SemaDeclCXX.cpp revision a3f8137d9f7cd1af7a6cbe736b9419f7eb99e86c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      // We don't want access-control diagnostics here.
1080      R.suppressDiagnostics();
1081
1082      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1083        bool NotUnknownSpecialization = false;
1084        DeclContext *DC = computeDeclContext(SS, false);
1085        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1086          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1087
1088        if (!NotUnknownSpecialization) {
1089          // When the scope specifier can refer to a member of an unknown
1090          // specialization, we take it as a type name.
1091          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1092                                       *MemberOrBase, SS.getRange());
1093          if (BaseType.isNull())
1094            return true;
1095
1096          R.clear();
1097        }
1098      }
1099
1100      // If no results were found, try to correct typos.
1101      if (R.empty() && BaseType.isNull() &&
1102          CorrectTypo(R, S, &SS, ClassDecl) && R.isSingleResult()) {
1103        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1104          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1105            // We have found a non-static data member with a similar
1106            // name to what was typed; complain and initialize that
1107            // member.
1108            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1109              << MemberOrBase << true << R.getLookupName()
1110              << FixItHint::CreateReplacement(R.getNameLoc(),
1111                                              R.getLookupName().getAsString());
1112            Diag(Member->getLocation(), diag::note_previous_decl)
1113              << Member->getDeclName();
1114
1115            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1116                                          LParenLoc, RParenLoc);
1117          }
1118        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1119          const CXXBaseSpecifier *DirectBaseSpec;
1120          const CXXBaseSpecifier *VirtualBaseSpec;
1121          if (FindBaseInitializer(*this, ClassDecl,
1122                                  Context.getTypeDeclType(Type),
1123                                  DirectBaseSpec, VirtualBaseSpec)) {
1124            // We have found a direct or virtual base class with a
1125            // similar name to what was typed; complain and initialize
1126            // that base class.
1127            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1128              << MemberOrBase << false << R.getLookupName()
1129              << FixItHint::CreateReplacement(R.getNameLoc(),
1130                                              R.getLookupName().getAsString());
1131
1132            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1133                                                             : VirtualBaseSpec;
1134            Diag(BaseSpec->getSourceRange().getBegin(),
1135                 diag::note_base_class_specified_here)
1136              << BaseSpec->getType()
1137              << BaseSpec->getSourceRange();
1138
1139            TyD = Type;
1140          }
1141        }
1142      }
1143
1144      if (!TyD && BaseType.isNull()) {
1145        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1146          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1147        return true;
1148      }
1149    }
1150
1151    if (BaseType.isNull()) {
1152      BaseType = Context.getTypeDeclType(TyD);
1153      if (SS.isSet()) {
1154        NestedNameSpecifier *Qualifier =
1155          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1156
1157        // FIXME: preserve source range information
1158        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1159      }
1160    }
1161  }
1162
1163  if (!TInfo)
1164    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1165
1166  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1167                              LParenLoc, RParenLoc, ClassDecl);
1168}
1169
1170/// Checks an initializer expression for use of uninitialized fields, such as
1171/// containing the field that is being initialized. Returns true if there is an
1172/// uninitialized field was used an updates the SourceLocation parameter; false
1173/// otherwise.
1174static bool InitExprContainsUninitializedFields(const Stmt* S,
1175                                                const FieldDecl* LhsField,
1176                                                SourceLocation* L) {
1177  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1178  if (ME) {
1179    const NamedDecl* RhsField = ME->getMemberDecl();
1180    if (RhsField == LhsField) {
1181      // Initializing a field with itself. Throw a warning.
1182      // But wait; there are exceptions!
1183      // Exception #1:  The field may not belong to this record.
1184      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1185      const Expr* base = ME->getBase();
1186      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1187        // Even though the field matches, it does not belong to this record.
1188        return false;
1189      }
1190      // None of the exceptions triggered; return true to indicate an
1191      // uninitialized field was used.
1192      *L = ME->getMemberLoc();
1193      return true;
1194    }
1195  }
1196  bool found = false;
1197  for (Stmt::const_child_iterator it = S->child_begin();
1198       it != S->child_end() && found == false;
1199       ++it) {
1200    if (isa<CallExpr>(S)) {
1201      // Do not descend into function calls or constructors, as the use
1202      // of an uninitialized field may be valid. One would have to inspect
1203      // the contents of the function/ctor to determine if it is safe or not.
1204      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1205      // may be safe, depending on what the function/ctor does.
1206      continue;
1207    }
1208    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1209  }
1210  return found;
1211}
1212
1213Sema::MemInitResult
1214Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1215                             unsigned NumArgs, SourceLocation IdLoc,
1216                             SourceLocation LParenLoc,
1217                             SourceLocation RParenLoc) {
1218  // Diagnose value-uses of fields to initialize themselves, e.g.
1219  //   foo(foo)
1220  // where foo is not also a parameter to the constructor.
1221  // TODO: implement -Wuninitialized and fold this into that framework.
1222  for (unsigned i = 0; i < NumArgs; ++i) {
1223    SourceLocation L;
1224    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1225      // FIXME: Return true in the case when other fields are used before being
1226      // uninitialized. For example, let this field be the i'th field. When
1227      // initializing the i'th field, throw a warning if any of the >= i'th
1228      // fields are used, as they are not yet initialized.
1229      // Right now we are only handling the case where the i'th field uses
1230      // itself in its initializer.
1231      Diag(L, diag::warn_field_is_uninit);
1232    }
1233  }
1234
1235  bool HasDependentArg = false;
1236  for (unsigned i = 0; i < NumArgs; i++)
1237    HasDependentArg |= Args[i]->isTypeDependent();
1238
1239  QualType FieldType = Member->getType();
1240  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1241    FieldType = Array->getElementType();
1242  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1243  if (FieldType->isDependentType() || HasDependentArg) {
1244    // Can't check initialization for a member of dependent type or when
1245    // any of the arguments are type-dependent expressions.
1246    OwningExprResult Init
1247      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1248                                          RParenLoc));
1249
1250    // Erase any temporaries within this evaluation context; we're not
1251    // going to track them in the AST, since we'll be rebuilding the
1252    // ASTs during template instantiation.
1253    ExprTemporaries.erase(
1254              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1255                          ExprTemporaries.end());
1256
1257    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1258                                                    LParenLoc,
1259                                                    Init.takeAs<Expr>(),
1260                                                    RParenLoc);
1261
1262  }
1263
1264  if (Member->isInvalidDecl())
1265    return true;
1266
1267  // Initialize the member.
1268  InitializedEntity MemberEntity =
1269    InitializedEntity::InitializeMember(Member, 0);
1270  InitializationKind Kind =
1271    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1272
1273  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1274
1275  OwningExprResult MemberInit =
1276    InitSeq.Perform(*this, MemberEntity, Kind,
1277                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1278  if (MemberInit.isInvalid())
1279    return true;
1280
1281  // C++0x [class.base.init]p7:
1282  //   The initialization of each base and member constitutes a
1283  //   full-expression.
1284  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1285  if (MemberInit.isInvalid())
1286    return true;
1287
1288  // If we are in a dependent context, template instantiation will
1289  // perform this type-checking again. Just save the arguments that we
1290  // received in a ParenListExpr.
1291  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1292  // of the information that we have about the member
1293  // initializer. However, deconstructing the ASTs is a dicey process,
1294  // and this approach is far more likely to get the corner cases right.
1295  if (CurContext->isDependentContext()) {
1296    // Bump the reference count of all of the arguments.
1297    for (unsigned I = 0; I != NumArgs; ++I)
1298      Args[I]->Retain();
1299
1300    OwningExprResult Init
1301      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1302                                          RParenLoc));
1303    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1304                                                    LParenLoc,
1305                                                    Init.takeAs<Expr>(),
1306                                                    RParenLoc);
1307  }
1308
1309  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1310                                                  LParenLoc,
1311                                                  MemberInit.takeAs<Expr>(),
1312                                                  RParenLoc);
1313}
1314
1315Sema::MemInitResult
1316Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1317                           Expr **Args, unsigned NumArgs,
1318                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1319                           CXXRecordDecl *ClassDecl) {
1320  bool HasDependentArg = false;
1321  for (unsigned i = 0; i < NumArgs; i++)
1322    HasDependentArg |= Args[i]->isTypeDependent();
1323
1324  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1325  if (BaseType->isDependentType() || HasDependentArg) {
1326    // Can't check initialization for a base of dependent type or when
1327    // any of the arguments are type-dependent expressions.
1328    OwningExprResult BaseInit
1329      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1330                                          RParenLoc));
1331
1332    // Erase any temporaries within this evaluation context; we're not
1333    // going to track them in the AST, since we'll be rebuilding the
1334    // ASTs during template instantiation.
1335    ExprTemporaries.erase(
1336              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1337                          ExprTemporaries.end());
1338
1339    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1340                                                    /*IsVirtual=*/false,
1341                                                    LParenLoc,
1342                                                    BaseInit.takeAs<Expr>(),
1343                                                    RParenLoc);
1344  }
1345
1346  if (!BaseType->isRecordType())
1347    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1348             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1349
1350  // C++ [class.base.init]p2:
1351  //   [...] Unless the mem-initializer-id names a nonstatic data
1352  //   member of the constructor’s class or a direct or virtual base
1353  //   of that class, the mem-initializer is ill-formed. A
1354  //   mem-initializer-list can initialize a base class using any
1355  //   name that denotes that base class type.
1356
1357  // Check for direct and virtual base classes.
1358  const CXXBaseSpecifier *DirectBaseSpec = 0;
1359  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1360  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1361                      VirtualBaseSpec);
1362
1363  // C++ [base.class.init]p2:
1364  //   If a mem-initializer-id is ambiguous because it designates both
1365  //   a direct non-virtual base class and an inherited virtual base
1366  //   class, the mem-initializer is ill-formed.
1367  if (DirectBaseSpec && VirtualBaseSpec)
1368    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1369      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1370  // C++ [base.class.init]p2:
1371  // Unless the mem-initializer-id names a nonstatic data membeer of the
1372  // constructor's class ot a direst or virtual base of that class, the
1373  // mem-initializer is ill-formed.
1374  if (!DirectBaseSpec && !VirtualBaseSpec)
1375    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1376      << BaseType << ClassDecl->getNameAsCString()
1377      << BaseTInfo->getTypeLoc().getSourceRange();
1378
1379  CXXBaseSpecifier *BaseSpec
1380    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1381  if (!BaseSpec)
1382    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1383
1384  // Initialize the base.
1385  InitializedEntity BaseEntity =
1386    InitializedEntity::InitializeBase(Context, BaseSpec);
1387  InitializationKind Kind =
1388    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1389
1390  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1391
1392  OwningExprResult BaseInit =
1393    InitSeq.Perform(*this, BaseEntity, Kind,
1394                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1395  if (BaseInit.isInvalid())
1396    return true;
1397
1398  // C++0x [class.base.init]p7:
1399  //   The initialization of each base and member constitutes a
1400  //   full-expression.
1401  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1402  if (BaseInit.isInvalid())
1403    return true;
1404
1405  // If we are in a dependent context, template instantiation will
1406  // perform this type-checking again. Just save the arguments that we
1407  // received in a ParenListExpr.
1408  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1409  // of the information that we have about the base
1410  // initializer. However, deconstructing the ASTs is a dicey process,
1411  // and this approach is far more likely to get the corner cases right.
1412  if (CurContext->isDependentContext()) {
1413    // Bump the reference count of all of the arguments.
1414    for (unsigned I = 0; I != NumArgs; ++I)
1415      Args[I]->Retain();
1416
1417    OwningExprResult Init
1418      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1419                                          RParenLoc));
1420    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1421                                                    BaseSpec->isVirtual(),
1422                                                    LParenLoc,
1423                                                    Init.takeAs<Expr>(),
1424                                                    RParenLoc);
1425  }
1426
1427  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1428                                                  BaseSpec->isVirtual(),
1429                                                  LParenLoc,
1430                                                  BaseInit.takeAs<Expr>(),
1431                                                  RParenLoc);
1432}
1433
1434bool
1435Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1436                                  CXXBaseOrMemberInitializer **Initializers,
1437                                  unsigned NumInitializers,
1438                                  bool AnyErrors) {
1439  if (Constructor->getDeclContext()->isDependentContext()) {
1440    // Just store the initializers as written, they will be checked during
1441    // instantiation.
1442    if (NumInitializers > 0) {
1443      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1444      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1445        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1446      memcpy(baseOrMemberInitializers, Initializers,
1447             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1448      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1449    }
1450
1451    return false;
1452  }
1453
1454  // We need to build the initializer AST according to order of construction
1455  // and not what user specified in the Initializers list.
1456  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1457  if (!ClassDecl)
1458    return true;
1459
1460  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1461  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1462  bool HadError = false;
1463
1464  for (unsigned i = 0; i < NumInitializers; i++) {
1465    CXXBaseOrMemberInitializer *Member = Initializers[i];
1466
1467    if (Member->isBaseInitializer())
1468      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1469    else
1470      AllBaseFields[Member->getMember()] = Member;
1471  }
1472
1473  llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1474
1475  // Push virtual bases before others.
1476  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1477       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1478
1479    if (CXXBaseOrMemberInitializer *Value
1480        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1481      AllToInit.push_back(Value);
1482    } else if (!AnyErrors) {
1483      InitializedEntity InitEntity
1484        = InitializedEntity::InitializeBase(Context, VBase);
1485      InitializationKind InitKind
1486        = InitializationKind::CreateDefault(Constructor->getLocation());
1487      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1488      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1489                                                  MultiExprArg(*this, 0, 0));
1490      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1491      if (BaseInit.isInvalid()) {
1492        HadError = true;
1493        continue;
1494      }
1495
1496      CXXBaseOrMemberInitializer *CXXBaseInit =
1497        new (Context) CXXBaseOrMemberInitializer(Context,
1498                           Context.getTrivialTypeSourceInfo(VBase->getType(),
1499                                                            SourceLocation()),
1500                                                 /*IsVirtual=*/true,
1501                                                 SourceLocation(),
1502                                                 BaseInit.takeAs<Expr>(),
1503                                                 SourceLocation());
1504      AllToInit.push_back(CXXBaseInit);
1505    }
1506  }
1507
1508  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1509       E = ClassDecl->bases_end(); Base != E; ++Base) {
1510    // Virtuals are in the virtual base list and already constructed.
1511    if (Base->isVirtual())
1512      continue;
1513
1514    if (CXXBaseOrMemberInitializer *Value
1515          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1516      AllToInit.push_back(Value);
1517    } else if (!AnyErrors) {
1518      InitializedEntity InitEntity
1519        = InitializedEntity::InitializeBase(Context, Base);
1520      InitializationKind InitKind
1521        = InitializationKind::CreateDefault(Constructor->getLocation());
1522      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1523      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1524                                                  MultiExprArg(*this, 0, 0));
1525      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1526      if (BaseInit.isInvalid()) {
1527        HadError = true;
1528        continue;
1529      }
1530
1531      CXXBaseOrMemberInitializer *CXXBaseInit =
1532        new (Context) CXXBaseOrMemberInitializer(Context,
1533                           Context.getTrivialTypeSourceInfo(Base->getType(),
1534                                                            SourceLocation()),
1535                                                 /*IsVirtual=*/false,
1536                                                 SourceLocation(),
1537                                                 BaseInit.takeAs<Expr>(),
1538                                                 SourceLocation());
1539      AllToInit.push_back(CXXBaseInit);
1540    }
1541  }
1542
1543  // non-static data members.
1544  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1545       E = ClassDecl->field_end(); Field != E; ++Field) {
1546    if ((*Field)->isAnonymousStructOrUnion()) {
1547      if (const RecordType *FieldClassType =
1548          Field->getType()->getAs<RecordType>()) {
1549        CXXRecordDecl *FieldClassDecl
1550          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1551        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1552            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1553          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1554            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1555            // set to the anonymous union data member used in the initializer
1556            // list.
1557            Value->setMember(*Field);
1558            Value->setAnonUnionMember(*FA);
1559            AllToInit.push_back(Value);
1560            break;
1561          }
1562        }
1563      }
1564      continue;
1565    }
1566    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1567      AllToInit.push_back(Value);
1568      continue;
1569    }
1570
1571    if ((*Field)->getType()->isDependentType() || AnyErrors)
1572      continue;
1573
1574    QualType FT = Context.getBaseElementType((*Field)->getType());
1575    if (FT->getAs<RecordType>()) {
1576      InitializedEntity InitEntity
1577        = InitializedEntity::InitializeMember(*Field);
1578      InitializationKind InitKind
1579        = InitializationKind::CreateDefault(Constructor->getLocation());
1580
1581      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1582      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1583                                                    MultiExprArg(*this, 0, 0));
1584      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1585      if (MemberInit.isInvalid()) {
1586        HadError = true;
1587        continue;
1588      }
1589
1590      // Don't attach synthesized member initializers in a dependent
1591      // context; they'll be regenerated a template instantiation
1592      // time.
1593      if (CurContext->isDependentContext())
1594        continue;
1595
1596      CXXBaseOrMemberInitializer *Member =
1597        new (Context) CXXBaseOrMemberInitializer(Context,
1598                                                 *Field, SourceLocation(),
1599                                                 SourceLocation(),
1600                                                 MemberInit.takeAs<Expr>(),
1601                                                 SourceLocation());
1602
1603      AllToInit.push_back(Member);
1604    }
1605    else if (FT->isReferenceType()) {
1606      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1607        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1608        << 0 << (*Field)->getDeclName();
1609      Diag((*Field)->getLocation(), diag::note_declared_at);
1610      HadError = true;
1611    }
1612    else if (FT.isConstQualified()) {
1613      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1614        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1615        << 1 << (*Field)->getDeclName();
1616      Diag((*Field)->getLocation(), diag::note_declared_at);
1617      HadError = true;
1618    }
1619  }
1620
1621  NumInitializers = AllToInit.size();
1622  if (NumInitializers > 0) {
1623    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1624    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1625      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1626    memcpy(baseOrMemberInitializers, AllToInit.data(),
1627           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1628    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1629
1630    // Constructors implicitly reference the base and member
1631    // destructors.
1632    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1633                                           Constructor->getParent());
1634  }
1635
1636  return HadError;
1637}
1638
1639static void *GetKeyForTopLevelField(FieldDecl *Field) {
1640  // For anonymous unions, use the class declaration as the key.
1641  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1642    if (RT->getDecl()->isAnonymousStructOrUnion())
1643      return static_cast<void *>(RT->getDecl());
1644  }
1645  return static_cast<void *>(Field);
1646}
1647
1648static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1649  return Context.getCanonicalType(BaseType).getTypePtr();
1650}
1651
1652static void *GetKeyForMember(ASTContext &Context,
1653                             CXXBaseOrMemberInitializer *Member,
1654                             bool MemberMaybeAnon = false) {
1655  if (!Member->isMemberInitializer())
1656    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1657
1658  // For fields injected into the class via declaration of an anonymous union,
1659  // use its anonymous union class declaration as the unique key.
1660  FieldDecl *Field = Member->getMember();
1661
1662  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1663  // data member of the class. Data member used in the initializer list is
1664  // in AnonUnionMember field.
1665  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1666    Field = Member->getAnonUnionMember();
1667
1668  // If the field is a member of an anonymous struct or union, our key
1669  // is the anonymous record decl that's a direct child of the class.
1670  RecordDecl *RD = Field->getParent();
1671  if (RD->isAnonymousStructOrUnion()) {
1672    while (true) {
1673      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1674      if (Parent->isAnonymousStructOrUnion())
1675        RD = Parent;
1676      else
1677        break;
1678    }
1679
1680    return static_cast<void *>(RD);
1681  }
1682
1683  return static_cast<void *>(Field);
1684}
1685
1686static void
1687DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1688                                  const CXXConstructorDecl *Constructor,
1689                                  CXXBaseOrMemberInitializer **Inits,
1690                                  unsigned NumInits) {
1691  if (Constructor->getDeclContext()->isDependentContext())
1692    return;
1693
1694  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1695        == Diagnostic::Ignored)
1696    return;
1697
1698  // Build the list of bases and members in the order that they'll
1699  // actually be initialized.  The explicit initializers should be in
1700  // this same order but may be missing things.
1701  llvm::SmallVector<const void*, 32> IdealInitKeys;
1702
1703  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1704
1705  // 1. Virtual bases.
1706  for (CXXRecordDecl::base_class_const_iterator VBase =
1707       ClassDecl->vbases_begin(),
1708       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1709    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1710
1711  // 2. Non-virtual bases.
1712  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1713       E = ClassDecl->bases_end(); Base != E; ++Base) {
1714    if (Base->isVirtual())
1715      continue;
1716    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1717  }
1718
1719  // 3. Direct fields.
1720  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1721       E = ClassDecl->field_end(); Field != E; ++Field)
1722    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1723
1724  unsigned NumIdealInits = IdealInitKeys.size();
1725  unsigned IdealIndex = 0;
1726
1727  CXXBaseOrMemberInitializer *PrevInit = 0;
1728  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1729    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1730    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1731
1732    // Scan forward to try to find this initializer in the idealized
1733    // initializers list.
