SemaDeclCXX.cpp revision aa23d288be658cca59d2e128954a50e9ada4ef27
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++ [class.derived]p2:
525  //   If a class is marked with the class-virt-specifier final and it appears
526  //   as a base-type-specifier in a base-clause (10 class.derived), the program
527  //   is ill-formed.
528  if (CXXBaseDecl->isMarkedFinal()) {
529    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
530      << CXXBaseDecl->getDeclName();
531    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
532      << CXXBaseDecl->getDeclName();
533    return 0;
534  }
535
536  // FIXME: Get rid of this.
537  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
538  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
539    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
540    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
541      << BaseType;
542    return 0;
543  }
544
545  if (BaseDecl->isInvalidDecl())
546    Class->setInvalidDecl();
547
548  // Create the base specifier.
549  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
550                                        Class->getTagKind() == TTK_Class,
551                                        Access, TInfo, EllipsisLoc);
552}
553
554/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
555/// one entry in the base class list of a class specifier, for
556/// example:
557///    class foo : public bar, virtual private baz {
558/// 'public bar' and 'virtual private baz' are each base-specifiers.
559BaseResult
560Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
561                         bool Virtual, AccessSpecifier Access,
562                         ParsedType basetype, SourceLocation BaseLoc,
563                         SourceLocation EllipsisLoc) {
564  if (!classdecl)
565    return true;
566
567  AdjustDeclIfTemplate(classdecl);
568  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
569  if (!Class)
570    return true;
571
572  TypeSourceInfo *TInfo = 0;
573  GetTypeFromParser(basetype, &TInfo);
574
575  if (EllipsisLoc.isInvalid() &&
576      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
577                                      UPPC_BaseType))
578    return true;
579
580  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
581                                                      Virtual, Access, TInfo,
582                                                      EllipsisLoc))
583    return BaseSpec;
584
585  return true;
586}
587
588/// \brief Performs the actual work of attaching the given base class
589/// specifiers to a C++ class.
590bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
591                                unsigned NumBases) {
592 if (NumBases == 0)
593    return false;
594
595  // Used to keep track of which base types we have already seen, so
596  // that we can properly diagnose redundant direct base types. Note
597  // that the key is always the unqualified canonical type of the base
598  // class.
599  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
600
601  // Copy non-redundant base specifiers into permanent storage.
602  unsigned NumGoodBases = 0;
603  bool Invalid = false;
604  for (unsigned idx = 0; idx < NumBases; ++idx) {
605    QualType NewBaseType
606      = Context.getCanonicalType(Bases[idx]->getType());
607    NewBaseType = NewBaseType.getLocalUnqualifiedType();
608    if (!Class->hasObjectMember()) {
609      if (const RecordType *FDTTy =
610            NewBaseType.getTypePtr()->getAs<RecordType>())
611        if (FDTTy->getDecl()->hasObjectMember())
612          Class->setHasObjectMember(true);
613    }
614
615    if (KnownBaseTypes[NewBaseType]) {
616      // C++ [class.mi]p3:
617      //   A class shall not be specified as a direct base class of a
618      //   derived class more than once.
619      Diag(Bases[idx]->getSourceRange().getBegin(),
620           diag::err_duplicate_base_class)
621        << KnownBaseTypes[NewBaseType]->getType()
622        << Bases[idx]->getSourceRange();
623
624      // Delete the duplicate base class specifier; we're going to
625      // overwrite its pointer later.
626      Context.Deallocate(Bases[idx]);
627
628      Invalid = true;
629    } else {
630      // Okay, add this new base class.
631      KnownBaseTypes[NewBaseType] = Bases[idx];
632      Bases[NumGoodBases++] = Bases[idx];
633    }
634  }
635
636  // Attach the remaining base class specifiers to the derived class.
637  Class->setBases(Bases, NumGoodBases);
638
639  // Delete the remaining (good) base class specifiers, since their
640  // data has been copied into the CXXRecordDecl.
641  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
642    Context.Deallocate(Bases[idx]);
643
644  return Invalid;
645}
646
647/// ActOnBaseSpecifiers - Attach the given base specifiers to the
648/// class, after checking whether there are any duplicate base
649/// classes.
650void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
651                               unsigned NumBases) {
652  if (!ClassDecl || !Bases || !NumBases)
653    return;
654
655  AdjustDeclIfTemplate(ClassDecl);
656  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
657                       (CXXBaseSpecifier**)(Bases), NumBases);
658}
659
660static CXXRecordDecl *GetClassForType(QualType T) {
661  if (const RecordType *RT = T->getAs<RecordType>())
662    return cast<CXXRecordDecl>(RT->getDecl());
663  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
664    return ICT->getDecl();
665  else
666    return 0;
667}
668
669/// \brief Determine whether the type \p Derived is a C++ class that is
670/// derived from the type \p Base.
671bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
672  if (!getLangOptions().CPlusPlus)
673    return false;
674
675  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
676  if (!DerivedRD)
677    return false;
678
679  CXXRecordDecl *BaseRD = GetClassForType(Base);
680  if (!BaseRD)
681    return false;
682
683  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
684  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
685}
686
687/// \brief Determine whether the type \p Derived is a C++ class that is
688/// derived from the type \p Base.
689bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
690  if (!getLangOptions().CPlusPlus)
691    return false;
692
693  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
694  if (!DerivedRD)
695    return false;
696
697  CXXRecordDecl *BaseRD = GetClassForType(Base);
698  if (!BaseRD)
699    return false;
700
701  return DerivedRD->isDerivedFrom(BaseRD, Paths);
702}
703
704void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
705                              CXXCastPath &BasePathArray) {
706  assert(BasePathArray.empty() && "Base path array must be empty!");
707  assert(Paths.isRecordingPaths() && "Must record paths!");
708
709  const CXXBasePath &Path = Paths.front();
710
711  // We first go backward and check if we have a virtual base.
712  // FIXME: It would be better if CXXBasePath had the base specifier for
713  // the nearest virtual base.
714  unsigned Start = 0;
715  for (unsigned I = Path.size(); I != 0; --I) {
716    if (Path[I - 1].Base->isVirtual()) {
717      Start = I - 1;
718      break;
719    }
720  }
721
722  // Now add all bases.
723  for (unsigned I = Start, E = Path.size(); I != E; ++I)
724    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
725}
726
727/// \brief Determine whether the given base path includes a virtual
728/// base class.
729bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
730  for (CXXCastPath::const_iterator B = BasePath.begin(),
731                                BEnd = BasePath.end();
732       B != BEnd; ++B)
733    if ((*B)->isVirtual())
734      return true;
735
736  return false;
737}
738
739/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
740/// conversion (where Derived and Base are class types) is
741/// well-formed, meaning that the conversion is unambiguous (and
742/// that all of the base classes are accessible). Returns true
743/// and emits a diagnostic if the code is ill-formed, returns false
744/// otherwise. Loc is the location where this routine should point to
745/// if there is an error, and Range is the source range to highlight
746/// if there is an error.
747bool
748Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
749                                   unsigned InaccessibleBaseID,
750                                   unsigned AmbigiousBaseConvID,
751                                   SourceLocation Loc, SourceRange Range,
752                                   DeclarationName Name,
753                                   CXXCastPath *BasePath) {
754  // First, determine whether the path from Derived to Base is
755  // ambiguous. This is slightly more expensive than checking whether
756  // the Derived to Base conversion exists, because here we need to
757  // explore multiple paths to determine if there is an ambiguity.
758  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
759                     /*DetectVirtual=*/false);
760  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(DerivationOkay &&
762         "Can only be used with a derived-to-base conversion");
763  (void)DerivationOkay;
764
765  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
766    if (InaccessibleBaseID) {
767      // Check that the base class can be accessed.
768      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
769                                   InaccessibleBaseID)) {
770        case AR_inaccessible:
771          return true;
772        case AR_accessible:
773        case AR_dependent:
774        case AR_delayed:
775          break;
776      }
777    }
778
779    // Build a base path if necessary.
780    if (BasePath)
781      BuildBasePathArray(Paths, *BasePath);
782    return false;
783  }
784
785  // We know that the derived-to-base conversion is ambiguous, and
786  // we're going to produce a diagnostic. Perform the derived-to-base
787  // search just one more time to compute all of the possible paths so
788  // that we can print them out. This is more expensive than any of
789  // the previous derived-to-base checks we've done, but at this point
790  // performance isn't as much of an issue.
791  Paths.clear();
792  Paths.setRecordingPaths(true);
793  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
794  assert(StillOkay && "Can only be used with a derived-to-base conversion");
795  (void)StillOkay;
796
797  // Build up a textual representation of the ambiguous paths, e.g.,
798  // D -> B -> A, that will be used to illustrate the ambiguous
799  // conversions in the diagnostic. We only print one of the paths
800  // to each base class subobject.
801  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
802
803  Diag(Loc, AmbigiousBaseConvID)
804  << Derived << Base << PathDisplayStr << Range << Name;
805  return true;
806}
807
808bool
809Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
810                                   SourceLocation Loc, SourceRange Range,
811                                   CXXCastPath *BasePath,
812                                   bool IgnoreAccess) {
813  return CheckDerivedToBaseConversion(Derived, Base,
814                                      IgnoreAccess ? 0
815                                       : diag::err_upcast_to_inaccessible_base,
816                                      diag::err_ambiguous_derived_to_base_conv,
817                                      Loc, Range, DeclarationName(),
818                                      BasePath);
819}
820
821
822/// @brief Builds a string representing ambiguous paths from a
823/// specific derived class to different subobjects of the same base
824/// class.
825///
826/// This function builds a string that can be used in error messages
827/// to show the different paths that one can take through the
828/// inheritance hierarchy to go from the derived class to different
829/// subobjects of a base class. The result looks something like this:
830/// @code
831/// struct D -> struct B -> struct A
832/// struct D -> struct C -> struct A
833/// @endcode
834std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
835  std::string PathDisplayStr;
836  std::set<unsigned> DisplayedPaths;
837  for (CXXBasePaths::paths_iterator Path = Paths.begin();
838       Path != Paths.end(); ++Path) {
839    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
840      // We haven't displayed a path to this particular base
841      // class subobject yet.
842      PathDisplayStr += "\n    ";
843      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
844      for (CXXBasePath::const_iterator Element = Path->begin();
845           Element != Path->end(); ++Element)
846        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
847    }
848  }
849
850  return PathDisplayStr;
851}
852
853//===----------------------------------------------------------------------===//
854// C++ class member Handling
855//===----------------------------------------------------------------------===//
856
857/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
858Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
859                                 SourceLocation ASLoc,
860                                 SourceLocation ColonLoc) {
861  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
862  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
863                                                  ASLoc, ColonLoc);
864  CurContext->addHiddenDecl(ASDecl);
865  return ASDecl;
866}
867
868/// CheckOverrideControl - Check C++0x override control semantics.
869void Sema::CheckOverrideControl(const Decl *D) {
870  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
871  if (!MD || !MD->isVirtual())
872    return;
873
874  if (MD->isDependentContext())
875    return;
876
877  // C++0x [class.virtual]p3:
878  //   If a virtual function is marked with the virt-specifier override and does
879  //   not override a member function of a base class,
880  //   the program is ill-formed.
881  bool HasOverriddenMethods =
882    MD->begin_overridden_methods() != MD->end_overridden_methods();
883  if (MD->isMarkedOverride() && !HasOverriddenMethods) {
884    Diag(MD->getLocation(),
885                 diag::err_function_marked_override_not_overriding)
886      << MD->getDeclName();
887    return;
888  }
889
890  // C++0x [class.derived]p8:
891  //   In a class definition marked with the class-virt-specifier explicit,
892  //   if a virtual member function that is neither implicitly-declared nor a
893  //   destructor overrides a member function of a base class and it is not
894  //   marked with the virt-specifier override, the program is ill-formed.
895  if (MD->getParent()->isMarkedExplicit() && !isa<CXXDestructorDecl>(MD) &&
896      HasOverriddenMethods && !MD->isMarkedOverride()) {
897    llvm::SmallVector<const CXXMethodDecl*, 4>
898      OverriddenMethods(MD->begin_overridden_methods(),
899                        MD->end_overridden_methods());
900
901    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
902      << MD->getDeclName()
903      << (unsigned)OverriddenMethods.size();
904
905    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
906      Diag(OverriddenMethods[I]->getLocation(),
907           diag::note_overridden_virtual_function);
908  }
909}
910
911/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
912/// function overrides a virtual member function marked 'final', according to
913/// C++0x [class.virtual]p3.
914bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
915                                                  const CXXMethodDecl *Old) {
916  // FIXME: Get rid of FinalAttr here.
917  if (Old->hasAttr<FinalAttr>() || Old->isMarkedFinal()) {
918    Diag(New->getLocation(), diag::err_final_function_overridden)
919      << New->getDeclName();
920    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
921    return true;
922  }
923
924  return false;
925}
926
927/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
928/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
929/// bitfield width if there is one and 'InitExpr' specifies the initializer if
930/// any.
931Decl *
932Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
933                               MultiTemplateParamsArg TemplateParameterLists,
934                               ExprTy *BW, const VirtSpecifiers &VS,
935                               ExprTy *InitExpr, bool IsDefinition,
936                               bool Deleted) {
937  const DeclSpec &DS = D.getDeclSpec();
938  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
939  DeclarationName Name = NameInfo.getName();
940  SourceLocation Loc = NameInfo.getLoc();
941
942  // For anonymous bitfields, the location should point to the type.
943  if (Loc.isInvalid())
944    Loc = D.getSourceRange().getBegin();
945
946  Expr *BitWidth = static_cast<Expr*>(BW);
947  Expr *Init = static_cast<Expr*>(InitExpr);
948
949  assert(isa<CXXRecordDecl>(CurContext));
950  assert(!DS.isFriendSpecified());
951
952  bool isFunc = false;
953  if (D.isFunctionDeclarator())
954    isFunc = true;
955  else if (D.getNumTypeObjects() == 0 &&
956           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
957    QualType TDType = GetTypeFromParser(DS.getRepAsType());
958    isFunc = TDType->isFunctionType();
959  }
960
961  // C++ 9.2p6: A member shall not be declared to have automatic storage
962  // duration (auto, register) or with the extern storage-class-specifier.
963  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
964  // data members and cannot be applied to names declared const or static,
965  // and cannot be applied to reference members.
966  switch (DS.getStorageClassSpec()) {
967    case DeclSpec::SCS_unspecified:
968    case DeclSpec::SCS_typedef:
969    case DeclSpec::SCS_static:
970      // FALL THROUGH.
971      break;
972    case DeclSpec::SCS_mutable:
973      if (isFunc) {
974        if (DS.getStorageClassSpecLoc().isValid())
975          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
976        else
977          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
978
979        // FIXME: It would be nicer if the keyword was ignored only for this
980        // declarator. Otherwise we could get follow-up errors.
981        D.getMutableDeclSpec().ClearStorageClassSpecs();
982      }
983      break;
984    default:
985      if (DS.getStorageClassSpecLoc().isValid())
986        Diag(DS.getStorageClassSpecLoc(),
987             diag::err_storageclass_invalid_for_member);
988      else
989        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
990      D.getMutableDeclSpec().ClearStorageClassSpecs();
991  }
992
993  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
994                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
995                      !isFunc);
996
997  Decl *Member;
998  if (isInstField) {
999    CXXScopeSpec &SS = D.getCXXScopeSpec();
1000
1001
1002    if (SS.isSet() && !SS.isInvalid()) {
1003      // The user provided a superfluous scope specifier inside a class
1004      // definition:
1005      //
1006      // class X {
1007      //   int X::member;
1008      // };
1009      DeclContext *DC = 0;
1010      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1011        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1012        << Name << FixItHint::CreateRemoval(SS.getRange());
1013      else
1014        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1015          << Name << SS.getRange();
1016
1017      SS.clear();
1018    }
1019
1020    // FIXME: Check for template parameters!
1021    // FIXME: Check that the name is an identifier!
1022    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1023                         AS);
1024    assert(Member && "HandleField never returns null");
1025  } else {
1026    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1027    if (!Member) {
1028      return 0;
1029    }
1030
1031    // Non-instance-fields can't have a bitfield.
1032    if (BitWidth) {
1033      if (Member->isInvalidDecl()) {
1034        // don't emit another diagnostic.
1035      } else if (isa<VarDecl>(Member)) {
1036        // C++ 9.6p3: A bit-field shall not be a static member.
1037        // "static member 'A' cannot be a bit-field"
1038        Diag(Loc, diag::err_static_not_bitfield)
1039          << Name << BitWidth->getSourceRange();
1040      } else if (isa<TypedefDecl>(Member)) {
1041        // "typedef member 'x' cannot be a bit-field"
1042        Diag(Loc, diag::err_typedef_not_bitfield)
1043          << Name << BitWidth->getSourceRange();
1044      } else {
1045        // A function typedef ("typedef int f(); f a;").
1046        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1047        Diag(Loc, diag::err_not_integral_type_bitfield)
1048          << Name << cast<ValueDecl>(Member)->getType()
1049          << BitWidth->getSourceRange();
1050      }
1051
1052      BitWidth = 0;
1053      Member->setInvalidDecl();
1054    }
1055
1056    Member->setAccess(AS);
1057
1058    // If we have declared a member function template, set the access of the
1059    // templated declaration as well.
1060    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1061      FunTmpl->getTemplatedDecl()->setAccess(AS);
1062  }
1063
1064  if (VS.isOverrideSpecified()) {
1065    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1066    if (!MD || !MD->isVirtual()) {
1067      Diag(Member->getLocStart(),
1068           diag::override_keyword_only_allowed_on_virtual_member_functions)
1069        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1070    } else
1071      MD->setIsMarkedOverride(true);
1072  }
1073  if (VS.isFinalSpecified()) {
1074    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1075    if (!MD || !MD->isVirtual()) {
1076      Diag(Member->getLocStart(),
1077           diag::override_keyword_only_allowed_on_virtual_member_functions)
1078      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1079    } else
1080      MD->setIsMarkedFinal(true);
1081  }
1082
1083  CheckOverrideControl(Member);
1084
1085  assert((Name || isInstField) && "No identifier for non-field ?");
1086
1087  if (Init)
1088    AddInitializerToDecl(Member, Init, false);
1089  if (Deleted) // FIXME: Source location is not very good.
1090    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1091
1092  if (isInstField) {
1093    FieldCollector->Add(cast<FieldDecl>(Member));
1094    return 0;
1095  }
1096  return Member;
1097}
1098
1099/// \brief Find the direct and/or virtual base specifiers that
1100/// correspond to the given base type, for use in base initialization
1101/// within a constructor.
1102static bool FindBaseInitializer(Sema &SemaRef,
1103                                CXXRecordDecl *ClassDecl,
1104                                QualType BaseType,
1105                                const CXXBaseSpecifier *&DirectBaseSpec,
1106                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1107  // First, check for a direct base class.
1108  DirectBaseSpec = 0;
1109  for (CXXRecordDecl::base_class_const_iterator Base
1110         = ClassDecl->bases_begin();
1111       Base != ClassDecl->bases_end(); ++Base) {
1112    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1113      // We found a direct base of this type. That's what we're
1114      // initializing.
1115      DirectBaseSpec = &*Base;
1116      break;
1117    }
1118  }
1119
1120  // Check for a virtual base class.
1121  // FIXME: We might be able to short-circuit this if we know in advance that
1122  // there are no virtual bases.
1123  VirtualBaseSpec = 0;
1124  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1125    // We haven't found a base yet; search the class hierarchy for a
1126    // virtual base class.
1127    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1128                       /*DetectVirtual=*/false);
1129    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1130                              BaseType, Paths)) {
1131      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1132           Path != Paths.end(); ++Path) {
1133        if (Path->back().Base->isVirtual()) {
1134          VirtualBaseSpec = Path->back().Base;
1135          break;
1136        }
1137      }
1138    }
1139  }
1140
1141  return DirectBaseSpec || VirtualBaseSpec;
1142}
1143
1144/// ActOnMemInitializer - Handle a C++ member initializer.
1145MemInitResult
1146Sema::ActOnMemInitializer(Decl *ConstructorD,
1147                          Scope *S,
1148                          CXXScopeSpec &SS,
1149                          IdentifierInfo *MemberOrBase,
1150                          ParsedType TemplateTypeTy,
1151                          SourceLocation IdLoc,
1152                          SourceLocation LParenLoc,
1153                          ExprTy **Args, unsigned NumArgs,
1154                          SourceLocation RParenLoc,
1155                          SourceLocation EllipsisLoc) {
1156  if (!ConstructorD)
1157    return true;
1158
1159  AdjustDeclIfTemplate(ConstructorD);
1160
1161  CXXConstructorDecl *Constructor
1162    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1163  if (!Constructor) {
1164    // The user wrote a constructor initializer on a function that is
1165    // not a C++ constructor. Ignore the error for now, because we may
1166    // have more member initializers coming; we'll diagnose it just
1167    // once in ActOnMemInitializers.
1168    return true;
1169  }
1170
1171  CXXRecordDecl *ClassDecl = Constructor->getParent();
1172
1173  // C++ [class.base.init]p2:
1174  //   Names in a mem-initializer-id are looked up in the scope of the
1175  //   constructor's class and, if not found in that scope, are looked
1176  //   up in the scope containing the constructor's definition.
1177  //   [Note: if the constructor's class contains a member with the
1178  //   same name as a direct or virtual base class of the class, a
1179  //   mem-initializer-id naming the member or base class and composed
1180  //   of a single identifier refers to the class member. A
1181  //   mem-initializer-id for the hidden base class may be specified
1182  //   using a qualified name. ]
1183  if (!SS.getScopeRep() && !TemplateTypeTy) {
1184    // Look for a member, first.
1185    FieldDecl *Member = 0;
1186    DeclContext::lookup_result Result
1187      = ClassDecl->lookup(MemberOrBase);
1188    if (Result.first != Result.second) {
1189      Member = dyn_cast<FieldDecl>(*Result.first);
1190
1191      if (Member) {
1192        if (EllipsisLoc.isValid())
1193          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1194            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195
1196        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1197                                    LParenLoc, RParenLoc);
1198      }
1199
1200      // Handle anonymous union case.
1201      if (IndirectFieldDecl* IndirectField
1202            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1203        if (EllipsisLoc.isValid())
1204          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1205            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1206
1207         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1208                                       NumArgs, IdLoc,
1209                                       LParenLoc, RParenLoc);
1210      }
1211    }
1212  }
1213  // It didn't name a member, so see if it names a class.
1214  QualType BaseType;
1215  TypeSourceInfo *TInfo = 0;
1216
1217  if (TemplateTypeTy) {
1218    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1219  } else {
1220    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1221    LookupParsedName(R, S, &SS);
1222
1223    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1224    if (!TyD) {
1225      if (R.isAmbiguous()) return true;
1226
1227      // We don't want access-control diagnostics here.
1228      R.suppressDiagnostics();
1229
1230      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1231        bool NotUnknownSpecialization = false;
1232        DeclContext *DC = computeDeclContext(SS, false);
1233        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1234          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1235
1236        if (!NotUnknownSpecialization) {
1237          // When the scope specifier can refer to a member of an unknown
1238          // specialization, we take it as a type name.
1239          BaseType = CheckTypenameType(ETK_None,
1240                                       (NestedNameSpecifier *)SS.getScopeRep(),
1241                                       *MemberOrBase, SourceLocation(),
1242                                       SS.getRange(), IdLoc);
1243          if (BaseType.isNull())
1244            return true;
1245
1246          R.clear();
1247          R.setLookupName(MemberOrBase);
1248        }
1249      }
1250
1251      // If no results were found, try to correct typos.
1252      if (R.empty() && BaseType.isNull() &&
1253          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1254          R.isSingleResult()) {
1255        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1256          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1257            // We have found a non-static data member with a similar
1258            // name to what was typed; complain and initialize that
1259            // member.
1260            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1261              << MemberOrBase << true << R.getLookupName()
1262              << FixItHint::CreateReplacement(R.getNameLoc(),
1263                                              R.getLookupName().getAsString());
1264            Diag(Member->getLocation(), diag::note_previous_decl)
1265              << Member->getDeclName();
1266
1267            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1268                                          LParenLoc, RParenLoc);
1269          }
1270        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1271          const CXXBaseSpecifier *DirectBaseSpec;
1272          const CXXBaseSpecifier *VirtualBaseSpec;
1273          if (FindBaseInitializer(*this, ClassDecl,
1274                                  Context.getTypeDeclType(Type),
1275                                  DirectBaseSpec, VirtualBaseSpec)) {
1276            // We have found a direct or virtual base class with a
1277            // similar name to what was typed; complain and initialize
1278            // that base class.
1279            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1280              << MemberOrBase << false << R.getLookupName()
1281              << FixItHint::CreateReplacement(R.getNameLoc(),
1282                                              R.getLookupName().getAsString());
1283
1284            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1285                                                             : VirtualBaseSpec;
1286            Diag(BaseSpec->getSourceRange().getBegin(),
1287                 diag::note_base_class_specified_here)
1288              << BaseSpec->getType()
1289              << BaseSpec->getSourceRange();
1290
1291            TyD = Type;
1292          }
1293        }
1294      }
1295
1296      if (!TyD && BaseType.isNull()) {
1297        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1298          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1299        return true;
1300      }
1301    }
1302
1303    if (BaseType.isNull()) {
1304      BaseType = Context.getTypeDeclType(TyD);
1305      if (SS.isSet()) {
1306        NestedNameSpecifier *Qualifier =
1307          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1308
1309        // FIXME: preserve source range information
1310        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1311      }
1312    }
1313  }
1314
1315  if (!TInfo)
1316    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1317
1318  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1319                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1320}
1321
1322/// Checks an initializer expression for use of uninitialized fields, such as
1323/// containing the field that is being initialized. Returns true if there is an
1324/// uninitialized field was used an updates the SourceLocation parameter; false
1325/// otherwise.
1326static bool InitExprContainsUninitializedFields(const Stmt *S,
1327                                                const ValueDecl *LhsField,
1328                                                SourceLocation *L) {
1329  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1330
1331  if (isa<CallExpr>(S)) {
1332    // Do not descend into function calls or constructors, as the use
1333    // of an uninitialized field may be valid. One would have to inspect
1334    // the contents of the function/ctor to determine if it is safe or not.
1335    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1336    // may be safe, depending on what the function/ctor does.
1337    return false;
1338  }
1339  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1340    const NamedDecl *RhsField = ME->getMemberDecl();
1341
1342    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1343      // The member expression points to a static data member.
1344      assert(VD->isStaticDataMember() &&
1345             "Member points to non-static data member!");
1346      (void)VD;
1347      return false;
1348    }
1349
1350    if (isa<EnumConstantDecl>(RhsField)) {
1351      // The member expression points to an enum.
