SemaDeclCXX.cpp revision aae5af24f031ad5f17872bd8b27ed5c175c0f90c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
525  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
526    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
527    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
528      << BaseType;
529    return 0;
530  }
531
532  if (BaseDecl->isInvalidDecl())
533    Class->setInvalidDecl();
534
535  // Create the base specifier.
536  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
537                                        Class->getTagKind() == TTK_Class,
538                                        Access, TInfo, EllipsisLoc);
539}
540
541/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
542/// one entry in the base class list of a class specifier, for
543/// example:
544///    class foo : public bar, virtual private baz {
545/// 'public bar' and 'virtual private baz' are each base-specifiers.
546BaseResult
547Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
548                         bool Virtual, AccessSpecifier Access,
549                         ParsedType basetype, SourceLocation BaseLoc,
550                         SourceLocation EllipsisLoc) {
551  if (!classdecl)
552    return true;
553
554  AdjustDeclIfTemplate(classdecl);
555  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
556  if (!Class)
557    return true;
558
559  TypeSourceInfo *TInfo = 0;
560  GetTypeFromParser(basetype, &TInfo);
561
562  if (EllipsisLoc.isInvalid() &&
563      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
564                                      UPPC_BaseType))
565    return true;
566
567  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
568                                                      Virtual, Access, TInfo,
569                                                      EllipsisLoc))
570    return BaseSpec;
571
572  return true;
573}
574
575/// \brief Performs the actual work of attaching the given base class
576/// specifiers to a C++ class.
577bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
578                                unsigned NumBases) {
579 if (NumBases == 0)
580    return false;
581
582  // Used to keep track of which base types we have already seen, so
583  // that we can properly diagnose redundant direct base types. Note
584  // that the key is always the unqualified canonical type of the base
585  // class.
586  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
587
588  // Copy non-redundant base specifiers into permanent storage.
589  unsigned NumGoodBases = 0;
590  bool Invalid = false;
591  for (unsigned idx = 0; idx < NumBases; ++idx) {
592    QualType NewBaseType
593      = Context.getCanonicalType(Bases[idx]->getType());
594    NewBaseType = NewBaseType.getLocalUnqualifiedType();
595    if (!Class->hasObjectMember()) {
596      if (const RecordType *FDTTy =
597            NewBaseType.getTypePtr()->getAs<RecordType>())
598        if (FDTTy->getDecl()->hasObjectMember())
599          Class->setHasObjectMember(true);
600    }
601
602    if (KnownBaseTypes[NewBaseType]) {
603      // C++ [class.mi]p3:
604      //   A class shall not be specified as a direct base class of a
605      //   derived class more than once.
606      Diag(Bases[idx]->getSourceRange().getBegin(),
607           diag::err_duplicate_base_class)
608        << KnownBaseTypes[NewBaseType]->getType()
609        << Bases[idx]->getSourceRange();
610
611      // Delete the duplicate base class specifier; we're going to
612      // overwrite its pointer later.
613      Context.Deallocate(Bases[idx]);
614
615      Invalid = true;
616    } else {
617      // Okay, add this new base class.
618      KnownBaseTypes[NewBaseType] = Bases[idx];
619      Bases[NumGoodBases++] = Bases[idx];
620    }
621  }
622
623  // Attach the remaining base class specifiers to the derived class.
624  Class->setBases(Bases, NumGoodBases);
625
626  // Delete the remaining (good) base class specifiers, since their
627  // data has been copied into the CXXRecordDecl.
628  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
629    Context.Deallocate(Bases[idx]);
630
631  return Invalid;
632}
633
634/// ActOnBaseSpecifiers - Attach the given base specifiers to the
635/// class, after checking whether there are any duplicate base
636/// classes.
637void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
638                               unsigned NumBases) {
639  if (!ClassDecl || !Bases || !NumBases)
640    return;
641
642  AdjustDeclIfTemplate(ClassDecl);
643  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
644                       (CXXBaseSpecifier**)(Bases), NumBases);
645}
646
647static CXXRecordDecl *GetClassForType(QualType T) {
648  if (const RecordType *RT = T->getAs<RecordType>())
649    return cast<CXXRecordDecl>(RT->getDecl());
650  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
651    return ICT->getDecl();
652  else
653    return 0;
654}
655
656/// \brief Determine whether the type \p Derived is a C++ class that is
657/// derived from the type \p Base.
658bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
659  if (!getLangOptions().CPlusPlus)
660    return false;
661
662  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
663  if (!DerivedRD)
664    return false;
665
666  CXXRecordDecl *BaseRD = GetClassForType(Base);
667  if (!BaseRD)
668    return false;
669
670  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
671  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
672}
673
674/// \brief Determine whether the type \p Derived is a C++ class that is
675/// derived from the type \p Base.
676bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
677  if (!getLangOptions().CPlusPlus)
678    return false;
679
680  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
681  if (!DerivedRD)
682    return false;
683
684  CXXRecordDecl *BaseRD = GetClassForType(Base);
685  if (!BaseRD)
686    return false;
687
688  return DerivedRD->isDerivedFrom(BaseRD, Paths);
689}
690
691void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
692                              CXXCastPath &BasePathArray) {
693  assert(BasePathArray.empty() && "Base path array must be empty!");
694  assert(Paths.isRecordingPaths() && "Must record paths!");
695
696  const CXXBasePath &Path = Paths.front();
697
698  // We first go backward and check if we have a virtual base.
699  // FIXME: It would be better if CXXBasePath had the base specifier for
700  // the nearest virtual base.
701  unsigned Start = 0;
702  for (unsigned I = Path.size(); I != 0; --I) {
703    if (Path[I - 1].Base->isVirtual()) {
704      Start = I - 1;
705      break;
706    }
707  }
708
709  // Now add all bases.
710  for (unsigned I = Start, E = Path.size(); I != E; ++I)
711    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
712}
713
714/// \brief Determine whether the given base path includes a virtual
715/// base class.
716bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
717  for (CXXCastPath::const_iterator B = BasePath.begin(),
718                                BEnd = BasePath.end();
719       B != BEnd; ++B)
720    if ((*B)->isVirtual())
721      return true;
722
723  return false;
724}
725
726/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
727/// conversion (where Derived and Base are class types) is
728/// well-formed, meaning that the conversion is unambiguous (and
729/// that all of the base classes are accessible). Returns true
730/// and emits a diagnostic if the code is ill-formed, returns false
731/// otherwise. Loc is the location where this routine should point to
732/// if there is an error, and Range is the source range to highlight
733/// if there is an error.
734bool
735Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
736                                   unsigned InaccessibleBaseID,
737                                   unsigned AmbigiousBaseConvID,
738                                   SourceLocation Loc, SourceRange Range,
739                                   DeclarationName Name,
740                                   CXXCastPath *BasePath) {
741  // First, determine whether the path from Derived to Base is
742  // ambiguous. This is slightly more expensive than checking whether
743  // the Derived to Base conversion exists, because here we need to
744  // explore multiple paths to determine if there is an ambiguity.
745  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
746                     /*DetectVirtual=*/false);
747  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
748  assert(DerivationOkay &&
749         "Can only be used with a derived-to-base conversion");
750  (void)DerivationOkay;
751
752  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
753    if (InaccessibleBaseID) {
754      // Check that the base class can be accessed.
755      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
756                                   InaccessibleBaseID)) {
757        case AR_inaccessible:
758          return true;
759        case AR_accessible:
760        case AR_dependent:
761        case AR_delayed:
762          break;
763      }
764    }
765
766    // Build a base path if necessary.
767    if (BasePath)
768      BuildBasePathArray(Paths, *BasePath);
769    return false;
770  }
771
772  // We know that the derived-to-base conversion is ambiguous, and
773  // we're going to produce a diagnostic. Perform the derived-to-base
774  // search just one more time to compute all of the possible paths so
775  // that we can print them out. This is more expensive than any of
776  // the previous derived-to-base checks we've done, but at this point
777  // performance isn't as much of an issue.
778  Paths.clear();
779  Paths.setRecordingPaths(true);
780  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
781  assert(StillOkay && "Can only be used with a derived-to-base conversion");
782  (void)StillOkay;
783
784  // Build up a textual representation of the ambiguous paths, e.g.,
785  // D -> B -> A, that will be used to illustrate the ambiguous
786  // conversions in the diagnostic. We only print one of the paths
787  // to each base class subobject.
788  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
789
790  Diag(Loc, AmbigiousBaseConvID)
791  << Derived << Base << PathDisplayStr << Range << Name;
792  return true;
793}
794
795bool
796Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
797                                   SourceLocation Loc, SourceRange Range,
798                                   CXXCastPath *BasePath,
799                                   bool IgnoreAccess) {
800  return CheckDerivedToBaseConversion(Derived, Base,
801                                      IgnoreAccess ? 0
802                                       : diag::err_upcast_to_inaccessible_base,
803                                      diag::err_ambiguous_derived_to_base_conv,
804                                      Loc, Range, DeclarationName(),
805                                      BasePath);
806}
807
808
809/// @brief Builds a string representing ambiguous paths from a
810/// specific derived class to different subobjects of the same base
811/// class.
812///
813/// This function builds a string that can be used in error messages
814/// to show the different paths that one can take through the
815/// inheritance hierarchy to go from the derived class to different
816/// subobjects of a base class. The result looks something like this:
817/// @code
818/// struct D -> struct B -> struct A
819/// struct D -> struct C -> struct A
820/// @endcode
821std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
822  std::string PathDisplayStr;
823  std::set<unsigned> DisplayedPaths;
824  for (CXXBasePaths::paths_iterator Path = Paths.begin();
825       Path != Paths.end(); ++Path) {
826    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
827      // We haven't displayed a path to this particular base
828      // class subobject yet.
829      PathDisplayStr += "\n    ";
830      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
831      for (CXXBasePath::const_iterator Element = Path->begin();
832           Element != Path->end(); ++Element)
833        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
834    }
835  }
836
837  return PathDisplayStr;
838}
839
840//===----------------------------------------------------------------------===//
841// C++ class member Handling
842//===----------------------------------------------------------------------===//
843
844/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
845Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
846                                 SourceLocation ASLoc,
847                                 SourceLocation ColonLoc) {
848  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
849  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
850                                                  ASLoc, ColonLoc);
851  CurContext->addHiddenDecl(ASDecl);
852  return ASDecl;
853}
854
855/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
856/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
857/// bitfield width if there is one and 'InitExpr' specifies the initializer if
858/// any.
859Decl *
860Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
861                               MultiTemplateParamsArg TemplateParameterLists,
862                               ExprTy *BW, const VirtSpecifiers &VS,
863                               ExprTy *InitExpr, bool IsDefinition,
864                               bool Deleted) {
865  const DeclSpec &DS = D.getDeclSpec();
866  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
867  DeclarationName Name = NameInfo.getName();
868  SourceLocation Loc = NameInfo.getLoc();
869
870  // For anonymous bitfields, the location should point to the type.
871  if (Loc.isInvalid())
872    Loc = D.getSourceRange().getBegin();
873
874  Expr *BitWidth = static_cast<Expr*>(BW);
875  Expr *Init = static_cast<Expr*>(InitExpr);
876
877  assert(isa<CXXRecordDecl>(CurContext));
878  assert(!DS.isFriendSpecified());
879
880  bool isFunc = false;
881  if (D.isFunctionDeclarator())
882    isFunc = true;
883  else if (D.getNumTypeObjects() == 0 &&
884           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
885    QualType TDType = GetTypeFromParser(DS.getRepAsType());
886    isFunc = TDType->isFunctionType();
887  }
888
889  // C++ 9.2p6: A member shall not be declared to have automatic storage
890  // duration (auto, register) or with the extern storage-class-specifier.
891  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
892  // data members and cannot be applied to names declared const or static,
893  // and cannot be applied to reference members.
894  switch (DS.getStorageClassSpec()) {
895    case DeclSpec::SCS_unspecified:
896    case DeclSpec::SCS_typedef:
897    case DeclSpec::SCS_static:
898      // FALL THROUGH.
899      break;
900    case DeclSpec::SCS_mutable:
901      if (isFunc) {
902        if (DS.getStorageClassSpecLoc().isValid())
903          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
904        else
905          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
906
907        // FIXME: It would be nicer if the keyword was ignored only for this
908        // declarator. Otherwise we could get follow-up errors.
909        D.getMutableDeclSpec().ClearStorageClassSpecs();
910      }
911      break;
912    default:
913      if (DS.getStorageClassSpecLoc().isValid())
914        Diag(DS.getStorageClassSpecLoc(),
915             diag::err_storageclass_invalid_for_member);
916      else
917        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
918      D.getMutableDeclSpec().ClearStorageClassSpecs();
919  }
920
921  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
922                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
923                      !isFunc);
924
925  Decl *Member;
926  if (isInstField) {
927    CXXScopeSpec &SS = D.getCXXScopeSpec();
928
929
930    if (SS.isSet() && !SS.isInvalid()) {
931      // The user provided a superfluous scope specifier inside a class
932      // definition:
933      //
934      // class X {
935      //   int X::member;
936      // };
937      DeclContext *DC = 0;
938      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
939        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
940        << Name << FixItHint::CreateRemoval(SS.getRange());
941      else
942        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
943          << Name << SS.getRange();
944
945      SS.clear();
946    }
947
948    // FIXME: Check for template parameters!
949    // FIXME: Check that the name is an identifier!
950    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
951                         AS);
952    assert(Member && "HandleField never returns null");
953  } else {
954    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
955    if (!Member) {
956      return 0;
957    }
958
959    // Non-instance-fields can't have a bitfield.
960    if (BitWidth) {
961      if (Member->isInvalidDecl()) {
962        // don't emit another diagnostic.
963      } else if (isa<VarDecl>(Member)) {
964        // C++ 9.6p3: A bit-field shall not be a static member.
965        // "static member 'A' cannot be a bit-field"
966        Diag(Loc, diag::err_static_not_bitfield)
967          << Name << BitWidth->getSourceRange();
968      } else if (isa<TypedefDecl>(Member)) {
969        // "typedef member 'x' cannot be a bit-field"
970        Diag(Loc, diag::err_typedef_not_bitfield)
971          << Name << BitWidth->getSourceRange();
972      } else {
973        // A function typedef ("typedef int f(); f a;").
974        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
975        Diag(Loc, diag::err_not_integral_type_bitfield)
976          << Name << cast<ValueDecl>(Member)->getType()
977          << BitWidth->getSourceRange();
978      }
979
980      BitWidth = 0;
981      Member->setInvalidDecl();
982    }
983
984    Member->setAccess(AS);
985
986    // If we have declared a member function template, set the access of the
987    // templated declaration as well.
988    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
989      FunTmpl->getTemplatedDecl()->setAccess(AS);
990  }
991
992  if (VS.isOverrideSpecified()) {
993    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
994    if (!MD || !MD->isVirtual()) {
995      Diag(Member->getLocStart(),
996           diag::override_keyword_only_allowed_on_virtual_member_functions)
997        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
998    }
999  }
1000  if (VS.isFinalSpecified()) {
1001    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1002    if (!MD || !MD->isVirtual()) {
1003      Diag(Member->getLocStart(),
1004           diag::override_keyword_only_allowed_on_virtual_member_functions)
1005      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1006    }
1007  }
1008  assert((Name || isInstField) && "No identifier for non-field ?");
1009
1010  if (Init)
1011    AddInitializerToDecl(Member, Init, false);
1012  if (Deleted) // FIXME: Source location is not very good.
1013    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1014
1015  if (isInstField) {
1016    FieldCollector->Add(cast<FieldDecl>(Member));
1017    return 0;
1018  }
1019  return Member;
1020}
1021
1022/// \brief Find the direct and/or virtual base specifiers that
1023/// correspond to the given base type, for use in base initialization
1024/// within a constructor.
1025static bool FindBaseInitializer(Sema &SemaRef,
1026                                CXXRecordDecl *ClassDecl,
1027                                QualType BaseType,
1028                                const CXXBaseSpecifier *&DirectBaseSpec,
1029                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1030  // First, check for a direct base class.
1031  DirectBaseSpec = 0;
1032  for (CXXRecordDecl::base_class_const_iterator Base
1033         = ClassDecl->bases_begin();
1034       Base != ClassDecl->bases_end(); ++Base) {
1035    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1036      // We found a direct base of this type. That's what we're
1037      // initializing.
1038      DirectBaseSpec = &*Base;
1039      break;
1040    }
1041  }
1042
1043  // Check for a virtual base class.
1044  // FIXME: We might be able to short-circuit this if we know in advance that
1045  // there are no virtual bases.
1046  VirtualBaseSpec = 0;
1047  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1048    // We haven't found a base yet; search the class hierarchy for a
1049    // virtual base class.
1050    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1051                       /*DetectVirtual=*/false);
1052    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1053                              BaseType, Paths)) {
1054      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1055           Path != Paths.end(); ++Path) {
1056        if (Path->back().Base->isVirtual()) {
1057          VirtualBaseSpec = Path->back().Base;
1058          break;
1059        }
1060      }
1061    }
1062  }
1063
1064  return DirectBaseSpec || VirtualBaseSpec;
1065}
1066
1067/// ActOnMemInitializer - Handle a C++ member initializer.