1734    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1735      if (InitKey == IdealInitKeys[IdealIndex])
1736        break;
1737
1738    // If we didn't find this initializer, it must be because we
1739    // scanned past it on a previous iteration.  That can only
1740    // happen if we're out of order;  emit a warning.
1741    if (IdealIndex == NumIdealInits) {
1742      assert(PrevInit && "initializer not found in initializer list");
1743
1744      Sema::SemaDiagnosticBuilder D =
1745        SemaRef.Diag(PrevInit->getSourceLocation(),
1746                     diag::warn_initializer_out_of_order);
1747
1748      if (PrevInit->isMemberInitializer())
1749        D << 0 << PrevInit->getMember()->getDeclName();
1750      else
1751        D << 1 << PrevInit->getBaseClassInfo()->getType();
1752
1753      if (Init->isMemberInitializer())
1754        D << 0 << Init->getMember()->getDeclName();
1755      else
1756        D << 1 << Init->getBaseClassInfo()->getType();
1757
1758      // Move back to the initializer's location in the ideal list.
1759      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1760        if (InitKey == IdealInitKeys[IdealIndex])
1761          break;
1762
1763      assert(IdealIndex != NumIdealInits &&
1764             "initializer not found in initializer list");
1765    }
1766
1767    PrevInit = Init;
1768  }
1769}
1770
1771namespace {
1772bool CheckRedundantInit(Sema &S,
1773                        CXXBaseOrMemberInitializer *Init,
1774                        CXXBaseOrMemberInitializer *&PrevInit) {
1775  if (!PrevInit) {
1776    PrevInit = Init;
1777    return false;
1778  }
1779
1780  if (FieldDecl *Field = Init->getMember())
1781    S.Diag(Init->getSourceLocation(),
1782           diag::err_multiple_mem_initialization)
1783      << Field->getDeclName()
1784      << Init->getSourceRange();
1785  else {
1786    Type *BaseClass = Init->getBaseClass();
1787    assert(BaseClass && "neither field nor base");
1788    S.Diag(Init->getSourceLocation(),
1789           diag::err_multiple_base_initialization)
1790      << QualType(BaseClass, 0)
1791      << Init->getSourceRange();
1792  }
1793  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1794    << 0 << PrevInit->getSourceRange();
1795
1796  return true;
1797}
1798
1799typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1800typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1801
1802bool CheckRedundantUnionInit(Sema &S,
1803                             CXXBaseOrMemberInitializer *Init,
1804                             RedundantUnionMap &Unions) {
1805  FieldDecl *Field = Init->getMember();
1806  RecordDecl *Parent = Field->getParent();
1807  if (!Parent->isAnonymousStructOrUnion())
1808    return false;
1809
1810  NamedDecl *Child = Field;
1811  do {
1812    if (Parent->isUnion()) {
1813      UnionEntry &En = Unions[Parent];
1814      if (En.first && En.first != Child) {
1815        S.Diag(Init->getSourceLocation(),
1816               diag::err_multiple_mem_union_initialization)
1817          << Field->getDeclName()
1818          << Init->getSourceRange();
1819        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1820          << 0 << En.second->getSourceRange();
1821        return true;
1822      } else if (!En.first) {
1823        En.first = Child;
1824        En.second = Init;
1825      }
1826    }
1827
1828    Child = Parent;
1829    Parent = cast<RecordDecl>(Parent->getDeclContext());
1830  } while (Parent->isAnonymousStructOrUnion());
1831
1832  return false;
1833}
1834}
1835
1836/// ActOnMemInitializers - Handle the member initializers for a constructor.
1837void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1838                                SourceLocation ColonLoc,
1839                                MemInitTy **meminits, unsigned NumMemInits,
1840                                bool AnyErrors) {
1841  if (!ConstructorDecl)
1842    return;
1843
1844  AdjustDeclIfTemplate(ConstructorDecl);
1845
1846  CXXConstructorDecl *Constructor
1847    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1848
1849  if (!Constructor) {
1850    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1851    return;
1852  }
1853
1854  CXXBaseOrMemberInitializer **MemInits =
1855    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1856
1857  // Mapping for the duplicate initializers check.
1858  // For member initializers, this is keyed with a FieldDecl*.
1859  // For base initializers, this is keyed with a Type*.
1860  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1861
1862  // Mapping for the inconsistent anonymous-union initializers check.
1863  RedundantUnionMap MemberUnions;
1864
1865  bool HadError = false;
1866  for (unsigned i = 0; i < NumMemInits; i++) {
1867    CXXBaseOrMemberInitializer *Init = MemInits[i];
1868
1869    if (Init->isMemberInitializer()) {
1870      FieldDecl *Field = Init->getMember();
1871      if (CheckRedundantInit(*this, Init, Members[Field]) ||
1872          CheckRedundantUnionInit(*this, Init, MemberUnions))
1873        HadError = true;
1874    } else {
1875      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
1876      if (CheckRedundantInit(*this, Init, Members[Key]))
1877        HadError = true;
1878    }
1879  }
1880
1881  if (HadError)
1882    return;
1883
1884  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1885
1886  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1887}
1888
1889void
1890Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1891                                             CXXRecordDecl *ClassDecl) {
1892  // Ignore dependent contexts.
1893  if (ClassDecl->isDependentContext())
1894    return;
1895
1896  // FIXME: all the access-control diagnostics are positioned on the
1897  // field/base declaration.  That's probably good; that said, the
1898  // user might reasonably want to know why the destructor is being
1899  // emitted, and we currently don't say.
1900
1901  // Non-static data members.
1902  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1903       E = ClassDecl->field_end(); I != E; ++I) {
1904    FieldDecl *Field = *I;
1905
1906    QualType FieldType = Context.getBaseElementType(Field->getType());
1907
1908    const RecordType* RT = FieldType->getAs<RecordType>();
1909    if (!RT)
1910      continue;
1911
1912    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1913    if (FieldClassDecl->hasTrivialDestructor())
1914      continue;
1915
1916    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1917    CheckDestructorAccess(Field->getLocation(), Dtor,
1918                          PDiag(diag::err_access_dtor_field)
1919                            << Field->getDeclName()
1920                            << FieldType);
1921
1922    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1923  }
1924
1925  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1926
1927  // Bases.
1928  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1929       E = ClassDecl->bases_end(); Base != E; ++Base) {
1930    // Bases are always records in a well-formed non-dependent class.
1931    const RecordType *RT = Base->getType()->getAs<RecordType>();
1932
1933    // Remember direct virtual bases.
1934    if (Base->isVirtual())
1935      DirectVirtualBases.insert(RT);
1936
1937    // Ignore trivial destructors.
1938    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1939    if (BaseClassDecl->hasTrivialDestructor())
1940      continue;
1941
1942    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1943
1944    // FIXME: caret should be on the start of the class name
1945    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1946                          PDiag(diag::err_access_dtor_base)
1947                            << Base->getType()
1948                            << Base->getSourceRange());
1949
1950    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1951  }
1952
1953  // Virtual bases.
1954  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1955       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1956
1957    // Bases are always records in a well-formed non-dependent class.
1958    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1959
1960    // Ignore direct virtual bases.
1961    if (DirectVirtualBases.count(RT))
1962      continue;
1963
1964    // Ignore trivial destructors.
1965    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1966    if (BaseClassDecl->hasTrivialDestructor())
1967      continue;
1968
1969    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1970    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1971                          PDiag(diag::err_access_dtor_vbase)
1972                            << VBase->getType());
1973
1974    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1975  }
1976}
1977
1978void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1979  if (!CDtorDecl)
1980    return;
1981
1982  if (CXXConstructorDecl *Constructor
1983      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1984    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
1985}
1986
1987bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1988                                  unsigned DiagID, AbstractDiagSelID SelID,
1989                                  const CXXRecordDecl *CurrentRD) {
1990  if (SelID == -1)
1991    return RequireNonAbstractType(Loc, T,
1992                                  PDiag(DiagID), CurrentRD);
1993  else
1994    return RequireNonAbstractType(Loc, T,
1995                                  PDiag(DiagID) << SelID, CurrentRD);
1996}
1997
1998bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1999                                  const PartialDiagnostic &PD,
2000                                  const CXXRecordDecl *CurrentRD) {
2001  if (!getLangOptions().CPlusPlus)
2002    return false;
2003
2004  if (const ArrayType *AT = Context.getAsArrayType(T))
2005    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2006                                  CurrentRD);
2007
2008  if (const PointerType *PT = T->getAs<PointerType>()) {
2009    // Find the innermost pointer type.
2010    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2011      PT = T;
2012
2013    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2014      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2015  }
2016
2017  const RecordType *RT = T->getAs<RecordType>();
2018  if (!RT)
2019    return false;
2020
2021  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2022
2023  if (CurrentRD && CurrentRD != RD)
2024    return false;
2025
2026  // FIXME: is this reasonable?  It matches current behavior, but....
2027  if (!RD->getDefinition())
2028    return false;
2029
2030  if (!RD->isAbstract())
2031    return false;
2032
2033  Diag(Loc, PD) << RD->getDeclName();
2034
2035  // Check if we've already emitted the list of pure virtual functions for this
2036  // class.
2037  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2038    return true;
2039
2040  CXXFinalOverriderMap FinalOverriders;
2041  RD->getFinalOverriders(FinalOverriders);
2042
2043  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2044                                   MEnd = FinalOverriders.end();
2045       M != MEnd;
2046       ++M) {
2047    for (OverridingMethods::iterator SO = M->second.begin(),
2048                                  SOEnd = M->second.end();
2049         SO != SOEnd; ++SO) {
2050      // C++ [class.abstract]p4:
2051      //   A class is abstract if it contains or inherits at least one
2052      //   pure virtual function for which the final overrider is pure
2053      //   virtual.
2054
2055      //
2056      if (SO->second.size() != 1)
2057        continue;
2058
2059      if (!SO->second.front().Method->isPure())
2060        continue;
2061
2062      Diag(SO->second.front().Method->getLocation(),
2063           diag::note_pure_virtual_function)
2064        << SO->second.front().Method->getDeclName();
2065    }
2066  }
2067
2068  if (!PureVirtualClassDiagSet)
2069    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2070  PureVirtualClassDiagSet->insert(RD);
2071
2072  return true;
2073}
2074
2075namespace {
2076  class AbstractClassUsageDiagnoser
2077    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2078    Sema &SemaRef;
2079    CXXRecordDecl *AbstractClass;
2080
2081    bool VisitDeclContext(const DeclContext *DC) {
2082      bool Invalid = false;
2083
2084      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2085           E = DC->decls_end(); I != E; ++I)
2086        Invalid |= Visit(*I);
2087
2088      return Invalid;
2089    }
2090
2091  public:
2092    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2093      : SemaRef(SemaRef), AbstractClass(ac) {
2094        Visit(SemaRef.Context.getTranslationUnitDecl());
2095    }
2096
2097    bool VisitFunctionDecl(const FunctionDecl *FD) {
2098      if (FD->isThisDeclarationADefinition()) {
2099        // No need to do the check if we're in a definition, because it requires
2100        // that the return/param types are complete.
2101        // because that requires
2102        return VisitDeclContext(FD);
2103      }
2104
2105      // Check the return type.
2106      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2107      bool Invalid =
2108        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2109                                       diag::err_abstract_type_in_decl,
2110                                       Sema::AbstractReturnType,
2111                                       AbstractClass);
2112
2113      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2114           E = FD->param_end(); I != E; ++I) {
2115        const ParmVarDecl *VD = *I;
2116        Invalid |=
2117          SemaRef.RequireNonAbstractType(VD->getLocation(),
2118                                         VD->getOriginalType(),
2119                                         diag::err_abstract_type_in_decl,
2120                                         Sema::AbstractParamType,
2121                                         AbstractClass);
2122      }
2123
2124      return Invalid;
2125    }
2126
2127    bool VisitDecl(const Decl* D) {
2128      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2129        return VisitDeclContext(DC);
2130
2131      return false;
2132    }
2133  };
2134}
2135
2136/// \brief Perform semantic checks on a class definition that has been
2137/// completing, introducing implicitly-declared members, checking for
2138/// abstract types, etc.
2139void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2140  if (!Record || Record->isInvalidDecl())
2141    return;
2142
2143  if (!Record->isDependentType())
2144    AddImplicitlyDeclaredMembersToClass(S, Record);
2145
2146  if (Record->isInvalidDecl())
2147    return;
2148
2149  // Set access bits correctly on the directly-declared conversions.
2150  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2151  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2152    Convs->setAccess(I, (*I)->getAccess());
2153
2154  // Determine whether we need to check for final overriders. We do
2155  // this either when there are virtual base classes (in which case we
2156  // may end up finding multiple final overriders for a given virtual
2157  // function) or any of the base classes is abstract (in which case
2158  // we might detect that this class is abstract).
2159  bool CheckFinalOverriders = false;
2160  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2161      !Record->isDependentType()) {
2162    if (Record->getNumVBases())
2163      CheckFinalOverriders = true;
2164    else if (!Record->isAbstract()) {
2165      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2166                                                 BEnd = Record->bases_end();
2167           B != BEnd; ++B) {
2168        CXXRecordDecl *BaseDecl
2169          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2170        if (BaseDecl->isAbstract()) {
2171          CheckFinalOverriders = true;
2172          break;
2173        }
2174      }
2175    }
2176  }
2177
2178  if (CheckFinalOverriders) {
2179    CXXFinalOverriderMap FinalOverriders;
2180    Record->getFinalOverriders(FinalOverriders);
2181
2182    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2183                                     MEnd = FinalOverriders.end();
2184         M != MEnd; ++M) {
2185      for (OverridingMethods::iterator SO = M->second.begin(),
2186                                    SOEnd = M->second.end();
2187           SO != SOEnd; ++SO) {
2188        assert(SO->second.size() > 0 &&
2189               "All virtual functions have overridding virtual functions");
2190        if (SO->second.size() == 1) {
2191          // C++ [class.abstract]p4:
2192          //   A class is abstract if it contains or inherits at least one
2193          //   pure virtual function for which the final overrider is pure
2194          //   virtual.
2195          if (SO->second.front().Method->isPure())
2196            Record->setAbstract(true);
2197          continue;
2198        }
2199
2200        // C++ [class.virtual]p2:
2201        //   In a derived class, if a virtual member function of a base
2202        //   class subobject has more than one final overrider the
2203        //   program is ill-formed.
2204        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2205          << (NamedDecl *)M->first << Record;
2206        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2207        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2208                                                 OMEnd = SO->second.end();
2209             OM != OMEnd; ++OM)
2210          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2211            << (NamedDecl *)M->first << OM->Method->getParent();
2212
2213        Record->setInvalidDecl();
2214      }
2215    }
2216  }
2217
2218  if (Record->isAbstract() && !Record->isInvalidDecl())
2219    (void)AbstractClassUsageDiagnoser(*this, Record);
2220}
2221
2222void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2223                                             DeclPtrTy TagDecl,
2224                                             SourceLocation LBrac,
2225                                             SourceLocation RBrac,
2226                                             AttributeList *AttrList) {
2227  if (!TagDecl)
2228    return;
2229
2230  AdjustDeclIfTemplate(TagDecl);
2231
2232  ActOnFields(S, RLoc, TagDecl,
2233              (DeclPtrTy*)FieldCollector->getCurFields(),
2234              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2235
2236  CheckCompletedCXXClass(S,
2237                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2238}
2239
2240/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2241/// special functions, such as the default constructor, copy
2242/// constructor, or destructor, to the given C++ class (C++
2243/// [special]p1).  This routine can only be executed just before the
2244/// definition of the class is complete.
2245///
2246/// The scope, if provided, is the class scope.
2247void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2248                                               CXXRecordDecl *ClassDecl) {
2249  CanQualType ClassType
2250    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2251
2252  // FIXME: Implicit declarations have exception specifications, which are
2253  // the union of the specifications of the implicitly called functions.
2254
2255  if (!ClassDecl->hasUserDeclaredConstructor()) {
2256    // C++ [class.ctor]p5:
2257    //   A default constructor for a class X is a constructor of class X
2258    //   that can be called without an argument. If there is no
2259    //   user-declared constructor for class X, a default constructor is
2260    //   implicitly declared. An implicitly-declared default constructor
2261    //   is an inline public member of its class.
2262    DeclarationName Name
2263      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2264    CXXConstructorDecl *DefaultCon =
2265      CXXConstructorDecl::Create(Context, ClassDecl,
2266                                 ClassDecl->getLocation(), Name,
2267                                 Context.getFunctionType(Context.VoidTy,
2268                                                         0, 0, false, 0,
2269                                                         /*FIXME*/false, false,
2270                                                         0, 0,
2271                                                       FunctionType::ExtInfo()),
2272                                 /*TInfo=*/0,
2273                                 /*isExplicit=*/false,
2274                                 /*isInline=*/true,
2275                                 /*isImplicitlyDeclared=*/true);
2276    DefaultCon->setAccess(AS_public);
2277    DefaultCon->setImplicit();
2278    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2279    if (S)
2280      PushOnScopeChains(DefaultCon, S, true);
2281    else
2282      ClassDecl->addDecl(DefaultCon);
2283  }
2284
2285  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2286    // C++ [class.copy]p4:
2287    //   If the class definition does not explicitly declare a copy
2288    //   constructor, one is declared implicitly.
2289
2290    // C++ [class.copy]p5:
2291    //   The implicitly-declared copy constructor for a class X will
2292    //   have the form
2293    //
2294    //       X::X(const X&)
2295    //
2296    //   if
2297    bool HasConstCopyConstructor = true;
2298
2299    //     -- each direct or virtual base class B of X has a copy
2300    //        constructor whose first parameter is of type const B& or
2301    //        const volatile B&, and
2302    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2303         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2304      const CXXRecordDecl *BaseClassDecl
2305        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2306      HasConstCopyConstructor
2307        = BaseClassDecl->hasConstCopyConstructor(Context);
2308    }
2309
2310    //     -- for all the nonstatic data members of X that are of a
2311    //        class type M (or array thereof), each such class type
2312    //        has a copy constructor whose first parameter is of type
2313    //        const M& or const volatile M&.
2314    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2315         HasConstCopyConstructor && Field != ClassDecl->field_end();
2316         ++Field) {
2317      QualType FieldType = (*Field)->getType();
2318      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2319        FieldType = Array->getElementType();
2320      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2321        const CXXRecordDecl *FieldClassDecl
2322          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2323        HasConstCopyConstructor
2324          = FieldClassDecl->hasConstCopyConstructor(Context);
2325      }
2326    }
2327
2328    //   Otherwise, the implicitly declared copy constructor will have
2329    //   the form
2330    //
2331    //       X::X(X&)
2332    QualType ArgType = ClassType;
2333    if (HasConstCopyConstructor)
2334      ArgType = ArgType.withConst();
2335    ArgType = Context.getLValueReferenceType(ArgType);
2336
2337    //   An implicitly-declared copy constructor is an inline public
2338    //   member of its class.
2339    DeclarationName Name
2340      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2341    CXXConstructorDecl *CopyConstructor
2342      = CXXConstructorDecl::Create(Context, ClassDecl,
2343                                   ClassDecl->getLocation(), Name,
2344                                   Context.getFunctionType(Context.VoidTy,
2345                                                           &ArgType, 1,
2346                                                           false, 0,
2347                                                           /*FIXME:*/false,
2348                                                           false, 0, 0,
2349                                                       FunctionType::ExtInfo()),
2350                                   /*TInfo=*/0,
2351                                   /*isExplicit=*/false,
2352                                   /*isInline=*/true,
2353                                   /*isImplicitlyDeclared=*/true);
2354    CopyConstructor->setAccess(AS_public);
2355    CopyConstructor->setImplicit();
2356    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2357
2358    // Add the parameter to the constructor.
2359    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2360                                                 ClassDecl->getLocation(),
2361                                                 /*IdentifierInfo=*/0,
2362                                                 ArgType, /*TInfo=*/0,
2363                                                 VarDecl::None, 0);
2364    CopyConstructor->setParams(&FromParam, 1);
2365    if (S)
2366      PushOnScopeChains(CopyConstructor, S, true);
2367    else
2368      ClassDecl->addDecl(CopyConstructor);
2369  }
2370
2371  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2372    // Note: The following rules are largely analoguous to the copy
2373    // constructor rules. Note that virtual bases are not taken into account
2374    // for determining the argument type of the operator. Note also that
2375    // operators taking an object instead of a reference are allowed.
2376    //
2377    // C++ [class.copy]p10:
2378    //   If the class definition does not explicitly declare a copy
2379    //   assignment operator, one is declared implicitly.