1352      return false;
1353    }
1354
1355    if (RhsField == LhsField) {
1356      // Initializing a field with itself. Throw a warning.
1357      // But wait; there are exceptions!
1358      // Exception #1:  The field may not belong to this record.
1359      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1360      const Expr *base = ME->getBase();
1361      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1362        // Even though the field matches, it does not belong to this record.
1363        return false;
1364      }
1365      // None of the exceptions triggered; return true to indicate an
1366      // uninitialized field was used.
1367      *L = ME->getMemberLoc();
1368      return true;
1369    }
1370  } else if (isa<SizeOfAlignOfExpr>(S)) {
1371    // sizeof/alignof doesn't reference contents, do not warn.
1372    return false;
1373  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1374    // address-of doesn't reference contents (the pointer may be dereferenced
1375    // in the same expression but it would be rare; and weird).
1376    if (UOE->getOpcode() == UO_AddrOf)
1377      return false;
1378  }
1379  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1380       it != e; ++it) {
1381    if (!*it) {
1382      // An expression such as 'member(arg ?: "")' may trigger this.
1383      continue;
1384    }
1385    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1386      return true;
1387  }
1388  return false;
1389}
1390
1391MemInitResult
1392Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1393                             unsigned NumArgs, SourceLocation IdLoc,
1394                             SourceLocation LParenLoc,
1395                             SourceLocation RParenLoc) {
1396  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1397  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1398  assert((DirectMember || IndirectMember) &&
1399         "Member must be a FieldDecl or IndirectFieldDecl");
1400
1401  if (Member->isInvalidDecl())
1402    return true;
1403
1404  // Diagnose value-uses of fields to initialize themselves, e.g.
1405  //   foo(foo)
1406  // where foo is not also a parameter to the constructor.
1407  // TODO: implement -Wuninitialized and fold this into that framework.
1408  for (unsigned i = 0; i < NumArgs; ++i) {
1409    SourceLocation L;
1410    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1411      // FIXME: Return true in the case when other fields are used before being
1412      // uninitialized. For example, let this field be the i'th field. When
1413      // initializing the i'th field, throw a warning if any of the >= i'th
1414      // fields are used, as they are not yet initialized.
1415      // Right now we are only handling the case where the i'th field uses
1416      // itself in its initializer.
1417      Diag(L, diag::warn_field_is_uninit);
1418    }
1419  }
1420
1421  bool HasDependentArg = false;
1422  for (unsigned i = 0; i < NumArgs; i++)
1423    HasDependentArg |= Args[i]->isTypeDependent();
1424
1425  Expr *Init;
1426  if (Member->getType()->isDependentType() || HasDependentArg) {
1427    // Can't check initialization for a member of dependent type or when
1428    // any of the arguments are type-dependent expressions.
1429    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1430                                       RParenLoc);
1431
1432    // Erase any temporaries within this evaluation context; we're not
1433    // going to track them in the AST, since we'll be rebuilding the
1434    // ASTs during template instantiation.
1435    ExprTemporaries.erase(
1436              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1437                          ExprTemporaries.end());
1438  } else {
1439    // Initialize the member.
1440    InitializedEntity MemberEntity =
1441      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1442                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1443    InitializationKind Kind =
1444      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1445
1446    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1447
1448    ExprResult MemberInit =
1449      InitSeq.Perform(*this, MemberEntity, Kind,
1450                      MultiExprArg(*this, Args, NumArgs), 0);
1451    if (MemberInit.isInvalid())
1452      return true;
1453
1454    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1455
1456    // C++0x [class.base.init]p7:
1457    //   The initialization of each base and member constitutes a
1458    //   full-expression.
1459    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1460    if (MemberInit.isInvalid())
1461      return true;
1462
1463    // If we are in a dependent context, template instantiation will
1464    // perform this type-checking again. Just save the arguments that we
1465    // received in a ParenListExpr.
1466    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1467    // of the information that we have about the member
1468    // initializer. However, deconstructing the ASTs is a dicey process,
1469    // and this approach is far more likely to get the corner cases right.
1470    if (CurContext->isDependentContext())
1471      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1472                                               RParenLoc);
1473    else
1474      Init = MemberInit.get();
1475  }
1476
1477  if (DirectMember) {
1478    return new (Context) CXXCtorInitializer(Context, DirectMember,
1479                                                    IdLoc, LParenLoc, Init,
1480                                                    RParenLoc);
1481  } else {
1482    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1483                                                    IdLoc, LParenLoc, Init,
1484                                                    RParenLoc);
1485  }
1486}
1487
1488MemInitResult
1489Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1490                                 Expr **Args, unsigned NumArgs,
1491                                 SourceLocation LParenLoc,
1492                                 SourceLocation RParenLoc,
1493                                 CXXRecordDecl *ClassDecl,
1494                                 SourceLocation EllipsisLoc) {
1495  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1496  if (!LangOpts.CPlusPlus0x)
1497    return Diag(Loc, diag::err_delegation_0x_only)
1498      << TInfo->getTypeLoc().getLocalSourceRange();
1499
1500  return Diag(Loc, diag::err_delegation_unimplemented)
1501    << TInfo->getTypeLoc().getLocalSourceRange();
1502}
1503
1504MemInitResult
1505Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1506                           Expr **Args, unsigned NumArgs,
1507                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1508                           CXXRecordDecl *ClassDecl,
1509                           SourceLocation EllipsisLoc) {
1510  bool HasDependentArg = false;
1511  for (unsigned i = 0; i < NumArgs; i++)
1512    HasDependentArg |= Args[i]->isTypeDependent();
1513
1514  SourceLocation BaseLoc
1515    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1516
1517  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1518    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1519             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1520
1521  // C++ [class.base.init]p2:
1522  //   [...] Unless the mem-initializer-id names a nonstatic data
1523  //   member of the constructor's class or a direct or virtual base
1524  //   of that class, the mem-initializer is ill-formed. A
1525  //   mem-initializer-list can initialize a base class using any
1526  //   name that denotes that base class type.
1527  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1528
1529  if (EllipsisLoc.isValid()) {
1530    // This is a pack expansion.
1531    if (!BaseType->containsUnexpandedParameterPack())  {
1532      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1533        << SourceRange(BaseLoc, RParenLoc);
1534
1535      EllipsisLoc = SourceLocation();
1536    }
1537  } else {
1538    // Check for any unexpanded parameter packs.
1539    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1540      return true;
1541
1542    for (unsigned I = 0; I != NumArgs; ++I)
1543      if (DiagnoseUnexpandedParameterPack(Args[I]))
1544        return true;
1545  }
1546
1547  // Check for direct and virtual base classes.
1548  const CXXBaseSpecifier *DirectBaseSpec = 0;
1549  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1550  if (!Dependent) {
1551    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1552                                       BaseType))
1553      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1554                                        LParenLoc, RParenLoc, ClassDecl,
1555                                        EllipsisLoc);
1556
1557    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1558                        VirtualBaseSpec);
1559
1560    // C++ [base.class.init]p2:
1561    // Unless the mem-initializer-id names a nonstatic data member of the
1562    // constructor's class or a direct or virtual base of that class, the
1563    // mem-initializer is ill-formed.
1564    if (!DirectBaseSpec && !VirtualBaseSpec) {
1565      // If the class has any dependent bases, then it's possible that
1566      // one of those types will resolve to the same type as
1567      // BaseType. Therefore, just treat this as a dependent base
1568      // class initialization.  FIXME: Should we try to check the
1569      // initialization anyway? It seems odd.
1570      if (ClassDecl->hasAnyDependentBases())
1571        Dependent = true;
1572      else
1573        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1574          << BaseType << Context.getTypeDeclType(ClassDecl)
1575          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1576    }
1577  }
1578
1579  if (Dependent) {
1580    // Can't check initialization for a base of dependent type or when
1581    // any of the arguments are type-dependent expressions.
1582    ExprResult BaseInit
1583      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1584                                          RParenLoc));
1585
1586    // Erase any temporaries within this evaluation context; we're not
1587    // going to track them in the AST, since we'll be rebuilding the
1588    // ASTs during template instantiation.
1589    ExprTemporaries.erase(
1590              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1591                          ExprTemporaries.end());
1592
1593    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1594                                                    /*IsVirtual=*/false,
1595                                                    LParenLoc,
1596                                                    BaseInit.takeAs<Expr>(),
1597                                                    RParenLoc,
1598                                                    EllipsisLoc);
1599  }
1600
1601  // C++ [base.class.init]p2:
1602  //   If a mem-initializer-id is ambiguous because it designates both
1603  //   a direct non-virtual base class and an inherited virtual base
1604  //   class, the mem-initializer is ill-formed.
1605  if (DirectBaseSpec && VirtualBaseSpec)
1606    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1607      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1608
1609  CXXBaseSpecifier *BaseSpec
1610    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1611  if (!BaseSpec)
1612    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1613
1614  // Initialize the base.
1615  InitializedEntity BaseEntity =
1616    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1617  InitializationKind Kind =
1618    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1619
1620  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1621
1622  ExprResult BaseInit =
1623    InitSeq.Perform(*this, BaseEntity, Kind,
1624                    MultiExprArg(*this, Args, NumArgs), 0);
1625  if (BaseInit.isInvalid())
1626    return true;
1627
1628  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1629
1630  // C++0x [class.base.init]p7:
1631  //   The initialization of each base and member constitutes a
1632  //   full-expression.
1633  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1634  if (BaseInit.isInvalid())
1635    return true;
1636
1637  // If we are in a dependent context, template instantiation will
1638  // perform this type-checking again. Just save the arguments that we
1639  // received in a ParenListExpr.
1640  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1641  // of the information that we have about the base
1642  // initializer. However, deconstructing the ASTs is a dicey process,
1643  // and this approach is far more likely to get the corner cases right.
1644  if (CurContext->isDependentContext()) {
1645    ExprResult Init
1646      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1647                                          RParenLoc));
1648    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1649                                                    BaseSpec->isVirtual(),
1650                                                    LParenLoc,
1651                                                    Init.takeAs<Expr>(),
1652                                                    RParenLoc,
1653                                                    EllipsisLoc);
1654  }
1655
1656  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1657                                                  BaseSpec->isVirtual(),
1658                                                  LParenLoc,
1659                                                  BaseInit.takeAs<Expr>(),
1660                                                  RParenLoc,
1661                                                  EllipsisLoc);
1662}
1663
1664/// ImplicitInitializerKind - How an implicit base or member initializer should
1665/// initialize its base or member.
1666enum ImplicitInitializerKind {
1667  IIK_Default,
1668  IIK_Copy,
1669  IIK_Move
1670};
1671
1672static bool
1673BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1674                             ImplicitInitializerKind ImplicitInitKind,
1675                             CXXBaseSpecifier *BaseSpec,
1676                             bool IsInheritedVirtualBase,
1677                             CXXCtorInitializer *&CXXBaseInit) {
1678  InitializedEntity InitEntity
1679    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1680                                        IsInheritedVirtualBase);
1681
1682  ExprResult BaseInit;
1683
1684  switch (ImplicitInitKind) {
1685  case IIK_Default: {
1686    InitializationKind InitKind
1687      = InitializationKind::CreateDefault(Constructor->getLocation());
1688    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1689    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1690                               MultiExprArg(SemaRef, 0, 0));
1691    break;
1692  }
1693
1694  case IIK_Copy: {
1695    ParmVarDecl *Param = Constructor->getParamDecl(0);
1696    QualType ParamType = Param->getType().getNonReferenceType();
1697
1698    Expr *CopyCtorArg =
1699      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1700                          Constructor->getLocation(), ParamType,
1701                          VK_LValue, 0);
1702
1703    // Cast to the base class to avoid ambiguities.
1704    QualType ArgTy =
1705      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1706                                       ParamType.getQualifiers());
1707
1708    CXXCastPath BasePath;
1709    BasePath.push_back(BaseSpec);
1710    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1711                              CK_UncheckedDerivedToBase,
1712                              VK_LValue, &BasePath);
1713
1714    InitializationKind InitKind
1715      = InitializationKind::CreateDirect(Constructor->getLocation(),
1716                                         SourceLocation(), SourceLocation());
1717    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1718                                   &CopyCtorArg, 1);
1719    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1720                               MultiExprArg(&CopyCtorArg, 1));
1721    break;
1722  }
1723
1724  case IIK_Move:
1725    assert(false && "Unhandled initializer kind!");
1726  }
1727
1728  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1729  if (BaseInit.isInvalid())
1730    return true;
1731
1732  CXXBaseInit =
1733    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1734               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1735                                                        SourceLocation()),
1736                                             BaseSpec->isVirtual(),
1737                                             SourceLocation(),
1738                                             BaseInit.takeAs<Expr>(),
1739                                             SourceLocation(),
1740                                             SourceLocation());
1741
1742  return false;
1743}
1744
1745static bool
1746BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1747                               ImplicitInitializerKind ImplicitInitKind,
1748                               FieldDecl *Field,
1749                               CXXCtorInitializer *&CXXMemberInit) {
1750  if (Field->isInvalidDecl())
1751    return true;
1752
1753  SourceLocation Loc = Constructor->getLocation();
1754
1755  if (ImplicitInitKind == IIK_Copy) {
1756    ParmVarDecl *Param = Constructor->getParamDecl(0);
1757    QualType ParamType = Param->getType().getNonReferenceType();
1758
1759    Expr *MemberExprBase =
1760      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1761                          Loc, ParamType, VK_LValue, 0);
1762
1763    // Build a reference to this field within the parameter.
1764    CXXScopeSpec SS;
1765    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1766                              Sema::LookupMemberName);
1767    MemberLookup.addDecl(Field, AS_public);
1768    MemberLookup.resolveKind();
1769    ExprResult CopyCtorArg
1770      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1771                                         ParamType, Loc,
1772                                         /*IsArrow=*/false,
1773                                         SS,
1774                                         /*FirstQualifierInScope=*/0,
1775                                         MemberLookup,
1776                                         /*TemplateArgs=*/0);
1777    if (CopyCtorArg.isInvalid())
1778      return true;
1779
1780    // When the field we are copying is an array, create index variables for
1781    // each dimension of the array. We use these index variables to subscript
1782    // the source array, and other clients (e.g., CodeGen) will perform the
1783    // necessary iteration with these index variables.
1784    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1785    QualType BaseType = Field->getType();
1786    QualType SizeType = SemaRef.Context.getSizeType();
1787    while (const ConstantArrayType *Array
1788                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1789      // Create the iteration variable for this array index.
1790      IdentifierInfo *IterationVarName = 0;
1791      {
1792        llvm::SmallString<8> Str;
1793        llvm::raw_svector_ostream OS(Str);
1794        OS << "__i" << IndexVariables.size();
1795        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1796      }
1797      VarDecl *IterationVar
1798        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1799                          IterationVarName, SizeType,
1800                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1801                          SC_None, SC_None);
1802      IndexVariables.push_back(IterationVar);
1803
1804      // Create a reference to the iteration variable.
1805      ExprResult IterationVarRef
1806        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1807      assert(!IterationVarRef.isInvalid() &&
1808             "Reference to invented variable cannot fail!");
1809
1810      // Subscript the array with this iteration variable.
1811      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1812                                                            Loc,
1813                                                        IterationVarRef.take(),
1814                                                            Loc);
1815      if (CopyCtorArg.isInvalid())
1816        return true;
1817
1818      BaseType = Array->getElementType();
1819    }
1820
1821    // Construct the entity that we will be initializing. For an array, this
1822    // will be first element in the array, which may require several levels
1823    // of array-subscript entities.
1824    llvm::SmallVector<InitializedEntity, 4> Entities;
1825    Entities.reserve(1 + IndexVariables.size());
1826    Entities.push_back(InitializedEntity::InitializeMember(Field));
1827    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1828      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1829                                                              0,
1830                                                              Entities.back()));
1831
1832    // Direct-initialize to use the copy constructor.
1833    InitializationKind InitKind =
1834      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1835
1836    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1837    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1838                                   &CopyCtorArgE, 1);
1839
1840    ExprResult MemberInit
1841      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1842                        MultiExprArg(&CopyCtorArgE, 1));
1843    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1844    if (MemberInit.isInvalid())
1845      return true;
1846
1847    CXXMemberInit
1848      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1849                                           MemberInit.takeAs<Expr>(), Loc,
1850                                           IndexVariables.data(),
1851                                           IndexVariables.size());
1852    return false;
1853  }
1854
1855  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1856
1857  QualType FieldBaseElementType =
1858    SemaRef.Context.getBaseElementType(Field->getType());
1859
1860  if (FieldBaseElementType->isRecordType()) {
1861    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1862    InitializationKind InitKind =
1863      InitializationKind::CreateDefault(Loc);
1864
1865    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1866    ExprResult MemberInit =
1867      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1868
1869    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1870    if (MemberInit.isInvalid())
1871      return true;
1872
1873    CXXMemberInit =
1874      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1875                                                       Field, Loc, Loc,
1876                                                       MemberInit.get(),
1877                                                       Loc);
1878    return false;
1879  }
1880
1881  if (FieldBaseElementType->isReferenceType()) {
1882    SemaRef.Diag(Constructor->getLocation(),
1883                 diag::err_uninitialized_member_in_ctor)
1884    << (int)Constructor->isImplicit()
1885    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1886    << 0 << Field->getDeclName();
1887    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1888    return true;
1889  }
1890
1891  if (FieldBaseElementType.isConstQualified()) {
1892    SemaRef.Diag(Constructor->getLocation(),
1893                 diag::err_uninitialized_member_in_ctor)
1894    << (int)Constructor->isImplicit()
1895    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1896    << 1 << Field->getDeclName();
1897    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1898    return true;
1899  }
1900
1901  // Nothing to initialize.
1902  CXXMemberInit = 0;
1903  return false;
1904}
1905
1906namespace {
1907struct BaseAndFieldInfo {
1908  Sema &S;
1909  CXXConstructorDecl *Ctor;
1910  bool AnyErrorsInInits;
1911  ImplicitInitializerKind IIK;
1912  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1913  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1914
1915  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1916    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1917    // FIXME: Handle implicit move constructors.
1918    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1919      IIK = IIK_Copy;
1920    else
1921      IIK = IIK_Default;
1922  }
1923};
1924}
1925
1926static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1927                                    FieldDecl *Top, FieldDecl *Field) {
1928
1929  // Overwhelmingly common case: we have a direct initializer for this field.
1930  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1931    Info.AllToInit.push_back(Init);
1932    return false;
1933  }
1934
1935  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1936    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1937    assert(FieldClassType && "anonymous struct/union without record type");
1938    CXXRecordDecl *FieldClassDecl
1939      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1940
1941    // Even though union members never have non-trivial default
1942    // constructions in C++03, we still build member initializers for aggregate
1943    // record types which can be union members, and C++0x allows non-trivial
1944    // default constructors for union members, so we ensure that only one
1945    // member is initialized for these.
1946    if (FieldClassDecl->isUnion()) {
1947      // First check for an explicit initializer for one field.
1948      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1949           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1950        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1951          Info.AllToInit.push_back(Init);
1952
1953          // Once we've initialized a field of an anonymous union, the union
1954          // field in the class is also initialized, so exit immediately.
1955          return false;
1956        } else if ((*FA)->isAnonymousStructOrUnion()) {
1957          if (CollectFieldInitializer(Info, Top, *FA))
1958            return true;
1959        }
1960      }
1961
1962      // Fallthrough and construct a default initializer for the union as
1963      // a whole, which can call its default constructor if such a thing exists
1964      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1965      // behavior going forward with C++0x, when anonymous unions there are
1966      // finalized, we should revisit this.
1967    } else {
1968      // For structs, we simply descend through to initialize all members where
1969      // necessary.
1970      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1971           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1972        if (CollectFieldInitializer(Info, Top, *FA))
1973          return true;
1974      }
1975    }
1976  }
1977
1978  // Don't try to build an implicit initializer if there were semantic
1979  // errors in any of the initializers (and therefore we might be
1980  // missing some that the user actually wrote).
1981  if (Info.AnyErrorsInInits)
1982    return false;
1983
1984  CXXCtorInitializer *Init = 0;
1985  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1986    return true;
1987
1988  if (Init)
1989    Info.AllToInit.push_back(Init);
1990
1991  return false;
1992}
1993
1994bool
1995Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1996                                  CXXCtorInitializer **Initializers,
1997                                  unsigned NumInitializers,
1998                                  bool AnyErrors) {
1999  if (Constructor->getDeclContext()->isDependentContext()) {
2000    // Just store the initializers as written, they will be checked during
2001    // instantiation.
2002    if (NumInitializers > 0) {
2003      Constructor->setNumCtorInitializers(NumInitializers);
2004      CXXCtorInitializer **baseOrMemberInitializers =
2005        new (Context) CXXCtorInitializer*[NumInitializers];
2006      memcpy(baseOrMemberInitializers, Initializers,
2007             NumInitializers * sizeof(CXXCtorInitializer*));
2008      Constructor->setCtorInitializers(baseOrMemberInitializers);
2009    }
2010
2011    return false;
2012  }
2013
2014  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2015
2016  // We need to build the initializer AST according to order of construction
2017  // and not what user specified in the Initializers list.
2018  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2019  if (!ClassDecl)
2020    return true;
2021
2022  bool HadError = false;
2023
2024  for (unsigned i = 0; i < NumInitializers; i++) {
2025    CXXCtorInitializer *Member = Initializers[i];
2026
2027    if (Member->isBaseInitializer())
2028      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2029    else
2030      Info.AllBaseFields[Member->getAnyMember()] = Member;
2031  }
2032
2033  // Keep track of the direct virtual bases.
2034  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2035  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2036       E = ClassDecl->bases_end(); I != E; ++I) {
2037    if (I->isVirtual())
2038      DirectVBases.insert(I);
2039  }
2040
2041  // Push virtual bases before others.
2042  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2043       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2044
2045    if (CXXCtorInitializer *Value
2046        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2047      Info.AllToInit.push_back(Value);
2048    } else if (!AnyErrors) {
2049      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2050      CXXCtorInitializer *CXXBaseInit;
2051      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2052                                       VBase, IsInheritedVirtualBase,
2053                                       CXXBaseInit)) {
2054        HadError = true;
2055        continue;
2056      }
2057
2058      Info.AllToInit.push_back(CXXBaseInit);
2059    }
2060  }
2061
2062  // Non-virtual bases.
2063  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2064       E = ClassDecl->bases_end(); Base != E; ++Base) {
2065    // Virtuals are in the virtual base list and already constructed.
2066    if (Base->isVirtual())
2067      continue;
2068
2069    if (CXXCtorInitializer *Value
2070          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2071      Info.AllToInit.push_back(Value);
2072    } else if (!AnyErrors) {
2073      CXXCtorInitializer *CXXBaseInit;
2074      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2075                                       Base, /*IsInheritedVirtualBase=*/false,
2076                                       CXXBaseInit)) {
2077        HadError = true;
2078        continue;
2079      }
2080
2081      Info.AllToInit.push_back(CXXBaseInit);
2082    }
2083  }
2084
2085  // Fields.
2086  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2087       E = ClassDecl->field_end(); Field != E; ++Field) {
2088    if ((*Field)->getType()->isIncompleteArrayType()) {
2089      assert(ClassDecl->hasFlexibleArrayMember() &&
2090             "Incomplete array type is not valid");
2091      continue;
2092    }
2093    if (CollectFieldInitializer(Info, *Field, *Field))
2094      HadError = true;
2095  }
2096
2097  NumInitializers = Info.AllToInit.size();
2098  if (NumInitializers > 0) {
2099    Constructor->setNumCtorInitializers(NumInitializers);
2100    CXXCtorInitializer **baseOrMemberInitializers =
2101      new (Context) CXXCtorInitializer*[NumInitializers];
2102    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2103           NumInitializers * sizeof(CXXCtorInitializer*));
2104    Constructor->setCtorInitializers(baseOrMemberInitializers);
2105
2106    // Constructors implicitly reference the base and member
2107    // destructors.
2108    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2109                                           Constructor->getParent());
2110  }
2111
2112  return HadError;
2113}
2114
2115static void *GetKeyForTopLevelField(FieldDecl *Field) {
2116  // For anonymous unions, use the class declaration as the key.
2117  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2118    if (RT->getDecl()->isAnonymousStructOrUnion())
2119      return static_cast<void *>(RT->getDecl());
2120  }
2121  return static_cast<void *>(Field);
2122}
2123
2124static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2125  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2126}
2127
2128static void *GetKeyForMember(ASTContext &Context,
2129                             CXXCtorInitializer *Member) {
2130  if (!Member->isAnyMemberInitializer())
2131    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2132
2133  // For fields injected into the class via declaration of an anonymous union,
2134  // use its anonymous union class declaration as the unique key.
2135  FieldDecl *Field = Member->getAnyMember();
2136
2137  // If the field is a member of an anonymous struct or union, our key
2138  // is the anonymous record decl that's a direct child of the class.
2139  RecordDecl *RD = Field->getParent();
2140  if (RD->isAnonymousStructOrUnion()) {
2141    while (true) {
2142      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2143      if (Parent->isAnonymousStructOrUnion())
2144        RD = Parent;
2145      else
2146        break;
2147    }
2148
2149    return static_cast<void *>(RD);
2150  }
2151
2152  return static_cast<void *>(Field);
2153}
2154
2155static void
2156DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2157                                  const CXXConstructorDecl *Constructor,
2158                                  CXXCtorInitializer **Inits,
2159                                  unsigned NumInits) {
2160  if (Constructor->getDeclContext()->isDependentContext())
2161    return;
2162
2163  // Don't check initializers order unless the warning is enabled at the
2164  // location of at least one initializer.
2165  bool ShouldCheckOrder = false;
2166  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2167    CXXCtorInitializer *Init = Inits[InitIndex];
2168    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2169                                         Init->getSourceLocation())
2170          != Diagnostic::Ignored) {
2171      ShouldCheckOrder = true;
2172      break;
2173    }
2174  }
2175  if (!ShouldCheckOrder)
2176    return;
2177
2178  // Build the list of bases and members in the order that they'll
2179  // actually be initialized.  The explicit initializers should be in
2180  // this same order but may be missing things.
2181  llvm::SmallVector<const void*, 32> IdealInitKeys;
2182
2183  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2184
2185  // 1. Virtual bases.
2186  for (CXXRecordDecl::base_class_const_iterator VBase =
2187       ClassDecl->vbases_begin(),
2188       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2189    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2190
2191  // 2. Non-virtual bases.
2192  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2193       E = ClassDecl->bases_end(); Base != E; ++Base) {
2194    if (Base->isVirtual())
2195      continue;
2196    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2197  }
2198
2199  // 3. Direct fields.