1068MemInitResult
1069Sema::ActOnMemInitializer(Decl *ConstructorD,
1070                          Scope *S,
1071                          CXXScopeSpec &SS,
1072                          IdentifierInfo *MemberOrBase,
1073                          ParsedType TemplateTypeTy,
1074                          SourceLocation IdLoc,
1075                          SourceLocation LParenLoc,
1076                          ExprTy **Args, unsigned NumArgs,
1077                          SourceLocation RParenLoc,
1078                          SourceLocation EllipsisLoc) {
1079  if (!ConstructorD)
1080    return true;
1081
1082  AdjustDeclIfTemplate(ConstructorD);
1083
1084  CXXConstructorDecl *Constructor
1085    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1086  if (!Constructor) {
1087    // The user wrote a constructor initializer on a function that is
1088    // not a C++ constructor. Ignore the error for now, because we may
1089    // have more member initializers coming; we'll diagnose it just
1090    // once in ActOnMemInitializers.
1091    return true;
1092  }
1093
1094  CXXRecordDecl *ClassDecl = Constructor->getParent();
1095
1096  // C++ [class.base.init]p2:
1097  //   Names in a mem-initializer-id are looked up in the scope of the
1098  //   constructor's class and, if not found in that scope, are looked
1099  //   up in the scope containing the constructor's definition.
1100  //   [Note: if the constructor's class contains a member with the
1101  //   same name as a direct or virtual base class of the class, a
1102  //   mem-initializer-id naming the member or base class and composed
1103  //   of a single identifier refers to the class member. A
1104  //   mem-initializer-id for the hidden base class may be specified
1105  //   using a qualified name. ]
1106  if (!SS.getScopeRep() && !TemplateTypeTy) {
1107    // Look for a member, first.
1108    FieldDecl *Member = 0;
1109    DeclContext::lookup_result Result
1110      = ClassDecl->lookup(MemberOrBase);
1111    if (Result.first != Result.second) {
1112      Member = dyn_cast<FieldDecl>(*Result.first);
1113
1114      if (Member) {
1115        if (EllipsisLoc.isValid())
1116          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1117            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1118
1119        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1120                                    LParenLoc, RParenLoc);
1121      }
1122
1123      // Handle anonymous union case.
1124      if (IndirectFieldDecl* IndirectField
1125            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1126        if (EllipsisLoc.isValid())
1127          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1128            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1129
1130         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1131                                       NumArgs, IdLoc,
1132                                       LParenLoc, RParenLoc);
1133      }
1134    }
1135  }
1136  // It didn't name a member, so see if it names a class.
1137  QualType BaseType;
1138  TypeSourceInfo *TInfo = 0;
1139
1140  if (TemplateTypeTy) {
1141    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1142  } else {
1143    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1144    LookupParsedName(R, S, &SS);
1145
1146    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1147    if (!TyD) {
1148      if (R.isAmbiguous()) return true;
1149
1150      // We don't want access-control diagnostics here.
1151      R.suppressDiagnostics();
1152
1153      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1154        bool NotUnknownSpecialization = false;
1155        DeclContext *DC = computeDeclContext(SS, false);
1156        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1157          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1158
1159        if (!NotUnknownSpecialization) {
1160          // When the scope specifier can refer to a member of an unknown
1161          // specialization, we take it as a type name.
1162          BaseType = CheckTypenameType(ETK_None,
1163                                       (NestedNameSpecifier *)SS.getScopeRep(),
1164                                       *MemberOrBase, SourceLocation(),
1165                                       SS.getRange(), IdLoc);
1166          if (BaseType.isNull())
1167            return true;
1168
1169          R.clear();
1170          R.setLookupName(MemberOrBase);
1171        }
1172      }
1173
1174      // If no results were found, try to correct typos.
1175      if (R.empty() && BaseType.isNull() &&
1176          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1177          R.isSingleResult()) {
1178        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1179          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1180            // We have found a non-static data member with a similar
1181            // name to what was typed; complain and initialize that
1182            // member.
1183            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1184              << MemberOrBase << true << R.getLookupName()
1185              << FixItHint::CreateReplacement(R.getNameLoc(),
1186                                              R.getLookupName().getAsString());
1187            Diag(Member->getLocation(), diag::note_previous_decl)
1188              << Member->getDeclName();
1189
1190            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1191                                          LParenLoc, RParenLoc);
1192          }
1193        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1194          const CXXBaseSpecifier *DirectBaseSpec;
1195          const CXXBaseSpecifier *VirtualBaseSpec;
1196          if (FindBaseInitializer(*this, ClassDecl,
1197                                  Context.getTypeDeclType(Type),
1198                                  DirectBaseSpec, VirtualBaseSpec)) {
1199            // We have found a direct or virtual base class with a
1200            // similar name to what was typed; complain and initialize
1201            // that base class.
1202            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1203              << MemberOrBase << false << R.getLookupName()
1204              << FixItHint::CreateReplacement(R.getNameLoc(),
1205                                              R.getLookupName().getAsString());
1206
1207            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1208                                                             : VirtualBaseSpec;
1209            Diag(BaseSpec->getSourceRange().getBegin(),
1210                 diag::note_base_class_specified_here)
1211              << BaseSpec->getType()
1212              << BaseSpec->getSourceRange();
1213
1214            TyD = Type;
1215          }
1216        }
1217      }
1218
1219      if (!TyD && BaseType.isNull()) {
1220        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1221          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1222        return true;
1223      }
1224    }
1225
1226    if (BaseType.isNull()) {
1227      BaseType = Context.getTypeDeclType(TyD);
1228      if (SS.isSet()) {
1229        NestedNameSpecifier *Qualifier =
1230          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1231
1232        // FIXME: preserve source range information
1233        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1234      }
1235    }
1236  }
1237
1238  if (!TInfo)
1239    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1240
1241  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1242                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1243}
1244
1245/// Checks an initializer expression for use of uninitialized fields, such as
1246/// containing the field that is being initialized. Returns true if there is an
1247/// uninitialized field was used an updates the SourceLocation parameter; false
1248/// otherwise.
1249static bool InitExprContainsUninitializedFields(const Stmt *S,
1250                                                const ValueDecl *LhsField,
1251                                                SourceLocation *L) {
1252  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1253
1254  if (isa<CallExpr>(S)) {
1255    // Do not descend into function calls or constructors, as the use
1256    // of an uninitialized field may be valid. One would have to inspect
1257    // the contents of the function/ctor to determine if it is safe or not.
1258    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1259    // may be safe, depending on what the function/ctor does.
1260    return false;
1261  }
1262  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1263    const NamedDecl *RhsField = ME->getMemberDecl();
1264
1265    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1266      // The member expression points to a static data member.
1267      assert(VD->isStaticDataMember() &&
1268             "Member points to non-static data member!");
1269      (void)VD;
1270      return false;
1271    }
1272
1273    if (isa<EnumConstantDecl>(RhsField)) {
1274      // The member expression points to an enum.
1275      return false;
1276    }
1277
1278    if (RhsField == LhsField) {
1279      // Initializing a field with itself. Throw a warning.
1280      // But wait; there are exceptions!
1281      // Exception #1:  The field may not belong to this record.
1282      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1283      const Expr *base = ME->getBase();
1284      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1285        // Even though the field matches, it does not belong to this record.
1286        return false;
1287      }
1288      // None of the exceptions triggered; return true to indicate an
1289      // uninitialized field was used.
1290      *L = ME->getMemberLoc();
1291      return true;
1292    }
1293  } else if (isa<SizeOfAlignOfExpr>(S)) {
1294    // sizeof/alignof doesn't reference contents, do not warn.
1295    return false;
1296  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1297    // address-of doesn't reference contents (the pointer may be dereferenced
1298    // in the same expression but it would be rare; and weird).
1299    if (UOE->getOpcode() == UO_AddrOf)
1300      return false;
1301  }
1302  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1303       it != e; ++it) {
1304    if (!*it) {
1305      // An expression such as 'member(arg ?: "")' may trigger this.
1306      continue;
1307    }
1308    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1309      return true;
1310  }
1311  return false;
1312}
1313
1314MemInitResult
1315Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1316                             unsigned NumArgs, SourceLocation IdLoc,
1317                             SourceLocation LParenLoc,
1318                             SourceLocation RParenLoc) {
1319  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1320  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1321  assert((DirectMember || IndirectMember) &&
1322         "Member must be a FieldDecl or IndirectFieldDecl");
1323
1324  if (Member->isInvalidDecl())
1325    return true;
1326
1327  // Diagnose value-uses of fields to initialize themselves, e.g.
1328  //   foo(foo)
1329  // where foo is not also a parameter to the constructor.
1330  // TODO: implement -Wuninitialized and fold this into that framework.
1331  for (unsigned i = 0; i < NumArgs; ++i) {
1332    SourceLocation L;
1333    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1334      // FIXME: Return true in the case when other fields are used before being
1335      // uninitialized. For example, let this field be the i'th field. When
1336      // initializing the i'th field, throw a warning if any of the >= i'th
1337      // fields are used, as they are not yet initialized.
1338      // Right now we are only handling the case where the i'th field uses
1339      // itself in its initializer.
1340      Diag(L, diag::warn_field_is_uninit);
1341    }
1342  }
1343
1344  bool HasDependentArg = false;
1345  for (unsigned i = 0; i < NumArgs; i++)
1346    HasDependentArg |= Args[i]->isTypeDependent();
1347
1348  Expr *Init;
1349  if (Member->getType()->isDependentType() || HasDependentArg) {
1350    // Can't check initialization for a member of dependent type or when
1351    // any of the arguments are type-dependent expressions.
1352    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1353                                       RParenLoc);
1354
1355    // Erase any temporaries within this evaluation context; we're not
1356    // going to track them in the AST, since we'll be rebuilding the
1357    // ASTs during template instantiation.
1358    ExprTemporaries.erase(
1359              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1360                          ExprTemporaries.end());
1361  } else {
1362    // Initialize the member.
1363    InitializedEntity MemberEntity =
1364      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1365                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1366    InitializationKind Kind =
1367      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1368
1369    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1370
1371    ExprResult MemberInit =
1372      InitSeq.Perform(*this, MemberEntity, Kind,
1373                      MultiExprArg(*this, Args, NumArgs), 0);
1374    if (MemberInit.isInvalid())
1375      return true;
1376
1377    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1378
1379    // C++0x [class.base.init]p7:
1380    //   The initialization of each base and member constitutes a
1381    //   full-expression.
1382    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1383    if (MemberInit.isInvalid())
1384      return true;
1385
1386    // If we are in a dependent context, template instantiation will
1387    // perform this type-checking again. Just save the arguments that we
1388    // received in a ParenListExpr.
1389    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1390    // of the information that we have about the member
1391    // initializer. However, deconstructing the ASTs is a dicey process,
1392    // and this approach is far more likely to get the corner cases right.
1393    if (CurContext->isDependentContext())
1394      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1395                                               RParenLoc);
1396    else
1397      Init = MemberInit.get();
1398  }
1399
1400  if (DirectMember) {
1401    return new (Context) CXXCtorInitializer(Context, DirectMember,
1402                                                    IdLoc, LParenLoc, Init,
1403                                                    RParenLoc);
1404  } else {
1405    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1406                                                    IdLoc, LParenLoc, Init,
1407                                                    RParenLoc);
1408  }
1409}
1410
1411MemInitResult
1412Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1413                                 Expr **Args, unsigned NumArgs,
1414                                 SourceLocation LParenLoc,
1415                                 SourceLocation RParenLoc,
1416                                 CXXRecordDecl *ClassDecl,
1417                                 SourceLocation EllipsisLoc) {
1418  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1419  if (!LangOpts.CPlusPlus0x)
1420    return Diag(Loc, diag::err_delegation_0x_only)
1421      << TInfo->getTypeLoc().getLocalSourceRange();
1422
1423  return Diag(Loc, diag::err_delegation_unimplemented)
1424    << TInfo->getTypeLoc().getLocalSourceRange();
1425}
1426
1427MemInitResult
1428Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1429                           Expr **Args, unsigned NumArgs,
1430                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1431                           CXXRecordDecl *ClassDecl,
1432                           SourceLocation EllipsisLoc) {
1433  bool HasDependentArg = false;
1434  for (unsigned i = 0; i < NumArgs; i++)
1435    HasDependentArg |= Args[i]->isTypeDependent();
1436
1437  SourceLocation BaseLoc
1438    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1439
1440  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1441    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1442             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1443
1444  // C++ [class.base.init]p2:
1445  //   [...] Unless the mem-initializer-id names a nonstatic data
1446  //   member of the constructor's class or a direct or virtual base
1447  //   of that class, the mem-initializer is ill-formed. A
1448  //   mem-initializer-list can initialize a base class using any
1449  //   name that denotes that base class type.
1450  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1451
1452  if (EllipsisLoc.isValid()) {
1453    // This is a pack expansion.
1454    if (!BaseType->containsUnexpandedParameterPack())  {
1455      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1456        << SourceRange(BaseLoc, RParenLoc);
1457
1458      EllipsisLoc = SourceLocation();
1459    }
1460  } else {
1461    // Check for any unexpanded parameter packs.
1462    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1463      return true;
1464
1465    for (unsigned I = 0; I != NumArgs; ++I)
1466      if (DiagnoseUnexpandedParameterPack(Args[I]))
1467        return true;
1468  }
1469
1470  // Check for direct and virtual base classes.
1471  const CXXBaseSpecifier *DirectBaseSpec = 0;
1472  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1473  if (!Dependent) {
1474    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1475                                       BaseType))
1476      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1477                                        LParenLoc, RParenLoc, ClassDecl,
1478                                        EllipsisLoc);
1479
1480    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1481                        VirtualBaseSpec);
1482
1483    // C++ [base.class.init]p2:
1484    // Unless the mem-initializer-id names a nonstatic data member of the
1485    // constructor's class or a direct or virtual base of that class, the
1486    // mem-initializer is ill-formed.
1487    if (!DirectBaseSpec && !VirtualBaseSpec) {
1488      // If the class has any dependent bases, then it's possible that
1489      // one of those types will resolve to the same type as
1490      // BaseType. Therefore, just treat this as a dependent base
1491      // class initialization.  FIXME: Should we try to check the
1492      // initialization anyway? It seems odd.
1493      if (ClassDecl->hasAnyDependentBases())
1494        Dependent = true;
1495      else
1496        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1497          << BaseType << Context.getTypeDeclType(ClassDecl)
1498          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1499    }
1500  }
1501
1502  if (Dependent) {
1503    // Can't check initialization for a base of dependent type or when
1504    // any of the arguments are type-dependent expressions.
1505    ExprResult BaseInit
1506      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1507                                          RParenLoc));
1508
1509    // Erase any temporaries within this evaluation context; we're not
1510    // going to track them in the AST, since we'll be rebuilding the
1511    // ASTs during template instantiation.
1512    ExprTemporaries.erase(
1513              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1514                          ExprTemporaries.end());
1515
1516    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1517                                                    /*IsVirtual=*/false,
1518                                                    LParenLoc,
1519                                                    BaseInit.takeAs<Expr>(),
1520                                                    RParenLoc,
1521                                                    EllipsisLoc);
1522  }
1523
1524  // C++ [base.class.init]p2:
1525  //   If a mem-initializer-id is ambiguous because it designates both
1526  //   a direct non-virtual base class and an inherited virtual base
1527  //   class, the mem-initializer is ill-formed.
1528  if (DirectBaseSpec && VirtualBaseSpec)
1529    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1530      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1531
1532  CXXBaseSpecifier *BaseSpec
1533    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1534  if (!BaseSpec)
1535    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1536
1537  // Initialize the base.
1538  InitializedEntity BaseEntity =
1539    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1540  InitializationKind Kind =
1541    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1542
1543  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1544
1545  ExprResult BaseInit =
1546    InitSeq.Perform(*this, BaseEntity, Kind,
1547                    MultiExprArg(*this, Args, NumArgs), 0);
1548  if (BaseInit.isInvalid())
1549    return true;
1550
1551  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1552
1553  // C++0x [class.base.init]p7:
1554  //   The initialization of each base and member constitutes a
1555  //   full-expression.
1556  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1557  if (BaseInit.isInvalid())
1558    return true;
1559
1560  // If we are in a dependent context, template instantiation will
1561  // perform this type-checking again. Just save the arguments that we
1562  // received in a ParenListExpr.
1563  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1564  // of the information that we have about the base
1565  // initializer. However, deconstructing the ASTs is a dicey process,
1566  // and this approach is far more likely to get the corner cases right.
1567  if (CurContext->isDependentContext()) {
1568    ExprResult Init
1569      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1570                                          RParenLoc));
1571    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1572                                                    BaseSpec->isVirtual(),
1573                                                    LParenLoc,
1574                                                    Init.takeAs<Expr>(),
1575                                                    RParenLoc,
1576                                                    EllipsisLoc);
1577  }
1578
1579  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1580                                                  BaseSpec->isVirtual(),
1581                                                  LParenLoc,
1582                                                  BaseInit.takeAs<Expr>(),
1583                                                  RParenLoc,
1584                                                  EllipsisLoc);
1585}
1586
1587/// ImplicitInitializerKind - How an implicit base or member initializer should
1588/// initialize its base or member.