2380    //   The implicitly-defined copy assignment operator for a class X
2381    //   will have the form
2382    //
2383    //       X& X::operator=(const X&)
2384    //
2385    //   if
2386    bool HasConstCopyAssignment = true;
2387
2388    //       -- each direct base class B of X has a copy assignment operator
2389    //          whose parameter is of type const B&, const volatile B& or B,
2390    //          and
2391    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2392         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2393      assert(!Base->getType()->isDependentType() &&
2394            "Cannot generate implicit members for class with dependent bases.");
2395      const CXXRecordDecl *BaseClassDecl
2396        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2397      const CXXMethodDecl *MD = 0;
2398      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2399                                                                     MD);
2400    }
2401
2402    //       -- for all the nonstatic data members of X that are of a class
2403    //          type M (or array thereof), each such class type has a copy
2404    //          assignment operator whose parameter is of type const M&,
2405    //          const volatile M& or M.
2406    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2407         HasConstCopyAssignment && Field != ClassDecl->field_end();
2408         ++Field) {
2409      QualType FieldType = (*Field)->getType();
2410      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2411        FieldType = Array->getElementType();
2412      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2413        const CXXRecordDecl *FieldClassDecl
2414          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2415        const CXXMethodDecl *MD = 0;
2416        HasConstCopyAssignment
2417          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2418      }
2419    }
2420
2421    //   Otherwise, the implicitly declared copy assignment operator will
2422    //   have the form
2423    //
2424    //       X& X::operator=(X&)
2425    QualType ArgType = ClassType;
2426    QualType RetType = Context.getLValueReferenceType(ArgType);
2427    if (HasConstCopyAssignment)
2428      ArgType = ArgType.withConst();
2429    ArgType = Context.getLValueReferenceType(ArgType);
2430
2431    //   An implicitly-declared copy assignment operator is an inline public
2432    //   member of its class.
2433    DeclarationName Name =
2434      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2435    CXXMethodDecl *CopyAssignment =
2436      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2437                            Context.getFunctionType(RetType, &ArgType, 1,
2438                                                    false, 0,
2439                                                    /*FIXME:*/false,
2440                                                    false, 0, 0,
2441                                                    FunctionType::ExtInfo()),
2442                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2443    CopyAssignment->setAccess(AS_public);
2444    CopyAssignment->setImplicit();
2445    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2446    CopyAssignment->setCopyAssignment(true);
2447
2448    // Add the parameter to the operator.
2449    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2450                                                 ClassDecl->getLocation(),
2451                                                 /*IdentifierInfo=*/0,
2452                                                 ArgType, /*TInfo=*/0,
2453                                                 VarDecl::None, 0);
2454    CopyAssignment->setParams(&FromParam, 1);
2455
2456    // Don't call addedAssignmentOperator. There is no way to distinguish an
2457    // implicit from an explicit assignment operator.
2458    if (S)
2459      PushOnScopeChains(CopyAssignment, S, true);
2460    else
2461      ClassDecl->addDecl(CopyAssignment);
2462    AddOverriddenMethods(ClassDecl, CopyAssignment);
2463  }
2464
2465  if (!ClassDecl->hasUserDeclaredDestructor()) {
2466    // C++ [class.dtor]p2:
2467    //   If a class has no user-declared destructor, a destructor is
2468    //   declared implicitly. An implicitly-declared destructor is an
2469    //   inline public member of its class.
2470    QualType Ty = Context.getFunctionType(Context.VoidTy,
2471                                          0, 0, false, 0,
2472                                          /*FIXME:*/false,
2473                                          false, 0, 0, FunctionType::ExtInfo());
2474
2475    DeclarationName Name
2476      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2477    CXXDestructorDecl *Destructor
2478      = CXXDestructorDecl::Create(Context, ClassDecl,
2479                                  ClassDecl->getLocation(), Name, Ty,
2480                                  /*isInline=*/true,
2481                                  /*isImplicitlyDeclared=*/true);
2482    Destructor->setAccess(AS_public);
2483    Destructor->setImplicit();
2484    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2485    if (S)
2486      PushOnScopeChains(Destructor, S, true);
2487    else
2488      ClassDecl->addDecl(Destructor);
2489
2490    // This could be uniqued if it ever proves significant.
2491    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2492
2493    AddOverriddenMethods(ClassDecl, Destructor);
2494  }
2495}
2496
2497void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2498  Decl *D = TemplateD.getAs<Decl>();
2499  if (!D)
2500    return;
2501
2502  TemplateParameterList *Params = 0;
2503  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2504    Params = Template->getTemplateParameters();
2505  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2506           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2507    Params = PartialSpec->getTemplateParameters();
2508  else
2509    return;
2510
2511  for (TemplateParameterList::iterator Param = Params->begin(),
2512                                    ParamEnd = Params->end();
2513       Param != ParamEnd; ++Param) {
2514    NamedDecl *Named = cast<NamedDecl>(*Param);
2515    if (Named->getDeclName()) {
2516      S->AddDecl(DeclPtrTy::make(Named));
2517      IdResolver.AddDecl(Named);
2518    }
2519  }
2520}
2521
2522void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2523  if (!RecordD) return;
2524  AdjustDeclIfTemplate(RecordD);
2525  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2526  PushDeclContext(S, Record);
2527}
2528
2529void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2530  if (!RecordD) return;
2531  PopDeclContext();
2532}
2533
2534/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2535/// parsing a top-level (non-nested) C++ class, and we are now
2536/// parsing those parts of the given Method declaration that could
2537/// not be parsed earlier (C++ [class.mem]p2), such as default
2538/// arguments. This action should enter the scope of the given
2539/// Method declaration as if we had just parsed the qualified method
2540/// name. However, it should not bring the parameters into scope;
2541/// that will be performed by ActOnDelayedCXXMethodParameter.
2542void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2543}
2544
2545/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2546/// C++ method declaration. We're (re-)introducing the given
2547/// function parameter into scope for use in parsing later parts of
2548/// the method declaration. For example, we could see an
2549/// ActOnParamDefaultArgument event for this parameter.
2550void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2551  if (!ParamD)
2552    return;
2553
2554  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2555
2556  // If this parameter has an unparsed default argument, clear it out
2557  // to make way for the parsed default argument.
2558  if (Param->hasUnparsedDefaultArg())
2559    Param->setDefaultArg(0);
2560
2561  S->AddDecl(DeclPtrTy::make(Param));
2562  if (Param->getDeclName())
2563    IdResolver.AddDecl(Param);
2564}
2565
2566/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2567/// processing the delayed method declaration for Method. The method
2568/// declaration is now considered finished. There may be a separate
2569/// ActOnStartOfFunctionDef action later (not necessarily
2570/// immediately!) for this method, if it was also defined inside the
2571/// class body.
2572void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2573  if (!MethodD)
2574    return;
2575
2576  AdjustDeclIfTemplate(MethodD);
2577
2578  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2579
2580  // Now that we have our default arguments, check the constructor
2581  // again. It could produce additional diagnostics or affect whether
2582  // the class has implicitly-declared destructors, among other
2583  // things.
2584  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2585    CheckConstructor(Constructor);
2586
2587  // Check the default arguments, which we may have added.
2588  if (!Method->isInvalidDecl())
2589    CheckCXXDefaultArguments(Method);
2590}
2591
2592/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2593/// the well-formedness of the constructor declarator @p D with type @p
2594/// R. If there are any errors in the declarator, this routine will
2595/// emit diagnostics and set the invalid bit to true.  In any case, the type
2596/// will be updated to reflect a well-formed type for the constructor and
2597/// returned.
2598QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2599                                          FunctionDecl::StorageClass &SC) {
2600  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2601
2602  // C++ [class.ctor]p3:
2603  //   A constructor shall not be virtual (10.3) or static (9.4). A
2604  //   constructor can be invoked for a const, volatile or const
2605  //   volatile object. A constructor shall not be declared const,
2606  //   volatile, or const volatile (9.3.2).
2607  if (isVirtual) {
2608    if (!D.isInvalidType())
2609      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2610        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2611        << SourceRange(D.getIdentifierLoc());
2612    D.setInvalidType();
2613  }
2614  if (SC == FunctionDecl::Static) {
2615    if (!D.isInvalidType())
2616      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2617        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2618        << SourceRange(D.getIdentifierLoc());
2619    D.setInvalidType();
2620    SC = FunctionDecl::None;
2621  }
2622
2623  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2624  if (FTI.TypeQuals != 0) {
2625    if (FTI.TypeQuals & Qualifiers::Const)
2626      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2627        << "const" << SourceRange(D.getIdentifierLoc());
2628    if (FTI.TypeQuals & Qualifiers::Volatile)
2629      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2630        << "volatile" << SourceRange(D.getIdentifierLoc());
2631    if (FTI.TypeQuals & Qualifiers::Restrict)
2632      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2633        << "restrict" << SourceRange(D.getIdentifierLoc());
2634  }
2635
2636  // Rebuild the function type "R" without any type qualifiers (in
2637  // case any of the errors above fired) and with "void" as the
2638  // return type, since constructors don't have return types. We
2639  // *always* have to do this, because GetTypeForDeclarator will
2640  // put in a result type of "int" when none was specified.
2641  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2642  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2643                                 Proto->getNumArgs(),
2644                                 Proto->isVariadic(), 0,
2645                                 Proto->hasExceptionSpec(),
2646                                 Proto->hasAnyExceptionSpec(),
2647                                 Proto->getNumExceptions(),
2648                                 Proto->exception_begin(),
2649                                 Proto->getExtInfo());
2650}
2651
2652/// CheckConstructor - Checks a fully-formed constructor for
2653/// well-formedness, issuing any diagnostics required. Returns true if
2654/// the constructor declarator is invalid.
2655void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2656  CXXRecordDecl *ClassDecl
2657    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2658  if (!ClassDecl)
2659    return Constructor->setInvalidDecl();
2660
2661  // C++ [class.copy]p3:
2662  //   A declaration of a constructor for a class X is ill-formed if
2663  //   its first parameter is of type (optionally cv-qualified) X and
2664  //   either there are no other parameters or else all other
2665  //   parameters have default arguments.
2666  if (!Constructor->isInvalidDecl() &&
2667      ((Constructor->getNumParams() == 1) ||
2668       (Constructor->getNumParams() > 1 &&
2669        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2670      Constructor->getTemplateSpecializationKind()
2671                                              != TSK_ImplicitInstantiation) {
2672    QualType ParamType = Constructor->getParamDecl(0)->getType();
2673    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2674    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2675      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2676      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2677        << FixItHint::CreateInsertion(ParamLoc, " const &");
2678
2679      // FIXME: Rather that making the constructor invalid, we should endeavor
2680      // to fix the type.
2681      Constructor->setInvalidDecl();
2682    }
2683  }
2684
2685  // Notify the class that we've added a constructor.
2686  ClassDecl->addedConstructor(Context, Constructor);
2687}
2688
2689/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2690/// issuing any diagnostics required. Returns true on error.
2691bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2692  CXXRecordDecl *RD = Destructor->getParent();
2693
2694  if (Destructor->isVirtual()) {
2695    SourceLocation Loc;
2696
2697    if (!Destructor->isImplicit())
2698      Loc = Destructor->getLocation();
2699    else
2700      Loc = RD->getLocation();
2701
2702    // If we have a virtual destructor, look up the deallocation function
2703    FunctionDecl *OperatorDelete = 0;
2704    DeclarationName Name =
2705    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2706    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2707      return true;
2708
2709    Destructor->setOperatorDelete(OperatorDelete);
2710  }
2711
2712  return false;
2713}
2714
2715static inline bool
2716FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2717  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2718          FTI.ArgInfo[0].Param &&
2719          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2720}
2721
2722/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2723/// the well-formednes of the destructor declarator @p D with type @p
2724/// R. If there are any errors in the declarator, this routine will
2725/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2726/// will be updated to reflect a well-formed type for the destructor and
2727/// returned.
2728QualType Sema::CheckDestructorDeclarator(Declarator &D,
2729                                         FunctionDecl::StorageClass& SC) {
2730  // C++ [class.dtor]p1:
2731  //   [...] A typedef-name that names a class is a class-name
2732  //   (7.1.3); however, a typedef-name that names a class shall not
2733  //   be used as the identifier in the declarator for a destructor
2734  //   declaration.
2735  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2736  if (isa<TypedefType>(DeclaratorType)) {
2737    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2738      << DeclaratorType;
2739    D.setInvalidType();
2740  }
2741
2742  // C++ [class.dtor]p2:
2743  //   A destructor is used to destroy objects of its class type. A
2744  //   destructor takes no parameters, and no return type can be
2745  //   specified for it (not even void). The address of a destructor
2746  //   shall not be taken. A destructor shall not be static. A
2747  //   destructor can be invoked for a const, volatile or const
2748  //   volatile object. A destructor shall not be declared const,
2749  //   volatile or const volatile (9.3.2).
2750  if (SC == FunctionDecl::Static) {
2751    if (!D.isInvalidType())
2752      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2753        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2754        << SourceRange(D.getIdentifierLoc());
2755    SC = FunctionDecl::None;
2756    D.setInvalidType();
2757  }
2758  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2759    // Destructors don't have return types, but the parser will
2760    // happily parse something like:
2761    //
2762    //   class X {
2763    //     float ~X();
2764    //   };
2765    //
2766    // The return type will be eliminated later.
2767    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2768      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2769      << SourceRange(D.getIdentifierLoc());
2770  }
2771
2772  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2773  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2774    if (FTI.TypeQuals & Qualifiers::Const)
2775      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2776        << "const" << SourceRange(D.getIdentifierLoc());
2777    if (FTI.TypeQuals & Qualifiers::Volatile)
2778      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2779        << "volatile" << SourceRange(D.getIdentifierLoc());
2780    if (FTI.TypeQuals & Qualifiers::Restrict)
2781      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2782        << "restrict" << SourceRange(D.getIdentifierLoc());
2783    D.setInvalidType();
2784  }
2785
2786  // Make sure we don't have any parameters.
2787  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2788    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2789
2790    // Delete the parameters.
2791    FTI.freeArgs();
2792    D.setInvalidType();
2793  }
2794
2795  // Make sure the destructor isn't variadic.
2796  if (FTI.isVariadic) {
2797    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2798    D.setInvalidType();
2799  }
2800
2801  // Rebuild the function type "R" without any type qualifiers or
2802  // parameters (in case any of the errors above fired) and with
2803  // "void" as the return type, since destructors don't have return
2804  // types. We *always* have to do this, because GetTypeForDeclarator
2805  // will put in a result type of "int" when none was specified.
2806  // FIXME: Exceptions!
2807  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2808                                 false, false, 0, 0, FunctionType::ExtInfo());
2809}
2810
2811/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2812/// well-formednes of the conversion function declarator @p D with
2813/// type @p R. If there are any errors in the declarator, this routine
2814/// will emit diagnostics and return true. Otherwise, it will return
2815/// false. Either way, the type @p R will be updated to reflect a
2816/// well-formed type for the conversion operator.
2817void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2818                                     FunctionDecl::StorageClass& SC) {
2819  // C++ [class.conv.fct]p1:
2820  //   Neither parameter types nor return type can be specified. The
2821  //   type of a conversion function (8.3.5) is "function taking no
2822  //   parameter returning conversion-type-id."
2823  if (SC == FunctionDecl::Static) {
2824    if (!D.isInvalidType())
2825      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2826        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2827        << SourceRange(D.getIdentifierLoc());
2828    D.setInvalidType();
2829    SC = FunctionDecl::None;
2830  }
2831
2832  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2833
2834  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2835    // Conversion functions don't have return types, but the parser will
2836    // happily parse something like:
2837    //
2838    //   class X {
2839    //     float operator bool();
2840    //   };
2841    //
2842    // The return type will be changed later anyway.
2843    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2844      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2845      << SourceRange(D.getIdentifierLoc());
2846    D.setInvalidType();
2847  }
2848
2849  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2850
2851  // Make sure we don't have any parameters.
2852  if (Proto->getNumArgs() > 0) {
2853    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2854
2855    // Delete the parameters.
2856    D.getTypeObject(0).Fun.freeArgs();
2857    D.setInvalidType();
2858  } else if (Proto->isVariadic()) {
2859    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2860    D.setInvalidType();
2861  }
2862
2863  // Diagnose "&operator bool()" and other such nonsense.  This
2864  // is actually a gcc extension which we don't support.
2865  if (Proto->getResultType() != ConvType) {
2866    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
2867      << Proto->getResultType();
2868    D.setInvalidType();
2869    ConvType = Proto->getResultType();
2870  }
2871
2872  // C++ [class.conv.fct]p4:
2873  //   The conversion-type-id shall not represent a function type nor
2874  //   an array type.
2875  if (ConvType->isArrayType()) {
2876    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2877    ConvType = Context.getPointerType(ConvType);
2878    D.setInvalidType();
2879  } else if (ConvType->isFunctionType()) {
2880    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2881    ConvType = Context.getPointerType(ConvType);
2882    D.setInvalidType();
2883  }
2884
2885  // Rebuild the function type "R" without any parameters (in case any
2886  // of the errors above fired) and with the conversion type as the
2887  // return type.
2888  if (D.isInvalidType()) {
2889    R = Context.getFunctionType(ConvType, 0, 0, false,
2890                                Proto->getTypeQuals(),
2891                                Proto->hasExceptionSpec(),
2892                                Proto->hasAnyExceptionSpec(),
2893                                Proto->getNumExceptions(),
2894                                Proto->exception_begin(),
2895                                Proto->getExtInfo());
2896  }
2897
2898  // C++0x explicit conversion operators.
2899  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2900    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2901         diag::warn_explicit_conversion_functions)
2902      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2903}
2904
2905/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2906/// the declaration of the given C++ conversion function. This routine
2907/// is responsible for recording the conversion function in the C++
2908/// class, if possible.
2909Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2910  assert(Conversion && "Expected to receive a conversion function declaration");
2911
2912  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2913
2914  // Make sure we aren't redeclaring the conversion function.
2915  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2916
2917  // C++ [class.conv.fct]p1:
2918  //   [...] A conversion function is never used to convert a
2919  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2920  //   same object type (or a reference to it), to a (possibly
2921  //   cv-qualified) base class of that type (or a reference to it),
2922  //   or to (possibly cv-qualified) void.
2923  // FIXME: Suppress this warning if the conversion function ends up being a
2924  // virtual function that overrides a virtual function in a base class.
2925  QualType ClassType
2926    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2927  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2928    ConvType = ConvTypeRef->getPointeeType();
2929  if (ConvType->isRecordType()) {
2930    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2931    if (ConvType == ClassType)
2932      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2933        << ClassType;
2934    else if (IsDerivedFrom(ClassType, ConvType))
2935      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2936        <<  ClassType << ConvType;
2937  } else if (ConvType->isVoidType()) {
2938    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2939      << ClassType << ConvType;
2940  }
2941
2942  if (Conversion->getPrimaryTemplate()) {
2943    // ignore specializations
2944  } else if (Conversion->getPreviousDeclaration()) {
2945    if (FunctionTemplateDecl *ConversionTemplate
2946                                  = Conversion->getDescribedFunctionTemplate()) {
2947      if (ClassDecl->replaceConversion(
2948                                   ConversionTemplate->getPreviousDeclaration(),
2949                                       ConversionTemplate))
2950        return DeclPtrTy::make(ConversionTemplate);
2951    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2952                                            Conversion))
2953      return DeclPtrTy::make(Conversion);
2954    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2955  } else if (FunctionTemplateDecl *ConversionTemplate
2956               = Conversion->getDescribedFunctionTemplate())
2957    ClassDecl->addConversionFunction(ConversionTemplate);
2958  else
2959    ClassDecl->addConversionFunction(Conversion);
2960
2961  return DeclPtrTy::make(Conversion);
2962}
2963
2964//===----------------------------------------------------------------------===//
2965// Namespace Handling
2966//===----------------------------------------------------------------------===//
2967
2968/// ActOnStartNamespaceDef - This is called at the start of a namespace
2969/// definition.
2970Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2971                                             SourceLocation IdentLoc,
2972                                             IdentifierInfo *II,
2973                                             SourceLocation LBrace,
2974                                             AttributeList *AttrList) {
2975  NamespaceDecl *Namespc =
2976      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2977  Namespc->setLBracLoc(LBrace);
2978
2979  Scope *DeclRegionScope = NamespcScope->getParent();
2980
2981  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
2982
2983  if (II) {
2984    // C++ [namespace.def]p2:
2985    // The identifier in an original-namespace-definition shall not have been
2986    // previously defined in the declarative region in which the
2987    // original-namespace-definition appears. The identifier in an
2988    // original-namespace-definition is the name of the namespace. Subsequently
2989    // in that declarative region, it is treated as an original-namespace-name.
2990
2991    NamedDecl *PrevDecl
2992      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName,
2993                         ForRedeclaration);
2994
2995    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2996      // This is an extended namespace definition.
2997      // Attach this namespace decl to the chain of extended namespace
2998      // definitions.
2999      OrigNS->setNextNamespace(Namespc);
3000      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3001
3002      // Remove the previous declaration from the scope.
