourceRange(IdLoc, RParenLoc);
705
706  // C++ [class.base.init]p2:
707  //   [...] Unless the mem-initializer-id names a nonstatic data
708  //   member of the constructor’s class or a direct or virtual base
709  //   of that class, the mem-initializer is ill-formed. A
710  //   mem-initializer-list can initialize a base class using any
711  //   name that denotes that base class type.
712
713  // First, check for a direct base class.
714  const CXXBaseSpecifier *DirectBaseSpec = 0;
715  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
716       Base != ClassDecl->bases_end(); ++Base) {
717    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
718        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
719      // We found a direct base of this type. That's what we're
720      // initializing.
721      DirectBaseSpec = &*Base;
722      break;
723    }
724  }
725
726  // Check for a virtual base class.
727  // FIXME: We might be able to short-circuit this if we know in advance that
728  // there are no virtual bases.
729  const CXXBaseSpecifier *VirtualBaseSpec = 0;
730  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
731    // We haven't found a base yet; search the class hierarchy for a
732    // virtual base class.
733    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
734                    /*DetectVirtual=*/false);
735    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
736      for (BasePaths::paths_iterator Path = Paths.begin();
737           Path != Paths.end(); ++Path) {
738        if (Path->back().Base->isVirtual()) {
739          VirtualBaseSpec = Path->back().Base;
740          break;
741        }
742      }
743    }
744  }
745
746  // C++ [base.class.init]p2:
747  //   If a mem-initializer-id is ambiguous because it designates both
748  //   a direct non-virtual base class and an inherited virtual base
749  //   class, the mem-initializer is ill-formed.
750  if (DirectBaseSpec && VirtualBaseSpec)
751    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
752      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
753  // C++ [base.class.init]p2:
754  // Unless the mem-initializer-id names a nonstatic data membeer of the
755  // constructor's class ot a direst or virtual base of that class, the
756  // mem-initializer is ill-formed.
757  if (!DirectBaseSpec && !VirtualBaseSpec)
758    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
759    << BaseType << ClassDecl->getNameAsCString()
760    << SourceRange(IdLoc, RParenLoc);
761
762
763  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
764                                        IdLoc);
765}
766
767void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
768                                SourceLocation ColonLoc,
769                                MemInitTy **MemInits, unsigned NumMemInits) {
770  if (!ConstructorDecl)
771    return;
772
773  CXXConstructorDecl *Constructor
774    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
775
776  if (!Constructor) {
777    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
778    return;
779  }
780  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
781
782  for (unsigned i = 0; i < NumMemInits; i++) {
783    CXXBaseOrMemberInitializer *Member =
784      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
785    CXXBaseOrMemberInitializer *&PrevMember = Members[Member->getBaseOrMember()];
786    if (!PrevMember) {
787      PrevMember = Member;
788      continue;
789    }
790    if (FieldDecl *Field = Member->getMember())
791      Diag(Member->getSourceLocation(),
792           diag::error_multiple_mem_initialization)
793      << Field->getNameAsString();
794    else {
795      Type *BaseClass = Member->getBaseClass();
796      assert(BaseClass && "ActOnMemInitializers - neither field or base");
797      Diag(Member->getSourceLocation(),
798           diag::error_multiple_base_initialization)
799        << BaseClass->getDesugaredType(true);
800    }
801    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
802      << 0;
803  }
804}
805
806namespace {
807  /// PureVirtualMethodCollector - traverses a class and its superclasses
808  /// and determines if it has any pure virtual methods.
809  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
810    ASTContext &Context;
811
812  public:
813    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
814
815  private:
816    MethodList Methods;
817
818    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
819
820  public:
821    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
822      : Context(Ctx) {
823
824      MethodList List;
825      Collect(RD, List);
826
827      // Copy the temporary list to methods, and make sure to ignore any
828      // null entries.
829      for (size_t i = 0, e = List.size(); i != e; ++i) {
830        if (List[i])
831          Methods.push_back(List[i]);
832      }
833    }
834
835    bool empty() const { return Methods.empty(); }
836
837    MethodList::const_iterator methods_begin() { return Methods.begin(); }
838    MethodList::const_iterator methods_end() { return Methods.end(); }
839  };
840
841  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
842                                           MethodList& Methods) {
843    // First, collect the pure virtual methods for the base classes.
844    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
845         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
846      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
847        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
848        if (BaseDecl && BaseDecl->isAbstract())
849          Collect(BaseDecl, Methods);
850      }
851    }
852
853    // Next, zero out any pure virtual methods that this class overrides.
854    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
855
856    MethodSetTy OverriddenMethods;
857    size_t MethodsSize = Methods.size();
858
859    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
860         i != e; ++i) {
861      // Traverse the record, looking for methods.
862      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
863        // If the method is pre virtual, add it to the methods vector.
864        if (MD->isPure()) {
865          Methods.push_back(MD);
866          continue;
867        }
868
869        // Otherwise, record all the overridden methods in our set.
870        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
871             E = MD->end_overridden_methods(); I != E; ++I) {
872          // Keep track of the overridden methods.
873          OverriddenMethods.insert(*I);
874        }
875      }
876    }
877
878    // Now go through the methods and zero out all the ones we know are
879    // overridden.
880    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
881      if (OverriddenMethods.count(Methods[i]))
882        Methods[i] = 0;
883    }
884
885  }
886}
887
888bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
889                                  unsigned DiagID, AbstractDiagSelID SelID,
890                                  const CXXRecordDecl *CurrentRD) {
891
892  if (!getLangOptions().CPlusPlus)
893    return false;
894
895  if (const ArrayType *AT = Context.getAsArrayType(T))
896    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
897                                  CurrentRD);
898
899  if (const PointerType *PT = T->getAsPointerType()) {
900    // Find the innermost pointer type.
901    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
902      PT = T;
903
904    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
905      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
906                                    CurrentRD);
907  }
908
909  const RecordType *RT = T->getAsRecordType();
910  if (!RT)
911    return false;
912
913  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
914  if (!RD)
915    return false;
916
917  if (CurrentRD && CurrentRD != RD)
918    return false;
919
920  if (!RD->isAbstract())
921    return false;
922
923  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
924
925  // Check if we've already emitted the list of pure virtual functions for this
926  // class.
927  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
928    return true;
929
930  PureVirtualMethodCollector Collector(Context, RD);
931
932  for (PureVirtualMethodCollector::MethodList::const_iterator I =
933       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
934    const CXXMethodDecl *MD = *I;
935
936    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
937      MD->getDeclName();
938  }
939
940  if (!PureVirtualClassDiagSet)
941    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
942  PureVirtualClassDiagSet->insert(RD);
943
944  return true;
945}
946
947namespace {
948  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
949    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
950    Sema &SemaRef;
951    CXXRecordDecl *AbstractClass;
952
953    bool VisitDeclContext(const DeclContext *DC) {
954      bool Invalid = false;
955
956      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
957           E = DC->decls_end(); I != E; ++I)
958        Invalid |= Visit(*I);
959
960      return Invalid;
961    }
962
963  public:
964    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
965      : SemaRef(SemaRef), AbstractClass(ac) {
966        Visit(SemaRef.Context.getTranslationUnitDecl());
967    }
968
969    bool VisitFunctionDecl(const FunctionDecl *FD) {
970      if (FD->isThisDeclarationADefinition()) {
971        // No need to do the check if we're in a definition, because it requires
972        // that the return/param types are complete.
973        // because that requires
974        return VisitDeclContext(FD);
975      }
976
977      // Check the return type.
978      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
979      bool Invalid =
980        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
981                                       diag::err_abstract_type_in_decl,
982                                       Sema::AbstractReturnType,
983                                       AbstractClass);
984
985      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
986           E = FD->param_end(); I != E; ++I) {
987        const ParmVarDecl *VD = *I;
988        Invalid |=
989          SemaRef.RequireNonAbstractType(VD->getLocation(),
990                                         VD->getOriginalType(),
991                                         diag::err_abstract_type_in_decl,
992                                         Sema::AbstractParamType,
993                                         AbstractClass);
994      }
995
996      return Invalid;
997    }
998
999    bool VisitDecl(const Decl* D) {
1000      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1001        return VisitDeclContext(DC);
1002
1003      return false;
1004    }
1005  };
1006}
1007
1008void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1009                                             DeclPtrTy TagDecl,
1010                                             SourceLocation LBrac,
1011                                             SourceLocation RBrac) {
1012  if (!TagDecl)
1013    return;
1014
1015  AdjustDeclIfTemplate(TagDecl);
1016  ActOnFields(S, RLoc, TagDecl,
1017              (DeclPtrTy*)FieldCollector->getCurFields(),
1018              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1019
1020  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1021  if (!RD->isAbstract()) {
1022    // Collect all the pure virtual methods and see if this is an abstract
1023    // class after all.
1024    PureVirtualMethodCollector Collector(Context, RD);
1025    if (!Collector.empty())
1026      RD->setAbstract(true);
1027  }
1028
1029  if (RD->isAbstract())
1030    AbstractClassUsageDiagnoser(*this, RD);
1031
1032  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1033    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1034         i != e; ++i) {
1035      // All the nonstatic data members must have trivial constructors.
1036      QualType FTy = i->getType();
1037      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1038        FTy = AT->getElementType();
1039
1040      if (const RecordType *RT = FTy->getAsRecordType()) {
1041        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1042
1043        if (!FieldRD->hasTrivialConstructor())
1044          RD->setHasTrivialConstructor(false);
1045        if (!FieldRD->hasTrivialDestructor())
1046          RD->setHasTrivialDestructor(false);
1047
1048        // If RD has neither a trivial constructor nor a trivial destructor
1049        // we don't need to continue checking.
1050        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1051          break;
1052      }
1053    }
1054  }
1055
1056  if (!RD->isDependentType())
1057    AddImplicitlyDeclaredMembersToClass(RD);
1058}
1059
1060/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1061/// special functions, such as the default constructor, copy
1062/// constructor, or destructor, to the given C++ class (C++
1063/// [special]p1).  This routine can only be executed just before the
1064/// definition of the class is complete.
1065void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1066  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1067  ClassType = Context.getCanonicalType(ClassType);
1068
1069  // FIXME: Implicit declarations have exception specifications, which are
1070  // the union of the specifications of the implicitly called functions.
1071
1072  if (!ClassDecl->hasUserDeclaredConstructor()) {
1073    // C++ [class.ctor]p5:
1074    //   A default constructor for a class X is a constructor of class X
1075    //   that can be called without an argument. If there is no
1076    //   user-declared constructor for class X, a default constructor is
1077    //   implicitly declared. An implicitly-declared default constructor
1078    //   is an inline public member of its class.
