SemaDeclCXX.cpp revision a31040f16604849b3b1dc36015056c81bae68ad1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check that the default argument is well-formed
181  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
182  if (DefaultArgChecker.Visit(DefaultArg)) {
183    Param->setInvalidDecl();
184    return;
185  }
186
187  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
188}
189
190/// ActOnParamUnparsedDefaultArgument - We've seen a default
191/// argument for a function parameter, but we can't parse it yet
192/// because we're inside a class definition. Note that this default
193/// argument will be parsed later.
194void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
195                                             SourceLocation EqualLoc,
196                                             SourceLocation ArgLoc) {
197  if (!param)
198    return;
199
200  ParmVarDecl *Param = cast<ParmVarDecl>(param);
201  if (Param)
202    Param->setUnparsedDefaultArg();
203
204  UnparsedDefaultArgLocs[Param] = ArgLoc;
205}
206
207/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
208/// the default argument for the parameter param failed.
209void Sema::ActOnParamDefaultArgumentError(Decl *param) {
210  if (!param)
211    return;
212
213  ParmVarDecl *Param = cast<ParmVarDecl>(param);
214
215  Param->setInvalidDecl();
216
217  UnparsedDefaultArgLocs.erase(Param);
218}
219
220/// CheckExtraCXXDefaultArguments - Check for any extra default
221/// arguments in the declarator, which is not a function declaration
222/// or definition and therefore is not permitted to have default
223/// arguments. This routine should be invoked for every declarator
224/// that is not a function declaration or definition.
225void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
226  // C++ [dcl.fct.default]p3
227  //   A default argument expression shall be specified only in the
228  //   parameter-declaration-clause of a function declaration or in a
229  //   template-parameter (14.1). It shall not be specified for a
230  //   parameter pack. If it is specified in a
231  //   parameter-declaration-clause, it shall not occur within a
232  //   declarator or abstract-declarator of a parameter-declaration.
233  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
234    DeclaratorChunk &chunk = D.getTypeObject(i);
235    if (chunk.Kind == DeclaratorChunk::Function) {
236      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
237        ParmVarDecl *Param =
238          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
239        if (Param->hasUnparsedDefaultArg()) {
240          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
241          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
242            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
243          delete Toks;
244          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
245        } else if (Param->getDefaultArg()) {
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << Param->getDefaultArg()->getSourceRange();
248          Param->setDefaultArg(0);
249        }
250      }
251    }
252  }
253}
254
255// MergeCXXFunctionDecl - Merge two declarations of the same C++
256// function, once we already know that they have the same
257// type. Subroutine of MergeFunctionDecl. Returns true if there was an
258// error, false otherwise.
259bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
260  bool Invalid = false;
261
262  // C++ [dcl.fct.default]p4:
263  //   For non-template functions, default arguments can be added in
264  //   later declarations of a function in the same
265  //   scope. Declarations in different scopes have completely
266  //   distinct sets of default arguments. That is, declarations in
267  //   inner scopes do not acquire default arguments from
268  //   declarations in outer scopes, and vice versa. In a given
269  //   function declaration, all parameters subsequent to a
270  //   parameter with a default argument shall have default
271  //   arguments supplied in this or previous declarations. A
272  //   default argument shall not be redefined by a later
273  //   declaration (not even to the same value).
274  //
275  // C++ [dcl.fct.default]p6:
276  //   Except for member functions of class templates, the default arguments
277  //   in a member function definition that appears outside of the class
278  //   definition are added to the set of default arguments provided by the
279  //   member function declaration in the class definition.
280  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
281    ParmVarDecl *OldParam = Old->getParamDecl(p);
282    ParmVarDecl *NewParam = New->getParamDecl(p);
283
284    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
285      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
286      // hint here. Alternatively, we could walk the type-source information
287      // for NewParam to find the last source location in the type... but it
288      // isn't worth the effort right now. This is the kind of test case that
289      // is hard to get right:
290
291      //   int f(int);
292      //   void g(int (*fp)(int) = f);
293      //   void g(int (*fp)(int) = &f);
294      Diag(NewParam->getLocation(),
295           diag::err_param_default_argument_redefinition)
296        << NewParam->getDefaultArgRange();
297
298      // Look for the function declaration where the default argument was
299      // actually written, which may be a declaration prior to Old.
300      for (FunctionDecl *Older = Old->getPreviousDeclaration();
301           Older; Older = Older->getPreviousDeclaration()) {
302        if (!Older->getParamDecl(p)->hasDefaultArg())
303          break;
304
305        OldParam = Older->getParamDecl(p);
306      }
307
308      Diag(OldParam->getLocation(), diag::note_previous_definition)
309        << OldParam->getDefaultArgRange();
310      Invalid = true;
311    } else if (OldParam->hasDefaultArg()) {
312      // Merge the old default argument into the new parameter.
313      // It's important to use getInit() here;  getDefaultArg()
314      // strips off any top-level ExprWithCleanups.
315      NewParam->setHasInheritedDefaultArg();
316      if (OldParam->hasUninstantiatedDefaultArg())
317        NewParam->setUninstantiatedDefaultArg(
318                                      OldParam->getUninstantiatedDefaultArg());
319      else
320        NewParam->setDefaultArg(OldParam->getInit());
321    } else if (NewParam->hasDefaultArg()) {
322      if (New->getDescribedFunctionTemplate()) {
323        // Paragraph 4, quoted above, only applies to non-template functions.
324        Diag(NewParam->getLocation(),
325             diag::err_param_default_argument_template_redecl)
326          << NewParam->getDefaultArgRange();
327        Diag(Old->getLocation(), diag::note_template_prev_declaration)
328          << false;
329      } else if (New->getTemplateSpecializationKind()
330                   != TSK_ImplicitInstantiation &&
331                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
332        // C++ [temp.expr.spec]p21:
333        //   Default function arguments shall not be specified in a declaration
334        //   or a definition for one of the following explicit specializations:
335        //     - the explicit specialization of a function template;
336        //     - the explicit specialization of a member function template;
337        //     - the explicit specialization of a member function of a class
338        //       template where the class template specialization to which the
339        //       member function specialization belongs is implicitly
340        //       instantiated.
341        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
342          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
343          << New->getDeclName()
344          << NewParam->getDefaultArgRange();
345      } else if (New->getDeclContext()->isDependentContext()) {
346        // C++ [dcl.fct.default]p6 (DR217):
347        //   Default arguments for a member function of a class template shall
348        //   be specified on the initial declaration of the member function
349        //   within the class template.
350        //
351        // Reading the tea leaves a bit in DR217 and its reference to DR205
352        // leads me to the conclusion that one cannot add default function
353        // arguments for an out-of-line definition of a member function of a
354        // dependent type.
355        int WhichKind = 2;
356        if (CXXRecordDecl *Record
357              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
358          if (Record->getDescribedClassTemplate())
359            WhichKind = 0;
360          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
361            WhichKind = 1;
362          else
363            WhichKind = 2;
364        }
365
366        Diag(NewParam->getLocation(),
367             diag::err_param_default_argument_member_template_redecl)
368          << WhichKind
369          << NewParam->getDefaultArgRange();
370      }
371    }
372  }
373
374  if (CheckEquivalentExceptionSpec(Old, New))
375    Invalid = true;
376
377  return Invalid;
378}
379
380/// CheckCXXDefaultArguments - Verify that the default arguments for a
381/// function declaration are well-formed according to C++
382/// [dcl.fct.default].
383void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
384  unsigned NumParams = FD->getNumParams();
385  unsigned p;
386
387  // Find first parameter with a default argument
388  for (p = 0; p < NumParams; ++p) {
389    ParmVarDecl *Param = FD->getParamDecl(p);
390    if (Param->hasDefaultArg())
391      break;
392  }
393
394  // C++ [dcl.fct.default]p4:
395  //   In a given function declaration, all parameters
396  //   subsequent to a parameter with a default argument shall
397  //   have default arguments supplied in this or previous
398  //   declarations. A default argument shall not be redefined
399  //   by a later declaration (not even to the same value).
400  unsigned LastMissingDefaultArg = 0;
401  for (; p < NumParams; ++p) {
402    ParmVarDecl *Param = FD->getParamDecl(p);
403    if (!Param->hasDefaultArg()) {
404      if (Param->isInvalidDecl())
405        /* We already complained about this parameter. */;
406      else if (Param->getIdentifier())
407        Diag(Param->getLocation(),
408             diag::err_param_default_argument_missing_name)
409          << Param->getIdentifier();
410      else
411        Diag(Param->getLocation(),
412             diag::err_param_default_argument_missing);
413
414      LastMissingDefaultArg = p;
415    }
416  }
417
418  if (LastMissingDefaultArg > 0) {
419    // Some default arguments were missing. Clear out all of the
420    // default arguments up to (and including) the last missing
421    // default argument, so that we leave the function parameters
422    // in a semantically valid state.
423    for (p = 0; p <= LastMissingDefaultArg; ++p) {
424      ParmVarDecl *Param = FD->getParamDecl(p);
425      if (Param->hasDefaultArg()) {
426        Param->setDefaultArg(0);
427      }
428    }
429  }
430}
431
432/// isCurrentClassName - Determine whether the identifier II is the
433/// name of the class type currently being defined. In the case of
434/// nested classes, this will only return true if II is the name of
435/// the innermost class.
436bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
437                              const CXXScopeSpec *SS) {
438  assert(getLangOptions().CPlusPlus && "No class names in C!");
439
440  CXXRecordDecl *CurDecl;
441  if (SS && SS->isSet() && !SS->isInvalid()) {
442    DeclContext *DC = computeDeclContext(*SS, true);
443    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
444  } else
445    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
446
447  if (CurDecl && CurDecl->getIdentifier())
448    return &II == CurDecl->getIdentifier();
449  else
450    return false;
451}
452
453/// \brief Check the validity of a C++ base class specifier.
454///
455/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
456/// and returns NULL otherwise.
457CXXBaseSpecifier *
458Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
459                         SourceRange SpecifierRange,
460                         bool Virtual, AccessSpecifier Access,
461                         TypeSourceInfo *TInfo) {
462  QualType BaseType = TInfo->getType();
463
464  // C++ [class.union]p1:
465  //   A union shall not have base classes.
466  if (Class->isUnion()) {
467    Diag(Class->getLocation(), diag::err_base_clause_on_union)
468      << SpecifierRange;
469    return 0;
470  }
471
472  if (BaseType->isDependentType())
473    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
474                                          Class->getTagKind() == TTK_Class,
475                                          Access, TInfo);
476
477  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
478
479  // Base specifiers must be record types.
480  if (!BaseType->isRecordType()) {
481    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
482    return 0;
483  }
484
485  // C++ [class.union]p1:
486  //   A union shall not be used as a base class.
487  if (BaseType->isUnionType()) {
488    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
489    return 0;
490  }
491
492  // C++ [class.derived]p2:
493  //   The class-name in a base-specifier shall not be an incompletely
494  //   defined class.
495  if (RequireCompleteType(BaseLoc, BaseType,
496                          PDiag(diag::err_incomplete_base_class)
497                            << SpecifierRange)) {
498    Class->setInvalidDecl();
499    return 0;
500  }
501
502  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
503  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
504  assert(BaseDecl && "Record type has no declaration");
505  BaseDecl = BaseDecl->getDefinition();
506  assert(BaseDecl && "Base type is not incomplete, but has no definition");
507  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
508  assert(CXXBaseDecl && "Base type is not a C++ type");
509
510  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
511  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
512    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
513    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
514      << BaseType;
515    return 0;
516  }
517
518  if (BaseDecl->isInvalidDecl())
519    Class->setInvalidDecl();
520
521  // Create the base specifier.
522  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
523                                        Class->getTagKind() == TTK_Class,
524                                        Access, TInfo);
525}
526
527/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
528/// one entry in the base class list of a class specifier, for
529/// example:
530///    class foo : public bar, virtual private baz {
531/// 'public bar' and 'virtual private baz' are each base-specifiers.
532BaseResult
533Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
534                         bool Virtual, AccessSpecifier Access,
535                         ParsedType basetype, SourceLocation BaseLoc) {
536  if (!classdecl)
537    return true;
538
539  AdjustDeclIfTemplate(classdecl);
540  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
541  if (!Class)
542    return true;
543
544  TypeSourceInfo *TInfo = 0;
545  GetTypeFromParser(basetype, &TInfo);
546
547  if (DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
548                                      UPPC_BaseType))
549    return true;
550
551  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
552                                                      Virtual, Access, TInfo))
553    return BaseSpec;
554
555  return true;
556}
557
558/// \brief Performs the actual work of attaching the given base class
559/// specifiers to a C++ class.
560bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
561                                unsigned NumBases) {
562 if (NumBases == 0)
563    return false;
564
565  // Used to keep track of which base types we have already seen, so
566  // that we can properly diagnose redundant direct base types. Note
567  // that the key is always the unqualified canonical type of the base
568  // class.
569  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
570
571  // Copy non-redundant base specifiers into permanent storage.
572  unsigned NumGoodBases = 0;
573  bool Invalid = false;
574  for (unsigned idx = 0; idx < NumBases; ++idx) {
575    QualType NewBaseType
576      = Context.getCanonicalType(Bases[idx]->getType());
577    NewBaseType = NewBaseType.getLocalUnqualifiedType();
578    if (!Class->hasObjectMember()) {
579      if (const RecordType *FDTTy =
580            NewBaseType.getTypePtr()->getAs<RecordType>())
581        if (FDTTy->getDecl()->hasObjectMember())
582          Class->setHasObjectMember(true);
583    }
584
585    if (KnownBaseTypes[NewBaseType]) {
586      // C++ [class.mi]p3:
587      //   A class shall not be specified as a direct base class of a
588      //   derived class more than once.
589      Diag(Bases[idx]->getSourceRange().getBegin(),
590           diag::err_duplicate_base_class)
591        << KnownBaseTypes[NewBaseType]->getType()
592        << Bases[idx]->getSourceRange();
593
594      // Delete the duplicate base class specifier; we're going to
595      // overwrite its pointer later.
596      Context.Deallocate(Bases[idx]);
597
598      Invalid = true;
599    } else {
600      // Okay, add this new base class.
601      KnownBaseTypes[NewBaseType] = Bases[idx];
602      Bases[NumGoodBases++] = Bases[idx];
603    }
604  }
605
606  // Attach the remaining base class specifiers to the derived class.
607  Class->setBases(Bases, NumGoodBases);
608
609  // Delete the remaining (good) base class specifiers, since their
610  // data has been copied into the CXXRecordDecl.
611  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
612    Context.Deallocate(Bases[idx]);
613
614  return Invalid;
615}
616
617/// ActOnBaseSpecifiers - Attach the given base specifiers to the
618/// class, after checking whether there are any duplicate base
619/// classes.
620void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
621                               unsigned NumBases) {
622  if (!ClassDecl || !Bases || !NumBases)
623    return;
624
625  AdjustDeclIfTemplate(ClassDecl);
626  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
627                       (CXXBaseSpecifier**)(Bases), NumBases);
628}
629
630static CXXRecordDecl *GetClassForType(QualType T) {
631  if (const RecordType *RT = T->getAs<RecordType>())
632    return cast<CXXRecordDecl>(RT->getDecl());
633  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
634    return ICT->getDecl();
635  else
636    return 0;
637}
638
639/// \brief Determine whether the type \p Derived is a C++ class that is
640/// derived from the type \p Base.
641bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
642  if (!getLangOptions().CPlusPlus)
643    return false;
644
645  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
646  if (!DerivedRD)
647    return false;
648
649  CXXRecordDecl *BaseRD = GetClassForType(Base);
650  if (!BaseRD)
651    return false;
652
653  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
654  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
655}
656
657/// \brief Determine whether the type \p Derived is a C++ class that is
658/// derived from the type \p Base.
659bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
660  if (!getLangOptions().CPlusPlus)
661    return false;
662
663  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
664  if (!DerivedRD)
665    return false;
666
667  CXXRecordDecl *BaseRD = GetClassForType(Base);
668  if (!BaseRD)
669    return false;
670
671  return DerivedRD->isDerivedFrom(BaseRD, Paths);
672}
673
674void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
675                              CXXCastPath &BasePathArray) {
676  assert(BasePathArray.empty() && "Base path array must be empty!");
677  assert(Paths.isRecordingPaths() && "Must record paths!");
678
679  const CXXBasePath &Path = Paths.front();
680
681  // We first go backward and check if we have a virtual base.
682  // FIXME: It would be better if CXXBasePath had the base specifier for
683  // the nearest virtual base.
684  unsigned Start = 0;
685  for (unsigned I = Path.size(); I != 0; --I) {
686    if (Path[I - 1].Base->isVirtual()) {
687      Start = I - 1;
688      break;
689    }
690  }
691
692  // Now add all bases.
693  for (unsigned I = Start, E = Path.size(); I != E; ++I)
694    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
695}
696
697/// \brief Determine whether the given base path includes a virtual
698/// base class.
699bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
700  for (CXXCastPath::const_iterator B = BasePath.begin(),
701                                BEnd = BasePath.end();
702       B != BEnd; ++B)
703    if ((*B)->isVirtual())
704      return true;
705
706  return false;
707}
708
709/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
710/// conversion (where Derived and Base are class types) is
711/// well-formed, meaning that the conversion is unambiguous (and
712/// that all of the base classes are accessible). Returns true
713/// and emits a diagnostic if the code is ill-formed, returns false
714/// otherwise. Loc is the location where this routine should point to
715/// if there is an error, and Range is the source range to highlight
716/// if there is an error.
717bool
718Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
719                                   unsigned InaccessibleBaseID,
720                                   unsigned AmbigiousBaseConvID,
721                                   SourceLocation Loc, SourceRange Range,
722                                   DeclarationName Name,
723                                   CXXCastPath *BasePath) {
724  // First, determine whether the path from Derived to Base is
725  // ambiguous. This is slightly more expensive than checking whether
726  // the Derived to Base conversion exists, because here we need to
727  // explore multiple paths to determine if there is an ambiguity.
728  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
729                     /*DetectVirtual=*/false);
730  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
731  assert(DerivationOkay &&
732         "Can only be used with a derived-to-base conversion");
733  (void)DerivationOkay;
734
735  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
736    if (InaccessibleBaseID) {
737      // Check that the base class can be accessed.
738      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
739                                   InaccessibleBaseID)) {
740        case AR_inaccessible:
741          return true;
742        case AR_accessible:
743        case AR_dependent:
744        case AR_delayed:
745          break;
746      }
747    }
748
749    // Build a base path if necessary.
750    if (BasePath)
751      BuildBasePathArray(Paths, *BasePath);
752    return false;
753  }
754
755  // We know that the derived-to-base conversion is ambiguous, and
756  // we're going to produce a diagnostic. Perform the derived-to-base
757  // search just one more time to compute all of the possible paths so
758  // that we can print them out. This is more expensive than any of
759  // the previous derived-to-base checks we've done, but at this point
760  // performance isn't as much of an issue.
761  Paths.clear();
762  Paths.setRecordingPaths(true);
763  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
764  assert(StillOkay && "Can only be used with a derived-to-base conversion");
765  (void)StillOkay;
766
767  // Build up a textual representation of the ambiguous paths, e.g.,
768  // D -> B -> A, that will be used to illustrate the ambiguous
769  // conversions in the diagnostic. We only print one of the paths
770  // to each base class subobject.
771  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
772
773  Diag(Loc, AmbigiousBaseConvID)
774  << Derived << Base << PathDisplayStr << Range << Name;
775  return true;
776}
777
778bool
779Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
780                                   SourceLocation Loc, SourceRange Range,
781                                   CXXCastPath *BasePath,
782                                   bool IgnoreAccess) {
783  return CheckDerivedToBaseConversion(Derived, Base,
784                                      IgnoreAccess ? 0
785                                       : diag::err_upcast_to_inaccessible_base,
786                                      diag::err_ambiguous_derived_to_base_conv,
787                                      Loc, Range, DeclarationName(),
788                                      BasePath);
789}
790
791
792/// @brief Builds a string representing ambiguous paths from a
793/// specific derived class to different subobjects of the same base
794/// class.
795///
796/// This function builds a string that can be used in error messages
797/// to show the different paths that one can take through the
798/// inheritance hierarchy to go from the derived class to different
799/// subobjects of a base class. The result looks something like this:
800/// @code
801/// struct D -> struct B -> struct A
802/// struct D -> struct C -> struct A
803/// @endcode
804std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
805  std::string PathDisplayStr;
806  std::set<unsigned> DisplayedPaths;
807  for (CXXBasePaths::paths_iterator Path = Paths.begin();
808       Path != Paths.end(); ++Path) {
809    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
810      // We haven't displayed a path to this particular base
811      // class subobject yet.
812      PathDisplayStr += "\n    ";
813      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
814      for (CXXBasePath::const_iterator Element = Path->begin();
815           Element != Path->end(); ++Element)
816        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
817    }
818  }
819
820  return PathDisplayStr;
821}
822
823//===----------------------------------------------------------------------===//
824// C++ class member Handling
825//===----------------------------------------------------------------------===//
826
827/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
828Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
829                                 SourceLocation ASLoc,
830                                 SourceLocation ColonLoc) {
831  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
832  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
833                                                  ASLoc, ColonLoc);
834  CurContext->addHiddenDecl(ASDecl);
835  return ASDecl;
836}
837
838/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
839/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
840/// bitfield width if there is one and 'InitExpr' specifies the initializer if
841/// any.
842Decl *
843Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
844                               MultiTemplateParamsArg TemplateParameterLists,
845                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
846                               bool Deleted) {
847  const DeclSpec &DS = D.getDeclSpec();
848  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
849  DeclarationName Name = NameInfo.getName();
850  SourceLocation Loc = NameInfo.getLoc();
851
852  // For anonymous bitfields, the location should point to the type.
853  if (Loc.isInvalid())
854    Loc = D.getSourceRange().getBegin();
855
856  Expr *BitWidth = static_cast<Expr*>(BW);
857  Expr *Init = static_cast<Expr*>(InitExpr);
858
859  assert(isa<CXXRecordDecl>(CurContext));
860  assert(!DS.isFriendSpecified());
861
862  bool isFunc = false;
863  if (D.isFunctionDeclarator())
864    isFunc = true;
865  else if (D.getNumTypeObjects() == 0 &&
866           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
867    QualType TDType = GetTypeFromParser(DS.getRepAsType());
868    isFunc = TDType->isFunctionType();
869  }
870
871  // C++ 9.2p6: A member shall not be declared to have automatic storage
872  // duration (auto, register) or with the extern storage-class-specifier.
873  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
874  // data members and cannot be applied to names declared const or static,
875  // and cannot be applied to reference members.
876  switch (DS.getStorageClassSpec()) {
877    case DeclSpec::SCS_unspecified:
878    case DeclSpec::SCS_typedef:
879    case DeclSpec::SCS_static:
880      // FALL THROUGH.
881      break;
882    case DeclSpec::SCS_mutable:
883      if (isFunc) {
884        if (DS.getStorageClassSpecLoc().isValid())
885          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
886        else
887          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
888
889        // FIXME: It would be nicer if the keyword was ignored only for this
890        // declarator. Otherwise we could get follow-up errors.
891        D.getMutableDeclSpec().ClearStorageClassSpecs();
892      }
893      break;
894    default:
895      if (DS.getStorageClassSpecLoc().isValid())
896        Diag(DS.getStorageClassSpecLoc(),
897             diag::err_storageclass_invalid_for_member);
898      else
899        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
900      D.getMutableDeclSpec().ClearStorageClassSpecs();
901  }
902
903  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
904                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
905                      !isFunc);
906
907  Decl *Member;
908  if (isInstField) {
909    CXXScopeSpec &SS = D.getCXXScopeSpec();
910
911
912    if (SS.isSet() && !SS.isInvalid()) {
913      // The user provided a superfluous scope specifier inside a class
914      // definition:
915      //
916      // class X {
917      //   int X::member;
918      // };
919      DeclContext *DC = 0;
920      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
921        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
922        << Name << FixItHint::CreateRemoval(SS.getRange());
923      else
924        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
925          << Name << SS.getRange();
926
927      SS.clear();
928    }
929
930    // FIXME: Check for template parameters!
931    // FIXME: Check that the name is an identifier!
932    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
933                         AS);
934    assert(Member && "HandleField never returns null");
935  } else {
936    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
937    if (!Member) {
938      return 0;
939    }
940
941    // Non-instance-fields can't have a bitfield.
942    if (BitWidth) {
943      if (Member->isInvalidDecl()) {
944        // don't emit another diagnostic.
945      } else if (isa<VarDecl>(Member)) {
946        // C++ 9.6p3: A bit-field shall not be a static member.
947        // "static member 'A' cannot be a bit-field"
948        Diag(Loc, diag::err_static_not_bitfield)
949          << Name << BitWidth->getSourceRange();
950      } else if (isa<TypedefDecl>(Member)) {
951        // "typedef member 'x' cannot be a bit-field"
952        Diag(Loc, diag::err_typedef_not_bitfield)
953          << Name << BitWidth->getSourceRange();
954      } else {
955        // A function typedef ("typedef int f(); f a;").
956        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
957        Diag(Loc, diag::err_not_integral_type_bitfield)
958          << Name << cast<ValueDecl>(Member)->getType()
959          << BitWidth->getSourceRange();
960      }
961
962      BitWidth = 0;
963      Member->setInvalidDecl();
964    }
965
966    Member->setAccess(AS);
967
968    // If we have declared a member function template, set the access of the
969    // templated declaration as well.
970    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
971      FunTmpl->getTemplatedDecl()->setAccess(AS);
972  }
973
974  assert((Name || isInstField) && "No identifier for non-field ?");
975
976  if (Init)
977    AddInitializerToDecl(Member, Init, false);
978  if (Deleted) // FIXME: Source location is not very good.
979    SetDeclDeleted(Member, D.getSourceRange().getBegin());
980
981  if (isInstField) {
982    FieldCollector->Add(cast<FieldDecl>(Member));
983    return 0;
984  }
985  return Member;
986}
987
988/// \brief Find the direct and/or virtual base specifiers that
989/// correspond to the given base type, for use in base initialization
990/// within a constructor.
991static bool FindBaseInitializer(Sema &SemaRef,
992                                CXXRecordDecl *ClassDecl,
993                                QualType BaseType,
994                                const CXXBaseSpecifier *&DirectBaseSpec,
995                                const CXXBaseSpecifier *&VirtualBaseSpec) {
996  // First, check for a direct base class.
997  DirectBaseSpec = 0;
998  for (CXXRecordDecl::base_class_const_iterator Base
999         = ClassDecl->bases_begin();
1000       Base != ClassDecl->bases_end(); ++Base) {
1001    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1002      // We found a direct base of this type. That's what we're
1003      // initializing.
1004      DirectBaseSpec = &*Base;
1005      break;
1006    }
1007  }
1008
1009  // Check for a virtual base class.
1010  // FIXME: We might be able to short-circuit this if we know in advance that
1011  // there are no virtual bases.
1012  VirtualBaseSpec = 0;
1013  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1014    // We haven't found a base yet; search the class hierarchy for a
1015    // virtual base class.
1016    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1017                       /*DetectVirtual=*/false);
1018    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1019                              BaseType, Paths)) {
1020      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1021           Path != Paths.end(); ++Path) {
1022        if (Path->back().Base->isVirtual()) {
1023          VirtualBaseSpec = Path->back().Base;
1024          break;
1025        }
1026      }
1027    }
1028  }
1029
1030  return DirectBaseSpec || VirtualBaseSpec;
1031}
1032
1033/// ActOnMemInitializer - Handle a C++ member initializer.