3003      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3004        IdResolver.RemoveDecl(OrigNS);
3005        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3006      }
3007    } else if (PrevDecl) {
3008      // This is an invalid name redefinition.
3009      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3010       << Namespc->getDeclName();
3011      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3012      Namespc->setInvalidDecl();
3013      // Continue on to push Namespc as current DeclContext and return it.
3014    } else if (II->isStr("std") &&
3015               CurContext->getLookupContext()->isTranslationUnit()) {
3016      // This is the first "real" definition of the namespace "std", so update
3017      // our cache of the "std" namespace to point at this definition.
3018      if (StdNamespace) {
3019        // We had already defined a dummy namespace "std". Link this new
3020        // namespace definition to the dummy namespace "std".
3021        StdNamespace->setNextNamespace(Namespc);
3022        StdNamespace->setLocation(IdentLoc);
3023        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3024      }
3025
3026      // Make our StdNamespace cache point at the first real definition of the
3027      // "std" namespace.
3028      StdNamespace = Namespc;
3029    }
3030
3031    PushOnScopeChains(Namespc, DeclRegionScope);
3032  } else {
3033    // Anonymous namespaces.
3034    assert(Namespc->isAnonymousNamespace());
3035
3036    // Link the anonymous namespace into its parent.
3037    NamespaceDecl *PrevDecl;
3038    DeclContext *Parent = CurContext->getLookupContext();
3039    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3040      PrevDecl = TU->getAnonymousNamespace();
3041      TU->setAnonymousNamespace(Namespc);
3042    } else {
3043      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3044      PrevDecl = ND->getAnonymousNamespace();
3045      ND->setAnonymousNamespace(Namespc);
3046    }
3047
3048    // Link the anonymous namespace with its previous declaration.
3049    if (PrevDecl) {
3050      assert(PrevDecl->isAnonymousNamespace());
3051      assert(!PrevDecl->getNextNamespace());
3052      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3053      PrevDecl->setNextNamespace(Namespc);
3054    }
3055
3056    CurContext->addDecl(Namespc);
3057
3058    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3059    //   behaves as if it were replaced by
3060    //     namespace unique { /* empty body */ }
3061    //     using namespace unique;
3062    //     namespace unique { namespace-body }
3063    //   where all occurrences of 'unique' in a translation unit are
3064    //   replaced by the same identifier and this identifier differs
3065    //   from all other identifiers in the entire program.
3066
3067    // We just create the namespace with an empty name and then add an
3068    // implicit using declaration, just like the standard suggests.
3069    //
3070    // CodeGen enforces the "universally unique" aspect by giving all
3071    // declarations semantically contained within an anonymous
3072    // namespace internal linkage.
3073
3074    if (!PrevDecl) {
3075      UsingDirectiveDecl* UD
3076        = UsingDirectiveDecl::Create(Context, CurContext,
3077                                     /* 'using' */ LBrace,
3078                                     /* 'namespace' */ SourceLocation(),
3079                                     /* qualifier */ SourceRange(),
3080                                     /* NNS */ NULL,
3081                                     /* identifier */ SourceLocation(),
3082                                     Namespc,
3083                                     /* Ancestor */ CurContext);
3084      UD->setImplicit();
3085      CurContext->addDecl(UD);
3086    }
3087  }
3088
3089  // Although we could have an invalid decl (i.e. the namespace name is a
3090  // redefinition), push it as current DeclContext and try to continue parsing.
3091  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3092  // for the namespace has the declarations that showed up in that particular
3093  // namespace definition.
3094  PushDeclContext(NamespcScope, Namespc);
3095  return DeclPtrTy::make(Namespc);
3096}
3097
3098/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3099/// is a namespace alias, returns the namespace it points to.
3100static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3101  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3102    return AD->getNamespace();
3103  return dyn_cast_or_null<NamespaceDecl>(D);
3104}
3105
3106/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3107/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3108void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3109  Decl *Dcl = D.getAs<Decl>();
3110  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3111  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3112  Namespc->setRBracLoc(RBrace);
3113  PopDeclContext();
3114}
3115
3116Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3117                                          SourceLocation UsingLoc,
3118                                          SourceLocation NamespcLoc,
3119                                          CXXScopeSpec &SS,
3120                                          SourceLocation IdentLoc,
3121                                          IdentifierInfo *NamespcName,
3122                                          AttributeList *AttrList) {
3123  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3124  assert(NamespcName && "Invalid NamespcName.");
3125  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3126  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3127
3128  UsingDirectiveDecl *UDir = 0;
3129
3130  // Lookup namespace name.
3131  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3132  LookupParsedName(R, S, &SS);
3133  if (R.isAmbiguous())
3134    return DeclPtrTy();
3135
3136  if (!R.empty()) {
3137    NamedDecl *Named = R.getFoundDecl();
3138    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3139        && "expected namespace decl");
3140    // C++ [namespace.udir]p1:
3141    //   A using-directive specifies that the names in the nominated
3142    //   namespace can be used in the scope in which the
3143    //   using-directive appears after the using-directive. During
3144    //   unqualified name lookup (3.4.1), the names appear as if they
3145    //   were declared in the nearest enclosing namespace which
3146    //   contains both the using-directive and the nominated
3147    //   namespace. [Note: in this context, "contains" means "contains
3148    //   directly or indirectly". ]
3149
3150    // Find enclosing context containing both using-directive and
3151    // nominated namespace.
3152    NamespaceDecl *NS = getNamespaceDecl(Named);
3153    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3154    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3155      CommonAncestor = CommonAncestor->getParent();
3156
3157    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3158                                      SS.getRange(),
3159                                      (NestedNameSpecifier *)SS.getScopeRep(),
3160                                      IdentLoc, Named, CommonAncestor);
3161    PushUsingDirective(S, UDir);
3162  } else {
3163    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3164  }
3165
3166  // FIXME: We ignore attributes for now.
3167  delete AttrList;
3168  return DeclPtrTy::make(UDir);
3169}
3170
3171void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3172  // If scope has associated entity, then using directive is at namespace
3173  // or translation unit scope. We add UsingDirectiveDecls, into
3174  // it's lookup structure.
3175  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3176    Ctx->addDecl(UDir);
3177  else
3178    // Otherwise it is block-sope. using-directives will affect lookup
3179    // only to the end of scope.
3180    S->PushUsingDirective(DeclPtrTy::make(UDir));
3181}
3182
3183
3184Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3185                                            AccessSpecifier AS,
3186                                            bool HasUsingKeyword,
3187                                            SourceLocation UsingLoc,
3188                                            CXXScopeSpec &SS,
3189                                            UnqualifiedId &Name,
3190                                            AttributeList *AttrList,
3191                                            bool IsTypeName,
3192                                            SourceLocation TypenameLoc) {
3193  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3194
3195  switch (Name.getKind()) {
3196  case UnqualifiedId::IK_Identifier:
3197  case UnqualifiedId::IK_OperatorFunctionId:
3198  case UnqualifiedId::IK_LiteralOperatorId:
3199  case UnqualifiedId::IK_ConversionFunctionId:
3200    break;
3201
3202  case UnqualifiedId::IK_ConstructorName:
3203  case UnqualifiedId::IK_ConstructorTemplateId:
3204    // C++0x inherited constructors.
3205    if (getLangOptions().CPlusPlus0x) break;
3206
3207    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3208      << SS.getRange();
3209    return DeclPtrTy();
3210
3211  case UnqualifiedId::IK_DestructorName:
3212    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3213      << SS.getRange();
3214    return DeclPtrTy();
3215
3216  case UnqualifiedId::IK_TemplateId:
3217    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3218      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3219    return DeclPtrTy();
3220  }
3221
3222  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3223  if (!TargetName)
3224    return DeclPtrTy();
3225
3226  // Warn about using declarations.
3227  // TODO: store that the declaration was written without 'using' and
3228  // talk about access decls instead of using decls in the
3229  // diagnostics.
3230  if (!HasUsingKeyword) {
3231    UsingLoc = Name.getSourceRange().getBegin();
3232
3233    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3234      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3235  }
3236
3237  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3238                                        Name.getSourceRange().getBegin(),
3239                                        TargetName, AttrList,
3240                                        /* IsInstantiation */ false,
3241                                        IsTypeName, TypenameLoc);
3242  if (UD)
3243    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3244
3245  return DeclPtrTy::make(UD);
3246}
3247
3248/// Determines whether to create a using shadow decl for a particular
3249/// decl, given the set of decls existing prior to this using lookup.
3250bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3251                                const LookupResult &Previous) {
3252  // Diagnose finding a decl which is not from a base class of the
3253  // current class.  We do this now because there are cases where this
3254  // function will silently decide not to build a shadow decl, which
3255  // will pre-empt further diagnostics.
3256  //
3257  // We don't need to do this in C++0x because we do the check once on
3258  // the qualifier.
3259  //
3260  // FIXME: diagnose the following if we care enough:
3261  //   struct A { int foo; };
3262  //   struct B : A { using A::foo; };
3263  //   template <class T> struct C : A {};
3264  //   template <class T> struct D : C<T> { using B::foo; } // <---
3265  // This is invalid (during instantiation) in C++03 because B::foo
3266  // resolves to the using decl in B, which is not a base class of D<T>.
3267  // We can't diagnose it immediately because C<T> is an unknown
3268  // specialization.  The UsingShadowDecl in D<T> then points directly
3269  // to A::foo, which will look well-formed when we instantiate.
3270  // The right solution is to not collapse the shadow-decl chain.
3271  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3272    DeclContext *OrigDC = Orig->getDeclContext();
3273
3274    // Handle enums and anonymous structs.
3275    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3276    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3277    while (OrigRec->isAnonymousStructOrUnion())
3278      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3279
3280    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3281      if (OrigDC == CurContext) {
3282        Diag(Using->getLocation(),
3283             diag::err_using_decl_nested_name_specifier_is_current_class)
3284          << Using->getNestedNameRange();
3285        Diag(Orig->getLocation(), diag::note_using_decl_target);
3286        return true;
3287      }
3288
3289      Diag(Using->getNestedNameRange().getBegin(),
3290           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3291        << Using->getTargetNestedNameDecl()
3292        << cast<CXXRecordDecl>(CurContext)
3293        << Using->getNestedNameRange();
3294      Diag(Orig->getLocation(), diag::note_using_decl_target);
3295      return true;
3296    }
3297  }
3298
3299  if (Previous.empty()) return false;
3300
3301  NamedDecl *Target = Orig;
3302  if (isa<UsingShadowDecl>(Target))
3303    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3304
3305  // If the target happens to be one of the previous declarations, we
3306  // don't have a conflict.
3307  //
3308  // FIXME: but we might be increasing its access, in which case we
3309  // should redeclare it.
3310  NamedDecl *NonTag = 0, *Tag = 0;
3311  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3312         I != E; ++I) {
3313    NamedDecl *D = (*I)->getUnderlyingDecl();
3314    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3315      return false;
3316
3317    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3318  }
3319
3320  if (Target->isFunctionOrFunctionTemplate()) {
3321    FunctionDecl *FD;
3322    if (isa<FunctionTemplateDecl>(Target))
3323      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3324    else
3325      FD = cast<FunctionDecl>(Target);
3326
3327    NamedDecl *OldDecl = 0;
3328    switch (CheckOverload(FD, Previous, OldDecl)) {
3329    case Ovl_Overload:
3330      return false;
3331
3332    case Ovl_NonFunction:
3333      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3334      break;
3335
3336    // We found a decl with the exact signature.
3337    case Ovl_Match:
3338      if (isa<UsingShadowDecl>(OldDecl)) {
3339        // Silently ignore the possible conflict.
3340        return false;
3341      }
3342
3343      // If we're in a record, we want to hide the target, so we
3344      // return true (without a diagnostic) to tell the caller not to
3345      // build a shadow decl.
3346      if (CurContext->isRecord())
3347        return true;
3348
3349      // If we're not in a record, this is an error.
3350      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3351      break;
3352    }
3353
3354    Diag(Target->getLocation(), diag::note_using_decl_target);
3355    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3356    return true;
3357  }
3358
3359  // Target is not a function.
3360
3361  if (isa<TagDecl>(Target)) {
3362    // No conflict between a tag and a non-tag.
3363    if (!Tag) return false;
3364
3365    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3366    Diag(Target->getLocation(), diag::note_using_decl_target);
3367    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3368    return true;
3369  }
3370
3371  // No conflict between a tag and a non-tag.
3372  if (!NonTag) return false;
3373
3374  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3375  Diag(Target->getLocation(), diag::note_using_decl_target);
3376  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3377  return true;
3378}
3379
3380/// Builds a shadow declaration corresponding to a 'using' declaration.
3381UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3382                                            UsingDecl *UD,
3383                                            NamedDecl *Orig) {
3384
3385  // If we resolved to another shadow declaration, just coalesce them.
3386  NamedDecl *Target = Orig;
3387  if (isa<UsingShadowDecl>(Target)) {
3388    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3389    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3390  }
3391
3392  UsingShadowDecl *Shadow
3393    = UsingShadowDecl::Create(Context, CurContext,
3394                              UD->getLocation(), UD, Target);
3395  UD->addShadowDecl(Shadow);
3396
3397  if (S)
3398    PushOnScopeChains(Shadow, S);
3399  else
3400    CurContext->addDecl(Shadow);
3401  Shadow->setAccess(UD->getAccess());
3402
3403  // Register it as a conversion if appropriate.
3404  if (Shadow->getDeclName().getNameKind()
3405        == DeclarationName::CXXConversionFunctionName)
3406    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3407
3408  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3409    Shadow->setInvalidDecl();
3410
3411  return Shadow;
3412}
3413
3414/// Hides a using shadow declaration.  This is required by the current
3415/// using-decl implementation when a resolvable using declaration in a
3416/// class is followed by a declaration which would hide or override
3417/// one or more of the using decl's targets; for example:
3418///
3419///   struct Base { void foo(int); };
3420///   struct Derived : Base {
3421///     using Base::foo;
3422///     void foo(int);
3423///   };
3424///
3425/// The governing language is C++03 [namespace.udecl]p12:
3426///
3427///   When a using-declaration brings names from a base class into a
3428///   derived class scope, member functions in the derived class
3429///   override and/or hide member functions with the same name and
3430///   parameter types in a base class (rather than conflicting).
3431///
3432/// There are two ways to implement this:
3433///   (1) optimistically create shadow decls when they're not hidden
3434///       by existing declarations, or
3435///   (2) don't create any shadow decls (or at least don't make them
3436///       visible) until we've fully parsed/instantiated the class.
3437/// The problem with (1) is that we might have to retroactively remove
3438/// a shadow decl, which requires several O(n) operations because the
3439/// decl structures are (very reasonably) not designed for removal.
3440/// (2) avoids this but is very fiddly and phase-dependent.
3441void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3442  if (Shadow->getDeclName().getNameKind() ==
3443        DeclarationName::CXXConversionFunctionName)
3444    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3445
3446  // Remove it from the DeclContext...
3447  Shadow->getDeclContext()->removeDecl(Shadow);
3448
3449  // ...and the scope, if applicable...
3450  if (S) {
3451    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3452    IdResolver.RemoveDecl(Shadow);
3453  }
3454
3455  // ...and the using decl.
3456  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3457
3458  // TODO: complain somehow if Shadow was used.  It shouldn't
3459  // be possible for this to happen, because...?
3460}
3461
3462/// Builds a using declaration.
3463///
3464/// \param IsInstantiation - Whether this call arises from an
3465///   instantiation of an unresolved using declaration.  We treat
3466///   the lookup differently for these declarations.
3467NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3468                                       SourceLocation UsingLoc,
3469                                       CXXScopeSpec &SS,
3470                                       SourceLocation IdentLoc,
3471                                       DeclarationName Name,
3472                                       AttributeList *AttrList,
3473                                       bool IsInstantiation,
3474                                       bool IsTypeName,
3475                                       SourceLocation TypenameLoc) {
3476  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3477  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3478
3479  // FIXME: We ignore attributes for now.
3480  delete AttrList;
3481
3482  if (SS.isEmpty()) {
3483    Diag(IdentLoc, diag::err_using_requires_qualname);
3484    return 0;
3485  }
3486
3487  // Do the redeclaration lookup in the current scope.
3488  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3489                        ForRedeclaration);
3490  Previous.setHideTags(false);
3491  if (S) {
3492    LookupName(Previous, S);
3493
3494    // It is really dumb that we have to do this.
3495    LookupResult::Filter F = Previous.makeFilter();
3496    while (F.hasNext()) {
3497      NamedDecl *D = F.next();
3498      if (!isDeclInScope(D, CurContext, S))
3499        F.erase();
3500    }
3501    F.done();
3502  } else {
3503    assert(IsInstantiation && "no scope in non-instantiation");
3504    assert(CurContext->isRecord() && "scope not record in instantiation");
3505    LookupQualifiedName(Previous, CurContext);
3506  }
3507
3508  NestedNameSpecifier *NNS =
3509    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3510
3511  // Check for invalid redeclarations.
3512  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3513    return 0;
3514
3515  // Check for bad qualifiers.
3516  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3517    return 0;
3518
3519  DeclContext *LookupContext = computeDeclContext(SS);
3520  NamedDecl *D;
3521  if (!LookupContext) {
3522    if (IsTypeName) {
3523      // FIXME: not all declaration name kinds are legal here
3524      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3525                                              UsingLoc, TypenameLoc,
3526                                              SS.getRange(), NNS,
3527                                              IdentLoc, Name);
3528    } else {
3529      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3530                                           UsingLoc, SS.getRange(), NNS,
3531                                           IdentLoc, Name);
3532    }
3533  } else {
3534    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3535                          SS.getRange(), UsingLoc, NNS, Name,
3536                          IsTypeName);
3537  }
3538  D->setAccess(AS);
3539  CurContext->addDecl(D);
3540
3541  if (!LookupContext) return D;
3542  UsingDecl *UD = cast<UsingDecl>(D);
3543
3544  if (RequireCompleteDeclContext(SS)) {
3545    UD->setInvalidDecl();
3546    return UD;
3547  }
3548
3549  // Look up the target name.
3550
3551  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3552
3553  // Unlike most lookups, we don't always want to hide tag
3554  // declarations: tag names are visible through the using declaration
3555  // even if hidden by ordinary names, *except* in a dependent context
3556  // where it's important for the sanity of two-phase lookup.
3557  if (!IsInstantiation)
3558    R.setHideTags(false);
3559
3560  LookupQualifiedName(R, LookupContext);
3561
3562  if (R.empty()) {
3563    Diag(IdentLoc, diag::err_no_member)
3564      << Name << LookupContext << SS.getRange();
3565    UD->setInvalidDecl();
3566    return UD;
3567  }
3568
3569  if (R.isAmbiguous()) {
3570    UD->setInvalidDecl();
3571    return UD;
3572  }
3573
3574  if (IsTypeName) {
3575    // If we asked for a typename and got a non-type decl, error out.
3576    if (!R.getAsSingle<TypeDecl>()) {
3577      Diag(IdentLoc, diag::err_using_typename_non_type);
3578      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3579        Diag((*I)->getUnderlyingDecl()->getLocation(),
3580             diag::note_using_decl_target);
3581      UD->setInvalidDecl();
3582      return UD;
3583    }
3584  } else {
3585    // If we asked for a non-typename and we got a type, error out,
3586    // but only if this is an instantiation of an unresolved using
3587    // decl.  Otherwise just silently find the type name.
3588    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3589      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3590      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3591      UD->setInvalidDecl();
3592      return UD;
3593    }
3594  }
3595
3596  // C++0x N2914 [namespace.udecl]p6:
3597  // A using-declaration shall not name a namespace.
3598  if (R.getAsSingle<NamespaceDecl>()) {
3599    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3600      << SS.getRange();
3601    UD->setInvalidDecl();
3602    return UD;
3603  }
3604
3605  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3606    if (!CheckUsingShadowDecl(UD, *I, Previous))
3607      BuildUsingShadowDecl(S, UD, *I);
3608  }
3609
3610  return UD;
3611}
3612
3613/// Checks that the given using declaration is not an invalid
3614/// redeclaration.  Note that this is checking only for the using decl
3615/// itself, not for any ill-formedness among the UsingShadowDecls.
3616bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3617                                       bool isTypeName,
3618                                       const CXXScopeSpec &SS,
3619                                       SourceLocation NameLoc,
3620                                       const LookupResult &Prev) {
3621  // C++03 [namespace.udecl]p8:
3622  // C++0x [namespace.udecl]p10:
3623  //   A using-declaration is a declaration and can therefore be used
3624  //   repeatedly where (and only where) multiple declarations are
3625  //   allowed.
3626  // That's only in file contexts.