1079    DeclarationName Name
1080      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1081    CXXConstructorDecl *DefaultCon =
1082      CXXConstructorDecl::Create(Context, ClassDecl,
1083                                 ClassDecl->getLocation(), Name,
1084                                 Context.getFunctionType(Context.VoidTy,
1085                                                         0, 0, false, 0),
1086                                 /*isExplicit=*/false,
1087                                 /*isInline=*/true,
1088                                 /*isImplicitlyDeclared=*/true);
1089    DefaultCon->setAccess(AS_public);
1090    DefaultCon->setImplicit();
1091    ClassDecl->addDecl(DefaultCon);
1092  }
1093
1094  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1095    // C++ [class.copy]p4:
1096    //   If the class definition does not explicitly declare a copy
1097    //   constructor, one is declared implicitly.
1098
1099    // C++ [class.copy]p5:
1100    //   The implicitly-declared copy constructor for a class X will
1101    //   have the form
1102    //
1103    //       X::X(const X&)
1104    //
1105    //   if
1106    bool HasConstCopyConstructor = true;
1107
1108    //     -- each direct or virtual base class B of X has a copy
1109    //        constructor whose first parameter is of type const B& or
1110    //        const volatile B&, and
1111    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1112         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1113      const CXXRecordDecl *BaseClassDecl
1114        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1115      HasConstCopyConstructor
1116        = BaseClassDecl->hasConstCopyConstructor(Context);
1117    }
1118
1119    //     -- for all the nonstatic data members of X that are of a
1120    //        class type M (or array thereof), each such class type
1121    //        has a copy constructor whose first parameter is of type
1122    //        const M& or const volatile M&.
1123    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1124         HasConstCopyConstructor && Field != ClassDecl->field_end();
1125         ++Field) {
1126      QualType FieldType = (*Field)->getType();
1127      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1128        FieldType = Array->getElementType();
1129      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1130        const CXXRecordDecl *FieldClassDecl
1131          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1132        HasConstCopyConstructor
1133          = FieldClassDecl->hasConstCopyConstructor(Context);
1134      }
1135    }
1136
1137    //   Otherwise, the implicitly declared copy constructor will have
1138    //   the form
1139    //
1140    //       X::X(X&)
1141    QualType ArgType = ClassType;
1142    if (HasConstCopyConstructor)
1143      ArgType = ArgType.withConst();
1144    ArgType = Context.getLValueReferenceType(ArgType);
1145
1146    //   An implicitly-declared copy constructor is an inline public
1147    //   member of its class.
1148    DeclarationName Name
1149      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1150    CXXConstructorDecl *CopyConstructor
1151      = CXXConstructorDecl::Create(Context, ClassDecl,
1152                                   ClassDecl->getLocation(), Name,
1153                                   Context.getFunctionType(Context.VoidTy,
1154                                                           &ArgType, 1,
1155                                                           false, 0),
1156                                   /*isExplicit=*/false,
1157                                   /*isInline=*/true,
1158                                   /*isImplicitlyDeclared=*/true);
1159    CopyConstructor->setAccess(AS_public);
1160    CopyConstructor->setImplicit();
1161
1162    // Add the parameter to the constructor.
1163    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1164                                                 ClassDecl->getLocation(),
1165                                                 /*IdentifierInfo=*/0,
1166                                                 ArgType, VarDecl::None, 0);
1167    CopyConstructor->setParams(Context, &FromParam, 1);
1168    ClassDecl->addDecl(CopyConstructor);
1169  }
1170
1171  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1172    // Note: The following rules are largely analoguous to the copy
1173    // constructor rules. Note that virtual bases are not taken into account
1174    // for determining the argument type of the operator. Note also that
1175    // operators taking an object instead of a reference are allowed.
1176    //
1177    // C++ [class.copy]p10:
1178    //   If the class definition does not explicitly declare a copy
1179    //   assignment operator, one is declared implicitly.
1180    //   The implicitly-defined copy assignment operator for a class X
1181    //   will have the form
1182    //
1183    //       X& X::operator=(const X&)
1184    //
1185    //   if
1186    bool HasConstCopyAssignment = true;
1187
1188    //       -- each direct base class B of X has a copy assignment operator
1189    //          whose parameter is of type const B&, const volatile B& or B,
1190    //          and
1191    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1192         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1193      const CXXRecordDecl *BaseClassDecl
1194        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1195      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1196    }
1197
1198    //       -- for all the nonstatic data members of X that are of a class
1199    //          type M (or array thereof), each such class type has a copy
1200    //          assignment operator whose parameter is of type const M&,
1201    //          const volatile M& or M.
1202    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1203         HasConstCopyAssignment && Field != ClassDecl->field_end();
1204         ++Field) {
1205      QualType FieldType = (*Field)->getType();
1206      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1207        FieldType = Array->getElementType();
1208      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1209        const CXXRecordDecl *FieldClassDecl
1210          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1211        HasConstCopyAssignment
1212          = FieldClassDecl->hasConstCopyAssignment(Context);
1213      }
1214    }
1215
1216    //   Otherwise, the implicitly declared copy assignment operator will
1217    //   have the form
1218    //
1219    //       X& X::operator=(X&)
1220    QualType ArgType = ClassType;
1221    QualType RetType = Context.getLValueReferenceType(ArgType);
1222    if (HasConstCopyAssignment)
1223      ArgType = ArgType.withConst();
1224    ArgType = Context.getLValueReferenceType(ArgType);
1225
1226    //   An implicitly-declared copy assignment operator is an inline public
1227    //   member of its class.
1228    DeclarationName Name =
1229      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1230    CXXMethodDecl *CopyAssignment =
1231      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1232                            Context.getFunctionType(RetType, &ArgType, 1,
1233                                                    false, 0),
1234                            /*isStatic=*/false, /*isInline=*/true);
1235    CopyAssignment->setAccess(AS_public);
1236    CopyAssignment->setImplicit();
1237
1238    // Add the parameter to the operator.
1239    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1240                                                 ClassDecl->getLocation(),
1241                                                 /*IdentifierInfo=*/0,
1242                                                 ArgType, VarDecl::None, 0);
1243    CopyAssignment->setParams(Context, &FromParam, 1);
1244
1245    // Don't call addedAssignmentOperator. There is no way to distinguish an
1246    // implicit from an explicit assignment operator.
1247    ClassDecl->addDecl(CopyAssignment);
1248  }
1249
1250  if (!ClassDecl->hasUserDeclaredDestructor()) {
1251    // C++ [class.dtor]p2:
1252    //   If a class has no user-declared destructor, a destructor is
1253    //   declared implicitly. An implicitly-declared destructor is an
1254    //   inline public member of its class.
1255    DeclarationName Name
1256      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1257    CXXDestructorDecl *Destructor
1258      = CXXDestructorDecl::Create(Context, ClassDecl,
1259                                  ClassDecl->getLocation(), Name,
1260                                  Context.getFunctionType(Context.VoidTy,
1261                                                          0, 0, false, 0),
1262                                  /*isInline=*/true,
1263                                  /*isImplicitlyDeclared=*/true);
1264    Destructor->setAccess(AS_public);
1265    Destructor->setImplicit();
1266    ClassDecl->addDecl(Destructor);
1267  }
1268}
1269
1270void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1271  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1272  if (!Template)
1273    return;
1274
1275  TemplateParameterList *Params = Template->getTemplateParameters();
1276  for (TemplateParameterList::iterator Param = Params->begin(),
1277                                    ParamEnd = Params->end();
1278       Param != ParamEnd; ++Param) {
1279    NamedDecl *Named = cast<NamedDecl>(*Param);
1280    if (Named->getDeclName()) {
1281      S->AddDecl(DeclPtrTy::make(Named));
1282      IdResolver.AddDecl(Named);
1283    }
1284  }
1285}
1286
1287/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1288/// parsing a top-level (non-nested) C++ class, and we are now
1289/// parsing those parts of the given Method declaration that could
1290/// not be parsed earlier (C++ [class.mem]p2), such as default
1291/// arguments. This action should enter the scope of the given
1292/// Method declaration as if we had just parsed the qualified method
1293/// name. However, it should not bring the parameters into scope;
1294/// that will be performed by ActOnDelayedCXXMethodParameter.
1295void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1296  if (!MethodD)
1297    return;
1298
1299  CXXScopeSpec SS;
1300  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1301  QualType ClassTy
1302    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1303  SS.setScopeRep(
1304    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1305  ActOnCXXEnterDeclaratorScope(S, SS);
1306}
1307
1308/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1309/// C++ method declaration. We're (re-)introducing the given
1310/// function parameter into scope for use in parsing later parts of
1311/// the method declaration. For example, we could see an
1312/// ActOnParamDefaultArgument event for this parameter.
1313void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1314  if (!ParamD)
1315    return;
1316
1317  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1318
1319  // If this parameter has an unparsed default argument, clear it out
1320  // to make way for the parsed default argument.
1321  if (Param->hasUnparsedDefaultArg())
1322    Param->setDefaultArg(0);
1323
1324  S->AddDecl(DeclPtrTy::make(Param));
1325  if (Param->getDeclName())
1326    IdResolver.AddDecl(Param);
1327}
1328
1329/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1330/// processing the delayed method declaration for Method. The method
1331/// declaration is now considered finished. There may be a separate
1332/// ActOnStartOfFunctionDef action later (not necessarily
1333/// immediately!) for this method, if it was also defined inside the
1334/// class body.
1335void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1336  if (!MethodD)
1337    return;
1338
1339  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1340  CXXScopeSpec SS;
1341  QualType ClassTy
1342    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1343  SS.setScopeRep(
1344    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1345  ActOnCXXExitDeclaratorScope(S, SS);
1346
1347  // Now that we have our default arguments, check the constructor
1348  // again. It could produce additional diagnostics or affect whether
1349  // the class has implicitly-declared destructors, among other
1350  // things.
1351  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1352    CheckConstructor(Constructor);
1353
1354  // Check the default arguments, which we may have added.
1355  if (!Method->isInvalidDecl())
1356    CheckCXXDefaultArguments(Method);
1357}
1358
1359/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1360/// the well-formedness of the constructor declarator @p D with type @p
1361/// R. If there are any errors in the declarator, this routine will
1362/// emit diagnostics and set the invalid bit to true.  In any case, the type
1363/// will be updated to reflect a well-formed type for the constructor and
1364/// returned.