1589enum ImplicitInitializerKind {
1590  IIK_Default,
1591  IIK_Copy,
1592  IIK_Move
1593};
1594
1595static bool
1596BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1597                             ImplicitInitializerKind ImplicitInitKind,
1598                             CXXBaseSpecifier *BaseSpec,
1599                             bool IsInheritedVirtualBase,
1600                             CXXCtorInitializer *&CXXBaseInit) {
1601  InitializedEntity InitEntity
1602    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1603                                        IsInheritedVirtualBase);
1604
1605  ExprResult BaseInit;
1606
1607  switch (ImplicitInitKind) {
1608  case IIK_Default: {
1609    InitializationKind InitKind
1610      = InitializationKind::CreateDefault(Constructor->getLocation());
1611    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1612    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1613                               MultiExprArg(SemaRef, 0, 0));
1614    break;
1615  }
1616
1617  case IIK_Copy: {
1618    ParmVarDecl *Param = Constructor->getParamDecl(0);
1619    QualType ParamType = Param->getType().getNonReferenceType();
1620
1621    Expr *CopyCtorArg =
1622      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1623                          Constructor->getLocation(), ParamType,
1624                          VK_LValue, 0);
1625
1626    // Cast to the base class to avoid ambiguities.
1627    QualType ArgTy =
1628      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1629                                       ParamType.getQualifiers());
1630
1631    CXXCastPath BasePath;
1632    BasePath.push_back(BaseSpec);
1633    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1634                              CK_UncheckedDerivedToBase,
1635                              VK_LValue, &BasePath);
1636
1637    InitializationKind InitKind
1638      = InitializationKind::CreateDirect(Constructor->getLocation(),
1639                                         SourceLocation(), SourceLocation());
1640    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1641                                   &CopyCtorArg, 1);
1642    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1643                               MultiExprArg(&CopyCtorArg, 1));
1644    break;
1645  }
1646
1647  case IIK_Move:
1648    assert(false && "Unhandled initializer kind!");
1649  }
1650
1651  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1652  if (BaseInit.isInvalid())
1653    return true;
1654
1655  CXXBaseInit =
1656    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1657               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1658                                                        SourceLocation()),
1659                                             BaseSpec->isVirtual(),
1660                                             SourceLocation(),
1661                                             BaseInit.takeAs<Expr>(),
1662                                             SourceLocation(),
1663                                             SourceLocation());
1664
1665  return false;
1666}
1667
1668static bool
1669BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1670                               ImplicitInitializerKind ImplicitInitKind,
1671                               FieldDecl *Field,
1672                               CXXCtorInitializer *&CXXMemberInit) {
1673  if (Field->isInvalidDecl())
1674    return true;
1675
1676  SourceLocation Loc = Constructor->getLocation();
1677
1678  if (ImplicitInitKind == IIK_Copy) {
1679    ParmVarDecl *Param = Constructor->getParamDecl(0);
1680    QualType ParamType = Param->getType().getNonReferenceType();
1681
1682    Expr *MemberExprBase =
1683      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1684                          Loc, ParamType, VK_LValue, 0);
1685
1686    // Build a reference to this field within the parameter.
1687    CXXScopeSpec SS;
1688    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1689                              Sema::LookupMemberName);
1690    MemberLookup.addDecl(Field, AS_public);
1691    MemberLookup.resolveKind();
1692    ExprResult CopyCtorArg
1693      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1694                                         ParamType, Loc,
1695                                         /*IsArrow=*/false,
1696                                         SS,
1697                                         /*FirstQualifierInScope=*/0,
1698                                         MemberLookup,
1699                                         /*TemplateArgs=*/0);
1700    if (CopyCtorArg.isInvalid())
1701      return true;
1702
1703    // When the field we are copying is an array, create index variables for
1704    // each dimension of the array. We use these index variables to subscript
1705    // the source array, and other clients (e.g., CodeGen) will perform the
1706    // necessary iteration with these index variables.
1707    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1708    QualType BaseType = Field->getType();
1709    QualType SizeType = SemaRef.Context.getSizeType();
1710    while (const ConstantArrayType *Array
1711                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1712      // Create the iteration variable for this array index.
1713      IdentifierInfo *IterationVarName = 0;
1714      {
1715        llvm::SmallString<8> Str;
1716        llvm::raw_svector_ostream OS(Str);
1717        OS << "__i" << IndexVariables.size();
1718        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1719      }
1720      VarDecl *IterationVar
1721        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1722                          IterationVarName, SizeType,
1723                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1724                          SC_None, SC_None);
1725      IndexVariables.push_back(IterationVar);
1726
1727      // Create a reference to the iteration variable.
1728      ExprResult IterationVarRef
1729        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1730      assert(!IterationVarRef.isInvalid() &&
1731             "Reference to invented variable cannot fail!");
1732
1733      // Subscript the array with this iteration variable.
1734      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1735                                                            Loc,
1736                                                        IterationVarRef.take(),
1737                                                            Loc);
1738      if (CopyCtorArg.isInvalid())
1739        return true;
1740
1741      BaseType = Array->getElementType();
1742    }
1743
1744    // Construct the entity that we will be initializing. For an array, this
1745    // will be first element in the array, which may require several levels
1746    // of array-subscript entities.
1747    llvm::SmallVector<InitializedEntity, 4> Entities;
1748    Entities.reserve(1 + IndexVariables.size());
1749    Entities.push_back(InitializedEntity::InitializeMember(Field));
1750    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1751      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1752                                                              0,
1753                                                              Entities.back()));
1754
1755    // Direct-initialize to use the copy constructor.
1756    InitializationKind InitKind =
1757      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1758
1759    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1760    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1761                                   &CopyCtorArgE, 1);
1762
1763    ExprResult MemberInit
1764      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1765                        MultiExprArg(&CopyCtorArgE, 1));
1766    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1767    if (MemberInit.isInvalid())
1768      return true;
1769
1770    CXXMemberInit
1771      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1772                                           MemberInit.takeAs<Expr>(), Loc,
1773                                           IndexVariables.data(),
1774                                           IndexVariables.size());
1775    return false;
1776  }
1777
1778  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1779
1780  QualType FieldBaseElementType =
1781    SemaRef.Context.getBaseElementType(Field->getType());
1782
1783  if (FieldBaseElementType->isRecordType()) {
1784    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1785    InitializationKind InitKind =
1786      InitializationKind::CreateDefault(Loc);
1787
1788    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1789    ExprResult MemberInit =
1790      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1791
1792    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1793    if (MemberInit.isInvalid())
1794      return true;
1795
1796    CXXMemberInit =
1797      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1798                                                       Field, Loc, Loc,
1799                                                       MemberInit.get(),
1800                                                       Loc);
1801    return false;
1802  }
1803
1804  if (FieldBaseElementType->isReferenceType()) {
1805    SemaRef.Diag(Constructor->getLocation(),
1806                 diag::err_uninitialized_member_in_ctor)
1807    << (int)Constructor->isImplicit()
1808    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1809    << 0 << Field->getDeclName();
1810    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1811    return true;
1812  }
1813
1814  if (FieldBaseElementType.isConstQualified()) {
1815    SemaRef.Diag(Constructor->getLocation(),
1816                 diag::err_uninitialized_member_in_ctor)
1817    << (int)Constructor->isImplicit()
1818    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1819    << 1 << Field->getDeclName();
1820    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1821    return true;
1822  }
1823
1824  // Nothing to initialize.
1825  CXXMemberInit = 0;
1826  return false;
1827}
1828
1829namespace {
1830struct BaseAndFieldInfo {
1831  Sema &S;
1832  CXXConstructorDecl *Ctor;
1833  bool AnyErrorsInInits;
1834  ImplicitInitializerKind IIK;
1835  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1836  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1837
1838  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1839    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1840    // FIXME: Handle implicit move constructors.
1841    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1842      IIK = IIK_Copy;
1843    else
1844      IIK = IIK_Default;
1845  }
1846};
1847}
1848
1849static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1850                                    FieldDecl *Top, FieldDecl *Field) {
1851
1852  // Overwhelmingly common case: we have a direct initializer for this field.
1853  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1854    Info.AllToInit.push_back(Init);
1855    return false;
1856  }
1857
1858  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1859    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1860    assert(FieldClassType && "anonymous struct/union without record type");
1861    CXXRecordDecl *FieldClassDecl
1862      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1863
1864    // Even though union members never have non-trivial default
1865    // constructions in C++03, we still build member initializers for aggregate
1866    // record types which can be union members, and C++0x allows non-trivial
1867    // default constructors for union members, so we ensure that only one
1868    // member is initialized for these.
1869    if (FieldClassDecl->isUnion()) {
1870      // First check for an explicit initializer for one field.
1871      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1872           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1873        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1874          Info.AllToInit.push_back(Init);
1875
1876          // Once we've initialized a field of an anonymous union, the union
1877          // field in the class is also initialized, so exit immediately.
1878          return false;
1879        } else if ((*FA)->isAnonymousStructOrUnion()) {
1880          if (CollectFieldInitializer(Info, Top, *FA))
1881            return true;
1882        }
1883      }
1884
1885      // Fallthrough and construct a default initializer for the union as
1886      // a whole, which can call its default constructor if such a thing exists
1887      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1888      // behavior going forward with C++0x, when anonymous unions there are
1889      // finalized, we should revisit this.
1890    } else {
1891      // For structs, we simply descend through to initialize all members where
1892      // necessary.
1893      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1894           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1895        if (CollectFieldInitializer(Info, Top, *FA))
1896          return true;
1897      }
1898    }
1899  }
1900
1901  // Don't try to build an implicit initializer if there were semantic
1902  // errors in any of the initializers (and therefore we might be
1903  // missing some that the user actually wrote).
1904  if (Info.AnyErrorsInInits)
1905    return false;
1906
1907  CXXCtorInitializer *Init = 0;
1908  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1909    return true;
1910
1911  if (Init)
1912    Info.AllToInit.push_back(Init);
1913
1914  return false;
1915}
1916
1917bool
1918Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1919                                  CXXCtorInitializer **Initializers,
1920                                  unsigned NumInitializers,
1921                                  bool AnyErrors) {
1922  if (Constructor->getDeclContext()->isDependentContext()) {
1923    // Just store the initializers as written, they will be checked during
1924    // instantiation.
1925    if (NumInitializers > 0) {
1926      Constructor->setNumCtorInitializers(NumInitializers);
1927      CXXCtorInitializer **baseOrMemberInitializers =
1928        new (Context) CXXCtorInitializer*[NumInitializers];
1929      memcpy(baseOrMemberInitializers, Initializers,
1930             NumInitializers * sizeof(CXXCtorInitializer*));
1931      Constructor->setCtorInitializers(baseOrMemberInitializers);
1932    }
1933
1934    return false;
1935  }
1936
1937  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1938
1939  // We need to build the initializer AST according to order of construction
1940  // and not what user specified in the Initializers list.
1941  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1942  if (!ClassDecl)
1943    return true;
1944
1945  bool HadError = false;
1946
1947  for (unsigned i = 0; i < NumInitializers; i++) {
1948    CXXCtorInitializer *Member = Initializers[i];
1949
1950    if (Member->isBaseInitializer())
1951      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1952    else
1953      Info.AllBaseFields[Member->getAnyMember()] = Member;
1954  }
1955
1956  // Keep track of the direct virtual bases.
1957  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1958  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1959       E = ClassDecl->bases_end(); I != E; ++I) {
1960    if (I->isVirtual())
1961      DirectVBases.insert(I);
1962  }
1963
1964  // Push virtual bases before others.
1965  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1966       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1967
1968    if (CXXCtorInitializer *Value
1969        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1970      Info.AllToInit.push_back(Value);
1971    } else if (!AnyErrors) {
1972      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1973      CXXCtorInitializer *CXXBaseInit;
1974      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1975                                       VBase, IsInheritedVirtualBase,
1976                                       CXXBaseInit)) {
1977        HadError = true;
1978        continue;
1979      }
1980
1981      Info.AllToInit.push_back(CXXBaseInit);
1982    }
1983  }
1984
1985  // Non-virtual bases.
1986  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1987       E = ClassDecl->bases_end(); Base != E; ++Base) {
1988    // Virtuals are in the virtual base list and already constructed.
1989    if (Base->isVirtual())
1990      continue;
1991
1992    if (CXXCtorInitializer *Value
1993          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1994      Info.AllToInit.push_back(Value);
1995    } else if (!AnyErrors) {
1996      CXXCtorInitializer *CXXBaseInit;
1997      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1998                                       Base, /*IsInheritedVirtualBase=*/false,
1999                                       CXXBaseInit)) {
2000        HadError = true;
2001        continue;
2002      }
2003
2004      Info.AllToInit.push_back(CXXBaseInit);
2005    }
2006  }
2007
2008  // Fields.
2009  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2010       E = ClassDecl->field_end(); Field != E; ++Field) {
2011    if ((*Field)->getType()->isIncompleteArrayType()) {
2012      assert(ClassDecl->hasFlexibleArrayMember() &&
2013             "Incomplete array type is not valid");
2014      continue;
2015    }
2016    if (CollectFieldInitializer(Info, *Field, *Field))
2017      HadError = true;
2018  }
2019
2020  NumInitializers = Info.AllToInit.size();
2021  if (NumInitializers > 0) {
2022    Constructor->setNumCtorInitializers(NumInitializers);
2023    CXXCtorInitializer **baseOrMemberInitializers =
2024      new (Context) CXXCtorInitializer*[NumInitializers];
2025    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2026           NumInitializers * sizeof(CXXCtorInitializer*));
2027    Constructor->setCtorInitializers(baseOrMemberInitializers);
2028
2029    // Constructors implicitly reference the base and member
2030    // destructors.
2031    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2032                                           Constructor->getParent());
2033  }
2034
2035  return HadError;
2036}
2037
2038static void *GetKeyForTopLevelField(FieldDecl *Field) {
2039  // For anonymous unions, use the class declaration as the key.
2040  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2041    if (RT->getDecl()->isAnonymousStructOrUnion())
2042      return static_cast<void *>(RT->getDecl());
2043  }
2044  return static_cast<void *>(Field);
2045}
2046
2047static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2048  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2049}
2050
2051static void *GetKeyForMember(ASTContext &Context,
2052                             CXXCtorInitializer *Member) {
2053  if (!Member->isAnyMemberInitializer())
2054    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2055
2056  // For fields injected into the class via declaration of an anonymous union,
2057  // use its anonymous union class declaration as the unique key.
2058  FieldDecl *Field = Member->getAnyMember();
2059
2060  // If the field is a member of an anonymous struct or union, our key
2061  // is the anonymous record decl that's a direct child of the class.
2062  RecordDecl *RD = Field->getParent();
2063  if (RD->isAnonymousStructOrUnion()) {
2064    while (true) {
2065      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2066      if (Parent->isAnonymousStructOrUnion())
2067        RD = Parent;
2068      else
2069        break;
2070    }
2071
2072    return static_cast<void *>(RD);
2073  }
2074
2075  return static_cast<void *>(Field);
2076}
2077
2078static void
2079DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2080                                  const CXXConstructorDecl *Constructor,
2081                                  CXXCtorInitializer **Inits,
2082                                  unsigned NumInits) {
2083  if (Constructor->getDeclContext()->isDependentContext())
2084    return;
2085
2086  // Don't check initializers order unless the warning is enabled at the
2087  // location of at least one initializer.
2088  bool ShouldCheckOrder = false;
2089  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2090    CXXCtorInitializer *Init = Inits[InitIndex];
2091    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2092                                         Init->getSourceLocation())
2093          != Diagnostic::Ignored) {
2094      ShouldCheckOrder = true;
2095      break;
2096    }
2097  }
2098  if (!ShouldCheckOrder)
2099    return;
2100
2101  // Build the list of bases and members in the order that they'll
2102  // actually be initialized.  The explicit initializers should be in
2103  // this same order but may be missing things.
2104  llvm::SmallVector<const void*, 32> IdealInitKeys;
2105
2106  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2107
2108  // 1. Virtual bases.
2109  for (CXXRecordDecl::base_class_const_iterator VBase =
2110       ClassDecl->vbases_begin(),
2111       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2112    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2113
2114  // 2. Non-virtual bases.
2115  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2116       E = ClassDecl->bases_end(); Base != E; ++Base) {
2117    if (Base->isVirtual())
2118      continue;
2119    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2120  }
2121
2122  // 3. Direct fields.
2123  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2124       E = ClassDecl->field_end(); Field != E; ++Field)
2125    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2126
2127  unsigned NumIdealInits = IdealInitKeys.size();
2128  unsigned IdealIndex = 0;
2129
2130  CXXCtorInitializer *PrevInit = 0;
2131  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2132    CXXCtorInitializer *Init = Inits[InitIndex];
2133    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2134
2135    // Scan forward to try to find this initializer in the idealized
2136    // initializers list.
2137    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2138      if (InitKey == IdealInitKeys[IdealIndex])
2139        break;
2140
2141    // If we didn't find this initializer, it must be because we
2142    // scanned past it on a previous iteration.  That can only
2143    // happen if we're out of order;  emit a warning.