1034MemInitResult
1035Sema::ActOnMemInitializer(Decl *ConstructorD,
1036                          Scope *S,
1037                          CXXScopeSpec &SS,
1038                          IdentifierInfo *MemberOrBase,
1039                          ParsedType TemplateTypeTy,
1040                          SourceLocation IdLoc,
1041                          SourceLocation LParenLoc,
1042                          ExprTy **Args, unsigned NumArgs,
1043                          SourceLocation RParenLoc) {
1044  if (!ConstructorD)
1045    return true;
1046
1047  AdjustDeclIfTemplate(ConstructorD);
1048
1049  CXXConstructorDecl *Constructor
1050    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1051  if (!Constructor) {
1052    // The user wrote a constructor initializer on a function that is
1053    // not a C++ constructor. Ignore the error for now, because we may
1054    // have more member initializers coming; we'll diagnose it just
1055    // once in ActOnMemInitializers.
1056    return true;
1057  }
1058
1059  CXXRecordDecl *ClassDecl = Constructor->getParent();
1060
1061  // C++ [class.base.init]p2:
1062  //   Names in a mem-initializer-id are looked up in the scope of the
1063  //   constructor's class and, if not found in that scope, are looked
1064  //   up in the scope containing the constructor's definition.
1065  //   [Note: if the constructor's class contains a member with the
1066  //   same name as a direct or virtual base class of the class, a
1067  //   mem-initializer-id naming the member or base class and composed
1068  //   of a single identifier refers to the class member. A
1069  //   mem-initializer-id for the hidden base class may be specified
1070  //   using a qualified name. ]
1071  if (!SS.getScopeRep() && !TemplateTypeTy) {
1072    // Look for a member, first.
1073    FieldDecl *Member = 0;
1074    DeclContext::lookup_result Result
1075      = ClassDecl->lookup(MemberOrBase);
1076    if (Result.first != Result.second) {
1077      Member = dyn_cast<FieldDecl>(*Result.first);
1078
1079      if (Member)
1080        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1081                                    LParenLoc, RParenLoc);
1082      // Handle anonymous union case.
1083      if (IndirectFieldDecl* IndirectField
1084            = dyn_cast<IndirectFieldDecl>(*Result.first))
1085         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1086                                       NumArgs, IdLoc,
1087                                       LParenLoc, RParenLoc);
1088    }
1089  }
1090  // It didn't name a member, so see if it names a class.
1091  QualType BaseType;
1092  TypeSourceInfo *TInfo = 0;
1093
1094  if (TemplateTypeTy) {
1095    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1096  } else {
1097    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1098    LookupParsedName(R, S, &SS);
1099
1100    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1101    if (!TyD) {
1102      if (R.isAmbiguous()) return true;
1103
1104      // We don't want access-control diagnostics here.
1105      R.suppressDiagnostics();
1106
1107      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1108        bool NotUnknownSpecialization = false;
1109        DeclContext *DC = computeDeclContext(SS, false);
1110        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1111          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1112
1113        if (!NotUnknownSpecialization) {
1114          // When the scope specifier can refer to a member of an unknown
1115          // specialization, we take it as a type name.
1116          BaseType = CheckTypenameType(ETK_None,
1117                                       (NestedNameSpecifier *)SS.getScopeRep(),
1118                                       *MemberOrBase, SourceLocation(),
1119                                       SS.getRange(), IdLoc);
1120          if (BaseType.isNull())
1121            return true;
1122
1123          R.clear();
1124          R.setLookupName(MemberOrBase);
1125        }
1126      }
1127
1128      // If no results were found, try to correct typos.
1129      if (R.empty() && BaseType.isNull() &&
1130          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1131          R.isSingleResult()) {
1132        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1133          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1134            // We have found a non-static data member with a similar
1135            // name to what was typed; complain and initialize that
1136            // member.
1137            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1138              << MemberOrBase << true << R.getLookupName()
1139              << FixItHint::CreateReplacement(R.getNameLoc(),
1140                                              R.getLookupName().getAsString());
1141            Diag(Member->getLocation(), diag::note_previous_decl)
1142              << Member->getDeclName();
1143
1144            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1145                                          LParenLoc, RParenLoc);
1146          }
1147        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1148          const CXXBaseSpecifier *DirectBaseSpec;
1149          const CXXBaseSpecifier *VirtualBaseSpec;
1150          if (FindBaseInitializer(*this, ClassDecl,
1151                                  Context.getTypeDeclType(Type),
1152                                  DirectBaseSpec, VirtualBaseSpec)) {
1153            // We have found a direct or virtual base class with a
1154            // similar name to what was typed; complain and initialize
1155            // that base class.
1156            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1157              << MemberOrBase << false << R.getLookupName()
1158              << FixItHint::CreateReplacement(R.getNameLoc(),
1159                                              R.getLookupName().getAsString());
1160
1161            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1162                                                             : VirtualBaseSpec;
1163            Diag(BaseSpec->getSourceRange().getBegin(),
1164                 diag::note_base_class_specified_here)
1165              << BaseSpec->getType()
1166              << BaseSpec->getSourceRange();
1167
1168            TyD = Type;
1169          }
1170        }
1171      }
1172
1173      if (!TyD && BaseType.isNull()) {
1174        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1175          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1176        return true;
1177      }
1178    }
1179
1180    if (BaseType.isNull()) {
1181      BaseType = Context.getTypeDeclType(TyD);
1182      if (SS.isSet()) {
1183        NestedNameSpecifier *Qualifier =
1184          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1185
1186        // FIXME: preserve source range information
1187        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1188      }
1189    }
1190  }
1191
1192  if (!TInfo)
1193    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1194
1195  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1196                              LParenLoc, RParenLoc, ClassDecl);
1197}
1198
1199/// Checks an initializer expression for use of uninitialized fields, such as
1200/// containing the field that is being initialized. Returns true if there is an
1201/// uninitialized field was used an updates the SourceLocation parameter; false
1202/// otherwise.
1203static bool InitExprContainsUninitializedFields(const Stmt *S,
1204                                                const ValueDecl *LhsField,
1205                                                SourceLocation *L) {
1206  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1207
1208  if (isa<CallExpr>(S)) {
1209    // Do not descend into function calls or constructors, as the use
1210    // of an uninitialized field may be valid. One would have to inspect
1211    // the contents of the function/ctor to determine if it is safe or not.
1212    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1213    // may be safe, depending on what the function/ctor does.
1214    return false;
1215  }
1216  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1217    const NamedDecl *RhsField = ME->getMemberDecl();
1218
1219    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1220      // The member expression points to a static data member.
1221      assert(VD->isStaticDataMember() &&
1222             "Member points to non-static data member!");
1223      (void)VD;
1224      return false;
1225    }
1226
1227    if (isa<EnumConstantDecl>(RhsField)) {
1228      // The member expression points to an enum.
1229      return false;
1230    }
1231
1232    if (RhsField == LhsField) {
1233      // Initializing a field with itself. Throw a warning.
1234      // But wait; there are exceptions!
1235      // Exception #1:  The field may not belong to this record.
1236      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1237      const Expr *base = ME->getBase();
1238      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1239        // Even though the field matches, it does not belong to this record.
1240        return false;
1241      }
1242      // None of the exceptions triggered; return true to indicate an
1243      // uninitialized field was used.
1244      *L = ME->getMemberLoc();
1245      return true;
1246    }
1247  } else if (isa<SizeOfAlignOfExpr>(S)) {
1248    // sizeof/alignof doesn't reference contents, do not warn.
1249    return false;
1250  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1251    // address-of doesn't reference contents (the pointer may be dereferenced
1252    // in the same expression but it would be rare; and weird).
1253    if (UOE->getOpcode() == UO_AddrOf)
1254      return false;
1255  }
1256  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1257       it != e; ++it) {
1258    if (!*it) {
1259      // An expression such as 'member(arg ?: "")' may trigger this.
1260      continue;
1261    }
1262    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1263      return true;
1264  }
1265  return false;
1266}
1267
1268MemInitResult
1269Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1270                             unsigned NumArgs, SourceLocation IdLoc,
1271                             SourceLocation LParenLoc,
1272                             SourceLocation RParenLoc) {
1273  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1274  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1275  assert((DirectMember || IndirectMember) &&
1276         "Member must be a FieldDecl or IndirectFieldDecl");
1277
1278  if (Member->isInvalidDecl())
1279    return true;
1280
1281  // Diagnose value-uses of fields to initialize themselves, e.g.
1282  //   foo(foo)
1283  // where foo is not also a parameter to the constructor.
1284  // TODO: implement -Wuninitialized and fold this into that framework.
1285  for (unsigned i = 0; i < NumArgs; ++i) {
1286    SourceLocation L;
1287    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1288      // FIXME: Return true in the case when other fields are used before being
1289      // uninitialized. For example, let this field be the i'th field. When
1290      // initializing the i'th field, throw a warning if any of the >= i'th
1291      // fields are used, as they are not yet initialized.
1292      // Right now we are only handling the case where the i'th field uses
1293      // itself in its initializer.
1294      Diag(L, diag::warn_field_is_uninit);
1295    }
1296  }
1297
1298  bool HasDependentArg = false;
1299  for (unsigned i = 0; i < NumArgs; i++)
1300    HasDependentArg |= Args[i]->isTypeDependent();
1301
1302  Expr *Init;
1303  if (Member->getType()->isDependentType() || HasDependentArg) {
1304    // Can't check initialization for a member of dependent type or when
1305    // any of the arguments are type-dependent expressions.
1306    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1307                                       RParenLoc);
1308
1309    // Erase any temporaries within this evaluation context; we're not
1310    // going to track them in the AST, since we'll be rebuilding the
1311    // ASTs during template instantiation.
1312    ExprTemporaries.erase(
1313              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1314                          ExprTemporaries.end());
1315  } else {
1316    // Initialize the member.
1317    InitializedEntity MemberEntity =
1318      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1319                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1320    InitializationKind Kind =
1321      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1322
1323    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1324
1325    ExprResult MemberInit =
1326      InitSeq.Perform(*this, MemberEntity, Kind,
1327                      MultiExprArg(*this, Args, NumArgs), 0);
1328    if (MemberInit.isInvalid())
1329      return true;
1330
1331    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1332
1333    // C++0x [class.base.init]p7:
1334    //   The initialization of each base and member constitutes a
1335    //   full-expression.
1336    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1337    if (MemberInit.isInvalid())
1338      return true;
1339
1340    // If we are in a dependent context, template instantiation will
1341    // perform this type-checking again. Just save the arguments that we
1342    // received in a ParenListExpr.
1343    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1344    // of the information that we have about the member
1345    // initializer. However, deconstructing the ASTs is a dicey process,
1346    // and this approach is far more likely to get the corner cases right.
1347    if (CurContext->isDependentContext())
1348      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1349                                               RParenLoc);
1350    else
1351      Init = MemberInit.get();
1352  }
1353
1354  if (DirectMember) {
1355    return new (Context) CXXBaseOrMemberInitializer(Context, DirectMember,
1356                                                    IdLoc, LParenLoc, Init,
1357                                                    RParenLoc);
1358  } else {
1359    return new (Context) CXXBaseOrMemberInitializer(Context, IndirectMember,
1360                                                    IdLoc, LParenLoc, Init,
1361                                                    RParenLoc);
1362  }
1363}
1364
1365MemInitResult
1366Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1367                           Expr **Args, unsigned NumArgs,
1368                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1369                           CXXRecordDecl *ClassDecl) {
1370  bool HasDependentArg = false;
1371  for (unsigned i = 0; i < NumArgs; i++)
1372    HasDependentArg |= Args[i]->isTypeDependent();
1373
1374  SourceLocation BaseLoc
1375    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1376
1377  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1378    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1379             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1380
1381  // C++ [class.base.init]p2:
1382  //   [...] Unless the mem-initializer-id names a nonstatic data
1383  //   member of the constructor's class or a direct or virtual base
1384  //   of that class, the mem-initializer is ill-formed. A
1385  //   mem-initializer-list can initialize a base class using any
1386  //   name that denotes that base class type.
1387  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1388
1389  // Check for direct and virtual base classes.
1390  const CXXBaseSpecifier *DirectBaseSpec = 0;
1391  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1392  if (!Dependent) {
1393    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1394                        VirtualBaseSpec);
1395
1396    // C++ [base.class.init]p2:
1397    // Unless the mem-initializer-id names a nonstatic data member of the
1398    // constructor's class or a direct or virtual base of that class, the
1399    // mem-initializer is ill-formed.
1400    if (!DirectBaseSpec && !VirtualBaseSpec) {
1401      // If the class has any dependent bases, then it's possible that
1402      // one of those types will resolve to the same type as
1403      // BaseType. Therefore, just treat this as a dependent base
1404      // class initialization.  FIXME: Should we try to check the
1405      // initialization anyway? It seems odd.
1406      if (ClassDecl->hasAnyDependentBases())
1407        Dependent = true;
1408      else
1409        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1410          << BaseType << Context.getTypeDeclType(ClassDecl)
1411          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1412    }
1413  }
1414
1415  if (Dependent) {
1416    // Can't check initialization for a base of dependent type or when
1417    // any of the arguments are type-dependent expressions.
1418    ExprResult BaseInit
1419      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1420                                          RParenLoc));
1421
1422    // Erase any temporaries within this evaluation context; we're not
1423    // going to track them in the AST, since we'll be rebuilding the
1424    // ASTs during template instantiation.
1425    ExprTemporaries.erase(
1426              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1427                          ExprTemporaries.end());
1428
1429    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1430                                                    /*IsVirtual=*/false,
1431                                                    LParenLoc,
1432                                                    BaseInit.takeAs<Expr>(),
1433                                                    RParenLoc);
1434  }
1435
1436  // C++ [base.class.init]p2:
1437  //   If a mem-initializer-id is ambiguous because it designates both
1438  //   a direct non-virtual base class and an inherited virtual base
1439  //   class, the mem-initializer is ill-formed.
1440  if (DirectBaseSpec && VirtualBaseSpec)
1441    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1442      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1443
1444  CXXBaseSpecifier *BaseSpec
1445    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1446  if (!BaseSpec)
1447    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1448
1449  // Initialize the base.
1450  InitializedEntity BaseEntity =
1451    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1452  InitializationKind Kind =
1453    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1454
1455  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1456
1457  ExprResult BaseInit =
1458    InitSeq.Perform(*this, BaseEntity, Kind,
1459                    MultiExprArg(*this, Args, NumArgs), 0);
1460  if (BaseInit.isInvalid())
1461    return true;
1462
1463  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1464
1465  // C++0x [class.base.init]p7:
1466  //   The initialization of each base and member constitutes a
1467  //   full-expression.
1468  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1469  if (BaseInit.isInvalid())
1470    return true;
1471
1472  // If we are in a dependent context, template instantiation will
1473  // perform this type-checking again. Just save the arguments that we
1474  // received in a ParenListExpr.
1475  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1476  // of the information that we have about the base
1477  // initializer. However, deconstructing the ASTs is a dicey process,
1478  // and this approach is far more likely to get the corner cases right.
1479  if (CurContext->isDependentContext()) {
1480    ExprResult Init
1481      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1482                                          RParenLoc));
1483    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1484                                                    BaseSpec->isVirtual(),
1485                                                    LParenLoc,
1486                                                    Init.takeAs<Expr>(),
1487                                                    RParenLoc);
1488  }
1489
1490  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1491                                                  BaseSpec->isVirtual(),
1492                                                  LParenLoc,
1493                                                  BaseInit.takeAs<Expr>(),
1494                                                  RParenLoc);
1495}
1496
1497/// ImplicitInitializerKind - How an implicit base or member initializer should
1498/// initialize its base or member.
1499enum ImplicitInitializerKind {
1500  IIK_Default,
1501  IIK_Copy,
1502  IIK_Move
1503};
1504
1505static bool
1506BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1507                             ImplicitInitializerKind ImplicitInitKind,
1508                             CXXBaseSpecifier *BaseSpec,
1509                             bool IsInheritedVirtualBase,
1510                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1511  InitializedEntity InitEntity
1512    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1513                                        IsInheritedVirtualBase);
1514
1515  ExprResult BaseInit;
1516
1517  switch (ImplicitInitKind) {
1518  case IIK_Default: {
1519    InitializationKind InitKind
1520      = InitializationKind::CreateDefault(Constructor->getLocation());
1521    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1522    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1523                               MultiExprArg(SemaRef, 0, 0));
1524    break;
1525  }
1526
1527  case IIK_Copy: {
1528    ParmVarDecl *Param = Constructor->getParamDecl(0);
1529    QualType ParamType = Param->getType().getNonReferenceType();
1530
1531    Expr *CopyCtorArg =
1532      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1533                          Constructor->getLocation(), ParamType,
1534                          VK_LValue, 0);
1535
1536    // Cast to the base class to avoid ambiguities.
1537    QualType ArgTy =
1538      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1539                                       ParamType.getQualifiers());
1540
1541    CXXCastPath BasePath;
1542    BasePath.push_back(BaseSpec);
1543    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1544                              CK_UncheckedDerivedToBase,
1545                              VK_LValue, &BasePath);
1546
1547    InitializationKind InitKind
1548      = InitializationKind::CreateDirect(Constructor->getLocation(),
1549                                         SourceLocation(), SourceLocation());
1550    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1551                                   &CopyCtorArg, 1);
1552    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1553                               MultiExprArg(&CopyCtorArg, 1));
1554    break;
1555  }
1556
1557  case IIK_Move:
1558    assert(false && "Unhandled initializer kind!");
1559  }
1560
1561  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1562  if (BaseInit.isInvalid())
1563    return true;
1564
1565  CXXBaseInit =
1566    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1567               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1568                                                        SourceLocation()),
1569                                             BaseSpec->isVirtual(),
1570                                             SourceLocation(),
1571                                             BaseInit.takeAs<Expr>(),
1572                                             SourceLocation());
1573
1574  return false;
1575}
1576
1577static bool
1578BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1579                               ImplicitInitializerKind ImplicitInitKind,
1580                               FieldDecl *Field,
1581                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1582  if (Field->isInvalidDecl())
1583    return true;
1584
1585  SourceLocation Loc = Constructor->getLocation();
1586
1587  if (ImplicitInitKind == IIK_Copy) {
1588    ParmVarDecl *Param = Constructor->getParamDecl(0);
1589    QualType ParamType = Param->getType().getNonReferenceType();
1590
1591    Expr *MemberExprBase =
1592      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1593                          Loc, ParamType, VK_LValue, 0);
1594
1595    // Build a reference to this field within the parameter.
1596    CXXScopeSpec SS;
1597    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1598                              Sema::LookupMemberName);
1599    MemberLookup.addDecl(Field, AS_public);
1600    MemberLookup.resolveKind();
1601    ExprResult CopyCtorArg
1602      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1603                                         ParamType, Loc,
1604                                         /*IsArrow=*/false,
1605                                         SS,
1606                                         /*FirstQualifierInScope=*/0,
1607                                         MemberLookup,
1608                                         /*TemplateArgs=*/0);
1609    if (CopyCtorArg.isInvalid())
1610      return true;
1611
1612    // When the field we are copying is an array, create index variables for
1613    // each dimension of the array. We use these index variables to subscript
1614    // the source array, and other clients (e.g., CodeGen) will perform the
1615    // necessary iteration with these index variables.
1616    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1617    QualType BaseType = Field->getType();
1618    QualType SizeType = SemaRef.Context.getSizeType();
1619    while (const ConstantArrayType *Array
1620                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1621      // Create the iteration variable for this array index.
1622      IdentifierInfo *IterationVarName = 0;
1623      {
1624        llvm::SmallString<8> Str;
1625        llvm::raw_svector_ostream OS(Str);
1626        OS << "__i" << IndexVariables.size();
1627        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1628      }
1629      VarDecl *IterationVar
1630        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1631                          IterationVarName, SizeType,
1632                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1633                          SC_None, SC_None);
1634      IndexVariables.push_back(IterationVar);
1635
1636      // Create a reference to the iteration variable.
1637      ExprResult IterationVarRef
1638        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1639      assert(!IterationVarRef.isInvalid() &&
1640             "Reference to invented variable cannot fail!");
1641
1642      // Subscript the array with this iteration variable.
1643      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1644                                                            Loc,
1645                                                        IterationVarRef.take(),
1646                                                            Loc);
1647      if (CopyCtorArg.isInvalid())
1648        return true;
1649
1650      BaseType = Array->getElementType();
1651    }
1652
1653    // Construct the entity that we will be initializing. For an array, this
1654    // will be first element in the array, which may require several levels
1655    // of array-subscript entities.
1656    llvm::SmallVector<InitializedEntity, 4> Entities;
1657    Entities.reserve(1 + IndexVariables.size());
1658    Entities.push_back(InitializedEntity::InitializeMember(Field));
1659    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1660      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1661                                                              0,
1662                                                              Entities.back()));
1663
1664    // Direct-initialize to use the copy constructor.
1665    InitializationKind InitKind =
1666      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1667
1668    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1669    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1670                                   &CopyCtorArgE, 1);
1671
1672    ExprResult MemberInit
1673      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1674                        MultiExprArg(&CopyCtorArgE, 1));
1675    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1676    if (MemberInit.isInvalid())
1677      return true;
1678
1679    CXXMemberInit
1680      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1681                                           MemberInit.takeAs<Expr>(), Loc,
1682                                           IndexVariables.data(),
1683                                           IndexVariables.size());
1684    return false;
1685  }
1686
1687  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1688
1689  QualType FieldBaseElementType =
1690    SemaRef.Context.getBaseElementType(Field->getType());
1691
1692  if (FieldBaseElementType->isRecordType()) {
1693    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1694    InitializationKind InitKind =
1695      InitializationKind::CreateDefault(Loc);
1696
1697    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1698    ExprResult MemberInit =
1699      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1700
1701    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1702    if (MemberInit.isInvalid())
1703      return true;
1704
1705    CXXMemberInit =
1706      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1707                                                       Field, Loc, Loc,
1708                                                       MemberInit.get(),
1709                                                       Loc);
1710    return false;
1711  }
1712
1713  if (FieldBaseElementType->isReferenceType()) {
1714    SemaRef.Diag(Constructor->getLocation(),
1715                 diag::err_uninitialized_member_in_ctor)
1716    << (int)Constructor->isImplicit()
1717    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1718    << 0 << Field->getDeclName();
1719    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1720    return true;
1721  }
1722
1723  if (FieldBaseElementType.isConstQualified()) {
1724    SemaRef.Diag(Constructor->getLocation(),
1725                 diag::err_uninitialized_member_in_ctor)
1726    << (int)Constructor->isImplicit()
1727    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1728    << 1 << Field->getDeclName();
1729    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1730    return true;
1731  }
1732
1733  // Nothing to initialize.
1734  CXXMemberInit = 0;
1735  return false;
1736}
1737
1738namespace {
1739struct BaseAndFieldInfo {
1740  Sema &S;
1741  CXXConstructorDecl *Ctor;
1742  bool AnyErrorsInInits;
1743  ImplicitInitializerKind IIK;
1744  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1745  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1746
1747  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1748    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1749    // FIXME: Handle implicit move constructors.
1750    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1751      IIK = IIK_Copy;
1752    else
1753      IIK = IIK_Default;
1754  }
1755};
1756}
1757
1758static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1759                                    FieldDecl *Top, FieldDecl *Field) {
1760
1761  // Overwhelmingly common case: we have a direct initializer for this field.
1762  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1763    Info.AllToInit.push_back(Init);
1764    return false;
1765  }
1766
1767  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1768    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1769    assert(FieldClassType && "anonymous struct/union without record type");
1770    CXXRecordDecl *FieldClassDecl
1771      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1772
1773    // Even though union members never have non-trivial default
1774    // constructions in C++03, we still build member initializers for aggregate
1775    // record types which can be union members, and C++0x allows non-trivial
1776    // default constructors for union members, so we ensure that only one
1777    // member is initialized for these.
1778    if (FieldClassDecl->isUnion()) {
1779      // First check for an explicit initializer for one field.
1780      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1781           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1782        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1783          Info.AllToInit.push_back(Init);
1784
1785          // Once we've initialized a field of an anonymous union, the union
1786          // field in the class is also initialized, so exit immediately.
1787          return false;
1788        } else if ((*FA)->isAnonymousStructOrUnion()) {
1789          if (CollectFieldInitializer(Info, Top, *FA))
1790            return true;
1791        }
1792      }
1793
1794      // Fallthrough and construct a default initializer for the union as
1795      // a whole, which can call its default constructor if such a thing exists
1796      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1797      // behavior going forward with C++0x, when anonymous unions there are
1798      // finalized, we should revisit this.
1799    } else {
1800      // For structs, we simply descend through to initialize all members where
1801      // necessary.
1802      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1803           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1804        if (CollectFieldInitializer(Info, Top, *FA))
1805          return true;
1806      }
1807    }
1808  }
1809
1810  // Don't try to build an implicit initializer if there were semantic
1811  // errors in any of the initializers (and therefore we might be
1812  // missing some that the user actually wrote).
1813  if (Info.AnyErrorsInInits)
1814    return false;
1815
1816  CXXBaseOrMemberInitializer *Init = 0;
1817  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1818    return true;
1819
1820  if (Init)
1821    Info.AllToInit.push_back(Init);
1822
1823  return false;
1824}
1825
1826bool
1827Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1828                                  CXXBaseOrMemberInitializer **Initializers,
1829                                  unsigned NumInitializers,
1830                                  bool AnyErrors) {
1831  if (Constructor->getDeclContext()->isDependentContext()) {
1832    // Just store the initializers as written, they will be checked during
1833    // instantiation.
1834    if (NumInitializers > 0) {
1835      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1836      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1837        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1838      memcpy(baseOrMemberInitializers, Initializers,
1839             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1840      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1841    }
1842
1843    return false;
1844  }
1845
1846  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1847
1848  // We need to build the initializer AST according to order of construction
1849  // and not what user specified in the Initializers list.
1850  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1851  if (!ClassDecl)
1852    return true;
1853
1854  bool HadError = false;
1855
1856  for (unsigned i = 0; i < NumInitializers; i++) {
1857    CXXBaseOrMemberInitializer *Member = Initializers[i];
1858
1859    if (Member->isBaseInitializer())
1860      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1861    else
1862      Info.AllBaseFields[Member->getAnyMember()] = Member;
1863  }
1864
1865  // Keep track of the direct virtual bases.
1866  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1867  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1868       E = ClassDecl->bases_end(); I != E; ++I) {
1869    if (I->isVirtual())
1870      DirectVBases.insert(I);
1871  }
1872
1873  // Push virtual bases before others.
1874  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1875       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1876
1877    if (CXXBaseOrMemberInitializer *Value
1878        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1879      Info.AllToInit.push_back(Value);
1880    } else if (!AnyErrors) {
1881      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1882      CXXBaseOrMemberInitializer *CXXBaseInit;
1883      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1884                                       VBase, IsInheritedVirtualBase,
1885                                       CXXBaseInit)) {
1886        HadError = true;
1887        continue;
1888      }
1889
1890      Info.AllToInit.push_back(CXXBaseInit);
1891    }
1892  }
1893
1894  // Non-virtual bases.
1895  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1896       E = ClassDecl->bases_end(); Base != E; ++Base) {
1897    // Virtuals are in the virtual base list and already constructed.