3627  if (CurContext->getLookupContext()->isFileContext())
3628    return false;
3629
3630  NestedNameSpecifier *Qual
3631    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3632
3633  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3634    NamedDecl *D = *I;
3635
3636    bool DTypename;
3637    NestedNameSpecifier *DQual;
3638    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3639      DTypename = UD->isTypeName();
3640      DQual = UD->getTargetNestedNameDecl();
3641    } else if (UnresolvedUsingValueDecl *UD
3642                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3643      DTypename = false;
3644      DQual = UD->getTargetNestedNameSpecifier();
3645    } else if (UnresolvedUsingTypenameDecl *UD
3646                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3647      DTypename = true;
3648      DQual = UD->getTargetNestedNameSpecifier();
3649    } else continue;
3650
3651    // using decls differ if one says 'typename' and the other doesn't.
3652    // FIXME: non-dependent using decls?
3653    if (isTypeName != DTypename) continue;
3654
3655    // using decls differ if they name different scopes (but note that
3656    // template instantiation can cause this check to trigger when it
3657    // didn't before instantiation).
3658    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3659        Context.getCanonicalNestedNameSpecifier(DQual))
3660      continue;
3661
3662    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3663    Diag(D->getLocation(), diag::note_using_decl) << 1;
3664    return true;
3665  }
3666
3667  return false;
3668}
3669
3670
3671/// Checks that the given nested-name qualifier used in a using decl
3672/// in the current context is appropriately related to the current
3673/// scope.  If an error is found, diagnoses it and returns true.
3674bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3675                                   const CXXScopeSpec &SS,
3676                                   SourceLocation NameLoc) {
3677  DeclContext *NamedContext = computeDeclContext(SS);
3678
3679  if (!CurContext->isRecord()) {
3680    // C++03 [namespace.udecl]p3:
3681    // C++0x [namespace.udecl]p8:
3682    //   A using-declaration for a class member shall be a member-declaration.
3683
3684    // If we weren't able to compute a valid scope, it must be a
3685    // dependent class scope.
3686    if (!NamedContext || NamedContext->isRecord()) {
3687      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3688        << SS.getRange();
3689      return true;
3690    }
3691
3692    // Otherwise, everything is known to be fine.
3693    return false;
3694  }
3695
3696  // The current scope is a record.
3697
3698  // If the named context is dependent, we can't decide much.
3699  if (!NamedContext) {
3700    // FIXME: in C++0x, we can diagnose if we can prove that the
3701    // nested-name-specifier does not refer to a base class, which is
3702    // still possible in some cases.
3703
3704    // Otherwise we have to conservatively report that things might be
3705    // okay.
3706    return false;
3707  }
3708
3709  if (!NamedContext->isRecord()) {
3710    // Ideally this would point at the last name in the specifier,
3711    // but we don't have that level of source info.
3712    Diag(SS.getRange().getBegin(),
3713         diag::err_using_decl_nested_name_specifier_is_not_class)
3714      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3715    return true;
3716  }
3717
3718  if (getLangOptions().CPlusPlus0x) {
3719    // C++0x [namespace.udecl]p3:
3720    //   In a using-declaration used as a member-declaration, the
3721    //   nested-name-specifier shall name a base class of the class
3722    //   being defined.
3723
3724    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3725                                 cast<CXXRecordDecl>(NamedContext))) {
3726      if (CurContext == NamedContext) {
3727        Diag(NameLoc,
3728             diag::err_using_decl_nested_name_specifier_is_current_class)
3729          << SS.getRange();
3730        return true;
3731      }
3732
3733      Diag(SS.getRange().getBegin(),
3734           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3735        << (NestedNameSpecifier*) SS.getScopeRep()
3736        << cast<CXXRecordDecl>(CurContext)
3737        << SS.getRange();
3738      return true;
3739    }
3740
3741    return false;
3742  }
3743
3744  // C++03 [namespace.udecl]p4:
3745  //   A using-declaration used as a member-declaration shall refer
3746  //   to a member of a base class of the class being defined [etc.].
3747
3748  // Salient point: SS doesn't have to name a base class as long as
3749  // lookup only finds members from base classes.  Therefore we can
3750  // diagnose here only if we can prove that that can't happen,
3751  // i.e. if the class hierarchies provably don't intersect.
3752
3753  // TODO: it would be nice if "definitely valid" results were cached
3754  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3755  // need to be repeated.
3756
3757  struct UserData {
3758    llvm::DenseSet<const CXXRecordDecl*> Bases;
3759
3760    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3761      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3762      Data->Bases.insert(Base);
3763      return true;
3764    }
3765
3766    bool hasDependentBases(const CXXRecordDecl *Class) {
3767      return !Class->forallBases(collect, this);
3768    }
3769
3770    /// Returns true if the base is dependent or is one of the
3771    /// accumulated base classes.
3772    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3773      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3774      return !Data->Bases.count(Base);
3775    }
3776
3777    bool mightShareBases(const CXXRecordDecl *Class) {
3778      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3779    }
3780  };
3781
3782  UserData Data;
3783
3784  // Returns false if we find a dependent base.
3785  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3786    return false;
3787
3788  // Returns false if the class has a dependent base or if it or one
3789  // of its bases is present in the base set of the current context.
3790  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3791    return false;
3792
3793  Diag(SS.getRange().getBegin(),
3794       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3795    << (NestedNameSpecifier*) SS.getScopeRep()
3796    << cast<CXXRecordDecl>(CurContext)
3797    << SS.getRange();
3798
3799  return true;
3800}
3801
3802Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3803                                             SourceLocation NamespaceLoc,
3804                                             SourceLocation AliasLoc,
3805                                             IdentifierInfo *Alias,
3806                                             CXXScopeSpec &SS,
3807                                             SourceLocation IdentLoc,
3808                                             IdentifierInfo *Ident) {
3809
3810  // Lookup the namespace name.
3811  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3812  LookupParsedName(R, S, &SS);
3813
3814  // Check if we have a previous declaration with the same name.
3815  if (NamedDecl *PrevDecl
3816        = LookupSingleName(S, Alias, LookupOrdinaryName, ForRedeclaration)) {
3817    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3818      // We already have an alias with the same name that points to the same
3819      // namespace, so don't create a new one.
3820      // FIXME: At some point, we'll want to create the (redundant)
3821      // declaration to maintain better source information.
3822      if (!R.isAmbiguous() && !R.empty() &&
3823          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3824        return DeclPtrTy();
3825    }
3826
3827    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3828      diag::err_redefinition_different_kind;
3829    Diag(AliasLoc, DiagID) << Alias;
3830    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3831    return DeclPtrTy();
3832  }
3833
3834  if (R.isAmbiguous())
3835    return DeclPtrTy();
3836
3837  if (R.empty()) {
3838    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3839    return DeclPtrTy();
3840  }
3841
3842  NamespaceAliasDecl *AliasDecl =
3843    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3844                               Alias, SS.getRange(),
3845                               (NestedNameSpecifier *)SS.getScopeRep(),
3846                               IdentLoc, R.getFoundDecl());
3847
3848  PushOnScopeChains(AliasDecl, S);
3849  return DeclPtrTy::make(AliasDecl);
3850}
3851
3852void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3853                                            CXXConstructorDecl *Constructor) {
3854  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3855          !Constructor->isUsed()) &&
3856    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3857
3858  CXXRecordDecl *ClassDecl
3859    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3860  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3861
3862  DeclContext *PreviousContext = CurContext;
3863  CurContext = Constructor;
3864  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3865    Diag(CurrentLocation, diag::note_member_synthesized_at)
3866      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3867    Constructor->setInvalidDecl();
3868  } else {
3869    Constructor->setUsed();
3870  }
3871  CurContext = PreviousContext;
3872}
3873
3874void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3875                                    CXXDestructorDecl *Destructor) {
3876  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3877         "DefineImplicitDestructor - call it for implicit default dtor");
3878  CXXRecordDecl *ClassDecl = Destructor->getParent();
3879  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3880
3881  DeclContext *PreviousContext = CurContext;
3882  CurContext = Destructor;
3883
3884  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3885                                         Destructor->getParent());
3886
3887  // FIXME: If CheckDestructor fails, we should emit a note about where the
3888  // implicit destructor was needed.
3889  if (CheckDestructor(Destructor)) {
3890    Diag(CurrentLocation, diag::note_member_synthesized_at)
3891      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3892
3893    Destructor->setInvalidDecl();
3894    CurContext = PreviousContext;
3895
3896    return;
3897  }
3898  CurContext = PreviousContext;
3899
3900  Destructor->setUsed();
3901}
3902
3903void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3904                                          CXXMethodDecl *MethodDecl) {
3905  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3906          MethodDecl->getOverloadedOperator() == OO_Equal &&
3907          !MethodDecl->isUsed()) &&
3908         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3909
3910  CXXRecordDecl *ClassDecl
3911    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3912
3913  DeclContext *PreviousContext = CurContext;
3914  CurContext = MethodDecl;
3915
3916  // C++[class.copy] p12
3917  // Before the implicitly-declared copy assignment operator for a class is
3918  // implicitly defined, all implicitly-declared copy assignment operators
3919  // for its direct base classes and its nonstatic data members shall have
3920  // been implicitly defined.
3921  bool err = false;
3922  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3923       E = ClassDecl->bases_end(); Base != E; ++Base) {
3924    CXXRecordDecl *BaseClassDecl
3925      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3926    if (CXXMethodDecl *BaseAssignOpMethod =
3927          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3928                                  BaseClassDecl)) {
3929      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3930                              BaseAssignOpMethod,
3931                              PDiag(diag::err_access_assign_base)
3932                                << Base->getType());
3933
3934      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3935    }
3936  }
3937  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3938       E = ClassDecl->field_end(); Field != E; ++Field) {
3939    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3940    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3941      FieldType = Array->getElementType();
3942    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3943      CXXRecordDecl *FieldClassDecl
3944        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3945      if (CXXMethodDecl *FieldAssignOpMethod =
3946          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3947                                  FieldClassDecl)) {
3948        CheckDirectMemberAccess(Field->getLocation(),
3949                                FieldAssignOpMethod,
3950                                PDiag(diag::err_access_assign_field)
3951                                  << Field->getDeclName() << Field->getType());
3952
3953        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3954      }
3955    } else if (FieldType->isReferenceType()) {
3956      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3957      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3958      Diag(Field->getLocation(), diag::note_declared_at);
3959      Diag(CurrentLocation, diag::note_first_required_here);
3960      err = true;
3961    } else if (FieldType.isConstQualified()) {
3962      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3963      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3964      Diag(Field->getLocation(), diag::note_declared_at);
3965      Diag(CurrentLocation, diag::note_first_required_here);
3966      err = true;
3967    }
3968  }
3969  if (!err)
3970    MethodDecl->setUsed();
3971
3972  CurContext = PreviousContext;
3973}
3974
3975CXXMethodDecl *
3976Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
3977                              ParmVarDecl *ParmDecl,
3978                              CXXRecordDecl *ClassDecl) {
3979  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3980  QualType RHSType(LHSType);
3981  // If class's assignment operator argument is const/volatile qualified,
3982  // look for operator = (const/volatile B&). Otherwise, look for
3983  // operator = (B&).
3984  RHSType = Context.getCVRQualifiedType(RHSType,
3985                                     ParmDecl->getType().getCVRQualifiers());
3986  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3987                                                           LHSType,
3988                                                           SourceLocation()));
3989  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3990                                                           RHSType,
3991                                                           CurrentLocation));
3992  Expr *Args[2] = { &*LHS, &*RHS };
3993  OverloadCandidateSet CandidateSet(CurrentLocation);
3994  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3995                              CandidateSet);
3996  OverloadCandidateSet::iterator Best;
3997  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
3998    return cast<CXXMethodDecl>(Best->Function);
3999  assert(false &&
4000         "getAssignOperatorMethod - copy assignment operator method not found");
4001  return 0;
4002}
4003
4004void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4005                                   CXXConstructorDecl *CopyConstructor,
4006                                   unsigned TypeQuals) {
4007  assert((CopyConstructor->isImplicit() &&
4008          CopyConstructor->isCopyConstructor(TypeQuals) &&
4009          !CopyConstructor->isUsed()) &&
4010         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4011
4012  CXXRecordDecl *ClassDecl
4013    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
4014  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4015
4016  DeclContext *PreviousContext = CurContext;
4017  CurContext = CopyConstructor;
4018
4019  // C++ [class.copy] p209
4020  // Before the implicitly-declared copy constructor for a class is
4021  // implicitly defined, all the implicitly-declared copy constructors
4022  // for its base class and its non-static data members shall have been
4023  // implicitly defined.
4024  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
4025       Base != ClassDecl->bases_end(); ++Base) {
4026    CXXRecordDecl *BaseClassDecl
4027      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4028    if (CXXConstructorDecl *BaseCopyCtor =
4029        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
4030      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4031                              BaseCopyCtor,
4032                              PDiag(diag::err_access_copy_base)
4033                                << Base->getType());
4034
4035      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4036    }
4037  }
4038  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4039                                  FieldEnd = ClassDecl->field_end();
4040       Field != FieldEnd; ++Field) {
4041    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4042    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4043      FieldType = Array->getElementType();
4044    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4045      CXXRecordDecl *FieldClassDecl
4046        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4047      if (CXXConstructorDecl *FieldCopyCtor =
4048          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4049        CheckDirectMemberAccess(Field->getLocation(),
4050                                FieldCopyCtor,
4051                                PDiag(diag::err_access_copy_field)
4052                                  << Field->getDeclName() << Field->getType());
4053
4054        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4055      }
4056    }
4057  }
4058  CopyConstructor->setUsed();
4059
4060  CurContext = PreviousContext;
4061}
4062
4063Sema::OwningExprResult
4064Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4065                            CXXConstructorDecl *Constructor,
4066                            MultiExprArg ExprArgs,
4067                            bool RequiresZeroInit,
4068                            bool BaseInitialization) {
4069  bool Elidable = false;
4070
4071  // C++0x [class.copy]p34:
4072  //   When certain criteria are met, an implementation is allowed to
4073  //   omit the copy/move construction of a class object, even if the
4074  //   copy/move constructor and/or destructor for the object have
4075  //   side effects. [...]
4076  //     - when a temporary class object that has not been bound to a
4077  //       reference (12.2) would be copied/moved to a class object
4078  //       with the same cv-unqualified type, the copy/move operation
4079  //       can be omitted by constructing the temporary object
4080  //       directly into the target of the omitted copy/move
4081  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4082    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4083    Elidable = SubExpr->isTemporaryObject() &&
4084      Context.hasSameUnqualifiedType(SubExpr->getType(),
4085                           Context.getTypeDeclType(Constructor->getParent()));
4086  }
4087
4088  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4089                               Elidable, move(ExprArgs), RequiresZeroInit,
4090                               BaseInitialization);
4091}
4092
4093/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4094/// including handling of its default argument expressions.
4095Sema::OwningExprResult
4096Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4097                            CXXConstructorDecl *Constructor, bool Elidable,
4098                            MultiExprArg ExprArgs,
4099                            bool RequiresZeroInit,
4100                            bool BaseInitialization) {
4101  unsigned NumExprs = ExprArgs.size();
4102  Expr **Exprs = (Expr **)ExprArgs.release();
4103
4104  MarkDeclarationReferenced(ConstructLoc, Constructor);
4105  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4106                                        Constructor, Elidable, Exprs, NumExprs,
4107                                        RequiresZeroInit, BaseInitialization));
4108}
4109
4110bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4111                                        CXXConstructorDecl *Constructor,
4112                                        MultiExprArg Exprs) {
4113  OwningExprResult TempResult =
4114    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4115                          move(Exprs));
4116  if (TempResult.isInvalid())
4117    return true;
4118
4119  Expr *Temp = TempResult.takeAs<Expr>();
4120  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4121  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4122  VD->setInit(Temp);
4123
4124  return false;
4125}
4126
4127void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4128  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4129  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4130      !ClassDecl->hasTrivialDestructor()) {
4131    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4132    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4133    CheckDestructorAccess(VD->getLocation(), Destructor,
4134                          PDiag(diag::err_access_dtor_var)
4135                            << VD->getDeclName()
4136                            << VD->getType());
4137  }
4138}
4139
4140/// AddCXXDirectInitializerToDecl - This action is called immediately after
4141/// ActOnDeclarator, when a C++ direct initializer is present.
4142/// e.g: "int x(1);"
4143void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4144                                         SourceLocation LParenLoc,
4145                                         MultiExprArg Exprs,
4146                                         SourceLocation *CommaLocs,
4147                                         SourceLocation RParenLoc) {
4148  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4149  Decl *RealDecl = Dcl.getAs<Decl>();
4150
4151  // If there is no declaration, there was an error parsing it.  Just ignore
4152  // the initializer.
4153  if (RealDecl == 0)
4154    return;
4155
4156  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4157  if (!VDecl) {
4158    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4159    RealDecl->setInvalidDecl();
4160    return;
4161  }
4162
4163  // We will represent direct-initialization similarly to copy-initialization:
4164  //    int x(1);  -as-> int x = 1;
4165  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4166  //
4167  // Clients that want to distinguish between the two forms, can check for
4168  // direct initializer using VarDecl::hasCXXDirectInitializer().
4169  // A major benefit is that clients that don't particularly care about which
4170  // exactly form was it (like the CodeGen) can handle both cases without
4171  // special case code.
4172
4173  // C++ 8.5p11:
4174  // The form of initialization (using parentheses or '=') is generally
4175  // insignificant, but does matter when the entity being initialized has a
4176  // class type.
4177  QualType DeclInitType = VDecl->getType();
4178  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4179    DeclInitType = Context.getBaseElementType(Array);
4180
4181  if (!VDecl->getType()->isDependentType() &&
4182      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4183                          diag::err_typecheck_decl_incomplete_type)) {
4184    VDecl->setInvalidDecl();
4185    return;
4186  }
4187
4188  // The variable can not have an abstract class type.
4189  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4190                             diag::err_abstract_type_in_decl,
4191                             AbstractVariableType))
4192    VDecl->setInvalidDecl();
4193
4194  const VarDecl *Def;
4195  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4196    Diag(VDecl->getLocation(), diag::err_redefinition)
4197    << VDecl->getDeclName();
4198    Diag(Def->getLocation(), diag::note_previous_definition);
4199    VDecl->setInvalidDecl();
4200    return;
4201  }
4202
4203  // If either the declaration has a dependent type or if any of the
4204  // expressions is type-dependent, we represent the initialization
4205  // via a ParenListExpr for later use during template instantiation.
4206  if (VDecl->getType()->isDependentType() ||
4207      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4208    // Let clients know that initialization was done with a direct initializer.
4209    VDecl->setCXXDirectInitializer(true);
4210
4211    // Store the initialization expressions as a ParenListExpr.
4212    unsigned NumExprs = Exprs.size();
4213    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4214                                               (Expr **)Exprs.release(),
4215                                               NumExprs, RParenLoc));
4216    return;
4217  }
4218
4219  // Capture the variable that is being initialized and the style of
4220  // initialization.
4221  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4222
4223  // FIXME: Poor source location information.
4224  InitializationKind Kind
4225    = InitializationKind::CreateDirect(VDecl->getLocation(),
4226                                       LParenLoc, RParenLoc);
4227
4228  InitializationSequence InitSeq(*this, Entity, Kind,
4229                                 (Expr**)Exprs.get(), Exprs.size());
4230  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4231  if (Result.isInvalid()) {
4232    VDecl->setInvalidDecl();
4233    return;
4234  }
4235
4236  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4237  VDecl->setInit(Result.takeAs<Expr>());
4238  VDecl->setCXXDirectInitializer(true);
4239
4240  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4241    FinalizeVarWithDestructor(VDecl, Record);
4242}
4243
4244/// \brief Add the applicable constructor candidates for an initialization
4245/// by constructor.
4246static void AddConstructorInitializationCandidates(Sema &SemaRef,
4247                                                   QualType ClassType,
4248                                                   Expr **Args,
4249                                                   unsigned NumArgs,
4250                                                   InitializationKind Kind,
4251                                           OverloadCandidateSet &CandidateSet) {
4252  // C++ [dcl.init]p14:
4253  //   If the initialization is direct-initialization, or if it is
4254  //   copy-initialization where the cv-unqualified version of the
4255  //   source type is the same class as, or a derived class of, the
4256  //   class of the destination, constructors are considered. The
4257  //   applicable constructors are enumerated (13.3.1.3), and the
4258  //   best one is chosen through overload resolution (13.3). The
4259  //   constructor so selected is called to initialize the object,
4260  //   with the initializer expression(s) as its argument(s). If no
4261  //   constructor applies, or the overload resolution is ambiguous,
4262  //   the initialization is ill-formed.
4263  const RecordType *ClassRec = ClassType->getAs<RecordType>();
4264  assert(ClassRec && "Can only initialize a class type here");
4265
4266  // FIXME: When we decide not to synthesize the implicitly-declared
4267  // constructors, we'll need to make them appear here.
4268
4269  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
4270  DeclarationName ConstructorName
4271    = SemaRef.Context.DeclarationNames.getCXXConstructorName(
4272              SemaRef.Context.getCanonicalType(ClassType).getUnqualifiedType());
4273  DeclContext::lookup_const_iterator Con, ConEnd;
4274  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
4275       Con != ConEnd; ++Con) {
4276    DeclAccessPair FoundDecl = DeclAccessPair::make(*Con, (*Con)->getAccess());
4277
4278    // Find the constructor (which may be a template).