1365QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1366                                          FunctionDecl::StorageClass &SC) {
1367  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1368
1369  // C++ [class.ctor]p3:
1370  //   A constructor shall not be virtual (10.3) or static (9.4). A
1371  //   constructor can be invoked for a const, volatile or const
1372  //   volatile object. A constructor shall not be declared const,
1373  //   volatile, or const volatile (9.3.2).
1374  if (isVirtual) {
1375    if (!D.isInvalidType())
1376      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1377        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1378        << SourceRange(D.getIdentifierLoc());
1379    D.setInvalidType();
1380  }
1381  if (SC == FunctionDecl::Static) {
1382    if (!D.isInvalidType())
1383      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1384        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1385        << SourceRange(D.getIdentifierLoc());
1386    D.setInvalidType();
1387    SC = FunctionDecl::None;
1388  }
1389
1390  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1391  if (FTI.TypeQuals != 0) {
1392    if (FTI.TypeQuals & QualType::Const)
1393      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1394        << "const" << SourceRange(D.getIdentifierLoc());
1395    if (FTI.TypeQuals & QualType::Volatile)
1396      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1397        << "volatile" << SourceRange(D.getIdentifierLoc());
1398    if (FTI.TypeQuals & QualType::Restrict)
1399      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1400        << "restrict" << SourceRange(D.getIdentifierLoc());
1401  }
1402
1403  // Rebuild the function type "R" without any type qualifiers (in
1404  // case any of the errors above fired) and with "void" as the
1405  // return type, since constructors don't have return types. We
1406  // *always* have to do this, because GetTypeForDeclarator will
1407  // put in a result type of "int" when none was specified.
1408  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1409  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1410                                 Proto->getNumArgs(),
1411                                 Proto->isVariadic(), 0);
1412}
1413
1414/// CheckConstructor - Checks a fully-formed constructor for
1415/// well-formedness, issuing any diagnostics required. Returns true if
1416/// the constructor declarator is invalid.
1417void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1418  CXXRecordDecl *ClassDecl
1419    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1420  if (!ClassDecl)
1421    return Constructor->setInvalidDecl();
1422
1423  // C++ [class.copy]p3:
1424  //   A declaration of a constructor for a class X is ill-formed if
1425  //   its first parameter is of type (optionally cv-qualified) X and
1426  //   either there are no other parameters or else all other
1427  //   parameters have default arguments.
1428  if (!Constructor->isInvalidDecl() &&
1429      ((Constructor->getNumParams() == 1) ||
1430       (Constructor->getNumParams() > 1 &&
1431        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1432    QualType ParamType = Constructor->getParamDecl(0)->getType();
1433    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1434    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1435      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1436      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1437        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1438      Constructor->setInvalidDecl();
1439    }
1440  }
1441
1442  // Notify the class that we've added a constructor.
1443  ClassDecl->addedConstructor(Context, Constructor);
1444}
1445
1446static inline bool
1447FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1448  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1449          FTI.ArgInfo[0].Param &&
1450          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1451}
1452
1453/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1454/// the well-formednes of the destructor declarator @p D with type @p
1455/// R. If there are any errors in the declarator, this routine will
1456/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1457/// will be updated to reflect a well-formed type for the destructor and
1458/// returned.
1459QualType Sema::CheckDestructorDeclarator(Declarator &D,
1460                                         FunctionDecl::StorageClass& SC) {
1461  // C++ [class.dtor]p1:
1462  //   [...] A typedef-name that names a class is a class-name
1463  //   (7.1.3); however, a typedef-name that names a class shall not
1464  //   be used as the identifier in the declarator for a destructor
1465  //   declaration.
1466  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1467  if (isa<TypedefType>(DeclaratorType)) {
1468    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1469      << DeclaratorType;
1470    D.setInvalidType();
1471  }
1472
1473  // C++ [class.dtor]p2:
1474  //   A destructor is used to destroy objects of its class type. A
1475  //   destructor takes no parameters, and no return type can be
1476  //   specified for it (not even void). The address of a destructor
1477  //   shall not be taken. A destructor shall not be static. A
1478  //   destructor can be invoked for a const, volatile or const
1479  //   volatile object. A destructor shall not be declared const,
1480  //   volatile or const volatile (9.3.2).
1481  if (SC == FunctionDecl::Static) {
1482    if (!D.isInvalidType())
1483      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1484        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1485        << SourceRange(D.getIdentifierLoc());
1486    SC = FunctionDecl::None;
1487    D.setInvalidType();
1488  }
1489  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1490    // Destructors don't have return types, but the parser will
1491    // happily parse something like:
1492    //
1493    //   class X {
1494    //     float ~X();
1495    //   };
1496    //
1497    // The return type will be eliminated later.
1498    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1499      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1500      << SourceRange(D.getIdentifierLoc());
1501  }
1502
1503  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1504  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1505    if (FTI.TypeQuals & QualType::Const)
1506      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1507        << "const" << SourceRange(D.getIdentifierLoc());
1508    if (FTI.TypeQuals & QualType::Volatile)
1509      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1510        << "volatile" << SourceRange(D.getIdentifierLoc());
1511    if (FTI.TypeQuals & QualType::Restrict)
1512      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1513        << "restrict" << SourceRange(D.getIdentifierLoc());
1514    D.setInvalidType();
1515  }
1516
1517  // Make sure we don't have any parameters.
1518  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1519    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1520
1521    // Delete the parameters.
1522    FTI.freeArgs();
1523    D.setInvalidType();
1524  }
1525
1526  // Make sure the destructor isn't variadic.
1527  if (FTI.isVariadic) {
1528    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1529    D.setInvalidType();
1530  }
1531
1532  // Rebuild the function type "R" without any type qualifiers or
1533  // parameters (in case any of the errors above fired) and with
1534  // "void" as the return type, since destructors don't have return
1535  // types. We *always* have to do this, because GetTypeForDeclarator
1536  // will put in a result type of "int" when none was specified.
1537  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1538}
1539
1540/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1541/// well-formednes of the conversion function declarator @p D with
1542/// type @p R. If there are any errors in the declarator, this routine
1543/// will emit diagnostics and return true. Otherwise, it will return
1544/// false. Either way, the type @p R will be updated to reflect a
1545/// well-formed type for the conversion operator.
1546void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1547                                     FunctionDecl::StorageClass& SC) {
1548  // C++ [class.conv.fct]p1:
1549  //   Neither parameter types nor return type can be specified. The
1550  //   type of a conversion function (8.3.5) is “function taking no
1551  //   parameter returning conversion-type-id.”
1552  if (SC == FunctionDecl::Static) {
1553    if (!D.isInvalidType())
1554      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1555        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1556        << SourceRange(D.getIdentifierLoc());
1557    D.setInvalidType();
1558    SC = FunctionDecl::None;
1559  }
1560  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1561    // Conversion functions don't have return types, but the parser will
1562    // happily parse something like:
1563    //
1564    //   class X {
1565    //     float operator bool();
1566    //   };
1567    //
1568    // The return type will be changed later anyway.
1569    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1570      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1571      << SourceRange(D.getIdentifierLoc());
1572  }
1573
1574  // Make sure we don't have any parameters.
1575  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1576    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1577
1578    // Delete the parameters.
1579    D.getTypeObject(0).Fun.freeArgs();
1580    D.setInvalidType();
1581  }
1582
1583  // Make sure the conversion function isn't variadic.
1584  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1585    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1586    D.setInvalidType();
1587  }
1588
1589  // C++ [class.conv.fct]p4:
1590  //   The conversion-type-id shall not represent a function type nor
1591  //   an array type.
1592  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1593  if (ConvType->isArrayType()) {
1594    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1595    ConvType = Context.getPointerType(ConvType);
1596    D.setInvalidType();
1597  } else if (ConvType->isFunctionType()) {
1598    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1599    ConvType = Context.getPointerType(ConvType);
1600    D.setInvalidType();
1601  }
1602
1603  // Rebuild the function type "R" without any parameters (in case any
1604  // of the errors above fired) and with the conversion type as the
1605  // return type.
1606  R = Context.getFunctionType(ConvType, 0, 0, false,
1607                              R->getAsFunctionProtoType()->getTypeQuals());
1608
1609  // C++0x explicit conversion operators.
1610  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1611    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1612         diag::warn_explicit_conversion_functions)
1613      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1614}
1615
1616/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1617/// the declaration of the given C++ conversion function. This routine
1618/// is responsible for recording the conversion function in the C++
1619/// class, if possible.
1620Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1621  assert(Conversion && "Expected to receive a conversion function declaration");
1622
1623  // Set the lexical context of this conversion function
1624  Conversion->setLexicalDeclContext(CurContext);
1625
1626  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1627
1628  // Make sure we aren't redeclaring the conversion function.
1629  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1630
1631  // C++ [class.conv.fct]p1:
1632  //   [...] A conversion function is never used to convert a
1633  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1634  //   same object type (or a reference to it), to a (possibly
1635  //   cv-qualified) base class of that type (or a reference to it),
1636  //   or to (possibly cv-qualified) void.
1637  // FIXME: Suppress this warning if the conversion function ends up being a
1638  // virtual function that overrides a virtual function in a base class.
1639  QualType ClassType
1640    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1641  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1642    ConvType = ConvTypeRef->getPointeeType();
1643  if (ConvType->isRecordType()) {
1644    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1645    if (ConvType == ClassType)
1646      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1647        << ClassType;
1648    else if (IsDerivedFrom(ClassType, ConvType))
1649      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1650        <<  ClassType << ConvType;
1651  } else if (ConvType->isVoidType()) {
1652    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1653      << ClassType << ConvType;
1654  }
1655
1656  if (Conversion->getPreviousDeclaration()) {
1657    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1658    for (OverloadedFunctionDecl::function_iterator
1659           Conv = Conversions->function_begin(),
1660           ConvEnd = Conversions->function_end();
1661         Conv != ConvEnd; ++Conv) {
1662      if (*Conv
1663            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1664        *Conv = Conversion;
1665        return DeclPtrTy::make(Conversion);
1666      }
1667    }
1668    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1669  } else
1670    ClassDecl->addConversionFunction(Context, Conversion);
1671
1672  return DeclPtrTy::make(Conversion);
1673}
1674
1675//===----------------------------------------------------------------------===//
1676// Namespace Handling
1677//===----------------------------------------------------------------------===//
1678
1679/// ActOnStartNamespaceDef - This is called at the start of a namespace
1680/// definition.