1898    if (Base->isVirtual())
1899      continue;
1900
1901    if (CXXBaseOrMemberInitializer *Value
1902          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1903      Info.AllToInit.push_back(Value);
1904    } else if (!AnyErrors) {
1905      CXXBaseOrMemberInitializer *CXXBaseInit;
1906      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1907                                       Base, /*IsInheritedVirtualBase=*/false,
1908                                       CXXBaseInit)) {
1909        HadError = true;
1910        continue;
1911      }
1912
1913      Info.AllToInit.push_back(CXXBaseInit);
1914    }
1915  }
1916
1917  // Fields.
1918  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1919       E = ClassDecl->field_end(); Field != E; ++Field) {
1920    if ((*Field)->getType()->isIncompleteArrayType()) {
1921      assert(ClassDecl->hasFlexibleArrayMember() &&
1922             "Incomplete array type is not valid");
1923      continue;
1924    }
1925    if (CollectFieldInitializer(Info, *Field, *Field))
1926      HadError = true;
1927  }
1928
1929  NumInitializers = Info.AllToInit.size();
1930  if (NumInitializers > 0) {
1931    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1932    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1933      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1934    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1935           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1936    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1937
1938    // Constructors implicitly reference the base and member
1939    // destructors.
1940    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1941                                           Constructor->getParent());
1942  }
1943
1944  return HadError;
1945}
1946
1947static void *GetKeyForTopLevelField(FieldDecl *Field) {
1948  // For anonymous unions, use the class declaration as the key.
1949  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1950    if (RT->getDecl()->isAnonymousStructOrUnion())
1951      return static_cast<void *>(RT->getDecl());
1952  }
1953  return static_cast<void *>(Field);
1954}
1955
1956static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1957  return Context.getCanonicalType(BaseType).getTypePtr();
1958}
1959
1960static void *GetKeyForMember(ASTContext &Context,
1961                             CXXBaseOrMemberInitializer *Member) {
1962  if (!Member->isAnyMemberInitializer())
1963    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1964
1965  // For fields injected into the class via declaration of an anonymous union,
1966  // use its anonymous union class declaration as the unique key.
1967  FieldDecl *Field = Member->getAnyMember();
1968
1969  // If the field is a member of an anonymous struct or union, our key
1970  // is the anonymous record decl that's a direct child of the class.
1971  RecordDecl *RD = Field->getParent();
1972  if (RD->isAnonymousStructOrUnion()) {
1973    while (true) {
1974      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1975      if (Parent->isAnonymousStructOrUnion())
1976        RD = Parent;
1977      else
1978        break;
1979    }
1980
1981    return static_cast<void *>(RD);
1982  }
1983
1984  return static_cast<void *>(Field);
1985}
1986
1987static void
1988DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1989                                  const CXXConstructorDecl *Constructor,
1990                                  CXXBaseOrMemberInitializer **Inits,
1991                                  unsigned NumInits) {
1992  if (Constructor->getDeclContext()->isDependentContext())
1993    return;
1994
1995  // Don't check initializers order unless the warning is enabled at the
1996  // location of at least one initializer.
1997  bool ShouldCheckOrder = false;
1998  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1999    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2000    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2001                                         Init->getSourceLocation())
2002          != Diagnostic::Ignored) {
2003      ShouldCheckOrder = true;
2004      break;
2005    }
2006  }
2007  if (!ShouldCheckOrder)
2008    return;
2009
2010  // Build the list of bases and members in the order that they'll
2011  // actually be initialized.  The explicit initializers should be in
2012  // this same order but may be missing things.
2013  llvm::SmallVector<const void*, 32> IdealInitKeys;
2014
2015  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2016
2017  // 1. Virtual bases.
2018  for (CXXRecordDecl::base_class_const_iterator VBase =
2019       ClassDecl->vbases_begin(),
2020       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2021    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2022
2023  // 2. Non-virtual bases.
2024  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2025       E = ClassDecl->bases_end(); Base != E; ++Base) {
2026    if (Base->isVirtual())
2027      continue;
2028    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2029  }
2030
2031  // 3. Direct fields.
2032  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2033       E = ClassDecl->field_end(); Field != E; ++Field)
2034    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2035
2036  unsigned NumIdealInits = IdealInitKeys.size();
2037  unsigned IdealIndex = 0;
2038
2039  CXXBaseOrMemberInitializer *PrevInit = 0;
2040  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2041    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2042    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2043
2044    // Scan forward to try to find this initializer in the idealized
2045    // initializers list.
2046    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2047      if (InitKey == IdealInitKeys[IdealIndex])
2048        break;
2049
2050    // If we didn't find this initializer, it must be because we
2051    // scanned past it on a previous iteration.  That can only
2052    // happen if we're out of order;  emit a warning.
2053    if (IdealIndex == NumIdealInits && PrevInit) {
2054      Sema::SemaDiagnosticBuilder D =
2055        SemaRef.Diag(PrevInit->getSourceLocation(),
2056                     diag::warn_initializer_out_of_order);
2057
2058      if (PrevInit->isAnyMemberInitializer())
2059        D << 0 << PrevInit->getAnyMember()->getDeclName();
2060      else
2061        D << 1 << PrevInit->getBaseClassInfo()->getType();
2062
2063      if (Init->isAnyMemberInitializer())
2064        D << 0 << Init->getAnyMember()->getDeclName();
2065      else
2066        D << 1 << Init->getBaseClassInfo()->getType();
2067
2068      // Move back to the initializer's location in the ideal list.
2069      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2070        if (InitKey == IdealInitKeys[IdealIndex])
2071          break;
2072
2073      assert(IdealIndex != NumIdealInits &&
2074             "initializer not found in initializer list");
2075    }
2076
2077    PrevInit = Init;
2078  }
2079}
2080
2081namespace {
2082bool CheckRedundantInit(Sema &S,
2083                        CXXBaseOrMemberInitializer *Init,
2084                        CXXBaseOrMemberInitializer *&PrevInit) {
2085  if (!PrevInit) {
2086    PrevInit = Init;
2087    return false;
2088  }
2089
2090  if (FieldDecl *Field = Init->getMember())
2091    S.Diag(Init->getSourceLocation(),
2092           diag::err_multiple_mem_initialization)
2093      << Field->getDeclName()
2094      << Init->getSourceRange();
2095  else {
2096    Type *BaseClass = Init->getBaseClass();
2097    assert(BaseClass && "neither field nor base");
2098    S.Diag(Init->getSourceLocation(),
2099           diag::err_multiple_base_initialization)
2100      << QualType(BaseClass, 0)
2101      << Init->getSourceRange();
2102  }
2103  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2104    << 0 << PrevInit->getSourceRange();
2105
2106  return true;
2107}
2108
2109typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2110typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2111
2112bool CheckRedundantUnionInit(Sema &S,
2113                             CXXBaseOrMemberInitializer *Init,
2114                             RedundantUnionMap &Unions) {
2115  FieldDecl *Field = Init->getAnyMember();
2116  RecordDecl *Parent = Field->getParent();
2117  if (!Parent->isAnonymousStructOrUnion())
2118    return false;
2119
2120  NamedDecl *Child = Field;
2121  do {
2122    if (Parent->isUnion()) {
2123      UnionEntry &En = Unions[Parent];
2124      if (En.first && En.first != Child) {
2125        S.Diag(Init->getSourceLocation(),
2126               diag::err_multiple_mem_union_initialization)
2127          << Field->getDeclName()
2128          << Init->getSourceRange();
2129        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2130          << 0 << En.second->getSourceRange();
2131        return true;
2132      } else if (!En.first) {
2133        En.first = Child;
2134        En.second = Init;
2135      }
2136    }
2137
2138    Child = Parent;
2139    Parent = cast<RecordDecl>(Parent->getDeclContext());
2140  } while (Parent->isAnonymousStructOrUnion());
2141
2142  return false;
2143}
2144}
2145
2146/// ActOnMemInitializers - Handle the member initializers for a constructor.
2147void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2148                                SourceLocation ColonLoc,
2149                                MemInitTy **meminits, unsigned NumMemInits,
2150                                bool AnyErrors) {
2151  if (!ConstructorDecl)
2152    return;
2153
2154  AdjustDeclIfTemplate(ConstructorDecl);
2155
2156  CXXConstructorDecl *Constructor
2157    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2158
2159  if (!Constructor) {
2160    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2161    return;
2162  }
2163
2164  CXXBaseOrMemberInitializer **MemInits =
2165    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2166
2167  // Mapping for the duplicate initializers check.
2168  // For member initializers, this is keyed with a FieldDecl*.
2169  // For base initializers, this is keyed with a Type*.
2170  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2171
2172  // Mapping for the inconsistent anonymous-union initializers check.
2173  RedundantUnionMap MemberUnions;
2174
2175  bool HadError = false;
2176  for (unsigned i = 0; i < NumMemInits; i++) {
2177    CXXBaseOrMemberInitializer *Init = MemInits[i];
2178
2179    // Set the source order index.
2180    Init->setSourceOrder(i);
2181
2182    if (Init->isAnyMemberInitializer()) {
2183      FieldDecl *Field = Init->getAnyMember();
2184      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2185          CheckRedundantUnionInit(*this, Init, MemberUnions))
2186        HadError = true;
2187    } else {
2188      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2189      if (CheckRedundantInit(*this, Init, Members[Key]))
2190        HadError = true;
2191    }
2192  }
2193
2194  if (HadError)
2195    return;
2196
2197  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2198
2199  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2200}
2201
2202void
2203Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2204                                             CXXRecordDecl *ClassDecl) {
2205  // Ignore dependent contexts.
2206  if (ClassDecl->isDependentContext())
2207    return;
2208
2209  // FIXME: all the access-control diagnostics are positioned on the
2210  // field/base declaration.  That's probably good; that said, the
2211  // user might reasonably want to know why the destructor is being
2212  // emitted, and we currently don't say.
2213
2214  // Non-static data members.
2215  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2216       E = ClassDecl->field_end(); I != E; ++I) {
2217    FieldDecl *Field = *I;
2218    if (Field->isInvalidDecl())
2219      continue;
2220    QualType FieldType = Context.getBaseElementType(Field->getType());
2221
2222    const RecordType* RT = FieldType->getAs<RecordType>();
2223    if (!RT)
2224      continue;
2225
2226    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2227    if (FieldClassDecl->hasTrivialDestructor())
2228      continue;
2229
2230    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2231    CheckDestructorAccess(Field->getLocation(), Dtor,
2232                          PDiag(diag::err_access_dtor_field)
2233                            << Field->getDeclName()
2234                            << FieldType);
2235
2236    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2237  }
2238
2239  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2240
2241  // Bases.
2242  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2243       E = ClassDecl->bases_end(); Base != E; ++Base) {
2244    // Bases are always records in a well-formed non-dependent class.
2245    const RecordType *RT = Base->getType()->getAs<RecordType>();
2246
2247    // Remember direct virtual bases.
2248    if (Base->isVirtual())
2249      DirectVirtualBases.insert(RT);
2250
2251    // Ignore trivial destructors.
2252    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2253    if (BaseClassDecl->hasTrivialDestructor())
2254      continue;
2255
2256    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2257
2258    // FIXME: caret should be on the start of the class name
2259    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2260                          PDiag(diag::err_access_dtor_base)
2261                            << Base->getType()
2262                            << Base->getSourceRange());
2263
2264    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2265  }
2266
2267  // Virtual bases.
2268  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2269       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2270
2271    // Bases are always records in a well-formed non-dependent class.
2272    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2273
2274    // Ignore direct virtual bases.
2275    if (DirectVirtualBases.count(RT))
2276      continue;
2277
2278    // Ignore trivial destructors.
2279    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2280    if (BaseClassDecl->hasTrivialDestructor())
2281      continue;
2282
2283    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2284    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2285                          PDiag(diag::err_access_dtor_vbase)
2286                            << VBase->getType());
2287
2288    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2289  }
2290}
2291
2292void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2293  if (!CDtorDecl)
2294    return;
2295
2296  if (CXXConstructorDecl *Constructor
2297      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2298    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2299}
2300
2301bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2302                                  unsigned DiagID, AbstractDiagSelID SelID) {
2303  if (SelID == -1)
2304    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2305  else
2306    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2307}
2308
2309bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2310                                  const PartialDiagnostic &PD) {
2311  if (!getLangOptions().CPlusPlus)
2312    return false;
2313
2314  if (const ArrayType *AT = Context.getAsArrayType(T))
2315    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2316
2317  if (const PointerType *PT = T->getAs<PointerType>()) {
2318    // Find the innermost pointer type.
2319    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2320      PT = T;
2321
2322    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2323      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2324  }
2325
2326  const RecordType *RT = T->getAs<RecordType>();
2327  if (!RT)
2328    return false;
2329
2330  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2331
2332  // We can't answer whether something is abstract until it has a
2333  // definition.  If it's currently being defined, we'll walk back
2334  // over all the declarations when we have a full definition.
2335  const CXXRecordDecl *Def = RD->getDefinition();
2336  if (!Def || Def->isBeingDefined())
2337    return false;
2338
2339  if (!RD->isAbstract())
2340    return false;
2341
2342  Diag(Loc, PD) << RD->getDeclName();
2343  DiagnoseAbstractType(RD);
2344
2345  return true;
2346}
2347
2348void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2349  // Check if we've already emitted the list of pure virtual functions
2350  // for this class.
2351  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2352    return;
2353
2354  CXXFinalOverriderMap FinalOverriders;
2355  RD->getFinalOverriders(FinalOverriders);
2356
2357  // Keep a set of seen pure methods so we won't diagnose the same method
2358  // more than once.
2359  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2360
2361  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2362                                   MEnd = FinalOverriders.end();
2363       M != MEnd;
2364       ++M) {
2365    for (OverridingMethods::iterator SO = M->second.begin(),
2366                                  SOEnd = M->second.end();
2367         SO != SOEnd; ++SO) {
2368      // C++ [class.abstract]p4:
2369      //   A class is abstract if it contains or inherits at least one
2370      //   pure virtual function for which the final overrider is pure
2371      //   virtual.
2372
2373      //
2374      if (SO->second.size() != 1)
2375        continue;
2376
2377      if (!SO->second.front().Method->isPure())
2378        continue;
2379
2380      if (!SeenPureMethods.insert(SO->second.front().Method))
2381        continue;
2382
2383      Diag(SO->second.front().Method->getLocation(),
2384           diag::note_pure_virtual_function)
2385        << SO->second.front().Method->getDeclName();
2386    }
2387  }
2388
2389  if (!PureVirtualClassDiagSet)
2390    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2391  PureVirtualClassDiagSet->insert(RD);
2392}
2393
2394namespace {
2395struct AbstractUsageInfo {
2396  Sema &S;
2397  CXXRecordDecl *Record;
2398  CanQualType AbstractType;
2399  bool Invalid;
2400
2401  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2402    : S(S), Record(Record),
2403      AbstractType(S.Context.getCanonicalType(
2404                   S.Context.getTypeDeclType(Record))),
2405      Invalid(false) {}
2406
2407  void DiagnoseAbstractType() {
2408    if (Invalid) return;
2409    S.DiagnoseAbstractType(Record);
2410    Invalid = true;
2411  }
2412
2413  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2414};
2415
2416struct CheckAbstractUsage {
2417  AbstractUsageInfo &Info;
2418  const NamedDecl *Ctx;
2419
2420  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2421    : Info(Info), Ctx(Ctx) {}
2422
2423  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2424    switch (TL.getTypeLocClass()) {
2425#define ABSTRACT_TYPELOC(CLASS, PARENT)
2426#define TYPELOC(CLASS, PARENT) \
2427    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2428#include "clang/AST/TypeLocNodes.def"
2429    }
2430  }
2431
2432  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2433    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2434    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2435      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2436      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2437    }
2438  }
2439
2440  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2441    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2442  }
2443
2444  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2445    // Visit the type parameters from a permissive context.
2446    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2447      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2448      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2449        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2450          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2451      // TODO: other template argument types?
2452    }
2453  }
2454
2455  // Visit pointee types from a permissive context.
2456#define CheckPolymorphic(Type) \
2457  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2458    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2459  }
2460  CheckPolymorphic(PointerTypeLoc)
2461  CheckPolymorphic(ReferenceTypeLoc)
2462  CheckPolymorphic(MemberPointerTypeLoc)
2463  CheckPolymorphic(BlockPointerTypeLoc)
2464
2465  /// Handle all the types we haven't given a more specific
2466  /// implementation for above.
2467  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2468    // Every other kind of type that we haven't called out already
2469    // that has an inner type is either (1) sugar or (2) contains that
2470    // inner type in some way as a subobject.
2471    if (TypeLoc Next = TL.getNextTypeLoc())
2472      return Visit(Next, Sel);
2473
2474    // If there's no inner type and we're in a permissive context,
2475    // don't diagnose.
2476    if (Sel == Sema::AbstractNone) return;
2477
2478    // Check whether the type matches the abstract type.
2479    QualType T = TL.getType();
2480    if (T->isArrayType()) {
2481      Sel = Sema::AbstractArrayType;
2482      T = Info.S.Context.getBaseElementType(T);
2483    }
2484    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2485    if (CT != Info.AbstractType) return;
2486
2487    // It matched; do some magic.
2488    if (Sel == Sema::AbstractArrayType) {
2489      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2490        << T << TL.getSourceRange();
2491    } else {
2492      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2493        << Sel << T << TL.getSourceRange();
2494    }
2495    Info.DiagnoseAbstractType();
2496  }
2497};
2498
2499void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2500                                  Sema::AbstractDiagSelID Sel) {
2501  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2502}
2503
2504}
2505
2506/// Check for invalid uses of an abstract type in a method declaration.
2507static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2508                                    CXXMethodDecl *MD) {
2509  // No need to do the check on definitions, which require that
2510  // the return/param types be complete.
2511  if (MD->isThisDeclarationADefinition())
2512    return;
2513
2514  // For safety's sake, just ignore it if we don't have type source
2515  // information.  This should never happen for non-implicit methods,
2516  // but...
2517  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2518    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2519}
2520
2521/// Check for invalid uses of an abstract type within a class definition.
2522static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2523                                    CXXRecordDecl *RD) {
2524  for (CXXRecordDecl::decl_iterator
2525         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2526    Decl *D = *I;
2527    if (D->isImplicit()) continue;
2528
2529    // Methods and method templates.
2530    if (isa<CXXMethodDecl>(D)) {
2531      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2532    } else if (isa<FunctionTemplateDecl>(D)) {
2533      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2534      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2535
2536    // Fields and static variables.
2537    } else if (isa<FieldDecl>(D)) {
2538      FieldDecl *FD = cast<FieldDecl>(D);
2539      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2540        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2541    } else if (isa<VarDecl>(D)) {
2542      VarDecl *VD = cast<VarDecl>(D);
2543      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2544        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2545
2546    // Nested classes and class templates.
2547    } else if (isa<CXXRecordDecl>(D)) {
2548      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2549    } else if (isa<ClassTemplateDecl>(D)) {
2550      CheckAbstractClassUsage(Info,
2551                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2552    }
2553  }
2554}
2555
2556/// \brief Perform semantic checks on a class definition that has been
2557/// completing, introducing implicitly-declared members, checking for
2558/// abstract types, etc.
2559void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2560  if (!Record)
2561    return;
2562
2563  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2564    AbstractUsageInfo Info(*this, Record);
2565    CheckAbstractClassUsage(Info, Record);
2566  }
2567
2568  // If this is not an aggregate type and has no user-declared constructor,
2569  // complain about any non-static data members of reference or const scalar
2570  // type, since they will never get initializers.
2571  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2572      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2573    bool Complained = false;
2574    for (RecordDecl::field_iterator F = Record->field_begin(),
2575                                 FEnd = Record->field_end();
2576         F != FEnd; ++F) {
2577      if (F->getType()->isReferenceType() ||
2578          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2579        if (!Complained) {
2580          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2581            << Record->getTagKind() << Record;
2582          Complained = true;
2583        }
2584
2585        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2586          << F->getType()->isReferenceType()
2587          << F->getDeclName();
2588      }
2589    }
2590  }
2591
2592  if (Record->isDynamicClass())
2593    DynamicClasses.push_back(Record);
2594
2595  if (Record->getIdentifier()) {
2596    // C++ [class.mem]p13:
2597    //   If T is the name of a class, then each of the following shall have a
2598    //   name different from T:
2599    //     - every member of every anonymous union that is a member of class T.
2600    //
2601    // C++ [class.mem]p14:
2602    //   In addition, if class T has a user-declared constructor (12.1), every
2603    //   non-static data member of class T shall have a name different from T.
2604    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2605         R.first != R.second; ++R.first) {
2606      NamedDecl *D = *R.first;
2607      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2608          isa<IndirectFieldDecl>(D)) {
2609        Diag(D->getLocation(), diag::err_member_name_of_class)
2610          << D->getDeclName();
2611        break;
2612      }
2613    }
2614  }
2615}
2616
2617void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2618                                             Decl *TagDecl,
2619                                             SourceLocation LBrac,
2620                                             SourceLocation RBrac,
2621                                             AttributeList *AttrList) {
2622  if (!TagDecl)
2623    return;
2624
2625  AdjustDeclIfTemplate(TagDecl);
2626
2627  ActOnFields(S, RLoc, TagDecl,
2628              // strict aliasing violation!
2629              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2630              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2631
2632  CheckCompletedCXXClass(
2633                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2634}
2635
2636namespace {
2637  /// \brief Helper class that collects exception specifications for
2638  /// implicitly-declared special member functions.
2639  class ImplicitExceptionSpecification {
2640    ASTContext &Context;
2641    bool AllowsAllExceptions;
2642    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2643    llvm::SmallVector<QualType, 4> Exceptions;
2644
2645  public:
2646    explicit ImplicitExceptionSpecification(ASTContext &Context)
2647      : Context(Context), AllowsAllExceptions(false) { }
2648
2649    /// \brief Whether the special member function should have any
2650    /// exception specification at all.
2651    bool hasExceptionSpecification() const {
2652      return !AllowsAllExceptions;
2653    }
2654
2655    /// \brief Whether the special member function should have a
2656    /// throw(...) exception specification (a Microsoft extension).
2657    bool hasAnyExceptionSpecification() const {
2658      return false;
2659    }
2660
2661    /// \brief The number of exceptions in the exception specification.
2662    unsigned size() const { return Exceptions.size(); }
2663
2664    /// \brief The set of exceptions in the exception specification.
2665    const QualType *data() const { return Exceptions.data(); }
2666
2667    /// \brief Note that
2668    void CalledDecl(CXXMethodDecl *Method) {
2669      // If we already know that we allow all exceptions, do nothing.
2670      if (AllowsAllExceptions || !Method)
2671        return;
2672
2673      const FunctionProtoType *Proto
2674        = Method->getType()->getAs<FunctionProtoType>();
2675
2676      // If this function can throw any exceptions, make a note of that.
2677      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2678        AllowsAllExceptions = true;
2679        ExceptionsSeen.clear();
2680        Exceptions.clear();
2681        return;
2682      }
2683
2684      // Record the exceptions in this function's exception specification.
2685      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2686                                              EEnd = Proto->exception_end();
2687           E != EEnd; ++E)
2688        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2689          Exceptions.push_back(*E);
2690    }
2691  };
2692}
2693
2694
2695/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2696/// special functions, such as the default constructor, copy
2697/// constructor, or destructor, to the given C++ class (C++
2698/// [special]p1).  This routine can only be executed just before the
2699/// definition of the class is complete.
2700void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2701  if (!ClassDecl->hasUserDeclaredConstructor())
2702    ++ASTContext::NumImplicitDefaultConstructors;
2703
2704  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2705    ++ASTContext::NumImplicitCopyConstructors;
2706
2707  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2708    ++ASTContext::NumImplicitCopyAssignmentOperators;
2709
2710    // If we have a dynamic class, then the copy assignment operator may be
2711    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2712    // it shows up in the right place in the vtable and that we diagnose
2713    // problems with the implicit exception specification.
2714    if (ClassDecl->isDynamicClass())
2715      DeclareImplicitCopyAssignment(ClassDecl);
2716  }
2717
2718  if (!ClassDecl->hasUserDeclaredDestructor()) {
2719    ++ASTContext::NumImplicitDestructors;
2720
2721    // If we have a dynamic class, then the destructor may be virtual, so we
2722    // have to declare the destructor immediately. This ensures that, e.g., it
2723    // shows up in the right place in the vtable and that we diagnose problems
2724    // with the implicit exception specification.
2725    if (ClassDecl->isDynamicClass())
2726      DeclareImplicitDestructor(ClassDecl);
2727  }
2728}
2729
2730void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2731  if (!D)
2732    return;
2733
2734  TemplateParameterList *Params = 0;
2735  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2736    Params = Template->getTemplateParameters();
2737  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2738           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2739    Params = PartialSpec->getTemplateParameters();
2740  else
2741    return;
2742
2743  for (TemplateParameterList::iterator Param = Params->begin(),
2744                                    ParamEnd = Params->end();
2745       Param != ParamEnd; ++Param) {
2746    NamedDecl *Named = cast<NamedDecl>(*Param);
2747    if (Named->getDeclName()) {
2748      S->AddDecl(Named);
2749      IdResolver.AddDecl(Named);
2750    }
2751  }
2752}
2753
2754void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2755  if (!RecordD) return;
2756  AdjustDeclIfTemplate(RecordD);
2757  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2758  PushDeclContext(S, Record);
2759}
2760
2761void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2762  if (!RecordD) return;
2763  PopDeclContext();
2764}
2765
2766/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2767/// parsing a top-level (non-nested) C++ class, and we are now
2768/// parsing those parts of the given Method declaration that could
2769/// not be parsed earlier (C++ [class.mem]p2), such as default
2770/// arguments. This action should enter the scope of the given
2771/// Method declaration as if we had just parsed the qualified method
2772/// name. However, it should not bring the parameters into scope;
2773/// that will be performed by ActOnDelayedCXXMethodParameter.
2774void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2775}
2776
2777/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2778/// C++ method declaration. We're (re-)introducing the given
2779/// function parameter into scope for use in parsing later parts of
2780/// the method declaration. For example, we could see an
2781/// ActOnParamDefaultArgument event for this parameter.
2782void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2783  if (!ParamD)
2784    return;
2785
2786  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2787
2788  // If this parameter has an unparsed default argument, clear it out
2789  // to make way for the parsed default argument.
2790  if (Param->hasUnparsedDefaultArg())
2791    Param->setDefaultArg(0);
2792
2793  S->AddDecl(Param);
2794  if (Param->getDeclName())
2795    IdResolver.AddDecl(Param);
2796}
2797
2798/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2799/// processing the delayed method declaration for Method. The method
2800/// declaration is now considered finished. There may be a separate
2801/// ActOnStartOfFunctionDef action later (not necessarily
2802/// immediately!) for this method, if it was also defined inside the
2803/// class body.
2804void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2805  if (!MethodD)
2806    return;
2807
2808  AdjustDeclIfTemplate(MethodD);
2809
2810  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2811
2812  // Now that we have our default arguments, check the constructor
2813  // again. It could produce additional diagnostics or affect whether
2814  // the class has implicitly-declared destructors, among other
2815  // things.
2816  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2817    CheckConstructor(Constructor);
2818
2819  // Check the default arguments, which we may have added.
2820  if (!Method->isInvalidDecl())
2821    CheckCXXDefaultArguments(Method);
2822}
2823
2824/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2825/// the well-formedness of the constructor declarator @p D with type @p
2826/// R. If there are any errors in the declarator, this routine will
2827/// emit diagnostics and set the invalid bit to true.  In any case, the type
2828/// will be updated to reflect a well-formed type for the constructor and
2829/// returned.