4279    CXXConstructorDecl *Constructor = 0;
4280    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
4281    if (ConstructorTmpl)
4282      Constructor
4283      = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
4284    else
4285      Constructor = cast<CXXConstructorDecl>(*Con);
4286
4287    if ((Kind.getKind() == InitializationKind::IK_Direct) ||
4288        (Kind.getKind() == InitializationKind::IK_Value) ||
4289        (Kind.getKind() == InitializationKind::IK_Copy &&
4290         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
4291        ((Kind.getKind() == InitializationKind::IK_Default) &&
4292         Constructor->isDefaultConstructor())) {
4293      if (ConstructorTmpl)
4294        SemaRef.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4295                                             /*ExplicitArgs*/ 0,
4296                                             Args, NumArgs, CandidateSet);
4297      else
4298        SemaRef.AddOverloadCandidate(Constructor, FoundDecl,
4299                                     Args, NumArgs, CandidateSet);
4300    }
4301  }
4302}
4303
4304/// \brief Attempt to perform initialization by constructor
4305/// (C++ [dcl.init]p14), which may occur as part of direct-initialization or
4306/// copy-initialization.
4307///
4308/// This routine determines whether initialization by constructor is possible,
4309/// but it does not emit any diagnostics in the case where the initialization
4310/// is ill-formed.
4311///
4312/// \param ClassType the type of the object being initialized, which must have
4313/// class type.
4314///
4315/// \param Args the arguments provided to initialize the object
4316///
4317/// \param NumArgs the number of arguments provided to initialize the object
4318///
4319/// \param Kind the type of initialization being performed
4320///
4321/// \returns the constructor used to initialize the object, if successful.
4322/// Otherwise, emits a diagnostic and returns NULL.
4323CXXConstructorDecl *
4324Sema::TryInitializationByConstructor(QualType ClassType,
4325                                     Expr **Args, unsigned NumArgs,
4326                                     SourceLocation Loc,
4327                                     InitializationKind Kind) {
4328  // Build the overload candidate set
4329  OverloadCandidateSet CandidateSet(Loc);
4330  AddConstructorInitializationCandidates(*this, ClassType, Args, NumArgs, Kind,
4331                                         CandidateSet);
4332
4333  // Determine whether we found a constructor we can use.
4334  OverloadCandidateSet::iterator Best;
4335  switch (BestViableFunction(CandidateSet, Loc, Best)) {
4336    case OR_Success:
4337    case OR_Deleted:
4338      // We found a constructor. Return it.
4339      return cast<CXXConstructorDecl>(Best->Function);
4340
4341    case OR_No_Viable_Function:
4342    case OR_Ambiguous:
4343      // Overload resolution failed. Return nothing.
4344      return 0;
4345  }
4346
4347  // Silence GCC warning
4348  return 0;
4349}
4350
4351/// \brief Given a constructor and the set of arguments provided for the
4352/// constructor, convert the arguments and add any required default arguments
4353/// to form a proper call to this constructor.
4354///
4355/// \returns true if an error occurred, false otherwise.
4356bool
4357Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4358                              MultiExprArg ArgsPtr,
4359                              SourceLocation Loc,
4360                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4361  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4362  unsigned NumArgs = ArgsPtr.size();
4363  Expr **Args = (Expr **)ArgsPtr.get();
4364
4365  const FunctionProtoType *Proto
4366    = Constructor->getType()->getAs<FunctionProtoType>();
4367  assert(Proto && "Constructor without a prototype?");
4368  unsigned NumArgsInProto = Proto->getNumArgs();
4369
4370  // If too few arguments are available, we'll fill in the rest with defaults.
4371  if (NumArgs < NumArgsInProto)
4372    ConvertedArgs.reserve(NumArgsInProto);
4373  else
4374    ConvertedArgs.reserve(NumArgs);
4375
4376  VariadicCallType CallType =
4377    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4378  llvm::SmallVector<Expr *, 8> AllArgs;
4379  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4380                                        Proto, 0, Args, NumArgs, AllArgs,
4381                                        CallType);
4382  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4383    ConvertedArgs.push_back(AllArgs[i]);
4384  return Invalid;
4385}
4386
4387/// CompareReferenceRelationship - Compare the two types T1 and T2 to
4388/// determine whether they are reference-related,
4389/// reference-compatible, reference-compatible with added
4390/// qualification, or incompatible, for use in C++ initialization by
4391/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
4392/// type, and the first type (T1) is the pointee type of the reference
4393/// type being initialized.
4394Sema::ReferenceCompareResult
4395Sema::CompareReferenceRelationship(SourceLocation Loc,
4396                                   QualType OrigT1, QualType OrigT2,
4397                                   bool& DerivedToBase) {
4398  assert(!OrigT1->isReferenceType() &&
4399    "T1 must be the pointee type of the reference type");
4400  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
4401
4402  QualType T1 = Context.getCanonicalType(OrigT1);
4403  QualType T2 = Context.getCanonicalType(OrigT2);
4404  Qualifiers T1Quals, T2Quals;
4405  QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
4406  QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
4407
4408  // C++ [dcl.init.ref]p4:
4409  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
4410  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
4411  //   T1 is a base class of T2.
4412  if (UnqualT1 == UnqualT2)
4413    DerivedToBase = false;
4414  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
4415           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
4416           IsDerivedFrom(UnqualT2, UnqualT1))
4417    DerivedToBase = true;
4418  else
4419    return Ref_Incompatible;
4420
4421  // At this point, we know that T1 and T2 are reference-related (at
4422  // least).
4423
4424  // If the type is an array type, promote the element qualifiers to the type
4425  // for comparison.
4426  if (isa<ArrayType>(T1) && T1Quals)
4427    T1 = Context.getQualifiedType(UnqualT1, T1Quals);
4428  if (isa<ArrayType>(T2) && T2Quals)
4429    T2 = Context.getQualifiedType(UnqualT2, T2Quals);
4430
4431  // C++ [dcl.init.ref]p4:
4432  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
4433  //   reference-related to T2 and cv1 is the same cv-qualification
4434  //   as, or greater cv-qualification than, cv2. For purposes of
4435  //   overload resolution, cases for which cv1 is greater
4436  //   cv-qualification than cv2 are identified as
4437  //   reference-compatible with added qualification (see 13.3.3.2).
4438  if (T1Quals.getCVRQualifiers() == T2Quals.getCVRQualifiers())
4439    return Ref_Compatible;
4440  else if (T1.isMoreQualifiedThan(T2))
4441    return Ref_Compatible_With_Added_Qualification;
4442  else
4443    return Ref_Related;
4444}
4445
4446/// CheckReferenceInit - Check the initialization of a reference
4447/// variable with the given initializer (C++ [dcl.init.ref]). Init is
4448/// the initializer (either a simple initializer or an initializer
4449/// list), and DeclType is the type of the declaration. When ICS is
4450/// non-null, this routine will compute the implicit conversion
4451/// sequence according to C++ [over.ics.ref] and will not produce any
4452/// diagnostics; when ICS is null, it will emit diagnostics when any
4453/// errors are found. Either way, a return value of true indicates
4454/// that there was a failure, a return value of false indicates that
4455/// the reference initialization succeeded.
4456///
4457/// When @p SuppressUserConversions, user-defined conversions are
4458/// suppressed.
4459/// When @p AllowExplicit, we also permit explicit user-defined
4460/// conversion functions.
4461/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
4462/// When @p IgnoreBaseAccess, we don't do access control on to-base conversion.
4463/// This is used when this is called from a C-style cast.
4464bool
4465Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
4466                         SourceLocation DeclLoc,
4467                         bool SuppressUserConversions,
4468                         bool AllowExplicit, bool ForceRValue,
4469                         ImplicitConversionSequence *ICS,
4470                         bool IgnoreBaseAccess) {
4471  assert(DeclType->isReferenceType() && "Reference init needs a reference");
4472
4473  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
4474  QualType T2 = Init->getType();
4475
4476  // If the initializer is the address of an overloaded function, try
4477  // to resolve the overloaded function. If all goes well, T2 is the
4478  // type of the resulting function.
4479  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
4480    DeclAccessPair Found;
4481    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
4482                                                          ICS != 0, Found);
4483    if (Fn) {
4484      // Since we're performing this reference-initialization for
4485      // real, update the initializer with the resulting function.
4486      if (!ICS) {
4487        if (DiagnoseUseOfDecl(Fn, DeclLoc))
4488          return true;
4489
4490        CheckAddressOfMemberAccess(Init, Found);
4491        Init = FixOverloadedFunctionReference(Init, Found, Fn);
4492      }
4493
4494      T2 = Fn->getType();
4495    }
4496  }
4497
4498  // Compute some basic properties of the types and the initializer.
4499  bool isRValRef = DeclType->isRValueReferenceType();
4500  bool DerivedToBase = false;
4501  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
4502                                                  Init->isLvalue(Context);
4503  ReferenceCompareResult RefRelationship
4504    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
4505
4506  // Most paths end in a failed conversion.
4507  if (ICS) {
4508    ICS->setBad(BadConversionSequence::no_conversion, Init, DeclType);
4509  }
4510
4511  // C++ [dcl.init.ref]p5:
4512  //   A reference to type "cv1 T1" is initialized by an expression
4513  //   of type "cv2 T2" as follows:
4514
4515  //     -- If the initializer expression
4516
4517  // Rvalue references cannot bind to lvalues (N2812).
4518  // There is absolutely no situation where they can. In particular, note that
4519  // this is ill-formed, even if B has a user-defined conversion to A&&:
4520  //   B b;
4521  //   A&& r = b;
4522  if (isRValRef && InitLvalue == Expr::LV_Valid) {
4523    if (!ICS)
4524      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4525        << Init->getSourceRange();
4526    return true;
4527  }
4528
4529  bool BindsDirectly = false;
4530  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
4531  //          reference-compatible with "cv2 T2," or
4532  //
4533  // Note that the bit-field check is skipped if we are just computing
4534  // the implicit conversion sequence (C++ [over.best.ics]p2).
4535  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
4536      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4537    BindsDirectly = true;
4538
4539    if (ICS) {
4540      // C++ [over.ics.ref]p1:
4541      //   When a parameter of reference type binds directly (8.5.3)
4542      //   to an argument expression, the implicit conversion sequence
4543      //   is the identity conversion, unless the argument expression
4544      //   has a type that is a derived class of the parameter type,
4545      //   in which case the implicit conversion sequence is a
4546      //   derived-to-base Conversion (13.3.3.1).
4547      ICS->setStandard();
4548      ICS->Standard.First = ICK_Identity;
4549      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4550      ICS->Standard.Third = ICK_Identity;
4551      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4552      ICS->Standard.setToType(0, T2);
4553      ICS->Standard.setToType(1, T1);
4554      ICS->Standard.setToType(2, T1);
4555      ICS->Standard.ReferenceBinding = true;
4556      ICS->Standard.DirectBinding = true;
4557      ICS->Standard.RRefBinding = false;
4558      ICS->Standard.CopyConstructor = 0;
4559
4560      // Nothing more to do: the inaccessibility/ambiguity check for
4561      // derived-to-base conversions is suppressed when we're
4562      // computing the implicit conversion sequence (C++
4563      // [over.best.ics]p2).
4564      return false;
4565    } else {
4566      // Perform the conversion.
4567      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4568      if (DerivedToBase)
4569        CK = CastExpr::CK_DerivedToBase;
4570      else if(CheckExceptionSpecCompatibility(Init, T1))
4571        return true;
4572      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
4573    }
4574  }
4575
4576  //       -- has a class type (i.e., T2 is a class type) and can be
4577  //          implicitly converted to an lvalue of type "cv3 T3,"
4578  //          where "cv1 T1" is reference-compatible with "cv3 T3"
4579  //          92) (this conversion is selected by enumerating the
4580  //          applicable conversion functions (13.3.1.6) and choosing
4581  //          the best one through overload resolution (13.3)),
4582  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
4583      !RequireCompleteType(DeclLoc, T2, 0)) {
4584    CXXRecordDecl *T2RecordDecl
4585      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
4586
4587    OverloadCandidateSet CandidateSet(DeclLoc);
4588    const UnresolvedSetImpl *Conversions
4589      = T2RecordDecl->getVisibleConversionFunctions();
4590    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
4591           E = Conversions->end(); I != E; ++I) {
4592      NamedDecl *D = *I;
4593      CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4594      if (isa<UsingShadowDecl>(D))
4595        D = cast<UsingShadowDecl>(D)->getTargetDecl();
4596
4597      FunctionTemplateDecl *ConvTemplate
4598        = dyn_cast<FunctionTemplateDecl>(D);
4599      CXXConversionDecl *Conv;
4600      if (ConvTemplate)
4601        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4602      else
4603        Conv = cast<CXXConversionDecl>(D);
4604
4605      // If the conversion function doesn't return a reference type,
4606      // it can't be considered for this conversion.
4607      if (Conv->getConversionType()->isLValueReferenceType() &&
4608          (AllowExplicit || !Conv->isExplicit())) {
4609        if (ConvTemplate)
4610          AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC,
4611                                         Init, DeclType, CandidateSet);
4612        else
4613          AddConversionCandidate(Conv, I.getPair(), ActingDC, Init,
4614                                 DeclType, CandidateSet);
4615      }
4616    }
4617
4618    OverloadCandidateSet::iterator Best;
4619    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
4620    case OR_Success:
4621      // C++ [over.ics.ref]p1:
4622      //
4623      //   [...] If the parameter binds directly to the result of
4624      //   applying a conversion function to the argument
4625      //   expression, the implicit conversion sequence is a
4626      //   user-defined conversion sequence (13.3.3.1.2), with the
4627      //   second standard conversion sequence either an identity
4628      //   conversion or, if the conversion function returns an
4629      //   entity of a type that is a derived class of the parameter
4630      //   type, a derived-to-base Conversion.
4631      if (!Best->FinalConversion.DirectBinding)
4632        break;
4633
4634      // This is a direct binding.
4635      BindsDirectly = true;
4636
4637      if (ICS) {
4638        ICS->setUserDefined();
4639        ICS->UserDefined.Before = Best->Conversions[0].Standard;
4640        ICS->UserDefined.After = Best->FinalConversion;
4641        ICS->UserDefined.ConversionFunction = Best->Function;
4642        ICS->UserDefined.EllipsisConversion = false;
4643        assert(ICS->UserDefined.After.ReferenceBinding &&
4644               ICS->UserDefined.After.DirectBinding &&
4645               "Expected a direct reference binding!");
4646        return false;
4647      } else {
4648        OwningExprResult InitConversion =
4649          BuildCXXCastArgument(DeclLoc, QualType(),
4650                               CastExpr::CK_UserDefinedConversion,
4651                               cast<CXXMethodDecl>(Best->Function),
4652                               Owned(Init));
4653        Init = InitConversion.takeAs<Expr>();
4654
4655        if (CheckExceptionSpecCompatibility(Init, T1))
4656          return true;
4657        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
4658                          /*isLvalue=*/true);
4659      }
4660      break;
4661
4662    case OR_Ambiguous:
4663      if (ICS) {
4664        ICS->setAmbiguous();
4665        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
4666             Cand != CandidateSet.end(); ++Cand)
4667          if (Cand->Viable)
4668            ICS->Ambiguous.addConversion(Cand->Function);
4669        break;
4670      }
4671      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
4672            << Init->getSourceRange();
4673      PrintOverloadCandidates(CandidateSet, OCD_ViableCandidates, &Init, 1);
4674      return true;
4675
4676    case OR_No_Viable_Function:
4677    case OR_Deleted:
4678      // There was no suitable conversion, or we found a deleted
4679      // conversion; continue with other checks.
4680      break;
4681    }
4682  }
4683
4684  if (BindsDirectly) {
4685    // C++ [dcl.init.ref]p4:
4686    //   [...] In all cases where the reference-related or
4687    //   reference-compatible relationship of two types is used to
4688    //   establish the validity of a reference binding, and T1 is a
4689    //   base class of T2, a program that necessitates such a binding
4690    //   is ill-formed if T1 is an inaccessible (clause 11) or
4691    //   ambiguous (10.2) base class of T2.
4692    //
4693    // Note that we only check this condition when we're allowed to
4694    // complain about errors, because we should not be checking for
4695    // ambiguity (or inaccessibility) unless the reference binding
4696    // actually happens.
4697    if (DerivedToBase)
4698      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
4699                                          Init->getSourceRange(),
4700                                          IgnoreBaseAccess);
4701    else
4702      return false;
4703  }
4704
4705  //     -- Otherwise, the reference shall be to a non-volatile const
4706  //        type (i.e., cv1 shall be const), or the reference shall be an
4707  //        rvalue reference and the initializer expression shall be an rvalue.
4708  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
4709    if (!ICS)
4710      Diag(DeclLoc, diag::err_not_reference_to_const_init)
4711        << T1.isVolatileQualified()
4712        << T1 << int(InitLvalue != Expr::LV_Valid)
4713        << T2 << Init->getSourceRange();
4714    return true;
4715  }
4716
4717  //       -- If the initializer expression is an rvalue, with T2 a
4718  //          class type, and "cv1 T1" is reference-compatible with
4719  //          "cv2 T2," the reference is bound in one of the
4720  //          following ways (the choice is implementation-defined):
4721  //
4722  //          -- The reference is bound to the object represented by
4723  //             the rvalue (see 3.10) or to a sub-object within that
4724  //             object.
4725  //
4726  //          -- A temporary of type "cv1 T2" [sic] is created, and
4727  //             a constructor is called to copy the entire rvalue
4728  //             object into the temporary. The reference is bound to
4729  //             the temporary or to a sub-object within the
4730  //             temporary.
4731  //
4732  //          The constructor that would be used to make the copy
4733  //          shall be callable whether or not the copy is actually
4734  //          done.
4735  //
4736  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
4737  // freedom, so we will always take the first option and never build
4738  // a temporary in this case. FIXME: We will, however, have to check
4739  // for the presence of a copy constructor in C++98/03 mode.
4740  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
4741      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
4742    if (ICS) {
4743      ICS->setStandard();
4744      ICS->Standard.First = ICK_Identity;
4745      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
4746      ICS->Standard.Third = ICK_Identity;
4747      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
4748      ICS->Standard.setToType(0, T2);
4749      ICS->Standard.setToType(1, T1);
4750      ICS->Standard.setToType(2, T1);
4751      ICS->Standard.ReferenceBinding = true;
4752      ICS->Standard.DirectBinding = false;
4753      ICS->Standard.RRefBinding = isRValRef;
4754      ICS->Standard.CopyConstructor = 0;
4755    } else {
4756      CastExpr::CastKind CK = CastExpr::CK_NoOp;
4757      if (DerivedToBase)
4758        CK = CastExpr::CK_DerivedToBase;
4759      else if(CheckExceptionSpecCompatibility(Init, T1))
4760        return true;
4761      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
4762    }
4763    return false;
4764  }
4765
4766  //       -- Otherwise, a temporary of type "cv1 T1" is created and
4767  //          initialized from the initializer expression using the
4768  //          rules for a non-reference copy initialization (8.5). The
4769  //          reference is then bound to the temporary. If T1 is
4770  //          reference-related to T2, cv1 must be the same
4771  //          cv-qualification as, or greater cv-qualification than,
4772  //          cv2; otherwise, the program is ill-formed.
4773  if (RefRelationship == Ref_Related) {
4774    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
4775    // we would be reference-compatible or reference-compatible with
4776    // added qualification. But that wasn't the case, so the reference
4777    // initialization fails.
4778    if (!ICS)
4779      Diag(DeclLoc, diag::err_reference_init_drops_quals)
4780        << T1 << int(InitLvalue != Expr::LV_Valid)
4781        << T2 << Init->getSourceRange();
4782    return true;
4783  }
4784
4785  // If at least one of the types is a class type, the types are not
4786  // related, and we aren't allowed any user conversions, the
4787  // reference binding fails. This case is important for breaking
4788  // recursion, since TryImplicitConversion below will attempt to
4789  // create a temporary through the use of a copy constructor.
4790  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
4791      (T1->isRecordType() || T2->isRecordType())) {
4792    if (!ICS)
4793      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
4794        << DeclType << Init->getType() << AA_Initializing << Init->getSourceRange();
4795    return true;
4796  }
4797
4798  // Actually try to convert the initializer to T1.
4799  if (ICS) {
4800    // C++ [over.ics.ref]p2:
4801    //
4802    //   When a parameter of reference type is not bound directly to
4803    //   an argument expression, the conversion sequence is the one
4804    //   required to convert the argument expression to the
4805    //   underlying type of the reference according to
4806    //   13.3.3.1. Conceptually, this conversion sequence corresponds
4807    //   to copy-initializing a temporary of the underlying type with
4808    //   the argument expression. Any difference in top-level
4809    //   cv-qualification is subsumed by the initialization itself
4810    //   and does not constitute a conversion.