1681Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1682                                             SourceLocation IdentLoc,
1683                                             IdentifierInfo *II,
1684                                             SourceLocation LBrace) {
1685  NamespaceDecl *Namespc =
1686      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1687  Namespc->setLBracLoc(LBrace);
1688
1689  Scope *DeclRegionScope = NamespcScope->getParent();
1690
1691  if (II) {
1692    // C++ [namespace.def]p2:
1693    // The identifier in an original-namespace-definition shall not have been
1694    // previously defined in the declarative region in which the
1695    // original-namespace-definition appears. The identifier in an
1696    // original-namespace-definition is the name of the namespace. Subsequently
1697    // in that declarative region, it is treated as an original-namespace-name.
1698
1699    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1700                                     true);
1701
1702    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1703      // This is an extended namespace definition.
1704      // Attach this namespace decl to the chain of extended namespace
1705      // definitions.
1706      OrigNS->setNextNamespace(Namespc);
1707      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1708
1709      // Remove the previous declaration from the scope.
1710      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1711        IdResolver.RemoveDecl(OrigNS);
1712        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1713      }
1714    } else if (PrevDecl) {
1715      // This is an invalid name redefinition.
1716      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1717       << Namespc->getDeclName();
1718      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1719      Namespc->setInvalidDecl();
1720      // Continue on to push Namespc as current DeclContext and return it.
1721    }
1722
1723    PushOnScopeChains(Namespc, DeclRegionScope);
1724  } else {
1725    // FIXME: Handle anonymous namespaces
1726  }
1727
1728  // Although we could have an invalid decl (i.e. the namespace name is a
1729  // redefinition), push it as current DeclContext and try to continue parsing.
1730  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1731  // for the namespace has the declarations that showed up in that particular
1732  // namespace definition.
1733  PushDeclContext(NamespcScope, Namespc);
1734  return DeclPtrTy::make(Namespc);
1735}
1736
1737/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1738/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1739void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1740  Decl *Dcl = D.getAs<Decl>();
1741  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1742  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1743  Namespc->setRBracLoc(RBrace);
1744  PopDeclContext();
1745}
1746
1747Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1748                                          SourceLocation UsingLoc,
1749                                          SourceLocation NamespcLoc,
1750                                          const CXXScopeSpec &SS,
1751                                          SourceLocation IdentLoc,
1752                                          IdentifierInfo *NamespcName,
1753                                          AttributeList *AttrList) {
1754  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1755  assert(NamespcName && "Invalid NamespcName.");
1756  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1757  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1758
1759  UsingDirectiveDecl *UDir = 0;
1760
1761  // Lookup namespace name.
1762  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1763                                    LookupNamespaceName, false);
1764  if (R.isAmbiguous()) {
1765    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1766    return DeclPtrTy();
1767  }
1768  if (NamedDecl *NS = R) {
1769    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1770    // C++ [namespace.udir]p1:
1771    //   A using-directive specifies that the names in the nominated
1772    //   namespace can be used in the scope in which the
1773    //   using-directive appears after the using-directive. During
1774    //   unqualified name lookup (3.4.1), the names appear as if they
1775    //   were declared in the nearest enclosing namespace which
1776    //   contains both the using-directive and the nominated
1777    //   namespace. [Note: in this context, “contains” means “contains
1778    //   directly or indirectly”. ]
1779
1780    // Find enclosing context containing both using-directive and
1781    // nominated namespace.
1782    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1783    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1784      CommonAncestor = CommonAncestor->getParent();
1785
1786    UDir = UsingDirectiveDecl::Create(Context,
1787                                      CurContext, UsingLoc,
1788                                      NamespcLoc,
1789                                      SS.getRange(),
1790                                      (NestedNameSpecifier *)SS.getScopeRep(),
1791                                      IdentLoc,
1792                                      cast<NamespaceDecl>(NS),
1793                                      CommonAncestor);
1794    PushUsingDirective(S, UDir);
1795  } else {
1796    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1797  }
1798
1799  // FIXME: We ignore attributes for now.
1800  delete AttrList;
1801  return DeclPtrTy::make(UDir);
1802}
1803
1804void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1805  // If scope has associated entity, then using directive is at namespace
1806  // or translation unit scope. We add UsingDirectiveDecls, into
1807  // it's lookup structure.
1808  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1809    Ctx->addDecl(UDir);
1810  else
1811    // Otherwise it is block-sope. using-directives will affect lookup
1812    // only to the end of scope.
1813    S->PushUsingDirective(DeclPtrTy::make(UDir));
1814}
1815
1816
1817Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1818                                          SourceLocation UsingLoc,
1819                                          const CXXScopeSpec &SS,
1820                                          SourceLocation IdentLoc,
1821                                          IdentifierInfo *TargetName,
1822                                          OverloadedOperatorKind Op,
1823                                          AttributeList *AttrList,
1824                                          bool IsTypeName) {
1825  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1826  assert((TargetName || Op) && "Invalid TargetName.");
1827  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1828  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1829
1830  UsingDecl *UsingAlias = 0;
1831
1832  DeclarationName Name;
1833  if (TargetName)
1834    Name = TargetName;
1835  else
1836    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1837
1838  // Lookup target name.
1839  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1840
1841  if (NamedDecl *NS = R) {
1842    if (IsTypeName && !isa<TypeDecl>(NS)) {
1843      Diag(IdentLoc, diag::err_using_typename_non_type);
1844    }
1845    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1846        NS->getLocation(), UsingLoc, NS,
1847        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1848        IsTypeName);
1849    PushOnScopeChains(UsingAlias, S);
1850  } else {
1851    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1852  }
1853
1854  // FIXME: We ignore attributes for now.
1855  delete AttrList;
1856  return DeclPtrTy::make(UsingAlias);
1857}
1858
1859/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1860/// is a namespace alias, returns the namespace it points to.
1861static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1862  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1863    return AD->getNamespace();
1864  return dyn_cast_or_null<NamespaceDecl>(D);
1865}
1866
1867Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1868                                             SourceLocation NamespaceLoc,
1869                                             SourceLocation AliasLoc,
1870                                             IdentifierInfo *Alias,
1871                                             const CXXScopeSpec &SS,
1872                                             SourceLocation IdentLoc,
1873                                             IdentifierInfo *Ident) {
1874
1875  // Lookup the namespace name.
1876  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1877
1878  // Check if we have a previous declaration with the same name.
1879  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1880    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1881      // We already have an alias with the same name that points to the same
1882      // namespace, so don't create a new one.
1883      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1884        return DeclPtrTy();
1885    }
1886
1887    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1888      diag::err_redefinition_different_kind;
1889    Diag(AliasLoc, DiagID) << Alias;
1890    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1891    return DeclPtrTy();
1892  }
1893
1894  if (R.isAmbiguous()) {
1895    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1896    return DeclPtrTy();
1897  }
1898
1899  if (!R) {
1900    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1901    return DeclPtrTy();
1902  }
1903
1904  NamespaceAliasDecl *AliasDecl =
1905    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1906                               Alias, SS.getRange(),
1907                               (NestedNameSpecifier *)SS.getScopeRep(),
1908                               IdentLoc, R);
1909
1910  CurContext->addDecl(AliasDecl);
1911  return DeclPtrTy::make(AliasDecl);
1912}
1913
1914void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1915                                            CXXConstructorDecl *Constructor) {
1916  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1917          !Constructor->isUsed()) &&
1918    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1919
1920  CXXRecordDecl *ClassDecl
1921    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1922  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1923  // Before the implicitly-declared default constructor for a class is
1924  // implicitly defined, all the implicitly-declared default constructors
1925  // for its base class and its non-static data members shall have been
1926  // implicitly defined.
1927  bool err = false;
1928  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1929       E = ClassDecl->bases_end(); Base != E; ++Base) {
1930    CXXRecordDecl *BaseClassDecl
1931      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1932    if (!BaseClassDecl->hasTrivialConstructor()) {
1933      if (CXXConstructorDecl *BaseCtor =
1934            BaseClassDecl->getDefaultConstructor(Context))
1935        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1936      else {
1937        Diag(CurrentLocation, diag::err_defining_default_ctor)
1938          << Context.getTagDeclType(ClassDecl) << 1
1939          << Context.getTagDeclType(BaseClassDecl);
1940        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1941              << Context.getTagDeclType(BaseClassDecl);
1942        err = true;
1943      }
1944    }
1945  }
1946  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1947       E = ClassDecl->field_end(); Field != E; ++Field) {
1948    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1949    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1950      FieldType = Array->getElementType();
1951    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1952      CXXRecordDecl *FieldClassDecl
1953        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1954      if (!FieldClassDecl->hasTrivialConstructor()) {
1955        if (CXXConstructorDecl *FieldCtor =
1956            FieldClassDecl->getDefaultConstructor(Context))
1957          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1958        else {
1959          Diag(CurrentLocation, diag::err_defining_default_ctor)
1960          << Context.getTagDeclType(ClassDecl) << 0 <<
1961              Context.getTagDeclType(FieldClassDecl);
1962          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1963          << Context.getTagDeclType(FieldClassDecl);
1964          err = true;
1965        }
1966      }
1967    }
1968    else if (FieldType->isReferenceType()) {
1969      Diag(CurrentLocation, diag::err_unintialized_member)
1970        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1971      Diag((*Field)->getLocation(), diag::note_declared_at);
1972      err = true;
1973    }
1974    else if (FieldType.isConstQualified()) {
1975      Diag(CurrentLocation, diag::err_unintialized_member)
1976        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1977       Diag((*Field)->getLocation(), diag::note_declared_at);
1978      err = true;
1979    }
1980  }
1981  if (!err)
1982    Constructor->setUsed();
1983  else
1984    Constructor->setInvalidDecl();
1985}
1986
1987void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
1988                                            CXXDestructorDecl *Destructor) {
1989  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
1990         "DefineImplicitDestructor - call it for implicit default dtor");
1991
1992  CXXRecordDecl *ClassDecl
1993  = cast<CXXRecordDecl>(Destructor->getDeclContext());
1994  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
1995  // C++ [class.dtor] p5
1996  // Before the implicitly-declared default destructor for a class is
1997  // implicitly defined, all the implicitly-declared default destructors
1998  // for its base class and its non-static data members shall have been
1999  // implicitly defined.