2830QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2831                                          StorageClass &SC) {
2832  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2833
2834  // C++ [class.ctor]p3:
2835  //   A constructor shall not be virtual (10.3) or static (9.4). A
2836  //   constructor can be invoked for a const, volatile or const
2837  //   volatile object. A constructor shall not be declared const,
2838  //   volatile, or const volatile (9.3.2).
2839  if (isVirtual) {
2840    if (!D.isInvalidType())
2841      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2842        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2843        << SourceRange(D.getIdentifierLoc());
2844    D.setInvalidType();
2845  }
2846  if (SC == SC_Static) {
2847    if (!D.isInvalidType())
2848      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2849        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2850        << SourceRange(D.getIdentifierLoc());
2851    D.setInvalidType();
2852    SC = SC_None;
2853  }
2854
2855  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
2856  if (FTI.TypeQuals != 0) {
2857    if (FTI.TypeQuals & Qualifiers::Const)
2858      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2859        << "const" << SourceRange(D.getIdentifierLoc());
2860    if (FTI.TypeQuals & Qualifiers::Volatile)
2861      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2862        << "volatile" << SourceRange(D.getIdentifierLoc());
2863    if (FTI.TypeQuals & Qualifiers::Restrict)
2864      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2865        << "restrict" << SourceRange(D.getIdentifierLoc());
2866    D.setInvalidType();
2867  }
2868
2869  // Rebuild the function type "R" without any type qualifiers (in
2870  // case any of the errors above fired) and with "void" as the
2871  // return type, since constructors don't have return types.
2872  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2873  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
2874    return R;
2875
2876  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
2877  EPI.TypeQuals = 0;
2878
2879  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2880                                 Proto->getNumArgs(), EPI);
2881}
2882
2883/// CheckConstructor - Checks a fully-formed constructor for
2884/// well-formedness, issuing any diagnostics required. Returns true if
2885/// the constructor declarator is invalid.
2886void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2887  CXXRecordDecl *ClassDecl
2888    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2889  if (!ClassDecl)
2890    return Constructor->setInvalidDecl();
2891
2892  // C++ [class.copy]p3:
2893  //   A declaration of a constructor for a class X is ill-formed if
2894  //   its first parameter is of type (optionally cv-qualified) X and
2895  //   either there are no other parameters or else all other
2896  //   parameters have default arguments.
2897  if (!Constructor->isInvalidDecl() &&
2898      ((Constructor->getNumParams() == 1) ||
2899       (Constructor->getNumParams() > 1 &&
2900        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2901      Constructor->getTemplateSpecializationKind()
2902                                              != TSK_ImplicitInstantiation) {
2903    QualType ParamType = Constructor->getParamDecl(0)->getType();
2904    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2905    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2906      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2907      const char *ConstRef
2908        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2909                                                        : " const &";
2910      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2911        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2912
2913      // FIXME: Rather that making the constructor invalid, we should endeavor
2914      // to fix the type.
2915      Constructor->setInvalidDecl();
2916    }
2917  }
2918}
2919
2920/// CheckDestructor - Checks a fully-formed destructor definition for
2921/// well-formedness, issuing any diagnostics required.  Returns true
2922/// on error.
2923bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2924  CXXRecordDecl *RD = Destructor->getParent();
2925
2926  if (Destructor->isVirtual()) {
2927    SourceLocation Loc;
2928
2929    if (!Destructor->isImplicit())
2930      Loc = Destructor->getLocation();
2931    else
2932      Loc = RD->getLocation();
2933
2934    // If we have a virtual destructor, look up the deallocation function
2935    FunctionDecl *OperatorDelete = 0;
2936    DeclarationName Name =
2937    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2938    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2939      return true;
2940
2941    MarkDeclarationReferenced(Loc, OperatorDelete);
2942
2943    Destructor->setOperatorDelete(OperatorDelete);
2944  }
2945
2946  return false;
2947}
2948
2949static inline bool
2950FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2951  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2952          FTI.ArgInfo[0].Param &&
2953          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
2954}
2955
2956/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2957/// the well-formednes of the destructor declarator @p D with type @p
2958/// R. If there are any errors in the declarator, this routine will
2959/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2960/// will be updated to reflect a well-formed type for the destructor and
2961/// returned.
2962QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
2963                                         StorageClass& SC) {
2964  // C++ [class.dtor]p1:
2965  //   [...] A typedef-name that names a class is a class-name
2966  //   (7.1.3); however, a typedef-name that names a class shall not
2967  //   be used as the identifier in the declarator for a destructor
2968  //   declaration.
2969  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2970  if (isa<TypedefType>(DeclaratorType))
2971    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2972      << DeclaratorType;
2973
2974  // C++ [class.dtor]p2:
2975  //   A destructor is used to destroy objects of its class type. A
2976  //   destructor takes no parameters, and no return type can be
2977  //   specified for it (not even void). The address of a destructor
2978  //   shall not be taken. A destructor shall not be static. A
2979  //   destructor can be invoked for a const, volatile or const
2980  //   volatile object. A destructor shall not be declared const,
2981  //   volatile or const volatile (9.3.2).
2982  if (SC == SC_Static) {
2983    if (!D.isInvalidType())
2984      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2985        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2986        << SourceRange(D.getIdentifierLoc())
2987        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2988
2989    SC = SC_None;
2990  }
2991  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2992    // Destructors don't have return types, but the parser will
2993    // happily parse something like:
2994    //
2995    //   class X {
2996    //     float ~X();
2997    //   };
2998    //
2999    // The return type will be eliminated later.
3000    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3001      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3002      << SourceRange(D.getIdentifierLoc());
3003  }
3004
3005  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3006  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3007    if (FTI.TypeQuals & Qualifiers::Const)
3008      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3009        << "const" << SourceRange(D.getIdentifierLoc());
3010    if (FTI.TypeQuals & Qualifiers::Volatile)
3011      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3012        << "volatile" << SourceRange(D.getIdentifierLoc());
3013    if (FTI.TypeQuals & Qualifiers::Restrict)
3014      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3015        << "restrict" << SourceRange(D.getIdentifierLoc());
3016    D.setInvalidType();
3017  }
3018
3019  // Make sure we don't have any parameters.
3020  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3021    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3022
3023    // Delete the parameters.
3024    FTI.freeArgs();
3025    D.setInvalidType();
3026  }
3027
3028  // Make sure the destructor isn't variadic.
3029  if (FTI.isVariadic) {
3030    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3031    D.setInvalidType();
3032  }
3033
3034  // Rebuild the function type "R" without any type qualifiers or
3035  // parameters (in case any of the errors above fired) and with
3036  // "void" as the return type, since destructors don't have return
3037  // types.
3038  if (!D.isInvalidType())
3039    return R;
3040
3041  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3042  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3043  EPI.Variadic = false;
3044  EPI.TypeQuals = 0;
3045  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3046}
3047
3048/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3049/// well-formednes of the conversion function declarator @p D with
3050/// type @p R. If there are any errors in the declarator, this routine
3051/// will emit diagnostics and return true. Otherwise, it will return
3052/// false. Either way, the type @p R will be updated to reflect a
3053/// well-formed type for the conversion operator.
3054void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3055                                     StorageClass& SC) {
3056  // C++ [class.conv.fct]p1:
3057  //   Neither parameter types nor return type can be specified. The
3058  //   type of a conversion function (8.3.5) is "function taking no
3059  //   parameter returning conversion-type-id."
3060  if (SC == SC_Static) {
3061    if (!D.isInvalidType())
3062      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3063        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3064        << SourceRange(D.getIdentifierLoc());
3065    D.setInvalidType();
3066    SC = SC_None;
3067  }
3068
3069  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3070
3071  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3072    // Conversion functions don't have return types, but the parser will
3073    // happily parse something like:
3074    //
3075    //   class X {
3076    //     float operator bool();
3077    //   };
3078    //
3079    // The return type will be changed later anyway.
3080    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3081      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3082      << SourceRange(D.getIdentifierLoc());
3083    D.setInvalidType();
3084  }
3085
3086  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3087
3088  // Make sure we don't have any parameters.
3089  if (Proto->getNumArgs() > 0) {
3090    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3091
3092    // Delete the parameters.
3093    D.getFunctionTypeInfo().freeArgs();
3094    D.setInvalidType();
3095  } else if (Proto->isVariadic()) {
3096    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3097    D.setInvalidType();
3098  }
3099
3100  // Diagnose "&operator bool()" and other such nonsense.  This
3101  // is actually a gcc extension which we don't support.
3102  if (Proto->getResultType() != ConvType) {
3103    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3104      << Proto->getResultType();
3105    D.setInvalidType();
3106    ConvType = Proto->getResultType();
3107  }
3108
3109  // C++ [class.conv.fct]p4:
3110  //   The conversion-type-id shall not represent a function type nor
3111  //   an array type.
3112  if (ConvType->isArrayType()) {
3113    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3114    ConvType = Context.getPointerType(ConvType);
3115    D.setInvalidType();
3116  } else if (ConvType->isFunctionType()) {
3117    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3118    ConvType = Context.getPointerType(ConvType);
3119    D.setInvalidType();
3120  }
3121
3122  // Rebuild the function type "R" without any parameters (in case any
3123  // of the errors above fired) and with the conversion type as the
3124  // return type.
3125  if (D.isInvalidType())
3126    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3127
3128  // C++0x explicit conversion operators.
3129  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3130    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3131         diag::warn_explicit_conversion_functions)
3132      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3133}
3134
3135/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3136/// the declaration of the given C++ conversion function. This routine
3137/// is responsible for recording the conversion function in the C++
3138/// class, if possible.
3139Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3140  assert(Conversion && "Expected to receive a conversion function declaration");
3141
3142  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3143
3144  // Make sure we aren't redeclaring the conversion function.
3145  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3146
3147  // C++ [class.conv.fct]p1:
3148  //   [...] A conversion function is never used to convert a
3149  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3150  //   same object type (or a reference to it), to a (possibly
3151  //   cv-qualified) base class of that type (or a reference to it),
3152  //   or to (possibly cv-qualified) void.
3153  // FIXME: Suppress this warning if the conversion function ends up being a
3154  // virtual function that overrides a virtual function in a base class.
3155  QualType ClassType
3156    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3157  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3158    ConvType = ConvTypeRef->getPointeeType();
3159  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3160      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3161    /* Suppress diagnostics for instantiations. */;
3162  else if (ConvType->isRecordType()) {
3163    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3164    if (ConvType == ClassType)
3165      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3166        << ClassType;
3167    else if (IsDerivedFrom(ClassType, ConvType))
3168      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3169        <<  ClassType << ConvType;
3170  } else if (ConvType->isVoidType()) {
3171    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3172      << ClassType << ConvType;
3173  }
3174
3175  if (FunctionTemplateDecl *ConversionTemplate
3176                                = Conversion->getDescribedFunctionTemplate())
3177    return ConversionTemplate;
3178
3179  return Conversion;
3180}
3181
3182//===----------------------------------------------------------------------===//
3183// Namespace Handling
3184//===----------------------------------------------------------------------===//
3185
3186
3187
3188/// ActOnStartNamespaceDef - This is called at the start of a namespace
3189/// definition.
3190Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3191                                   SourceLocation InlineLoc,
3192                                   SourceLocation IdentLoc,
3193                                   IdentifierInfo *II,
3194                                   SourceLocation LBrace,
3195                                   AttributeList *AttrList) {
3196  // anonymous namespace starts at its left brace
3197  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3198    (II ? IdentLoc : LBrace) , II);
3199  Namespc->setLBracLoc(LBrace);
3200  Namespc->setInline(InlineLoc.isValid());
3201
3202  Scope *DeclRegionScope = NamespcScope->getParent();
3203
3204  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3205
3206  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3207    PushNamespaceVisibilityAttr(Attr);
3208
3209  if (II) {
3210    // C++ [namespace.def]p2:
3211    //   The identifier in an original-namespace-definition shall not
3212    //   have been previously defined in the declarative region in
3213    //   which the original-namespace-definition appears. The
3214    //   identifier in an original-namespace-definition is the name of
3215    //   the namespace. Subsequently in that declarative region, it is
3216    //   treated as an original-namespace-name.
3217    //
3218    // Since namespace names are unique in their scope, and we don't
3219    // look through using directives, just
3220    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3221    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3222
3223    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3224      // This is an extended namespace definition.
3225      if (Namespc->isInline() != OrigNS->isInline()) {
3226        // inline-ness must match
3227        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3228          << Namespc->isInline();
3229        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3230        Namespc->setInvalidDecl();
3231        // Recover by ignoring the new namespace's inline status.
3232        Namespc->setInline(OrigNS->isInline());
3233      }
3234
3235      // Attach this namespace decl to the chain of extended namespace
3236      // definitions.
3237      OrigNS->setNextNamespace(Namespc);
3238      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3239
3240      // Remove the previous declaration from the scope.
3241      if (DeclRegionScope->isDeclScope(OrigNS)) {
3242        IdResolver.RemoveDecl(OrigNS);
3243        DeclRegionScope->RemoveDecl(OrigNS);
3244      }
3245    } else if (PrevDecl) {
3246      // This is an invalid name redefinition.
3247      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3248       << Namespc->getDeclName();
3249      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3250      Namespc->setInvalidDecl();
3251      // Continue on to push Namespc as current DeclContext and return it.
3252    } else if (II->isStr("std") &&
3253               CurContext->getRedeclContext()->isTranslationUnit()) {
3254      // This is the first "real" definition of the namespace "std", so update
3255      // our cache of the "std" namespace to point at this definition.
3256      if (NamespaceDecl *StdNS = getStdNamespace()) {
3257        // We had already defined a dummy namespace "std". Link this new
3258        // namespace definition to the dummy namespace "std".
3259        StdNS->setNextNamespace(Namespc);
3260        StdNS->setLocation(IdentLoc);
3261        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3262      }
3263
3264      // Make our StdNamespace cache point at the first real definition of the
3265      // "std" namespace.
3266      StdNamespace = Namespc;
3267    }
3268
3269    PushOnScopeChains(Namespc, DeclRegionScope);
3270  } else {
3271    // Anonymous namespaces.
3272    assert(Namespc->isAnonymousNamespace());
3273
3274    // Link the anonymous namespace into its parent.
3275    NamespaceDecl *PrevDecl;
3276    DeclContext *Parent = CurContext->getRedeclContext();
3277    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3278      PrevDecl = TU->getAnonymousNamespace();
3279      TU->setAnonymousNamespace(Namespc);
3280    } else {
3281      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3282      PrevDecl = ND->getAnonymousNamespace();
3283      ND->setAnonymousNamespace(Namespc);
3284    }
3285
3286    // Link the anonymous namespace with its previous declaration.
3287    if (PrevDecl) {
3288      assert(PrevDecl->isAnonymousNamespace());
3289      assert(!PrevDecl->getNextNamespace());
3290      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3291      PrevDecl->setNextNamespace(Namespc);
3292
3293      if (Namespc->isInline() != PrevDecl->isInline()) {
3294        // inline-ness must match
3295        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3296          << Namespc->isInline();
3297        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3298        Namespc->setInvalidDecl();
3299        // Recover by ignoring the new namespace's inline status.
3300        Namespc->setInline(PrevDecl->isInline());
3301      }
3302    }
3303
3304    CurContext->addDecl(Namespc);
3305
3306    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3307    //   behaves as if it were replaced by
3308    //     namespace unique { /* empty body */ }
3309    //     using namespace unique;
3310    //     namespace unique { namespace-body }
3311    //   where all occurrences of 'unique' in a translation unit are
3312    //   replaced by the same identifier and this identifier differs
3313    //   from all other identifiers in the entire program.
3314
3315    // We just create the namespace with an empty name and then add an
3316    // implicit using declaration, just like the standard suggests.
3317    //
3318    // CodeGen enforces the "universally unique" aspect by giving all
3319    // declarations semantically contained within an anonymous
3320    // namespace internal linkage.
3321
3322    if (!PrevDecl) {
3323      UsingDirectiveDecl* UD
3324        = UsingDirectiveDecl::Create(Context, CurContext,
3325                                     /* 'using' */ LBrace,
3326                                     /* 'namespace' */ SourceLocation(),
3327                                     /* qualifier */ SourceRange(),
3328                                     /* NNS */ NULL,
3329                                     /* identifier */ SourceLocation(),
3330                                     Namespc,
3331                                     /* Ancestor */ CurContext);
3332      UD->setImplicit();
3333      CurContext->addDecl(UD);
3334    }
3335  }
3336
3337  // Although we could have an invalid decl (i.e. the namespace name is a
3338  // redefinition), push it as current DeclContext and try to continue parsing.
3339  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3340  // for the namespace has the declarations that showed up in that particular
3341  // namespace definition.
3342  PushDeclContext(NamespcScope, Namespc);
3343  return Namespc;
3344}
3345
3346/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3347/// is a namespace alias, returns the namespace it points to.
3348static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3349  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3350    return AD->getNamespace();
3351  return dyn_cast_or_null<NamespaceDecl>(D);
3352}
3353
3354/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3355/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3356void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3357  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3358  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3359  Namespc->setRBracLoc(RBrace);
3360  PopDeclContext();
3361  if (Namespc->hasAttr<VisibilityAttr>())
3362    PopPragmaVisibility();
3363}
3364
3365CXXRecordDecl *Sema::getStdBadAlloc() const {
3366  return cast_or_null<CXXRecordDecl>(
3367                                  StdBadAlloc.get(Context.getExternalSource()));
3368}
3369
3370NamespaceDecl *Sema::getStdNamespace() const {
3371  return cast_or_null<NamespaceDecl>(
3372                                 StdNamespace.get(Context.getExternalSource()));
3373}
3374
3375/// \brief Retrieve the special "std" namespace, which may require us to
3376/// implicitly define the namespace.
3377NamespaceDecl *Sema::getOrCreateStdNamespace() {
3378  if (!StdNamespace) {
3379    // The "std" namespace has not yet been defined, so build one implicitly.
3380    StdNamespace = NamespaceDecl::Create(Context,
3381                                         Context.getTranslationUnitDecl(),
3382                                         SourceLocation(),
3383                                         &PP.getIdentifierTable().get("std"));
3384    getStdNamespace()->setImplicit(true);
3385  }
3386
3387  return getStdNamespace();
3388}
3389
3390Decl *Sema::ActOnUsingDirective(Scope *S,
3391                                          SourceLocation UsingLoc,
3392                                          SourceLocation NamespcLoc,
3393                                          CXXScopeSpec &SS,
3394                                          SourceLocation IdentLoc,
3395                                          IdentifierInfo *NamespcName,
3396                                          AttributeList *AttrList) {
3397  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3398  assert(NamespcName && "Invalid NamespcName.");
3399  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3400
3401  // This can only happen along a recovery path.
3402  while (S->getFlags() & Scope::TemplateParamScope)
3403    S = S->getParent();
3404  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3405
3406  UsingDirectiveDecl *UDir = 0;
3407  NestedNameSpecifier *Qualifier = 0;
3408  if (SS.isSet())
3409    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3410
3411  // Lookup namespace name.
3412  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3413  LookupParsedName(R, S, &SS);
3414  if (R.isAmbiguous())
3415    return 0;
3416
3417  if (R.empty()) {
3418    // Allow "using namespace std;" or "using namespace ::std;" even if
3419    // "std" hasn't been defined yet, for GCC compatibility.
3420    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3421        NamespcName->isStr("std")) {
3422      Diag(IdentLoc, diag::ext_using_undefined_std);
3423      R.addDecl(getOrCreateStdNamespace());
3424      R.resolveKind();
3425    }
3426    // Otherwise, attempt typo correction.
3427    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3428                                                       CTC_NoKeywords, 0)) {
3429      if (R.getAsSingle<NamespaceDecl>() ||
3430          R.getAsSingle<NamespaceAliasDecl>()) {
3431        if (DeclContext *DC = computeDeclContext(SS, false))
3432          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3433            << NamespcName << DC << Corrected << SS.getRange()
3434            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3435        else
3436          Diag(IdentLoc, diag::err_using_directive_suggest)
3437            << NamespcName << Corrected
3438            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3439        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3440          << Corrected;
3441
3442        NamespcName = Corrected.getAsIdentifierInfo();
3443      } else {
3444        R.clear();
3445        R.setLookupName(NamespcName);
3446      }
3447    }
3448  }
3449
3450  if (!R.empty()) {
3451    NamedDecl *Named = R.getFoundDecl();
3452    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3453        && "expected namespace decl");
3454    // C++ [namespace.udir]p1:
3455    //   A using-directive specifies that the names in the nominated
3456    //   namespace can be used in the scope in which the
3457    //   using-directive appears after the using-directive. During
3458    //   unqualified name lookup (3.4.1), the names appear as if they
3459    //   were declared in the nearest enclosing namespace which
3460    //   contains both the using-directive and the nominated
3461    //   namespace. [Note: in this context, "contains" means "contains
3462    //   directly or indirectly". ]
3463
3464    // Find enclosing context containing both using-directive and
3465    // nominated namespace.
3466    NamespaceDecl *NS = getNamespaceDecl(Named);
3467    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3468    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3469      CommonAncestor = CommonAncestor->getParent();
3470
3471    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3472                                      SS.getRange(),
3473                                      (NestedNameSpecifier *)SS.getScopeRep(),
3474                                      IdentLoc, Named, CommonAncestor);
3475    PushUsingDirective(S, UDir);
3476  } else {
3477    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3478  }
3479
3480  // FIXME: We ignore attributes for now.
3481  return UDir;
3482}
3483
3484void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3485  // If scope has associated entity, then using directive is at namespace
3486  // or translation unit scope. We add UsingDirectiveDecls, into
3487  // it's lookup structure.
3488  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3489    Ctx->addDecl(UDir);
3490  else
3491    // Otherwise it is block-sope. using-directives will affect lookup
3492    // only to the end of scope.
3493    S->PushUsingDirective(UDir);
3494}
3495
3496
3497Decl *Sema::ActOnUsingDeclaration(Scope *S,
3498                                  AccessSpecifier AS,
3499                                  bool HasUsingKeyword,
3500                                  SourceLocation UsingLoc,
3501                                  CXXScopeSpec &SS,
3502                                  UnqualifiedId &Name,
3503                                  AttributeList *AttrList,
3504                                  bool IsTypeName,
3505                                  SourceLocation TypenameLoc) {
3506  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3507
3508  switch (Name.getKind()) {
3509  case UnqualifiedId::IK_Identifier:
3510  case UnqualifiedId::IK_OperatorFunctionId:
3511  case UnqualifiedId::IK_LiteralOperatorId:
3512  case UnqualifiedId::IK_ConversionFunctionId:
3513    break;
3514
3515  case UnqualifiedId::IK_ConstructorName:
3516  case UnqualifiedId::IK_ConstructorTemplateId:
3517    // C++0x inherited constructors.
3518    if (getLangOptions().CPlusPlus0x) break;
3519
3520    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3521      << SS.getRange();
3522    return 0;
3523
3524  case UnqualifiedId::IK_DestructorName:
3525    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3526      << SS.getRange();
3527    return 0;
3528
3529  case UnqualifiedId::IK_TemplateId:
3530    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3531      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3532    return 0;
3533  }
3534
3535  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3536  DeclarationName TargetName = TargetNameInfo.getName();
3537  if (!TargetName)
3538    return 0;
3539
3540  // Warn about using declarations.
3541  // TODO: store that the declaration was written without 'using' and
3542  // talk about access decls instead of using decls in the
3543  // diagnostics.
3544  if (!HasUsingKeyword) {
3545    UsingLoc = Name.getSourceRange().getBegin();
3546
3547    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3548      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3549  }
3550
3551  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3552      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3553    return 0;
3554
3555  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3556                                        TargetNameInfo, AttrList,
3557                                        /* IsInstantiation */ false,
3558                                        IsTypeName, TypenameLoc);
3559  if (UD)
3560    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3561
3562  return UD;
3563}
3564
3565/// \brief Determine whether a using declaration considers the given
3566/// declarations as "equivalent", e.g., if they are redeclarations of
3567/// the same entity or are both typedefs of the same type.
3568static bool
3569IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3570                         bool &SuppressRedeclaration) {
3571  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3572    SuppressRedeclaration = false;
3573    return true;
3574  }
3575
3576  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3577    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3578      SuppressRedeclaration = true;
3579      return Context.hasSameType(TD1->getUnderlyingType(),
3580                                 TD2->getUnderlyingType());
3581    }
3582
3583  return false;
3584}
3585
3586
3587/// Determines whether to create a using shadow decl for a particular
3588/// decl, given the set of decls existing prior to this using lookup.
3589bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3590                                const LookupResult &Previous) {
3591  // Diagnose finding a decl which is not from a base class of the
3592  // current class.  We do this now because there are cases where this
3593  // function will silently decide not to build a shadow decl, which
3594  // will pre-empt further diagnostics.
3595  //
3596  // We don't need to do this in C++0x because we do the check once on
3597  // the qualifier.
3598  //
3599  // FIXME: diagnose the following if we care enough:
3600  //   struct A { int foo; };
3601  //   struct B : A { using A::foo; };
3602  //   template <class T> struct C : A {};
3603  //   template <class T> struct D : C<T> { using B::foo; } // <---
3604  // This is invalid (during instantiation) in C++03 because B::foo
3605  // resolves to the using decl in B, which is not a base class of D<T>.
3606  // We can't diagnose it immediately because C<T> is an unknown
3607  // specialization.  The UsingShadowDecl in D<T> then points directly
3608  // to A::foo, which will look well-formed when we instantiate.
3609  // The right solution is to not collapse the shadow-decl chain.
3610  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3611    DeclContext *OrigDC = Orig->getDeclContext();
3612
3613    // Handle enums and anonymous structs.
3614    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3615    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3616    while (OrigRec->isAnonymousStructOrUnion())
3617      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3618
3619    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3620      if (OrigDC == CurContext) {
3621        Diag(Using->getLocation(),
3622             diag::err_using_decl_nested_name_specifier_is_current_class)
3623          << Using->getNestedNameRange();
3624        Diag(Orig->getLocation(), diag::note_using_decl_target);
3625        return true;
3626      }
3627
3628      Diag(Using->getNestedNameRange().getBegin(),
3629           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3630        << Using->getTargetNestedNameDecl()
3631        << cast<CXXRecordDecl>(CurContext)
3632        << Using->getNestedNameRange();
3633      Diag(Orig->getLocation(), diag::note_using_decl_target);
3634      return true;
3635    }
3636  }
3637
3638  if (Previous.empty()) return false;
3639
3640  NamedDecl *Target = Orig;
3641  if (isa<UsingShadowDecl>(Target))
3642    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3643
3644  // If the target happens to be one of the previous declarations, we
3645  // don't have a conflict.
3646  //
3647  // FIXME: but we might be increasing its access, in which case we
3648  // should redeclare it.
3649  NamedDecl *NonTag = 0, *Tag = 0;
3650  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3651         I != E; ++I) {
3652    NamedDecl *D = (*I)->getUnderlyingDecl();
3653    bool Result;
3654    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3655      return Result;
3656
3657    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3658  }
3659
3660  if (Target->isFunctionOrFunctionTemplate()) {
3661    FunctionDecl *FD;
3662    if (isa<FunctionTemplateDecl>(Target))
3663      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3664    else
3665      FD = cast<FunctionDecl>(Target);
3666
3667    NamedDecl *OldDecl = 0;
3668    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3669    case Ovl_Overload:
3670      return false;
3671
3672    case Ovl_NonFunction:
3673      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3674      break;
3675
3676    // We found a decl with the exact signature.