2200  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2201       E = ClassDecl->field_end(); Field != E; ++Field)
2202    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2203
2204  unsigned NumIdealInits = IdealInitKeys.size();
2205  unsigned IdealIndex = 0;
2206
2207  CXXCtorInitializer *PrevInit = 0;
2208  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2209    CXXCtorInitializer *Init = Inits[InitIndex];
2210    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2211
2212    // Scan forward to try to find this initializer in the idealized
2213    // initializers list.
2214    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2215      if (InitKey == IdealInitKeys[IdealIndex])
2216        break;
2217
2218    // If we didn't find this initializer, it must be because we
2219    // scanned past it on a previous iteration.  That can only
2220    // happen if we're out of order;  emit a warning.
2221    if (IdealIndex == NumIdealInits && PrevInit) {
2222      Sema::SemaDiagnosticBuilder D =
2223        SemaRef.Diag(PrevInit->getSourceLocation(),
2224                     diag::warn_initializer_out_of_order);
2225
2226      if (PrevInit->isAnyMemberInitializer())
2227        D << 0 << PrevInit->getAnyMember()->getDeclName();
2228      else
2229        D << 1 << PrevInit->getBaseClassInfo()->getType();
2230
2231      if (Init->isAnyMemberInitializer())
2232        D << 0 << Init->getAnyMember()->getDeclName();
2233      else
2234        D << 1 << Init->getBaseClassInfo()->getType();
2235
2236      // Move back to the initializer's location in the ideal list.
2237      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2238        if (InitKey == IdealInitKeys[IdealIndex])
2239          break;
2240
2241      assert(IdealIndex != NumIdealInits &&
2242             "initializer not found in initializer list");
2243    }
2244
2245    PrevInit = Init;
2246  }
2247}
2248
2249namespace {
2250bool CheckRedundantInit(Sema &S,
2251                        CXXCtorInitializer *Init,
2252                        CXXCtorInitializer *&PrevInit) {
2253  if (!PrevInit) {
2254    PrevInit = Init;
2255    return false;
2256  }
2257
2258  if (FieldDecl *Field = Init->getMember())
2259    S.Diag(Init->getSourceLocation(),
2260           diag::err_multiple_mem_initialization)
2261      << Field->getDeclName()
2262      << Init->getSourceRange();
2263  else {
2264    const Type *BaseClass = Init->getBaseClass();
2265    assert(BaseClass && "neither field nor base");
2266    S.Diag(Init->getSourceLocation(),
2267           diag::err_multiple_base_initialization)
2268      << QualType(BaseClass, 0)
2269      << Init->getSourceRange();
2270  }
2271  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2272    << 0 << PrevInit->getSourceRange();
2273
2274  return true;
2275}
2276
2277typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2278typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2279
2280bool CheckRedundantUnionInit(Sema &S,
2281                             CXXCtorInitializer *Init,
2282                             RedundantUnionMap &Unions) {
2283  FieldDecl *Field = Init->getAnyMember();
2284  RecordDecl *Parent = Field->getParent();
2285  if (!Parent->isAnonymousStructOrUnion())
2286    return false;
2287
2288  NamedDecl *Child = Field;
2289  do {
2290    if (Parent->isUnion()) {
2291      UnionEntry &En = Unions[Parent];
2292      if (En.first && En.first != Child) {
2293        S.Diag(Init->getSourceLocation(),
2294               diag::err_multiple_mem_union_initialization)
2295          << Field->getDeclName()
2296          << Init->getSourceRange();
2297        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2298          << 0 << En.second->getSourceRange();
2299        return true;
2300      } else if (!En.first) {
2301        En.first = Child;
2302        En.second = Init;
2303      }
2304    }
2305
2306    Child = Parent;
2307    Parent = cast<RecordDecl>(Parent->getDeclContext());
2308  } while (Parent->isAnonymousStructOrUnion());
2309
2310  return false;
2311}
2312}
2313
2314/// ActOnMemInitializers - Handle the member initializers for a constructor.
2315void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2316                                SourceLocation ColonLoc,
2317                                MemInitTy **meminits, unsigned NumMemInits,
2318                                bool AnyErrors) {
2319  if (!ConstructorDecl)
2320    return;
2321
2322  AdjustDeclIfTemplate(ConstructorDecl);
2323
2324  CXXConstructorDecl *Constructor
2325    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2326
2327  if (!Constructor) {
2328    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2329    return;
2330  }
2331
2332  CXXCtorInitializer **MemInits =
2333    reinterpret_cast<CXXCtorInitializer **>(meminits);
2334
2335  // Mapping for the duplicate initializers check.
2336  // For member initializers, this is keyed with a FieldDecl*.
2337  // For base initializers, this is keyed with a Type*.
2338  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2339
2340  // Mapping for the inconsistent anonymous-union initializers check.
2341  RedundantUnionMap MemberUnions;
2342
2343  bool HadError = false;
2344  for (unsigned i = 0; i < NumMemInits; i++) {
2345    CXXCtorInitializer *Init = MemInits[i];
2346
2347    // Set the source order index.
2348    Init->setSourceOrder(i);
2349
2350    if (Init->isAnyMemberInitializer()) {
2351      FieldDecl *Field = Init->getAnyMember();
2352      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2353          CheckRedundantUnionInit(*this, Init, MemberUnions))
2354        HadError = true;
2355    } else {
2356      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2357      if (CheckRedundantInit(*this, Init, Members[Key]))
2358        HadError = true;
2359    }
2360  }
2361
2362  if (HadError)
2363    return;
2364
2365  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2366
2367  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2368}
2369
2370void
2371Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2372                                             CXXRecordDecl *ClassDecl) {
2373  // Ignore dependent contexts.
2374  if (ClassDecl->isDependentContext())
2375    return;
2376
2377  // FIXME: all the access-control diagnostics are positioned on the
2378  // field/base declaration.  That's probably good; that said, the
2379  // user might reasonably want to know why the destructor is being
2380  // emitted, and we currently don't say.
2381
2382  // Non-static data members.
2383  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2384       E = ClassDecl->field_end(); I != E; ++I) {
2385    FieldDecl *Field = *I;
2386    if (Field->isInvalidDecl())
2387      continue;
2388    QualType FieldType = Context.getBaseElementType(Field->getType());
2389
2390    const RecordType* RT = FieldType->getAs<RecordType>();
2391    if (!RT)
2392      continue;
2393
2394    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2395    if (FieldClassDecl->hasTrivialDestructor())
2396      continue;
2397
2398    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2399    CheckDestructorAccess(Field->getLocation(), Dtor,
2400                          PDiag(diag::err_access_dtor_field)
2401                            << Field->getDeclName()
2402                            << FieldType);
2403
2404    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2405  }
2406
2407  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2408
2409  // Bases.
2410  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2411       E = ClassDecl->bases_end(); Base != E; ++Base) {
2412    // Bases are always records in a well-formed non-dependent class.
2413    const RecordType *RT = Base->getType()->getAs<RecordType>();
2414
2415    // Remember direct virtual bases.
2416    if (Base->isVirtual())
2417      DirectVirtualBases.insert(RT);
2418
2419    // Ignore trivial destructors.
2420    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2421    if (BaseClassDecl->hasTrivialDestructor())
2422      continue;
2423
2424    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2425
2426    // FIXME: caret should be on the start of the class name
2427    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2428                          PDiag(diag::err_access_dtor_base)
2429                            << Base->getType()
2430                            << Base->getSourceRange());
2431
2432    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2433  }
2434
2435  // Virtual bases.
2436  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2437       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2438
2439    // Bases are always records in a well-formed non-dependent class.
2440    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2441
2442    // Ignore direct virtual bases.
2443    if (DirectVirtualBases.count(RT))
2444      continue;
2445
2446    // Ignore trivial destructors.
2447    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2448    if (BaseClassDecl->hasTrivialDestructor())
2449      continue;
2450
2451    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2452    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2453                          PDiag(diag::err_access_dtor_vbase)
2454                            << VBase->getType());
2455
2456    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2457  }
2458}
2459
2460void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2461  if (!CDtorDecl)
2462    return;
2463
2464  if (CXXConstructorDecl *Constructor
2465      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2466    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2467}
2468
2469bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2470                                  unsigned DiagID, AbstractDiagSelID SelID) {
2471  if (SelID == -1)
2472    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2473  else
2474    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2475}
2476
2477bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2478                                  const PartialDiagnostic &PD) {
2479  if (!getLangOptions().CPlusPlus)
2480    return false;
2481
2482  if (const ArrayType *AT = Context.getAsArrayType(T))
2483    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2484
2485  if (const PointerType *PT = T->getAs<PointerType>()) {
2486    // Find the innermost pointer type.
2487    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2488      PT = T;
2489
2490    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2491      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2492  }
2493
2494  const RecordType *RT = T->getAs<RecordType>();
2495  if (!RT)
2496    return false;
2497
2498  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2499
2500  // We can't answer whether something is abstract until it has a
2501  // definition.  If it's currently being defined, we'll walk back
2502  // over all the declarations when we have a full definition.
2503  const CXXRecordDecl *Def = RD->getDefinition();
2504  if (!Def || Def->isBeingDefined())
2505    return false;
2506
2507  if (!RD->isAbstract())
2508    return false;
2509
2510  Diag(Loc, PD) << RD->getDeclName();
2511  DiagnoseAbstractType(RD);
2512
2513  return true;
2514}
2515
2516void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2517  // Check if we've already emitted the list of pure virtual functions
2518  // for this class.
2519  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2520    return;
2521
2522  CXXFinalOverriderMap FinalOverriders;
2523  RD->getFinalOverriders(FinalOverriders);
2524
2525  // Keep a set of seen pure methods so we won't diagnose the same method
2526  // more than once.
2527  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2528
2529  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2530                                   MEnd = FinalOverriders.end();
2531       M != MEnd;
2532       ++M) {
2533    for (OverridingMethods::iterator SO = M->second.begin(),
2534                                  SOEnd = M->second.end();
2535         SO != SOEnd; ++SO) {
2536      // C++ [class.abstract]p4:
2537      //   A class is abstract if it contains or inherits at least one
2538      //   pure virtual function for which the final overrider is pure
2539      //   virtual.
2540
2541      //
2542      if (SO->second.size() != 1)
2543        continue;
2544
2545      if (!SO->second.front().Method->isPure())
2546        continue;
2547
2548      if (!SeenPureMethods.insert(SO->second.front().Method))
2549        continue;
2550
2551      Diag(SO->second.front().Method->getLocation(),
2552           diag::note_pure_virtual_function)
2553        << SO->second.front().Method->getDeclName();
2554    }
2555  }
2556
2557  if (!PureVirtualClassDiagSet)
2558    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2559  PureVirtualClassDiagSet->insert(RD);
2560}
2561
2562namespace {
2563struct AbstractUsageInfo {
2564  Sema &S;
2565  CXXRecordDecl *Record;
2566  CanQualType AbstractType;
2567  bool Invalid;
2568
2569  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2570    : S(S), Record(Record),
2571      AbstractType(S.Context.getCanonicalType(
2572                   S.Context.getTypeDeclType(Record))),
2573      Invalid(false) {}
2574
2575  void DiagnoseAbstractType() {
2576    if (Invalid) return;
2577    S.DiagnoseAbstractType(Record);
2578    Invalid = true;
2579  }
2580
2581  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2582};
2583
2584struct CheckAbstractUsage {
2585  AbstractUsageInfo &Info;
2586  const NamedDecl *Ctx;
2587
2588  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2589    : Info(Info), Ctx(Ctx) {}
2590
2591  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2592    switch (TL.getTypeLocClass()) {
2593#define ABSTRACT_TYPELOC(CLASS, PARENT)
2594#define TYPELOC(CLASS, PARENT) \
2595    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2596#include "clang/AST/TypeLocNodes.def"
2597    }
2598  }
2599
2600  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2601    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2602    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2603      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2604      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2605    }
2606  }
2607
2608  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2609    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2610  }
2611
2612  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2613    // Visit the type parameters from a permissive context.
2614    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2615      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2616      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2617        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2618          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2619      // TODO: other template argument types?
2620    }
2621  }
2622
2623  // Visit pointee types from a permissive context.
2624#define CheckPolymorphic(Type) \
2625  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2626    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2627  }
2628  CheckPolymorphic(PointerTypeLoc)
2629  CheckPolymorphic(ReferenceTypeLoc)
2630  CheckPolymorphic(MemberPointerTypeLoc)
2631  CheckPolymorphic(BlockPointerTypeLoc)
2632
2633  /// Handle all the types we haven't given a more specific
2634  /// implementation for above.
2635  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2636    // Every other kind of type that we haven't called out already
2637    // that has an inner type is either (1) sugar or (2) contains that
2638    // inner type in some way as a subobject.
2639    if (TypeLoc Next = TL.getNextTypeLoc())
2640      return Visit(Next, Sel);
2641
2642    // If there's no inner type and we're in a permissive context,
2643    // don't diagnose.
2644    if (Sel == Sema::AbstractNone) return;
2645
2646    // Check whether the type matches the abstract type.
2647    QualType T = TL.getType();
2648    if (T->isArrayType()) {
2649      Sel = Sema::AbstractArrayType;
2650      T = Info.S.Context.getBaseElementType(T);
2651    }
2652    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2653    if (CT != Info.AbstractType) return;
2654
2655    // It matched; do some magic.
2656    if (Sel == Sema::AbstractArrayType) {
2657      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2658        << T << TL.getSourceRange();
2659    } else {
2660      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2661        << Sel << T << TL.getSourceRange();
2662    }
2663    Info.DiagnoseAbstractType();
2664  }
2665};
2666
2667void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2668                                  Sema::AbstractDiagSelID Sel) {
2669  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2670}
2671
2672}
2673
2674/// Check for invalid uses of an abstract type in a method declaration.
2675static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2676                                    CXXMethodDecl *MD) {
2677  // No need to do the check on definitions, which require that
2678  // the return/param types be complete.
2679  if (MD->isThisDeclarationADefinition())
2680    return;
2681
2682  // For safety's sake, just ignore it if we don't have type source
2683  // information.  This should never happen for non-implicit methods,
2684  // but...
2685  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2686    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2687}
2688
2689/// Check for invalid uses of an abstract type within a class definition.
2690static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2691                                    CXXRecordDecl *RD) {
2692  for (CXXRecordDecl::decl_iterator
2693         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2694    Decl *D = *I;
2695    if (D->isImplicit()) continue;
2696
2697    // Methods and method templates.
2698    if (isa<CXXMethodDecl>(D)) {
2699      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2700    } else if (isa<FunctionTemplateDecl>(D)) {
2701      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2702      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2703
2704    // Fields and static variables.
2705    } else if (isa<FieldDecl>(D)) {
2706      FieldDecl *FD = cast<FieldDecl>(D);
2707      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2708        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2709    } else if (isa<VarDecl>(D)) {
2710      VarDecl *VD = cast<VarDecl>(D);
2711      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2712        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2713
2714    // Nested classes and class templates.
2715    } else if (isa<CXXRecordDecl>(D)) {
2716      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2717    } else if (isa<ClassTemplateDecl>(D)) {
2718      CheckAbstractClassUsage(Info,
2719                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2720    }
2721  }
2722}
2723
2724/// \brief Perform semantic checks on a class definition that has been
2725/// completing, introducing implicitly-declared members, checking for
2726/// abstract types, etc.
2727void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2728  if (!Record)
2729    return;
2730
2731  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2732    AbstractUsageInfo Info(*this, Record);
2733    CheckAbstractClassUsage(Info, Record);
2734  }
2735
2736  // If this is not an aggregate type and has no user-declared constructor,
2737  // complain about any non-static data members of reference or const scalar
2738  // type, since they will never get initializers.
2739  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2740      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2741    bool Complained = false;
2742    for (RecordDecl::field_iterator F = Record->field_begin(),
2743                                 FEnd = Record->field_end();
2744         F != FEnd; ++F) {
2745      if (F->getType()->isReferenceType() ||
2746          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2747        if (!Complained) {
2748          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2749            << Record->getTagKind() << Record;
2750          Complained = true;
2751        }
2752
2753        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2754          << F->getType()->isReferenceType()
2755          << F->getDeclName();
2756      }
2757    }
2758  }
2759
2760  if (Record->isDynamicClass())
2761    DynamicClasses.push_back(Record);
2762
2763  if (Record->getIdentifier()) {
2764    // C++ [class.mem]p13:
2765    //   If T is the name of a class, then each of the following shall have a
2766    //   name different from T:
2767    //     - every member of every anonymous union that is a member of class T.
2768    //
2769    // C++ [class.mem]p14:
2770    //   In addition, if class T has a user-declared constructor (12.1), every
2771    //   non-static data member of class T shall have a name different from T.
2772    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2773         R.first != R.second; ++R.first) {
2774      NamedDecl *D = *R.first;
2775      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2776          isa<IndirectFieldDecl>(D)) {
2777        Diag(D->getLocation(), diag::err_member_name_of_class)
2778          << D->getDeclName();
2779        break;
2780      }
2781    }
2782  }
2783}
2784
2785void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2786                                             Decl *TagDecl,
2787                                             SourceLocation LBrac,
2788                                             SourceLocation RBrac,
2789                                             AttributeList *AttrList) {
2790  if (!TagDecl)
2791    return;
2792
2793  AdjustDeclIfTemplate(TagDecl);
2794
2795  ActOnFields(S, RLoc, TagDecl,
2796              // strict aliasing violation!
2797              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2798              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2799
2800  CheckCompletedCXXClass(
2801                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2802}
2803
2804namespace {
2805  /// \brief Helper class that collects exception specifications for
2806  /// implicitly-declared special member functions.
2807  class ImplicitExceptionSpecification {
2808    ASTContext &Context;
2809    bool AllowsAllExceptions;
2810    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2811    llvm::SmallVector<QualType, 4> Exceptions;
2812
2813  public:
2814    explicit ImplicitExceptionSpecification(ASTContext &Context)
2815      : Context(Context), AllowsAllExceptions(false) { }
2816
2817    /// \brief Whether the special member function should have any
2818    /// exception specification at all.
2819    bool hasExceptionSpecification() const {
2820      return !AllowsAllExceptions;
2821    }
2822
2823    /// \brief Whether the special member function should have a
2824    /// throw(...) exception specification (a Microsoft extension).
2825    bool hasAnyExceptionSpecification() const {
2826      return false;
2827    }
2828
2829    /// \brief The number of exceptions in the exception specification.
2830    unsigned size() const { return Exceptions.size(); }
2831
2832    /// \brief The set of exceptions in the exception specification.
2833    const QualType *data() const { return Exceptions.data(); }
2834
2835    /// \brief Note that
2836    void CalledDecl(CXXMethodDecl *Method) {
2837      // If we already know that we allow all exceptions, do nothing.
2838      if (AllowsAllExceptions || !Method)
2839        return;
2840
2841      const FunctionProtoType *Proto
2842        = Method->getType()->getAs<FunctionProtoType>();
2843
2844      // If this function can throw any exceptions, make a note of that.
2845      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2846        AllowsAllExceptions = true;
2847        ExceptionsSeen.clear();
2848        Exceptions.clear();
2849        return;
2850      }
2851
2852      // Record the exceptions in this function's exception specification.
2853      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2854                                              EEnd = Proto->exception_end();
2855           E != EEnd; ++E)
2856        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2857          Exceptions.push_back(*E);
2858    }
2859  };
2860}
2861
2862
2863/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2864/// special functions, such as the default constructor, copy
2865/// constructor, or destructor, to the given C++ class (C++
2866/// [special]p1).  This routine can only be executed just before the
2867/// definition of the class is complete.
2868void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2869  if (!ClassDecl->hasUserDeclaredConstructor())
2870    ++ASTContext::NumImplicitDefaultConstructors;
2871
2872  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2873    ++ASTContext::NumImplicitCopyConstructors;
2874
2875  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2876    ++ASTContext::NumImplicitCopyAssignmentOperators;
2877
2878    // If we have a dynamic class, then the copy assignment operator may be
2879    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2880    // it shows up in the right place in the vtable and that we diagnose
2881    // problems with the implicit exception specification.
2882    if (ClassDecl->isDynamicClass())
2883      DeclareImplicitCopyAssignment(ClassDecl);
2884  }
2885
2886  if (!ClassDecl->hasUserDeclaredDestructor()) {
2887    ++ASTContext::NumImplicitDestructors;
2888
2889    // If we have a dynamic class, then the destructor may be virtual, so we
2890    // have to declare the destructor immediately. This ensures that, e.g., it
2891    // shows up in the right place in the vtable and that we diagnose problems
2892    // with the implicit exception specification.
2893    if (ClassDecl->isDynamicClass())
2894      DeclareImplicitDestructor(ClassDecl);
2895  }
2896}
2897
2898void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2899  if (!D)
2900    return;
2901
2902  TemplateParameterList *Params = 0;
2903  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2904    Params = Template->getTemplateParameters();
2905  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2906           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2907    Params = PartialSpec->getTemplateParameters();
2908  else
2909    return;
2910
2911  for (TemplateParameterList::iterator Param = Params->begin(),
2912                                    ParamEnd = Params->end();
2913       Param != ParamEnd; ++Param) {
2914    NamedDecl *Named = cast<NamedDecl>(*Param);
2915    if (Named->getDeclName()) {
2916      S->AddDecl(Named);
2917      IdResolver.AddDecl(Named);
2918    }
2919  }
2920}
2921
2922void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2923  if (!RecordD) return;
2924  AdjustDeclIfTemplate(RecordD);
2925  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2926  PushDeclContext(S, Record);
2927}
2928
2929void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2930  if (!RecordD) return;
2931  PopDeclContext();
2932}
2933
2934/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2935/// parsing a top-level (non-nested) C++ class, and we are now
2936/// parsing those parts of the given Method declaration that could
2937/// not be parsed earlier (C++ [class.mem]p2), such as default
2938/// arguments. This action should enter the scope of the given
2939/// Method declaration as if we had just parsed the qualified method
2940/// name. However, it should not bring the parameters into scope;
2941/// that will be performed by ActOnDelayedCXXMethodParameter.
2942void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2943}
2944
2945/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2946/// C++ method declaration. We're (re-)introducing the given
2947/// function parameter into scope for use in parsing later parts of
2948/// the method declaration. For example, we could see an
2949/// ActOnParamDefaultArgument event for this parameter.
2950void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2951  if (!ParamD)
2952    return;
2953
2954  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2955
2956  // If this parameter has an unparsed default argument, clear it out
2957  // to make way for the parsed default argument.
2958  if (Param->hasUnparsedDefaultArg())
2959    Param->setDefaultArg(0);
2960
2961  S->AddDecl(Param);
2962  if (Param->getDeclName())
2963    IdResolver.AddDecl(Param);
2964}
2965
2966/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2967/// processing the delayed method declaration for Method. The method
2968/// declaration is now considered finished. There may be a separate
2969/// ActOnStartOfFunctionDef action later (not necessarily
2970/// immediately!) for this method, if it was also defined inside the
2971/// class body.
2972void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2973  if (!MethodD)
2974    return;
2975
2976  AdjustDeclIfTemplate(MethodD);
2977
2978  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2979
2980  // Now that we have our default arguments, check the constructor
2981  // again. It could produce additional diagnostics or affect whether
2982  // the class has implicitly-declared destructors, among other
2983  // things.
2984  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2985    CheckConstructor(Constructor);
2986
2987  // Check the default arguments, which we may have added.
2988  if (!Method->isInvalidDecl())
2989    CheckCXXDefaultArguments(Method);
2990}
2991
2992/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2993/// the well-formedness of the constructor declarator @p D with type @p
2994/// R. If there are any errors in the declarator, this routine will
2995/// emit diagnostics and set the invalid bit to true.  In any case, the type
2996/// will be updated to reflect a well-formed type for the constructor and
2997/// returned.
2998QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2999                                          StorageClass &SC) {
3000  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3001
3002  // C++ [class.ctor]p3:
3003  //   A constructor shall not be virtual (10.3) or static (9.4). A
3004  //   constructor can be invoked for a const, volatile or const
3005  //   volatile object. A constructor shall not be declared const,
3006  //   volatile, or const volatile (9.3.2).
3007  if (isVirtual) {
3008    if (!D.isInvalidType())
3009      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3010        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3011        << SourceRange(D.getIdentifierLoc());
3012    D.setInvalidType();
3013  }
3014  if (SC == SC_Static) {
3015    if (!D.isInvalidType())
3016      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3017        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3018        << SourceRange(D.getIdentifierLoc());
3019    D.setInvalidType();
3020    SC = SC_None;
3021  }
3022
3023  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3024  if (FTI.TypeQuals != 0) {
3025    if (FTI.TypeQuals & Qualifiers::Const)
3026      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3027        << "const" << SourceRange(D.getIdentifierLoc());
3028    if (FTI.TypeQuals & Qualifiers::Volatile)
3029      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3030        << "volatile" << SourceRange(D.getIdentifierLoc());
3031    if (FTI.TypeQuals & Qualifiers::Restrict)
3032      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3033        << "restrict" << SourceRange(D.getIdentifierLoc());
3034    D.setInvalidType();
3035  }
3036
3037  // Rebuild the function type "R" without any type qualifiers (in
3038  // case any of the errors above fired) and with "void" as the
3039  // return type, since constructors don't have return types.
3040  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3041  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3042    return R;
3043
3044  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3045  EPI.TypeQuals = 0;
3046
3047  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3048                                 Proto->getNumArgs(), EPI);
3049}
3050
3051/// CheckConstructor - Checks a fully-formed constructor for
3052/// well-formedness, issuing any diagnostics required. Returns true if
3053/// the constructor declarator is invalid.
3054void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3055  CXXRecordDecl *ClassDecl
3056    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3057  if (!ClassDecl)
3058    return Constructor->setInvalidDecl();
3059
3060  // C++ [class.copy]p3:
3061  //   A declaration of a constructor for a class X is ill-formed if
3062  //   its first parameter is of type (optionally cv-qualified) X and
3063  //   either there are no other parameters or else all other
3064  //   parameters have default arguments.
3065  if (!Constructor->isInvalidDecl() &&
3066      ((Constructor->getNumParams() == 1) ||
3067       (Constructor->getNumParams() > 1 &&
3068        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3069      Constructor->getTemplateSpecializationKind()
3070                                              != TSK_ImplicitInstantiation) {
3071    QualType ParamType = Constructor->getParamDecl(0)->getType();
3072    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3073    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3074      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3075      const char *ConstRef
3076        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3077                                                        : " const &";
3078      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3079        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3080
3081      // FIXME: Rather that making the constructor invalid, we should endeavor
3082      // to fix the type.
3083      Constructor->setInvalidDecl();
3084    }
3085  }
3086}
3087
3088/// CheckDestructor - Checks a fully-formed destructor definition for
3089/// well-formedness, issuing any diagnostics required.  Returns true
3090/// on error.