2000  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2001       E = ClassDecl->bases_end(); Base != E; ++Base) {
2002    CXXRecordDecl *BaseClassDecl
2003      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2004    if (!BaseClassDecl->hasTrivialDestructor()) {
2005      if (CXXDestructorDecl *BaseDtor =
2006          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2007        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2008      else
2009        assert(false &&
2010               "DefineImplicitDestructor - missing dtor in a base class");
2011    }
2012  }
2013
2014  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2015       E = ClassDecl->field_end(); Field != E; ++Field) {
2016    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2017    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2018      FieldType = Array->getElementType();
2019    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2020      CXXRecordDecl *FieldClassDecl
2021        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2022      if (!FieldClassDecl->hasTrivialDestructor()) {
2023        if (CXXDestructorDecl *FieldDtor =
2024            const_cast<CXXDestructorDecl*>(
2025                                        FieldClassDecl->getDestructor(Context)))
2026          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2027        else
2028          assert(false &&
2029          "DefineImplicitDestructor - missing dtor in class of a data member");
2030      }
2031    }
2032  }
2033  Destructor->setUsed();
2034}
2035
2036void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2037                                          CXXMethodDecl *MethodDecl) {
2038  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2039          MethodDecl->getOverloadedOperator() == OO_Equal &&
2040          !MethodDecl->isUsed()) &&
2041         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2042
2043  CXXRecordDecl *ClassDecl
2044    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2045
2046  // C++[class.copy] p12
2047  // Before the implicitly-declared copy assignment operator for a class is
2048  // implicitly defined, all implicitly-declared copy assignment operators
2049  // for its direct base classes and its nonstatic data members shall have
2050  // been implicitly defined.
2051  bool err = false;
2052  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2053       E = ClassDecl->bases_end(); Base != E; ++Base) {
2054    CXXRecordDecl *BaseClassDecl
2055      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2056    if (CXXMethodDecl *BaseAssignOpMethod =
2057          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2058      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2059  }
2060  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2061       E = ClassDecl->field_end(); Field != E; ++Field) {
2062    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2063    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2064      FieldType = Array->getElementType();
2065    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2066      CXXRecordDecl *FieldClassDecl
2067        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2068      if (CXXMethodDecl *FieldAssignOpMethod =
2069          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2070        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2071    }
2072    else if (FieldType->isReferenceType()) {
2073      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2074      << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
2075      Diag((*Field)->getLocation(), diag::note_declared_at);
2076      Diag(CurrentLocation, diag::note_first_required_here);
2077      err = true;
2078    }
2079    else if (FieldType.isConstQualified()) {
2080      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2081      << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
2082      Diag((*Field)->getLocation(), diag::note_declared_at);
2083      Diag(CurrentLocation, diag::note_first_required_here);
2084      err = true;
2085    }
2086  }
2087  if (!err)
2088    MethodDecl->setUsed();
2089}
2090
2091CXXMethodDecl *
2092Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2093                              CXXRecordDecl *ClassDecl) {
2094  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2095  QualType RHSType(LHSType);
2096  // If class's assignment operator argument is const/volatile qualified,
2097  // look for operator = (const/volatile B&). Otherwise, look for
2098  // operator = (B&).
2099  if (ParmDecl->getType().isConstQualified())
2100    RHSType.addConst();
2101  if (ParmDecl->getType().isVolatileQualified())
2102    RHSType.addVolatile();
2103  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2104                                                          LHSType,
2105                                                          SourceLocation()));
2106  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2107                                                          RHSType,
2108                                                          SourceLocation()));
2109  Expr *Args[2] = { &*LHS, &*RHS };
2110  OverloadCandidateSet CandidateSet;
2111  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2112                              CandidateSet);
2113  OverloadCandidateSet::iterator Best;
2114  if (BestViableFunction(CandidateSet,
2115                         ClassDecl->getLocation(), Best) == OR_Success)
2116    return cast<CXXMethodDecl>(Best->Function);
2117  assert(false &&
2118         "getAssignOperatorMethod - copy assignment operator method not found");
2119  return 0;
2120}
2121
2122void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2123                                   CXXConstructorDecl *CopyConstructor,
2124                                   unsigned TypeQuals) {
2125  assert((CopyConstructor->isImplicit() &&
2126          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2127          !CopyConstructor->isUsed()) &&
2128         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2129
2130  CXXRecordDecl *ClassDecl
2131    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2132  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2133  // C++ [class.copy] p209
2134  // Before the implicitly-declared copy constructor for a class is
2135  // implicitly defined, all the implicitly-declared copy constructors
2136  // for its base class and its non-static data members shall have been
2137  // implicitly defined.
2138  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2139       Base != ClassDecl->bases_end(); ++Base) {
2140    CXXRecordDecl *BaseClassDecl
2141      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2142    if (CXXConstructorDecl *BaseCopyCtor =
2143        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2144      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2145  }
2146  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2147                                  FieldEnd = ClassDecl->field_end();
2148       Field != FieldEnd; ++Field) {
2149    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2150    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2151      FieldType = Array->getElementType();
2152    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2153      CXXRecordDecl *FieldClassDecl
2154        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2155      if (CXXConstructorDecl *FieldCopyCtor =
2156          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2157        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2158    }
2159  }
2160  CopyConstructor->setUsed();
2161}
2162
2163void Sema::InitializeVarWithConstructor(VarDecl *VD,
2164                                        CXXConstructorDecl *Constructor,
2165                                        QualType DeclInitType,
2166                                        Expr **Exprs, unsigned NumExprs) {
2167  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2168                                        false, Exprs, NumExprs);
2169  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2170  VD->setInit(Context, Temp);
2171}
2172
2173void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2174{
2175  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2176                                  DeclInitType->getAsRecordType()->getDecl());
2177  if (!ClassDecl->hasTrivialDestructor())
2178    if (CXXDestructorDecl *Destructor =
2179        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2180      MarkDeclarationReferenced(Loc, Destructor);
2181}
2182
2183/// AddCXXDirectInitializerToDecl - This action is called immediately after
2184/// ActOnDeclarator, when a C++ direct initializer is present.
2185/// e.g: "int x(1);"
2186void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2187                                         SourceLocation LParenLoc,
2188                                         MultiExprArg Exprs,
2189                                         SourceLocation *CommaLocs,
2190                                         SourceLocation RParenLoc) {
2191  unsigned NumExprs = Exprs.size();
2192  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2193  Decl *RealDecl = Dcl.getAs<Decl>();
2194
2195  // If there is no declaration, there was an error parsing it.  Just ignore
2196  // the initializer.
2197  if (RealDecl == 0)
2198    return;
2199
2200  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2201  if (!VDecl) {
2202    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2203    RealDecl->setInvalidDecl();
2204    return;
2205  }
2206
2207  // FIXME: Need to handle dependent types and expressions here.
2208
2209  // We will treat direct-initialization as a copy-initialization:
2210  //    int x(1);  -as-> int x = 1;
2211  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2212  //
2213  // Clients that want to distinguish between the two forms, can check for
2214  // direct initializer using VarDecl::hasCXXDirectInitializer().
2215  // A major benefit is that clients that don't particularly care about which
2216  // exactly form was it (like the CodeGen) can handle both cases without
2217  // special case code.
2218
2219  // C++ 8.5p11:
2220  // The form of initialization (using parentheses or '=') is generally
2221  // insignificant, but does matter when the entity being initialized has a
2222  // class type.
2223  QualType DeclInitType = VDecl->getType();
2224  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2225    DeclInitType = Array->getElementType();
2226
2227  // FIXME: This isn't the right place to complete the type.
2228  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2229                          diag::err_typecheck_decl_incomplete_type)) {
2230    VDecl->setInvalidDecl();
2231    return;
2232  }
2233
2234  if (VDecl->getType()->isRecordType()) {
2235    CXXConstructorDecl *Constructor
2236      = PerformInitializationByConstructor(DeclInitType,
2237                                           (Expr **)Exprs.get(), NumExprs,
2238                                           VDecl->getLocation(),
2239                                           SourceRange(VDecl->getLocation(),
2240                                                       RParenLoc),
2241                                           VDecl->getDeclName(),
2242                                           IK_Direct);
2243    if (!Constructor)
2244      RealDecl->setInvalidDecl();
2245    else {
2246      VDecl->setCXXDirectInitializer(true);
2247      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2248                                   (Expr**)Exprs.release(), NumExprs);
2249      // FIXME. Must do all that is needed to destroy the object
2250      // on scope exit. For now, just mark the destructor as used.
2251      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2252    }
2253    return;
2254  }
2255
2256  if (NumExprs > 1) {
2257    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2258      << SourceRange(VDecl->getLocation(), RParenLoc);
2259    RealDecl->setInvalidDecl();
2260    return;
2261  }
2262
2263  // Let clients know that initialization was done with a direct initializer.
2264  VDecl->setCXXDirectInitializer(true);
2265
2266  assert(NumExprs == 1 && "Expected 1 expression");
2267  // Set the init expression, handles conversions.
2268  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2269                       /*DirectInit=*/true);
2270}
2271
2272/// PerformInitializationByConstructor - Perform initialization by
2273/// constructor (C++ [dcl.init]p14), which may occur as part of
2274/// direct-initialization or copy-initialization. We are initializing
2275/// an object of type @p ClassType with the given arguments @p
2276/// Args. @p Loc is the location in the source code where the
2277/// initializer occurs (e.g., a declaration, member initializer,
2278/// functional cast, etc.) while @p Range covers the whole
2279/// initialization. @p InitEntity is the entity being initialized,
2280/// which may by the name of a declaration or a type. @p Kind is the
2281/// kind of initialization we're performing, which affects whether
2282/// explicit constructors will be considered. When successful, returns
2283/// the constructor that will be used to perform the initialization;
2284/// when the initialization fails, emits a diagnostic and returns
2285/// null.
2286CXXConstructorDecl *
2287Sema::PerformInitializationByConstructor(QualType ClassType,
2288                                         Expr **Args, unsigned NumArgs,
2289                                         SourceLocation Loc, SourceRange Range,
2290                                         DeclarationName InitEntity,
2291                                         InitializationKind Kind) {
2292  const RecordType *ClassRec = ClassType->getAsRecordType();
2293  assert(ClassRec && "Can only initialize a class type here");
2294
2295  // C++ [dcl.init]p14:
2296  //
2297  //   If the initialization is direct-initialization, or if it is
2298  //   copy-initialization where the cv-unqualified version of the
2299  //   source type is the same class as, or a derived class of, the
2300  //   class of the destination, constructors are considered. The
2301  //   applicable constructors are enumerated (13.3.1.3), and the
2302  //   best one is chosen through overload resolution (13.3). The
2303  //   constructor so selected is called to initialize the object,
2304  //   with the initializer expression(s) as its argument(s). If no
2305  //   constructor applies, or the overload resolution is ambiguous,
2306  //   the initialization is ill-formed.