2144    if (IdealIndex == NumIdealInits && PrevInit) {
2145      Sema::SemaDiagnosticBuilder D =
2146        SemaRef.Diag(PrevInit->getSourceLocation(),
2147                     diag::warn_initializer_out_of_order);
2148
2149      if (PrevInit->isAnyMemberInitializer())
2150        D << 0 << PrevInit->getAnyMember()->getDeclName();
2151      else
2152        D << 1 << PrevInit->getBaseClassInfo()->getType();
2153
2154      if (Init->isAnyMemberInitializer())
2155        D << 0 << Init->getAnyMember()->getDeclName();
2156      else
2157        D << 1 << Init->getBaseClassInfo()->getType();
2158
2159      // Move back to the initializer's location in the ideal list.
2160      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2161        if (InitKey == IdealInitKeys[IdealIndex])
2162          break;
2163
2164      assert(IdealIndex != NumIdealInits &&
2165             "initializer not found in initializer list");
2166    }
2167
2168    PrevInit = Init;
2169  }
2170}
2171
2172namespace {
2173bool CheckRedundantInit(Sema &S,
2174                        CXXCtorInitializer *Init,
2175                        CXXCtorInitializer *&PrevInit) {
2176  if (!PrevInit) {
2177    PrevInit = Init;
2178    return false;
2179  }
2180
2181  if (FieldDecl *Field = Init->getMember())
2182    S.Diag(Init->getSourceLocation(),
2183           diag::err_multiple_mem_initialization)
2184      << Field->getDeclName()
2185      << Init->getSourceRange();
2186  else {
2187    const Type *BaseClass = Init->getBaseClass();
2188    assert(BaseClass && "neither field nor base");
2189    S.Diag(Init->getSourceLocation(),
2190           diag::err_multiple_base_initialization)
2191      << QualType(BaseClass, 0)
2192      << Init->getSourceRange();
2193  }
2194  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2195    << 0 << PrevInit->getSourceRange();
2196
2197  return true;
2198}
2199
2200typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2201typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2202
2203bool CheckRedundantUnionInit(Sema &S,
2204                             CXXCtorInitializer *Init,
2205                             RedundantUnionMap &Unions) {
2206  FieldDecl *Field = Init->getAnyMember();
2207  RecordDecl *Parent = Field->getParent();
2208  if (!Parent->isAnonymousStructOrUnion())
2209    return false;
2210
2211  NamedDecl *Child = Field;
2212  do {
2213    if (Parent->isUnion()) {
2214      UnionEntry &En = Unions[Parent];
2215      if (En.first && En.first != Child) {
2216        S.Diag(Init->getSourceLocation(),
2217               diag::err_multiple_mem_union_initialization)
2218          << Field->getDeclName()
2219          << Init->getSourceRange();
2220        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2221          << 0 << En.second->getSourceRange();
2222        return true;
2223      } else if (!En.first) {
2224        En.first = Child;
2225        En.second = Init;
2226      }
2227    }
2228
2229    Child = Parent;
2230    Parent = cast<RecordDecl>(Parent->getDeclContext());
2231  } while (Parent->isAnonymousStructOrUnion());
2232
2233  return false;
2234}
2235}
2236
2237/// ActOnMemInitializers - Handle the member initializers for a constructor.
2238void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2239                                SourceLocation ColonLoc,
2240                                MemInitTy **meminits, unsigned NumMemInits,
2241                                bool AnyErrors) {
2242  if (!ConstructorDecl)
2243    return;
2244
2245  AdjustDeclIfTemplate(ConstructorDecl);
2246
2247  CXXConstructorDecl *Constructor
2248    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2249
2250  if (!Constructor) {
2251    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2252    return;
2253  }
2254
2255  CXXCtorInitializer **MemInits =
2256    reinterpret_cast<CXXCtorInitializer **>(meminits);
2257
2258  // Mapping for the duplicate initializers check.
2259  // For member initializers, this is keyed with a FieldDecl*.
2260  // For base initializers, this is keyed with a Type*.
2261  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2262
2263  // Mapping for the inconsistent anonymous-union initializers check.
2264  RedundantUnionMap MemberUnions;
2265
2266  bool HadError = false;
2267  for (unsigned i = 0; i < NumMemInits; i++) {
2268    CXXCtorInitializer *Init = MemInits[i];
2269
2270    // Set the source order index.
2271    Init->setSourceOrder(i);
2272
2273    if (Init->isAnyMemberInitializer()) {
2274      FieldDecl *Field = Init->getAnyMember();
2275      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2276          CheckRedundantUnionInit(*this, Init, MemberUnions))
2277        HadError = true;
2278    } else {
2279      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2280      if (CheckRedundantInit(*this, Init, Members[Key]))
2281        HadError = true;
2282    }
2283  }
2284
2285  if (HadError)
2286    return;
2287
2288  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2289
2290  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2291}
2292
2293void
2294Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2295                                             CXXRecordDecl *ClassDecl) {
2296  // Ignore dependent contexts.
2297  if (ClassDecl->isDependentContext())
2298    return;
2299
2300  // FIXME: all the access-control diagnostics are positioned on the
2301  // field/base declaration.  That's probably good; that said, the
2302  // user might reasonably want to know why the destructor is being
2303  // emitted, and we currently don't say.
2304
2305  // Non-static data members.
2306  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2307       E = ClassDecl->field_end(); I != E; ++I) {
2308    FieldDecl *Field = *I;
2309    if (Field->isInvalidDecl())
2310      continue;
2311    QualType FieldType = Context.getBaseElementType(Field->getType());
2312
2313    const RecordType* RT = FieldType->getAs<RecordType>();
2314    if (!RT)
2315      continue;
2316
2317    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2318    if (FieldClassDecl->hasTrivialDestructor())
2319      continue;
2320
2321    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2322    CheckDestructorAccess(Field->getLocation(), Dtor,
2323                          PDiag(diag::err_access_dtor_field)
2324                            << Field->getDeclName()
2325                            << FieldType);
2326
2327    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2328  }
2329
2330  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2331
2332  // Bases.
2333  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2334       E = ClassDecl->bases_end(); Base != E; ++Base) {
2335    // Bases are always records in a well-formed non-dependent class.
2336    const RecordType *RT = Base->getType()->getAs<RecordType>();
2337
2338    // Remember direct virtual bases.
2339    if (Base->isVirtual())
2340      DirectVirtualBases.insert(RT);
2341
2342    // Ignore trivial destructors.
2343    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2344    if (BaseClassDecl->hasTrivialDestructor())
2345      continue;
2346
2347    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2348
2349    // FIXME: caret should be on the start of the class name
2350    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2351                          PDiag(diag::err_access_dtor_base)
2352                            << Base->getType()
2353                            << Base->getSourceRange());
2354
2355    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2356  }
2357
2358  // Virtual bases.
2359  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2360       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2361
2362    // Bases are always records in a well-formed non-dependent class.
2363    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2364
2365    // Ignore direct virtual bases.
2366    if (DirectVirtualBases.count(RT))
2367      continue;
2368
2369    // Ignore trivial destructors.
2370    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2371    if (BaseClassDecl->hasTrivialDestructor())
2372      continue;
2373
2374    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2375    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2376                          PDiag(diag::err_access_dtor_vbase)
2377                            << VBase->getType());
2378
2379    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2380  }
2381}
2382
2383void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2384  if (!CDtorDecl)
2385    return;
2386
2387  if (CXXConstructorDecl *Constructor
2388      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2389    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2390}
2391
2392bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2393                                  unsigned DiagID, AbstractDiagSelID SelID) {
2394  if (SelID == -1)
2395    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2396  else
2397    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2398}
2399
2400bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2401                                  const PartialDiagnostic &PD) {
2402  if (!getLangOptions().CPlusPlus)
2403    return false;
2404
2405  if (const ArrayType *AT = Context.getAsArrayType(T))
2406    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2407
2408  if (const PointerType *PT = T->getAs<PointerType>()) {
2409    // Find the innermost pointer type.
2410    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2411      PT = T;
2412
2413    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2414      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2415  }
2416
2417  const RecordType *RT = T->getAs<RecordType>();
2418  if (!RT)
2419    return false;
2420
2421  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2422
2423  // We can't answer whether something is abstract until it has a
2424  // definition.  If it's currently being defined, we'll walk back
2425  // over all the declarations when we have a full definition.
2426  const CXXRecordDecl *Def = RD->getDefinition();
2427  if (!Def || Def->isBeingDefined())
2428    return false;
2429
2430  if (!RD->isAbstract())
2431    return false;
2432
2433  Diag(Loc, PD) << RD->getDeclName();
2434  DiagnoseAbstractType(RD);
2435
2436  return true;
2437}
2438
2439void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2440  // Check if we've already emitted the list of pure virtual functions
2441  // for this class.
2442  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2443    return;
2444
2445  CXXFinalOverriderMap FinalOverriders;
2446  RD->getFinalOverriders(FinalOverriders);
2447
2448  // Keep a set of seen pure methods so we won't diagnose the same method
2449  // more than once.
2450  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2451
2452  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2453                                   MEnd = FinalOverriders.end();
2454       M != MEnd;
2455       ++M) {
2456    for (OverridingMethods::iterator SO = M->second.begin(),
2457                                  SOEnd = M->second.end();
2458         SO != SOEnd; ++SO) {
2459      // C++ [class.abstract]p4:
2460      //   A class is abstract if it contains or inherits at least one
2461      //   pure virtual function for which the final overrider is pure
2462      //   virtual.
2463
2464      //
2465      if (SO->second.size() != 1)
2466        continue;
2467
2468      if (!SO->second.front().Method->isPure())
2469        continue;
2470
2471      if (!SeenPureMethods.insert(SO->second.front().Method))
2472        continue;
2473
2474      Diag(SO->second.front().Method->getLocation(),
2475           diag::note_pure_virtual_function)
2476        << SO->second.front().Method->getDeclName();
2477    }
2478  }
2479
2480  if (!PureVirtualClassDiagSet)
2481    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2482  PureVirtualClassDiagSet->insert(RD);
2483}
2484
2485namespace {
2486struct AbstractUsageInfo {
2487  Sema &S;
2488  CXXRecordDecl *Record;
2489  CanQualType AbstractType;
2490  bool Invalid;
2491
2492  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2493    : S(S), Record(Record),
2494      AbstractType(S.Context.getCanonicalType(
2495                   S.Context.getTypeDeclType(Record))),
2496      Invalid(false) {}
2497
2498  void DiagnoseAbstractType() {
2499    if (Invalid) return;
2500    S.DiagnoseAbstractType(Record);
2501    Invalid = true;
2502  }
2503
2504  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2505};
2506
2507struct CheckAbstractUsage {
2508  AbstractUsageInfo &Info;
2509  const NamedDecl *Ctx;
2510
2511  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2512    : Info(Info), Ctx(Ctx) {}
2513
2514  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2515    switch (TL.getTypeLocClass()) {
2516#define ABSTRACT_TYPELOC(CLASS, PARENT)
2517#define TYPELOC(CLASS, PARENT) \
2518    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2519#include "clang/AST/TypeLocNodes.def"
2520    }
2521  }
2522
2523  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2524    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2525    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2526      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2527      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2528    }
2529  }
2530
2531  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2532    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2533  }
2534
2535  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2536    // Visit the type parameters from a permissive context.
2537    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2538      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2539      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2540        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2541          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2542      // TODO: other template argument types?
2543    }
2544  }
2545
2546  // Visit pointee types from a permissive context.
2547#define CheckPolymorphic(Type) \
2548  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2549    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2550  }
2551  CheckPolymorphic(PointerTypeLoc)
2552  CheckPolymorphic(ReferenceTypeLoc)
2553  CheckPolymorphic(MemberPointerTypeLoc)
2554  CheckPolymorphic(BlockPointerTypeLoc)
2555
2556  /// Handle all the types we haven't given a more specific
2557  /// implementation for above.
2558  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2559    // Every other kind of type that we haven't called out already
2560    // that has an inner type is either (1) sugar or (2) contains that
2561    // inner type in some way as a subobject.
2562    if (TypeLoc Next = TL.getNextTypeLoc())
2563      return Visit(Next, Sel);
2564
2565    // If there's no inner type and we're in a permissive context,
2566    // don't diagnose.
2567    if (Sel == Sema::AbstractNone) return;
2568
2569    // Check whether the type matches the abstract type.
2570    QualType T = TL.getType();
2571    if (T->isArrayType()) {
2572      Sel = Sema::AbstractArrayType;
2573      T = Info.S.Context.getBaseElementType(T);
2574    }
2575    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2576    if (CT != Info.AbstractType) return;
2577
2578    // It matched; do some magic.
2579    if (Sel == Sema::AbstractArrayType) {
2580      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2581        << T << TL.getSourceRange();
2582    } else {
2583      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2584        << Sel << T << TL.getSourceRange();
2585    }
2586    Info.DiagnoseAbstractType();
2587  }
2588};
2589
2590void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2591                                  Sema::AbstractDiagSelID Sel) {
2592  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2593}
2594
2595}
2596
2597/// Check for invalid uses of an abstract type in a method declaration.
2598static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2599                                    CXXMethodDecl *MD) {
2600  // No need to do the check on definitions, which require that
2601  // the return/param types be complete.
2602  if (MD->isThisDeclarationADefinition())
2603    return;
2604
2605  // For safety's sake, just ignore it if we don't have type source
2606  // information.  This should never happen for non-implicit methods,
2607  // but...
2608  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2609    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2610}
2611
2612/// Check for invalid uses of an abstract type within a class definition.
2613static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2614                                    CXXRecordDecl *RD) {
2615  for (CXXRecordDecl::decl_iterator
2616         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2617    Decl *D = *I;
2618    if (D->isImplicit()) continue;
2619
2620    // Methods and method templates.
2621    if (isa<CXXMethodDecl>(D)) {
2622      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2623    } else if (isa<FunctionTemplateDecl>(D)) {
2624      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2625      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2626
2627    // Fields and static variables.
2628    } else if (isa<FieldDecl>(D)) {
2629      FieldDecl *FD = cast<FieldDecl>(D);
2630      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2631        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2632    } else if (isa<VarDecl>(D)) {
2633      VarDecl *VD = cast<VarDecl>(D);
2634      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2635        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2636
2637    // Nested classes and class templates.
2638    } else if (isa<CXXRecordDecl>(D)) {
2639      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2640    } else if (isa<ClassTemplateDecl>(D)) {
2641      CheckAbstractClassUsage(Info,
2642                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2643    }
2644  }
2645}
2646
2647/// \brief Perform semantic checks on a class definition that has been
2648/// completing, introducing implicitly-declared members, checking for
2649/// abstract types, etc.
2650void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2651  if (!Record)
2652    return;
2653
2654  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2655    AbstractUsageInfo Info(*this, Record);
2656    CheckAbstractClassUsage(Info, Record);
2657  }
2658
2659  // If this is not an aggregate type and has no user-declared constructor,
2660  // complain about any non-static data members of reference or const scalar
2661  // type, since they will never get initializers.
2662  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2663      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2664    bool Complained = false;
2665    for (RecordDecl::field_iterator F = Record->field_begin(),
2666                                 FEnd = Record->field_end();
2667         F != FEnd; ++F) {
2668      if (F->getType()->isReferenceType() ||
2669          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2670        if (!Complained) {
2671          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2672            << Record->getTagKind() << Record;
2673          Complained = true;
2674        }
2675
2676        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2677          << F->getType()->isReferenceType()
2678          << F->getDeclName();
2679      }
2680    }
2681  }
2682
2683  if (Record->isDynamicClass())
2684    DynamicClasses.push_back(Record);
2685
2686  if (Record->getIdentifier()) {
2687    // C++ [class.mem]p13:
2688    //   If T is the name of a class, then each of the following shall have a
2689    //   name different from T:
2690    //     - every member of every anonymous union that is a member of class T.
2691    //
2692    // C++ [class.mem]p14:
2693    //   In addition, if class T has a user-declared constructor (12.1), every
2694    //   non-static data member of class T shall have a name different from T.
2695    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2696         R.first != R.second; ++R.first) {
2697      NamedDecl *D = *R.first;
2698      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2699          isa<IndirectFieldDecl>(D)) {
2700        Diag(D->getLocation(), diag::err_member_name_of_class)
2701          << D->getDeclName();
2702        break;
2703      }
2704    }
2705  }
2706}
2707
2708void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2709                                             Decl *TagDecl,
2710                                             SourceLocation LBrac,
2711                                             SourceLocation RBrac,
2712                                             AttributeList *AttrList) {
2713  if (!TagDecl)
2714    return;
2715
2716  AdjustDeclIfTemplate(TagDecl);
2717
2718  ActOnFields(S, RLoc, TagDecl,
2719              // strict aliasing violation!
2720              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2721              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2722
2723  CheckCompletedCXXClass(
2724                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2725}
2726
2727namespace {
2728  /// \brief Helper class that collects exception specifications for
2729  /// implicitly-declared special member functions.
2730  class ImplicitExceptionSpecification {
2731    ASTContext &Context;
2732    bool AllowsAllExceptions;
2733    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2734    llvm::SmallVector<QualType, 4> Exceptions;
2735
2736  public:
2737    explicit ImplicitExceptionSpecification(ASTContext &Context)
2738      : Context(Context), AllowsAllExceptions(false) { }
2739
2740    /// \brief Whether the special member function should have any
2741    /// exception specification at all.