3677    case Ovl_Match:
3678      // If we're in a record, we want to hide the target, so we
3679      // return true (without a diagnostic) to tell the caller not to
3680      // build a shadow decl.
3681      if (CurContext->isRecord())
3682        return true;
3683
3684      // If we're not in a record, this is an error.
3685      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3686      break;
3687    }
3688
3689    Diag(Target->getLocation(), diag::note_using_decl_target);
3690    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3691    return true;
3692  }
3693
3694  // Target is not a function.
3695
3696  if (isa<TagDecl>(Target)) {
3697    // No conflict between a tag and a non-tag.
3698    if (!Tag) return false;
3699
3700    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3701    Diag(Target->getLocation(), diag::note_using_decl_target);
3702    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3703    return true;
3704  }
3705
3706  // No conflict between a tag and a non-tag.
3707  if (!NonTag) return false;
3708
3709  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3710  Diag(Target->getLocation(), diag::note_using_decl_target);
3711  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3712  return true;
3713}
3714
3715/// Builds a shadow declaration corresponding to a 'using' declaration.
3716UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3717                                            UsingDecl *UD,
3718                                            NamedDecl *Orig) {
3719
3720  // If we resolved to another shadow declaration, just coalesce them.
3721  NamedDecl *Target = Orig;
3722  if (isa<UsingShadowDecl>(Target)) {
3723    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3724    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3725  }
3726
3727  UsingShadowDecl *Shadow
3728    = UsingShadowDecl::Create(Context, CurContext,
3729                              UD->getLocation(), UD, Target);
3730  UD->addShadowDecl(Shadow);
3731
3732  Shadow->setAccess(UD->getAccess());
3733  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3734    Shadow->setInvalidDecl();
3735
3736  if (S)
3737    PushOnScopeChains(Shadow, S);
3738  else
3739    CurContext->addDecl(Shadow);
3740
3741
3742  return Shadow;
3743}
3744
3745/// Hides a using shadow declaration.  This is required by the current
3746/// using-decl implementation when a resolvable using declaration in a
3747/// class is followed by a declaration which would hide or override
3748/// one or more of the using decl's targets; for example:
3749///
3750///   struct Base { void foo(int); };
3751///   struct Derived : Base {
3752///     using Base::foo;
3753///     void foo(int);
3754///   };
3755///
3756/// The governing language is C++03 [namespace.udecl]p12:
3757///
3758///   When a using-declaration brings names from a base class into a
3759///   derived class scope, member functions in the derived class
3760///   override and/or hide member functions with the same name and
3761///   parameter types in a base class (rather than conflicting).
3762///
3763/// There are two ways to implement this:
3764///   (1) optimistically create shadow decls when they're not hidden
3765///       by existing declarations, or
3766///   (2) don't create any shadow decls (or at least don't make them
3767///       visible) until we've fully parsed/instantiated the class.
3768/// The problem with (1) is that we might have to retroactively remove
3769/// a shadow decl, which requires several O(n) operations because the
3770/// decl structures are (very reasonably) not designed for removal.
3771/// (2) avoids this but is very fiddly and phase-dependent.
3772void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3773  if (Shadow->getDeclName().getNameKind() ==
3774        DeclarationName::CXXConversionFunctionName)
3775    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3776
3777  // Remove it from the DeclContext...
3778  Shadow->getDeclContext()->removeDecl(Shadow);
3779
3780  // ...and the scope, if applicable...
3781  if (S) {
3782    S->RemoveDecl(Shadow);
3783    IdResolver.RemoveDecl(Shadow);
3784  }
3785
3786  // ...and the using decl.
3787  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3788
3789  // TODO: complain somehow if Shadow was used.  It shouldn't
3790  // be possible for this to happen, because...?
3791}
3792
3793/// Builds a using declaration.
3794///
3795/// \param IsInstantiation - Whether this call arises from an
3796///   instantiation of an unresolved using declaration.  We treat
3797///   the lookup differently for these declarations.
3798NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3799                                       SourceLocation UsingLoc,
3800                                       CXXScopeSpec &SS,
3801                                       const DeclarationNameInfo &NameInfo,
3802                                       AttributeList *AttrList,
3803                                       bool IsInstantiation,
3804                                       bool IsTypeName,
3805                                       SourceLocation TypenameLoc) {
3806  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3807  SourceLocation IdentLoc = NameInfo.getLoc();
3808  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3809
3810  // FIXME: We ignore attributes for now.
3811
3812  if (SS.isEmpty()) {
3813    Diag(IdentLoc, diag::err_using_requires_qualname);
3814    return 0;
3815  }
3816
3817  // Do the redeclaration lookup in the current scope.
3818  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3819                        ForRedeclaration);
3820  Previous.setHideTags(false);
3821  if (S) {
3822    LookupName(Previous, S);
3823
3824    // It is really dumb that we have to do this.
3825    LookupResult::Filter F = Previous.makeFilter();
3826    while (F.hasNext()) {
3827      NamedDecl *D = F.next();
3828      if (!isDeclInScope(D, CurContext, S))
3829        F.erase();
3830    }
3831    F.done();
3832  } else {
3833    assert(IsInstantiation && "no scope in non-instantiation");
3834    assert(CurContext->isRecord() && "scope not record in instantiation");
3835    LookupQualifiedName(Previous, CurContext);
3836  }
3837
3838  NestedNameSpecifier *NNS =
3839    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3840
3841  // Check for invalid redeclarations.
3842  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3843    return 0;
3844
3845  // Check for bad qualifiers.
3846  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3847    return 0;
3848
3849  DeclContext *LookupContext = computeDeclContext(SS);
3850  NamedDecl *D;
3851  if (!LookupContext) {
3852    if (IsTypeName) {
3853      // FIXME: not all declaration name kinds are legal here
3854      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3855                                              UsingLoc, TypenameLoc,
3856                                              SS.getRange(), NNS,
3857                                              IdentLoc, NameInfo.getName());
3858    } else {
3859      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3860                                           UsingLoc, SS.getRange(),
3861                                           NNS, NameInfo);
3862    }
3863  } else {
3864    D = UsingDecl::Create(Context, CurContext,
3865                          SS.getRange(), UsingLoc, NNS, NameInfo,
3866                          IsTypeName);
3867  }
3868  D->setAccess(AS);
3869  CurContext->addDecl(D);
3870
3871  if (!LookupContext) return D;
3872  UsingDecl *UD = cast<UsingDecl>(D);
3873
3874  if (RequireCompleteDeclContext(SS, LookupContext)) {
3875    UD->setInvalidDecl();
3876    return UD;
3877  }
3878
3879  // Look up the target name.
3880
3881  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3882
3883  // Unlike most lookups, we don't always want to hide tag
3884  // declarations: tag names are visible through the using declaration
3885  // even if hidden by ordinary names, *except* in a dependent context
3886  // where it's important for the sanity of two-phase lookup.
3887  if (!IsInstantiation)
3888    R.setHideTags(false);
3889
3890  LookupQualifiedName(R, LookupContext);
3891
3892  if (R.empty()) {
3893    Diag(IdentLoc, diag::err_no_member)
3894      << NameInfo.getName() << LookupContext << SS.getRange();
3895    UD->setInvalidDecl();
3896    return UD;
3897  }
3898
3899  if (R.isAmbiguous()) {
3900    UD->setInvalidDecl();
3901    return UD;
3902  }
3903
3904  if (IsTypeName) {
3905    // If we asked for a typename and got a non-type decl, error out.
3906    if (!R.getAsSingle<TypeDecl>()) {
3907      Diag(IdentLoc, diag::err_using_typename_non_type);
3908      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3909        Diag((*I)->getUnderlyingDecl()->getLocation(),
3910             diag::note_using_decl_target);
3911      UD->setInvalidDecl();
3912      return UD;
3913    }
3914  } else {
3915    // If we asked for a non-typename and we got a type, error out,
3916    // but only if this is an instantiation of an unresolved using
3917    // decl.  Otherwise just silently find the type name.
3918    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3919      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3920      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3921      UD->setInvalidDecl();
3922      return UD;
3923    }
3924  }
3925
3926  // C++0x N2914 [namespace.udecl]p6:
3927  // A using-declaration shall not name a namespace.
3928  if (R.getAsSingle<NamespaceDecl>()) {
3929    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3930      << SS.getRange();
3931    UD->setInvalidDecl();
3932    return UD;
3933  }
3934
3935  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3936    if (!CheckUsingShadowDecl(UD, *I, Previous))
3937      BuildUsingShadowDecl(S, UD, *I);
3938  }
3939
3940  return UD;
3941}
3942
3943/// Checks that the given using declaration is not an invalid
3944/// redeclaration.  Note that this is checking only for the using decl
3945/// itself, not for any ill-formedness among the UsingShadowDecls.
3946bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3947                                       bool isTypeName,
3948                                       const CXXScopeSpec &SS,
3949                                       SourceLocation NameLoc,
3950                                       const LookupResult &Prev) {
3951  // C++03 [namespace.udecl]p8:
3952  // C++0x [namespace.udecl]p10:
3953  //   A using-declaration is a declaration and can therefore be used
3954  //   repeatedly where (and only where) multiple declarations are
3955  //   allowed.
3956  //
3957  // That's in non-member contexts.
3958  if (!CurContext->getRedeclContext()->isRecord())
3959    return false;
3960
3961  NestedNameSpecifier *Qual
3962    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3963
3964  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3965    NamedDecl *D = *I;
3966
3967    bool DTypename;
3968    NestedNameSpecifier *DQual;
3969    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3970      DTypename = UD->isTypeName();
3971      DQual = UD->getTargetNestedNameDecl();
3972    } else if (UnresolvedUsingValueDecl *UD
3973                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3974      DTypename = false;
3975      DQual = UD->getTargetNestedNameSpecifier();
3976    } else if (UnresolvedUsingTypenameDecl *UD
3977                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3978      DTypename = true;
3979      DQual = UD->getTargetNestedNameSpecifier();
3980    } else continue;
3981
3982    // using decls differ if one says 'typename' and the other doesn't.
3983    // FIXME: non-dependent using decls?
3984    if (isTypeName != DTypename) continue;
3985
3986    // using decls differ if they name different scopes (but note that
3987    // template instantiation can cause this check to trigger when it
3988    // didn't before instantiation).
3989    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3990        Context.getCanonicalNestedNameSpecifier(DQual))
3991      continue;
3992
3993    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3994    Diag(D->getLocation(), diag::note_using_decl) << 1;
3995    return true;
3996  }
3997
3998  return false;
3999}
4000
4001
4002/// Checks that the given nested-name qualifier used in a using decl
4003/// in the current context is appropriately related to the current
4004/// scope.  If an error is found, diagnoses it and returns true.
4005bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4006                                   const CXXScopeSpec &SS,
4007                                   SourceLocation NameLoc) {
4008  DeclContext *NamedContext = computeDeclContext(SS);
4009
4010  if (!CurContext->isRecord()) {
4011    // C++03 [namespace.udecl]p3:
4012    // C++0x [namespace.udecl]p8:
4013    //   A using-declaration for a class member shall be a member-declaration.
4014
4015    // If we weren't able to compute a valid scope, it must be a
4016    // dependent class scope.
4017    if (!NamedContext || NamedContext->isRecord()) {
4018      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4019        << SS.getRange();
4020      return true;
4021    }
4022
4023    // Otherwise, everything is known to be fine.
4024    return false;
4025  }
4026
4027  // The current scope is a record.
4028
4029  // If the named context is dependent, we can't decide much.
4030  if (!NamedContext) {
4031    // FIXME: in C++0x, we can diagnose if we can prove that the
4032    // nested-name-specifier does not refer to a base class, which is
4033    // still possible in some cases.
4034
4035    // Otherwise we have to conservatively report that things might be
4036    // okay.
4037    return false;
4038  }
4039
4040  if (!NamedContext->isRecord()) {
4041    // Ideally this would point at the last name in the specifier,
4042    // but we don't have that level of source info.
4043    Diag(SS.getRange().getBegin(),
4044         diag::err_using_decl_nested_name_specifier_is_not_class)
4045      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4046    return true;
4047  }
4048
4049  if (getLangOptions().CPlusPlus0x) {
4050    // C++0x [namespace.udecl]p3:
4051    //   In a using-declaration used as a member-declaration, the
4052    //   nested-name-specifier shall name a base class of the class
4053    //   being defined.
4054
4055    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4056                                 cast<CXXRecordDecl>(NamedContext))) {
4057      if (CurContext == NamedContext) {
4058        Diag(NameLoc,
4059             diag::err_using_decl_nested_name_specifier_is_current_class)
4060          << SS.getRange();
4061        return true;
4062      }
4063
4064      Diag(SS.getRange().getBegin(),
4065           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4066        << (NestedNameSpecifier*) SS.getScopeRep()
4067        << cast<CXXRecordDecl>(CurContext)
4068        << SS.getRange();
4069      return true;
4070    }
4071
4072    return false;
4073  }
4074
4075  // C++03 [namespace.udecl]p4:
4076  //   A using-declaration used as a member-declaration shall refer
4077  //   to a member of a base class of the class being defined [etc.].
4078
4079  // Salient point: SS doesn't have to name a base class as long as
4080  // lookup only finds members from base classes.  Therefore we can
4081  // diagnose here only if we can prove that that can't happen,
4082  // i.e. if the class hierarchies provably don't intersect.
4083
4084  // TODO: it would be nice if "definitely valid" results were cached
4085  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4086  // need to be repeated.
4087
4088  struct UserData {
4089    llvm::DenseSet<const CXXRecordDecl*> Bases;
4090
4091    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4092      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4093      Data->Bases.insert(Base);
4094      return true;
4095    }
4096
4097    bool hasDependentBases(const CXXRecordDecl *Class) {
4098      return !Class->forallBases(collect, this);
4099    }
4100
4101    /// Returns true if the base is dependent or is one of the
4102    /// accumulated base classes.
4103    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4104      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4105      return !Data->Bases.count(Base);
4106    }
4107
4108    bool mightShareBases(const CXXRecordDecl *Class) {
4109      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4110    }
4111  };
4112
4113  UserData Data;
4114
4115  // Returns false if we find a dependent base.
4116  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4117    return false;
4118
4119  // Returns false if the class has a dependent base or if it or one
4120  // of its bases is present in the base set of the current context.
4121  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4122    return false;
4123
4124  Diag(SS.getRange().getBegin(),
4125       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4126    << (NestedNameSpecifier*) SS.getScopeRep()
4127    << cast<CXXRecordDecl>(CurContext)
4128    << SS.getRange();
4129
4130  return true;
4131}
4132
4133Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4134                                             SourceLocation NamespaceLoc,
4135                                             SourceLocation AliasLoc,
4136                                             IdentifierInfo *Alias,
4137                                             CXXScopeSpec &SS,
4138                                             SourceLocation IdentLoc,
4139                                             IdentifierInfo *Ident) {
4140
4141  // Lookup the namespace name.
4142  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4143  LookupParsedName(R, S, &SS);
4144
4145  // Check if we have a previous declaration with the same name.
4146  NamedDecl *PrevDecl
4147    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4148                       ForRedeclaration);
4149  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4150    PrevDecl = 0;
4151
4152  if (PrevDecl) {
4153    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4154      // We already have an alias with the same name that points to the same
4155      // namespace, so don't create a new one.
4156      // FIXME: At some point, we'll want to create the (redundant)
4157      // declaration to maintain better source information.
4158      if (!R.isAmbiguous() && !R.empty() &&
4159          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4160        return 0;
4161    }
4162
4163    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4164      diag::err_redefinition_different_kind;
4165    Diag(AliasLoc, DiagID) << Alias;
4166    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4167    return 0;
4168  }
4169
4170  if (R.isAmbiguous())
4171    return 0;
4172
4173  if (R.empty()) {
4174    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4175                                                CTC_NoKeywords, 0)) {
4176      if (R.getAsSingle<NamespaceDecl>() ||
4177          R.getAsSingle<NamespaceAliasDecl>()) {
4178        if (DeclContext *DC = computeDeclContext(SS, false))
4179          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4180            << Ident << DC << Corrected << SS.getRange()
4181            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4182        else
4183          Diag(IdentLoc, diag::err_using_directive_suggest)
4184            << Ident << Corrected
4185            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4186
4187        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4188          << Corrected;
4189
4190        Ident = Corrected.getAsIdentifierInfo();
4191      } else {
4192        R.clear();
4193        R.setLookupName(Ident);
4194      }
4195    }
4196
4197    if (R.empty()) {
4198      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4199      return 0;
4200    }
4201  }
4202
4203  NamespaceAliasDecl *AliasDecl =
4204    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4205                               Alias, SS.getRange(),
4206                               (NestedNameSpecifier *)SS.getScopeRep(),
4207                               IdentLoc, R.getFoundDecl());
4208
4209  PushOnScopeChains(AliasDecl, S);
4210  return AliasDecl;
4211}
4212
4213namespace {
4214  /// \brief Scoped object used to handle the state changes required in Sema
4215  /// to implicitly define the body of a C++ member function;
4216  class ImplicitlyDefinedFunctionScope {
4217    Sema &S;
4218    DeclContext *PreviousContext;
4219
4220  public:
4221    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4222      : S(S), PreviousContext(S.CurContext)
4223    {
4224      S.CurContext = Method;
4225      S.PushFunctionScope();
4226      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4227    }
4228
4229    ~ImplicitlyDefinedFunctionScope() {
4230      S.PopExpressionEvaluationContext();
4231      S.PopFunctionOrBlockScope();
4232      S.CurContext = PreviousContext;
4233    }
4234  };
4235}
4236
4237static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4238                                                       CXXRecordDecl *D) {
4239  ASTContext &Context = Self.Context;
4240  QualType ClassType = Context.getTypeDeclType(D);
4241  DeclarationName ConstructorName
4242    = Context.DeclarationNames.getCXXConstructorName(
4243                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4244
4245  DeclContext::lookup_const_iterator Con, ConEnd;
4246  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4247       Con != ConEnd; ++Con) {
4248    // FIXME: In C++0x, a constructor template can be a default constructor.
4249    if (isa<FunctionTemplateDecl>(*Con))
4250      continue;
4251
4252    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4253    if (Constructor->isDefaultConstructor())
4254      return Constructor;
4255  }
4256  return 0;
4257}
4258
4259CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4260                                                     CXXRecordDecl *ClassDecl) {
4261  // C++ [class.ctor]p5:
4262  //   A default constructor for a class X is a constructor of class X
4263  //   that can be called without an argument. If there is no
4264  //   user-declared constructor for class X, a default constructor is
4265  //   implicitly declared. An implicitly-declared default constructor
4266  //   is an inline public member of its class.
4267  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4268         "Should not build implicit default constructor!");
4269
4270  // C++ [except.spec]p14:
4271  //   An implicitly declared special member function (Clause 12) shall have an
4272  //   exception-specification. [...]
4273  ImplicitExceptionSpecification ExceptSpec(Context);
4274
4275  // Direct base-class destructors.
4276  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4277                                       BEnd = ClassDecl->bases_end();
4278       B != BEnd; ++B) {
4279    if (B->isVirtual()) // Handled below.
4280      continue;
4281
4282    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4283      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4284      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4285        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4286      else if (CXXConstructorDecl *Constructor
4287                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4288        ExceptSpec.CalledDecl(Constructor);
4289    }
4290  }
4291
4292  // Virtual base-class destructors.
4293  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4294                                       BEnd = ClassDecl->vbases_end();
4295       B != BEnd; ++B) {
4296    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4297      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4298      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4299        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4300      else if (CXXConstructorDecl *Constructor
4301                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4302        ExceptSpec.CalledDecl(Constructor);
4303    }
4304  }
4305
4306  // Field destructors.
4307  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4308                               FEnd = ClassDecl->field_end();
4309       F != FEnd; ++F) {
4310    if (const RecordType *RecordTy
4311              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4312      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4313      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4314        ExceptSpec.CalledDecl(
4315                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4316      else if (CXXConstructorDecl *Constructor
4317                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4318        ExceptSpec.CalledDecl(Constructor);
4319    }
4320  }
4321
4322  FunctionProtoType::ExtProtoInfo EPI;
4323  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4324  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4325  EPI.NumExceptions = ExceptSpec.size();
4326  EPI.Exceptions = ExceptSpec.data();
4327
4328  // Create the actual constructor declaration.
4329  CanQualType ClassType
4330    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4331  DeclarationName Name
4332    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4333  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4334  CXXConstructorDecl *DefaultCon
4335    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4336                                 Context.getFunctionType(Context.VoidTy,
4337                                                         0, 0, EPI),
4338                                 /*TInfo=*/0,
4339                                 /*isExplicit=*/false,
4340                                 /*isInline=*/true,
4341                                 /*isImplicitlyDeclared=*/true);
4342  DefaultCon->setAccess(AS_public);
4343  DefaultCon->setImplicit();
4344  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4345
4346  // Note that we have declared this constructor.
4347  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4348
4349  if (Scope *S = getScopeForContext(ClassDecl))
4350    PushOnScopeChains(DefaultCon, S, false);
4351  ClassDecl->addDecl(DefaultCon);
4352
4353  return DefaultCon;
4354}
4355
4356void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4357                                            CXXConstructorDecl *Constructor) {
4358  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4359          !Constructor->isUsed(false)) &&
4360    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4361
4362  CXXRecordDecl *ClassDecl = Constructor->getParent();
4363  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4364
4365  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4366  DiagnosticErrorTrap Trap(Diags);
4367  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4368      Trap.hasErrorOccurred()) {
4369    Diag(CurrentLocation, diag::note_member_synthesized_at)
4370      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4371    Constructor->setInvalidDecl();
4372    return;
4373  }
4374
4375  SourceLocation Loc = Constructor->getLocation();
4376  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4377
4378  Constructor->setUsed();
4379  MarkVTableUsed(CurrentLocation, ClassDecl);
4380}
4381
4382CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4383  // C++ [class.dtor]p2:
4384  //   If a class has no user-declared destructor, a destructor is
4385  //   declared implicitly. An implicitly-declared destructor is an
4386  //   inline public member of its class.
4387
4388  // C++ [except.spec]p14:
4389  //   An implicitly declared special member function (Clause 12) shall have
4390  //   an exception-specification.
4391  ImplicitExceptionSpecification ExceptSpec(Context);
4392
4393  // Direct base-class destructors.
4394  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4395                                       BEnd = ClassDecl->bases_end();
4396       B != BEnd; ++B) {
4397    if (B->isVirtual()) // Handled below.
4398      continue;
4399
4400    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4401      ExceptSpec.CalledDecl(
4402                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4403  }
4404
4405  // Virtual base-class destructors.
4406  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4407                                       BEnd = ClassDecl->vbases_end();
4408       B != BEnd; ++B) {
4409    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4410      ExceptSpec.CalledDecl(
4411                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4412  }
4413
4414  // Field destructors.
4415  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4416                               FEnd = ClassDecl->field_end();
4417       F != FEnd; ++F) {
4418    if (const RecordType *RecordTy
4419        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4420      ExceptSpec.CalledDecl(
4421                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4422  }
4423
4424  // Create the actual destructor declaration.
4425  FunctionProtoType::ExtProtoInfo EPI;
4426  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4427  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4428  EPI.NumExceptions = ExceptSpec.size();
4429  EPI.Exceptions = ExceptSpec.data();
4430  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4431
4432  CanQualType ClassType
4433    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4434  DeclarationName Name
4435    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4436  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4437  CXXDestructorDecl *Destructor
4438      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4439                                /*isInline=*/true,
4440                                /*isImplicitlyDeclared=*/true);
4441  Destructor->setAccess(AS_public);
4442  Destructor->setImplicit();
4443  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4444
4445  // Note that we have declared this destructor.
4446  ++ASTContext::NumImplicitDestructorsDeclared;
4447
4448  // Introduce this destructor into its scope.
4449  if (Scope *S = getScopeForContext(ClassDecl))
4450    PushOnScopeChains(Destructor, S, false);
4451  ClassDecl->addDecl(Destructor);
4452
4453  // This could be uniqued if it ever proves significant.
4454  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4455
4456  AddOverriddenMethods(ClassDecl, Destructor);
4457
4458  return Destructor;
4459}
4460
4461void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4462                                    CXXDestructorDecl *Destructor) {
4463  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4464         "DefineImplicitDestructor - call it for implicit default dtor");
4465  CXXRecordDecl *ClassDecl = Destructor->getParent();
4466  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4467
4468  if (Destructor->isInvalidDecl())
4469    return;
4470
4471  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4472
4473  DiagnosticErrorTrap Trap(Diags);
4474  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4475                                         Destructor->getParent());
4476
4477  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4478    Diag(CurrentLocation, diag::note_member_synthesized_at)
4479      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4480
4481    Destructor->setInvalidDecl();
4482    return;
4483  }
4484
4485  SourceLocation Loc = Destructor->getLocation();
4486  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4487
4488  Destructor->setUsed();
4489  MarkVTableUsed(CurrentLocation, ClassDecl);
4490}
4491
4492/// \brief Builds a statement that copies the given entity from \p From to
4493/// \c To.
4494///
4495/// This routine is used to copy the members of a class with an
4496/// implicitly-declared copy assignment operator. When the entities being
4497/// copied are arrays, this routine builds for loops to copy them.
4498///
4499/// \param S The Sema object used for type-checking.
4500///
4501/// \param Loc The location where the implicit copy is being generated.
4502///
4503/// \param T The type of the expressions being copied. Both expressions must
4504/// have this type.
4505///
4506/// \param To The expression we are copying to.
4507///
4508/// \param From The expression we are copying from.
4509///
4510/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4511/// Otherwise, it's a non-static member subobject.
4512///
4513/// \param Depth Internal parameter recording the depth of the recursion.
4514///
4515/// \returns A statement or a loop that copies the expressions.
4516static StmtResult
4517BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4518                      Expr *To, Expr *From,
4519                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4520  // C++0x [class.copy]p30:
4521  //   Each subobject is assigned in the manner appropriate to its type:
4522  //
4523  //     - if the subobject is of class type, the copy assignment operator
4524  //       for the class is used (as if by explicit qualification; that is,
4525  //       ignoring any possible virtual overriding functions in more derived
4526  //       classes);
4527  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4528    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4529
4530    // Look for operator=.
4531    DeclarationName Name
4532      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4533    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4534    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4535
4536    // Filter out any result that isn't a copy-assignment operator.
4537    LookupResult::Filter F = OpLookup.makeFilter();
4538    while (F.hasNext()) {
4539      NamedDecl *D = F.next();
4540      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4541        if (Method->isCopyAssignmentOperator())
4542          continue;
4543
4544      F.erase();
4545    }
4546    F.done();
4547
4548    // Suppress the protected check (C++ [class.protected]) for each of the
4549    // assignment operators we found. This strange dance is required when
4550    // we're assigning via a base classes's copy-assignment operator. To
4551    // ensure that we're getting the right base class subobject (without
4552    // ambiguities), we need to cast "this" to that subobject type; to
4553    // ensure that we don't go through the virtual call mechanism, we need
4554    // to qualify the operator= name with the base class (see below). However,
4555    // this means that if the base class has a protected copy assignment
4556    // operator, the protected member access check will fail. So, we
4557    // rewrite "protected" access to "public" access in this case, since we
4558    // know by construction that we're calling from a derived class.