4811    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
4812                                 /*AllowExplicit=*/false,
4813                                 /*ForceRValue=*/false,
4814                                 /*InOverloadResolution=*/false);
4815
4816    // Of course, that's still a reference binding.
4817    if (ICS->isStandard()) {
4818      ICS->Standard.ReferenceBinding = true;
4819      ICS->Standard.RRefBinding = isRValRef;
4820    } else if (ICS->isUserDefined()) {
4821      ICS->UserDefined.After.ReferenceBinding = true;
4822      ICS->UserDefined.After.RRefBinding = isRValRef;
4823    }
4824    return ICS->isBad();
4825  } else {
4826    ImplicitConversionSequence Conversions;
4827    bool badConversion = PerformImplicitConversion(Init, T1, AA_Initializing,
4828                                                   false, false,
4829                                                   Conversions);
4830    if (badConversion) {
4831      if (Conversions.isAmbiguous()) {
4832        Diag(DeclLoc,
4833             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
4834        for (int j = Conversions.Ambiguous.conversions().size()-1;
4835             j >= 0; j--) {
4836          FunctionDecl *Func = Conversions.Ambiguous.conversions()[j];
4837          NoteOverloadCandidate(Func);
4838        }
4839      }
4840      else {
4841        if (isRValRef)
4842          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
4843            << Init->getSourceRange();
4844        else
4845          Diag(DeclLoc, diag::err_invalid_initialization)
4846            << DeclType << Init->getType() << Init->getSourceRange();
4847      }
4848    }
4849    return badConversion;
4850  }
4851}
4852
4853static inline bool
4854CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4855                                       const FunctionDecl *FnDecl) {
4856  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4857  if (isa<NamespaceDecl>(DC)) {
4858    return SemaRef.Diag(FnDecl->getLocation(),
4859                        diag::err_operator_new_delete_declared_in_namespace)
4860      << FnDecl->getDeclName();
4861  }
4862
4863  if (isa<TranslationUnitDecl>(DC) &&
4864      FnDecl->getStorageClass() == FunctionDecl::Static) {
4865    return SemaRef.Diag(FnDecl->getLocation(),
4866                        diag::err_operator_new_delete_declared_static)
4867      << FnDecl->getDeclName();
4868  }
4869
4870  return false;
4871}
4872
4873static inline bool
4874CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4875                            CanQualType ExpectedResultType,
4876                            CanQualType ExpectedFirstParamType,
4877                            unsigned DependentParamTypeDiag,
4878                            unsigned InvalidParamTypeDiag) {
4879  QualType ResultType =
4880    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4881
4882  // Check that the result type is not dependent.
4883  if (ResultType->isDependentType())
4884    return SemaRef.Diag(FnDecl->getLocation(),
4885                        diag::err_operator_new_delete_dependent_result_type)
4886    << FnDecl->getDeclName() << ExpectedResultType;
4887
4888  // Check that the result type is what we expect.
4889  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4890    return SemaRef.Diag(FnDecl->getLocation(),
4891                        diag::err_operator_new_delete_invalid_result_type)
4892    << FnDecl->getDeclName() << ExpectedResultType;
4893
4894  // A function template must have at least 2 parameters.
4895  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4896    return SemaRef.Diag(FnDecl->getLocation(),
4897                      diag::err_operator_new_delete_template_too_few_parameters)
4898        << FnDecl->getDeclName();
4899
4900  // The function decl must have at least 1 parameter.
4901  if (FnDecl->getNumParams() == 0)
4902    return SemaRef.Diag(FnDecl->getLocation(),
4903                        diag::err_operator_new_delete_too_few_parameters)
4904      << FnDecl->getDeclName();
4905
4906  // Check the the first parameter type is not dependent.
4907  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4908  if (FirstParamType->isDependentType())
4909    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4910      << FnDecl->getDeclName() << ExpectedFirstParamType;
4911
4912  // Check that the first parameter type is what we expect.
4913  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4914      ExpectedFirstParamType)
4915    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4916    << FnDecl->getDeclName() << ExpectedFirstParamType;
4917
4918  return false;
4919}
4920
4921static bool
4922CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4923  // C++ [basic.stc.dynamic.allocation]p1:
4924  //   A program is ill-formed if an allocation function is declared in a
4925  //   namespace scope other than global scope or declared static in global
4926  //   scope.
4927  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4928    return true;
4929
4930  CanQualType SizeTy =
4931    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4932
4933  // C++ [basic.stc.dynamic.allocation]p1:
4934  //  The return type shall be void*. The first parameter shall have type
4935  //  std::size_t.
4936  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4937                                  SizeTy,
4938                                  diag::err_operator_new_dependent_param_type,
4939                                  diag::err_operator_new_param_type))
4940    return true;
4941
4942  // C++ [basic.stc.dynamic.allocation]p1:
4943  //  The first parameter shall not have an associated default argument.
4944  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4945    return SemaRef.Diag(FnDecl->getLocation(),
4946                        diag::err_operator_new_default_arg)
4947      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4948
4949  return false;
4950}
4951
4952static bool
4953CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4954  // C++ [basic.stc.dynamic.deallocation]p1:
4955  //   A program is ill-formed if deallocation functions are declared in a
4956  //   namespace scope other than global scope or declared static in global
4957  //   scope.
4958  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4959    return true;
4960
4961  // C++ [basic.stc.dynamic.deallocation]p2:
4962  //   Each deallocation function shall return void and its first parameter
4963  //   shall be void*.
4964  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4965                                  SemaRef.Context.VoidPtrTy,
4966                                 diag::err_operator_delete_dependent_param_type,
4967                                 diag::err_operator_delete_param_type))
4968    return true;
4969
4970  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4971  if (FirstParamType->isDependentType())
4972    return SemaRef.Diag(FnDecl->getLocation(),
4973                        diag::err_operator_delete_dependent_param_type)
4974    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4975
4976  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4977      SemaRef.Context.VoidPtrTy)
4978    return SemaRef.Diag(FnDecl->getLocation(),
4979                        diag::err_operator_delete_param_type)
4980      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4981
4982  return false;
4983}
4984
4985/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4986/// of this overloaded operator is well-formed. If so, returns false;
4987/// otherwise, emits appropriate diagnostics and returns true.
4988bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4989  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4990         "Expected an overloaded operator declaration");
4991
4992  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4993
4994  // C++ [over.oper]p5:
4995  //   The allocation and deallocation functions, operator new,
4996  //   operator new[], operator delete and operator delete[], are
4997  //   described completely in 3.7.3. The attributes and restrictions
4998  //   found in the rest of this subclause do not apply to them unless
4999  //   explicitly stated in 3.7.3.
5000  if (Op == OO_Delete || Op == OO_Array_Delete)
5001    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5002
5003  if (Op == OO_New || Op == OO_Array_New)
5004    return CheckOperatorNewDeclaration(*this, FnDecl);
5005
5006  // C++ [over.oper]p6:
5007  //   An operator function shall either be a non-static member
5008  //   function or be a non-member function and have at least one
5009  //   parameter whose type is a class, a reference to a class, an
5010  //   enumeration, or a reference to an enumeration.
5011  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5012    if (MethodDecl->isStatic())
5013      return Diag(FnDecl->getLocation(),
5014                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5015  } else {
5016    bool ClassOrEnumParam = false;
5017    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5018                                   ParamEnd = FnDecl->param_end();
5019         Param != ParamEnd; ++Param) {
5020      QualType ParamType = (*Param)->getType().getNonReferenceType();
5021      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5022          ParamType->isEnumeralType()) {
5023        ClassOrEnumParam = true;
5024        break;
5025      }
5026    }
5027
5028    if (!ClassOrEnumParam)
5029      return Diag(FnDecl->getLocation(),
5030                  diag::err_operator_overload_needs_class_or_enum)
5031        << FnDecl->getDeclName();
5032  }
5033
5034  // C++ [over.oper]p8:
5035  //   An operator function cannot have default arguments (8.3.6),
5036  //   except where explicitly stated below.
5037  //
5038  // Only the function-call operator allows default arguments
5039  // (C++ [over.call]p1).
5040  if (Op != OO_Call) {
5041    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5042         Param != FnDecl->param_end(); ++Param) {
5043      if ((*Param)->hasDefaultArg())
5044        return Diag((*Param)->getLocation(),
5045                    diag::err_operator_overload_default_arg)
5046          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5047    }
5048  }
5049
5050  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5051    { false, false, false }
5052#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5053    , { Unary, Binary, MemberOnly }
5054#include "clang/Basic/OperatorKinds.def"
5055  };
5056
5057  bool CanBeUnaryOperator = OperatorUses[Op][0];
5058  bool CanBeBinaryOperator = OperatorUses[Op][1];
5059  bool MustBeMemberOperator = OperatorUses[Op][2];
5060
5061  // C++ [over.oper]p8:
5062  //   [...] Operator functions cannot have more or fewer parameters
5063  //   than the number required for the corresponding operator, as
5064  //   described in the rest of this subclause.
5065  unsigned NumParams = FnDecl->getNumParams()
5066                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5067  if (Op != OO_Call &&
5068      ((NumParams == 1 && !CanBeUnaryOperator) ||
5069       (NumParams == 2 && !CanBeBinaryOperator) ||
5070       (NumParams < 1) || (NumParams > 2))) {
5071    // We have the wrong number of parameters.
5072    unsigned ErrorKind;
5073    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5074      ErrorKind = 2;  // 2 -> unary or binary.
5075    } else if (CanBeUnaryOperator) {
5076      ErrorKind = 0;  // 0 -> unary
5077    } else {
5078      assert(CanBeBinaryOperator &&
5079             "All non-call overloaded operators are unary or binary!");
5080      ErrorKind = 1;  // 1 -> binary
5081    }
5082
5083    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5084      << FnDecl->getDeclName() << NumParams << ErrorKind;
5085  }
5086
5087  // Overloaded operators other than operator() cannot be variadic.
5088  if (Op != OO_Call &&
5089      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5090    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5091      << FnDecl->getDeclName();
5092  }
5093
5094  // Some operators must be non-static member functions.
5095  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5096    return Diag(FnDecl->getLocation(),
5097                diag::err_operator_overload_must_be_member)
5098      << FnDecl->getDeclName();
5099  }
5100
5101  // C++ [over.inc]p1:
5102  //   The user-defined function called operator++ implements the
5103  //   prefix and postfix ++ operator. If this function is a member
5104  //   function with no parameters, or a non-member function with one
5105  //   parameter of class or enumeration type, it defines the prefix
5106  //   increment operator ++ for objects of that type. If the function
5107  //   is a member function with one parameter (which shall be of type
5108  //   int) or a non-member function with two parameters (the second
5109  //   of which shall be of type int), it defines the postfix
5110  //   increment operator ++ for objects of that type.
5111  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5112    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5113    bool ParamIsInt = false;
5114    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5115      ParamIsInt = BT->getKind() == BuiltinType::Int;
5116
5117    if (!ParamIsInt)
5118      return Diag(LastParam->getLocation(),
5119                  diag::err_operator_overload_post_incdec_must_be_int)
5120        << LastParam->getType() << (Op == OO_MinusMinus);
5121  }
5122
5123  // Notify the class if it got an assignment operator.
5124  if (Op == OO_Equal) {
5125    // Would have returned earlier otherwise.
5126    assert(isa<CXXMethodDecl>(FnDecl) &&
5127      "Overloaded = not member, but not filtered.");
5128    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5129    Method->getParent()->addedAssignmentOperator(Context, Method);
5130  }
5131
5132  return false;
5133}
5134
5135/// CheckLiteralOperatorDeclaration - Check whether the declaration
5136/// of this literal operator function is well-formed. If so, returns
5137/// false; otherwise, emits appropriate diagnostics and returns true.
5138bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5139  DeclContext *DC = FnDecl->getDeclContext();
5140  Decl::Kind Kind = DC->getDeclKind();
5141  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5142      Kind != Decl::LinkageSpec) {
5143    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5144      << FnDecl->getDeclName();
5145    return true;
5146  }
5147
5148  bool Valid = false;
5149
5150  // template <char...> type operator "" name() is the only valid template
5151  // signature, and the only valid signature with no parameters.
5152  if (FnDecl->param_size() == 0) {
5153    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5154      // Must have only one template parameter
5155      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5156      if (Params->size() == 1) {
5157        NonTypeTemplateParmDecl *PmDecl =
5158          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5159
5160        // The template parameter must be a char parameter pack.
5161        // FIXME: This test will always fail because non-type parameter packs
5162        //   have not been implemented.
5163        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5164            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5165          Valid = true;
5166      }
5167    }
5168  } else {
5169    // Check the first parameter
5170    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5171
5172    QualType T = (*Param)->getType();
5173
5174    // unsigned long long int, long double, and any character type are allowed
5175    // as the only parameters.
5176    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5177        Context.hasSameType(T, Context.LongDoubleTy) ||
5178        Context.hasSameType(T, Context.CharTy) ||
5179        Context.hasSameType(T, Context.WCharTy) ||
5180        Context.hasSameType(T, Context.Char16Ty) ||
5181        Context.hasSameType(T, Context.Char32Ty)) {
5182      if (++Param == FnDecl->param_end())
5183        Valid = true;
5184      goto FinishedParams;
5185    }
5186
5187    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5188    const PointerType *PT = T->getAs<PointerType>();
5189    if (!PT)
5190      goto FinishedParams;
5191    T = PT->getPointeeType();
5192    if (!T.isConstQualified())
5193      goto FinishedParams;
5194    T = T.getUnqualifiedType();
5195
5196    // Move on to the second parameter;
5197    ++Param;
5198
5199    // If there is no second parameter, the first must be a const char *
5200    if (Param == FnDecl->param_end()) {
5201      if (Context.hasSameType(T, Context.CharTy))
5202        Valid = true;
5203      goto FinishedParams;
5204    }
5205
5206    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5207    // are allowed as the first parameter to a two-parameter function
5208    if (!(Context.hasSameType(T, Context.CharTy) ||
5209          Context.hasSameType(T, Context.WCharTy) ||
5210          Context.hasSameType(T, Context.Char16Ty) ||
5211          Context.hasSameType(T, Context.Char32Ty)))
5212      goto FinishedParams;
5213
5214    // The second and final parameter must be an std::size_t
5215    T = (*Param)->getType().getUnqualifiedType();
5216    if (Context.hasSameType(T, Context.getSizeType()) &&
5217        ++Param == FnDecl->param_end())
5218      Valid = true;
5219  }
5220
5221  // FIXME: This diagnostic is absolutely terrible.
5222FinishedParams:
5223  if (!Valid) {
5224    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5225      << FnDecl->getDeclName();
5226    return true;
5227  }
5228
5229  return false;
5230}
5231
5232/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5233/// linkage specification, including the language and (if present)
5234/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5235/// the location of the language string literal, which is provided
5236/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5237/// the '{' brace. Otherwise, this linkage specification does not
5238/// have any braces.
5239Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5240                                                     SourceLocation ExternLoc,
5241                                                     SourceLocation LangLoc,
5242                                                     const char *Lang,
5243                                                     unsigned StrSize,
5244                                                     SourceLocation LBraceLoc) {
5245  LinkageSpecDecl::LanguageIDs Language;
5246  if (strncmp(Lang, "\"C\"", StrSize) == 0)
5247    Language = LinkageSpecDecl::lang_c;
5248  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
5249    Language = LinkageSpecDecl::lang_cxx;
5250  else {
5251    Diag(LangLoc, diag::err_bad_language);
5252    return DeclPtrTy();
5253  }
5254
5255  // FIXME: Add all the various semantics of linkage specifications
5256
5257  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5258                                               LangLoc, Language,
5259                                               LBraceLoc.isValid());
5260  CurContext->addDecl(D);
5261  PushDeclContext(S, D);
5262  return DeclPtrTy::make(D);
5263}
5264
5265/// ActOnFinishLinkageSpecification - Completely the definition of
5266/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5267/// valid, it's the position of the closing '}' brace in a linkage
5268/// specification that uses braces.
5269Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5270                                                      DeclPtrTy LinkageSpec,
5271                                                      SourceLocation RBraceLoc) {
5272  if (LinkageSpec)
5273    PopDeclContext();
5274  return LinkageSpec;
5275}
5276
5277/// \brief Perform semantic analysis for the variable declaration that
5278/// occurs within a C++ catch clause, returning the newly-created
5279/// variable.
5280VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5281                                         TypeSourceInfo *TInfo,
5282                                         IdentifierInfo *Name,
5283                                         SourceLocation Loc,
5284                                         SourceRange Range) {
5285  bool Invalid = false;
5286
5287  // Arrays and functions decay.
5288  if (ExDeclType->isArrayType())
5289    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5290  else if (ExDeclType->isFunctionType())
5291    ExDeclType = Context.getPointerType(ExDeclType);
5292
5293  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5294  // The exception-declaration shall not denote a pointer or reference to an
5295  // incomplete type, other than [cv] void*.
5296  // N2844 forbids rvalue references.
5297  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5298    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5299    Invalid = true;
5300  }
5301
5302  // GCC allows catching pointers and references to incomplete types
5303  // as an extension; so do we, but we warn by default.
5304
5305  QualType BaseType = ExDeclType;
5306  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5307  unsigned DK = diag::err_catch_incomplete;
5308  bool IncompleteCatchIsInvalid = true;
5309  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5310    BaseType = Ptr->getPointeeType();
5311    Mode = 1;
5312    DK = diag::ext_catch_incomplete_ptr;
5313    IncompleteCatchIsInvalid = false;
5314  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5315    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5316    BaseType = Ref->getPointeeType();
5317    Mode = 2;
5318    DK = diag::ext_catch_incomplete_ref;
5319    IncompleteCatchIsInvalid = false;
5320  }
5321  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5322      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5323      IncompleteCatchIsInvalid)
5324    Invalid = true;
5325
5326  if (!Invalid && !ExDeclType->isDependentType() &&
5327      RequireNonAbstractType(Loc, ExDeclType,
5328                             diag::err_abstract_type_in_decl,
5329                             AbstractVariableType))
5330    Invalid = true;
5331
5332  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5333                                    Name, ExDeclType, TInfo, VarDecl::None);
5334
5335  if (!Invalid) {
5336    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5337      // C++ [except.handle]p16:
5338      //   The object declared in an exception-declaration or, if the
5339      //   exception-declaration does not specify a name, a temporary (12.2) is
5340      //   copy-initialized (8.5) from the exception object. [...]
5341      //   The object is destroyed when the handler exits, after the destruction
5342      //   of any automatic objects initialized within the handler.
5343      //
5344      // We just pretend to initialize the object with itself, then make sure
5345      // it can be destroyed later.
5346      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5347      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5348                                            Loc, ExDeclType, 0);
5349      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5350                                                               SourceLocation());
5351      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5352      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5353                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5354      if (Result.isInvalid())
5355        Invalid = true;
5356      else
5357        FinalizeVarWithDestructor(ExDecl, RecordTy);
5358    }
5359  }
5360
5361  if (Invalid)
5362    ExDecl->setInvalidDecl();
5363
5364  return ExDecl;
5365}
5366
5367/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5368/// handler.
5369Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5370  TypeSourceInfo *TInfo = 0;
5371  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5372
5373  bool Invalid = D.isInvalidType();
5374  IdentifierInfo *II = D.getIdentifier();
5375  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
5376    // The scope should be freshly made just for us. There is just no way
5377    // it contains any previous declaration.
5378    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5379    if (PrevDecl->isTemplateParameter()) {
5380      // Maybe we will complain about the shadowed template parameter.
5381      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5382    }
5383  }
5384
5385  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5386    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5387      << D.getCXXScopeSpec().getRange();
5388    Invalid = true;
5389  }
5390
5391  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5392                                              D.getIdentifier(),
5393                                              D.getIdentifierLoc(),
5394                                            D.getDeclSpec().getSourceRange());
5395
5396  if (Invalid)
5397    ExDecl->setInvalidDecl();
5398
5399  // Add the exception declaration into this scope.
5400  if (II)
5401    PushOnScopeChains(ExDecl, S);
5402  else
5403    CurContext->addDecl(ExDecl);
5404
5405  ProcessDeclAttributes(S, ExDecl, D);
5406  return DeclPtrTy::make(ExDecl);
5407}
5408
5409Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5410                                                   ExprArg assertexpr,
5411                                                   ExprArg assertmessageexpr) {
5412  Expr *AssertExpr = (Expr *)assertexpr.get();
5413  StringLiteral *AssertMessage =
5414    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5415
5416  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5417    llvm::APSInt Value(32);
5418    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5419      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5420        AssertExpr->getSourceRange();
5421      return DeclPtrTy();
5422    }
5423
5424    if (Value == 0) {
5425      Diag(AssertLoc, diag::err_static_assert_failed)
5426        << AssertMessage->getString() << AssertExpr->getSourceRange();
5427    }
5428  }
5429
5430  assertexpr.release();
5431  assertmessageexpr.release();
5432  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5433                                        AssertExpr, AssertMessage);
5434
5435  CurContext->addDecl(Decl);
5436  return DeclPtrTy::make(Decl);
5437}
5438
5439/// \brief Perform semantic analysis of the given friend type declaration.