3091bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3092  CXXRecordDecl *RD = Destructor->getParent();
3093
3094  if (Destructor->isVirtual()) {
3095    SourceLocation Loc;
3096
3097    if (!Destructor->isImplicit())
3098      Loc = Destructor->getLocation();
3099    else
3100      Loc = RD->getLocation();
3101
3102    // If we have a virtual destructor, look up the deallocation function
3103    FunctionDecl *OperatorDelete = 0;
3104    DeclarationName Name =
3105    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3106    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3107      return true;
3108
3109    MarkDeclarationReferenced(Loc, OperatorDelete);
3110
3111    Destructor->setOperatorDelete(OperatorDelete);
3112  }
3113
3114  return false;
3115}
3116
3117static inline bool
3118FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3119  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3120          FTI.ArgInfo[0].Param &&
3121          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3122}
3123
3124/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3125/// the well-formednes of the destructor declarator @p D with type @p
3126/// R. If there are any errors in the declarator, this routine will
3127/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3128/// will be updated to reflect a well-formed type for the destructor and
3129/// returned.
3130QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3131                                         StorageClass& SC) {
3132  // C++ [class.dtor]p1:
3133  //   [...] A typedef-name that names a class is a class-name
3134  //   (7.1.3); however, a typedef-name that names a class shall not
3135  //   be used as the identifier in the declarator for a destructor
3136  //   declaration.
3137  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3138  if (isa<TypedefType>(DeclaratorType))
3139    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3140      << DeclaratorType;
3141
3142  // C++ [class.dtor]p2:
3143  //   A destructor is used to destroy objects of its class type. A
3144  //   destructor takes no parameters, and no return type can be
3145  //   specified for it (not even void). The address of a destructor
3146  //   shall not be taken. A destructor shall not be static. A
3147  //   destructor can be invoked for a const, volatile or const
3148  //   volatile object. A destructor shall not be declared const,
3149  //   volatile or const volatile (9.3.2).
3150  if (SC == SC_Static) {
3151    if (!D.isInvalidType())
3152      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3153        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3154        << SourceRange(D.getIdentifierLoc())
3155        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3156
3157    SC = SC_None;
3158  }
3159  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3160    // Destructors don't have return types, but the parser will
3161    // happily parse something like:
3162    //
3163    //   class X {
3164    //     float ~X();
3165    //   };
3166    //
3167    // The return type will be eliminated later.
3168    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3169      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3170      << SourceRange(D.getIdentifierLoc());
3171  }
3172
3173  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3174  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3175    if (FTI.TypeQuals & Qualifiers::Const)
3176      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3177        << "const" << SourceRange(D.getIdentifierLoc());
3178    if (FTI.TypeQuals & Qualifiers::Volatile)
3179      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3180        << "volatile" << SourceRange(D.getIdentifierLoc());
3181    if (FTI.TypeQuals & Qualifiers::Restrict)
3182      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3183        << "restrict" << SourceRange(D.getIdentifierLoc());
3184    D.setInvalidType();
3185  }
3186
3187  // Make sure we don't have any parameters.
3188  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3189    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3190
3191    // Delete the parameters.
3192    FTI.freeArgs();
3193    D.setInvalidType();
3194  }
3195
3196  // Make sure the destructor isn't variadic.
3197  if (FTI.isVariadic) {
3198    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3199    D.setInvalidType();
3200  }
3201
3202  // Rebuild the function type "R" without any type qualifiers or
3203  // parameters (in case any of the errors above fired) and with
3204  // "void" as the return type, since destructors don't have return
3205  // types.
3206  if (!D.isInvalidType())
3207    return R;
3208
3209  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3210  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3211  EPI.Variadic = false;
3212  EPI.TypeQuals = 0;
3213  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3214}
3215
3216/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3217/// well-formednes of the conversion function declarator @p D with
3218/// type @p R. If there are any errors in the declarator, this routine
3219/// will emit diagnostics and return true. Otherwise, it will return
3220/// false. Either way, the type @p R will be updated to reflect a
3221/// well-formed type for the conversion operator.
3222void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3223                                     StorageClass& SC) {
3224  // C++ [class.conv.fct]p1:
3225  //   Neither parameter types nor return type can be specified. The
3226  //   type of a conversion function (8.3.5) is "function taking no
3227  //   parameter returning conversion-type-id."
3228  if (SC == SC_Static) {
3229    if (!D.isInvalidType())
3230      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3231        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3232        << SourceRange(D.getIdentifierLoc());
3233    D.setInvalidType();
3234    SC = SC_None;
3235  }
3236
3237  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3238
3239  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3240    // Conversion functions don't have return types, but the parser will
3241    // happily parse something like:
3242    //
3243    //   class X {
3244    //     float operator bool();
3245    //   };
3246    //
3247    // The return type will be changed later anyway.
3248    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3249      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3250      << SourceRange(D.getIdentifierLoc());
3251    D.setInvalidType();
3252  }
3253
3254  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3255
3256  // Make sure we don't have any parameters.
3257  if (Proto->getNumArgs() > 0) {
3258    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3259
3260    // Delete the parameters.
3261    D.getFunctionTypeInfo().freeArgs();
3262    D.setInvalidType();
3263  } else if (Proto->isVariadic()) {
3264    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3265    D.setInvalidType();
3266  }
3267
3268  // Diagnose "&operator bool()" and other such nonsense.  This
3269  // is actually a gcc extension which we don't support.
3270  if (Proto->getResultType() != ConvType) {
3271    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3272      << Proto->getResultType();
3273    D.setInvalidType();
3274    ConvType = Proto->getResultType();
3275  }
3276
3277  // C++ [class.conv.fct]p4:
3278  //   The conversion-type-id shall not represent a function type nor
3279  //   an array type.
3280  if (ConvType->isArrayType()) {
3281    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3282    ConvType = Context.getPointerType(ConvType);
3283    D.setInvalidType();
3284  } else if (ConvType->isFunctionType()) {
3285    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3286    ConvType = Context.getPointerType(ConvType);
3287    D.setInvalidType();
3288  }
3289
3290  // Rebuild the function type "R" without any parameters (in case any
3291  // of the errors above fired) and with the conversion type as the
3292  // return type.
3293  if (D.isInvalidType())
3294    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3295
3296  // C++0x explicit conversion operators.
3297  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3298    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3299         diag::warn_explicit_conversion_functions)
3300      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3301}
3302
3303/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3304/// the declaration of the given C++ conversion function. This routine
3305/// is responsible for recording the conversion function in the C++
3306/// class, if possible.
3307Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3308  assert(Conversion && "Expected to receive a conversion function declaration");
3309
3310  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3311
3312  // Make sure we aren't redeclaring the conversion function.
3313  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3314
3315  // C++ [class.conv.fct]p1:
3316  //   [...] A conversion function is never used to convert a
3317  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3318  //   same object type (or a reference to it), to a (possibly
3319  //   cv-qualified) base class of that type (or a reference to it),
3320  //   or to (possibly cv-qualified) void.
3321  // FIXME: Suppress this warning if the conversion function ends up being a
3322  // virtual function that overrides a virtual function in a base class.
3323  QualType ClassType
3324    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3325  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3326    ConvType = ConvTypeRef->getPointeeType();
3327  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3328      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3329    /* Suppress diagnostics for instantiations. */;
3330  else if (ConvType->isRecordType()) {
3331    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3332    if (ConvType == ClassType)
3333      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3334        << ClassType;
3335    else if (IsDerivedFrom(ClassType, ConvType))
3336      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3337        <<  ClassType << ConvType;
3338  } else if (ConvType->isVoidType()) {
3339    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3340      << ClassType << ConvType;
3341  }
3342
3343  if (FunctionTemplateDecl *ConversionTemplate
3344                                = Conversion->getDescribedFunctionTemplate())
3345    return ConversionTemplate;
3346
3347  return Conversion;
3348}
3349
3350//===----------------------------------------------------------------------===//
3351// Namespace Handling
3352//===----------------------------------------------------------------------===//
3353
3354
3355
3356/// ActOnStartNamespaceDef - This is called at the start of a namespace
3357/// definition.
3358Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3359                                   SourceLocation InlineLoc,
3360                                   SourceLocation IdentLoc,
3361                                   IdentifierInfo *II,
3362                                   SourceLocation LBrace,
3363                                   AttributeList *AttrList) {
3364  // anonymous namespace starts at its left brace
3365  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3366    (II ? IdentLoc : LBrace) , II);
3367  Namespc->setLBracLoc(LBrace);
3368  Namespc->setInline(InlineLoc.isValid());
3369
3370  Scope *DeclRegionScope = NamespcScope->getParent();
3371
3372  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3373
3374  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3375    PushNamespaceVisibilityAttr(Attr);
3376
3377  if (II) {
3378    // C++ [namespace.def]p2:
3379    //   The identifier in an original-namespace-definition shall not
3380    //   have been previously defined in the declarative region in
3381    //   which the original-namespace-definition appears. The
3382    //   identifier in an original-namespace-definition is the name of
3383    //   the namespace. Subsequently in that declarative region, it is
3384    //   treated as an original-namespace-name.
3385    //
3386    // Since namespace names are unique in their scope, and we don't
3387    // look through using directives, just
3388    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3389    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3390
3391    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3392      // This is an extended namespace definition.
3393      if (Namespc->isInline() != OrigNS->isInline()) {
3394        // inline-ness must match
3395        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3396          << Namespc->isInline();
3397        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3398        Namespc->setInvalidDecl();
3399        // Recover by ignoring the new namespace's inline status.
3400        Namespc->setInline(OrigNS->isInline());
3401      }
3402
3403      // Attach this namespace decl to the chain of extended namespace
3404      // definitions.
3405      OrigNS->setNextNamespace(Namespc);
3406      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3407
3408      // Remove the previous declaration from the scope.
3409      if (DeclRegionScope->isDeclScope(OrigNS)) {
3410        IdResolver.RemoveDecl(OrigNS);
3411        DeclRegionScope->RemoveDecl(OrigNS);
3412      }
3413    } else if (PrevDecl) {
3414      // This is an invalid name redefinition.
3415      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3416       << Namespc->getDeclName();
3417      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3418      Namespc->setInvalidDecl();
3419      // Continue on to push Namespc as current DeclContext and return it.
3420    } else if (II->isStr("std") &&
3421               CurContext->getRedeclContext()->isTranslationUnit()) {
3422      // This is the first "real" definition of the namespace "std", so update
3423      // our cache of the "std" namespace to point at this definition.
3424      if (NamespaceDecl *StdNS = getStdNamespace()) {
3425        // We had already defined a dummy namespace "std". Link this new
3426        // namespace definition to the dummy namespace "std".
3427        StdNS->setNextNamespace(Namespc);
3428        StdNS->setLocation(IdentLoc);
3429        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3430      }
3431
3432      // Make our StdNamespace cache point at the first real definition of the
3433      // "std" namespace.
3434      StdNamespace = Namespc;
3435    }
3436
3437    PushOnScopeChains(Namespc, DeclRegionScope);
3438  } else {
3439    // Anonymous namespaces.
3440    assert(Namespc->isAnonymousNamespace());
3441
3442    // Link the anonymous namespace into its parent.
3443    NamespaceDecl *PrevDecl;
3444    DeclContext *Parent = CurContext->getRedeclContext();
3445    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3446      PrevDecl = TU->getAnonymousNamespace();
3447      TU->setAnonymousNamespace(Namespc);
3448    } else {
3449      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3450      PrevDecl = ND->getAnonymousNamespace();
3451      ND->setAnonymousNamespace(Namespc);
3452    }
3453
3454    // Link the anonymous namespace with its previous declaration.
3455    if (PrevDecl) {
3456      assert(PrevDecl->isAnonymousNamespace());
3457      assert(!PrevDecl->getNextNamespace());
3458      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3459      PrevDecl->setNextNamespace(Namespc);
3460
3461      if (Namespc->isInline() != PrevDecl->isInline()) {
3462        // inline-ness must match
3463        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3464          << Namespc->isInline();
3465        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3466        Namespc->setInvalidDecl();
3467        // Recover by ignoring the new namespace's inline status.
3468        Namespc->setInline(PrevDecl->isInline());
3469      }
3470    }
3471
3472    CurContext->addDecl(Namespc);
3473
3474    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3475    //   behaves as if it were replaced by
3476    //     namespace unique { /* empty body */ }
3477    //     using namespace unique;
3478    //     namespace unique { namespace-body }
3479    //   where all occurrences of 'unique' in a translation unit are
3480    //   replaced by the same identifier and this identifier differs
3481    //   from all other identifiers in the entire program.
3482
3483    // We just create the namespace with an empty name and then add an
3484    // implicit using declaration, just like the standard suggests.
3485    //
3486    // CodeGen enforces the "universally unique" aspect by giving all
3487    // declarations semantically contained within an anonymous
3488    // namespace internal linkage.
3489
3490    if (!PrevDecl) {
3491      UsingDirectiveDecl* UD
3492        = UsingDirectiveDecl::Create(Context, CurContext,
3493                                     /* 'using' */ LBrace,
3494                                     /* 'namespace' */ SourceLocation(),
3495                                     /* qualifier */ SourceRange(),
3496                                     /* NNS */ NULL,
3497                                     /* identifier */ SourceLocation(),
3498                                     Namespc,
3499                                     /* Ancestor */ CurContext);
3500      UD->setImplicit();
3501      CurContext->addDecl(UD);
3502    }
3503  }
3504
3505  // Although we could have an invalid decl (i.e. the namespace name is a
3506  // redefinition), push it as current DeclContext and try to continue parsing.
3507  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3508  // for the namespace has the declarations that showed up in that particular
3509  // namespace definition.
3510  PushDeclContext(NamespcScope, Namespc);
3511  return Namespc;
3512}
3513
3514/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3515/// is a namespace alias, returns the namespace it points to.
3516static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3517  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3518    return AD->getNamespace();
3519  return dyn_cast_or_null<NamespaceDecl>(D);
3520}
3521
3522/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3523/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3524void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3525  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3526  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3527  Namespc->setRBracLoc(RBrace);
3528  PopDeclContext();
3529  if (Namespc->hasAttr<VisibilityAttr>())
3530    PopPragmaVisibility();
3531}
3532
3533CXXRecordDecl *Sema::getStdBadAlloc() const {
3534  return cast_or_null<CXXRecordDecl>(
3535                                  StdBadAlloc.get(Context.getExternalSource()));
3536}
3537
3538NamespaceDecl *Sema::getStdNamespace() const {
3539  return cast_or_null<NamespaceDecl>(
3540                                 StdNamespace.get(Context.getExternalSource()));
3541}
3542
3543/// \brief Retrieve the special "std" namespace, which may require us to
3544/// implicitly define the namespace.
3545NamespaceDecl *Sema::getOrCreateStdNamespace() {
3546  if (!StdNamespace) {
3547    // The "std" namespace has not yet been defined, so build one implicitly.
3548    StdNamespace = NamespaceDecl::Create(Context,
3549                                         Context.getTranslationUnitDecl(),
3550                                         SourceLocation(),
3551                                         &PP.getIdentifierTable().get("std"));
3552    getStdNamespace()->setImplicit(true);
3553  }
3554
3555  return getStdNamespace();
3556}
3557
3558Decl *Sema::ActOnUsingDirective(Scope *S,
3559                                          SourceLocation UsingLoc,
3560                                          SourceLocation NamespcLoc,
3561                                          CXXScopeSpec &SS,
3562                                          SourceLocation IdentLoc,
3563                                          IdentifierInfo *NamespcName,
3564                                          AttributeList *AttrList) {
3565  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3566  assert(NamespcName && "Invalid NamespcName.");
3567  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3568
3569  // This can only happen along a recovery path.
3570  while (S->getFlags() & Scope::TemplateParamScope)
3571    S = S->getParent();
3572  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3573
3574  UsingDirectiveDecl *UDir = 0;
3575  NestedNameSpecifier *Qualifier = 0;
3576  if (SS.isSet())
3577    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3578
3579  // Lookup namespace name.
3580  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3581  LookupParsedName(R, S, &SS);
3582  if (R.isAmbiguous())
3583    return 0;
3584
3585  if (R.empty()) {
3586    // Allow "using namespace std;" or "using namespace ::std;" even if
3587    // "std" hasn't been defined yet, for GCC compatibility.
3588    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3589        NamespcName->isStr("std")) {
3590      Diag(IdentLoc, diag::ext_using_undefined_std);
3591      R.addDecl(getOrCreateStdNamespace());
3592      R.resolveKind();
3593    }
3594    // Otherwise, attempt typo correction.
3595    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3596                                                       CTC_NoKeywords, 0)) {
3597      if (R.getAsSingle<NamespaceDecl>() ||
3598          R.getAsSingle<NamespaceAliasDecl>()) {
3599        if (DeclContext *DC = computeDeclContext(SS, false))
3600          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3601            << NamespcName << DC << Corrected << SS.getRange()
3602            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3603        else
3604          Diag(IdentLoc, diag::err_using_directive_suggest)
3605            << NamespcName << Corrected
3606            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3607        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3608          << Corrected;
3609
3610        NamespcName = Corrected.getAsIdentifierInfo();
3611      } else {
3612        R.clear();
3613        R.setLookupName(NamespcName);
3614      }
3615    }
3616  }
3617
3618  if (!R.empty()) {
3619    NamedDecl *Named = R.getFoundDecl();
3620    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3621        && "expected namespace decl");
3622    // C++ [namespace.udir]p1:
3623    //   A using-directive specifies that the names in the nominated
3624    //   namespace can be used in the scope in which the
3625    //   using-directive appears after the using-directive. During
3626    //   unqualified name lookup (3.4.1), the names appear as if they
3627    //   were declared in the nearest enclosing namespace which
3628    //   contains both the using-directive and the nominated
3629    //   namespace. [Note: in this context, "contains" means "contains
3630    //   directly or indirectly". ]
3631
3632    // Find enclosing context containing both using-directive and
3633    // nominated namespace.
3634    NamespaceDecl *NS = getNamespaceDecl(Named);
3635    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3636    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3637      CommonAncestor = CommonAncestor->getParent();
3638
3639    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3640                                      SS.getRange(),
3641                                      (NestedNameSpecifier *)SS.getScopeRep(),
3642                                      IdentLoc, Named, CommonAncestor);
3643    PushUsingDirective(S, UDir);
3644  } else {
3645    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3646  }
3647
3648  // FIXME: We ignore attributes for now.
3649  return UDir;
3650}
3651
3652void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3653  // If scope has associated entity, then using directive is at namespace
3654  // or translation unit scope. We add UsingDirectiveDecls, into
3655  // it's lookup structure.
3656  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3657    Ctx->addDecl(UDir);
3658  else
3659    // Otherwise it is block-sope. using-directives will affect lookup
3660    // only to the end of scope.
3661    S->PushUsingDirective(UDir);
3662}
3663
3664
3665Decl *Sema::ActOnUsingDeclaration(Scope *S,
3666                                  AccessSpecifier AS,
3667                                  bool HasUsingKeyword,
3668                                  SourceLocation UsingLoc,
3669                                  CXXScopeSpec &SS,
3670                                  UnqualifiedId &Name,
3671                                  AttributeList *AttrList,
3672                                  bool IsTypeName,
3673                                  SourceLocation TypenameLoc) {
3674  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3675
3676  switch (Name.getKind()) {
3677  case UnqualifiedId::IK_Identifier:
3678  case UnqualifiedId::IK_OperatorFunctionId:
3679  case UnqualifiedId::IK_LiteralOperatorId:
3680  case UnqualifiedId::IK_ConversionFunctionId:
3681    break;
3682
3683  case UnqualifiedId::IK_ConstructorName:
3684  case UnqualifiedId::IK_ConstructorTemplateId:
3685    // C++0x inherited constructors.
3686    if (getLangOptions().CPlusPlus0x) break;
3687
3688    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3689      << SS.getRange();
3690    return 0;
3691
3692  case UnqualifiedId::IK_DestructorName:
3693    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3694      << SS.getRange();
3695    return 0;
3696
3697  case UnqualifiedId::IK_TemplateId:
3698    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3699      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3700    return 0;
3701  }
3702
3703  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3704  DeclarationName TargetName = TargetNameInfo.getName();
3705  if (!TargetName)
3706    return 0;
3707
3708  // Warn about using declarations.
3709  // TODO: store that the declaration was written without 'using' and
3710  // talk about access decls instead of using decls in the
3711  // diagnostics.
3712  if (!HasUsingKeyword) {
3713    UsingLoc = Name.getSourceRange().getBegin();
3714
3715    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3716      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3717  }
3718
3719  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3720      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3721    return 0;
3722
3723  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3724                                        TargetNameInfo, AttrList,
3725                                        /* IsInstantiation */ false,
3726                                        IsTypeName, TypenameLoc);
3727  if (UD)
3728    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3729
3730  return UD;
3731}
3732
3733/// \brief Determine whether a using declaration considers the given
3734/// declarations as "equivalent", e.g., if they are redeclarations of
3735/// the same entity or are both typedefs of the same type.
3736static bool
3737IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3738                         bool &SuppressRedeclaration) {
3739  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3740    SuppressRedeclaration = false;
3741    return true;
3742  }
3743
3744  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3745    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3746      SuppressRedeclaration = true;
3747      return Context.hasSameType(TD1->getUnderlyingType(),
3748                                 TD2->getUnderlyingType());
3749    }
3750
3751  return false;
3752}
3753
3754
3755/// Determines whether to create a using shadow decl for a particular
3756/// decl, given the set of decls existing prior to this using lookup.
3757bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3758                                const LookupResult &Previous) {
3759  // Diagnose finding a decl which is not from a base class of the
3760  // current class.  We do this now because there are cases where this
3761  // function will silently decide not to build a shadow decl, which
3762  // will pre-empt further diagnostics.
3763  //
3764  // We don't need to do this in C++0x because we do the check once on
3765  // the qualifier.
3766  //
3767  // FIXME: diagnose the following if we care enough:
3768  //   struct A { int foo; };
3769  //   struct B : A { using A::foo; };
3770  //   template <class T> struct C : A {};
3771  //   template <class T> struct D : C<T> { using B::foo; } // <---
3772  // This is invalid (during instantiation) in C++03 because B::foo
3773  // resolves to the using decl in B, which is not a base class of D<T>.
3774  // We can't diagnose it immediately because C<T> is an unknown
3775  // specialization.  The UsingShadowDecl in D<T> then points directly
3776  // to A::foo, which will look well-formed when we instantiate.
3777  // The right solution is to not collapse the shadow-decl chain.
3778  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3779    DeclContext *OrigDC = Orig->getDeclContext();
3780
3781    // Handle enums and anonymous structs.
3782    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3783    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3784    while (OrigRec->isAnonymousStructOrUnion())
3785      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3786
3787    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3788      if (OrigDC == CurContext) {
3789        Diag(Using->getLocation(),
3790             diag::err_using_decl_nested_name_specifier_is_current_class)
3791          << Using->getNestedNameRange();
3792        Diag(Orig->getLocation(), diag::note_using_decl_target);
3793        return true;
3794      }
3795
3796      Diag(Using->getNestedNameRange().getBegin(),
3797           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3798        << Using->getTargetNestedNameDecl()
3799        << cast<CXXRecordDecl>(CurContext)
3800        << Using->getNestedNameRange();
3801      Diag(Orig->getLocation(), diag::note_using_decl_target);
3802      return true;
3803    }
3804  }
3805
3806  if (Previous.empty()) return false;
3807
3808  NamedDecl *Target = Orig;
3809  if (isa<UsingShadowDecl>(Target))
3810    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3811
3812  // If the target happens to be one of the previous declarations, we
3813  // don't have a conflict.
3814  //
3815  // FIXME: but we might be increasing its access, in which case we
3816  // should redeclare it.
3817  NamedDecl *NonTag = 0, *Tag = 0;
3818  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3819         I != E; ++I) {
3820    NamedDecl *D = (*I)->getUnderlyingDecl();
3821    bool Result;
3822    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3823      return Result;
3824
3825    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3826  }
3827
3828  if (Target->isFunctionOrFunctionTemplate()) {
3829    FunctionDecl *FD;
3830    if (isa<FunctionTemplateDecl>(Target))
3831      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3832    else
3833      FD = cast<FunctionDecl>(Target);
3834
3835    NamedDecl *OldDecl = 0;
3836    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3837    case Ovl_Overload:
3838      return false;
3839
3840    case Ovl_NonFunction:
3841      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3842      break;
3843
3844    // We found a decl with the exact signature.
3845    case Ovl_Match:
3846      // If we're in a record, we want to hide the target, so we
3847      // return true (without a diagnostic) to tell the caller not to
3848      // build a shadow decl.
3849      if (CurContext->isRecord())
3850        return true;
3851
3852      // If we're not in a record, this is an error.
3853      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3854      break;
3855    }
3856
3857    Diag(Target->getLocation(), diag::note_using_decl_target);
3858    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3859    return true;
3860  }
3861
3862  // Target is not a function.
3863
3864  if (isa<TagDecl>(Target)) {
3865    // No conflict between a tag and a non-tag.
3866    if (!Tag) return false;
3867
3868    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3869    Diag(Target->getLocation(), diag::note_using_decl_target);
3870    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3871    return true;
3872  }
3873
3874  // No conflict between a tag and a non-tag.
3875  if (!NonTag) return false;
3876
3877  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3878  Diag(Target->getLocation(), diag::note_using_decl_target);
3879  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3880  return true;
3881}
3882
3883/// Builds a shadow declaration corresponding to a 'using' declaration.
3884UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3885                                            UsingDecl *UD,
3886                                            NamedDecl *Orig) {
3887
3888  // If we resolved to another shadow declaration, just coalesce them.
3889  NamedDecl *Target = Orig;
3890  if (isa<UsingShadowDecl>(Target)) {
3891    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3892    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3893  }
3894
3895  UsingShadowDecl *Shadow
3896    = UsingShadowDecl::Create(Context, CurContext,
3897                              UD->getLocation(), UD, Target);
3898  UD->addShadowDecl(Shadow);
3899
3900  Shadow->setAccess(UD->getAccess());
3901  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3902    Shadow->setInvalidDecl();
3903
3904  if (S)
3905    PushOnScopeChains(Shadow, S);
3906  else
3907    CurContext->addDecl(Shadow);
3908
3909
3910  return Shadow;
3911}
3912
3913/// Hides a using shadow declaration.  This is required by the current
3914/// using-decl implementation when a resolvable using declaration in a
3915/// class is followed by a declaration which would hide or override
3916/// one or more of the using decl's targets; for example:
3917///
3918///   struct Base { void foo(int); };
3919///   struct Derived : Base {
3920///     using Base::foo;
3921///     void foo(int);
3922///   };
3923///
3924/// The governing language is C++03 [namespace.udecl]p12:
3925///
3926///   When a using-declaration brings names from a base class into a
3927///   derived class scope, member functions in the derived class
3928///   override and/or hide member functions with the same name and
3929///   parameter types in a base class (rather than conflicting).