2742    bool hasExceptionSpecification() const {
2743      return !AllowsAllExceptions;
2744    }
2745
2746    /// \brief Whether the special member function should have a
2747    /// throw(...) exception specification (a Microsoft extension).
2748    bool hasAnyExceptionSpecification() const {
2749      return false;
2750    }
2751
2752    /// \brief The number of exceptions in the exception specification.
2753    unsigned size() const { return Exceptions.size(); }
2754
2755    /// \brief The set of exceptions in the exception specification.
2756    const QualType *data() const { return Exceptions.data(); }
2757
2758    /// \brief Note that
2759    void CalledDecl(CXXMethodDecl *Method) {
2760      // If we already know that we allow all exceptions, do nothing.
2761      if (AllowsAllExceptions || !Method)
2762        return;
2763
2764      const FunctionProtoType *Proto
2765        = Method->getType()->getAs<FunctionProtoType>();
2766
2767      // If this function can throw any exceptions, make a note of that.
2768      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2769        AllowsAllExceptions = true;
2770        ExceptionsSeen.clear();
2771        Exceptions.clear();
2772        return;
2773      }
2774
2775      // Record the exceptions in this function's exception specification.
2776      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2777                                              EEnd = Proto->exception_end();
2778           E != EEnd; ++E)
2779        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2780          Exceptions.push_back(*E);
2781    }
2782  };
2783}
2784
2785
2786/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2787/// special functions, such as the default constructor, copy
2788/// constructor, or destructor, to the given C++ class (C++
2789/// [special]p1).  This routine can only be executed just before the
2790/// definition of the class is complete.
2791void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2792  if (!ClassDecl->hasUserDeclaredConstructor())
2793    ++ASTContext::NumImplicitDefaultConstructors;
2794
2795  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2796    ++ASTContext::NumImplicitCopyConstructors;
2797
2798  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2799    ++ASTContext::NumImplicitCopyAssignmentOperators;
2800
2801    // If we have a dynamic class, then the copy assignment operator may be
2802    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2803    // it shows up in the right place in the vtable and that we diagnose
2804    // problems with the implicit exception specification.
2805    if (ClassDecl->isDynamicClass())
2806      DeclareImplicitCopyAssignment(ClassDecl);
2807  }
2808
2809  if (!ClassDecl->hasUserDeclaredDestructor()) {
2810    ++ASTContext::NumImplicitDestructors;
2811
2812    // If we have a dynamic class, then the destructor may be virtual, so we
2813    // have to declare the destructor immediately. This ensures that, e.g., it
2814    // shows up in the right place in the vtable and that we diagnose problems
2815    // with the implicit exception specification.
2816    if (ClassDecl->isDynamicClass())
2817      DeclareImplicitDestructor(ClassDecl);
2818  }
2819}
2820
2821void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2822  if (!D)
2823    return;
2824
2825  TemplateParameterList *Params = 0;
2826  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2827    Params = Template->getTemplateParameters();
2828  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2829           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2830    Params = PartialSpec->getTemplateParameters();
2831  else
2832    return;
2833
2834  for (TemplateParameterList::iterator Param = Params->begin(),
2835                                    ParamEnd = Params->end();
2836       Param != ParamEnd; ++Param) {
2837    NamedDecl *Named = cast<NamedDecl>(*Param);
2838    if (Named->getDeclName()) {
2839      S->AddDecl(Named);
2840      IdResolver.AddDecl(Named);
2841    }
2842  }
2843}
2844
2845void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2846  if (!RecordD) return;
2847  AdjustDeclIfTemplate(RecordD);
2848  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2849  PushDeclContext(S, Record);
2850}
2851
2852void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2853  if (!RecordD) return;
2854  PopDeclContext();
2855}
2856
2857/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2858/// parsing a top-level (non-nested) C++ class, and we are now
2859/// parsing those parts of the given Method declaration that could
2860/// not be parsed earlier (C++ [class.mem]p2), such as default
2861/// arguments. This action should enter the scope of the given
2862/// Method declaration as if we had just parsed the qualified method
2863/// name. However, it should not bring the parameters into scope;
2864/// that will be performed by ActOnDelayedCXXMethodParameter.
2865void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2866}
2867
2868/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2869/// C++ method declaration. We're (re-)introducing the given
2870/// function parameter into scope for use in parsing later parts of
2871/// the method declaration. For example, we could see an
2872/// ActOnParamDefaultArgument event for this parameter.
2873void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2874  if (!ParamD)
2875    return;
2876
2877  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2878
2879  // If this parameter has an unparsed default argument, clear it out
2880  // to make way for the parsed default argument.
2881  if (Param->hasUnparsedDefaultArg())
2882    Param->setDefaultArg(0);
2883
2884  S->AddDecl(Param);
2885  if (Param->getDeclName())
2886    IdResolver.AddDecl(Param);
2887}
2888
2889/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2890/// processing the delayed method declaration for Method. The method
2891/// declaration is now considered finished. There may be a separate
2892/// ActOnStartOfFunctionDef action later (not necessarily
2893/// immediately!) for this method, if it was also defined inside the
2894/// class body.
2895void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2896  if (!MethodD)
2897    return;
2898
2899  AdjustDeclIfTemplate(MethodD);
2900
2901  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2902
2903  // Now that we have our default arguments, check the constructor
2904  // again. It could produce additional diagnostics or affect whether
2905  // the class has implicitly-declared destructors, among other
2906  // things.
2907  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2908    CheckConstructor(Constructor);
2909
2910  // Check the default arguments, which we may have added.
2911  if (!Method->isInvalidDecl())
2912    CheckCXXDefaultArguments(Method);
2913}
2914
2915/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2916/// the well-formedness of the constructor declarator @p D with type @p
2917/// R. If there are any errors in the declarator, this routine will
2918/// emit diagnostics and set the invalid bit to true.  In any case, the type
2919/// will be updated to reflect a well-formed type for the constructor and
2920/// returned.
2921QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2922                                          StorageClass &SC) {
2923  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2924
2925  // C++ [class.ctor]p3:
2926  //   A constructor shall not be virtual (10.3) or static (9.4). A
2927  //   constructor can be invoked for a const, volatile or const
2928  //   volatile object. A constructor shall not be declared const,
2929  //   volatile, or const volatile (9.3.2).
2930  if (isVirtual) {
2931    if (!D.isInvalidType())
2932      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2933        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2934        << SourceRange(D.getIdentifierLoc());
2935    D.setInvalidType();
2936  }
2937  if (SC == SC_Static) {
2938    if (!D.isInvalidType())
2939      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2940        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2941        << SourceRange(D.getIdentifierLoc());
2942    D.setInvalidType();
2943    SC = SC_None;
2944  }
2945
2946  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
2947  if (FTI.TypeQuals != 0) {
2948    if (FTI.TypeQuals & Qualifiers::Const)
2949      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2950        << "const" << SourceRange(D.getIdentifierLoc());
2951    if (FTI.TypeQuals & Qualifiers::Volatile)
2952      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2953        << "volatile" << SourceRange(D.getIdentifierLoc());
2954    if (FTI.TypeQuals & Qualifiers::Restrict)
2955      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2956        << "restrict" << SourceRange(D.getIdentifierLoc());
2957    D.setInvalidType();
2958  }
2959
2960  // Rebuild the function type "R" without any type qualifiers (in
2961  // case any of the errors above fired) and with "void" as the
2962  // return type, since constructors don't have return types.
2963  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2964  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
2965    return R;
2966
2967  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
2968  EPI.TypeQuals = 0;
2969
2970  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2971                                 Proto->getNumArgs(), EPI);
2972}
2973
2974/// CheckConstructor - Checks a fully-formed constructor for
2975/// well-formedness, issuing any diagnostics required. Returns true if
2976/// the constructor declarator is invalid.
2977void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2978  CXXRecordDecl *ClassDecl
2979    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2980  if (!ClassDecl)
2981    return Constructor->setInvalidDecl();
2982
2983  // C++ [class.copy]p3:
2984  //   A declaration of a constructor for a class X is ill-formed if
2985  //   its first parameter is of type (optionally cv-qualified) X and
2986  //   either there are no other parameters or else all other
2987  //   parameters have default arguments.
2988  if (!Constructor->isInvalidDecl() &&
2989      ((Constructor->getNumParams() == 1) ||
2990       (Constructor->getNumParams() > 1 &&
2991        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2992      Constructor->getTemplateSpecializationKind()
2993                                              != TSK_ImplicitInstantiation) {
2994    QualType ParamType = Constructor->getParamDecl(0)->getType();
2995    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2996    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2997      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2998      const char *ConstRef
2999        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3000                                                        : " const &";
3001      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3002        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3003
3004      // FIXME: Rather that making the constructor invalid, we should endeavor
3005      // to fix the type.
3006      Constructor->setInvalidDecl();
3007    }
3008  }
3009}
3010
3011/// CheckDestructor - Checks a fully-formed destructor definition for
3012/// well-formedness, issuing any diagnostics required.  Returns true
3013/// on error.
3014bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3015  CXXRecordDecl *RD = Destructor->getParent();
3016
3017  if (Destructor->isVirtual()) {
3018    SourceLocation Loc;
3019
3020    if (!Destructor->isImplicit())
3021      Loc = Destructor->getLocation();
3022    else
3023      Loc = RD->getLocation();
3024
3025    // If we have a virtual destructor, look up the deallocation function
3026    FunctionDecl *OperatorDelete = 0;
3027    DeclarationName Name =
3028    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3029    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3030      return true;
3031
3032    MarkDeclarationReferenced(Loc, OperatorDelete);
3033
3034    Destructor->setOperatorDelete(OperatorDelete);
3035  }
3036
3037  return false;
3038}
3039
3040static inline bool
3041FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3042  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3043          FTI.ArgInfo[0].Param &&
3044          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3045}
3046
3047/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3048/// the well-formednes of the destructor declarator @p D with type @p
3049/// R. If there are any errors in the declarator, this routine will
3050/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3051/// will be updated to reflect a well-formed type for the destructor and
3052/// returned.
3053QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3054                                         StorageClass& SC) {
3055  // C++ [class.dtor]p1:
3056  //   [...] A typedef-name that names a class is a class-name
3057  //   (7.1.3); however, a typedef-name that names a class shall not
3058  //   be used as the identifier in the declarator for a destructor
3059  //   declaration.
3060  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3061  if (isa<TypedefType>(DeclaratorType))
3062    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3063      << DeclaratorType;
3064
3065  // C++ [class.dtor]p2:
3066  //   A destructor is used to destroy objects of its class type. A
3067  //   destructor takes no parameters, and no return type can be
3068  //   specified for it (not even void). The address of a destructor
3069  //   shall not be taken. A destructor shall not be static. A
3070  //   destructor can be invoked for a const, volatile or const
3071  //   volatile object. A destructor shall not be declared const,
3072  //   volatile or const volatile (9.3.2).
3073  if (SC == SC_Static) {
3074    if (!D.isInvalidType())
3075      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3076        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3077        << SourceRange(D.getIdentifierLoc())
3078        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3079
3080    SC = SC_None;
3081  }
3082  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3083    // Destructors don't have return types, but the parser will
3084    // happily parse something like:
3085    //
3086    //   class X {
3087    //     float ~X();
3088    //   };
3089    //
3090    // The return type will be eliminated later.
3091    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3092      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3093      << SourceRange(D.getIdentifierLoc());
3094  }
3095
3096  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3097  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3098    if (FTI.TypeQuals & Qualifiers::Const)
3099      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3100        << "const" << SourceRange(D.getIdentifierLoc());
3101    if (FTI.TypeQuals & Qualifiers::Volatile)
3102      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3103        << "volatile" << SourceRange(D.getIdentifierLoc());
3104    if (FTI.TypeQuals & Qualifiers::Restrict)
3105      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3106        << "restrict" << SourceRange(D.getIdentifierLoc());
3107    D.setInvalidType();
3108  }
3109
3110  // Make sure we don't have any parameters.
3111  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3112    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3113
3114    // Delete the parameters.
3115    FTI.freeArgs();
3116    D.setInvalidType();
3117  }
3118
3119  // Make sure the destructor isn't variadic.
3120  if (FTI.isVariadic) {
3121    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3122    D.setInvalidType();
3123  }
3124
3125  // Rebuild the function type "R" without any type qualifiers or
3126  // parameters (in case any of the errors above fired) and with
3127  // "void" as the return type, since destructors don't have return
3128  // types.
3129  if (!D.isInvalidType())
3130    return R;
3131
3132  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3133  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3134  EPI.Variadic = false;
3135  EPI.TypeQuals = 0;
3136  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3137}
3138
3139/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3140/// well-formednes of the conversion function declarator @p D with
3141/// type @p R. If there are any errors in the declarator, this routine
3142/// will emit diagnostics and return true. Otherwise, it will return
3143/// false. Either way, the type @p R will be updated to reflect a
3144/// well-formed type for the conversion operator.
3145void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3146                                     StorageClass& SC) {
3147  // C++ [class.conv.fct]p1:
3148  //   Neither parameter types nor return type can be specified. The
3149  //   type of a conversion function (8.3.5) is "function taking no
3150  //   parameter returning conversion-type-id."
3151  if (SC == SC_Static) {
3152    if (!D.isInvalidType())
3153      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3154        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3155        << SourceRange(D.getIdentifierLoc());
3156    D.setInvalidType();
3157    SC = SC_None;
3158  }
3159
3160  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3161
3162  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3163    // Conversion functions don't have return types, but the parser will
3164    // happily parse something like:
3165    //
3166    //   class X {
3167    //     float operator bool();
3168    //   };
3169    //
3170    // The return type will be changed later anyway.
3171    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3172      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3173      << SourceRange(D.getIdentifierLoc());
3174    D.setInvalidType();
3175  }
3176
3177  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3178
3179  // Make sure we don't have any parameters.
3180  if (Proto->getNumArgs() > 0) {
3181    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3182
3183    // Delete the parameters.
3184    D.getFunctionTypeInfo().freeArgs();
3185    D.setInvalidType();
3186  } else if (Proto->isVariadic()) {
3187    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3188    D.setInvalidType();
3189  }
3190
3191  // Diagnose "&operator bool()" and other such nonsense.  This
3192  // is actually a gcc extension which we don't support.
3193  if (Proto->getResultType() != ConvType) {
3194    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3195      << Proto->getResultType();
3196    D.setInvalidType();
3197    ConvType = Proto->getResultType();
3198  }
3199
3200  // C++ [class.conv.fct]p4:
3201  //   The conversion-type-id shall not represent a function type nor
3202  //   an array type.
3203  if (ConvType->isArrayType()) {
3204    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3205    ConvType = Context.getPointerType(ConvType);
3206    D.setInvalidType();
3207  } else if (ConvType->isFunctionType()) {
3208    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3209    ConvType = Context.getPointerType(ConvType);
3210    D.setInvalidType();
3211  }
3212
3213  // Rebuild the function type "R" without any parameters (in case any
3214  // of the errors above fired) and with the conversion type as the
3215  // return type.
3216  if (D.isInvalidType())
3217    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3218
3219  // C++0x explicit conversion operators.
3220  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3221    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3222         diag::warn_explicit_conversion_functions)
3223      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3224}
3225
3226/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3227/// the declaration of the given C++ conversion function. This routine
3228/// is responsible for recording the conversion function in the C++
3229/// class, if possible.
3230Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3231  assert(Conversion && "Expected to receive a conversion function declaration");
3232
3233  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3234
3235  // Make sure we aren't redeclaring the conversion function.
3236  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3237
3238  // C++ [class.conv.fct]p1:
3239  //   [...] A conversion function is never used to convert a
3240  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3241  //   same object type (or a reference to it), to a (possibly
3242  //   cv-qualified) base class of that type (or a reference to it),
3243  //   or to (possibly cv-qualified) void.
3244  // FIXME: Suppress this warning if the conversion function ends up being a
3245  // virtual function that overrides a virtual function in a base class.
3246  QualType ClassType
3247    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3248  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3249    ConvType = ConvTypeRef->getPointeeType();
3250  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3251      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3252    /* Suppress diagnostics for instantiations. */;
3253  else if (ConvType->isRecordType()) {
3254    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3255    if (ConvType == ClassType)
3256      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3257        << ClassType;
3258    else if (IsDerivedFrom(ClassType, ConvType))
3259      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3260        <<  ClassType << ConvType;
3261  } else if (ConvType->isVoidType()) {
3262    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3263      << ClassType << ConvType;
3264  }
3265
3266  if (FunctionTemplateDecl *ConversionTemplate
3267                                = Conversion->getDescribedFunctionTemplate())
3268    return ConversionTemplate;
3269
3270  return Conversion;
3271}
3272
3273//===----------------------------------------------------------------------===//
3274// Namespace Handling
3275//===----------------------------------------------------------------------===//
3276
3277
3278
3279/// ActOnStartNamespaceDef - This is called at the start of a namespace
3280/// definition.