4559    if (CopyingBaseSubobject) {
4560      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4561           L != LEnd; ++L) {
4562        if (L.getAccess() == AS_protected)
4563          L.setAccess(AS_public);
4564      }
4565    }
4566
4567    // Create the nested-name-specifier that will be used to qualify the
4568    // reference to operator=; this is required to suppress the virtual
4569    // call mechanism.
4570    CXXScopeSpec SS;
4571    SS.setRange(Loc);
4572    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4573                                               T.getTypePtr()));
4574
4575    // Create the reference to operator=.
4576    ExprResult OpEqualRef
4577      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4578                                   /*FirstQualifierInScope=*/0, OpLookup,
4579                                   /*TemplateArgs=*/0,
4580                                   /*SuppressQualifierCheck=*/true);
4581    if (OpEqualRef.isInvalid())
4582      return StmtError();
4583
4584    // Build the call to the assignment operator.
4585
4586    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4587                                                  OpEqualRef.takeAs<Expr>(),
4588                                                  Loc, &From, 1, Loc);
4589    if (Call.isInvalid())
4590      return StmtError();
4591
4592    return S.Owned(Call.takeAs<Stmt>());
4593  }
4594
4595  //     - if the subobject is of scalar type, the built-in assignment
4596  //       operator is used.
4597  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4598  if (!ArrayTy) {
4599    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4600    if (Assignment.isInvalid())
4601      return StmtError();
4602
4603    return S.Owned(Assignment.takeAs<Stmt>());
4604  }
4605
4606  //     - if the subobject is an array, each element is assigned, in the
4607  //       manner appropriate to the element type;
4608
4609  // Construct a loop over the array bounds, e.g.,
4610  //
4611  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4612  //
4613  // that will copy each of the array elements.
4614  QualType SizeType = S.Context.getSizeType();
4615
4616  // Create the iteration variable.
4617  IdentifierInfo *IterationVarName = 0;
4618  {
4619    llvm::SmallString<8> Str;
4620    llvm::raw_svector_ostream OS(Str);
4621    OS << "__i" << Depth;
4622    IterationVarName = &S.Context.Idents.get(OS.str());
4623  }
4624  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4625                                          IterationVarName, SizeType,
4626                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4627                                          SC_None, SC_None);
4628
4629  // Initialize the iteration variable to zero.
4630  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4631  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4632
4633  // Create a reference to the iteration variable; we'll use this several
4634  // times throughout.
4635  Expr *IterationVarRef
4636    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4637  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4638
4639  // Create the DeclStmt that holds the iteration variable.
4640  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4641
4642  // Create the comparison against the array bound.
4643  llvm::APInt Upper
4644    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4645  Expr *Comparison
4646    = new (S.Context) BinaryOperator(IterationVarRef,
4647                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4648                                     BO_NE, S.Context.BoolTy,
4649                                     VK_RValue, OK_Ordinary, Loc);
4650
4651  // Create the pre-increment of the iteration variable.
4652  Expr *Increment
4653    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4654                                    VK_LValue, OK_Ordinary, Loc);
4655
4656  // Subscript the "from" and "to" expressions with the iteration variable.
4657  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4658                                                         IterationVarRef, Loc));
4659  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4660                                                       IterationVarRef, Loc));
4661
4662  // Build the copy for an individual element of the array.
4663  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4664                                          To, From, CopyingBaseSubobject,
4665                                          Depth + 1);
4666  if (Copy.isInvalid())
4667    return StmtError();
4668
4669  // Construct the loop that copies all elements of this array.
4670  return S.ActOnForStmt(Loc, Loc, InitStmt,
4671                        S.MakeFullExpr(Comparison),
4672                        0, S.MakeFullExpr(Increment),
4673                        Loc, Copy.take());
4674}
4675
4676/// \brief Determine whether the given class has a copy assignment operator
4677/// that accepts a const-qualified argument.
4678static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4679  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4680
4681  if (!Class->hasDeclaredCopyAssignment())
4682    S.DeclareImplicitCopyAssignment(Class);
4683
4684  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4685  DeclarationName OpName
4686    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4687
4688  DeclContext::lookup_const_iterator Op, OpEnd;
4689  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4690    // C++ [class.copy]p9:
4691    //   A user-declared copy assignment operator is a non-static non-template
4692    //   member function of class X with exactly one parameter of type X, X&,
4693    //   const X&, volatile X& or const volatile X&.
4694    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4695    if (!Method)
4696      continue;
4697
4698    if (Method->isStatic())
4699      continue;
4700    if (Method->getPrimaryTemplate())
4701      continue;
4702    const FunctionProtoType *FnType =
4703    Method->getType()->getAs<FunctionProtoType>();
4704    assert(FnType && "Overloaded operator has no prototype.");
4705    // Don't assert on this; an invalid decl might have been left in the AST.
4706    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4707      continue;
4708    bool AcceptsConst = true;
4709    QualType ArgType = FnType->getArgType(0);
4710    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4711      ArgType = Ref->getPointeeType();
4712      // Is it a non-const lvalue reference?
4713      if (!ArgType.isConstQualified())
4714        AcceptsConst = false;
4715    }
4716    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4717      continue;
4718
4719    // We have a single argument of type cv X or cv X&, i.e. we've found the
4720    // copy assignment operator. Return whether it accepts const arguments.
4721    return AcceptsConst;
4722  }
4723  assert(Class->isInvalidDecl() &&
4724         "No copy assignment operator declared in valid code.");
4725  return false;
4726}
4727
4728CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4729  // Note: The following rules are largely analoguous to the copy
4730  // constructor rules. Note that virtual bases are not taken into account
4731  // for determining the argument type of the operator. Note also that
4732  // operators taking an object instead of a reference are allowed.
4733
4734
4735  // C++ [class.copy]p10:
4736  //   If the class definition does not explicitly declare a copy
4737  //   assignment operator, one is declared implicitly.
4738  //   The implicitly-defined copy assignment operator for a class X
4739  //   will have the form
4740  //
4741  //       X& X::operator=(const X&)
4742  //
4743  //   if
4744  bool HasConstCopyAssignment = true;
4745
4746  //       -- each direct base class B of X has a copy assignment operator
4747  //          whose parameter is of type const B&, const volatile B& or B,
4748  //          and
4749  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4750                                       BaseEnd = ClassDecl->bases_end();
4751       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4752    assert(!Base->getType()->isDependentType() &&
4753           "Cannot generate implicit members for class with dependent bases.");
4754    const CXXRecordDecl *BaseClassDecl
4755      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4756    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4757  }
4758
4759  //       -- for all the nonstatic data members of X that are of a class
4760  //          type M (or array thereof), each such class type has a copy
4761  //          assignment operator whose parameter is of type const M&,
4762  //          const volatile M& or M.
4763  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4764                                  FieldEnd = ClassDecl->field_end();
4765       HasConstCopyAssignment && Field != FieldEnd;
4766       ++Field) {
4767    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4768    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4769      const CXXRecordDecl *FieldClassDecl
4770        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4771      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4772    }
4773  }
4774
4775  //   Otherwise, the implicitly declared copy assignment operator will
4776  //   have the form
4777  //
4778  //       X& X::operator=(X&)
4779  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4780  QualType RetType = Context.getLValueReferenceType(ArgType);
4781  if (HasConstCopyAssignment)
4782    ArgType = ArgType.withConst();
4783  ArgType = Context.getLValueReferenceType(ArgType);
4784
4785  // C++ [except.spec]p14:
4786  //   An implicitly declared special member function (Clause 12) shall have an
4787  //   exception-specification. [...]
4788  ImplicitExceptionSpecification ExceptSpec(Context);
4789  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4790                                       BaseEnd = ClassDecl->bases_end();
4791       Base != BaseEnd; ++Base) {
4792    CXXRecordDecl *BaseClassDecl
4793      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4794
4795    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4796      DeclareImplicitCopyAssignment(BaseClassDecl);
4797
4798    if (CXXMethodDecl *CopyAssign
4799           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4800      ExceptSpec.CalledDecl(CopyAssign);
4801  }
4802  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4803                                  FieldEnd = ClassDecl->field_end();
4804       Field != FieldEnd;
4805       ++Field) {
4806    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4807    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4808      CXXRecordDecl *FieldClassDecl
4809        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4810
4811      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4812        DeclareImplicitCopyAssignment(FieldClassDecl);
4813
4814      if (CXXMethodDecl *CopyAssign
4815            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4816        ExceptSpec.CalledDecl(CopyAssign);
4817    }
4818  }
4819
4820  //   An implicitly-declared copy assignment operator is an inline public
4821  //   member of its class.
4822  FunctionProtoType::ExtProtoInfo EPI;
4823  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4824  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4825  EPI.NumExceptions = ExceptSpec.size();
4826  EPI.Exceptions = ExceptSpec.data();
4827  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4828  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4829  CXXMethodDecl *CopyAssignment
4830    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4831                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
4832                            /*TInfo=*/0, /*isStatic=*/false,
4833                            /*StorageClassAsWritten=*/SC_None,
4834                            /*isInline=*/true);
4835  CopyAssignment->setAccess(AS_public);
4836  CopyAssignment->setImplicit();
4837  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4838
4839  // Add the parameter to the operator.
4840  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4841                                               ClassDecl->getLocation(),
4842                                               /*Id=*/0,
4843                                               ArgType, /*TInfo=*/0,
4844                                               SC_None,
4845                                               SC_None, 0);
4846  CopyAssignment->setParams(&FromParam, 1);
4847
4848  // Note that we have added this copy-assignment operator.
4849  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4850
4851  if (Scope *S = getScopeForContext(ClassDecl))
4852    PushOnScopeChains(CopyAssignment, S, false);
4853  ClassDecl->addDecl(CopyAssignment);
4854
4855  AddOverriddenMethods(ClassDecl, CopyAssignment);
4856  return CopyAssignment;
4857}
4858
4859void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4860                                        CXXMethodDecl *CopyAssignOperator) {
4861  assert((CopyAssignOperator->isImplicit() &&
4862          CopyAssignOperator->isOverloadedOperator() &&
4863          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4864          !CopyAssignOperator->isUsed(false)) &&
4865         "DefineImplicitCopyAssignment called for wrong function");
4866
4867  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4868
4869  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4870    CopyAssignOperator->setInvalidDecl();
4871    return;
4872  }
4873
4874  CopyAssignOperator->setUsed();
4875
4876  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4877  DiagnosticErrorTrap Trap(Diags);
4878
4879  // C++0x [class.copy]p30:
4880  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4881  //   for a non-union class X performs memberwise copy assignment of its
4882  //   subobjects. The direct base classes of X are assigned first, in the
4883  //   order of their declaration in the base-specifier-list, and then the
4884  //   immediate non-static data members of X are assigned, in the order in
4885  //   which they were declared in the class definition.
4886
4887  // The statements that form the synthesized function body.
4888  ASTOwningVector<Stmt*> Statements(*this);
4889
4890  // The parameter for the "other" object, which we are copying from.
4891  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4892  Qualifiers OtherQuals = Other->getType().getQualifiers();
4893  QualType OtherRefType = Other->getType();
4894  if (const LValueReferenceType *OtherRef
4895                                = OtherRefType->getAs<LValueReferenceType>()) {
4896    OtherRefType = OtherRef->getPointeeType();
4897    OtherQuals = OtherRefType.getQualifiers();
4898  }
4899
4900  // Our location for everything implicitly-generated.
4901  SourceLocation Loc = CopyAssignOperator->getLocation();
4902
4903  // Construct a reference to the "other" object. We'll be using this
4904  // throughout the generated ASTs.
4905  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
4906  assert(OtherRef && "Reference to parameter cannot fail!");
4907
4908  // Construct the "this" pointer. We'll be using this throughout the generated
4909  // ASTs.
4910  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4911  assert(This && "Reference to this cannot fail!");
4912
4913  // Assign base classes.
4914  bool Invalid = false;
4915  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4916       E = ClassDecl->bases_end(); Base != E; ++Base) {
4917    // Form the assignment:
4918    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4919    QualType BaseType = Base->getType().getUnqualifiedType();
4920    CXXRecordDecl *BaseClassDecl = 0;
4921    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4922      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4923    else {
4924      Invalid = true;
4925      continue;
4926    }
4927
4928    CXXCastPath BasePath;
4929    BasePath.push_back(Base);
4930
4931    // Construct the "from" expression, which is an implicit cast to the
4932    // appropriately-qualified base type.
4933    Expr *From = OtherRef;
4934    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4935                      CK_UncheckedDerivedToBase,
4936                      VK_LValue, &BasePath);
4937
4938    // Dereference "this".
4939    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
4940
4941    // Implicitly cast "this" to the appropriately-qualified base type.
4942    Expr *ToE = To.takeAs<Expr>();
4943    ImpCastExprToType(ToE,
4944                      Context.getCVRQualifiedType(BaseType,
4945                                      CopyAssignOperator->getTypeQualifiers()),
4946                      CK_UncheckedDerivedToBase,
4947                      VK_LValue, &BasePath);
4948    To = Owned(ToE);
4949
4950    // Build the copy.
4951    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4952                                            To.get(), From,
4953                                            /*CopyingBaseSubobject=*/true);
4954    if (Copy.isInvalid()) {
4955      Diag(CurrentLocation, diag::note_member_synthesized_at)
4956        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4957      CopyAssignOperator->setInvalidDecl();
4958      return;
4959    }
4960
4961    // Success! Record the copy.
4962    Statements.push_back(Copy.takeAs<Expr>());
4963  }
4964
4965  // \brief Reference to the __builtin_memcpy function.
4966  Expr *BuiltinMemCpyRef = 0;
4967  // \brief Reference to the __builtin_objc_memmove_collectable function.
4968  Expr *CollectableMemCpyRef = 0;
4969
4970  // Assign non-static members.
4971  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4972                                  FieldEnd = ClassDecl->field_end();
4973       Field != FieldEnd; ++Field) {
4974    // Check for members of reference type; we can't copy those.
4975    if (Field->getType()->isReferenceType()) {
4976      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4977        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4978      Diag(Field->getLocation(), diag::note_declared_at);
4979      Diag(CurrentLocation, diag::note_member_synthesized_at)
4980        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4981      Invalid = true;
4982      continue;
4983    }
4984
4985    // Check for members of const-qualified, non-class type.
4986    QualType BaseType = Context.getBaseElementType(Field->getType());
4987    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4988      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4989        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4990      Diag(Field->getLocation(), diag::note_declared_at);
4991      Diag(CurrentLocation, diag::note_member_synthesized_at)
4992        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4993      Invalid = true;
4994      continue;
4995    }
4996
4997    QualType FieldType = Field->getType().getNonReferenceType();
4998    if (FieldType->isIncompleteArrayType()) {
4999      assert(ClassDecl->hasFlexibleArrayMember() &&
5000             "Incomplete array type is not valid");
5001      continue;
5002    }
5003
5004    // Build references to the field in the object we're copying from and to.
5005    CXXScopeSpec SS; // Intentionally empty
5006    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5007                              LookupMemberName);
5008    MemberLookup.addDecl(*Field);
5009    MemberLookup.resolveKind();
5010    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5011                                               Loc, /*IsArrow=*/false,
5012                                               SS, 0, MemberLookup, 0);
5013    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5014                                             Loc, /*IsArrow=*/true,
5015                                             SS, 0, MemberLookup, 0);
5016    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5017    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5018
5019    // If the field should be copied with __builtin_memcpy rather than via
5020    // explicit assignments, do so. This optimization only applies for arrays
5021    // of scalars and arrays of class type with trivial copy-assignment
5022    // operators.
5023    if (FieldType->isArrayType() &&
5024        (!BaseType->isRecordType() ||
5025         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5026           ->hasTrivialCopyAssignment())) {
5027      // Compute the size of the memory buffer to be copied.
5028      QualType SizeType = Context.getSizeType();
5029      llvm::APInt Size(Context.getTypeSize(SizeType),
5030                       Context.getTypeSizeInChars(BaseType).getQuantity());
5031      for (const ConstantArrayType *Array
5032              = Context.getAsConstantArrayType(FieldType);
5033           Array;
5034           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5035        llvm::APInt ArraySize
5036          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5037        Size *= ArraySize;
5038      }
5039
5040      // Take the address of the field references for "from" and "to".
5041      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5042      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5043
5044      bool NeedsCollectableMemCpy =
5045          (BaseType->isRecordType() &&
5046           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5047
5048      if (NeedsCollectableMemCpy) {
5049        if (!CollectableMemCpyRef) {
5050          // Create a reference to the __builtin_objc_memmove_collectable function.
5051          LookupResult R(*this,
5052                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5053                         Loc, LookupOrdinaryName);
5054          LookupName(R, TUScope, true);
5055
5056          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5057          if (!CollectableMemCpy) {
5058            // Something went horribly wrong earlier, and we will have
5059            // complained about it.
5060            Invalid = true;
5061            continue;
5062          }
5063
5064          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5065                                                  CollectableMemCpy->getType(),
5066                                                  VK_LValue, Loc, 0).take();
5067          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5068        }
5069      }
5070      // Create a reference to the __builtin_memcpy builtin function.
5071      else if (!BuiltinMemCpyRef) {
5072        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5073                       LookupOrdinaryName);
5074        LookupName(R, TUScope, true);
5075
5076        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5077        if (!BuiltinMemCpy) {
5078          // Something went horribly wrong earlier, and we will have complained
5079          // about it.
5080          Invalid = true;
5081          continue;
5082        }
5083
5084        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5085                                            BuiltinMemCpy->getType(),
5086                                            VK_LValue, Loc, 0).take();
5087        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5088      }
5089
5090      ASTOwningVector<Expr*> CallArgs(*this);
5091      CallArgs.push_back(To.takeAs<Expr>());
5092      CallArgs.push_back(From.takeAs<Expr>());
5093      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5094      ExprResult Call = ExprError();
5095      if (NeedsCollectableMemCpy)
5096        Call = ActOnCallExpr(/*Scope=*/0,
5097                             CollectableMemCpyRef,
5098                             Loc, move_arg(CallArgs),
5099                             Loc);
5100      else
5101        Call = ActOnCallExpr(/*Scope=*/0,
5102                             BuiltinMemCpyRef,
5103                             Loc, move_arg(CallArgs),
5104                             Loc);
5105
5106      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5107      Statements.push_back(Call.takeAs<Expr>());
5108      continue;
5109    }
5110
5111    // Build the copy of this field.
5112    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5113                                                  To.get(), From.get(),
5114                                              /*CopyingBaseSubobject=*/false);
5115    if (Copy.isInvalid()) {
5116      Diag(CurrentLocation, diag::note_member_synthesized_at)
5117        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5118      CopyAssignOperator->setInvalidDecl();
5119      return;
5120    }
5121
5122    // Success! Record the copy.
5123    Statements.push_back(Copy.takeAs<Stmt>());
5124  }
5125
5126  if (!Invalid) {
5127    // Add a "return *this;"
5128    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5129
5130    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5131    if (Return.isInvalid())
5132      Invalid = true;
5133    else {
5134      Statements.push_back(Return.takeAs<Stmt>());
5135
5136      if (Trap.hasErrorOccurred()) {
5137        Diag(CurrentLocation, diag::note_member_synthesized_at)
5138          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5139        Invalid = true;
5140      }
5141    }
5142  }
5143
5144  if (Invalid) {
5145    CopyAssignOperator->setInvalidDecl();
5146    return;
5147  }
5148
5149  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5150                                            /*isStmtExpr=*/false);
5151  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5152  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5153}
5154
5155CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5156                                                    CXXRecordDecl *ClassDecl) {
5157  // C++ [class.copy]p4:
5158  //   If the class definition does not explicitly declare a copy
5159  //   constructor, one is declared implicitly.
5160
5161  // C++ [class.copy]p5:
5162  //   The implicitly-declared copy constructor for a class X will
5163  //   have the form
5164  //
5165  //       X::X(const X&)
5166  //
5167  //   if
5168  bool HasConstCopyConstructor = true;
5169
5170  //     -- each direct or virtual base class B of X has a copy
5171  //        constructor whose first parameter is of type const B& or
5172  //        const volatile B&, and
5173  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5174                                       BaseEnd = ClassDecl->bases_end();
5175       HasConstCopyConstructor && Base != BaseEnd;
5176       ++Base) {
5177    // Virtual bases are handled below.
5178    if (Base->isVirtual())
5179      continue;
5180
5181    CXXRecordDecl *BaseClassDecl
5182      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5183    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5184      DeclareImplicitCopyConstructor(BaseClassDecl);
5185
5186    HasConstCopyConstructor
5187      = BaseClassDecl->hasConstCopyConstructor(Context);
5188  }
5189
5190  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5191                                       BaseEnd = ClassDecl->vbases_end();
5192       HasConstCopyConstructor && Base != BaseEnd;
5193       ++Base) {
5194    CXXRecordDecl *BaseClassDecl
5195      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5196    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5197      DeclareImplicitCopyConstructor(BaseClassDecl);
5198
5199    HasConstCopyConstructor
5200      = BaseClassDecl->hasConstCopyConstructor(Context);
5201  }
5202
5203  //     -- for all the nonstatic data members of X that are of a
5204  //        class type M (or array thereof), each such class type
5205  //        has a copy constructor whose first parameter is of type
5206  //        const M& or const volatile M&.
5207  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5208                                  FieldEnd = ClassDecl->field_end();
5209       HasConstCopyConstructor && Field != FieldEnd;
5210       ++Field) {
5211    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5212    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5213      CXXRecordDecl *FieldClassDecl
5214        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5215      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5216        DeclareImplicitCopyConstructor(FieldClassDecl);
5217
5218      HasConstCopyConstructor
5219        = FieldClassDecl->hasConstCopyConstructor(Context);
5220    }
5221  }
5222
5223  //   Otherwise, the implicitly declared copy constructor will have
5224  //   the form
5225  //
5226  //       X::X(X&)
5227  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5228  QualType ArgType = ClassType;
5229  if (HasConstCopyConstructor)
5230    ArgType = ArgType.withConst();
5231  ArgType = Context.getLValueReferenceType(ArgType);
5232
5233  // C++ [except.spec]p14:
5234  //   An implicitly declared special member function (Clause 12) shall have an
5235  //   exception-specification. [...]
5236  ImplicitExceptionSpecification ExceptSpec(Context);
5237  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5238  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5239                                       BaseEnd = ClassDecl->bases_end();
5240       Base != BaseEnd;
5241       ++Base) {
5242    // Virtual bases are handled below.
5243    if (Base->isVirtual())
5244      continue;
5245
5246    CXXRecordDecl *BaseClassDecl
5247      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5248    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5249      DeclareImplicitCopyConstructor(BaseClassDecl);
5250
5251    if (CXXConstructorDecl *CopyConstructor
5252                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5253      ExceptSpec.CalledDecl(CopyConstructor);
5254  }
5255  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5256                                       BaseEnd = ClassDecl->vbases_end();
5257       Base != BaseEnd;
5258       ++Base) {
5259    CXXRecordDecl *BaseClassDecl
5260      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5261    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5262      DeclareImplicitCopyConstructor(BaseClassDecl);
5263
5264    if (CXXConstructorDecl *CopyConstructor
5265                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5266      ExceptSpec.CalledDecl(CopyConstructor);
5267  }
5268  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5269                                  FieldEnd = ClassDecl->field_end();
5270       Field != FieldEnd;
5271       ++Field) {
5272    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5273    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5274      CXXRecordDecl *FieldClassDecl
5275        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5276      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5277        DeclareImplicitCopyConstructor(FieldClassDecl);
5278
5279      if (CXXConstructorDecl *CopyConstructor
5280                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5281        ExceptSpec.CalledDecl(CopyConstructor);
5282    }
5283  }
5284
5285  //   An implicitly-declared copy constructor is an inline public
5286  //   member of its class.
5287  FunctionProtoType::ExtProtoInfo EPI;
5288  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5289  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5290  EPI.NumExceptions = ExceptSpec.size();
5291  EPI.Exceptions = ExceptSpec.data();
5292  DeclarationName Name
5293    = Context.DeclarationNames.getCXXConstructorName(
5294                                           Context.getCanonicalType(ClassType));
5295  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5296  CXXConstructorDecl *CopyConstructor
5297    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5298                                 Context.getFunctionType(Context.VoidTy,
5299                                                         &ArgType, 1, EPI),
5300                                 /*TInfo=*/0,
5301                                 /*isExplicit=*/false,
5302                                 /*isInline=*/true,
5303                                 /*isImplicitlyDeclared=*/true);
5304  CopyConstructor->setAccess(AS_public);
5305  CopyConstructor->setImplicit();
5306  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5307
5308  // Note that we have declared this constructor.
5309  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5310
5311  // Add the parameter to the constructor.
5312  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5313                                               ClassDecl->getLocation(),
5314                                               /*IdentifierInfo=*/0,
5315                                               ArgType, /*TInfo=*/0,
5316                                               SC_None,
5317                                               SC_None, 0);
5318  CopyConstructor->setParams(&FromParam, 1);
5319  if (Scope *S = getScopeForContext(ClassDecl))
5320    PushOnScopeChains(CopyConstructor, S, false);
5321  ClassDecl->addDecl(CopyConstructor);
5322
5323  return CopyConstructor;
5324}
5325
5326void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5327                                   CXXConstructorDecl *CopyConstructor,
5328                                   unsigned TypeQuals) {
5329  assert((CopyConstructor->isImplicit() &&
5330          CopyConstructor->isCopyConstructor(TypeQuals) &&
5331          !CopyConstructor->isUsed(false)) &&
5332         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5333
5334  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5335  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5336
5337  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5338  DiagnosticErrorTrap Trap(Diags);
5339
5340  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5341      Trap.hasErrorOccurred()) {
5342    Diag(CurrentLocation, diag::note_member_synthesized_at)
5343      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5344    CopyConstructor->setInvalidDecl();
5345  }  else {
5346    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5347                                               CopyConstructor->getLocation(),
5348                                               MultiStmtArg(*this, 0, 0),
5349                                               /*isStmtExpr=*/false)
5350                                                              .takeAs<Stmt>());
5351  }
5352
5353  CopyConstructor->setUsed();
5354}
5355
5356ExprResult
5357Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5358                            CXXConstructorDecl *Constructor,
5359                            MultiExprArg ExprArgs,
5360                            bool RequiresZeroInit,
5361                            unsigned ConstructKind,
5362                            SourceRange ParenRange) {
5363  bool Elidable = false;
5364
5365  // C++0x [class.copy]p34:
5366  //   When certain criteria are met, an implementation is allowed to
5367  //   omit the copy/move construction of a class object, even if the
5368  //   copy/move constructor and/or destructor for the object have
5369  //   side effects. [...]
5370  //     - when a temporary class object that has not been bound to a
5371  //       reference (12.2) would be copied/moved to a class object
5372  //       with the same cv-unqualified type, the copy/move operation
5373  //       can be omitted by constructing the temporary object
5374  //       directly into the target of the omitted copy/move
5375  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5376      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5377    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5378    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5379  }
5380
5381  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5382                               Elidable, move(ExprArgs), RequiresZeroInit,
5383                               ConstructKind, ParenRange);
5384}
5385
5386/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5387/// including handling of its default argument expressions.
5388ExprResult
5389Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5390                            CXXConstructorDecl *Constructor, bool Elidable,
5391                            MultiExprArg ExprArgs,
5392                            bool RequiresZeroInit,
5393                            unsigned ConstructKind,
5394                            SourceRange ParenRange) {
5395  unsigned NumExprs = ExprArgs.size();
5396  Expr **Exprs = (Expr **)ExprArgs.release();
5397
5398  MarkDeclarationReferenced(ConstructLoc, Constructor);
5399  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5400                                        Constructor, Elidable, Exprs, NumExprs,
5401                                        RequiresZeroInit,
5402              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5403                                        ParenRange));
5404}
5405
5406bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5407                                        CXXConstructorDecl *Constructor,
5408                                        MultiExprArg Exprs) {
5409  // FIXME: Provide the correct paren SourceRange when available.