3930///
3931/// There are two ways to implement this:
3932///   (1) optimistically create shadow decls when they're not hidden
3933///       by existing declarations, or
3934///   (2) don't create any shadow decls (or at least don't make them
3935///       visible) until we've fully parsed/instantiated the class.
3936/// The problem with (1) is that we might have to retroactively remove
3937/// a shadow decl, which requires several O(n) operations because the
3938/// decl structures are (very reasonably) not designed for removal.
3939/// (2) avoids this but is very fiddly and phase-dependent.
3940void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3941  if (Shadow->getDeclName().getNameKind() ==
3942        DeclarationName::CXXConversionFunctionName)
3943    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3944
3945  // Remove it from the DeclContext...
3946  Shadow->getDeclContext()->removeDecl(Shadow);
3947
3948  // ...and the scope, if applicable...
3949  if (S) {
3950    S->RemoveDecl(Shadow);
3951    IdResolver.RemoveDecl(Shadow);
3952  }
3953
3954  // ...and the using decl.
3955  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3956
3957  // TODO: complain somehow if Shadow was used.  It shouldn't
3958  // be possible for this to happen, because...?
3959}
3960
3961/// Builds a using declaration.
3962///
3963/// \param IsInstantiation - Whether this call arises from an
3964///   instantiation of an unresolved using declaration.  We treat
3965///   the lookup differently for these declarations.
3966NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3967                                       SourceLocation UsingLoc,
3968                                       CXXScopeSpec &SS,
3969                                       const DeclarationNameInfo &NameInfo,
3970                                       AttributeList *AttrList,
3971                                       bool IsInstantiation,
3972                                       bool IsTypeName,
3973                                       SourceLocation TypenameLoc) {
3974  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3975  SourceLocation IdentLoc = NameInfo.getLoc();
3976  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3977
3978  // FIXME: We ignore attributes for now.
3979
3980  if (SS.isEmpty()) {
3981    Diag(IdentLoc, diag::err_using_requires_qualname);
3982    return 0;
3983  }
3984
3985  // Do the redeclaration lookup in the current scope.
3986  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3987                        ForRedeclaration);
3988  Previous.setHideTags(false);
3989  if (S) {
3990    LookupName(Previous, S);
3991
3992    // It is really dumb that we have to do this.
3993    LookupResult::Filter F = Previous.makeFilter();
3994    while (F.hasNext()) {
3995      NamedDecl *D = F.next();
3996      if (!isDeclInScope(D, CurContext, S))
3997        F.erase();
3998    }
3999    F.done();
4000  } else {
4001    assert(IsInstantiation && "no scope in non-instantiation");
4002    assert(CurContext->isRecord() && "scope not record in instantiation");
4003    LookupQualifiedName(Previous, CurContext);
4004  }
4005
4006  NestedNameSpecifier *NNS =
4007    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4008
4009  // Check for invalid redeclarations.
4010  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4011    return 0;
4012
4013  // Check for bad qualifiers.
4014  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4015    return 0;
4016
4017  DeclContext *LookupContext = computeDeclContext(SS);
4018  NamedDecl *D;
4019  if (!LookupContext) {
4020    if (IsTypeName) {
4021      // FIXME: not all declaration name kinds are legal here
4022      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4023                                              UsingLoc, TypenameLoc,
4024                                              SS.getRange(), NNS,
4025                                              IdentLoc, NameInfo.getName());
4026    } else {
4027      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4028                                           UsingLoc, SS.getRange(),
4029                                           NNS, NameInfo);
4030    }
4031  } else {
4032    D = UsingDecl::Create(Context, CurContext,
4033                          SS.getRange(), UsingLoc, NNS, NameInfo,
4034                          IsTypeName);
4035  }
4036  D->setAccess(AS);
4037  CurContext->addDecl(D);
4038
4039  if (!LookupContext) return D;
4040  UsingDecl *UD = cast<UsingDecl>(D);
4041
4042  if (RequireCompleteDeclContext(SS, LookupContext)) {
4043    UD->setInvalidDecl();
4044    return UD;
4045  }
4046
4047  // Look up the target name.
4048
4049  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4050
4051  // Unlike most lookups, we don't always want to hide tag
4052  // declarations: tag names are visible through the using declaration
4053  // even if hidden by ordinary names, *except* in a dependent context
4054  // where it's important for the sanity of two-phase lookup.
4055  if (!IsInstantiation)
4056    R.setHideTags(false);
4057
4058  LookupQualifiedName(R, LookupContext);
4059
4060  if (R.empty()) {
4061    Diag(IdentLoc, diag::err_no_member)
4062      << NameInfo.getName() << LookupContext << SS.getRange();
4063    UD->setInvalidDecl();
4064    return UD;
4065  }
4066
4067  if (R.isAmbiguous()) {
4068    UD->setInvalidDecl();
4069    return UD;
4070  }
4071
4072  if (IsTypeName) {
4073    // If we asked for a typename and got a non-type decl, error out.
4074    if (!R.getAsSingle<TypeDecl>()) {
4075      Diag(IdentLoc, diag::err_using_typename_non_type);
4076      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4077        Diag((*I)->getUnderlyingDecl()->getLocation(),
4078             diag::note_using_decl_target);
4079      UD->setInvalidDecl();
4080      return UD;
4081    }
4082  } else {
4083    // If we asked for a non-typename and we got a type, error out,
4084    // but only if this is an instantiation of an unresolved using
4085    // decl.  Otherwise just silently find the type name.
4086    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4087      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4088      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4089      UD->setInvalidDecl();
4090      return UD;
4091    }
4092  }
4093
4094  // C++0x N2914 [namespace.udecl]p6:
4095  // A using-declaration shall not name a namespace.
4096  if (R.getAsSingle<NamespaceDecl>()) {
4097    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4098      << SS.getRange();
4099    UD->setInvalidDecl();
4100    return UD;
4101  }
4102
4103  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4104    if (!CheckUsingShadowDecl(UD, *I, Previous))
4105      BuildUsingShadowDecl(S, UD, *I);
4106  }
4107
4108  return UD;
4109}
4110
4111/// Checks that the given using declaration is not an invalid
4112/// redeclaration.  Note that this is checking only for the using decl
4113/// itself, not for any ill-formedness among the UsingShadowDecls.
4114bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4115                                       bool isTypeName,
4116                                       const CXXScopeSpec &SS,
4117                                       SourceLocation NameLoc,
4118                                       const LookupResult &Prev) {
4119  // C++03 [namespace.udecl]p8:
4120  // C++0x [namespace.udecl]p10:
4121  //   A using-declaration is a declaration and can therefore be used
4122  //   repeatedly where (and only where) multiple declarations are
4123  //   allowed.
4124  //
4125  // That's in non-member contexts.
4126  if (!CurContext->getRedeclContext()->isRecord())
4127    return false;
4128
4129  NestedNameSpecifier *Qual
4130    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4131
4132  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4133    NamedDecl *D = *I;
4134
4135    bool DTypename;
4136    NestedNameSpecifier *DQual;
4137    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4138      DTypename = UD->isTypeName();
4139      DQual = UD->getTargetNestedNameDecl();
4140    } else if (UnresolvedUsingValueDecl *UD
4141                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4142      DTypename = false;
4143      DQual = UD->getTargetNestedNameSpecifier();
4144    } else if (UnresolvedUsingTypenameDecl *UD
4145                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4146      DTypename = true;
4147      DQual = UD->getTargetNestedNameSpecifier();
4148    } else continue;
4149
4150    // using decls differ if one says 'typename' and the other doesn't.
4151    // FIXME: non-dependent using decls?
4152    if (isTypeName != DTypename) continue;
4153
4154    // using decls differ if they name different scopes (but note that
4155    // template instantiation can cause this check to trigger when it
4156    // didn't before instantiation).
4157    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4158        Context.getCanonicalNestedNameSpecifier(DQual))
4159      continue;
4160
4161    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4162    Diag(D->getLocation(), diag::note_using_decl) << 1;
4163    return true;
4164  }
4165
4166  return false;
4167}
4168
4169
4170/// Checks that the given nested-name qualifier used in a using decl
4171/// in the current context is appropriately related to the current
4172/// scope.  If an error is found, diagnoses it and returns true.
4173bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4174                                   const CXXScopeSpec &SS,
4175                                   SourceLocation NameLoc) {
4176  DeclContext *NamedContext = computeDeclContext(SS);
4177
4178  if (!CurContext->isRecord()) {
4179    // C++03 [namespace.udecl]p3:
4180    // C++0x [namespace.udecl]p8:
4181    //   A using-declaration for a class member shall be a member-declaration.
4182
4183    // If we weren't able to compute a valid scope, it must be a
4184    // dependent class scope.
4185    if (!NamedContext || NamedContext->isRecord()) {
4186      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4187        << SS.getRange();
4188      return true;
4189    }
4190
4191    // Otherwise, everything is known to be fine.
4192    return false;
4193  }
4194
4195  // The current scope is a record.
4196
4197  // If the named context is dependent, we can't decide much.
4198  if (!NamedContext) {
4199    // FIXME: in C++0x, we can diagnose if we can prove that the
4200    // nested-name-specifier does not refer to a base class, which is
4201    // still possible in some cases.
4202
4203    // Otherwise we have to conservatively report that things might be
4204    // okay.
4205    return false;
4206  }
4207
4208  if (!NamedContext->isRecord()) {
4209    // Ideally this would point at the last name in the specifier,
4210    // but we don't have that level of source info.
4211    Diag(SS.getRange().getBegin(),
4212         diag::err_using_decl_nested_name_specifier_is_not_class)
4213      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4214    return true;
4215  }
4216
4217  if (!NamedContext->isDependentContext() &&
4218      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4219    return true;
4220
4221  if (getLangOptions().CPlusPlus0x) {
4222    // C++0x [namespace.udecl]p3:
4223    //   In a using-declaration used as a member-declaration, the
4224    //   nested-name-specifier shall name a base class of the class
4225    //   being defined.
4226
4227    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4228                                 cast<CXXRecordDecl>(NamedContext))) {
4229      if (CurContext == NamedContext) {
4230        Diag(NameLoc,
4231             diag::err_using_decl_nested_name_specifier_is_current_class)
4232          << SS.getRange();
4233        return true;
4234      }
4235
4236      Diag(SS.getRange().getBegin(),
4237           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4238        << (NestedNameSpecifier*) SS.getScopeRep()
4239        << cast<CXXRecordDecl>(CurContext)
4240        << SS.getRange();
4241      return true;
4242    }
4243
4244    return false;
4245  }
4246
4247  // C++03 [namespace.udecl]p4:
4248  //   A using-declaration used as a member-declaration shall refer
4249  //   to a member of a base class of the class being defined [etc.].
4250
4251  // Salient point: SS doesn't have to name a base class as long as
4252  // lookup only finds members from base classes.  Therefore we can
4253  // diagnose here only if we can prove that that can't happen,
4254  // i.e. if the class hierarchies provably don't intersect.
4255
4256  // TODO: it would be nice if "definitely valid" results were cached
4257  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4258  // need to be repeated.
4259
4260  struct UserData {
4261    llvm::DenseSet<const CXXRecordDecl*> Bases;
4262
4263    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4264      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4265      Data->Bases.insert(Base);
4266      return true;
4267    }
4268
4269    bool hasDependentBases(const CXXRecordDecl *Class) {
4270      return !Class->forallBases(collect, this);
4271    }
4272
4273    /// Returns true if the base is dependent or is one of the
4274    /// accumulated base classes.
4275    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4276      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4277      return !Data->Bases.count(Base);
4278    }
4279
4280    bool mightShareBases(const CXXRecordDecl *Class) {
4281      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4282    }
4283  };
4284
4285  UserData Data;
4286
4287  // Returns false if we find a dependent base.
4288  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4289    return false;
4290
4291  // Returns false if the class has a dependent base or if it or one
4292  // of its bases is present in the base set of the current context.
4293  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4294    return false;
4295
4296  Diag(SS.getRange().getBegin(),
4297       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4298    << (NestedNameSpecifier*) SS.getScopeRep()
4299    << cast<CXXRecordDecl>(CurContext)
4300    << SS.getRange();
4301
4302  return true;
4303}
4304
4305Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4306                                             SourceLocation NamespaceLoc,
4307                                             SourceLocation AliasLoc,
4308                                             IdentifierInfo *Alias,
4309                                             CXXScopeSpec &SS,
4310                                             SourceLocation IdentLoc,
4311                                             IdentifierInfo *Ident) {
4312
4313  // Lookup the namespace name.
4314  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4315  LookupParsedName(R, S, &SS);
4316
4317  // Check if we have a previous declaration with the same name.
4318  NamedDecl *PrevDecl
4319    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4320                       ForRedeclaration);
4321  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4322    PrevDecl = 0;
4323
4324  if (PrevDecl) {
4325    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4326      // We already have an alias with the same name that points to the same
4327      // namespace, so don't create a new one.
4328      // FIXME: At some point, we'll want to create the (redundant)
4329      // declaration to maintain better source information.
4330      if (!R.isAmbiguous() && !R.empty() &&
4331          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4332        return 0;
4333    }
4334
4335    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4336      diag::err_redefinition_different_kind;
4337    Diag(AliasLoc, DiagID) << Alias;
4338    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4339    return 0;
4340  }
4341
4342  if (R.isAmbiguous())
4343    return 0;
4344
4345  if (R.empty()) {
4346    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4347                                                CTC_NoKeywords, 0)) {
4348      if (R.getAsSingle<NamespaceDecl>() ||
4349          R.getAsSingle<NamespaceAliasDecl>()) {
4350        if (DeclContext *DC = computeDeclContext(SS, false))
4351          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4352            << Ident << DC << Corrected << SS.getRange()
4353            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4354        else
4355          Diag(IdentLoc, diag::err_using_directive_suggest)
4356            << Ident << Corrected
4357            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4358
4359        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4360          << Corrected;
4361
4362        Ident = Corrected.getAsIdentifierInfo();
4363      } else {
4364        R.clear();
4365        R.setLookupName(Ident);
4366      }
4367    }
4368
4369    if (R.empty()) {
4370      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4371      return 0;
4372    }
4373  }
4374
4375  NamespaceAliasDecl *AliasDecl =
4376    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4377                               Alias, SS.getRange(),
4378                               (NestedNameSpecifier *)SS.getScopeRep(),
4379                               IdentLoc, R.getFoundDecl());
4380
4381  PushOnScopeChains(AliasDecl, S);
4382  return AliasDecl;
4383}
4384
4385namespace {
4386  /// \brief Scoped object used to handle the state changes required in Sema
4387  /// to implicitly define the body of a C++ member function;
4388  class ImplicitlyDefinedFunctionScope {
4389    Sema &S;
4390    DeclContext *PreviousContext;
4391
4392  public:
4393    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4394      : S(S), PreviousContext(S.CurContext)
4395    {
4396      S.CurContext = Method;
4397      S.PushFunctionScope();
4398      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4399    }
4400
4401    ~ImplicitlyDefinedFunctionScope() {
4402      S.PopExpressionEvaluationContext();
4403      S.PopFunctionOrBlockScope();
4404      S.CurContext = PreviousContext;
4405    }
4406  };
4407}
4408
4409static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4410                                                       CXXRecordDecl *D) {
4411  ASTContext &Context = Self.Context;
4412  QualType ClassType = Context.getTypeDeclType(D);
4413  DeclarationName ConstructorName
4414    = Context.DeclarationNames.getCXXConstructorName(
4415                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4416
4417  DeclContext::lookup_const_iterator Con, ConEnd;
4418  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4419       Con != ConEnd; ++Con) {
4420    // FIXME: In C++0x, a constructor template can be a default constructor.
4421    if (isa<FunctionTemplateDecl>(*Con))
4422      continue;
4423
4424    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4425    if (Constructor->isDefaultConstructor())
4426      return Constructor;
4427  }
4428  return 0;
4429}
4430
4431CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4432                                                     CXXRecordDecl *ClassDecl) {
4433  // C++ [class.ctor]p5:
4434  //   A default constructor for a class X is a constructor of class X
4435  //   that can be called without an argument. If there is no
4436  //   user-declared constructor for class X, a default constructor is
4437  //   implicitly declared. An implicitly-declared default constructor
4438  //   is an inline public member of its class.
4439  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4440         "Should not build implicit default constructor!");
4441
4442  // C++ [except.spec]p14:
4443  //   An implicitly declared special member function (Clause 12) shall have an
4444  //   exception-specification. [...]
4445  ImplicitExceptionSpecification ExceptSpec(Context);
4446
4447  // Direct base-class destructors.
4448  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4449                                       BEnd = ClassDecl->bases_end();
4450       B != BEnd; ++B) {
4451    if (B->isVirtual()) // Handled below.
4452      continue;
4453
4454    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4455      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4456      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4457        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4458      else if (CXXConstructorDecl *Constructor
4459                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4460        ExceptSpec.CalledDecl(Constructor);
4461    }
4462  }
4463
4464  // Virtual base-class destructors.
4465  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4466                                       BEnd = ClassDecl->vbases_end();
4467       B != BEnd; ++B) {
4468    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4469      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4470      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4471        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4472      else if (CXXConstructorDecl *Constructor
4473                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4474        ExceptSpec.CalledDecl(Constructor);
4475    }
4476  }
4477
4478  // Field destructors.
4479  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4480                               FEnd = ClassDecl->field_end();
4481       F != FEnd; ++F) {
4482    if (const RecordType *RecordTy
4483              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4484      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4485      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4486        ExceptSpec.CalledDecl(
4487                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4488      else if (CXXConstructorDecl *Constructor
4489                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4490        ExceptSpec.CalledDecl(Constructor);
4491    }
4492  }
4493
4494  FunctionProtoType::ExtProtoInfo EPI;
4495  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4496  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4497  EPI.NumExceptions = ExceptSpec.size();
4498  EPI.Exceptions = ExceptSpec.data();
4499
4500  // Create the actual constructor declaration.
4501  CanQualType ClassType
4502    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4503  DeclarationName Name
4504    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4505  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4506  CXXConstructorDecl *DefaultCon
4507    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4508                                 Context.getFunctionType(Context.VoidTy,
4509                                                         0, 0, EPI),
4510                                 /*TInfo=*/0,
4511                                 /*isExplicit=*/false,
4512                                 /*isInline=*/true,
4513                                 /*isImplicitlyDeclared=*/true);
4514  DefaultCon->setAccess(AS_public);
4515  DefaultCon->setImplicit();
4516  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4517
4518  // Note that we have declared this constructor.
4519  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4520
4521  if (Scope *S = getScopeForContext(ClassDecl))
4522    PushOnScopeChains(DefaultCon, S, false);
4523  ClassDecl->addDecl(DefaultCon);
4524
4525  return DefaultCon;
4526}
4527
4528void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4529                                            CXXConstructorDecl *Constructor) {
4530  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4531          !Constructor->isUsed(false)) &&
4532    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4533
4534  CXXRecordDecl *ClassDecl = Constructor->getParent();
4535  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4536
4537  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4538  DiagnosticErrorTrap Trap(Diags);
4539  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4540      Trap.hasErrorOccurred()) {
4541    Diag(CurrentLocation, diag::note_member_synthesized_at)
4542      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4543    Constructor->setInvalidDecl();
4544    return;
4545  }
4546
4547  SourceLocation Loc = Constructor->getLocation();
4548  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4549
4550  Constructor->setUsed();
4551  MarkVTableUsed(CurrentLocation, ClassDecl);
4552}
4553
4554CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4555  // C++ [class.dtor]p2:
4556  //   If a class has no user-declared destructor, a destructor is
4557  //   declared implicitly. An implicitly-declared destructor is an
4558  //   inline public member of its class.
4559
4560  // C++ [except.spec]p14:
4561  //   An implicitly declared special member function (Clause 12) shall have
4562  //   an exception-specification.
4563  ImplicitExceptionSpecification ExceptSpec(Context);
4564
4565  // Direct base-class destructors.
4566  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4567                                       BEnd = ClassDecl->bases_end();
4568       B != BEnd; ++B) {
4569    if (B->isVirtual()) // Handled below.
4570      continue;
4571
4572    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4573      ExceptSpec.CalledDecl(
4574                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4575  }
4576
4577  // Virtual base-class destructors.
4578  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4579                                       BEnd = ClassDecl->vbases_end();
4580       B != BEnd; ++B) {
4581    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4582      ExceptSpec.CalledDecl(
4583                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4584  }
4585
4586  // Field destructors.
4587  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4588                               FEnd = ClassDecl->field_end();
4589       F != FEnd; ++F) {
4590    if (const RecordType *RecordTy
4591        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4592      ExceptSpec.CalledDecl(
4593                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4594  }
4595
4596  // Create the actual destructor declaration.
4597  FunctionProtoType::ExtProtoInfo EPI;
4598  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4599  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4600  EPI.NumExceptions = ExceptSpec.size();
4601  EPI.Exceptions = ExceptSpec.data();
4602  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4603
4604  CanQualType ClassType
4605    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4606  DeclarationName Name
4607    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4608  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4609  CXXDestructorDecl *Destructor
4610      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4611                                /*isInline=*/true,
4612                                /*isImplicitlyDeclared=*/true);
4613  Destructor->setAccess(AS_public);
4614  Destructor->setImplicit();
4615  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4616
4617  // Note that we have declared this destructor.
4618  ++ASTContext::NumImplicitDestructorsDeclared;
4619
4620  // Introduce this destructor into its scope.
4621  if (Scope *S = getScopeForContext(ClassDecl))
4622    PushOnScopeChains(Destructor, S, false);
4623  ClassDecl->addDecl(Destructor);
4624
4625  // This could be uniqued if it ever proves significant.
4626  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4627
4628  AddOverriddenMethods(ClassDecl, Destructor);
4629
4630  return Destructor;
4631}
4632
4633void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4634                                    CXXDestructorDecl *Destructor) {
4635  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4636         "DefineImplicitDestructor - call it for implicit default dtor");
4637  CXXRecordDecl *ClassDecl = Destructor->getParent();
4638  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4639
4640  if (Destructor->isInvalidDecl())
4641    return;
4642
4643  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4644
4645  DiagnosticErrorTrap Trap(Diags);
4646  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4647                                         Destructor->getParent());
4648
4649  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4650    Diag(CurrentLocation, diag::note_member_synthesized_at)
4651      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4652
4653    Destructor->setInvalidDecl();
4654    return;
4655  }
4656
4657  SourceLocation Loc = Destructor->getLocation();
4658  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4659
4660  Destructor->setUsed();
4661  MarkVTableUsed(CurrentLocation, ClassDecl);
4662}
4663
4664/// \brief Builds a statement that copies the given entity from \p From to
4665/// \c To.
4666///
4667/// This routine is used to copy the members of a class with an
4668/// implicitly-declared copy assignment operator. When the entities being
4669/// copied are arrays, this routine builds for loops to copy them.
4670///
4671/// \param S The Sema object used for type-checking.
4672///
4673/// \param Loc The location where the implicit copy is being generated.
4674///
4675/// \param T The type of the expressions being copied. Both expressions must
4676/// have this type.
4677///
4678/// \param To The expression we are copying to.
4679///
4680/// \param From The expression we are copying from.
4681///
4682/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4683/// Otherwise, it's a non-static member subobject.
4684///
4685/// \param Depth Internal parameter recording the depth of the recursion.
4686///
4687/// \returns A statement or a loop that copies the expressions.
4688static StmtResult
4689BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4690                      Expr *To, Expr *From,
4691                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4692  // C++0x [class.copy]p30:
4693  //   Each subobject is assigned in the manner appropriate to its type:
4694  //
4695  //     - if the subobject is of class type, the copy assignment operator
4696  //       for the class is used (as if by explicit qualification; that is,
4697  //       ignoring any possible virtual overriding functions in more derived
4698  //       classes);
4699  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4700    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4701
4702    // Look for operator=.
4703    DeclarationName Name
4704      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4705    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4706    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4707
4708    // Filter out any result that isn't a copy-assignment operator.
4709    LookupResult::Filter F = OpLookup.makeFilter();
4710    while (F.hasNext()) {
4711      NamedDecl *D = F.next();
4712      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4713        if (Method->isCopyAssignmentOperator())
4714          continue;
4715
4716      F.erase();
4717    }
4718    F.done();
4719
4720    // Suppress the protected check (C++ [class.protected]) for each of the
4721    // assignment operators we found. This strange dance is required when
4722    // we're assigning via a base classes's copy-assignment operator. To
4723    // ensure that we're getting the right base class subobject (without
4724    // ambiguities), we need to cast "this" to that subobject type; to
4725    // ensure that we don't go through the virtual call mechanism, we need
4726    // to qualify the operator= name with the base class (see below). However,
4727    // this means that if the base class has a protected copy assignment
4728    // operator, the protected member access check will fail. So, we
4729    // rewrite "protected" access to "public" access in this case, since we
4730    // know by construction that we're calling from a derived class.
4731    if (CopyingBaseSubobject) {
4732      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4733           L != LEnd; ++L) {
4734        if (L.getAccess() == AS_protected)
4735          L.setAccess(AS_public);
4736      }
4737    }
4738
4739    // Create the nested-name-specifier that will be used to qualify the
4740    // reference to operator=; this is required to suppress the virtual
4741    // call mechanism.
4742    CXXScopeSpec SS;
4743    SS.setRange(Loc);
4744    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4745                                               T.getTypePtr()));
4746
4747    // Create the reference to operator=.
4748    ExprResult OpEqualRef
4749      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4750                                   /*FirstQualifierInScope=*/0, OpLookup,
4751                                   /*TemplateArgs=*/0,
4752                                   /*SuppressQualifierCheck=*/true);
4753    if (OpEqualRef.isInvalid())
4754      return StmtError();
4755
4756    // Build the call to the assignment operator.
4757
4758    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4759                                                  OpEqualRef.takeAs<Expr>(),
4760                                                  Loc, &From, 1, Loc);
4761    if (Call.isInvalid())
4762      return StmtError();
4763
4764    return S.Owned(Call.takeAs<Stmt>());
4765  }
4766
4767  //     - if the subobject is of scalar type, the built-in assignment
4768  //       operator is used.
4769  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4770  if (!ArrayTy) {
4771    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4772    if (Assignment.isInvalid())
4773      return StmtError();
4774
4775    return S.Owned(Assignment.takeAs<Stmt>());
4776  }
4777
4778  //     - if the subobject is an array, each element is assigned, in the
4779  //       manner appropriate to the element type;
4780
4781  // Construct a loop over the array bounds, e.g.,
4782  //
4783  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4784  //
4785  // that will copy each of the array elements.