3281Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3282                                   SourceLocation InlineLoc,
3283                                   SourceLocation IdentLoc,
3284                                   IdentifierInfo *II,
3285                                   SourceLocation LBrace,
3286                                   AttributeList *AttrList) {
3287  // anonymous namespace starts at its left brace
3288  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3289    (II ? IdentLoc : LBrace) , II);
3290  Namespc->setLBracLoc(LBrace);
3291  Namespc->setInline(InlineLoc.isValid());
3292
3293  Scope *DeclRegionScope = NamespcScope->getParent();
3294
3295  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3296
3297  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3298    PushNamespaceVisibilityAttr(Attr);
3299
3300  if (II) {
3301    // C++ [namespace.def]p2:
3302    //   The identifier in an original-namespace-definition shall not
3303    //   have been previously defined in the declarative region in
3304    //   which the original-namespace-definition appears. The
3305    //   identifier in an original-namespace-definition is the name of
3306    //   the namespace. Subsequently in that declarative region, it is
3307    //   treated as an original-namespace-name.
3308    //
3309    // Since namespace names are unique in their scope, and we don't
3310    // look through using directives, just
3311    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3312    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3313
3314    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3315      // This is an extended namespace definition.
3316      if (Namespc->isInline() != OrigNS->isInline()) {
3317        // inline-ness must match
3318        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3319          << Namespc->isInline();
3320        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3321        Namespc->setInvalidDecl();
3322        // Recover by ignoring the new namespace's inline status.
3323        Namespc->setInline(OrigNS->isInline());
3324      }
3325
3326      // Attach this namespace decl to the chain of extended namespace
3327      // definitions.
3328      OrigNS->setNextNamespace(Namespc);
3329      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3330
3331      // Remove the previous declaration from the scope.
3332      if (DeclRegionScope->isDeclScope(OrigNS)) {
3333        IdResolver.RemoveDecl(OrigNS);
3334        DeclRegionScope->RemoveDecl(OrigNS);
3335      }
3336    } else if (PrevDecl) {
3337      // This is an invalid name redefinition.
3338      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3339       << Namespc->getDeclName();
3340      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3341      Namespc->setInvalidDecl();
3342      // Continue on to push Namespc as current DeclContext and return it.
3343    } else if (II->isStr("std") &&
3344               CurContext->getRedeclContext()->isTranslationUnit()) {
3345      // This is the first "real" definition of the namespace "std", so update
3346      // our cache of the "std" namespace to point at this definition.
3347      if (NamespaceDecl *StdNS = getStdNamespace()) {
3348        // We had already defined a dummy namespace "std". Link this new
3349        // namespace definition to the dummy namespace "std".
3350        StdNS->setNextNamespace(Namespc);
3351        StdNS->setLocation(IdentLoc);
3352        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3353      }
3354
3355      // Make our StdNamespace cache point at the first real definition of the
3356      // "std" namespace.
3357      StdNamespace = Namespc;
3358    }
3359
3360    PushOnScopeChains(Namespc, DeclRegionScope);
3361  } else {
3362    // Anonymous namespaces.
3363    assert(Namespc->isAnonymousNamespace());
3364
3365    // Link the anonymous namespace into its parent.
3366    NamespaceDecl *PrevDecl;
3367    DeclContext *Parent = CurContext->getRedeclContext();
3368    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3369      PrevDecl = TU->getAnonymousNamespace();
3370      TU->setAnonymousNamespace(Namespc);
3371    } else {
3372      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3373      PrevDecl = ND->getAnonymousNamespace();
3374      ND->setAnonymousNamespace(Namespc);
3375    }
3376
3377    // Link the anonymous namespace with its previous declaration.
3378    if (PrevDecl) {
3379      assert(PrevDecl->isAnonymousNamespace());
3380      assert(!PrevDecl->getNextNamespace());
3381      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3382      PrevDecl->setNextNamespace(Namespc);
3383
3384      if (Namespc->isInline() != PrevDecl->isInline()) {
3385        // inline-ness must match
3386        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3387          << Namespc->isInline();
3388        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3389        Namespc->setInvalidDecl();
3390        // Recover by ignoring the new namespace's inline status.
3391        Namespc->setInline(PrevDecl->isInline());
3392      }
3393    }
3394
3395    CurContext->addDecl(Namespc);
3396
3397    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3398    //   behaves as if it were replaced by
3399    //     namespace unique { /* empty body */ }
3400    //     using namespace unique;
3401    //     namespace unique { namespace-body }
3402    //   where all occurrences of 'unique' in a translation unit are
3403    //   replaced by the same identifier and this identifier differs
3404    //   from all other identifiers in the entire program.
3405
3406    // We just create the namespace with an empty name and then add an
3407    // implicit using declaration, just like the standard suggests.
3408    //
3409    // CodeGen enforces the "universally unique" aspect by giving all
3410    // declarations semantically contained within an anonymous
3411    // namespace internal linkage.
3412
3413    if (!PrevDecl) {
3414      UsingDirectiveDecl* UD
3415        = UsingDirectiveDecl::Create(Context, CurContext,
3416                                     /* 'using' */ LBrace,
3417                                     /* 'namespace' */ SourceLocation(),
3418                                     /* qualifier */ SourceRange(),
3419                                     /* NNS */ NULL,
3420                                     /* identifier */ SourceLocation(),
3421                                     Namespc,
3422                                     /* Ancestor */ CurContext);
3423      UD->setImplicit();
3424      CurContext->addDecl(UD);
3425    }
3426  }
3427
3428  // Although we could have an invalid decl (i.e. the namespace name is a
3429  // redefinition), push it as current DeclContext and try to continue parsing.
3430  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3431  // for the namespace has the declarations that showed up in that particular
3432  // namespace definition.
3433  PushDeclContext(NamespcScope, Namespc);
3434  return Namespc;
3435}
3436
3437/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3438/// is a namespace alias, returns the namespace it points to.
3439static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3440  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3441    return AD->getNamespace();
3442  return dyn_cast_or_null<NamespaceDecl>(D);
3443}
3444
3445/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3446/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3447void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3448  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3449  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3450  Namespc->setRBracLoc(RBrace);
3451  PopDeclContext();
3452  if (Namespc->hasAttr<VisibilityAttr>())
3453    PopPragmaVisibility();
3454}
3455
3456CXXRecordDecl *Sema::getStdBadAlloc() const {
3457  return cast_or_null<CXXRecordDecl>(
3458                                  StdBadAlloc.get(Context.getExternalSource()));
3459}
3460
3461NamespaceDecl *Sema::getStdNamespace() const {
3462  return cast_or_null<NamespaceDecl>(
3463                                 StdNamespace.get(Context.getExternalSource()));
3464}
3465
3466/// \brief Retrieve the special "std" namespace, which may require us to
3467/// implicitly define the namespace.
3468NamespaceDecl *Sema::getOrCreateStdNamespace() {
3469  if (!StdNamespace) {
3470    // The "std" namespace has not yet been defined, so build one implicitly.
3471    StdNamespace = NamespaceDecl::Create(Context,
3472                                         Context.getTranslationUnitDecl(),
3473                                         SourceLocation(),
3474                                         &PP.getIdentifierTable().get("std"));
3475    getStdNamespace()->setImplicit(true);
3476  }
3477
3478  return getStdNamespace();
3479}
3480
3481Decl *Sema::ActOnUsingDirective(Scope *S,
3482                                          SourceLocation UsingLoc,
3483                                          SourceLocation NamespcLoc,
3484                                          CXXScopeSpec &SS,
3485                                          SourceLocation IdentLoc,
3486                                          IdentifierInfo *NamespcName,
3487                                          AttributeList *AttrList) {
3488  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3489  assert(NamespcName && "Invalid NamespcName.");
3490  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3491
3492  // This can only happen along a recovery path.
3493  while (S->getFlags() & Scope::TemplateParamScope)
3494    S = S->getParent();
3495  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3496
3497  UsingDirectiveDecl *UDir = 0;
3498  NestedNameSpecifier *Qualifier = 0;
3499  if (SS.isSet())
3500    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3501
3502  // Lookup namespace name.
3503  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3504  LookupParsedName(R, S, &SS);
3505  if (R.isAmbiguous())
3506    return 0;
3507
3508  if (R.empty()) {
3509    // Allow "using namespace std;" or "using namespace ::std;" even if
3510    // "std" hasn't been defined yet, for GCC compatibility.
3511    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3512        NamespcName->isStr("std")) {
3513      Diag(IdentLoc, diag::ext_using_undefined_std);
3514      R.addDecl(getOrCreateStdNamespace());
3515      R.resolveKind();
3516    }
3517    // Otherwise, attempt typo correction.
3518    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3519                                                       CTC_NoKeywords, 0)) {
3520      if (R.getAsSingle<NamespaceDecl>() ||
3521          R.getAsSingle<NamespaceAliasDecl>()) {
3522        if (DeclContext *DC = computeDeclContext(SS, false))
3523          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3524            << NamespcName << DC << Corrected << SS.getRange()
3525            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3526        else
3527          Diag(IdentLoc, diag::err_using_directive_suggest)
3528            << NamespcName << Corrected
3529            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3530        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3531          << Corrected;
3532
3533        NamespcName = Corrected.getAsIdentifierInfo();
3534      } else {
3535        R.clear();
3536        R.setLookupName(NamespcName);
3537      }
3538    }
3539  }
3540
3541  if (!R.empty()) {
3542    NamedDecl *Named = R.getFoundDecl();
3543    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3544        && "expected namespace decl");
3545    // C++ [namespace.udir]p1:
3546    //   A using-directive specifies that the names in the nominated
3547    //   namespace can be used in the scope in which the
3548    //   using-directive appears after the using-directive. During
3549    //   unqualified name lookup (3.4.1), the names appear as if they
3550    //   were declared in the nearest enclosing namespace which
3551    //   contains both the using-directive and the nominated
3552    //   namespace. [Note: in this context, "contains" means "contains
3553    //   directly or indirectly". ]
3554
3555    // Find enclosing context containing both using-directive and
3556    // nominated namespace.
3557    NamespaceDecl *NS = getNamespaceDecl(Named);
3558    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3559    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3560      CommonAncestor = CommonAncestor->getParent();
3561
3562    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3563                                      SS.getRange(),
3564                                      (NestedNameSpecifier *)SS.getScopeRep(),
3565                                      IdentLoc, Named, CommonAncestor);
3566    PushUsingDirective(S, UDir);
3567  } else {
3568    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3569  }
3570
3571  // FIXME: We ignore attributes for now.
3572  return UDir;
3573}
3574
3575void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3576  // If scope has associated entity, then using directive is at namespace
3577  // or translation unit scope. We add UsingDirectiveDecls, into
3578  // it's lookup structure.
3579  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3580    Ctx->addDecl(UDir);
3581  else
3582    // Otherwise it is block-sope. using-directives will affect lookup
3583    // only to the end of scope.
3584    S->PushUsingDirective(UDir);
3585}
3586
3587
3588Decl *Sema::ActOnUsingDeclaration(Scope *S,
3589                                  AccessSpecifier AS,
3590                                  bool HasUsingKeyword,
3591                                  SourceLocation UsingLoc,
3592                                  CXXScopeSpec &SS,
3593                                  UnqualifiedId &Name,
3594                                  AttributeList *AttrList,
3595                                  bool IsTypeName,
3596                                  SourceLocation TypenameLoc) {
3597  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3598
3599  switch (Name.getKind()) {
3600  case UnqualifiedId::IK_Identifier:
3601  case UnqualifiedId::IK_OperatorFunctionId:
3602  case UnqualifiedId::IK_LiteralOperatorId:
3603  case UnqualifiedId::IK_ConversionFunctionId:
3604    break;
3605
3606  case UnqualifiedId::IK_ConstructorName:
3607  case UnqualifiedId::IK_ConstructorTemplateId:
3608    // C++0x inherited constructors.
3609    if (getLangOptions().CPlusPlus0x) break;
3610
3611    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3612      << SS.getRange();
3613    return 0;
3614
3615  case UnqualifiedId::IK_DestructorName:
3616    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3617      << SS.getRange();
3618    return 0;
3619
3620  case UnqualifiedId::IK_TemplateId:
3621    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3622      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3623    return 0;
3624  }
3625
3626  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3627  DeclarationName TargetName = TargetNameInfo.getName();
3628  if (!TargetName)
3629    return 0;
3630
3631  // Warn about using declarations.
3632  // TODO: store that the declaration was written without 'using' and
3633  // talk about access decls instead of using decls in the
3634  // diagnostics.
3635  if (!HasUsingKeyword) {
3636    UsingLoc = Name.getSourceRange().getBegin();
3637
3638    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3639      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3640  }
3641
3642  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3643      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3644    return 0;
3645
3646  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3647                                        TargetNameInfo, AttrList,
3648                                        /* IsInstantiation */ false,
3649                                        IsTypeName, TypenameLoc);
3650  if (UD)
3651    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3652
3653  return UD;
3654}
3655
3656/// \brief Determine whether a using declaration considers the given
3657/// declarations as "equivalent", e.g., if they are redeclarations of
3658/// the same entity or are both typedefs of the same type.
3659static bool
3660IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3661                         bool &SuppressRedeclaration) {
3662  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3663    SuppressRedeclaration = false;
3664    return true;
3665  }
3666
3667  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3668    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3669      SuppressRedeclaration = true;
3670      return Context.hasSameType(TD1->getUnderlyingType(),
3671                                 TD2->getUnderlyingType());
3672    }
3673
3674  return false;
3675}
3676
3677
3678/// Determines whether to create a using shadow decl for a particular
3679/// decl, given the set of decls existing prior to this using lookup.
3680bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3681                                const LookupResult &Previous) {
3682  // Diagnose finding a decl which is not from a base class of the
3683  // current class.  We do this now because there are cases where this
3684  // function will silently decide not to build a shadow decl, which
3685  // will pre-empt further diagnostics.
3686  //
3687  // We don't need to do this in C++0x because we do the check once on
3688  // the qualifier.
3689  //
3690  // FIXME: diagnose the following if we care enough:
3691  //   struct A { int foo; };
3692  //   struct B : A { using A::foo; };
3693  //   template <class T> struct C : A {};
3694  //   template <class T> struct D : C<T> { using B::foo; } // <---
3695  // This is invalid (during instantiation) in C++03 because B::foo
3696  // resolves to the using decl in B, which is not a base class of D<T>.
3697  // We can't diagnose it immediately because C<T> is an unknown
3698  // specialization.  The UsingShadowDecl in D<T> then points directly
3699  // to A::foo, which will look well-formed when we instantiate.
3700  // The right solution is to not collapse the shadow-decl chain.
3701  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3702    DeclContext *OrigDC = Orig->getDeclContext();
3703
3704    // Handle enums and anonymous structs.
3705    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3706    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3707    while (OrigRec->isAnonymousStructOrUnion())
3708      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3709
3710    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3711      if (OrigDC == CurContext) {
3712        Diag(Using->getLocation(),
3713             diag::err_using_decl_nested_name_specifier_is_current_class)
3714          << Using->getNestedNameRange();
3715        Diag(Orig->getLocation(), diag::note_using_decl_target);
3716        return true;
3717      }
3718
3719      Diag(Using->getNestedNameRange().getBegin(),
3720           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3721        << Using->getTargetNestedNameDecl()
3722        << cast<CXXRecordDecl>(CurContext)
3723        << Using->getNestedNameRange();
3724      Diag(Orig->getLocation(), diag::note_using_decl_target);
3725      return true;
3726    }
3727  }
3728
3729  if (Previous.empty()) return false;
3730
3731  NamedDecl *Target = Orig;
3732  if (isa<UsingShadowDecl>(Target))
3733    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3734
3735  // If the target happens to be one of the previous declarations, we
3736  // don't have a conflict.
3737  //
3738  // FIXME: but we might be increasing its access, in which case we
3739  // should redeclare it.
3740  NamedDecl *NonTag = 0, *Tag = 0;
3741  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3742         I != E; ++I) {
3743    NamedDecl *D = (*I)->getUnderlyingDecl();
3744    bool Result;
3745    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3746      return Result;
3747
3748    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3749  }
3750
3751  if (Target->isFunctionOrFunctionTemplate()) {
3752    FunctionDecl *FD;
3753    if (isa<FunctionTemplateDecl>(Target))
3754      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3755    else
3756      FD = cast<FunctionDecl>(Target);
3757
3758    NamedDecl *OldDecl = 0;
3759    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3760    case Ovl_Overload:
3761      return false;
3762
3763    case Ovl_NonFunction:
3764      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3765      break;
3766
3767    // We found a decl with the exact signature.
3768    case Ovl_Match:
3769      // If we're in a record, we want to hide the target, so we
3770      // return true (without a diagnostic) to tell the caller not to
3771      // build a shadow decl.
3772      if (CurContext->isRecord())
3773        return true;
3774
3775      // If we're not in a record, this is an error.
3776      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3777      break;
3778    }
3779
3780    Diag(Target->getLocation(), diag::note_using_decl_target);
3781    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3782    return true;
3783  }
3784
3785  // Target is not a function.
3786
3787  if (isa<TagDecl>(Target)) {
3788    // No conflict between a tag and a non-tag.