2307  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2308  OverloadCandidateSet CandidateSet;
2309
2310  // Add constructors to the overload set.
2311  DeclarationName ConstructorName
2312    = Context.DeclarationNames.getCXXConstructorName(
2313                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2314  DeclContext::lookup_const_iterator Con, ConEnd;
2315  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2316       Con != ConEnd; ++Con) {
2317    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2318    if ((Kind == IK_Direct) ||
2319        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2320        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2321      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2322  }
2323
2324  // FIXME: When we decide not to synthesize the implicitly-declared
2325  // constructors, we'll need to make them appear here.
2326
2327  OverloadCandidateSet::iterator Best;
2328  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2329  case OR_Success:
2330    // We found a constructor. Return it.
2331    return cast<CXXConstructorDecl>(Best->Function);
2332
2333  case OR_No_Viable_Function:
2334    if (InitEntity)
2335      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2336        << InitEntity << Range;
2337    else
2338      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2339        << ClassType << Range;
2340    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2341    return 0;
2342
2343  case OR_Ambiguous:
2344    if (InitEntity)
2345      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2346    else
2347      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2348    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2349    return 0;
2350
2351  case OR_Deleted:
2352    if (InitEntity)
2353      Diag(Loc, diag::err_ovl_deleted_init)
2354        << Best->Function->isDeleted()
2355        << InitEntity << Range;
2356    else
2357      Diag(Loc, diag::err_ovl_deleted_init)
2358        << Best->Function->isDeleted()
2359        << InitEntity << Range;
2360    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2361    return 0;
2362  }
2363
2364  return 0;
2365}
2366
2367/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2368/// determine whether they are reference-related,
2369/// reference-compatible, reference-compatible with added
2370/// qualification, or incompatible, for use in C++ initialization by
2371/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2372/// type, and the first type (T1) is the pointee type of the reference
2373/// type being initialized.
2374Sema::ReferenceCompareResult
2375Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2376                                   bool& DerivedToBase) {
2377  assert(!T1->isReferenceType() &&
2378    "T1 must be the pointee type of the reference type");
2379  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2380
2381  T1 = Context.getCanonicalType(T1);
2382  T2 = Context.getCanonicalType(T2);
2383  QualType UnqualT1 = T1.getUnqualifiedType();
2384  QualType UnqualT2 = T2.getUnqualifiedType();
2385
2386  // C++ [dcl.init.ref]p4:
2387  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2388  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2389  //   T1 is a base class of T2.
2390  if (UnqualT1 == UnqualT2)
2391    DerivedToBase = false;
2392  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2393    DerivedToBase = true;
2394  else
2395    return Ref_Incompatible;
2396
2397  // At this point, we know that T1 and T2 are reference-related (at
2398  // least).
2399
2400  // C++ [dcl.init.ref]p4:
2401  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2402  //   reference-related to T2 and cv1 is the same cv-qualification
2403  //   as, or greater cv-qualification than, cv2. For purposes of
2404  //   overload resolution, cases for which cv1 is greater
2405  //   cv-qualification than cv2 are identified as
2406  //   reference-compatible with added qualification (see 13.3.3.2).
2407  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2408    return Ref_Compatible;
2409  else if (T1.isMoreQualifiedThan(T2))
2410    return Ref_Compatible_With_Added_Qualification;
2411  else
2412    return Ref_Related;
2413}
2414
2415/// CheckReferenceInit - Check the initialization of a reference
2416/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2417/// the initializer (either a simple initializer or an initializer
2418/// list), and DeclType is the type of the declaration. When ICS is
2419/// non-null, this routine will compute the implicit conversion
2420/// sequence according to C++ [over.ics.ref] and will not produce any
2421/// diagnostics; when ICS is null, it will emit diagnostics when any
2422/// errors are found. Either way, a return value of true indicates
2423/// that there was a failure, a return value of false indicates that
2424/// the reference initialization succeeded.
2425///
2426/// When @p SuppressUserConversions, user-defined conversions are
2427/// suppressed.
2428/// When @p AllowExplicit, we also permit explicit user-defined
2429/// conversion functions.
2430/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2431bool
2432Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2433                         ImplicitConversionSequence *ICS,
2434                         bool SuppressUserConversions,
2435                         bool AllowExplicit, bool ForceRValue) {
2436  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2437
2438  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2439  QualType T2 = Init->getType();
2440
2441  // If the initializer is the address of an overloaded function, try
2442  // to resolve the overloaded function. If all goes well, T2 is the
2443  // type of the resulting function.
2444  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2445    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2446                                                          ICS != 0);
2447    if (Fn) {
2448      // Since we're performing this reference-initialization for
2449      // real, update the initializer with the resulting function.
2450      if (!ICS) {
2451        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2452          return true;
2453
2454        FixOverloadedFunctionReference(Init, Fn);
2455      }
2456
2457      T2 = Fn->getType();
2458    }
2459  }
2460
2461  // Compute some basic properties of the types and the initializer.
2462  bool isRValRef = DeclType->isRValueReferenceType();
2463  bool DerivedToBase = false;
2464  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2465                                                  Init->isLvalue(Context);
2466  ReferenceCompareResult RefRelationship
2467    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2468
2469  // Most paths end in a failed conversion.
2470  if (ICS)
2471    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2472
2473  // C++ [dcl.init.ref]p5:
2474  //   A reference to type “cv1 T1” is initialized by an expression
2475  //   of type “cv2 T2” as follows:
2476
2477  //     -- If the initializer expression
2478
2479  // Rvalue references cannot bind to lvalues (N2812).
2480  // There is absolutely no situation where they can. In particular, note that
2481  // this is ill-formed, even if B has a user-defined conversion to A&&:
2482  //   B b;
2483  //   A&& r = b;
2484  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2485    if (!ICS)
2486      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2487        << Init->getSourceRange();
2488    return true;
2489  }
2490
2491  bool BindsDirectly = false;
2492  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2493  //          reference-compatible with “cv2 T2,” or
2494  //
2495  // Note that the bit-field check is skipped if we are just computing
2496  // the implicit conversion sequence (C++ [over.best.ics]p2).
2497  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2498      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2499    BindsDirectly = true;
2500
2501    if (ICS) {
2502      // C++ [over.ics.ref]p1:
2503      //   When a parameter of reference type binds directly (8.5.3)
2504      //   to an argument expression, the implicit conversion sequence
2505      //   is the identity conversion, unless the argument expression
2506      //   has a type that is a derived class of the parameter type,
2507      //   in which case the implicit conversion sequence is a
2508      //   derived-to-base Conversion (13.3.3.1).
2509      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2510      ICS->Standard.First = ICK_Identity;
2511      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2512      ICS->Standard.Third = ICK_Identity;
2513      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2514      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2515      ICS->Standard.ReferenceBinding = true;
2516      ICS->Standard.DirectBinding = true;
2517      ICS->Standard.RRefBinding = false;
2518      ICS->Standard.CopyConstructor = 0;
2519
2520      // Nothing more to do: the inaccessibility/ambiguity check for
2521      // derived-to-base conversions is suppressed when we're
2522      // computing the implicit conversion sequence (C++
2523      // [over.best.ics]p2).
2524      return false;
2525    } else {
2526      // Perform the conversion.
2527      // FIXME: Binding to a subobject of the lvalue is going to require more
2528      // AST annotation than this.
2529      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2530    }
2531  }
2532
2533  //       -- has a class type (i.e., T2 is a class type) and can be
2534  //          implicitly converted to an lvalue of type “cv3 T3,”
2535  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2536  //          92) (this conversion is selected by enumerating the
2537  //          applicable conversion functions (13.3.1.6) and choosing
2538  //          the best one through overload resolution (13.3)),
2539  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2540    // FIXME: Look for conversions in base classes!
2541    CXXRecordDecl *T2RecordDecl
2542      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2543
2544    OverloadCandidateSet CandidateSet;
2545    OverloadedFunctionDecl *Conversions
2546      = T2RecordDecl->getConversionFunctions();
2547    for (OverloadedFunctionDecl::function_iterator Func
2548           = Conversions->function_begin();
2549         Func != Conversions->function_end(); ++Func) {
2550      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2551
2552      // If the conversion function doesn't return a reference type,
2553      // it can't be considered for this conversion.
2554      if (Conv->getConversionType()->isLValueReferenceType() &&
2555          (AllowExplicit || !Conv->isExplicit()))
2556        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2557    }
2558
2559    OverloadCandidateSet::iterator Best;
2560    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2561    case OR_Success:
2562      // This is a direct binding.
2563      BindsDirectly = true;
2564
2565      if (ICS) {
2566        // C++ [over.ics.ref]p1:
2567        //
2568        //   [...] If the parameter binds directly to the result of
2569        //   applying a conversion function to the argument
2570        //   expression, the implicit conversion sequence is a
2571        //   user-defined conversion sequence (13.3.3.1.2), with the
2572        //   second standard conversion sequence either an identity
2573        //   conversion or, if the conversion function returns an
2574        //   entity of a type that is a derived class of the parameter
2575        //   type, a derived-to-base Conversion.
2576        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2577        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2578        ICS->UserDefined.After = Best->FinalConversion;
2579        ICS->UserDefined.ConversionFunction = Best->Function;
2580        assert(ICS->UserDefined.After.ReferenceBinding &&
2581               ICS->UserDefined.After.DirectBinding &&
2582               "Expected a direct reference binding!");
2583        return false;
2584      } else {
2585        // Perform the conversion.
2586        // FIXME: Binding to a subobject of the lvalue is going to require more
2587        // AST annotation than this.
2588        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2589      }
2590      break;
2591
2592    case OR_Ambiguous:
2593      assert(false && "Ambiguous reference binding conversions not implemented.");
2594      return true;
2595
2596    case OR_No_Viable_Function:
2597    case OR_Deleted:
2598      // There was no suitable conversion, or we found a deleted
2599      // conversion; continue with other checks.
2600      break;
2601    }
2602  }
2603
2604  if (BindsDirectly) {
2605    // C++ [dcl.init.ref]p4:
2606    //   [...] In all cases where the reference-related or
2607    //   reference-compatible relationship of two types is used to
2608    //   establish the validity of a reference binding, and T1 is a
2609    //   base class of T2, a program that necessitates such a binding
2610    //   is ill-formed if T1 is an inaccessible (clause 11) or
2611    //   ambiguous (10.2) base class of T2.