5410  ExprResult TempResult =
5411    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5412                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5413                          SourceRange());
5414  if (TempResult.isInvalid())
5415    return true;
5416
5417  Expr *Temp = TempResult.takeAs<Expr>();
5418  CheckImplicitConversions(Temp, VD->getLocation());
5419  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5420  Temp = MaybeCreateExprWithCleanups(Temp);
5421  VD->setInit(Temp);
5422
5423  return false;
5424}
5425
5426void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5427  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5428  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5429      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5430    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5431    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5432    CheckDestructorAccess(VD->getLocation(), Destructor,
5433                          PDiag(diag::err_access_dtor_var)
5434                            << VD->getDeclName()
5435                            << VD->getType());
5436
5437    // TODO: this should be re-enabled for static locals by !CXAAtExit
5438    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5439      Diag(VD->getLocation(), diag::warn_global_destructor);
5440  }
5441}
5442
5443/// AddCXXDirectInitializerToDecl - This action is called immediately after
5444/// ActOnDeclarator, when a C++ direct initializer is present.
5445/// e.g: "int x(1);"
5446void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5447                                         SourceLocation LParenLoc,
5448                                         MultiExprArg Exprs,
5449                                         SourceLocation RParenLoc) {
5450  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5451
5452  // If there is no declaration, there was an error parsing it.  Just ignore
5453  // the initializer.
5454  if (RealDecl == 0)
5455    return;
5456
5457  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5458  if (!VDecl) {
5459    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5460    RealDecl->setInvalidDecl();
5461    return;
5462  }
5463
5464  // We will represent direct-initialization similarly to copy-initialization:
5465  //    int x(1);  -as-> int x = 1;
5466  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5467  //
5468  // Clients that want to distinguish between the two forms, can check for
5469  // direct initializer using VarDecl::hasCXXDirectInitializer().
5470  // A major benefit is that clients that don't particularly care about which
5471  // exactly form was it (like the CodeGen) can handle both cases without
5472  // special case code.
5473
5474  // C++ 8.5p11:
5475  // The form of initialization (using parentheses or '=') is generally
5476  // insignificant, but does matter when the entity being initialized has a
5477  // class type.
5478
5479  if (!VDecl->getType()->isDependentType() &&
5480      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5481                          diag::err_typecheck_decl_incomplete_type)) {
5482    VDecl->setInvalidDecl();
5483    return;
5484  }
5485
5486  // The variable can not have an abstract class type.
5487  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5488                             diag::err_abstract_type_in_decl,
5489                             AbstractVariableType))
5490    VDecl->setInvalidDecl();
5491
5492  const VarDecl *Def;
5493  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5494    Diag(VDecl->getLocation(), diag::err_redefinition)
5495    << VDecl->getDeclName();
5496    Diag(Def->getLocation(), diag::note_previous_definition);
5497    VDecl->setInvalidDecl();
5498    return;
5499  }
5500
5501  // C++ [class.static.data]p4
5502  //   If a static data member is of const integral or const
5503  //   enumeration type, its declaration in the class definition can
5504  //   specify a constant-initializer which shall be an integral
5505  //   constant expression (5.19). In that case, the member can appear
5506  //   in integral constant expressions. The member shall still be
5507  //   defined in a namespace scope if it is used in the program and the
5508  //   namespace scope definition shall not contain an initializer.
5509  //
5510  // We already performed a redefinition check above, but for static
5511  // data members we also need to check whether there was an in-class
5512  // declaration with an initializer.
5513  const VarDecl* PrevInit = 0;
5514  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5515    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5516    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5517    return;
5518  }
5519
5520  bool IsDependent = false;
5521  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5522    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5523      VDecl->setInvalidDecl();
5524      return;
5525    }
5526
5527    if (Exprs.get()[I]->isTypeDependent())
5528      IsDependent = true;
5529  }
5530
5531  // If either the declaration has a dependent type or if any of the
5532  // expressions is type-dependent, we represent the initialization
5533  // via a ParenListExpr for later use during template instantiation.
5534  if (VDecl->getType()->isDependentType() || IsDependent) {
5535    // Let clients know that initialization was done with a direct initializer.
5536    VDecl->setCXXDirectInitializer(true);
5537
5538    // Store the initialization expressions as a ParenListExpr.
5539    unsigned NumExprs = Exprs.size();
5540    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5541                                               (Expr **)Exprs.release(),
5542                                               NumExprs, RParenLoc));
5543    return;
5544  }
5545
5546  // Capture the variable that is being initialized and the style of
5547  // initialization.
5548  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5549
5550  // FIXME: Poor source location information.
5551  InitializationKind Kind
5552    = InitializationKind::CreateDirect(VDecl->getLocation(),
5553                                       LParenLoc, RParenLoc);
5554
5555  InitializationSequence InitSeq(*this, Entity, Kind,
5556                                 Exprs.get(), Exprs.size());
5557  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5558  if (Result.isInvalid()) {
5559    VDecl->setInvalidDecl();
5560    return;
5561  }
5562
5563  CheckImplicitConversions(Result.get(), LParenLoc);
5564
5565  Result = MaybeCreateExprWithCleanups(Result);
5566  VDecl->setInit(Result.takeAs<Expr>());
5567  VDecl->setCXXDirectInitializer(true);
5568
5569    if (!VDecl->isInvalidDecl() &&
5570        !VDecl->getDeclContext()->isDependentContext() &&
5571        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
5572        !VDecl->getInit()->isConstantInitializer(Context,
5573                                        VDecl->getType()->isReferenceType()))
5574      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5575        << VDecl->getInit()->getSourceRange();
5576
5577  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5578    FinalizeVarWithDestructor(VDecl, Record);
5579}
5580
5581/// \brief Given a constructor and the set of arguments provided for the
5582/// constructor, convert the arguments and add any required default arguments
5583/// to form a proper call to this constructor.
5584///
5585/// \returns true if an error occurred, false otherwise.
5586bool
5587Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5588                              MultiExprArg ArgsPtr,
5589                              SourceLocation Loc,
5590                              ASTOwningVector<Expr*> &ConvertedArgs) {
5591  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5592  unsigned NumArgs = ArgsPtr.size();
5593  Expr **Args = (Expr **)ArgsPtr.get();
5594
5595  const FunctionProtoType *Proto
5596    = Constructor->getType()->getAs<FunctionProtoType>();
5597  assert(Proto && "Constructor without a prototype?");
5598  unsigned NumArgsInProto = Proto->getNumArgs();
5599
5600  // If too few arguments are available, we'll fill in the rest with defaults.
5601  if (NumArgs < NumArgsInProto)
5602    ConvertedArgs.reserve(NumArgsInProto);
5603  else
5604    ConvertedArgs.reserve(NumArgs);
5605
5606  VariadicCallType CallType =
5607    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5608  llvm::SmallVector<Expr *, 8> AllArgs;
5609  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5610                                        Proto, 0, Args, NumArgs, AllArgs,
5611                                        CallType);
5612  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5613    ConvertedArgs.push_back(AllArgs[i]);
5614  return Invalid;
5615}
5616
5617static inline bool
5618CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5619                                       const FunctionDecl *FnDecl) {
5620  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5621  if (isa<NamespaceDecl>(DC)) {
5622    return SemaRef.Diag(FnDecl->getLocation(),
5623                        diag::err_operator_new_delete_declared_in_namespace)
5624      << FnDecl->getDeclName();
5625  }
5626
5627  if (isa<TranslationUnitDecl>(DC) &&
5628      FnDecl->getStorageClass() == SC_Static) {
5629    return SemaRef.Diag(FnDecl->getLocation(),
5630                        diag::err_operator_new_delete_declared_static)
5631      << FnDecl->getDeclName();
5632  }
5633
5634  return false;
5635}
5636
5637static inline bool
5638CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5639                            CanQualType ExpectedResultType,
5640                            CanQualType ExpectedFirstParamType,
5641                            unsigned DependentParamTypeDiag,
5642                            unsigned InvalidParamTypeDiag) {
5643  QualType ResultType =
5644    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5645
5646  // Check that the result type is not dependent.
5647  if (ResultType->isDependentType())
5648    return SemaRef.Diag(FnDecl->getLocation(),
5649                        diag::err_operator_new_delete_dependent_result_type)
5650    << FnDecl->getDeclName() << ExpectedResultType;
5651
5652  // Check that the result type is what we expect.
5653  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5654    return SemaRef.Diag(FnDecl->getLocation(),
5655                        diag::err_operator_new_delete_invalid_result_type)
5656    << FnDecl->getDeclName() << ExpectedResultType;
5657
5658  // A function template must have at least 2 parameters.
5659  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5660    return SemaRef.Diag(FnDecl->getLocation(),
5661                      diag::err_operator_new_delete_template_too_few_parameters)
5662        << FnDecl->getDeclName();
5663
5664  // The function decl must have at least 1 parameter.
5665  if (FnDecl->getNumParams() == 0)
5666    return SemaRef.Diag(FnDecl->getLocation(),
5667                        diag::err_operator_new_delete_too_few_parameters)
5668      << FnDecl->getDeclName();
5669
5670  // Check the the first parameter type is not dependent.
5671  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5672  if (FirstParamType->isDependentType())
5673    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5674      << FnDecl->getDeclName() << ExpectedFirstParamType;
5675
5676  // Check that the first parameter type is what we expect.
5677  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5678      ExpectedFirstParamType)
5679    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5680    << FnDecl->getDeclName() << ExpectedFirstParamType;
5681
5682  return false;
5683}
5684
5685static bool
5686CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5687  // C++ [basic.stc.dynamic.allocation]p1:
5688  //   A program is ill-formed if an allocation function is declared in a
5689  //   namespace scope other than global scope or declared static in global
5690  //   scope.
5691  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5692    return true;
5693
5694  CanQualType SizeTy =
5695    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5696
5697  // C++ [basic.stc.dynamic.allocation]p1:
5698  //  The return type shall be void*. The first parameter shall have type
5699  //  std::size_t.
5700  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5701                                  SizeTy,
5702                                  diag::err_operator_new_dependent_param_type,
5703                                  diag::err_operator_new_param_type))
5704    return true;
5705
5706  // C++ [basic.stc.dynamic.allocation]p1:
5707  //  The first parameter shall not have an associated default argument.
5708  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5709    return SemaRef.Diag(FnDecl->getLocation(),
5710                        diag::err_operator_new_default_arg)
5711      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5712
5713  return false;
5714}
5715
5716static bool
5717CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5718  // C++ [basic.stc.dynamic.deallocation]p1:
5719  //   A program is ill-formed if deallocation functions are declared in a
5720  //   namespace scope other than global scope or declared static in global
5721  //   scope.
5722  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5723    return true;
5724
5725  // C++ [basic.stc.dynamic.deallocation]p2:
5726  //   Each deallocation function shall return void and its first parameter
5727  //   shall be void*.
5728  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5729                                  SemaRef.Context.VoidPtrTy,
5730                                 diag::err_operator_delete_dependent_param_type,
5731                                 diag::err_operator_delete_param_type))
5732    return true;
5733
5734  return false;
5735}
5736
5737/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5738/// of this overloaded operator is well-formed. If so, returns false;
5739/// otherwise, emits appropriate diagnostics and returns true.
5740bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5741  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5742         "Expected an overloaded operator declaration");
5743
5744  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5745
5746  // C++ [over.oper]p5:
5747  //   The allocation and deallocation functions, operator new,
5748  //   operator new[], operator delete and operator delete[], are
5749  //   described completely in 3.7.3. The attributes and restrictions
5750  //   found in the rest of this subclause do not apply to them unless
5751  //   explicitly stated in 3.7.3.
5752  if (Op == OO_Delete || Op == OO_Array_Delete)
5753    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5754
5755  if (Op == OO_New || Op == OO_Array_New)
5756    return CheckOperatorNewDeclaration(*this, FnDecl);
5757
5758  // C++ [over.oper]p6:
5759  //   An operator function shall either be a non-static member
5760  //   function or be a non-member function and have at least one
5761  //   parameter whose type is a class, a reference to a class, an
5762  //   enumeration, or a reference to an enumeration.
5763  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5764    if (MethodDecl->isStatic())
5765      return Diag(FnDecl->getLocation(),
5766                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5767  } else {
5768    bool ClassOrEnumParam = false;
5769    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5770                                   ParamEnd = FnDecl->param_end();
5771         Param != ParamEnd; ++Param) {
5772      QualType ParamType = (*Param)->getType().getNonReferenceType();
5773      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5774          ParamType->isEnumeralType()) {
5775        ClassOrEnumParam = true;
5776        break;
5777      }
5778    }
5779
5780    if (!ClassOrEnumParam)
5781      return Diag(FnDecl->getLocation(),
5782                  diag::err_operator_overload_needs_class_or_enum)
5783        << FnDecl->getDeclName();
5784  }
5785
5786  // C++ [over.oper]p8:
5787  //   An operator function cannot have default arguments (8.3.6),
5788  //   except where explicitly stated below.
5789  //
5790  // Only the function-call operator allows default arguments
5791  // (C++ [over.call]p1).
5792  if (Op != OO_Call) {
5793    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5794         Param != FnDecl->param_end(); ++Param) {
5795      if ((*Param)->hasDefaultArg())
5796        return Diag((*Param)->getLocation(),
5797                    diag::err_operator_overload_default_arg)
5798          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5799    }
5800  }
5801
5802  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5803    { false, false, false }
5804#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5805    , { Unary, Binary, MemberOnly }
5806#include "clang/Basic/OperatorKinds.def"
5807  };
5808
5809  bool CanBeUnaryOperator = OperatorUses[Op][0];
5810  bool CanBeBinaryOperator = OperatorUses[Op][1];
5811  bool MustBeMemberOperator = OperatorUses[Op][2];
5812
5813  // C++ [over.oper]p8:
5814  //   [...] Operator functions cannot have more or fewer parameters
5815  //   than the number required for the corresponding operator, as
5816  //   described in the rest of this subclause.
5817  unsigned NumParams = FnDecl->getNumParams()
5818                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5819  if (Op != OO_Call &&
5820      ((NumParams == 1 && !CanBeUnaryOperator) ||
5821       (NumParams == 2 && !CanBeBinaryOperator) ||
5822       (NumParams < 1) || (NumParams > 2))) {
5823    // We have the wrong number of parameters.
5824    unsigned ErrorKind;
5825    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5826      ErrorKind = 2;  // 2 -> unary or binary.
5827    } else if (CanBeUnaryOperator) {
5828      ErrorKind = 0;  // 0 -> unary
5829    } else {
5830      assert(CanBeBinaryOperator &&
5831             "All non-call overloaded operators are unary or binary!");
5832      ErrorKind = 1;  // 1 -> binary
5833    }
5834
5835    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5836      << FnDecl->getDeclName() << NumParams << ErrorKind;
5837  }
5838
5839  // Overloaded operators other than operator() cannot be variadic.
5840  if (Op != OO_Call &&
5841      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5842    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5843      << FnDecl->getDeclName();
5844  }
5845
5846  // Some operators must be non-static member functions.
5847  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5848    return Diag(FnDecl->getLocation(),
5849                diag::err_operator_overload_must_be_member)
5850      << FnDecl->getDeclName();
5851  }
5852
5853  // C++ [over.inc]p1:
5854  //   The user-defined function called operator++ implements the
5855  //   prefix and postfix ++ operator. If this function is a member
5856  //   function with no parameters, or a non-member function with one
5857  //   parameter of class or enumeration type, it defines the prefix
5858  //   increment operator ++ for objects of that type. If the function
5859  //   is a member function with one parameter (which shall be of type
5860  //   int) or a non-member function with two parameters (the second
5861  //   of which shall be of type int), it defines the postfix
5862  //   increment operator ++ for objects of that type.
5863  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5864    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5865    bool ParamIsInt = false;
5866    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5867      ParamIsInt = BT->getKind() == BuiltinType::Int;
5868
5869    if (!ParamIsInt)
5870      return Diag(LastParam->getLocation(),
5871                  diag::err_operator_overload_post_incdec_must_be_int)
5872        << LastParam->getType() << (Op == OO_MinusMinus);
5873  }
5874
5875  return false;
5876}
5877
5878/// CheckLiteralOperatorDeclaration - Check whether the declaration
5879/// of this literal operator function is well-formed. If so, returns
5880/// false; otherwise, emits appropriate diagnostics and returns true.
5881bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5882  DeclContext *DC = FnDecl->getDeclContext();
5883  Decl::Kind Kind = DC->getDeclKind();
5884  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5885      Kind != Decl::LinkageSpec) {
5886    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5887      << FnDecl->getDeclName();
5888    return true;
5889  }
5890
5891  bool Valid = false;
5892
5893  // template <char...> type operator "" name() is the only valid template
5894  // signature, and the only valid signature with no parameters.
5895  if (FnDecl->param_size() == 0) {
5896    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5897      // Must have only one template parameter
5898      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5899      if (Params->size() == 1) {
5900        NonTypeTemplateParmDecl *PmDecl =
5901          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5902
5903        // The template parameter must be a char parameter pack.
5904        // FIXME: This test will always fail because non-type parameter packs
5905        //   have not been implemented.
5906        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5907            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5908          Valid = true;
5909      }
5910    }
5911  } else {
5912    // Check the first parameter
5913    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5914
5915    QualType T = (*Param)->getType();
5916
5917    // unsigned long long int, long double, and any character type are allowed
5918    // as the only parameters.
5919    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5920        Context.hasSameType(T, Context.LongDoubleTy) ||
5921        Context.hasSameType(T, Context.CharTy) ||
5922        Context.hasSameType(T, Context.WCharTy) ||
5923        Context.hasSameType(T, Context.Char16Ty) ||
5924        Context.hasSameType(T, Context.Char32Ty)) {
5925      if (++Param == FnDecl->param_end())
5926        Valid = true;
5927      goto FinishedParams;
5928    }
5929
5930    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5931    const PointerType *PT = T->getAs<PointerType>();
5932    if (!PT)
5933      goto FinishedParams;
5934    T = PT->getPointeeType();
5935    if (!T.isConstQualified())
5936      goto FinishedParams;
5937    T = T.getUnqualifiedType();
5938
5939    // Move on to the second parameter;
5940    ++Param;
5941
5942    // If there is no second parameter, the first must be a const char *
5943    if (Param == FnDecl->param_end()) {
5944      if (Context.hasSameType(T, Context.CharTy))
5945        Valid = true;
5946      goto FinishedParams;
5947    }
5948
5949    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5950    // are allowed as the first parameter to a two-parameter function
5951    if (!(Context.hasSameType(T, Context.CharTy) ||
5952          Context.hasSameType(T, Context.WCharTy) ||
5953          Context.hasSameType(T, Context.Char16Ty) ||
5954          Context.hasSameType(T, Context.Char32Ty)))
5955      goto FinishedParams;
5956
5957    // The second and final parameter must be an std::size_t
5958    T = (*Param)->getType().getUnqualifiedType();
5959    if (Context.hasSameType(T, Context.getSizeType()) &&
5960        ++Param == FnDecl->param_end())
5961      Valid = true;
5962  }
5963
5964  // FIXME: This diagnostic is absolutely terrible.
5965FinishedParams:
5966  if (!Valid) {
5967    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5968      << FnDecl->getDeclName();
5969    return true;
5970  }
5971
5972  return false;
5973}
5974
5975/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5976/// linkage specification, including the language and (if present)
5977/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5978/// the location of the language string literal, which is provided
5979/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5980/// the '{' brace. Otherwise, this linkage specification does not
5981/// have any braces.
5982Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
5983                                           SourceLocation LangLoc,
5984                                           llvm::StringRef Lang,
5985                                           SourceLocation LBraceLoc) {
5986  LinkageSpecDecl::LanguageIDs Language;
5987  if (Lang == "\"C\"")
5988    Language = LinkageSpecDecl::lang_c;
5989  else if (Lang == "\"C++\"")
5990    Language = LinkageSpecDecl::lang_cxx;
5991  else {
5992    Diag(LangLoc, diag::err_bad_language);
5993    return 0;
5994  }
5995
5996  // FIXME: Add all the various semantics of linkage specifications
5997
5998  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5999                                               LangLoc, Language,
6000                                               LBraceLoc.isValid());
6001  CurContext->addDecl(D);
6002  PushDeclContext(S, D);
6003  return D;
6004}
6005
6006/// ActOnFinishLinkageSpecification - Complete the definition of
6007/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6008/// valid, it's the position of the closing '}' brace in a linkage
6009/// specification that uses braces.
6010Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6011                                                      Decl *LinkageSpec,
6012                                                      SourceLocation RBraceLoc) {
6013  if (LinkageSpec)
6014    PopDeclContext();
6015  return LinkageSpec;
6016}
6017
6018/// \brief Perform semantic analysis for the variable declaration that
6019/// occurs within a C++ catch clause, returning the newly-created
6020/// variable.
6021VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6022                                         TypeSourceInfo *TInfo,
6023                                         IdentifierInfo *Name,
6024                                         SourceLocation Loc) {
6025  bool Invalid = false;
6026  QualType ExDeclType = TInfo->getType();
6027
6028  // Arrays and functions decay.
6029  if (ExDeclType->isArrayType())
6030    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6031  else if (ExDeclType->isFunctionType())
6032    ExDeclType = Context.getPointerType(ExDeclType);
6033
6034  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6035  // The exception-declaration shall not denote a pointer or reference to an
6036  // incomplete type, other than [cv] void*.
6037  // N2844 forbids rvalue references.
6038  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6039    Diag(Loc, diag::err_catch_rvalue_ref);
6040    Invalid = true;
6041  }
6042
6043  // GCC allows catching pointers and references to incomplete types
6044  // as an extension; so do we, but we warn by default.
6045
6046  QualType BaseType = ExDeclType;
6047  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6048  unsigned DK = diag::err_catch_incomplete;
6049  bool IncompleteCatchIsInvalid = true;
6050  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6051    BaseType = Ptr->getPointeeType();
6052    Mode = 1;
6053    DK = diag::ext_catch_incomplete_ptr;
6054    IncompleteCatchIsInvalid = false;
6055  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6056    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6057    BaseType = Ref->getPointeeType();
6058    Mode = 2;
6059    DK = diag::ext_catch_incomplete_ref;
6060    IncompleteCatchIsInvalid = false;
6061  }
6062  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6063      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6064      IncompleteCatchIsInvalid)
6065    Invalid = true;
6066
6067  if (!Invalid && !ExDeclType->isDependentType() &&
6068      RequireNonAbstractType(Loc, ExDeclType,
6069                             diag::err_abstract_type_in_decl,
6070                             AbstractVariableType))
6071    Invalid = true;
6072
6073  // Only the non-fragile NeXT runtime currently supports C++ catches
6074  // of ObjC types, and no runtime supports catching ObjC types by value.
6075  if (!Invalid && getLangOptions().ObjC1) {
6076    QualType T = ExDeclType;
6077    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6078      T = RT->getPointeeType();
6079
6080    if (T->isObjCObjectType()) {
6081      Diag(Loc, diag::err_objc_object_catch);
6082      Invalid = true;
6083    } else if (T->isObjCObjectPointerType()) {
6084      if (!getLangOptions().NeXTRuntime) {
6085        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6086        Invalid = true;
6087      } else if (!getLangOptions().ObjCNonFragileABI) {
6088        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6089        Invalid = true;
6090      }
6091    }
6092  }
6093
6094  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6095                                    Name, ExDeclType, TInfo, SC_None,
6096                                    SC_None);
6097  ExDecl->setExceptionVariable(true);
6098
6099  if (!Invalid) {
6100    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6101      // C++ [except.handle]p16:
6102      //   The object declared in an exception-declaration or, if the
6103      //   exception-declaration does not specify a name, a temporary (12.2) is
6104      //   copy-initialized (8.5) from the exception object. [...]
6105      //   The object is destroyed when the handler exits, after the destruction
6106      //   of any automatic objects initialized within the handler.
6107      //
6108      // We just pretend to initialize the object with itself, then make sure
6109      // it can be destroyed later.
6110      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6111      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6112                                            Loc, ExDeclType, VK_LValue, 0);
6113      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6114                                                               SourceLocation());
6115      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6116      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6117                                         MultiExprArg(*this, &ExDeclRef, 1));
6118      if (Result.isInvalid())
6119        Invalid = true;
6120      else
6121        FinalizeVarWithDestructor(ExDecl, RecordTy);
6122    }
6123  }
6124
6125  if (Invalid)
6126    ExDecl->setInvalidDecl();
6127
6128  return ExDecl;
6129}
6130
6131/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6132/// handler.
6133Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6134  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6135  QualType ExDeclType = TInfo->getType();
6136
6137  bool Invalid = D.isInvalidType();
6138  IdentifierInfo *II = D.getIdentifier();
6139  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6140                                             LookupOrdinaryName,
6141                                             ForRedeclaration)) {
6142    // The scope should be freshly made just for us. There is just no way
6143    // it contains any previous declaration.
6144    assert(!S->isDeclScope(PrevDecl));
6145    if (PrevDecl->isTemplateParameter()) {
6146      // Maybe we will complain about the shadowed template parameter.
6147      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6148    }
6149  }
6150
6151  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6152    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6153      << D.getCXXScopeSpec().getRange();
6154    Invalid = true;
6155  }
6156
6157  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6158                                              D.getIdentifier(),
6159                                              D.getIdentifierLoc());
6160
6161  if (Invalid)
6162    ExDecl->setInvalidDecl();
6163
6164  // Add the exception declaration into this scope.
6165  if (II)
6166    PushOnScopeChains(ExDecl, S);
6167  else
6168    CurContext->addDecl(ExDecl);
6169
6170  ProcessDeclAttributes(S, ExDecl, D);
6171  return ExDecl;
6172}
6173
6174Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6175                                         Expr *AssertExpr,
6176                                         Expr *AssertMessageExpr_) {
6177  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6178
6179  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6180    llvm::APSInt Value(32);
6181    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6182      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6183        AssertExpr->getSourceRange();
6184      return 0;
6185    }
6186
6187    if (Value == 0) {
6188      Diag(AssertLoc, diag::err_static_assert_failed)
6189        << AssertMessage->getString() << AssertExpr->getSourceRange();
6190    }
6191  }
6192
6193  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6194    return 0;
6195
6196  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6197                                        AssertExpr, AssertMessage);
6198
6199  CurContext->addDecl(Decl);
6200  return Decl;
6201}
6202
6203/// \brief Perform semantic analysis of the given friend type declaration.
6204///
6205/// \returns A friend declaration that.
6206FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6207                                      TypeSourceInfo *TSInfo) {
6208  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6209
6210  QualType T = TSInfo->getType();
6211  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6212
6213  if (!getLangOptions().CPlusPlus0x) {
6214    // C++03 [class.friend]p2:
6215    //   An elaborated-type-specifier shall be used in a friend declaration
6216    //   for a class.*
6217    //
6218    //   * The class-key of the elaborated-type-specifier is required.
6219    if (!ActiveTemplateInstantiations.empty()) {
6220      // Do not complain about the form of friend template types during
6221      // template instantiation; we will already have complained when the
6222      // template was declared.