3789    if (!Tag) return false;
3790
3791    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3792    Diag(Target->getLocation(), diag::note_using_decl_target);
3793    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3794    return true;
3795  }
3796
3797  // No conflict between a tag and a non-tag.
3798  if (!NonTag) return false;
3799
3800  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3801  Diag(Target->getLocation(), diag::note_using_decl_target);
3802  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3803  return true;
3804}
3805
3806/// Builds a shadow declaration corresponding to a 'using' declaration.
3807UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3808                                            UsingDecl *UD,
3809                                            NamedDecl *Orig) {
3810
3811  // If we resolved to another shadow declaration, just coalesce them.
3812  NamedDecl *Target = Orig;
3813  if (isa<UsingShadowDecl>(Target)) {
3814    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3815    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3816  }
3817
3818  UsingShadowDecl *Shadow
3819    = UsingShadowDecl::Create(Context, CurContext,
3820                              UD->getLocation(), UD, Target);
3821  UD->addShadowDecl(Shadow);
3822
3823  Shadow->setAccess(UD->getAccess());
3824  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3825    Shadow->setInvalidDecl();
3826
3827  if (S)
3828    PushOnScopeChains(Shadow, S);
3829  else
3830    CurContext->addDecl(Shadow);
3831
3832
3833  return Shadow;
3834}
3835
3836/// Hides a using shadow declaration.  This is required by the current
3837/// using-decl implementation when a resolvable using declaration in a
3838/// class is followed by a declaration which would hide or override
3839/// one or more of the using decl's targets; for example:
3840///
3841///   struct Base { void foo(int); };
3842///   struct Derived : Base {
3843///     using Base::foo;
3844///     void foo(int);
3845///   };
3846///
3847/// The governing language is C++03 [namespace.udecl]p12:
3848///
3849///   When a using-declaration brings names from a base class into a
3850///   derived class scope, member functions in the derived class
3851///   override and/or hide member functions with the same name and
3852///   parameter types in a base class (rather than conflicting).
3853///
3854/// There are two ways to implement this:
3855///   (1) optimistically create shadow decls when they're not hidden
3856///       by existing declarations, or
3857///   (2) don't create any shadow decls (or at least don't make them
3858///       visible) until we've fully parsed/instantiated the class.
3859/// The problem with (1) is that we might have to retroactively remove
3860/// a shadow decl, which requires several O(n) operations because the
3861/// decl structures are (very reasonably) not designed for removal.
3862/// (2) avoids this but is very fiddly and phase-dependent.
3863void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3864  if (Shadow->getDeclName().getNameKind() ==
3865        DeclarationName::CXXConversionFunctionName)
3866    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3867
3868  // Remove it from the DeclContext...
3869  Shadow->getDeclContext()->removeDecl(Shadow);
3870
3871  // ...and the scope, if applicable...
3872  if (S) {
3873    S->RemoveDecl(Shadow);
3874    IdResolver.RemoveDecl(Shadow);
3875  }
3876
3877  // ...and the using decl.
3878  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3879
3880  // TODO: complain somehow if Shadow was used.  It shouldn't
3881  // be possible for this to happen, because...?
3882}
3883
3884/// Builds a using declaration.
3885///
3886/// \param IsInstantiation - Whether this call arises from an
3887///   instantiation of an unresolved using declaration.  We treat
3888///   the lookup differently for these declarations.
3889NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3890                                       SourceLocation UsingLoc,
3891                                       CXXScopeSpec &SS,
3892                                       const DeclarationNameInfo &NameInfo,
3893                                       AttributeList *AttrList,
3894                                       bool IsInstantiation,
3895                                       bool IsTypeName,
3896                                       SourceLocation TypenameLoc) {
3897  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3898  SourceLocation IdentLoc = NameInfo.getLoc();
3899  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3900
3901  // FIXME: We ignore attributes for now.
3902
3903  if (SS.isEmpty()) {
3904    Diag(IdentLoc, diag::err_using_requires_qualname);
3905    return 0;
3906  }
3907
3908  // Do the redeclaration lookup in the current scope.
3909  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3910                        ForRedeclaration);
3911  Previous.setHideTags(false);
3912  if (S) {
3913    LookupName(Previous, S);
3914
3915    // It is really dumb that we have to do this.
3916    LookupResult::Filter F = Previous.makeFilter();
3917    while (F.hasNext()) {
3918      NamedDecl *D = F.next();
3919      if (!isDeclInScope(D, CurContext, S))
3920        F.erase();
3921    }
3922    F.done();
3923  } else {
3924    assert(IsInstantiation && "no scope in non-instantiation");
3925    assert(CurContext->isRecord() && "scope not record in instantiation");
3926    LookupQualifiedName(Previous, CurContext);
3927  }
3928
3929  NestedNameSpecifier *NNS =
3930    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3931
3932  // Check for invalid redeclarations.
3933  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3934    return 0;
3935
3936  // Check for bad qualifiers.
3937  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3938    return 0;
3939
3940  DeclContext *LookupContext = computeDeclContext(SS);
3941  NamedDecl *D;
3942  if (!LookupContext) {
3943    if (IsTypeName) {
3944      // FIXME: not all declaration name kinds are legal here
3945      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3946                                              UsingLoc, TypenameLoc,
3947                                              SS.getRange(), NNS,
3948                                              IdentLoc, NameInfo.getName());
3949    } else {
3950      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3951                                           UsingLoc, SS.getRange(),
3952                                           NNS, NameInfo);
3953    }
3954  } else {
3955    D = UsingDecl::Create(Context, CurContext,
3956                          SS.getRange(), UsingLoc, NNS, NameInfo,
3957                          IsTypeName);
3958  }
3959  D->setAccess(AS);
3960  CurContext->addDecl(D);
3961
3962  if (!LookupContext) return D;
3963  UsingDecl *UD = cast<UsingDecl>(D);
3964
3965  if (RequireCompleteDeclContext(SS, LookupContext)) {
3966    UD->setInvalidDecl();
3967    return UD;
3968  }
3969
3970  // Look up the target name.
3971
3972  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3973
3974  // Unlike most lookups, we don't always want to hide tag
3975  // declarations: tag names are visible through the using declaration
3976  // even if hidden by ordinary names, *except* in a dependent context
3977  // where it's important for the sanity of two-phase lookup.
3978  if (!IsInstantiation)
3979    R.setHideTags(false);
3980
3981  LookupQualifiedName(R, LookupContext);
3982
3983  if (R.empty()) {
3984    Diag(IdentLoc, diag::err_no_member)
3985      << NameInfo.getName() << LookupContext << SS.getRange();
3986    UD->setInvalidDecl();
3987    return UD;
3988  }
3989
3990  if (R.isAmbiguous()) {
3991    UD->setInvalidDecl();
3992    return UD;
3993  }
3994
3995  if (IsTypeName) {
3996    // If we asked for a typename and got a non-type decl, error out.
3997    if (!R.getAsSingle<TypeDecl>()) {
3998      Diag(IdentLoc, diag::err_using_typename_non_type);
3999      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4000        Diag((*I)->getUnderlyingDecl()->getLocation(),
4001             diag::note_using_decl_target);
4002      UD->setInvalidDecl();
4003      return UD;
4004    }
4005  } else {
4006    // If we asked for a non-typename and we got a type, error out,
4007    // but only if this is an instantiation of an unresolved using
4008    // decl.  Otherwise just silently find the type name.
4009    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4010      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4011      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4012      UD->setInvalidDecl();
4013      return UD;
4014    }
4015  }
4016
4017  // C++0x N2914 [namespace.udecl]p6:
4018  // A using-declaration shall not name a namespace.
4019  if (R.getAsSingle<NamespaceDecl>()) {
4020    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4021      << SS.getRange();
4022    UD->setInvalidDecl();
4023    return UD;
4024  }
4025
4026  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4027    if (!CheckUsingShadowDecl(UD, *I, Previous))
4028      BuildUsingShadowDecl(S, UD, *I);
4029  }
4030
4031  return UD;
4032}
4033
4034/// Checks that the given using declaration is not an invalid
4035/// redeclaration.  Note that this is checking only for the using decl
4036/// itself, not for any ill-formedness among the UsingShadowDecls.
4037bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4038                                       bool isTypeName,
4039                                       const CXXScopeSpec &SS,
4040                                       SourceLocation NameLoc,
4041                                       const LookupResult &Prev) {
4042  // C++03 [namespace.udecl]p8:
4043  // C++0x [namespace.udecl]p10:
4044  //   A using-declaration is a declaration and can therefore be used
4045  //   repeatedly where (and only where) multiple declarations are
4046  //   allowed.
4047  //
4048  // That's in non-member contexts.
4049  if (!CurContext->getRedeclContext()->isRecord())
4050    return false;
4051
4052  NestedNameSpecifier *Qual
4053    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4054
4055  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4056    NamedDecl *D = *I;
4057
4058    bool DTypename;
4059    NestedNameSpecifier *DQual;
4060    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4061      DTypename = UD->isTypeName();
4062      DQual = UD->getTargetNestedNameDecl();
4063    } else if (UnresolvedUsingValueDecl *UD
4064                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4065      DTypename = false;
4066      DQual = UD->getTargetNestedNameSpecifier();
4067    } else if (UnresolvedUsingTypenameDecl *UD
4068                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4069      DTypename = true;
4070      DQual = UD->getTargetNestedNameSpecifier();
4071    } else continue;
4072
4073    // using decls differ if one says 'typename' and the other doesn't.
4074    // FIXME: non-dependent using decls?
4075    if (isTypeName != DTypename) continue;
4076
4077    // using decls differ if they name different scopes (but note that
4078    // template instantiation can cause this check to trigger when it
4079    // didn't before instantiation).
4080    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4081        Context.getCanonicalNestedNameSpecifier(DQual))
4082      continue;
4083
4084    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4085    Diag(D->getLocation(), diag::note_using_decl) << 1;
4086    return true;
4087  }
4088
4089  return false;
4090}
4091
4092
4093/// Checks that the given nested-name qualifier used in a using decl
4094/// in the current context is appropriately related to the current
4095/// scope.  If an error is found, diagnoses it and returns true.
4096bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4097                                   const CXXScopeSpec &SS,
4098                                   SourceLocation NameLoc) {
4099  DeclContext *NamedContext = computeDeclContext(SS);
4100
4101  if (!CurContext->isRecord()) {
4102    // C++03 [namespace.udecl]p3:
4103    // C++0x [namespace.udecl]p8:
4104    //   A using-declaration for a class member shall be a member-declaration.
4105
4106    // If we weren't able to compute a valid scope, it must be a
4107    // dependent class scope.
4108    if (!NamedContext || NamedContext->isRecord()) {
4109      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4110        << SS.getRange();
4111      return true;
4112    }
4113
4114    // Otherwise, everything is known to be fine.
4115    return false;
4116  }
4117
4118  // The current scope is a record.
4119
4120  // If the named context is dependent, we can't decide much.
4121  if (!NamedContext) {
4122    // FIXME: in C++0x, we can diagnose if we can prove that the
4123    // nested-name-specifier does not refer to a base class, which is
4124    // still possible in some cases.
4125
4126    // Otherwise we have to conservatively report that things might be
4127    // okay.
4128    return false;
4129  }
4130
4131  if (!NamedContext->isRecord()) {
4132    // Ideally this would point at the last name in the specifier,
4133    // but we don't have that level of source info.
4134    Diag(SS.getRange().getBegin(),
4135         diag::err_using_decl_nested_name_specifier_is_not_class)
4136      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4137    return true;
4138  }
4139
4140  if (!NamedContext->isDependentContext() &&
4141      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4142    return true;
4143
4144  if (getLangOptions().CPlusPlus0x) {
4145    // C++0x [namespace.udecl]p3:
4146    //   In a using-declaration used as a member-declaration, the
4147    //   nested-name-specifier shall name a base class of the class
4148    //   being defined.
4149
4150    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4151                                 cast<CXXRecordDecl>(NamedContext))) {
4152      if (CurContext == NamedContext) {
4153        Diag(NameLoc,
4154             diag::err_using_decl_nested_name_specifier_is_current_class)
4155          << SS.getRange();
4156        return true;
4157      }
4158
4159      Diag(SS.getRange().getBegin(),
4160           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4161        << (NestedNameSpecifier*) SS.getScopeRep()
4162        << cast<CXXRecordDecl>(CurContext)
4163        << SS.getRange();
4164      return true;
4165    }
4166
4167    return false;
4168  }
4169
4170  // C++03 [namespace.udecl]p4:
4171  //   A using-declaration used as a member-declaration shall refer
4172  //   to a member of a base class of the class being defined [etc.].
4173
4174  // Salient point: SS doesn't have to name a base class as long as
4175  // lookup only finds members from base classes.  Therefore we can
4176  // diagnose here only if we can prove that that can't happen,
4177  // i.e. if the class hierarchies provably don't intersect.
4178
4179  // TODO: it would be nice if "definitely valid" results were cached
4180  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4181  // need to be repeated.
4182
4183  struct UserData {
4184    llvm::DenseSet<const CXXRecordDecl*> Bases;
4185
4186    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4187      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4188      Data->Bases.insert(Base);
4189      return true;
4190    }
4191
4192    bool hasDependentBases(const CXXRecordDecl *Class) {
4193      return !Class->forallBases(collect, this);
4194    }
4195
4196    /// Returns true if the base is dependent or is one of the
4197    /// accumulated base classes.
4198    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4199      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4200      return !Data->Bases.count(Base);
4201    }
4202
4203    bool mightShareBases(const CXXRecordDecl *Class) {
4204      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4205    }
4206  };
4207
4208  UserData Data;
4209
4210  // Returns false if we find a dependent base.
4211  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4212    return false;
4213
4214  // Returns false if the class has a dependent base or if it or one
4215  // of its bases is present in the base set of the current context.
4216  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4217    return false;
4218
4219  Diag(SS.getRange().getBegin(),
4220       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4221    << (NestedNameSpecifier*) SS.getScopeRep()
4222    << cast<CXXRecordDecl>(CurContext)
4223    << SS.getRange();
4224
4225  return true;
4226}
4227
4228Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4229                                             SourceLocation NamespaceLoc,
4230                                             SourceLocation AliasLoc,
4231                                             IdentifierInfo *Alias,
4232                                             CXXScopeSpec &SS,
4233                                             SourceLocation IdentLoc,
4234                                             IdentifierInfo *Ident) {
4235
4236  // Lookup the namespace name.
4237  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4238  LookupParsedName(R, S, &SS);
4239
4240  // Check if we have a previous declaration with the same name.
4241  NamedDecl *PrevDecl
4242    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4243                       ForRedeclaration);
4244  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4245    PrevDecl = 0;
4246
4247  if (PrevDecl) {
4248    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4249      // We already have an alias with the same name that points to the same
4250      // namespace, so don't create a new one.
4251      // FIXME: At some point, we'll want to create the (redundant)
4252      // declaration to maintain better source information.
4253      if (!R.isAmbiguous() && !R.empty() &&
4254          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4255        return 0;
4256    }
4257
4258    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4259      diag::err_redefinition_different_kind;
4260    Diag(AliasLoc, DiagID) << Alias;
4261    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4262    return 0;
4263  }
4264
4265  if (R.isAmbiguous())
4266    return 0;
4267
4268  if (R.empty()) {
4269    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4270                                                CTC_NoKeywords, 0)) {
4271      if (R.getAsSingle<NamespaceDecl>() ||
4272          R.getAsSingle<NamespaceAliasDecl>()) {
4273        if (DeclContext *DC = computeDeclContext(SS, false))
4274          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4275            << Ident << DC << Corrected << SS.getRange()
4276            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4277        else
4278          Diag(IdentLoc, diag::err_using_directive_suggest)
4279            << Ident << Corrected
4280            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4281
4282        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4283          << Corrected;
4284
4285        Ident = Corrected.getAsIdentifierInfo();
4286      } else {
4287        R.clear();
4288        R.setLookupName(Ident);
4289      }
4290    }
4291
4292    if (R.empty()) {
4293      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4294      return 0;
4295    }
4296  }
4297
4298  NamespaceAliasDecl *AliasDecl =
4299    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4300                               Alias, SS.getRange(),
4301                               (NestedNameSpecifier *)SS.getScopeRep(),
4302                               IdentLoc, R.getFoundDecl());
4303
4304  PushOnScopeChains(AliasDecl, S);
4305  return AliasDecl;
4306}
4307
4308namespace {
4309  /// \brief Scoped object used to handle the state changes required in Sema
4310  /// to implicitly define the body of a C++ member function;
4311  class ImplicitlyDefinedFunctionScope {
4312    Sema &S;
4313    DeclContext *PreviousContext;
4314
4315  public:
4316    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4317      : S(S), PreviousContext(S.CurContext)
4318    {
4319      S.CurContext = Method;
4320      S.PushFunctionScope();
4321      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4322    }
4323
4324    ~ImplicitlyDefinedFunctionScope() {
4325      S.PopExpressionEvaluationContext();
4326      S.PopFunctionOrBlockScope();
4327      S.CurContext = PreviousContext;
4328    }
4329  };
4330}
4331
4332static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4333                                                       CXXRecordDecl *D) {
4334  ASTContext &Context = Self.Context;
4335  QualType ClassType = Context.getTypeDeclType(D);
4336  DeclarationName ConstructorName
4337    = Context.DeclarationNames.getCXXConstructorName(
4338                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4339
4340  DeclContext::lookup_const_iterator Con, ConEnd;
4341  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4342       Con != ConEnd; ++Con) {
4343    // FIXME: In C++0x, a constructor template can be a default constructor.