2612    //
2613    // Note that we only check this condition when we're allowed to
2614    // complain about errors, because we should not be checking for
2615    // ambiguity (or inaccessibility) unless the reference binding
2616    // actually happens.
2617    if (DerivedToBase)
2618      return CheckDerivedToBaseConversion(T2, T1,
2619                                          Init->getSourceRange().getBegin(),
2620                                          Init->getSourceRange());
2621    else
2622      return false;
2623  }
2624
2625  //     -- Otherwise, the reference shall be to a non-volatile const
2626  //        type (i.e., cv1 shall be const), or the reference shall be an
2627  //        rvalue reference and the initializer expression shall be an rvalue.
2628  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2629    if (!ICS)
2630      Diag(Init->getSourceRange().getBegin(),
2631           diag::err_not_reference_to_const_init)
2632        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2633        << T2 << Init->getSourceRange();
2634    return true;
2635  }
2636
2637  //       -- If the initializer expression is an rvalue, with T2 a
2638  //          class type, and “cv1 T1” is reference-compatible with
2639  //          “cv2 T2,” the reference is bound in one of the
2640  //          following ways (the choice is implementation-defined):
2641  //
2642  //          -- The reference is bound to the object represented by
2643  //             the rvalue (see 3.10) or to a sub-object within that
2644  //             object.
2645  //
2646  //          -- A temporary of type “cv1 T2” [sic] is created, and
2647  //             a constructor is called to copy the entire rvalue
2648  //             object into the temporary. The reference is bound to
2649  //             the temporary or to a sub-object within the
2650  //             temporary.
2651  //
2652  //          The constructor that would be used to make the copy
2653  //          shall be callable whether or not the copy is actually
2654  //          done.
2655  //
2656  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2657  // freedom, so we will always take the first option and never build
2658  // a temporary in this case. FIXME: We will, however, have to check
2659  // for the presence of a copy constructor in C++98/03 mode.
2660  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2661      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2662    if (ICS) {
2663      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2664      ICS->Standard.First = ICK_Identity;
2665      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2666      ICS->Standard.Third = ICK_Identity;
2667      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2668      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2669      ICS->Standard.ReferenceBinding = true;
2670      ICS->Standard.DirectBinding = false;
2671      ICS->Standard.RRefBinding = isRValRef;
2672      ICS->Standard.CopyConstructor = 0;
2673    } else {
2674      // FIXME: Binding to a subobject of the rvalue is going to require more
2675      // AST annotation than this.
2676      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2677    }
2678    return false;
2679  }
2680
2681  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2682  //          initialized from the initializer expression using the
2683  //          rules for a non-reference copy initialization (8.5). The
2684  //          reference is then bound to the temporary. If T1 is
2685  //          reference-related to T2, cv1 must be the same
2686  //          cv-qualification as, or greater cv-qualification than,
2687  //          cv2; otherwise, the program is ill-formed.
2688  if (RefRelationship == Ref_Related) {
2689    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2690    // we would be reference-compatible or reference-compatible with
2691    // added qualification. But that wasn't the case, so the reference
2692    // initialization fails.
2693    if (!ICS)
2694      Diag(Init->getSourceRange().getBegin(),
2695           diag::err_reference_init_drops_quals)
2696        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2697        << T2 << Init->getSourceRange();
2698    return true;
2699  }
2700
2701  // If at least one of the types is a class type, the types are not
2702  // related, and we aren't allowed any user conversions, the
2703  // reference binding fails. This case is important for breaking
2704  // recursion, since TryImplicitConversion below will attempt to
2705  // create a temporary through the use of a copy constructor.
2706  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2707      (T1->isRecordType() || T2->isRecordType())) {
2708    if (!ICS)
2709      Diag(Init->getSourceRange().getBegin(),
2710           diag::err_typecheck_convert_incompatible)
2711        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2712    return true;
2713  }
2714
2715  // Actually try to convert the initializer to T1.
2716  if (ICS) {
2717    // C++ [over.ics.ref]p2:
2718    //
2719    //   When a parameter of reference type is not bound directly to
2720    //   an argument expression, the conversion sequence is the one
2721    //   required to convert the argument expression to the
2722    //   underlying type of the reference according to
2723    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2724    //   to copy-initializing a temporary of the underlying type with
2725    //   the argument expression. Any difference in top-level
2726    //   cv-qualification is subsumed by the initialization itself
2727    //   and does not constitute a conversion.
2728    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2729    // Of course, that's still a reference binding.
2730    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2731      ICS->Standard.ReferenceBinding = true;
2732      ICS->Standard.RRefBinding = isRValRef;
2733    } else if(ICS->ConversionKind ==
2734              ImplicitConversionSequence::UserDefinedConversion) {
2735      ICS->UserDefined.After.ReferenceBinding = true;
2736      ICS->UserDefined.After.RRefBinding = isRValRef;
2737    }
2738    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2739  } else {
2740    return PerformImplicitConversion(Init, T1, "initializing");
2741  }
2742}
2743
2744/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2745/// of this overloaded operator is well-formed. If so, returns false;
2746/// otherwise, emits appropriate diagnostics and returns true.
2747bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2748  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2749         "Expected an overloaded operator declaration");
2750
2751  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2752
2753  // C++ [over.oper]p5:
2754  //   The allocation and deallocation functions, operator new,
2755  //   operator new[], operator delete and operator delete[], are
2756  //   described completely in 3.7.3. The attributes and restrictions
2757  //   found in the rest of this subclause do not apply to them unless
2758  //   explicitly stated in 3.7.3.
2759  // FIXME: Write a separate routine for checking this. For now, just allow it.
2760  if (Op == OO_New || Op == OO_Array_New ||
2761      Op == OO_Delete || Op == OO_Array_Delete)
2762    return false;
2763
2764  // C++ [over.oper]p6:
2765  //   An operator function shall either be a non-static member
2766  //   function or be a non-member function and have at least one
2767  //   parameter whose type is a class, a reference to a class, an
2768  //   enumeration, or a reference to an enumeration.
2769  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2770    if (MethodDecl->isStatic())
2771      return Diag(FnDecl->getLocation(),
2772                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2773  } else {
2774    bool ClassOrEnumParam = false;
2775    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2776                                   ParamEnd = FnDecl->param_end();
2777         Param != ParamEnd; ++Param) {
2778      QualType ParamType = (*Param)->getType().getNonReferenceType();
2779      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2780          ParamType->isEnumeralType()) {
2781        ClassOrEnumParam = true;
2782        break;
2783      }
2784    }
2785
2786    if (!ClassOrEnumParam)
2787      return Diag(FnDecl->getLocation(),
2788                  diag::err_operator_overload_needs_class_or_enum)
2789        << FnDecl->getDeclName();
2790  }
2791
2792  // C++ [over.oper]p8:
2793  //   An operator function cannot have default arguments (8.3.6),
2794  //   except where explicitly stated below.
2795  //
2796  // Only the function-call operator allows default arguments
2797  // (C++ [over.call]p1).
2798  if (Op != OO_Call) {
2799    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2800         Param != FnDecl->param_end(); ++Param) {
2801      if ((*Param)->hasUnparsedDefaultArg())
2802        return Diag((*Param)->getLocation(),
2803                    diag::err_operator_overload_default_arg)
2804          << FnDecl->getDeclName();
2805      else if (Expr *DefArg = (*Param)->getDefaultArg())
2806        return Diag((*Param)->getLocation(),
2807                    diag::err_operator_overload_default_arg)
2808          << FnDecl->getDeclName() << DefArg->getSourceRange();
2809    }
2810  }
2811
2812  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2813    { false, false, false }
2814#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2815    , { Unary, Binary, MemberOnly }
2816#include "clang/Basic/OperatorKinds.def"
2817  };
2818
2819  bool CanBeUnaryOperator = OperatorUses[Op][0];
2820  bool CanBeBinaryOperator = OperatorUses[Op][1];
2821  bool MustBeMemberOperator = OperatorUses[Op][2];
2822
2823  // C++ [over.oper]p8:
2824  //   [...] Operator functions cannot have more or fewer parameters
2825  //   than the number required for the corresponding operator, as
2826  //   described in the rest of this subclause.
2827  unsigned NumParams = FnDecl->getNumParams()
2828                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2829  if (Op != OO_Call &&
2830      ((NumParams == 1 && !CanBeUnaryOperator) ||
2831       (NumParams == 2 && !CanBeBinaryOperator) ||
2832       (NumParams < 1) || (NumParams > 2))) {
2833    // We have the wrong number of parameters.
2834    unsigned ErrorKind;
2835    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2836      ErrorKind = 2;  // 2 -> unary or binary.
2837    } else if (CanBeUnaryOperator) {
2838      ErrorKind = 0;  // 0 -> unary
2839    } else {
2840      assert(CanBeBinaryOperator &&
2841             "All non-call overloaded operators are unary or binary!");
2842      ErrorKind = 1;  // 1 -> binary
2843    }
2844
2845    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2846      << FnDecl->getDeclName() << NumParams << ErrorKind;
2847  }
2848
2849  // Overloaded operators other than operator() cannot be variadic.
2850  if (Op != OO_Call &&
2851      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2852    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2853      << FnDecl->getDeclName();
2854  }
2855
2856  // Some operators must be non-static member functions.
2857  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2858    return Diag(FnDecl->getLocation(),
2859                diag::err_operator_overload_must_be_member)
2860      << FnDecl->getDeclName();
2861  }
2862
2863  // C++ [over.inc]p1:
2864  //   The user-defined function called operator++ implements the
2865  //   prefix and postfix ++ operator. If this function is a member
2866  //   function with no parameters, or a non-member function with one
2867  //   parameter of class or enumeration type, it defines the prefix
2868  //   increment operator ++ for objects of that type. If the function
2869  //   is a member function with one parameter (which shall be of type
2870  //   int) or a non-member function with two parameters (the second
2871  //   of which shall be of type int), it defines the postfix
2872  //   increment operator ++ for objects of that type.
2873  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2874    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2875    bool ParamIsInt = false;
2876    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2877      ParamIsInt = BT->getKind() == BuiltinType::Int;
2878
2879    if (!ParamIsInt)
2880      return Diag(LastParam->getLocation(),
2881                  diag::err_operator_overload_post_incdec_must_be_int)
2882        << LastParam->getType() << (Op == OO_MinusMinus);
2883  }
2884
2885  // Notify the class if it got an assignment operator.
2886  if (Op == OO_Equal) {
2887    // Would have returned earlier otherwise.