5440///
5441/// \returns A friend declaration that.
5442FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5443                                      TypeSourceInfo *TSInfo) {
5444  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5445
5446  QualType T = TSInfo->getType();
5447  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5448
5449  if (!getLangOptions().CPlusPlus0x) {
5450    // C++03 [class.friend]p2:
5451    //   An elaborated-type-specifier shall be used in a friend declaration
5452    //   for a class.*
5453    //
5454    //   * The class-key of the elaborated-type-specifier is required.
5455    if (!ActiveTemplateInstantiations.empty()) {
5456      // Do not complain about the form of friend template types during
5457      // template instantiation; we will already have complained when the
5458      // template was declared.
5459    } else if (!T->isElaboratedTypeSpecifier()) {
5460      // If we evaluated the type to a record type, suggest putting
5461      // a tag in front.
5462      if (const RecordType *RT = T->getAs<RecordType>()) {
5463        RecordDecl *RD = RT->getDecl();
5464
5465        std::string InsertionText = std::string(" ") + RD->getKindName();
5466
5467        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5468          << (unsigned) RD->getTagKind()
5469          << T
5470          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5471                                        InsertionText);
5472      } else {
5473        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5474          << T
5475          << SourceRange(FriendLoc, TypeRange.getEnd());
5476      }
5477    } else if (T->getAs<EnumType>()) {
5478      Diag(FriendLoc, diag::ext_enum_friend)
5479        << T
5480        << SourceRange(FriendLoc, TypeRange.getEnd());
5481    }
5482  }
5483
5484  // C++0x [class.friend]p3:
5485  //   If the type specifier in a friend declaration designates a (possibly
5486  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5487  //   the friend declaration is ignored.
5488
5489  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5490  // in [class.friend]p3 that we do not implement.
5491
5492  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5493}
5494
5495/// Handle a friend type declaration.  This works in tandem with
5496/// ActOnTag.
5497///
5498/// Notes on friend class templates:
5499///
5500/// We generally treat friend class declarations as if they were
5501/// declaring a class.  So, for example, the elaborated type specifier
5502/// in a friend declaration is required to obey the restrictions of a
5503/// class-head (i.e. no typedefs in the scope chain), template
5504/// parameters are required to match up with simple template-ids, &c.
5505/// However, unlike when declaring a template specialization, it's
5506/// okay to refer to a template specialization without an empty
5507/// template parameter declaration, e.g.
5508///   friend class A<T>::B<unsigned>;
5509/// We permit this as a special case; if there are any template
5510/// parameters present at all, require proper matching, i.e.
5511///   template <> template <class T> friend class A<int>::B;
5512Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5513                                          MultiTemplateParamsArg TempParams) {
5514  SourceLocation Loc = DS.getSourceRange().getBegin();
5515
5516  assert(DS.isFriendSpecified());
5517  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5518
5519  // Try to convert the decl specifier to a type.  This works for
5520  // friend templates because ActOnTag never produces a ClassTemplateDecl
5521  // for a TUK_Friend.
5522  Declarator TheDeclarator(DS, Declarator::MemberContext);
5523  TypeSourceInfo *TSI;
5524  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5525  if (TheDeclarator.isInvalidType())
5526    return DeclPtrTy();
5527
5528  if (!TSI)
5529    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5530
5531  // This is definitely an error in C++98.  It's probably meant to
5532  // be forbidden in C++0x, too, but the specification is just
5533  // poorly written.
5534  //
5535  // The problem is with declarations like the following:
5536  //   template <T> friend A<T>::foo;
5537  // where deciding whether a class C is a friend or not now hinges
5538  // on whether there exists an instantiation of A that causes
5539  // 'foo' to equal C.  There are restrictions on class-heads
5540  // (which we declare (by fiat) elaborated friend declarations to
5541  // be) that makes this tractable.
5542  //
5543  // FIXME: handle "template <> friend class A<T>;", which
5544  // is possibly well-formed?  Who even knows?
5545  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5546    Diag(Loc, diag::err_tagless_friend_type_template)
5547      << DS.getSourceRange();
5548    return DeclPtrTy();
5549  }
5550
5551  // C++98 [class.friend]p1: A friend of a class is a function
5552  //   or class that is not a member of the class . . .
5553  // This is fixed in DR77, which just barely didn't make the C++03
5554  // deadline.  It's also a very silly restriction that seriously
5555  // affects inner classes and which nobody else seems to implement;
5556  // thus we never diagnose it, not even in -pedantic.
5557  //
5558  // But note that we could warn about it: it's always useless to
5559  // friend one of your own members (it's not, however, worthless to
5560  // friend a member of an arbitrary specialization of your template).
5561
5562  Decl *D;
5563  if (unsigned NumTempParamLists = TempParams.size())
5564    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5565                                   NumTempParamLists,
5566                                 (TemplateParameterList**) TempParams.release(),
5567                                   TSI,
5568                                   DS.getFriendSpecLoc());
5569  else
5570    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5571
5572  if (!D)
5573    return DeclPtrTy();
5574
5575  D->setAccess(AS_public);
5576  CurContext->addDecl(D);
5577
5578  return DeclPtrTy::make(D);
5579}
5580
5581Sema::DeclPtrTy
5582Sema::ActOnFriendFunctionDecl(Scope *S,
5583                              Declarator &D,
5584                              bool IsDefinition,
5585                              MultiTemplateParamsArg TemplateParams) {
5586  const DeclSpec &DS = D.getDeclSpec();
5587
5588  assert(DS.isFriendSpecified());
5589  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5590
5591  SourceLocation Loc = D.getIdentifierLoc();
5592  TypeSourceInfo *TInfo = 0;
5593  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5594
5595  // C++ [class.friend]p1
5596  //   A friend of a class is a function or class....
5597  // Note that this sees through typedefs, which is intended.
5598  // It *doesn't* see through dependent types, which is correct
5599  // according to [temp.arg.type]p3:
5600  //   If a declaration acquires a function type through a
5601  //   type dependent on a template-parameter and this causes
5602  //   a declaration that does not use the syntactic form of a
5603  //   function declarator to have a function type, the program
5604  //   is ill-formed.
5605  if (!T->isFunctionType()) {
5606    Diag(Loc, diag::err_unexpected_friend);
5607
5608    // It might be worthwhile to try to recover by creating an
5609    // appropriate declaration.
5610    return DeclPtrTy();
5611  }
5612
5613  // C++ [namespace.memdef]p3
5614  //  - If a friend declaration in a non-local class first declares a
5615  //    class or function, the friend class or function is a member
5616  //    of the innermost enclosing namespace.
5617  //  - The name of the friend is not found by simple name lookup
5618  //    until a matching declaration is provided in that namespace
5619  //    scope (either before or after the class declaration granting
5620  //    friendship).
5621  //  - If a friend function is called, its name may be found by the
5622  //    name lookup that considers functions from namespaces and
5623  //    classes associated with the types of the function arguments.
5624  //  - When looking for a prior declaration of a class or a function
5625  //    declared as a friend, scopes outside the innermost enclosing
5626  //    namespace scope are not considered.
5627
5628  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5629  DeclarationName Name = GetNameForDeclarator(D);
5630  assert(Name);
5631
5632  // The context we found the declaration in, or in which we should
5633  // create the declaration.
5634  DeclContext *DC;
5635
5636  // FIXME: handle local classes
5637
5638  // Recover from invalid scope qualifiers as if they just weren't there.
5639  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5640                        ForRedeclaration);
5641  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5642    // FIXME: RequireCompleteDeclContext
5643    DC = computeDeclContext(ScopeQual);
5644
5645    // FIXME: handle dependent contexts
5646    if (!DC) return DeclPtrTy();
5647
5648    LookupQualifiedName(Previous, DC);
5649
5650    // If searching in that context implicitly found a declaration in
5651    // a different context, treat it like it wasn't found at all.
5652    // TODO: better diagnostics for this case.  Suggesting the right
5653    // qualified scope would be nice...
5654    // FIXME: getRepresentativeDecl() is not right here at all
5655    if (Previous.empty() ||
5656        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5657      D.setInvalidType();
5658      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5659      return DeclPtrTy();
5660    }
5661
5662    // C++ [class.friend]p1: A friend of a class is a function or
5663    //   class that is not a member of the class . . .
5664    if (DC->Equals(CurContext))
5665      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5666
5667  // Otherwise walk out to the nearest namespace scope looking for matches.
5668  } else {
5669    // TODO: handle local class contexts.
5670
5671    DC = CurContext;
5672    while (true) {
5673      // Skip class contexts.  If someone can cite chapter and verse
5674      // for this behavior, that would be nice --- it's what GCC and
5675      // EDG do, and it seems like a reasonable intent, but the spec
5676      // really only says that checks for unqualified existing
5677      // declarations should stop at the nearest enclosing namespace,
5678      // not that they should only consider the nearest enclosing
5679      // namespace.
5680      while (DC->isRecord())
5681        DC = DC->getParent();
5682
5683      LookupQualifiedName(Previous, DC);
5684
5685      // TODO: decide what we think about using declarations.
5686      if (!Previous.empty())
5687        break;
5688
5689      if (DC->isFileContext()) break;
5690      DC = DC->getParent();
5691    }
5692
5693    // C++ [class.friend]p1: A friend of a class is a function or
5694    //   class that is not a member of the class . . .
5695    // C++0x changes this for both friend types and functions.
5696    // Most C++ 98 compilers do seem to give an error here, so
5697    // we do, too.
5698    if (!Previous.empty() && DC->Equals(CurContext)
5699        && !getLangOptions().CPlusPlus0x)
5700      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5701  }
5702
5703  if (DC->isFileContext()) {
5704    // This implies that it has to be an operator or function.
5705    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5706        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5707        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5708      Diag(Loc, diag::err_introducing_special_friend) <<
5709        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5710         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5711      return DeclPtrTy();
5712    }
5713  }
5714
5715  bool Redeclaration = false;
5716  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5717                                          move(TemplateParams),
5718                                          IsDefinition,
5719                                          Redeclaration);
5720  if (!ND) return DeclPtrTy();
5721
5722  assert(ND->getDeclContext() == DC);
5723  assert(ND->getLexicalDeclContext() == CurContext);
5724
5725  // Add the function declaration to the appropriate lookup tables,
5726  // adjusting the redeclarations list as necessary.  We don't
5727  // want to do this yet if the friending class is dependent.
5728  //
5729  // Also update the scope-based lookup if the target context's
5730  // lookup context is in lexical scope.
5731  if (!CurContext->isDependentContext()) {
5732    DC = DC->getLookupContext();
5733    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5734    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5735      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5736  }
5737
5738  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5739                                       D.getIdentifierLoc(), ND,
5740                                       DS.getFriendSpecLoc());
5741  FrD->setAccess(AS_public);
5742  CurContext->addDecl(FrD);
5743
5744  return DeclPtrTy::make(ND);
5745}
5746
5747void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5748  AdjustDeclIfTemplate(dcl);
5749
5750  Decl *Dcl = dcl.getAs<Decl>();
5751  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5752  if (!Fn) {
5753    Diag(DelLoc, diag::err_deleted_non_function);
5754    return;
5755  }
5756  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5757    Diag(DelLoc, diag::err_deleted_decl_not_first);
5758    Diag(Prev->getLocation(), diag::note_previous_declaration);
5759    // If the declaration wasn't the first, we delete the function anyway for
5760    // recovery.
5761  }
5762  Fn->setDeleted();
5763}
5764
5765static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5766  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5767       ++CI) {
5768    Stmt *SubStmt = *CI;
5769    if (!SubStmt)
5770      continue;
5771    if (isa<ReturnStmt>(SubStmt))
5772      Self.Diag(SubStmt->getSourceRange().getBegin(),
5773           diag::err_return_in_constructor_handler);
5774    if (!isa<Expr>(SubStmt))
5775      SearchForReturnInStmt(Self, SubStmt);
5776  }
5777}
5778
5779void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5780  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5781    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5782    SearchForReturnInStmt(*this, Handler);
5783  }
5784}
5785
5786bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5787                                             const CXXMethodDecl *Old) {
5788  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5789  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5790
5791  if (Context.hasSameType(NewTy, OldTy) ||
5792      NewTy->isDependentType() || OldTy->isDependentType())
5793    return false;
5794
5795  // Check if the return types are covariant
5796  QualType NewClassTy, OldClassTy;
5797
5798  /// Both types must be pointers or references to classes.
5799  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5800    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5801      NewClassTy = NewPT->getPointeeType();
5802      OldClassTy = OldPT->getPointeeType();
5803    }
5804  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5805    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5806      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5807        NewClassTy = NewRT->getPointeeType();
5808        OldClassTy = OldRT->getPointeeType();
5809      }
5810    }
5811  }
5812
5813  // The return types aren't either both pointers or references to a class type.
5814  if (NewClassTy.isNull()) {
5815    Diag(New->getLocation(),
5816         diag::err_different_return_type_for_overriding_virtual_function)
5817      << New->getDeclName() << NewTy << OldTy;
5818    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5819
5820    return true;
5821  }
5822
5823  // C++ [class.virtual]p6:
5824  //   If the return type of D::f differs from the return type of B::f, the
5825  //   class type in the return type of D::f shall be complete at the point of
5826  //   declaration of D::f or shall be the class type D.
5827  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5828    if (!RT->isBeingDefined() &&
5829        RequireCompleteType(New->getLocation(), NewClassTy,
5830                            PDiag(diag::err_covariant_return_incomplete)
5831                              << New->getDeclName()))
5832    return true;
5833  }
5834
5835  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5836    // Check if the new class derives from the old class.
5837    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5838      Diag(New->getLocation(),
5839           diag::err_covariant_return_not_derived)
5840      << New->getDeclName() << NewTy << OldTy;
5841      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5842      return true;
5843    }
5844
5845    // Check if we the conversion from derived to base is valid.
5846    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5847                      diag::err_covariant_return_inaccessible_base,
5848                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5849                      // FIXME: Should this point to the return type?
5850                      New->getLocation(), SourceRange(), New->getDeclName())) {
5851      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5852      return true;
5853    }
5854  }
5855
5856  // The qualifiers of the return types must be the same.
5857  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5858    Diag(New->getLocation(),
5859         diag::err_covariant_return_type_different_qualifications)
5860    << New->getDeclName() << NewTy << OldTy;
5861    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5862    return true;
5863  };
5864
5865
5866  // The new class type must have the same or less qualifiers as the old type.
5867  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5868    Diag(New->getLocation(),
5869         diag::err_covariant_return_type_class_type_more_qualified)
5870    << New->getDeclName() << NewTy << OldTy;
5871    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5872    return true;
5873  };
5874
5875  return false;
5876}
5877
5878bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5879                                             const CXXMethodDecl *Old)
5880{
5881  if (Old->hasAttr<FinalAttr>()) {
5882    Diag(New->getLocation(), diag::err_final_function_overridden)
5883      << New->getDeclName();
5884    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5885    return true;
5886  }
5887
5888  return false;
5889}
5890
5891/// \brief Mark the given method pure.
5892///
5893/// \param Method the method to be marked pure.
5894///
5895/// \param InitRange the source range that covers the "0" initializer.
5896bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5897  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5898    Method->setPure();
5899
5900    // A class is abstract if at least one function is pure virtual.
5901    Method->getParent()->setAbstract(true);
5902    return false;
5903  }
5904
5905  if (!Method->isInvalidDecl())
5906    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5907      << Method->getDeclName() << InitRange;
5908  return true;
5909}
5910
5911/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5912/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5913/// is a fresh scope pushed for just this purpose.
5914///
5915/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5916/// static data member of class X, names should be looked up in the scope of
5917/// class X.
5918void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5919  // If there is no declaration, there was an error parsing it.
5920  Decl *D = Dcl.getAs<Decl>();
5921  if (D == 0) return;
5922
5923  // We should only get called for declarations with scope specifiers, like:
5924  //   int foo::bar;
5925  assert(D->isOutOfLine());
5926  EnterDeclaratorContext(S, D->getDeclContext());
5927}
5928
5929/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5930/// initializer for the out-of-line declaration 'Dcl'.
5931void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5932  // If there is no declaration, there was an error parsing it.
5933  Decl *D = Dcl.getAs<Decl>();
5934  if (D == 0) return;
5935
5936  assert(D->isOutOfLine());
5937  ExitDeclaratorContext(S);
5938}
5939
5940/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5941/// C++ if/switch/while/for statement.
5942/// e.g: "if (int x = f()) {...}"
5943Action::DeclResult
5944Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5945  // C++ 6.4p2:
5946  // The declarator shall not specify a function or an array.
5947  // The type-specifier-seq shall not contain typedef and shall not declare a
5948  // new class or enumeration.
5949  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5950         "Parser allowed 'typedef' as storage class of condition decl.");
5951
5952  TypeSourceInfo *TInfo = 0;
5953  TagDecl *OwnedTag = 0;
5954  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5955
5956  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5957                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5958                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5959    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5960      << D.getSourceRange();
5961    return DeclResult();
5962  } else if (OwnedTag && OwnedTag->isDefinition()) {
5963    // The type-specifier-seq shall not declare a new class or enumeration.
5964    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5965  }
5966
5967  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5968  if (!Dcl)
5969    return DeclResult();
5970
5971  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5972  VD->setDeclaredInCondition(true);
5973  return Dcl;
5974}
5975
5976static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5977  // Ignore dependent types.
5978  if (MD->isDependentContext())
5979    return false;
5980
5981  // Ignore declarations that are not definitions.
5982  if (!MD->isThisDeclarationADefinition())
5983    return false;
5984
5985  CXXRecordDecl *RD = MD->getParent();
5986
5987  // Ignore classes without a vtable.
5988  if (!RD->isDynamicClass())
5989    return false;
5990
5991  switch (MD->getParent()->getTemplateSpecializationKind()) {
5992  case TSK_Undeclared:
5993  case TSK_ExplicitSpecialization:
5994    // Classes that aren't instantiations of templates don't need their
5995    // virtual methods marked until we see the definition of the key
5996    // function.
5997    break;
5998
5999  case TSK_ImplicitInstantiation:
6000    // This is a constructor of a class template; mark all of the virtual
6001    // members as referenced to ensure that they get instantiatied.
6002    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
6003      return true;
6004    break;
6005
6006  case TSK_ExplicitInstantiationDeclaration:
6007    return false;
6008
6009  case TSK_ExplicitInstantiationDefinition:
6010    // This is method of a explicit instantiation; mark all of the virtual
6011    // members as referenced to ensure that they get instantiatied.
6012    return true;
6013  }
6014
6015  // Consider only out-of-line definitions of member functions. When we see
6016  // an inline definition, it's too early to compute the key function.
6017  if (!MD->isOutOfLine())
6018    return false;
6019
6020  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
6021
6022  // If there is no key function, we will need a copy of the vtable.
6023  if (!KeyFunction)
6024    return true;
6025
6026  // If this is the key function, we need to mark virtual members.
6027  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
6028    return true;
6029
6030  return false;
6031}
6032
6033void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
6034                                             CXXMethodDecl *MD) {
6035  CXXRecordDecl *RD = MD->getParent();
6036
6037  // We will need to mark all of the virtual members as referenced to build the
6038  // vtable.
6039  if (!needsVtable(MD, Context))
6040    return;
6041
6042  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
6043  if (kind == TSK_ImplicitInstantiation)
6044    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
6045  else
6046    MarkVirtualMembersReferenced(Loc, RD);
6047}
6048
6049bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
6050  if (ClassesWithUnmarkedVirtualMembers.empty())
6051    return false;
6052
6053  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
6054    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
6055    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
6056    ClassesWithUnmarkedVirtualMembers.pop_back();
6057    MarkVirtualMembersReferenced(Loc, RD);
6058  }
6059
6060  return true;
6061}
6062
6063void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6064                                        const CXXRecordDecl *RD) {
6065  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6066       e = RD->method_end(); i != e; ++i) {
6067    CXXMethodDecl *MD = *i;
6068
6069    // C++ [basic.def.odr]p2:
6070    //   [...] A virtual member function is used if it is not pure. [...]
6071    if (MD->isVirtual() && !MD->isPure())
6072      MarkDeclarationReferenced(Loc, MD);
6073  }
6074
6075  // Only classes that have virtual bases need a VTT.
6076  if (RD->getNumVBases() == 0)
6077    return;
6078
6079  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6080           e = RD->bases_end(); i != e; ++i) {
6081    const CXXRecordDecl *Base =
6082        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6083    if (i->isVirtual())
6084      continue;
6085    if (Base->getNumVBases() == 0)
6086      continue;
6087    MarkVirtualMembersReferenced(Loc, Base);
6088  }
6089}
6090