4786  QualType SizeType = S.Context.getSizeType();
4787
4788  // Create the iteration variable.
4789  IdentifierInfo *IterationVarName = 0;
4790  {
4791    llvm::SmallString<8> Str;
4792    llvm::raw_svector_ostream OS(Str);
4793    OS << "__i" << Depth;
4794    IterationVarName = &S.Context.Idents.get(OS.str());
4795  }
4796  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4797                                          IterationVarName, SizeType,
4798                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4799                                          SC_None, SC_None);
4800
4801  // Initialize the iteration variable to zero.
4802  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4803  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4804
4805  // Create a reference to the iteration variable; we'll use this several
4806  // times throughout.
4807  Expr *IterationVarRef
4808    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4809  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4810
4811  // Create the DeclStmt that holds the iteration variable.
4812  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4813
4814  // Create the comparison against the array bound.
4815  llvm::APInt Upper
4816    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4817  Expr *Comparison
4818    = new (S.Context) BinaryOperator(IterationVarRef,
4819                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4820                                     BO_NE, S.Context.BoolTy,
4821                                     VK_RValue, OK_Ordinary, Loc);
4822
4823  // Create the pre-increment of the iteration variable.
4824  Expr *Increment
4825    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4826                                    VK_LValue, OK_Ordinary, Loc);
4827
4828  // Subscript the "from" and "to" expressions with the iteration variable.
4829  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4830                                                         IterationVarRef, Loc));
4831  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4832                                                       IterationVarRef, Loc));
4833
4834  // Build the copy for an individual element of the array.
4835  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4836                                          To, From, CopyingBaseSubobject,
4837                                          Depth + 1);
4838  if (Copy.isInvalid())
4839    return StmtError();
4840
4841  // Construct the loop that copies all elements of this array.
4842  return S.ActOnForStmt(Loc, Loc, InitStmt,
4843                        S.MakeFullExpr(Comparison),
4844                        0, S.MakeFullExpr(Increment),
4845                        Loc, Copy.take());
4846}
4847
4848/// \brief Determine whether the given class has a copy assignment operator
4849/// that accepts a const-qualified argument.
4850static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4851  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4852
4853  if (!Class->hasDeclaredCopyAssignment())
4854    S.DeclareImplicitCopyAssignment(Class);
4855
4856  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4857  DeclarationName OpName
4858    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4859
4860  DeclContext::lookup_const_iterator Op, OpEnd;
4861  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4862    // C++ [class.copy]p9:
4863    //   A user-declared copy assignment operator is a non-static non-template
4864    //   member function of class X with exactly one parameter of type X, X&,
4865    //   const X&, volatile X& or const volatile X&.
4866    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4867    if (!Method)
4868      continue;
4869
4870    if (Method->isStatic())
4871      continue;
4872    if (Method->getPrimaryTemplate())
4873      continue;
4874    const FunctionProtoType *FnType =
4875    Method->getType()->getAs<FunctionProtoType>();
4876    assert(FnType && "Overloaded operator has no prototype.");
4877    // Don't assert on this; an invalid decl might have been left in the AST.
4878    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4879      continue;
4880    bool AcceptsConst = true;
4881    QualType ArgType = FnType->getArgType(0);
4882    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4883      ArgType = Ref->getPointeeType();
4884      // Is it a non-const lvalue reference?
4885      if (!ArgType.isConstQualified())
4886        AcceptsConst = false;
4887    }
4888    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4889      continue;
4890
4891    // We have a single argument of type cv X or cv X&, i.e. we've found the
4892    // copy assignment operator. Return whether it accepts const arguments.
4893    return AcceptsConst;
4894  }
4895  assert(Class->isInvalidDecl() &&
4896         "No copy assignment operator declared in valid code.");
4897  return false;
4898}
4899
4900CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4901  // Note: The following rules are largely analoguous to the copy
4902  // constructor rules. Note that virtual bases are not taken into account
4903  // for determining the argument type of the operator. Note also that
4904  // operators taking an object instead of a reference are allowed.
4905
4906
4907  // C++ [class.copy]p10:
4908  //   If the class definition does not explicitly declare a copy
4909  //   assignment operator, one is declared implicitly.
4910  //   The implicitly-defined copy assignment operator for a class X
4911  //   will have the form
4912  //
4913  //       X& X::operator=(const X&)
4914  //
4915  //   if
4916  bool HasConstCopyAssignment = true;
4917
4918  //       -- each direct base class B of X has a copy assignment operator
4919  //          whose parameter is of type const B&, const volatile B& or B,
4920  //          and
4921  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4922                                       BaseEnd = ClassDecl->bases_end();
4923       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4924    assert(!Base->getType()->isDependentType() &&
4925           "Cannot generate implicit members for class with dependent bases.");
4926    const CXXRecordDecl *BaseClassDecl
4927      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4928    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4929  }
4930
4931  //       -- for all the nonstatic data members of X that are of a class
4932  //          type M (or array thereof), each such class type has a copy
4933  //          assignment operator whose parameter is of type const M&,
4934  //          const volatile M& or M.
4935  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4936                                  FieldEnd = ClassDecl->field_end();
4937       HasConstCopyAssignment && Field != FieldEnd;
4938       ++Field) {
4939    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4940    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4941      const CXXRecordDecl *FieldClassDecl
4942        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4943      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4944    }
4945  }
4946
4947  //   Otherwise, the implicitly declared copy assignment operator will
4948  //   have the form
4949  //
4950  //       X& X::operator=(X&)
4951  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4952  QualType RetType = Context.getLValueReferenceType(ArgType);
4953  if (HasConstCopyAssignment)
4954    ArgType = ArgType.withConst();
4955  ArgType = Context.getLValueReferenceType(ArgType);
4956
4957  // C++ [except.spec]p14:
4958  //   An implicitly declared special member function (Clause 12) shall have an
4959  //   exception-specification. [...]
4960  ImplicitExceptionSpecification ExceptSpec(Context);
4961  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4962                                       BaseEnd = ClassDecl->bases_end();
4963       Base != BaseEnd; ++Base) {
4964    CXXRecordDecl *BaseClassDecl
4965      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4966
4967    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4968      DeclareImplicitCopyAssignment(BaseClassDecl);
4969
4970    if (CXXMethodDecl *CopyAssign
4971           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4972      ExceptSpec.CalledDecl(CopyAssign);
4973  }
4974  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4975                                  FieldEnd = ClassDecl->field_end();
4976       Field != FieldEnd;
4977       ++Field) {
4978    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4979    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4980      CXXRecordDecl *FieldClassDecl
4981        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4982
4983      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4984        DeclareImplicitCopyAssignment(FieldClassDecl);
4985
4986      if (CXXMethodDecl *CopyAssign
4987            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4988        ExceptSpec.CalledDecl(CopyAssign);
4989    }
4990  }
4991
4992  //   An implicitly-declared copy assignment operator is an inline public
4993  //   member of its class.
4994  FunctionProtoType::ExtProtoInfo EPI;
4995  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4996  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4997  EPI.NumExceptions = ExceptSpec.size();
4998  EPI.Exceptions = ExceptSpec.data();
4999  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5000  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5001  CXXMethodDecl *CopyAssignment
5002    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
5003                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5004                            /*TInfo=*/0, /*isStatic=*/false,
5005                            /*StorageClassAsWritten=*/SC_None,
5006                            /*isInline=*/true);
5007  CopyAssignment->setAccess(AS_public);
5008  CopyAssignment->setImplicit();
5009  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5010
5011  // Add the parameter to the operator.
5012  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5013                                               ClassDecl->getLocation(),
5014                                               /*Id=*/0,
5015                                               ArgType, /*TInfo=*/0,
5016                                               SC_None,
5017                                               SC_None, 0);
5018  CopyAssignment->setParams(&FromParam, 1);
5019
5020  // Note that we have added this copy-assignment operator.
5021  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5022
5023  if (Scope *S = getScopeForContext(ClassDecl))
5024    PushOnScopeChains(CopyAssignment, S, false);
5025  ClassDecl->addDecl(CopyAssignment);
5026
5027  AddOverriddenMethods(ClassDecl, CopyAssignment);
5028  return CopyAssignment;
5029}
5030
5031void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5032                                        CXXMethodDecl *CopyAssignOperator) {
5033  assert((CopyAssignOperator->isImplicit() &&
5034          CopyAssignOperator->isOverloadedOperator() &&
5035          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5036          !CopyAssignOperator->isUsed(false)) &&
5037         "DefineImplicitCopyAssignment called for wrong function");
5038
5039  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5040
5041  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5042    CopyAssignOperator->setInvalidDecl();
5043    return;
5044  }
5045
5046  CopyAssignOperator->setUsed();
5047
5048  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5049  DiagnosticErrorTrap Trap(Diags);
5050
5051  // C++0x [class.copy]p30:
5052  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5053  //   for a non-union class X performs memberwise copy assignment of its
5054  //   subobjects. The direct base classes of X are assigned first, in the
5055  //   order of their declaration in the base-specifier-list, and then the
5056  //   immediate non-static data members of X are assigned, in the order in
5057  //   which they were declared in the class definition.
5058
5059  // The statements that form the synthesized function body.
5060  ASTOwningVector<Stmt*> Statements(*this);
5061
5062  // The parameter for the "other" object, which we are copying from.
5063  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5064  Qualifiers OtherQuals = Other->getType().getQualifiers();
5065  QualType OtherRefType = Other->getType();
5066  if (const LValueReferenceType *OtherRef
5067                                = OtherRefType->getAs<LValueReferenceType>()) {
5068    OtherRefType = OtherRef->getPointeeType();
5069    OtherQuals = OtherRefType.getQualifiers();
5070  }
5071
5072  // Our location for everything implicitly-generated.
5073  SourceLocation Loc = CopyAssignOperator->getLocation();
5074
5075  // Construct a reference to the "other" object. We'll be using this
5076  // throughout the generated ASTs.
5077  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5078  assert(OtherRef && "Reference to parameter cannot fail!");
5079
5080  // Construct the "this" pointer. We'll be using this throughout the generated
5081  // ASTs.
5082  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5083  assert(This && "Reference to this cannot fail!");
5084
5085  // Assign base classes.
5086  bool Invalid = false;
5087  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5088       E = ClassDecl->bases_end(); Base != E; ++Base) {
5089    // Form the assignment:
5090    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5091    QualType BaseType = Base->getType().getUnqualifiedType();
5092    if (!BaseType->isRecordType()) {
5093      Invalid = true;
5094      continue;
5095    }
5096
5097    CXXCastPath BasePath;
5098    BasePath.push_back(Base);
5099
5100    // Construct the "from" expression, which is an implicit cast to the
5101    // appropriately-qualified base type.
5102    Expr *From = OtherRef;
5103    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5104                      CK_UncheckedDerivedToBase,
5105                      VK_LValue, &BasePath);
5106
5107    // Dereference "this".
5108    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5109
5110    // Implicitly cast "this" to the appropriately-qualified base type.
5111    Expr *ToE = To.takeAs<Expr>();
5112    ImpCastExprToType(ToE,
5113                      Context.getCVRQualifiedType(BaseType,
5114                                      CopyAssignOperator->getTypeQualifiers()),
5115                      CK_UncheckedDerivedToBase,
5116                      VK_LValue, &BasePath);
5117    To = Owned(ToE);
5118
5119    // Build the copy.
5120    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5121                                            To.get(), From,
5122                                            /*CopyingBaseSubobject=*/true);
5123    if (Copy.isInvalid()) {
5124      Diag(CurrentLocation, diag::note_member_synthesized_at)
5125        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5126      CopyAssignOperator->setInvalidDecl();
5127      return;
5128    }
5129
5130    // Success! Record the copy.
5131    Statements.push_back(Copy.takeAs<Expr>());
5132  }
5133
5134  // \brief Reference to the __builtin_memcpy function.
5135  Expr *BuiltinMemCpyRef = 0;
5136  // \brief Reference to the __builtin_objc_memmove_collectable function.
5137  Expr *CollectableMemCpyRef = 0;
5138
5139  // Assign non-static members.
5140  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5141                                  FieldEnd = ClassDecl->field_end();
5142       Field != FieldEnd; ++Field) {
5143    // Check for members of reference type; we can't copy those.
5144    if (Field->getType()->isReferenceType()) {
5145      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5146        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5147      Diag(Field->getLocation(), diag::note_declared_at);
5148      Diag(CurrentLocation, diag::note_member_synthesized_at)
5149        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5150      Invalid = true;
5151      continue;
5152    }
5153
5154    // Check for members of const-qualified, non-class type.
5155    QualType BaseType = Context.getBaseElementType(Field->getType());
5156    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5157      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5158        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5159      Diag(Field->getLocation(), diag::note_declared_at);
5160      Diag(CurrentLocation, diag::note_member_synthesized_at)
5161        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5162      Invalid = true;
5163      continue;
5164    }
5165
5166    QualType FieldType = Field->getType().getNonReferenceType();
5167    if (FieldType->isIncompleteArrayType()) {
5168      assert(ClassDecl->hasFlexibleArrayMember() &&
5169             "Incomplete array type is not valid");
5170      continue;
5171    }
5172
5173    // Build references to the field in the object we're copying from and to.
5174    CXXScopeSpec SS; // Intentionally empty
5175    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5176                              LookupMemberName);
5177    MemberLookup.addDecl(*Field);
5178    MemberLookup.resolveKind();
5179    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5180                                               Loc, /*IsArrow=*/false,
5181                                               SS, 0, MemberLookup, 0);
5182    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5183                                             Loc, /*IsArrow=*/true,
5184                                             SS, 0, MemberLookup, 0);
5185    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5186    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5187
5188    // If the field should be copied with __builtin_memcpy rather than via
5189    // explicit assignments, do so. This optimization only applies for arrays
5190    // of scalars and arrays of class type with trivial copy-assignment
5191    // operators.
5192    if (FieldType->isArrayType() &&
5193        (!BaseType->isRecordType() ||
5194         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5195           ->hasTrivialCopyAssignment())) {
5196      // Compute the size of the memory buffer to be copied.
5197      QualType SizeType = Context.getSizeType();
5198      llvm::APInt Size(Context.getTypeSize(SizeType),
5199                       Context.getTypeSizeInChars(BaseType).getQuantity());
5200      for (const ConstantArrayType *Array
5201              = Context.getAsConstantArrayType(FieldType);
5202           Array;
5203           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5204        llvm::APInt ArraySize
5205          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5206        Size *= ArraySize;
5207      }
5208
5209      // Take the address of the field references for "from" and "to".
5210      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5211      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5212
5213      bool NeedsCollectableMemCpy =
5214          (BaseType->isRecordType() &&
5215           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5216
5217      if (NeedsCollectableMemCpy) {
5218        if (!CollectableMemCpyRef) {
5219          // Create a reference to the __builtin_objc_memmove_collectable function.
5220          LookupResult R(*this,
5221                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5222                         Loc, LookupOrdinaryName);
5223          LookupName(R, TUScope, true);
5224
5225          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5226          if (!CollectableMemCpy) {
5227            // Something went horribly wrong earlier, and we will have
5228            // complained about it.
5229            Invalid = true;
5230            continue;
5231          }
5232
5233          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5234                                                  CollectableMemCpy->getType(),
5235                                                  VK_LValue, Loc, 0).take();
5236          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5237        }
5238      }
5239      // Create a reference to the __builtin_memcpy builtin function.
5240      else if (!BuiltinMemCpyRef) {
5241        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5242                       LookupOrdinaryName);
5243        LookupName(R, TUScope, true);
5244
5245        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5246        if (!BuiltinMemCpy) {
5247          // Something went horribly wrong earlier, and we will have complained
5248          // about it.
5249          Invalid = true;
5250          continue;
5251        }
5252
5253        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5254                                            BuiltinMemCpy->getType(),
5255                                            VK_LValue, Loc, 0).take();
5256        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5257      }
5258
5259      ASTOwningVector<Expr*> CallArgs(*this);
5260      CallArgs.push_back(To.takeAs<Expr>());
5261      CallArgs.push_back(From.takeAs<Expr>());
5262      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5263      ExprResult Call = ExprError();
5264      if (NeedsCollectableMemCpy)
5265        Call = ActOnCallExpr(/*Scope=*/0,
5266                             CollectableMemCpyRef,
5267                             Loc, move_arg(CallArgs),
5268                             Loc);
5269      else
5270        Call = ActOnCallExpr(/*Scope=*/0,
5271                             BuiltinMemCpyRef,
5272                             Loc, move_arg(CallArgs),
5273                             Loc);
5274
5275      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5276      Statements.push_back(Call.takeAs<Expr>());
5277      continue;
5278    }
5279
5280    // Build the copy of this field.
5281    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5282                                                  To.get(), From.get(),
5283                                              /*CopyingBaseSubobject=*/false);
5284    if (Copy.isInvalid()) {
5285      Diag(CurrentLocation, diag::note_member_synthesized_at)
5286        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5287      CopyAssignOperator->setInvalidDecl();
5288      return;
5289    }
5290
5291    // Success! Record the copy.
5292    Statements.push_back(Copy.takeAs<Stmt>());
5293  }
5294
5295  if (!Invalid) {
5296    // Add a "return *this;"
5297    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5298
5299    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5300    if (Return.isInvalid())
5301      Invalid = true;
5302    else {
5303      Statements.push_back(Return.takeAs<Stmt>());
5304
5305      if (Trap.hasErrorOccurred()) {
5306        Diag(CurrentLocation, diag::note_member_synthesized_at)
5307          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5308        Invalid = true;
5309      }
5310    }
5311  }
5312
5313  if (Invalid) {
5314    CopyAssignOperator->setInvalidDecl();
5315    return;
5316  }
5317
5318  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5319                                            /*isStmtExpr=*/false);
5320  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5321  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5322}
5323
5324CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5325                                                    CXXRecordDecl *ClassDecl) {
5326  // C++ [class.copy]p4:
5327  //   If the class definition does not explicitly declare a copy
5328  //   constructor, one is declared implicitly.
5329
5330  // C++ [class.copy]p5:
5331  //   The implicitly-declared copy constructor for a class X will
5332  //   have the form
5333  //
5334  //       X::X(const X&)
5335  //
5336  //   if
5337  bool HasConstCopyConstructor = true;
5338
5339  //     -- each direct or virtual base class B of X has a copy
5340  //        constructor whose first parameter is of type const B& or
5341  //        const volatile B&, and
5342  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5343                                       BaseEnd = ClassDecl->bases_end();
5344       HasConstCopyConstructor && Base != BaseEnd;
5345       ++Base) {
5346    // Virtual bases are handled below.
5347    if (Base->isVirtual())
5348      continue;
5349
5350    CXXRecordDecl *BaseClassDecl
5351      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5352    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5353      DeclareImplicitCopyConstructor(BaseClassDecl);
5354
5355    HasConstCopyConstructor
5356      = BaseClassDecl->hasConstCopyConstructor(Context);
5357  }
5358
5359  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5360                                       BaseEnd = ClassDecl->vbases_end();
5361       HasConstCopyConstructor && Base != BaseEnd;
5362       ++Base) {
5363    CXXRecordDecl *BaseClassDecl
5364      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5365    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5366      DeclareImplicitCopyConstructor(BaseClassDecl);
5367
5368    HasConstCopyConstructor
5369      = BaseClassDecl->hasConstCopyConstructor(Context);
5370  }
5371
5372  //     -- for all the nonstatic data members of X that are of a
5373  //        class type M (or array thereof), each such class type
5374  //        has a copy constructor whose first parameter is of type
5375  //        const M& or const volatile M&.
5376  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5377                                  FieldEnd = ClassDecl->field_end();
5378       HasConstCopyConstructor && Field != FieldEnd;
5379       ++Field) {
5380    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5381    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5382      CXXRecordDecl *FieldClassDecl
5383        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5384      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5385        DeclareImplicitCopyConstructor(FieldClassDecl);
5386
5387      HasConstCopyConstructor
5388        = FieldClassDecl->hasConstCopyConstructor(Context);
5389    }
5390  }
5391
5392  //   Otherwise, the implicitly declared copy constructor will have
5393  //   the form
5394  //
5395  //       X::X(X&)
5396  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5397  QualType ArgType = ClassType;
5398  if (HasConstCopyConstructor)
5399    ArgType = ArgType.withConst();
5400  ArgType = Context.getLValueReferenceType(ArgType);
5401
5402  // C++ [except.spec]p14:
5403  //   An implicitly declared special member function (Clause 12) shall have an
5404  //   exception-specification. [...]
5405  ImplicitExceptionSpecification ExceptSpec(Context);
5406  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5407  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5408                                       BaseEnd = ClassDecl->bases_end();
5409       Base != BaseEnd;
5410       ++Base) {
5411    // Virtual bases are handled below.
5412    if (Base->isVirtual())
5413      continue;
5414
5415    CXXRecordDecl *BaseClassDecl
5416      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5417    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5418      DeclareImplicitCopyConstructor(BaseClassDecl);
5419
5420    if (CXXConstructorDecl *CopyConstructor
5421                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5422      ExceptSpec.CalledDecl(CopyConstructor);
5423  }
5424  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5425                                       BaseEnd = ClassDecl->vbases_end();
5426       Base != BaseEnd;
5427       ++Base) {
5428    CXXRecordDecl *BaseClassDecl
5429      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5430    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5431      DeclareImplicitCopyConstructor(BaseClassDecl);
5432
5433    if (CXXConstructorDecl *CopyConstructor
5434                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5435      ExceptSpec.CalledDecl(CopyConstructor);
5436  }
5437  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5438                                  FieldEnd = ClassDecl->field_end();
5439       Field != FieldEnd;
5440       ++Field) {
5441    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5442    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5443      CXXRecordDecl *FieldClassDecl
5444        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5445      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5446        DeclareImplicitCopyConstructor(FieldClassDecl);
5447
5448      if (CXXConstructorDecl *CopyConstructor
5449                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5450        ExceptSpec.CalledDecl(CopyConstructor);
5451    }
5452  }
5453
5454  //   An implicitly-declared copy constructor is an inline public
5455  //   member of its class.
5456  FunctionProtoType::ExtProtoInfo EPI;
5457  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5458  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5459  EPI.NumExceptions = ExceptSpec.size();
5460  EPI.Exceptions = ExceptSpec.data();
5461  DeclarationName Name
5462    = Context.DeclarationNames.getCXXConstructorName(
5463                                           Context.getCanonicalType(ClassType));
5464  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5465  CXXConstructorDecl *CopyConstructor
5466    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5467                                 Context.getFunctionType(Context.VoidTy,
5468                                                         &ArgType, 1, EPI),
5469                                 /*TInfo=*/0,
5470                                 /*isExplicit=*/false,
5471                                 /*isInline=*/true,
5472                                 /*isImplicitlyDeclared=*/true);
5473  CopyConstructor->setAccess(AS_public);
5474  CopyConstructor->setImplicit();
5475  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5476
5477  // Note that we have declared this constructor.
5478  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5479
5480  // Add the parameter to the constructor.
5481  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5482                                               ClassDecl->getLocation(),
5483                                               /*IdentifierInfo=*/0,
5484                                               ArgType, /*TInfo=*/0,
5485                                               SC_None,
5486                                               SC_None, 0);
5487  CopyConstructor->setParams(&FromParam, 1);
5488  if (Scope *S = getScopeForContext(ClassDecl))
5489    PushOnScopeChains(CopyConstructor, S, false);
5490  ClassDecl->addDecl(CopyConstructor);
5491
5492  return CopyConstructor;
5493}
5494
5495void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5496                                   CXXConstructorDecl *CopyConstructor,
5497                                   unsigned TypeQuals) {
5498  assert((CopyConstructor->isImplicit() &&
5499          CopyConstructor->isCopyConstructor(TypeQuals) &&
5500          !CopyConstructor->isUsed(false)) &&
5501         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5502
5503  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5504  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5505
5506  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5507  DiagnosticErrorTrap Trap(Diags);
5508
5509  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5510      Trap.hasErrorOccurred()) {
5511    Diag(CurrentLocation, diag::note_member_synthesized_at)
5512      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5513    CopyConstructor->setInvalidDecl();
5514  }  else {
5515    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5516                                               CopyConstructor->getLocation(),
5517                                               MultiStmtArg(*this, 0, 0),
5518                                               /*isStmtExpr=*/false)
5519                                                              .takeAs<Stmt>());
5520  }
5521
5522  CopyConstructor->setUsed();
5523}
5524
5525ExprResult
5526Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5527                            CXXConstructorDecl *Constructor,
5528                            MultiExprArg ExprArgs,
5529                            bool RequiresZeroInit,
5530                            unsigned ConstructKind,
5531                            SourceRange ParenRange) {
5532  bool Elidable = false;
5533
5534  // C++0x [class.copy]p34:
5535  //   When certain criteria are met, an implementation is allowed to
5536  //   omit the copy/move construction of a class object, even if the
5537  //   copy/move constructor and/or destructor for the object have
5538  //   side effects. [...]
5539  //     - when a temporary class object that has not been bound to a
5540  //       reference (12.2) would be copied/moved to a class object
5541  //       with the same cv-unqualified type, the copy/move operation
5542  //       can be omitted by constructing the temporary object
5543  //       directly into the target of the omitted copy/move
5544  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5545      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5546    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5547    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5548  }
5549
5550  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5551                               Elidable, move(ExprArgs), RequiresZeroInit,
5552                               ConstructKind, ParenRange);
5553}
5554
5555/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5556/// including handling of its default argument expressions.
5557ExprResult
5558Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5559                            CXXConstructorDecl *Constructor, bool Elidable,
5560                            MultiExprArg ExprArgs,
5561                            bool RequiresZeroInit,
5562                            unsigned ConstructKind,
5563                            SourceRange ParenRange) {
5564  unsigned NumExprs = ExprArgs.size();
5565  Expr **Exprs = (Expr **)ExprArgs.release();
5566
5567  MarkDeclarationReferenced(ConstructLoc, Constructor);
5568  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5569                                        Constructor, Elidable, Exprs, NumExprs,
5570                                        RequiresZeroInit,
5571              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5572                                        ParenRange));
5573}
5574
5575bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5576                                        CXXConstructorDecl *Constructor,
5577                                        MultiExprArg Exprs) {
5578  // FIXME: Provide the correct paren SourceRange when available.