2888    assert(isa<CXXMethodDecl>(FnDecl) &&
2889      "Overloaded = not member, but not filtered.");
2890    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2891    Method->getParent()->addedAssignmentOperator(Context, Method);
2892  }
2893
2894  return false;
2895}
2896
2897/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2898/// linkage specification, including the language and (if present)
2899/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2900/// the location of the language string literal, which is provided
2901/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2902/// the '{' brace. Otherwise, this linkage specification does not
2903/// have any braces.
2904Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2905                                                     SourceLocation ExternLoc,
2906                                                     SourceLocation LangLoc,
2907                                                     const char *Lang,
2908                                                     unsigned StrSize,
2909                                                     SourceLocation LBraceLoc) {
2910  LinkageSpecDecl::LanguageIDs Language;
2911  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2912    Language = LinkageSpecDecl::lang_c;
2913  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2914    Language = LinkageSpecDecl::lang_cxx;
2915  else {
2916    Diag(LangLoc, diag::err_bad_language);
2917    return DeclPtrTy();
2918  }
2919
2920  // FIXME: Add all the various semantics of linkage specifications
2921
2922  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2923                                               LangLoc, Language,
2924                                               LBraceLoc.isValid());
2925  CurContext->addDecl(D);
2926  PushDeclContext(S, D);
2927  return DeclPtrTy::make(D);
2928}
2929
2930/// ActOnFinishLinkageSpecification - Completely the definition of
2931/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2932/// valid, it's the position of the closing '}' brace in a linkage
2933/// specification that uses braces.
2934Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2935                                                      DeclPtrTy LinkageSpec,
2936                                                      SourceLocation RBraceLoc) {
2937  if (LinkageSpec)
2938    PopDeclContext();
2939  return LinkageSpec;
2940}
2941
2942/// \brief Perform semantic analysis for the variable declaration that
2943/// occurs within a C++ catch clause, returning the newly-created
2944/// variable.
2945VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2946                                         IdentifierInfo *Name,
2947                                         SourceLocation Loc,
2948                                         SourceRange Range) {
2949  bool Invalid = false;
2950
2951  // Arrays and functions decay.
2952  if (ExDeclType->isArrayType())
2953    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2954  else if (ExDeclType->isFunctionType())
2955    ExDeclType = Context.getPointerType(ExDeclType);
2956
2957  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2958  // The exception-declaration shall not denote a pointer or reference to an
2959  // incomplete type, other than [cv] void*.
2960  // N2844 forbids rvalue references.
2961  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2962    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2963    Invalid = true;
2964  }
2965
2966  QualType BaseType = ExDeclType;
2967  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2968  unsigned DK = diag::err_catch_incomplete;
2969  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2970    BaseType = Ptr->getPointeeType();
2971    Mode = 1;
2972    DK = diag::err_catch_incomplete_ptr;
2973  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2974    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2975    BaseType = Ref->getPointeeType();
2976    Mode = 2;
2977    DK = diag::err_catch_incomplete_ref;
2978  }
2979  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2980      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2981    Invalid = true;
2982
2983  if (!Invalid && !ExDeclType->isDependentType() &&
2984      RequireNonAbstractType(Loc, ExDeclType,
2985                             diag::err_abstract_type_in_decl,
2986                             AbstractVariableType))
2987    Invalid = true;
2988
2989  // FIXME: Need to test for ability to copy-construct and destroy the
2990  // exception variable.
2991
2992  // FIXME: Need to check for abstract classes.
2993
2994  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
2995                                    Name, ExDeclType, VarDecl::None,
2996                                    Range.getBegin());
2997
2998  if (Invalid)
2999    ExDecl->setInvalidDecl();
3000
3001  return ExDecl;
3002}
3003
3004/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3005/// handler.
3006Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3007  QualType ExDeclType = GetTypeForDeclarator(D, S);
3008
3009  bool Invalid = D.isInvalidType();
3010  IdentifierInfo *II = D.getIdentifier();
3011  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3012    // The scope should be freshly made just for us. There is just no way
3013    // it contains any previous declaration.
3014    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3015    if (PrevDecl->isTemplateParameter()) {
3016      // Maybe we will complain about the shadowed template parameter.
3017      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3018    }
3019  }
3020
3021  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3022    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3023      << D.getCXXScopeSpec().getRange();
3024    Invalid = true;
3025  }
3026
3027  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3028                                              D.getIdentifier(),
3029                                              D.getIdentifierLoc(),
3030                                            D.getDeclSpec().getSourceRange());
3031
3032  if (Invalid)
3033    ExDecl->setInvalidDecl();
3034
3035  // Add the exception declaration into this scope.
3036  if (II)
3037    PushOnScopeChains(ExDecl, S);
3038  else
3039    CurContext->addDecl(ExDecl);
3040
3041  ProcessDeclAttributes(S, ExDecl, D);
3042  return DeclPtrTy::make(ExDecl);
3043}
3044
3045Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3046                                                   ExprArg assertexpr,
3047                                                   ExprArg assertmessageexpr) {
3048  Expr *AssertExpr = (Expr *)assertexpr.get();
3049  StringLiteral *AssertMessage =
3050    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3051
3052  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3053    llvm::APSInt Value(32);
3054    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3055      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3056        AssertExpr->getSourceRange();
3057      return DeclPtrTy();
3058    }
3059
3060    if (Value == 0) {
3061      std::string str(AssertMessage->getStrData(),
3062                      AssertMessage->getByteLength());
3063      Diag(AssertLoc, diag::err_static_assert_failed)
3064        << str << AssertExpr->getSourceRange();
3065    }
3066  }
3067
3068  assertexpr.release();
3069  assertmessageexpr.release();
3070  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3071                                        AssertExpr, AssertMessage);
3072
3073  CurContext->addDecl(Decl);
3074  return DeclPtrTy::make(Decl);
3075}
3076
3077bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3078  if (!(S->getFlags() & Scope::ClassScope)) {
3079    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3080    return true;
3081  }
3082
3083  return false;
3084}
3085
3086void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3087  Decl *Dcl = dcl.getAs<Decl>();
3088  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3089  if (!Fn) {
3090    Diag(DelLoc, diag::err_deleted_non_function);
3091    return;
3092  }
3093  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3094    Diag(DelLoc, diag::err_deleted_decl_not_first);
3095    Diag(Prev->getLocation(), diag::note_previous_declaration);
3096    // If the declaration wasn't the first, we delete the function anyway for
3097    // recovery.
3098  }
3099  Fn->setDeleted();
3100}
3101
3102static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3103  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3104       ++CI) {
3105    Stmt *SubStmt = *CI;
3106    if (!SubStmt)
3107      continue;
3108    if (isa<ReturnStmt>(SubStmt))
3109      Self.Diag(SubStmt->getSourceRange().getBegin(),
3110           diag::err_return_in_constructor_handler);
3111    if (!isa<Expr>(SubStmt))
3112      SearchForReturnInStmt(Self, SubStmt);
3113  }
3114}
3115
3116void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3117  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3118    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3119    SearchForReturnInStmt(*this, Handler);
3120  }
3121}
3122
3123bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3124                                             const CXXMethodDecl *Old) {
3125  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3126  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3127
3128  QualType CNewTy = Context.getCanonicalType(NewTy);
3129  QualType COldTy = Context.getCanonicalType(OldTy);
3130
3131  if (CNewTy == COldTy &&
3132      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3133    return false;
3134
3135  // Check if the return types are covariant
3136  QualType NewClassTy, OldClassTy;
3137
3138  /// Both types must be pointers or references to classes.
3139  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3140    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3141      NewClassTy = NewPT->getPointeeType();
3142      OldClassTy = OldPT->getPointeeType();
3143    }
3144  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3145    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3146      NewClassTy = NewRT->getPointeeType();
3147      OldClassTy = OldRT->getPointeeType();
3148    }
3149  }
3150
3151  // The return types aren't either both pointers or references to a class type.
3152  if (NewClassTy.isNull()) {
3153    Diag(New->getLocation(),
3154         diag::err_different_return_type_for_overriding_virtual_function)
3155      << New->getDeclName() << NewTy << OldTy;
3156    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3157
3158    return true;
3159  }
3160
3161  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3162    // Check if the new class derives from the old class.
3163    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3164      Diag(New->getLocation(),
3165           diag::err_covariant_return_not_derived)
3166      << New->getDeclName() << NewTy << OldTy;
3167      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3168      return true;
3169    }
3170
3171    // Check if we the conversion from derived to base is valid.
3172    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3173                      diag::err_covariant_return_inaccessible_base,
3174                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3175                      // FIXME: Should this point to the return type?
3176                      New->getLocation(), SourceRange(), New->getDeclName())) {
3177      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3178      return true;
3179    }
3180  }
3181
3182  // The qualifiers of the return types must be the same.
3183  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3184    Diag(New->getLocation(),
3185         diag::err_covariant_return_type_different_qualifications)
3186    << New->getDeclName() << NewTy << OldTy;
3187    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3188    return true;
3189  };
3190
3191
3192  // The new class type must have the same or less qualifiers as the old type.
3193  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3194    Diag(New->getLocation(),
3195         diag::err_covariant_return_type_class_type_more_qualified)
3196    << New->getDeclName() << NewTy << OldTy;
3197    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3198    return true;
3199  };
3200
3201  return false;
3202}
3203
3204/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3205/// initializer for the declaration 'Dcl'.
3206/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3207/// static data member of class X, names should be looked up in the scope of
3208/// class X.
3209void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3210  Decl *D = Dcl.getAs<Decl>();
3211  // If there is no declaration, there was an error parsing it.
3212  if (D == 0)
3213    return;
3214
3215  // Check whether it is a declaration with a nested name specifier like
3216  // int foo::bar;
3217  if (!D->isOutOfLine())
3218    return;
3219
3220  // C++ [basic.lookup.unqual]p13
3221  //
3222  // A name used in the definition of a static data member of class X
3223  // (after the qualified-id of the static member) is looked up as if the name
3224  // was used in a member function of X.
3225
3226  // Change current context into the context of the initializing declaration.
3227  EnterDeclaratorContext(S, D->getDeclContext());
3228}
3229
3230/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3231/// initializer for the declaration 'Dcl'.
3232void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3233  Decl *D = Dcl.getAs<Decl>();
3234  // If there is no declaration, there was an error parsing it.
3235  if (D == 0)
3236    return;
3237
3238  // Check whether it is a declaration with a nested name specifier like
3239  // int foo::bar;
3240  if (!D->isOutOfLine())
3241    return;
3242
3243  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3244  ExitDeclaratorContext(S);
3245}
3246