6223    } else if (!T->isElaboratedTypeSpecifier()) {
6224      // If we evaluated the type to a record type, suggest putting
6225      // a tag in front.
6226      if (const RecordType *RT = T->getAs<RecordType>()) {
6227        RecordDecl *RD = RT->getDecl();
6228
6229        std::string InsertionText = std::string(" ") + RD->getKindName();
6230
6231        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6232          << (unsigned) RD->getTagKind()
6233          << T
6234          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6235                                        InsertionText);
6236      } else {
6237        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6238          << T
6239          << SourceRange(FriendLoc, TypeRange.getEnd());
6240      }
6241    } else if (T->getAs<EnumType>()) {
6242      Diag(FriendLoc, diag::ext_enum_friend)
6243        << T
6244        << SourceRange(FriendLoc, TypeRange.getEnd());
6245    }
6246  }
6247
6248  // C++0x [class.friend]p3:
6249  //   If the type specifier in a friend declaration designates a (possibly
6250  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6251  //   the friend declaration is ignored.
6252
6253  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6254  // in [class.friend]p3 that we do not implement.
6255
6256  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6257}
6258
6259/// Handle a friend tag declaration where the scope specifier was
6260/// templated.
6261Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6262                                    unsigned TagSpec, SourceLocation TagLoc,
6263                                    CXXScopeSpec &SS,
6264                                    IdentifierInfo *Name, SourceLocation NameLoc,
6265                                    AttributeList *Attr,
6266                                    MultiTemplateParamsArg TempParamLists) {
6267  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6268
6269  bool isExplicitSpecialization = false;
6270  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6271  bool Invalid = false;
6272
6273  if (TemplateParameterList *TemplateParams
6274        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6275                                                  TempParamLists.get(),
6276                                                  TempParamLists.size(),
6277                                                  /*friend*/ true,
6278                                                  isExplicitSpecialization,
6279                                                  Invalid)) {
6280    --NumMatchedTemplateParamLists;
6281
6282    if (TemplateParams->size() > 0) {
6283      // This is a declaration of a class template.
6284      if (Invalid)
6285        return 0;
6286
6287      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6288                                SS, Name, NameLoc, Attr,
6289                                TemplateParams, AS_public).take();
6290    } else {
6291      // The "template<>" header is extraneous.
6292      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6293        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6294      isExplicitSpecialization = true;
6295    }
6296  }
6297
6298  if (Invalid) return 0;
6299
6300  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6301
6302  bool isAllExplicitSpecializations = true;
6303  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6304    if (TempParamLists.get()[I]->size()) {
6305      isAllExplicitSpecializations = false;
6306      break;
6307    }
6308  }
6309
6310  // FIXME: don't ignore attributes.
6311
6312  // If it's explicit specializations all the way down, just forget
6313  // about the template header and build an appropriate non-templated
6314  // friend.  TODO: for source fidelity, remember the headers.
6315  if (isAllExplicitSpecializations) {
6316    ElaboratedTypeKeyword Keyword
6317      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6318    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6319                                   TagLoc, SS.getRange(), NameLoc);
6320    if (T.isNull())
6321      return 0;
6322
6323    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6324    if (isa<DependentNameType>(T)) {
6325      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6326      TL.setKeywordLoc(TagLoc);
6327      TL.setQualifierRange(SS.getRange());
6328      TL.setNameLoc(NameLoc);
6329    } else {
6330      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6331      TL.setKeywordLoc(TagLoc);
6332      TL.setQualifierRange(SS.getRange());
6333      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6334    }
6335
6336    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6337                                            TSI, FriendLoc);
6338    Friend->setAccess(AS_public);
6339    CurContext->addDecl(Friend);
6340    return Friend;
6341  }
6342
6343  // Handle the case of a templated-scope friend class.  e.g.
6344  //   template <class T> class A<T>::B;
6345  // FIXME: we don't support these right now.
6346  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6347  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6348  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6349  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6350  TL.setKeywordLoc(TagLoc);
6351  TL.setQualifierRange(SS.getRange());
6352  TL.setNameLoc(NameLoc);
6353
6354  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6355                                          TSI, FriendLoc);
6356  Friend->setAccess(AS_public);
6357  Friend->setUnsupportedFriend(true);
6358  CurContext->addDecl(Friend);
6359  return Friend;
6360}
6361
6362
6363/// Handle a friend type declaration.  This works in tandem with
6364/// ActOnTag.
6365///
6366/// Notes on friend class templates:
6367///
6368/// We generally treat friend class declarations as if they were
6369/// declaring a class.  So, for example, the elaborated type specifier
6370/// in a friend declaration is required to obey the restrictions of a
6371/// class-head (i.e. no typedefs in the scope chain), template
6372/// parameters are required to match up with simple template-ids, &c.
6373/// However, unlike when declaring a template specialization, it's
6374/// okay to refer to a template specialization without an empty
6375/// template parameter declaration, e.g.
6376///   friend class A<T>::B<unsigned>;
6377/// We permit this as a special case; if there are any template
6378/// parameters present at all, require proper matching, i.e.
6379///   template <> template <class T> friend class A<int>::B;
6380Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6381                                MultiTemplateParamsArg TempParams) {
6382  SourceLocation Loc = DS.getSourceRange().getBegin();
6383
6384  assert(DS.isFriendSpecified());
6385  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6386
6387  // Try to convert the decl specifier to a type.  This works for
6388  // friend templates because ActOnTag never produces a ClassTemplateDecl
6389  // for a TUK_Friend.
6390  Declarator TheDeclarator(DS, Declarator::MemberContext);
6391  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6392  QualType T = TSI->getType();
6393  if (TheDeclarator.isInvalidType())
6394    return 0;
6395
6396  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6397    return 0;
6398
6399  // This is definitely an error in C++98.  It's probably meant to
6400  // be forbidden in C++0x, too, but the specification is just
6401  // poorly written.
6402  //
6403  // The problem is with declarations like the following:
6404  //   template <T> friend A<T>::foo;
6405  // where deciding whether a class C is a friend or not now hinges
6406  // on whether there exists an instantiation of A that causes
6407  // 'foo' to equal C.  There are restrictions on class-heads
6408  // (which we declare (by fiat) elaborated friend declarations to
6409  // be) that makes this tractable.
6410  //
6411  // FIXME: handle "template <> friend class A<T>;", which
6412  // is possibly well-formed?  Who even knows?
6413  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6414    Diag(Loc, diag::err_tagless_friend_type_template)
6415      << DS.getSourceRange();
6416    return 0;
6417  }
6418
6419  // C++98 [class.friend]p1: A friend of a class is a function
6420  //   or class that is not a member of the class . . .
6421  // This is fixed in DR77, which just barely didn't make the C++03
6422  // deadline.  It's also a very silly restriction that seriously
6423  // affects inner classes and which nobody else seems to implement;
6424  // thus we never diagnose it, not even in -pedantic.
6425  //
6426  // But note that we could warn about it: it's always useless to
6427  // friend one of your own members (it's not, however, worthless to
6428  // friend a member of an arbitrary specialization of your template).
6429
6430  Decl *D;
6431  if (unsigned NumTempParamLists = TempParams.size())
6432    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6433                                   NumTempParamLists,
6434                                   TempParams.release(),
6435                                   TSI,
6436                                   DS.getFriendSpecLoc());
6437  else
6438    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6439
6440  if (!D)
6441    return 0;
6442
6443  D->setAccess(AS_public);
6444  CurContext->addDecl(D);
6445
6446  return D;
6447}
6448
6449Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6450                                    MultiTemplateParamsArg TemplateParams) {
6451  const DeclSpec &DS = D.getDeclSpec();
6452
6453  assert(DS.isFriendSpecified());
6454  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6455
6456  SourceLocation Loc = D.getIdentifierLoc();
6457  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6458  QualType T = TInfo->getType();
6459
6460  // C++ [class.friend]p1
6461  //   A friend of a class is a function or class....
6462  // Note that this sees through typedefs, which is intended.
6463  // It *doesn't* see through dependent types, which is correct
6464  // according to [temp.arg.type]p3:
6465  //   If a declaration acquires a function type through a
6466  //   type dependent on a template-parameter and this causes
6467  //   a declaration that does not use the syntactic form of a
6468  //   function declarator to have a function type, the program
6469  //   is ill-formed.
6470  if (!T->isFunctionType()) {
6471    Diag(Loc, diag::err_unexpected_friend);
6472
6473    // It might be worthwhile to try to recover by creating an
6474    // appropriate declaration.
6475    return 0;
6476  }
6477
6478  // C++ [namespace.memdef]p3
6479  //  - If a friend declaration in a non-local class first declares a
6480  //    class or function, the friend class or function is a member
6481  //    of the innermost enclosing namespace.
6482  //  - The name of the friend is not found by simple name lookup
6483  //    until a matching declaration is provided in that namespace
6484  //    scope (either before or after the class declaration granting
6485  //    friendship).
6486  //  - If a friend function is called, its name may be found by the
6487  //    name lookup that considers functions from namespaces and
6488  //    classes associated with the types of the function arguments.
6489  //  - When looking for a prior declaration of a class or a function
6490  //    declared as a friend, scopes outside the innermost enclosing
6491  //    namespace scope are not considered.
6492
6493  CXXScopeSpec &SS = D.getCXXScopeSpec();
6494  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6495  DeclarationName Name = NameInfo.getName();
6496  assert(Name);
6497
6498  // Check for unexpanded parameter packs.
6499  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6500      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6501      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6502    return 0;
6503
6504  // The context we found the declaration in, or in which we should
6505  // create the declaration.
6506  DeclContext *DC;
6507  Scope *DCScope = S;
6508  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6509                        ForRedeclaration);
6510
6511  // FIXME: there are different rules in local classes
6512
6513  // There are four cases here.
6514  //   - There's no scope specifier, in which case we just go to the
6515  //     appropriate scope and look for a function or function template
6516  //     there as appropriate.
6517  // Recover from invalid scope qualifiers as if they just weren't there.
6518  if (SS.isInvalid() || !SS.isSet()) {
6519    // C++0x [namespace.memdef]p3:
6520    //   If the name in a friend declaration is neither qualified nor
6521    //   a template-id and the declaration is a function or an
6522    //   elaborated-type-specifier, the lookup to determine whether
6523    //   the entity has been previously declared shall not consider
6524    //   any scopes outside the innermost enclosing namespace.
6525    // C++0x [class.friend]p11:
6526    //   If a friend declaration appears in a local class and the name
6527    //   specified is an unqualified name, a prior declaration is
6528    //   looked up without considering scopes that are outside the
6529    //   innermost enclosing non-class scope. For a friend function
6530    //   declaration, if there is no prior declaration, the program is
6531    //   ill-formed.
6532    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6533    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6534
6535    // Find the appropriate context according to the above.
6536    DC = CurContext;
6537    while (true) {
6538      // Skip class contexts.  If someone can cite chapter and verse
6539      // for this behavior, that would be nice --- it's what GCC and
6540      // EDG do, and it seems like a reasonable intent, but the spec
6541      // really only says that checks for unqualified existing
6542      // declarations should stop at the nearest enclosing namespace,
6543      // not that they should only consider the nearest enclosing
6544      // namespace.
6545      while (DC->isRecord())
6546        DC = DC->getParent();
6547
6548      LookupQualifiedName(Previous, DC);
6549
6550      // TODO: decide what we think about using declarations.
6551      if (isLocal || !Previous.empty())
6552        break;
6553
6554      if (isTemplateId) {
6555        if (isa<TranslationUnitDecl>(DC)) break;
6556      } else {
6557        if (DC->isFileContext()) break;
6558      }
6559      DC = DC->getParent();
6560    }
6561
6562    // C++ [class.friend]p1: A friend of a class is a function or
6563    //   class that is not a member of the class . . .
6564    // C++0x changes this for both friend types and functions.
6565    // Most C++ 98 compilers do seem to give an error here, so
6566    // we do, too.
6567    if (!Previous.empty() && DC->Equals(CurContext)
6568        && !getLangOptions().CPlusPlus0x)
6569      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6570
6571    DCScope = getScopeForDeclContext(S, DC);
6572
6573  //   - There's a non-dependent scope specifier, in which case we
6574  //     compute it and do a previous lookup there for a function
6575  //     or function template.
6576  } else if (!SS.getScopeRep()->isDependent()) {
6577    DC = computeDeclContext(SS);
6578    if (!DC) return 0;
6579
6580    if (RequireCompleteDeclContext(SS, DC)) return 0;
6581
6582    LookupQualifiedName(Previous, DC);
6583
6584    // Ignore things found implicitly in the wrong scope.
6585    // TODO: better diagnostics for this case.  Suggesting the right
6586    // qualified scope would be nice...
6587    LookupResult::Filter F = Previous.makeFilter();
6588    while (F.hasNext()) {
6589      NamedDecl *D = F.next();
6590      if (!DC->InEnclosingNamespaceSetOf(
6591              D->getDeclContext()->getRedeclContext()))
6592        F.erase();
6593    }
6594    F.done();
6595
6596    if (Previous.empty()) {
6597      D.setInvalidType();
6598      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6599      return 0;
6600    }
6601
6602    // C++ [class.friend]p1: A friend of a class is a function or
6603    //   class that is not a member of the class . . .
6604    if (DC->Equals(CurContext))
6605      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6606
6607  //   - There's a scope specifier that does not match any template
6608  //     parameter lists, in which case we use some arbitrary context,
6609  //     create a method or method template, and wait for instantiation.
6610  //   - There's a scope specifier that does match some template
6611  //     parameter lists, which we don't handle right now.
6612  } else {
6613    DC = CurContext;
6614    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6615  }
6616
6617  if (!DC->isRecord()) {
6618    // This implies that it has to be an operator or function.
6619    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6620        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6621        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6622      Diag(Loc, diag::err_introducing_special_friend) <<
6623        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6624         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6625      return 0;
6626    }
6627  }
6628
6629  bool Redeclaration = false;
6630  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6631                                          move(TemplateParams),
6632                                          IsDefinition,
6633                                          Redeclaration);
6634  if (!ND) return 0;
6635
6636  assert(ND->getDeclContext() == DC);
6637  assert(ND->getLexicalDeclContext() == CurContext);
6638
6639  // Add the function declaration to the appropriate lookup tables,
6640  // adjusting the redeclarations list as necessary.  We don't
6641  // want to do this yet if the friending class is dependent.
6642  //
6643  // Also update the scope-based lookup if the target context's
6644  // lookup context is in lexical scope.
6645  if (!CurContext->isDependentContext()) {
6646    DC = DC->getRedeclContext();
6647    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6648    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6649      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6650  }
6651
6652  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6653                                       D.getIdentifierLoc(), ND,
6654                                       DS.getFriendSpecLoc());
6655  FrD->setAccess(AS_public);
6656  CurContext->addDecl(FrD);
6657
6658  if (ND->isInvalidDecl())
6659    FrD->setInvalidDecl();
6660  else {
6661    FunctionDecl *FD;
6662    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6663      FD = FTD->getTemplatedDecl();
6664    else
6665      FD = cast<FunctionDecl>(ND);
6666
6667    // Mark templated-scope function declarations as unsupported.
6668    if (FD->getNumTemplateParameterLists())
6669      FrD->setUnsupportedFriend(true);
6670  }
6671
6672  return ND;
6673}
6674
6675void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6676  AdjustDeclIfTemplate(Dcl);
6677
6678  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6679  if (!Fn) {
6680    Diag(DelLoc, diag::err_deleted_non_function);
6681    return;
6682  }
6683  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6684    Diag(DelLoc, diag::err_deleted_decl_not_first);
6685    Diag(Prev->getLocation(), diag::note_previous_declaration);
6686    // If the declaration wasn't the first, we delete the function anyway for
6687    // recovery.
6688  }
6689  Fn->setDeleted();
6690}
6691
6692static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6693  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6694       ++CI) {
6695    Stmt *SubStmt = *CI;
6696    if (!SubStmt)
6697      continue;
6698    if (isa<ReturnStmt>(SubStmt))
6699      Self.Diag(SubStmt->getSourceRange().getBegin(),
6700           diag::err_return_in_constructor_handler);
6701    if (!isa<Expr>(SubStmt))
6702      SearchForReturnInStmt(Self, SubStmt);
6703  }
6704}
6705
6706void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6707  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6708    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6709    SearchForReturnInStmt(*this, Handler);
6710  }
6711}
6712
6713bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6714                                             const CXXMethodDecl *Old) {
6715  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6716  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6717
6718  if (Context.hasSameType(NewTy, OldTy) ||
6719      NewTy->isDependentType() || OldTy->isDependentType())
6720    return false;
6721
6722  // Check if the return types are covariant
6723  QualType NewClassTy, OldClassTy;
6724
6725  /// Both types must be pointers or references to classes.
6726  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6727    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6728      NewClassTy = NewPT->getPointeeType();
6729      OldClassTy = OldPT->getPointeeType();
6730    }
6731  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6732    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6733      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6734        NewClassTy = NewRT->getPointeeType();
6735        OldClassTy = OldRT->getPointeeType();
6736      }
6737    }
6738  }
6739
6740  // The return types aren't either both pointers or references to a class type.
6741  if (NewClassTy.isNull()) {
6742    Diag(New->getLocation(),
6743         diag::err_different_return_type_for_overriding_virtual_function)
6744      << New->getDeclName() << NewTy << OldTy;
6745    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6746
6747    return true;
6748  }
6749
6750  // C++ [class.virtual]p6:
6751  //   If the return type of D::f differs from the return type of B::f, the
6752  //   class type in the return type of D::f shall be complete at the point of
6753  //   declaration of D::f or shall be the class type D.
6754  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6755    if (!RT->isBeingDefined() &&
6756        RequireCompleteType(New->getLocation(), NewClassTy,
6757                            PDiag(diag::err_covariant_return_incomplete)
6758                              << New->getDeclName()))
6759    return true;
6760  }
6761
6762  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6763    // Check if the new class derives from the old class.
6764    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6765      Diag(New->getLocation(),
6766           diag::err_covariant_return_not_derived)
6767      << New->getDeclName() << NewTy << OldTy;
6768      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6769      return true;
6770    }
6771
6772    // Check if we the conversion from derived to base is valid.
6773    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6774                    diag::err_covariant_return_inaccessible_base,
6775                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6776                    // FIXME: Should this point to the return type?
6777                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6778      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6779      return true;
6780    }
6781  }
6782
6783  // The qualifiers of the return types must be the same.
6784  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6785    Diag(New->getLocation(),
6786         diag::err_covariant_return_type_different_qualifications)
6787    << New->getDeclName() << NewTy << OldTy;
6788    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6789    return true;
6790  };
6791
6792
6793  // The new class type must have the same or less qualifiers as the old type.
6794  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6795    Diag(New->getLocation(),
6796         diag::err_covariant_return_type_class_type_more_qualified)
6797    << New->getDeclName() << NewTy << OldTy;
6798    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6799    return true;
6800  };
6801
6802  return false;
6803}
6804
6805bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6806                                             const CXXMethodDecl *Old)
6807{
6808  if (Old->hasAttr<FinalAttr>()) {
6809    Diag(New->getLocation(), diag::err_final_function_overridden)
6810      << New->getDeclName();
6811    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6812    return true;
6813  }
6814
6815  return false;
6816}
6817
6818/// \brief Mark the given method pure.
6819///
6820/// \param Method the method to be marked pure.
6821///
6822/// \param InitRange the source range that covers the "0" initializer.
6823bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6824  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6825    Method->setPure();
6826    return false;
6827  }
6828
6829  if (!Method->isInvalidDecl())
6830    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6831      << Method->getDeclName() << InitRange;
6832  return true;
6833}
6834
6835/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6836/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6837/// is a fresh scope pushed for just this purpose.
6838///
6839/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6840/// static data member of class X, names should be looked up in the scope of
6841/// class X.
6842void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6843  // If there is no declaration, there was an error parsing it.
6844  if (D == 0) return;
6845
6846  // We should only get called for declarations with scope specifiers, like:
6847  //   int foo::bar;
6848  assert(D->isOutOfLine());
6849  EnterDeclaratorContext(S, D->getDeclContext());
6850}
6851
6852/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6853/// initializer for the out-of-line declaration 'D'.
6854void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6855  // If there is no declaration, there was an error parsing it.
6856  if (D == 0) return;
6857
6858  assert(D->isOutOfLine());
6859  ExitDeclaratorContext(S);
6860}
6861
6862/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6863/// C++ if/switch/while/for statement.
6864/// e.g: "if (int x = f()) {...}"
6865DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6866  // C++ 6.4p2:
6867  // The declarator shall not specify a function or an array.
6868  // The type-specifier-seq shall not contain typedef and shall not declare a
6869  // new class or enumeration.
6870  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6871         "Parser allowed 'typedef' as storage class of condition decl.");
6872
6873  TagDecl *OwnedTag = 0;
6874  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6875  QualType Ty = TInfo->getType();
6876
6877  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6878                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6879                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6880    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6881      << D.getSourceRange();
6882    return DeclResult();
6883  } else if (OwnedTag && OwnedTag->isDefinition()) {
6884    // The type-specifier-seq shall not declare a new class or enumeration.
6885    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6886  }
6887
6888  Decl *Dcl = ActOnDeclarator(S, D);
6889  if (!Dcl)
6890    return DeclResult();
6891
6892  return Dcl;
6893}
6894
6895void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6896                          bool DefinitionRequired) {
6897  // Ignore any vtable uses in unevaluated operands or for classes that do
6898  // not have a vtable.
6899  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6900      CurContext->isDependentContext() ||
6901      ExprEvalContexts.back().Context == Unevaluated)
6902    return;
6903
6904  // Try to insert this class into the map.
6905  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6906  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6907    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6908  if (!Pos.second) {
6909    // If we already had an entry, check to see if we are promoting this vtable
6910    // to required a definition. If so, we need to reappend to the VTableUses
6911    // list, since we may have already processed the first entry.
6912    if (DefinitionRequired && !Pos.first->second) {
6913      Pos.first->second = true;
6914    } else {
6915      // Otherwise, we can early exit.
6916      return;
6917    }
6918  }
6919
6920  // Local classes need to have their virtual members marked
6921  // immediately. For all other classes, we mark their virtual members
6922  // at the end of the translation unit.
6923  if (Class->isLocalClass())
6924    MarkVirtualMembersReferenced(Loc, Class);
6925  else
6926    VTableUses.push_back(std::make_pair(Class, Loc));
6927}
6928
6929bool Sema::DefineUsedVTables() {
6930  if (VTableUses.empty())
6931    return false;
6932
6933  // Note: The VTableUses vector could grow as a result of marking
6934  // the members of a class as "used", so we check the size each
6935  // time through the loop and prefer indices (with are stable) to
6936  // iterators (which are not).
6937  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6938    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6939    if (!Class)
6940      continue;
6941
6942    SourceLocation Loc = VTableUses[I].second;
6943
6944    // If this class has a key function, but that key function is
6945    // defined in another translation unit, we don't need to emit the
6946    // vtable even though we're using it.
6947    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6948    if (KeyFunction && !KeyFunction->hasBody()) {
6949      switch (KeyFunction->getTemplateSpecializationKind()) {
6950      case TSK_Undeclared:
6951      case TSK_ExplicitSpecialization:
6952      case TSK_ExplicitInstantiationDeclaration:
6953        // The key function is in another translation unit.
6954        continue;
6955
6956      case TSK_ExplicitInstantiationDefinition:
6957      case TSK_ImplicitInstantiation:
6958        // We will be instantiating the key function.
6959        break;
6960      }
6961    } else if (!KeyFunction) {
6962      // If we have a class with no key function that is the subject
6963      // of an explicit instantiation declaration, suppress the
6964      // vtable; it will live with the explicit instantiation
6965      // definition.
6966      bool IsExplicitInstantiationDeclaration
6967        = Class->getTemplateSpecializationKind()
6968                                      == TSK_ExplicitInstantiationDeclaration;
6969      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6970                                 REnd = Class->redecls_end();
6971           R != REnd; ++R) {
6972        TemplateSpecializationKind TSK
6973          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6974        if (TSK == TSK_ExplicitInstantiationDeclaration)
6975          IsExplicitInstantiationDeclaration = true;
6976        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6977          IsExplicitInstantiationDeclaration = false;
6978          break;
6979        }
6980      }
6981
6982      if (IsExplicitInstantiationDeclaration)
6983        continue;
6984    }
6985
6986    // Mark all of the virtual members of this class as referenced, so
6987    // that we can build a vtable. Then, tell the AST consumer that a
6988    // vtable for this class is required.
6989    MarkVirtualMembersReferenced(Loc, Class);
6990    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6991    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6992
6993    // Optionally warn if we're emitting a weak vtable.
6994    if (Class->getLinkage() == ExternalLinkage &&
6995        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6996      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6997        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6998    }
6999  }
7000  VTableUses.clear();
7001
7002  return true;
7003}
7004
7005void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7006                                        const CXXRecordDecl *RD) {
7007  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7008       e = RD->method_end(); i != e; ++i) {
7009    CXXMethodDecl *MD = *i;
7010
7011    // C++ [basic.def.odr]p2:
7012    //   [...] A virtual member function is used if it is not pure. [...]
7013    if (MD->isVirtual() && !MD->isPure())
7014      MarkDeclarationReferenced(Loc, MD);
7015  }
7016
7017  // Only classes that have virtual bases need a VTT.
7018  if (RD->getNumVBases() == 0)
7019    return;
7020
7021  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7022           e = RD->bases_end(); i != e; ++i) {
7023    const CXXRecordDecl *Base =
7024        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7025    if (Base->getNumVBases() == 0)
7026      continue;
7027    MarkVirtualMembersReferenced(Loc, Base);
7028  }
7029}
7030
7031/// SetIvarInitializers - This routine builds initialization ASTs for the
7032/// Objective-C implementation whose ivars need be initialized.
7033void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7034  if (!getLangOptions().CPlusPlus)
7035    return;
7036  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7037    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7038    CollectIvarsToConstructOrDestruct(OID, ivars);
7039    if (ivars.empty())
7040      return;
7041    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
7042    for (unsigned i = 0; i < ivars.size(); i++) {
7043      FieldDecl *Field = ivars[i];
7044      if (Field->isInvalidDecl())
7045        continue;
7046
7047      CXXBaseOrMemberInitializer *Member;
7048      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7049      InitializationKind InitKind =
7050        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7051
7052      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7053      ExprResult MemberInit =
7054        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7055      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7056      // Note, MemberInit could actually come back empty if no initialization
7057      // is required (e.g., because it would call a trivial default constructor)
7058      if (!MemberInit.get() || MemberInit.isInvalid())
7059        continue;
7060
7061      Member =
7062        new (Context) CXXBaseOrMemberInitializer(Context,
7063                                                 Field, SourceLocation(),
7064                                                 SourceLocation(),
7065                                                 MemberInit.takeAs<Expr>(),
7066                                                 SourceLocation());
7067      AllToInit.push_back(Member);
7068
7069      // Be sure that the destructor is accessible and is marked as referenced.
7070      if (const RecordType *RecordTy
7071                  = Context.getBaseElementType(Field->getType())
7072                                                        ->getAs<RecordType>()) {
7073                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7074        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7075          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7076          CheckDestructorAccess(Field->getLocation(), Destructor,
7077                            PDiag(diag::err_access_dtor_ivar)
7078                              << Context.getBaseElementType(Field->getType()));
7079        }
7080      }
7081    }
7082    ObjCImplementation->setIvarInitializers(Context,
7083                                            AllToInit.data(), AllToInit.size());
7084  }
7085}
7086