5579  ExprResult TempResult =
5580    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5581                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5582                          SourceRange());
5583  if (TempResult.isInvalid())
5584    return true;
5585
5586  Expr *Temp = TempResult.takeAs<Expr>();
5587  CheckImplicitConversions(Temp, VD->getLocation());
5588  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5589  Temp = MaybeCreateExprWithCleanups(Temp);
5590  VD->setInit(Temp);
5591
5592  return false;
5593}
5594
5595void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5596  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5597  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5598      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5599    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5600    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5601    CheckDestructorAccess(VD->getLocation(), Destructor,
5602                          PDiag(diag::err_access_dtor_var)
5603                            << VD->getDeclName()
5604                            << VD->getType());
5605
5606    // TODO: this should be re-enabled for static locals by !CXAAtExit
5607    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5608      Diag(VD->getLocation(), diag::warn_global_destructor);
5609  }
5610}
5611
5612/// AddCXXDirectInitializerToDecl - This action is called immediately after
5613/// ActOnDeclarator, when a C++ direct initializer is present.
5614/// e.g: "int x(1);"
5615void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5616                                         SourceLocation LParenLoc,
5617                                         MultiExprArg Exprs,
5618                                         SourceLocation RParenLoc) {
5619  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5620
5621  // If there is no declaration, there was an error parsing it.  Just ignore
5622  // the initializer.
5623  if (RealDecl == 0)
5624    return;
5625
5626  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5627  if (!VDecl) {
5628    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5629    RealDecl->setInvalidDecl();
5630    return;
5631  }
5632
5633  // We will represent direct-initialization similarly to copy-initialization:
5634  //    int x(1);  -as-> int x = 1;
5635  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5636  //
5637  // Clients that want to distinguish between the two forms, can check for
5638  // direct initializer using VarDecl::hasCXXDirectInitializer().
5639  // A major benefit is that clients that don't particularly care about which
5640  // exactly form was it (like the CodeGen) can handle both cases without
5641  // special case code.
5642
5643  // C++ 8.5p11:
5644  // The form of initialization (using parentheses or '=') is generally
5645  // insignificant, but does matter when the entity being initialized has a
5646  // class type.
5647
5648  if (!VDecl->getType()->isDependentType() &&
5649      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5650                          diag::err_typecheck_decl_incomplete_type)) {
5651    VDecl->setInvalidDecl();
5652    return;
5653  }
5654
5655  // The variable can not have an abstract class type.
5656  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5657                             diag::err_abstract_type_in_decl,
5658                             AbstractVariableType))
5659    VDecl->setInvalidDecl();
5660
5661  const VarDecl *Def;
5662  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5663    Diag(VDecl->getLocation(), diag::err_redefinition)
5664    << VDecl->getDeclName();
5665    Diag(Def->getLocation(), diag::note_previous_definition);
5666    VDecl->setInvalidDecl();
5667    return;
5668  }
5669
5670  // C++ [class.static.data]p4
5671  //   If a static data member is of const integral or const
5672  //   enumeration type, its declaration in the class definition can
5673  //   specify a constant-initializer which shall be an integral
5674  //   constant expression (5.19). In that case, the member can appear
5675  //   in integral constant expressions. The member shall still be
5676  //   defined in a namespace scope if it is used in the program and the
5677  //   namespace scope definition shall not contain an initializer.
5678  //
5679  // We already performed a redefinition check above, but for static
5680  // data members we also need to check whether there was an in-class
5681  // declaration with an initializer.
5682  const VarDecl* PrevInit = 0;
5683  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5684    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5685    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5686    return;
5687  }
5688
5689  bool IsDependent = false;
5690  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5691    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5692      VDecl->setInvalidDecl();
5693      return;
5694    }
5695
5696    if (Exprs.get()[I]->isTypeDependent())
5697      IsDependent = true;
5698  }
5699
5700  // If either the declaration has a dependent type or if any of the
5701  // expressions is type-dependent, we represent the initialization
5702  // via a ParenListExpr for later use during template instantiation.
5703  if (VDecl->getType()->isDependentType() || IsDependent) {
5704    // Let clients know that initialization was done with a direct initializer.
5705    VDecl->setCXXDirectInitializer(true);
5706
5707    // Store the initialization expressions as a ParenListExpr.
5708    unsigned NumExprs = Exprs.size();
5709    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5710                                               (Expr **)Exprs.release(),
5711                                               NumExprs, RParenLoc));
5712    return;
5713  }
5714
5715  // Capture the variable that is being initialized and the style of
5716  // initialization.
5717  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5718
5719  // FIXME: Poor source location information.
5720  InitializationKind Kind
5721    = InitializationKind::CreateDirect(VDecl->getLocation(),
5722                                       LParenLoc, RParenLoc);
5723
5724  InitializationSequence InitSeq(*this, Entity, Kind,
5725                                 Exprs.get(), Exprs.size());
5726  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5727  if (Result.isInvalid()) {
5728    VDecl->setInvalidDecl();
5729    return;
5730  }
5731
5732  CheckImplicitConversions(Result.get(), LParenLoc);
5733
5734  Result = MaybeCreateExprWithCleanups(Result);
5735  VDecl->setInit(Result.takeAs<Expr>());
5736  VDecl->setCXXDirectInitializer(true);
5737
5738  CheckCompleteVariableDeclaration(VDecl);
5739}
5740
5741/// \brief Given a constructor and the set of arguments provided for the
5742/// constructor, convert the arguments and add any required default arguments
5743/// to form a proper call to this constructor.
5744///
5745/// \returns true if an error occurred, false otherwise.
5746bool
5747Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5748                              MultiExprArg ArgsPtr,
5749                              SourceLocation Loc,
5750                              ASTOwningVector<Expr*> &ConvertedArgs) {
5751  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5752  unsigned NumArgs = ArgsPtr.size();
5753  Expr **Args = (Expr **)ArgsPtr.get();
5754
5755  const FunctionProtoType *Proto
5756    = Constructor->getType()->getAs<FunctionProtoType>();
5757  assert(Proto && "Constructor without a prototype?");
5758  unsigned NumArgsInProto = Proto->getNumArgs();
5759
5760  // If too few arguments are available, we'll fill in the rest with defaults.
5761  if (NumArgs < NumArgsInProto)
5762    ConvertedArgs.reserve(NumArgsInProto);
5763  else
5764    ConvertedArgs.reserve(NumArgs);
5765
5766  VariadicCallType CallType =
5767    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5768  llvm::SmallVector<Expr *, 8> AllArgs;
5769  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5770                                        Proto, 0, Args, NumArgs, AllArgs,
5771                                        CallType);
5772  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5773    ConvertedArgs.push_back(AllArgs[i]);
5774  return Invalid;
5775}
5776
5777static inline bool
5778CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5779                                       const FunctionDecl *FnDecl) {
5780  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5781  if (isa<NamespaceDecl>(DC)) {
5782    return SemaRef.Diag(FnDecl->getLocation(),
5783                        diag::err_operator_new_delete_declared_in_namespace)
5784      << FnDecl->getDeclName();
5785  }
5786
5787  if (isa<TranslationUnitDecl>(DC) &&
5788      FnDecl->getStorageClass() == SC_Static) {
5789    return SemaRef.Diag(FnDecl->getLocation(),
5790                        diag::err_operator_new_delete_declared_static)
5791      << FnDecl->getDeclName();
5792  }
5793
5794  return false;
5795}
5796
5797static inline bool
5798CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5799                            CanQualType ExpectedResultType,
5800                            CanQualType ExpectedFirstParamType,
5801                            unsigned DependentParamTypeDiag,
5802                            unsigned InvalidParamTypeDiag) {
5803  QualType ResultType =
5804    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5805
5806  // Check that the result type is not dependent.
5807  if (ResultType->isDependentType())
5808    return SemaRef.Diag(FnDecl->getLocation(),
5809                        diag::err_operator_new_delete_dependent_result_type)
5810    << FnDecl->getDeclName() << ExpectedResultType;
5811
5812  // Check that the result type is what we expect.
5813  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5814    return SemaRef.Diag(FnDecl->getLocation(),
5815                        diag::err_operator_new_delete_invalid_result_type)
5816    << FnDecl->getDeclName() << ExpectedResultType;
5817
5818  // A function template must have at least 2 parameters.
5819  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5820    return SemaRef.Diag(FnDecl->getLocation(),
5821                      diag::err_operator_new_delete_template_too_few_parameters)
5822        << FnDecl->getDeclName();
5823
5824  // The function decl must have at least 1 parameter.
5825  if (FnDecl->getNumParams() == 0)
5826    return SemaRef.Diag(FnDecl->getLocation(),
5827                        diag::err_operator_new_delete_too_few_parameters)
5828      << FnDecl->getDeclName();
5829
5830  // Check the the first parameter type is not dependent.
5831  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5832  if (FirstParamType->isDependentType())
5833    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5834      << FnDecl->getDeclName() << ExpectedFirstParamType;
5835
5836  // Check that the first parameter type is what we expect.
5837  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5838      ExpectedFirstParamType)
5839    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5840    << FnDecl->getDeclName() << ExpectedFirstParamType;
5841
5842  return false;
5843}
5844
5845static bool
5846CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5847  // C++ [basic.stc.dynamic.allocation]p1:
5848  //   A program is ill-formed if an allocation function is declared in a
5849  //   namespace scope other than global scope or declared static in global
5850  //   scope.
5851  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5852    return true;
5853
5854  CanQualType SizeTy =
5855    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5856
5857  // C++ [basic.stc.dynamic.allocation]p1:
5858  //  The return type shall be void*. The first parameter shall have type
5859  //  std::size_t.
5860  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5861                                  SizeTy,
5862                                  diag::err_operator_new_dependent_param_type,
5863                                  diag::err_operator_new_param_type))
5864    return true;
5865
5866  // C++ [basic.stc.dynamic.allocation]p1:
5867  //  The first parameter shall not have an associated default argument.
5868  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5869    return SemaRef.Diag(FnDecl->getLocation(),
5870                        diag::err_operator_new_default_arg)
5871      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5872
5873  return false;
5874}
5875
5876static bool
5877CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5878  // C++ [basic.stc.dynamic.deallocation]p1:
5879  //   A program is ill-formed if deallocation functions are declared in a
5880  //   namespace scope other than global scope or declared static in global
5881  //   scope.
5882  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5883    return true;
5884
5885  // C++ [basic.stc.dynamic.deallocation]p2:
5886  //   Each deallocation function shall return void and its first parameter
5887  //   shall be void*.
5888  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5889                                  SemaRef.Context.VoidPtrTy,
5890                                 diag::err_operator_delete_dependent_param_type,
5891                                 diag::err_operator_delete_param_type))
5892    return true;
5893
5894  return false;
5895}
5896
5897/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5898/// of this overloaded operator is well-formed. If so, returns false;
5899/// otherwise, emits appropriate diagnostics and returns true.
5900bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5901  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5902         "Expected an overloaded operator declaration");
5903
5904  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5905
5906  // C++ [over.oper]p5:
5907  //   The allocation and deallocation functions, operator new,
5908  //   operator new[], operator delete and operator delete[], are
5909  //   described completely in 3.7.3. The attributes and restrictions
5910  //   found in the rest of this subclause do not apply to them unless
5911  //   explicitly stated in 3.7.3.
5912  if (Op == OO_Delete || Op == OO_Array_Delete)
5913    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5914
5915  if (Op == OO_New || Op == OO_Array_New)
5916    return CheckOperatorNewDeclaration(*this, FnDecl);
5917
5918  // C++ [over.oper]p6:
5919  //   An operator function shall either be a non-static member
5920  //   function or be a non-member function and have at least one
5921  //   parameter whose type is a class, a reference to a class, an
5922  //   enumeration, or a reference to an enumeration.
5923  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5924    if (MethodDecl->isStatic())
5925      return Diag(FnDecl->getLocation(),
5926                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5927  } else {
5928    bool ClassOrEnumParam = false;
5929    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5930                                   ParamEnd = FnDecl->param_end();
5931         Param != ParamEnd; ++Param) {
5932      QualType ParamType = (*Param)->getType().getNonReferenceType();
5933      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5934          ParamType->isEnumeralType()) {
5935        ClassOrEnumParam = true;
5936        break;
5937      }
5938    }
5939
5940    if (!ClassOrEnumParam)
5941      return Diag(FnDecl->getLocation(),
5942                  diag::err_operator_overload_needs_class_or_enum)
5943        << FnDecl->getDeclName();
5944  }
5945
5946  // C++ [over.oper]p8:
5947  //   An operator function cannot have default arguments (8.3.6),
5948  //   except where explicitly stated below.
5949  //
5950  // Only the function-call operator allows default arguments
5951  // (C++ [over.call]p1).
5952  if (Op != OO_Call) {
5953    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5954         Param != FnDecl->param_end(); ++Param) {
5955      if ((*Param)->hasDefaultArg())
5956        return Diag((*Param)->getLocation(),
5957                    diag::err_operator_overload_default_arg)
5958          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5959    }
5960  }
5961
5962  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5963    { false, false, false }
5964#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5965    , { Unary, Binary, MemberOnly }
5966#include "clang/Basic/OperatorKinds.def"
5967  };
5968
5969  bool CanBeUnaryOperator = OperatorUses[Op][0];
5970  bool CanBeBinaryOperator = OperatorUses[Op][1];
5971  bool MustBeMemberOperator = OperatorUses[Op][2];
5972
5973  // C++ [over.oper]p8:
5974  //   [...] Operator functions cannot have more or fewer parameters
5975  //   than the number required for the corresponding operator, as
5976  //   described in the rest of this subclause.
5977  unsigned NumParams = FnDecl->getNumParams()
5978                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5979  if (Op != OO_Call &&
5980      ((NumParams == 1 && !CanBeUnaryOperator) ||
5981       (NumParams == 2 && !CanBeBinaryOperator) ||
5982       (NumParams < 1) || (NumParams > 2))) {
5983    // We have the wrong number of parameters.
5984    unsigned ErrorKind;
5985    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5986      ErrorKind = 2;  // 2 -> unary or binary.
5987    } else if (CanBeUnaryOperator) {
5988      ErrorKind = 0;  // 0 -> unary
5989    } else {
5990      assert(CanBeBinaryOperator &&
5991             "All non-call overloaded operators are unary or binary!");
5992      ErrorKind = 1;  // 1 -> binary
5993    }
5994
5995    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5996      << FnDecl->getDeclName() << NumParams << ErrorKind;
5997  }
5998
5999  // Overloaded operators other than operator() cannot be variadic.
6000  if (Op != OO_Call &&
6001      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6002    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6003      << FnDecl->getDeclName();
6004  }
6005
6006  // Some operators must be non-static member functions.
6007  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6008    return Diag(FnDecl->getLocation(),
6009                diag::err_operator_overload_must_be_member)
6010      << FnDecl->getDeclName();
6011  }
6012
6013  // C++ [over.inc]p1:
6014  //   The user-defined function called operator++ implements the
6015  //   prefix and postfix ++ operator. If this function is a member
6016  //   function with no parameters, or a non-member function with one
6017  //   parameter of class or enumeration type, it defines the prefix
6018  //   increment operator ++ for objects of that type. If the function
6019  //   is a member function with one parameter (which shall be of type
6020  //   int) or a non-member function with two parameters (the second
6021  //   of which shall be of type int), it defines the postfix
6022  //   increment operator ++ for objects of that type.
6023  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6024    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6025    bool ParamIsInt = false;
6026    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6027      ParamIsInt = BT->getKind() == BuiltinType::Int;
6028
6029    if (!ParamIsInt)
6030      return Diag(LastParam->getLocation(),
6031                  diag::err_operator_overload_post_incdec_must_be_int)
6032        << LastParam->getType() << (Op == OO_MinusMinus);
6033  }
6034
6035  return false;
6036}
6037
6038/// CheckLiteralOperatorDeclaration - Check whether the declaration
6039/// of this literal operator function is well-formed. If so, returns
6040/// false; otherwise, emits appropriate diagnostics and returns true.
6041bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6042  DeclContext *DC = FnDecl->getDeclContext();
6043  Decl::Kind Kind = DC->getDeclKind();
6044  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6045      Kind != Decl::LinkageSpec) {
6046    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6047      << FnDecl->getDeclName();
6048    return true;
6049  }
6050
6051  bool Valid = false;
6052
6053  // template <char...> type operator "" name() is the only valid template
6054  // signature, and the only valid signature with no parameters.
6055  if (FnDecl->param_size() == 0) {
6056    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6057      // Must have only one template parameter
6058      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6059      if (Params->size() == 1) {
6060        NonTypeTemplateParmDecl *PmDecl =
6061          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6062
6063        // The template parameter must be a char parameter pack.
6064        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6065            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6066          Valid = true;
6067      }
6068    }
6069  } else {
6070    // Check the first parameter
6071    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6072
6073    QualType T = (*Param)->getType();
6074
6075    // unsigned long long int, long double, and any character type are allowed
6076    // as the only parameters.
6077    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6078        Context.hasSameType(T, Context.LongDoubleTy) ||
6079        Context.hasSameType(T, Context.CharTy) ||
6080        Context.hasSameType(T, Context.WCharTy) ||
6081        Context.hasSameType(T, Context.Char16Ty) ||
6082        Context.hasSameType(T, Context.Char32Ty)) {
6083      if (++Param == FnDecl->param_end())
6084        Valid = true;
6085      goto FinishedParams;
6086    }
6087
6088    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6089    const PointerType *PT = T->getAs<PointerType>();
6090    if (!PT)
6091      goto FinishedParams;
6092    T = PT->getPointeeType();
6093    if (!T.isConstQualified())
6094      goto FinishedParams;
6095    T = T.getUnqualifiedType();
6096
6097    // Move on to the second parameter;
6098    ++Param;
6099
6100    // If there is no second parameter, the first must be a const char *
6101    if (Param == FnDecl->param_end()) {
6102      if (Context.hasSameType(T, Context.CharTy))
6103        Valid = true;
6104      goto FinishedParams;
6105    }
6106
6107    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6108    // are allowed as the first parameter to a two-parameter function
6109    if (!(Context.hasSameType(T, Context.CharTy) ||
6110          Context.hasSameType(T, Context.WCharTy) ||
6111          Context.hasSameType(T, Context.Char16Ty) ||
6112          Context.hasSameType(T, Context.Char32Ty)))
6113      goto FinishedParams;
6114
6115    // The second and final parameter must be an std::size_t
6116    T = (*Param)->getType().getUnqualifiedType();
6117    if (Context.hasSameType(T, Context.getSizeType()) &&
6118        ++Param == FnDecl->param_end())
6119      Valid = true;
6120  }
6121
6122  // FIXME: This diagnostic is absolutely terrible.
6123FinishedParams:
6124  if (!Valid) {
6125    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6126      << FnDecl->getDeclName();
6127    return true;
6128  }
6129
6130  return false;
6131}
6132
6133/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6134/// linkage specification, including the language and (if present)
6135/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6136/// the location of the language string literal, which is provided
6137/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6138/// the '{' brace. Otherwise, this linkage specification does not
6139/// have any braces.
6140Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6141                                           SourceLocation LangLoc,
6142                                           llvm::StringRef Lang,
6143                                           SourceLocation LBraceLoc) {
6144  LinkageSpecDecl::LanguageIDs Language;
6145  if (Lang == "\"C\"")
6146    Language = LinkageSpecDecl::lang_c;
6147  else if (Lang == "\"C++\"")
6148    Language = LinkageSpecDecl::lang_cxx;
6149  else {
6150    Diag(LangLoc, diag::err_bad_language);
6151    return 0;
6152  }
6153
6154  // FIXME: Add all the various semantics of linkage specifications
6155
6156  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6157                                               LangLoc, Language,
6158                                               LBraceLoc.isValid());
6159  CurContext->addDecl(D);
6160  PushDeclContext(S, D);
6161  return D;
6162}
6163
6164/// ActOnFinishLinkageSpecification - Complete the definition of
6165/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6166/// valid, it's the position of the closing '}' brace in a linkage
6167/// specification that uses braces.
6168Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6169                                                      Decl *LinkageSpec,
6170                                                      SourceLocation RBraceLoc) {
6171  if (LinkageSpec)
6172    PopDeclContext();
6173  return LinkageSpec;
6174}
6175
6176/// \brief Perform semantic analysis for the variable declaration that
6177/// occurs within a C++ catch clause, returning the newly-created
6178/// variable.
6179VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6180                                         TypeSourceInfo *TInfo,
6181                                         IdentifierInfo *Name,
6182                                         SourceLocation Loc) {
6183  bool Invalid = false;
6184  QualType ExDeclType = TInfo->getType();
6185
6186  // Arrays and functions decay.
6187  if (ExDeclType->isArrayType())
6188    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6189  else if (ExDeclType->isFunctionType())
6190    ExDeclType = Context.getPointerType(ExDeclType);
6191
6192  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6193  // The exception-declaration shall not denote a pointer or reference to an
6194  // incomplete type, other than [cv] void*.
6195  // N2844 forbids rvalue references.
6196  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6197    Diag(Loc, diag::err_catch_rvalue_ref);
6198    Invalid = true;
6199  }
6200
6201  // GCC allows catching pointers and references to incomplete types
6202  // as an extension; so do we, but we warn by default.
6203
6204  QualType BaseType = ExDeclType;
6205  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6206  unsigned DK = diag::err_catch_incomplete;
6207  bool IncompleteCatchIsInvalid = true;
6208  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6209    BaseType = Ptr->getPointeeType();
6210    Mode = 1;
6211    DK = diag::ext_catch_incomplete_ptr;
6212    IncompleteCatchIsInvalid = false;
6213  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6214    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6215    BaseType = Ref->getPointeeType();
6216    Mode = 2;
6217    DK = diag::ext_catch_incomplete_ref;
6218    IncompleteCatchIsInvalid = false;
6219  }
6220  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6221      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6222      IncompleteCatchIsInvalid)
6223    Invalid = true;
6224
6225  if (!Invalid && !ExDeclType->isDependentType() &&
6226      RequireNonAbstractType(Loc, ExDeclType,
6227                             diag::err_abstract_type_in_decl,
6228                             AbstractVariableType))
6229    Invalid = true;
6230
6231  // Only the non-fragile NeXT runtime currently supports C++ catches
6232  // of ObjC types, and no runtime supports catching ObjC types by value.
6233  if (!Invalid && getLangOptions().ObjC1) {
6234    QualType T = ExDeclType;
6235    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6236      T = RT->getPointeeType();
6237
6238    if (T->isObjCObjectType()) {
6239      Diag(Loc, diag::err_objc_object_catch);
6240      Invalid = true;
6241    } else if (T->isObjCObjectPointerType()) {
6242      if (!getLangOptions().NeXTRuntime) {
6243        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6244        Invalid = true;
6245      } else if (!getLangOptions().ObjCNonFragileABI) {
6246        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6247        Invalid = true;
6248      }
6249    }
6250  }
6251
6252  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6253                                    Name, ExDeclType, TInfo, SC_None,
6254                                    SC_None);
6255  ExDecl->setExceptionVariable(true);
6256
6257  if (!Invalid) {
6258    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6259      // C++ [except.handle]p16:
6260      //   The object declared in an exception-declaration or, if the
6261      //   exception-declaration does not specify a name, a temporary (12.2) is
6262      //   copy-initialized (8.5) from the exception object. [...]
6263      //   The object is destroyed when the handler exits, after the destruction
6264      //   of any automatic objects initialized within the handler.
6265      //
6266      // We just pretend to initialize the object with itself, then make sure
6267      // it can be destroyed later.
6268      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6269      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6270                                            Loc, ExDeclType, VK_LValue, 0);
6271      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6272                                                               SourceLocation());
6273      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6274      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6275                                         MultiExprArg(*this, &ExDeclRef, 1));
6276      if (Result.isInvalid())
6277        Invalid = true;
6278      else
6279        FinalizeVarWithDestructor(ExDecl, RecordTy);
6280    }
6281  }
6282
6283  if (Invalid)
6284    ExDecl->setInvalidDecl();
6285
6286  return ExDecl;
6287}
6288
6289/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6290/// handler.
6291Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6292  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6293  bool Invalid = D.isInvalidType();
6294
6295  // Check for unexpanded parameter packs.
6296  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6297                                               UPPC_ExceptionType)) {
6298    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6299                                             D.getIdentifierLoc());
6300    Invalid = true;
6301  }
6302
6303  IdentifierInfo *II = D.getIdentifier();
6304  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6305                                             LookupOrdinaryName,
6306                                             ForRedeclaration)) {
6307    // The scope should be freshly made just for us. There is just no way
6308    // it contains any previous declaration.
6309    assert(!S->isDeclScope(PrevDecl));
6310    if (PrevDecl->isTemplateParameter()) {
6311      // Maybe we will complain about the shadowed template parameter.
6312      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6313    }
6314  }
6315
6316  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6317    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6318      << D.getCXXScopeSpec().getRange();
6319    Invalid = true;
6320  }
6321
6322  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6323                                              D.getIdentifier(),
6324                                              D.getIdentifierLoc());
6325
6326  if (Invalid)
6327    ExDecl->setInvalidDecl();
6328
6329  // Add the exception declaration into this scope.
6330  if (II)
6331    PushOnScopeChains(ExDecl, S);
6332  else
6333    CurContext->addDecl(ExDecl);
6334
6335  ProcessDeclAttributes(S, ExDecl, D);
6336  return ExDecl;
6337}
6338
6339Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6340                                         Expr *AssertExpr,
6341                                         Expr *AssertMessageExpr_) {
6342  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6343
6344  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6345    llvm::APSInt Value(32);
6346    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6347      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6348        AssertExpr->getSourceRange();
6349      return 0;
6350    }
6351
6352    if (Value == 0) {
6353      Diag(AssertLoc, diag::err_static_assert_failed)
6354        << AssertMessage->getString() << AssertExpr->getSourceRange();
6355    }
6356  }
6357
6358  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6359    return 0;
6360
6361  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6362                                        AssertExpr, AssertMessage);
6363
6364  CurContext->addDecl(Decl);
6365  return Decl;
6366}
6367
6368/// \brief Perform semantic analysis of the given friend type declaration.
6369///
6370/// \returns A friend declaration that.
6371FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6372                                      TypeSourceInfo *TSInfo) {
6373  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6374
6375  QualType T = TSInfo->getType();
6376  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6377
6378  if (!getLangOptions().CPlusPlus0x) {
6379    // C++03 [class.friend]p2:
6380    //   An elaborated-type-specifier shall be used in a friend declaration
6381    //   for a class.*
6382    //
6383    //   * The class-key of the elaborated-type-specifier is required.
6384    if (!ActiveTemplateInstantiations.empty()) {
6385      // Do not complain about the form of friend template types during
6386      // template instantiation; we will already have complained when the
6387      // template was declared.
6388    } else if (!T->isElaboratedTypeSpecifier()) {
6389      // If we evaluated the type to a record type, suggest putting
6390      // a tag in front.
6391      if (const RecordType *RT = T->getAs<RecordType>()) {
6392        RecordDecl *RD = RT->getDecl();
6393
6394        std::string InsertionText = std::string(" ") + RD->getKindName();
6395
6396        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6397          << (unsigned) RD->getTagKind()
6398          << T
6399          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6400                                        InsertionText);
6401      } else {
6402        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6403          << T
6404          << SourceRange(FriendLoc, TypeRange.getEnd());
6405      }
6406    } else if (T->getAs<EnumType>()) {
6407      Diag(FriendLoc, diag::ext_enum_friend)
6408        << T
6409        << SourceRange(FriendLoc, TypeRange.getEnd());
6410    }
6411  }
6412
6413  // C++0x [class.friend]p3:
6414  //   If the type specifier in a friend declaration designates a (possibly
6415  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6416  //   the friend declaration is ignored.
6417
6418  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6419  // in [class.friend]p3 that we do not implement.
6420
6421  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6422}
6423
6424/// Handle a friend tag declaration where the scope specifier was
6425/// templated.
6426Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6427                                    unsigned TagSpec, SourceLocation TagLoc,
6428                                    CXXScopeSpec &SS,
6429                                    IdentifierInfo *Name, SourceLocation NameLoc,
6430                                    AttributeList *Attr,
6431                                    MultiTemplateParamsArg TempParamLists) {
6432  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6433
6434  bool isExplicitSpecialization = false;
6435  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6436  bool Invalid = false;
6437
6438  if (TemplateParameterList *TemplateParams
6439        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6440                                                  TempParamLists.get(),
6441                                                  TempParamLists.size(),
6442                                                  /*friend*/ true,
6443                                                  isExplicitSpecialization,
6444                                                  Invalid)) {
6445    --NumMatchedTemplateParamLists;
6446
6447    if (TemplateParams->size() > 0) {
6448      // This is a declaration of a class template.
6449      if (Invalid)
6450        return 0;
6451
6452      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6453                                SS, Name, NameLoc, Attr,
6454                                TemplateParams, AS_public).take();
6455    } else {
6456      // The "template<>" header is extraneous.
6457      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6458        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6459      isExplicitSpecialization = true;
6460    }
6461  }
6462
6463  if (Invalid) return 0;
6464
6465  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6466
6467  bool isAllExplicitSpecializations = true;
6468  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6469    if (TempParamLists.get()[I]->size()) {
6470      isAllExplicitSpecializations = false;
6471      break;
6472    }
6473  }
6474
6475  // FIXME: don't ignore attributes.
6476
6477  // If it's explicit specializations all the way down, just forget
6478  // about the template header and build an appropriate non-templated
6479  // friend.  TODO: for source fidelity, remember the headers.
6480  if (isAllExplicitSpecializations) {
6481    ElaboratedTypeKeyword Keyword
6482      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6483    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6484                                   TagLoc, SS.getRange(), NameLoc);
6485    if (T.isNull())
6486      return 0;
6487
6488    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6489    if (isa<DependentNameType>(T)) {
6490      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6491      TL.setKeywordLoc(TagLoc);
6492      TL.setQualifierRange(SS.getRange());
6493      TL.setNameLoc(NameLoc);
6494    } else {
6495      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6496      TL.setKeywordLoc(TagLoc);
6497      TL.setQualifierRange(SS.getRange());
6498      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6499    }
6500
6501    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6502                                            TSI, FriendLoc);
6503    Friend->setAccess(AS_public);
6504    CurContext->addDecl(Friend);
6505    return Friend;
6506  }
6507
6508  // Handle the case of a templated-scope friend class.  e.g.
6509  //   template <class T> class A<T>::B;
6510  // FIXME: we don't support these right now.
6511  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6512  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6513  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6514  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6515  TL.setKeywordLoc(TagLoc);
6516  TL.setQualifierRange(SS.getRange());
6517  TL.setNameLoc(NameLoc);
6518
6519  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6520                                          TSI, FriendLoc);
6521  Friend->setAccess(AS_public);
6522  Friend->setUnsupportedFriend(true);
6523  CurContext->addDecl(Friend);
6524  return Friend;
6525}
6526
6527
6528/// Handle a friend type declaration.  This works in tandem with
6529/// ActOnTag.
6530///
6531/// Notes on friend class templates:
6532///
6533/// We generally treat friend class declarations as if they were
6534/// declaring a class.  So, for example, the elaborated type specifier
6535/// in a friend declaration is required to obey the restrictions of a
6536/// class-head (i.e. no typedefs in the scope chain), template
6537/// parameters are required to match up with simple template-ids, &c.
6538/// However, unlike when declaring a template specialization, it's
6539/// okay to refer to a template specialization without an empty
6540/// template parameter declaration, e.g.
6541///   friend class A<T>::B<unsigned>;
6542/// We permit this as a special case; if there are any template
6543/// parameters present at all, require proper matching, i.e.
6544///   template <> template <class T> friend class A<int>::B;
6545Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6546                                MultiTemplateParamsArg TempParams) {
6547  SourceLocation Loc = DS.getSourceRange().getBegin();
6548
6549  assert(DS.isFriendSpecified());
6550  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6551
6552  // Try to convert the decl specifier to a type.  This works for
6553  // friend templates because ActOnTag never produces a ClassTemplateDecl
6554  // for a TUK_Friend.
6555  Declarator TheDeclarator(DS, Declarator::MemberContext);
6556  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6557  QualType T = TSI->getType();
6558  if (TheDeclarator.isInvalidType())
6559    return 0;
6560
6561  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6562    return 0;
6563
6564  // This is definitely an error in C++98.  It's probably meant to
6565  // be forbidden in C++0x, too, but the specification is just
6566  // poorly written.
6567  //
6568  // The problem is with declarations like the following:
6569  //   template <T> friend A<T>::foo;
6570  // where deciding whether a class C is a friend or not now hinges
6571  // on whether there exists an instantiation of A that causes
6572  // 'foo' to equal C.  There are restrictions on class-heads
6573  // (which we declare (by fiat) elaborated friend declarations to
6574  // be) that makes this tractable.
6575  //
6576  // FIXME: handle "template <> friend class A<T>;", which
6577  // is possibly well-formed?  Who even knows?
6578  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6579    Diag(Loc, diag::err_tagless_friend_type_template)
6580      << DS.getSourceRange();
6581    return 0;
6582  }
6583
6584  // C++98 [class.friend]p1: A friend of a class is a function
6585  //   or class that is not a member of the class . . .
6586  // This is fixed in DR77, which just barely didn't make the C++03
6587  // deadline.  It's also a very silly restriction that seriously
6588  // affects inner classes and which nobody else seems to implement;
6589  // thus we never diagnose it, not even in -pedantic.
6590  //
6591  // But note that we could warn about it: it's always useless to
6592  // friend one of your own members (it's not, however, worthless to
6593  // friend a member of an arbitrary specialization of your template).
6594
6595  Decl *D;
6596  if (unsigned NumTempParamLists = TempParams.size())
6597    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6598                                   NumTempParamLists,
6599                                   TempParams.release(),
6600                                   TSI,
6601                                   DS.getFriendSpecLoc());
6602  else
6603    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6604
6605  if (!D)
6606    return 0;
6607
6608  D->setAccess(AS_public);
6609  CurContext->addDecl(D);
6610
6611  return D;
6612}
6613
6614Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6615                                    MultiTemplateParamsArg TemplateParams) {
6616  const DeclSpec &DS = D.getDeclSpec();
6617
6618  assert(DS.isFriendSpecified());
6619  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6620
6621  SourceLocation Loc = D.getIdentifierLoc();
6622  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6623  QualType T = TInfo->getType();
6624
6625  // C++ [class.friend]p1
6626  //   A friend of a class is a function or class....
6627  // Note that this sees through typedefs, which is intended.
6628  // It *doesn't* see through dependent types, which is correct
6629  // according to [temp.arg.type]p3:
6630  //   If a declaration acquires a function type through a
6631  //   type dependent on a template-parameter and this causes
6632  //   a declaration that does not use the syntactic form of a
6633  //   function declarator to have a function type, the program
6634  //   is ill-formed.
6635  if (!T->isFunctionType()) {
6636    Diag(Loc, diag::err_unexpected_friend);
6637
6638    // It might be worthwhile to try to recover by creating an
6639    // appropriate declaration.
6640    return 0;
6641  }
6642
6643  // C++ [namespace.memdef]p3
6644  //  - If a friend declaration in a non-local class first declares a
6645  //    class or function, the friend class or function is a member
6646  //    of the innermost enclosing namespace.
6647  //  - The name of the friend is not found by simple name lookup
6648  //    until a matching declaration is provided in that namespace
6649  //    scope (either before or after the class declaration granting
6650  //    friendship).
6651  //  - If a friend function is called, its name may be found by the
6652  //    name lookup that considers functions from namespaces and
6653  //    classes associated with the types of the function arguments.
6654  //  - When looking for a prior declaration of a class or a function
6655  //    declared as a friend, scopes outside the innermost enclosing
6656  //    namespace scope are not considered.
6657
6658  CXXScopeSpec &SS = D.getCXXScopeSpec();
6659  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6660  DeclarationName Name = NameInfo.getName();
6661  assert(Name);
6662
6663  // Check for unexpanded parameter packs.
6664  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6665      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6666      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6667    return 0;
6668
6669  // The context we found the declaration in, or in which we should
6670  // create the declaration.
6671  DeclContext *DC;
6672  Scope *DCScope = S;
6673  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6674                        ForRedeclaration);
6675
6676  // FIXME: there are different rules in local classes
6677
6678  // There are four cases here.
6679  //   - There's no scope specifier, in which case we just go to the
6680  //     appropriate scope and look for a function or function template
6681  //     there as appropriate.
6682  // Recover from invalid scope qualifiers as if they just weren't there.
6683  if (SS.isInvalid() || !SS.isSet()) {
6684    // C++0x [namespace.memdef]p3:
6685    //   If the name in a friend declaration is neither qualified nor
6686    //   a template-id and the declaration is a function or an
6687    //   elaborated-type-specifier, the lookup to determine whether
6688    //   the entity has been previously declared shall not consider
6689    //   any scopes outside the innermost enclosing namespace.
6690    // C++0x [class.friend]p11:
6691    //   If a friend declaration appears in a local class and the name
6692    //   specified is an unqualified name, a prior declaration is
6693    //   looked up without considering scopes that are outside the
6694    //   innermost enclosing non-class scope. For a friend function
6695    //   declaration, if there is no prior declaration, the program is
6696    //   ill-formed.
6697    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6698    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6699
6700    // Find the appropriate context according to the above.
6701    DC = CurContext;
6702    while (true) {
6703      // Skip class contexts.  If someone can cite chapter and verse
6704      // for this behavior, that would be nice --- it's what GCC and
6705      // EDG do, and it seems like a reasonable intent, but the spec
6706      // really only says that checks for unqualified existing
6707      // declarations should stop at the nearest enclosing namespace,
6708      // not that they should only consider the nearest enclosing
6709      // namespace.
6710      while (DC->isRecord())
6711        DC = DC->getParent();
6712
6713      LookupQualifiedName(Previous, DC);
6714
6715      // TODO: decide what we think about using declarations.
6716      if (isLocal || !Previous.empty())
6717        break;
6718
6719      if (isTemplateId) {
6720        if (isa<TranslationUnitDecl>(DC)) break;
6721      } else {
6722        if (DC->isFileContext()) break;
6723      }
6724      DC = DC->getParent();
6725    }
6726
6727    // C++ [class.friend]p1: A friend of a class is a function or
6728    //   class that is not a member of the class . . .
6729    // C++0x changes this for both friend types and functions.
6730    // Most C++ 98 compilers do seem to give an error here, so
6731    // we do, too.
6732    if (!Previous.empty() && DC->Equals(CurContext)
6733        && !getLangOptions().CPlusPlus0x)
6734      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6735
6736    DCScope = getScopeForDeclContext(S, DC);
6737
6738  //   - There's a non-dependent scope specifier, in which case we
6739  //     compute it and do a previous lookup there for a function
6740  //     or function template.
6741  } else if (!SS.getScopeRep()->isDependent()) {
6742    DC = computeDeclContext(SS);
6743    if (!DC) return 0;
6744
6745    if (RequireCompleteDeclContext(SS, DC)) return 0;
6746
6747    LookupQualifiedName(Previous, DC);
6748
6749    // Ignore things found implicitly in the wrong scope.
6750    // TODO: better diagnostics for this case.  Suggesting the right
6751    // qualified scope would be nice...
6752    LookupResult::Filter F = Previous.makeFilter();
6753    while (F.hasNext()) {
6754      NamedDecl *D = F.next();
6755      if (!DC->InEnclosingNamespaceSetOf(
6756              D->getDeclContext()->getRedeclContext()))
6757        F.erase();
6758    }
6759    F.done();
6760
6761    if (Previous.empty()) {
6762      D.setInvalidType();
6763      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6764      return 0;
6765    }
6766
6767    // C++ [class.friend]p1: A friend of a class is a function or
6768    //   class that is not a member of the class . . .
6769    if (DC->Equals(CurContext))
6770      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6771
6772  //   - There's a scope specifier that does not match any template
6773  //     parameter lists, in which case we use some arbitrary context,
6774  //     create a method or method template, and wait for instantiation.
6775  //   - There's a scope specifier that does match some template
6776  //     parameter lists, which we don't handle right now.
6777  } else {
6778    DC = CurContext;
6779    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6780  }
6781
6782  if (!DC->isRecord()) {
6783    // This implies that it has to be an operator or function.
6784    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6785        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6786        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6787      Diag(Loc, diag::err_introducing_special_friend) <<
6788        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6789         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6790      return 0;
6791    }
6792  }
6793
6794  bool Redeclaration = false;
6795  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6796                                          move(TemplateParams),
6797                                          IsDefinition,
6798                                          Redeclaration);
6799  if (!ND) return 0;
6800
6801  assert(ND->getDeclContext() == DC);
6802  assert(ND->getLexicalDeclContext() == CurContext);
6803
6804  // Add the function declaration to the appropriate lookup tables,
6805  // adjusting the redeclarations list as necessary.  We don't
6806  // want to do this yet if the friending class is dependent.
6807  //
6808  // Also update the scope-based lookup if the target context's
6809  // lookup context is in lexical scope.
6810  if (!CurContext->isDependentContext()) {
6811    DC = DC->getRedeclContext();
6812    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6813    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6814      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6815  }
6816
6817  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6818                                       D.getIdentifierLoc(), ND,
6819                                       DS.getFriendSpecLoc());
6820  FrD->setAccess(AS_public);
6821  CurContext->addDecl(FrD);
6822
6823  if (ND->isInvalidDecl())
6824    FrD->setInvalidDecl();
6825  else {
6826    FunctionDecl *FD;
6827    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6828      FD = FTD->getTemplatedDecl();
6829    else
6830      FD = cast<FunctionDecl>(ND);
6831
6832    // Mark templated-scope function declarations as unsupported.
6833    if (FD->getNumTemplateParameterLists())
6834      FrD->setUnsupportedFriend(true);
6835  }
6836
6837  return ND;
6838}
6839
6840void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6841  AdjustDeclIfTemplate(Dcl);
6842
6843  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6844  if (!Fn) {
6845    Diag(DelLoc, diag::err_deleted_non_function);
6846    return;
6847  }
6848  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6849    Diag(DelLoc, diag::err_deleted_decl_not_first);
6850    Diag(Prev->getLocation(), diag::note_previous_declaration);
6851    // If the declaration wasn't the first, we delete the function anyway for
6852    // recovery.
6853  }
6854  Fn->setDeleted();
6855}
6856
6857static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6858  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6859       ++CI) {
6860    Stmt *SubStmt = *CI;
6861    if (!SubStmt)
6862      continue;
6863    if (isa<ReturnStmt>(SubStmt))
6864      Self.Diag(SubStmt->getSourceRange().getBegin(),
6865           diag::err_return_in_constructor_handler);
6866    if (!isa<Expr>(SubStmt))
6867      SearchForReturnInStmt(Self, SubStmt);
6868  }
6869}
6870
6871void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6872  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6873    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6874    SearchForReturnInStmt(*this, Handler);
6875  }
6876}
6877
6878bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6879                                             const CXXMethodDecl *Old) {
6880  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6881  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6882
6883  if (Context.hasSameType(NewTy, OldTy) ||
6884      NewTy->isDependentType() || OldTy->isDependentType())
6885    return false;
6886
6887  // Check if the return types are covariant
6888  QualType NewClassTy, OldClassTy;
6889
6890  /// Both types must be pointers or references to classes.
6891  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6892    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6893      NewClassTy = NewPT->getPointeeType();
6894      OldClassTy = OldPT->getPointeeType();
6895    }
6896  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6897    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6898      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6899        NewClassTy = NewRT->getPointeeType();
6900        OldClassTy = OldRT->getPointeeType();
6901      }
6902    }
6903  }
6904
6905  // The return types aren't either both pointers or references to a class type.
6906  if (NewClassTy.isNull()) {
6907    Diag(New->getLocation(),
6908         diag::err_different_return_type_for_overriding_virtual_function)
6909      << New->getDeclName() << NewTy << OldTy;
6910    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6911
6912    return true;
6913  }
6914
6915  // C++ [class.virtual]p6:
6916  //   If the return type of D::f differs from the return type of B::f, the
6917  //   class type in the return type of D::f shall be complete at the point of
6918  //   declaration of D::f or shall be the class type D.
6919  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6920    if (!RT->isBeingDefined() &&
6921        RequireCompleteType(New->getLocation(), NewClassTy,
6922                            PDiag(diag::err_covariant_return_incomplete)
6923                              << New->getDeclName()))
6924    return true;
6925  }
6926
6927  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6928    // Check if the new class derives from the old class.
6929    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6930      Diag(New->getLocation(),
6931           diag::err_covariant_return_not_derived)
6932      << New->getDeclName() << NewTy << OldTy;
6933      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6934      return true;
6935    }
6936
6937    // Check if we the conversion from derived to base is valid.
6938    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6939                    diag::err_covariant_return_inaccessible_base,
6940                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6941                    // FIXME: Should this point to the return type?
6942                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6943      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6944      return true;
6945    }
6946  }
6947
6948  // The qualifiers of the return types must be the same.
6949  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6950    Diag(New->getLocation(),
6951         diag::err_covariant_return_type_different_qualifications)
6952    << New->getDeclName() << NewTy << OldTy;
6953    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6954    return true;
6955  };
6956
6957
6958  // The new class type must have the same or less qualifiers as the old type.
6959  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6960    Diag(New->getLocation(),
6961         diag::err_covariant_return_type_class_type_more_qualified)
6962    << New->getDeclName() << NewTy << OldTy;
6963    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6964    return true;
6965  };
6966
6967  return false;
6968}
6969
6970/// \brief Mark the given method pure.
6971///
6972/// \param Method the method to be marked pure.
6973///
6974/// \param InitRange the source range that covers the "0" initializer.
6975bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6976  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6977    Method->setPure();
6978    return false;
6979  }
6980
6981  if (!Method->isInvalidDecl())
6982    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6983      << Method->getDeclName() << InitRange;
6984  return true;
6985}
6986
6987/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6988/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6989/// is a fresh scope pushed for just this purpose.
6990///
6991/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6992/// static data member of class X, names should be looked up in the scope of
6993/// class X.
6994void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6995  // If there is no declaration, there was an error parsing it.
6996  if (D == 0) return;
6997
6998  // We should only get called for declarations with scope specifiers, like:
6999  //   int foo::bar;
7000  assert(D->isOutOfLine());
7001  EnterDeclaratorContext(S, D->getDeclContext());
7002}
7003
7004/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7005/// initializer for the out-of-line declaration 'D'.
7006void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7007  // If there is no declaration, there was an error parsing it.
7008  if (D == 0) return;
7009
7010  assert(D->isOutOfLine());
7011  ExitDeclaratorContext(S);
7012}
7013
7014/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7015/// C++ if/switch/while/for statement.
7016/// e.g: "if (int x = f()) {...}"
7017DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7018  // C++ 6.4p2:
7019  // The declarator shall not specify a function or an array.
7020  // The type-specifier-seq shall not contain typedef and shall not declare a
7021  // new class or enumeration.
7022  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7023         "Parser allowed 'typedef' as storage class of condition decl.");
7024
7025  TagDecl *OwnedTag = 0;
7026  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7027  QualType Ty = TInfo->getType();
7028
7029  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7030                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7031                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7032    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7033      << D.getSourceRange();
7034    return DeclResult();
7035  } else if (OwnedTag && OwnedTag->isDefinition()) {
7036    // The type-specifier-seq shall not declare a new class or enumeration.
7037    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7038  }
7039
7040  Decl *Dcl = ActOnDeclarator(S, D);
7041  if (!Dcl)
7042    return DeclResult();
7043
7044  return Dcl;
7045}
7046
7047void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7048                          bool DefinitionRequired) {
7049  // Ignore any vtable uses in unevaluated operands or for classes that do
7050  // not have a vtable.
7051  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7052      CurContext->isDependentContext() ||
7053      ExprEvalContexts.back().Context == Unevaluated)
7054    return;
7055
7056  // Try to insert this class into the map.
7057  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7058  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7059    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7060  if (!Pos.second) {
7061    // If we already had an entry, check to see if we are promoting this vtable
7062    // to required a definition. If so, we need to reappend to the VTableUses
7063    // list, since we may have already processed the first entry.
7064    if (DefinitionRequired && !Pos.first->second) {
7065      Pos.first->second = true;
7066    } else {
7067      // Otherwise, we can early exit.
7068      return;
7069    }
7070  }
7071
7072  // Local classes need to have their virtual members marked
7073  // immediately. For all other classes, we mark their virtual members
7074  // at the end of the translation unit.
7075  if (Class->isLocalClass())
7076    MarkVirtualMembersReferenced(Loc, Class);
7077  else
7078    VTableUses.push_back(std::make_pair(Class, Loc));
7079}
7080
7081bool Sema::DefineUsedVTables() {
7082  if (VTableUses.empty())
7083    return false;
7084
7085  // Note: The VTableUses vector could grow as a result of marking
7086  // the members of a class as "used", so we check the size each
7087  // time through the loop and prefer indices (with are stable) to
7088  // iterators (which are not).
7089  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7090    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7091    if (!Class)
7092      continue;
7093
7094    SourceLocation Loc = VTableUses[I].second;
7095
7096    // If this class has a key function, but that key function is
7097    // defined in another translation unit, we don't need to emit the
7098    // vtable even though we're using it.
7099    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7100    if (KeyFunction && !KeyFunction->hasBody()) {
7101      switch (KeyFunction->getTemplateSpecializationKind()) {
7102      case TSK_Undeclared:
7103      case TSK_ExplicitSpecialization:
7104      case TSK_ExplicitInstantiationDeclaration:
7105        // The key function is in another translation unit.
7106        continue;
7107
7108      case TSK_ExplicitInstantiationDefinition:
7109      case TSK_ImplicitInstantiation:
7110        // We will be instantiating the key function.
7111        break;
7112      }
7113    } else if (!KeyFunction) {
7114      // If we have a class with no key function that is the subject
7115      // of an explicit instantiation declaration, suppress the
7116      // vtable; it will live with the explicit instantiation
7117      // definition.
7118      bool IsExplicitInstantiationDeclaration
7119        = Class->getTemplateSpecializationKind()
7120                                      == TSK_ExplicitInstantiationDeclaration;
7121      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7122                                 REnd = Class->redecls_end();
7123           R != REnd; ++R) {
7124        TemplateSpecializationKind TSK
7125          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7126        if (TSK == TSK_ExplicitInstantiationDeclaration)
7127          IsExplicitInstantiationDeclaration = true;
7128        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7129          IsExplicitInstantiationDeclaration = false;
7130          break;
7131        }
7132      }
7133
7134      if (IsExplicitInstantiationDeclaration)
7135        continue;
7136    }
7137
7138    // Mark all of the virtual members of this class as referenced, so
7139    // that we can build a vtable. Then, tell the AST consumer that a
7140    // vtable for this class is required.
7141    MarkVirtualMembersReferenced(Loc, Class);
7142    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7143    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7144
7145    // Optionally warn if we're emitting a weak vtable.
7146    if (Class->getLinkage() == ExternalLinkage &&
7147        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7148      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7149        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7150    }
7151  }
7152  VTableUses.clear();
7153
7154  return true;
7155}
7156
7157void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7158                                        const CXXRecordDecl *RD) {
7159  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7160       e = RD->method_end(); i != e; ++i) {
7161    CXXMethodDecl *MD = *i;
7162
7163    // C++ [basic.def.odr]p2:
7164    //   [...] A virtual member function is used if it is not pure. [...]
7165    if (MD->isVirtual() && !MD->isPure())
7166      MarkDeclarationReferenced(Loc, MD);
7167  }
7168
7169  // Only classes that have virtual bases need a VTT.
7170  if (RD->getNumVBases() == 0)
7171    return;
7172
7173  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7174           e = RD->bases_end(); i != e; ++i) {
7175    const CXXRecordDecl *Base =
7176        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7177    if (Base->getNumVBases() == 0)
7178      continue;
7179    MarkVirtualMembersReferenced(Loc, Base);
7180  }
7181}
7182
7183/// SetIvarInitializers - This routine builds initialization ASTs for the
7184/// Objective-C implementation whose ivars need be initialized.
7185void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7186  if (!getLangOptions().CPlusPlus)
7187    return;
7188  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7189    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7190    CollectIvarsToConstructOrDestruct(OID, ivars);
7191    if (ivars.empty())
7192      return;
7193    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7194    for (unsigned i = 0; i < ivars.size(); i++) {
7195      FieldDecl *Field = ivars[i];
7196      if (Field->isInvalidDecl())
7197        continue;
7198
7199      CXXCtorInitializer *Member;
7200      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7201      InitializationKind InitKind =
7202        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7203
7204      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7205      ExprResult MemberInit =
7206        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7207      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7208      // Note, MemberInit could actually come back empty if no initialization
7209      // is required (e.g., because it would call a trivial default constructor)
7210      if (!MemberInit.get() || MemberInit.isInvalid())
7211        continue;
7212
7213      Member =
7214        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7215                                         SourceLocation(),
7216                                         MemberInit.takeAs<Expr>(),
7217                                         SourceLocation());
7218      AllToInit.push_back(Member);
7219
7220      // Be sure that the destructor is accessible and is marked as referenced.
7221      if (const RecordType *RecordTy
7222                  = Context.getBaseElementType(Field->getType())
7223                                                        ->getAs<RecordType>()) {
7224                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7225        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7226          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7227          CheckDestructorAccess(Field->getLocation(), Destructor,
7228                            PDiag(diag::err_access_dtor_ivar)
7229                              << Context.getBaseElementType(Field->getType()));
7230        }
7231      }
7232    }
7233    ObjCImplementation->setIvarInitializers(Context,
7234                                            AllToInit.data(), AllToInit.size());
7235  }
7236}
7237