4344    if (isa<FunctionTemplateDecl>(*Con))
4345      continue;
4346
4347    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4348    if (Constructor->isDefaultConstructor())
4349      return Constructor;
4350  }
4351  return 0;
4352}
4353
4354CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4355                                                     CXXRecordDecl *ClassDecl) {
4356  // C++ [class.ctor]p5:
4357  //   A default constructor for a class X is a constructor of class X
4358  //   that can be called without an argument. If there is no
4359  //   user-declared constructor for class X, a default constructor is
4360  //   implicitly declared. An implicitly-declared default constructor
4361  //   is an inline public member of its class.
4362  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4363         "Should not build implicit default constructor!");
4364
4365  // C++ [except.spec]p14:
4366  //   An implicitly declared special member function (Clause 12) shall have an
4367  //   exception-specification. [...]
4368  ImplicitExceptionSpecification ExceptSpec(Context);
4369
4370  // Direct base-class destructors.
4371  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4372                                       BEnd = ClassDecl->bases_end();
4373       B != BEnd; ++B) {
4374    if (B->isVirtual()) // Handled below.
4375      continue;
4376
4377    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4378      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4379      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4380        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4381      else if (CXXConstructorDecl *Constructor
4382                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4383        ExceptSpec.CalledDecl(Constructor);
4384    }
4385  }
4386
4387  // Virtual base-class destructors.
4388  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4389                                       BEnd = ClassDecl->vbases_end();
4390       B != BEnd; ++B) {
4391    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4392      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4393      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4394        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4395      else if (CXXConstructorDecl *Constructor
4396                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4397        ExceptSpec.CalledDecl(Constructor);
4398    }
4399  }
4400
4401  // Field destructors.
4402  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4403                               FEnd = ClassDecl->field_end();
4404       F != FEnd; ++F) {
4405    if (const RecordType *RecordTy
4406              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4407      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4408      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4409        ExceptSpec.CalledDecl(
4410                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4411      else if (CXXConstructorDecl *Constructor
4412                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4413        ExceptSpec.CalledDecl(Constructor);
4414    }
4415  }
4416
4417  FunctionProtoType::ExtProtoInfo EPI;
4418  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4419  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4420  EPI.NumExceptions = ExceptSpec.size();
4421  EPI.Exceptions = ExceptSpec.data();
4422
4423  // Create the actual constructor declaration.
4424  CanQualType ClassType
4425    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4426  DeclarationName Name
4427    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4428  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4429  CXXConstructorDecl *DefaultCon
4430    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4431                                 Context.getFunctionType(Context.VoidTy,
4432                                                         0, 0, EPI),
4433                                 /*TInfo=*/0,
4434                                 /*isExplicit=*/false,
4435                                 /*isInline=*/true,
4436                                 /*isImplicitlyDeclared=*/true);
4437  DefaultCon->setAccess(AS_public);
4438  DefaultCon->setImplicit();
4439  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4440
4441  // Note that we have declared this constructor.
4442  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4443
4444  if (Scope *S = getScopeForContext(ClassDecl))
4445    PushOnScopeChains(DefaultCon, S, false);
4446  ClassDecl->addDecl(DefaultCon);
4447
4448  return DefaultCon;
4449}
4450
4451void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4452                                            CXXConstructorDecl *Constructor) {
4453  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4454          !Constructor->isUsed(false)) &&
4455    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4456
4457  CXXRecordDecl *ClassDecl = Constructor->getParent();
4458  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4459
4460  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4461  DiagnosticErrorTrap Trap(Diags);
4462  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4463      Trap.hasErrorOccurred()) {
4464    Diag(CurrentLocation, diag::note_member_synthesized_at)
4465      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4466    Constructor->setInvalidDecl();
4467    return;
4468  }
4469
4470  SourceLocation Loc = Constructor->getLocation();
4471  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4472
4473  Constructor->setUsed();
4474  MarkVTableUsed(CurrentLocation, ClassDecl);
4475}
4476
4477CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4478  // C++ [class.dtor]p2:
4479  //   If a class has no user-declared destructor, a destructor is
4480  //   declared implicitly. An implicitly-declared destructor is an
4481  //   inline public member of its class.
4482
4483  // C++ [except.spec]p14:
4484  //   An implicitly declared special member function (Clause 12) shall have
4485  //   an exception-specification.
4486  ImplicitExceptionSpecification ExceptSpec(Context);
4487
4488  // Direct base-class destructors.
4489  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4490                                       BEnd = ClassDecl->bases_end();
4491       B != BEnd; ++B) {
4492    if (B->isVirtual()) // Handled below.
4493      continue;
4494
4495    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4496      ExceptSpec.CalledDecl(
4497                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4498  }
4499
4500  // Virtual base-class destructors.
4501  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4502                                       BEnd = ClassDecl->vbases_end();
4503       B != BEnd; ++B) {
4504    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4505      ExceptSpec.CalledDecl(
4506                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4507  }
4508
4509  // Field destructors.
4510  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4511                               FEnd = ClassDecl->field_end();
4512       F != FEnd; ++F) {
4513    if (const RecordType *RecordTy
4514        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4515      ExceptSpec.CalledDecl(
4516                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4517  }
4518
4519  // Create the actual destructor declaration.
4520  FunctionProtoType::ExtProtoInfo EPI;
4521  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4522  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4523  EPI.NumExceptions = ExceptSpec.size();
4524  EPI.Exceptions = ExceptSpec.data();
4525  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4526
4527  CanQualType ClassType
4528    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4529  DeclarationName Name
4530    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4531  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4532  CXXDestructorDecl *Destructor
4533      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4534                                /*isInline=*/true,
4535                                /*isImplicitlyDeclared=*/true);
4536  Destructor->setAccess(AS_public);
4537  Destructor->setImplicit();
4538  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4539
4540  // Note that we have declared this destructor.
4541  ++ASTContext::NumImplicitDestructorsDeclared;
4542
4543  // Introduce this destructor into its scope.
4544  if (Scope *S = getScopeForContext(ClassDecl))
4545    PushOnScopeChains(Destructor, S, false);
4546  ClassDecl->addDecl(Destructor);
4547
4548  // This could be uniqued if it ever proves significant.
4549  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4550
4551  AddOverriddenMethods(ClassDecl, Destructor);
4552
4553  return Destructor;
4554}
4555
4556void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4557                                    CXXDestructorDecl *Destructor) {
4558  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4559         "DefineImplicitDestructor - call it for implicit default dtor");
4560  CXXRecordDecl *ClassDecl = Destructor->getParent();
4561  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4562
4563  if (Destructor->isInvalidDecl())
4564    return;
4565
4566  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4567
4568  DiagnosticErrorTrap Trap(Diags);
4569  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4570                                         Destructor->getParent());
4571
4572  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4573    Diag(CurrentLocation, diag::note_member_synthesized_at)
4574      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4575
4576    Destructor->setInvalidDecl();
4577    return;
4578  }
4579
4580  SourceLocation Loc = Destructor->getLocation();
4581  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4582
4583  Destructor->setUsed();
4584  MarkVTableUsed(CurrentLocation, ClassDecl);
4585}
4586
4587/// \brief Builds a statement that copies the given entity from \p From to
4588/// \c To.
4589///
4590/// This routine is used to copy the members of a class with an
4591/// implicitly-declared copy assignment operator. When the entities being
4592/// copied are arrays, this routine builds for loops to copy them.
4593///
4594/// \param S The Sema object used for type-checking.
4595///
4596/// \param Loc The location where the implicit copy is being generated.
4597///
4598/// \param T The type of the expressions being copied. Both expressions must
4599/// have this type.
4600///
4601/// \param To The expression we are copying to.
4602///
4603/// \param From The expression we are copying from.
4604///
4605/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4606/// Otherwise, it's a non-static member subobject.
4607///
4608/// \param Depth Internal parameter recording the depth of the recursion.
4609///
4610/// \returns A statement or a loop that copies the expressions.
4611static StmtResult
4612BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4613                      Expr *To, Expr *From,
4614                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4615  // C++0x [class.copy]p30:
4616  //   Each subobject is assigned in the manner appropriate to its type:
4617  //
4618  //     - if the subobject is of class type, the copy assignment operator
4619  //       for the class is used (as if by explicit qualification; that is,
4620  //       ignoring any possible virtual overriding functions in more derived
4621  //       classes);
4622  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4623    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4624
4625    // Look for operator=.
4626    DeclarationName Name
4627      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4628    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4629    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4630
4631    // Filter out any result that isn't a copy-assignment operator.
4632    LookupResult::Filter F = OpLookup.makeFilter();
4633    while (F.hasNext()) {
4634      NamedDecl *D = F.next();
4635      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4636        if (Method->isCopyAssignmentOperator())
4637          continue;
4638
4639      F.erase();
4640    }
4641    F.done();
4642
4643    // Suppress the protected check (C++ [class.protected]) for each of the
4644    // assignment operators we found. This strange dance is required when
4645    // we're assigning via a base classes's copy-assignment operator. To
4646    // ensure that we're getting the right base class subobject (without
4647    // ambiguities), we need to cast "this" to that subobject type; to
4648    // ensure that we don't go through the virtual call mechanism, we need
4649    // to qualify the operator= name with the base class (see below). However,
4650    // this means that if the base class has a protected copy assignment
4651    // operator, the protected member access check will fail. So, we
4652    // rewrite "protected" access to "public" access in this case, since we
4653    // know by construction that we're calling from a derived class.
4654    if (CopyingBaseSubobject) {
4655      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4656           L != LEnd; ++L) {
4657        if (L.getAccess() == AS_protected)
4658          L.setAccess(AS_public);
4659      }
4660    }
4661
4662    // Create the nested-name-specifier that will be used to qualify the
4663    // reference to operator=; this is required to suppress the virtual
4664    // call mechanism.
4665    CXXScopeSpec SS;
4666    SS.setRange(Loc);
4667    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4668                                               T.getTypePtr()));
4669
4670    // Create the reference to operator=.
4671    ExprResult OpEqualRef
4672      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4673                                   /*FirstQualifierInScope=*/0, OpLookup,
4674                                   /*TemplateArgs=*/0,
4675                                   /*SuppressQualifierCheck=*/true);
4676    if (OpEqualRef.isInvalid())
4677      return StmtError();
4678
4679    // Build the call to the assignment operator.
4680
4681    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4682                                                  OpEqualRef.takeAs<Expr>(),
4683                                                  Loc, &From, 1, Loc);
4684    if (Call.isInvalid())
4685      return StmtError();
4686
4687    return S.Owned(Call.takeAs<Stmt>());
4688  }
4689
4690  //     - if the subobject is of scalar type, the built-in assignment
4691  //       operator is used.
4692  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4693  if (!ArrayTy) {
4694    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4695    if (Assignment.isInvalid())
4696      return StmtError();
4697
4698    return S.Owned(Assignment.takeAs<Stmt>());
4699  }
4700
4701  //     - if the subobject is an array, each element is assigned, in the
4702  //       manner appropriate to the element type;
4703
4704  // Construct a loop over the array bounds, e.g.,
4705  //
4706  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4707  //
4708  // that will copy each of the array elements.
4709  QualType SizeType = S.Context.getSizeType();
4710
4711  // Create the iteration variable.
4712  IdentifierInfo *IterationVarName = 0;
4713  {
4714    llvm::SmallString<8> Str;
4715    llvm::raw_svector_ostream OS(Str);
4716    OS << "__i" << Depth;
4717    IterationVarName = &S.Context.Idents.get(OS.str());
4718  }
4719  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4720                                          IterationVarName, SizeType,
4721                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4722                                          SC_None, SC_None);
4723
4724  // Initialize the iteration variable to zero.
4725  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4726  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4727
4728  // Create a reference to the iteration variable; we'll use this several
4729  // times throughout.
4730  Expr *IterationVarRef
4731    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4732  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4733
4734  // Create the DeclStmt that holds the iteration variable.
4735  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4736
4737  // Create the comparison against the array bound.
4738  llvm::APInt Upper
4739    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4740  Expr *Comparison
4741    = new (S.Context) BinaryOperator(IterationVarRef,
4742                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4743                                     BO_NE, S.Context.BoolTy,
4744                                     VK_RValue, OK_Ordinary, Loc);
4745
4746  // Create the pre-increment of the iteration variable.
4747  Expr *Increment
4748    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4749                                    VK_LValue, OK_Ordinary, Loc);
4750
4751  // Subscript the "from" and "to" expressions with the iteration variable.
4752  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4753                                                         IterationVarRef, Loc));
4754  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4755                                                       IterationVarRef, Loc));
4756
4757  // Build the copy for an individual element of the array.
4758  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4759                                          To, From, CopyingBaseSubobject,
4760                                          Depth + 1);
4761  if (Copy.isInvalid())
4762    return StmtError();
4763
4764  // Construct the loop that copies all elements of this array.
4765  return S.ActOnForStmt(Loc, Loc, InitStmt,
4766                        S.MakeFullExpr(Comparison),
4767                        0, S.MakeFullExpr(Increment),
4768                        Loc, Copy.take());
4769}
4770
4771/// \brief Determine whether the given class has a copy assignment operator
4772/// that accepts a const-qualified argument.
4773static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4774  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4775
4776  if (!Class->hasDeclaredCopyAssignment())
4777    S.DeclareImplicitCopyAssignment(Class);
4778
4779  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4780  DeclarationName OpName
4781    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4782
4783  DeclContext::lookup_const_iterator Op, OpEnd;
4784  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4785    // C++ [class.copy]p9:
4786    //   A user-declared copy assignment operator is a non-static non-template
4787    //   member function of class X with exactly one parameter of type X, X&,
4788    //   const X&, volatile X& or const volatile X&.
4789    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4790    if (!Method)
4791      continue;
4792
4793    if (Method->isStatic())
4794      continue;
4795    if (Method->getPrimaryTemplate())
4796      continue;
4797    const FunctionProtoType *FnType =
4798    Method->getType()->getAs<FunctionProtoType>();
4799    assert(FnType && "Overloaded operator has no prototype.");
4800    // Don't assert on this; an invalid decl might have been left in the AST.
4801    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4802      continue;
4803    bool AcceptsConst = true;
4804    QualType ArgType = FnType->getArgType(0);
4805    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4806      ArgType = Ref->getPointeeType();
4807      // Is it a non-const lvalue reference?
4808      if (!ArgType.isConstQualified())
4809        AcceptsConst = false;
4810    }
4811    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4812      continue;
4813
4814    // We have a single argument of type cv X or cv X&, i.e. we've found the
4815    // copy assignment operator. Return whether it accepts const arguments.
4816    return AcceptsConst;
4817  }
4818  assert(Class->isInvalidDecl() &&
4819         "No copy assignment operator declared in valid code.");
4820  return false;
4821}
4822
4823CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4824  // Note: The following rules are largely analoguous to the copy
4825  // constructor rules. Note that virtual bases are not taken into account
4826  // for determining the argument type of the operator. Note also that
4827  // operators taking an object instead of a reference are allowed.
4828
4829
4830  // C++ [class.copy]p10:
4831  //   If the class definition does not explicitly declare a copy
4832  //   assignment operator, one is declared implicitly.
4833  //   The implicitly-defined copy assignment operator for a class X
4834  //   will have the form
4835  //
4836  //       X& X::operator=(const X&)
4837  //
4838  //   if
4839  bool HasConstCopyAssignment = true;
4840
4841  //       -- each direct base class B of X has a copy assignment operator
4842  //          whose parameter is of type const B&, const volatile B& or B,
4843  //          and
4844  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4845                                       BaseEnd = ClassDecl->bases_end();
4846       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4847    assert(!Base->getType()->isDependentType() &&
4848           "Cannot generate implicit members for class with dependent bases.");
4849    const CXXRecordDecl *BaseClassDecl
4850      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4851    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4852  }
4853
4854  //       -- for all the nonstatic data members of X that are of a class
4855  //          type M (or array thereof), each such class type has a copy
4856  //          assignment operator whose parameter is of type const M&,
4857  //          const volatile M& or M.
4858  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4859                                  FieldEnd = ClassDecl->field_end();
4860       HasConstCopyAssignment && Field != FieldEnd;
4861       ++Field) {
4862    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4863    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4864      const CXXRecordDecl *FieldClassDecl
4865        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4866      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4867    }
4868  }
4869
4870  //   Otherwise, the implicitly declared copy assignment operator will
4871  //   have the form
4872  //
4873  //       X& X::operator=(X&)
4874  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4875  QualType RetType = Context.getLValueReferenceType(ArgType);
4876  if (HasConstCopyAssignment)
4877    ArgType = ArgType.withConst();
4878  ArgType = Context.getLValueReferenceType(ArgType);
4879
4880  // C++ [except.spec]p14:
4881  //   An implicitly declared special member function (Clause 12) shall have an
4882  //   exception-specification. [...]
4883  ImplicitExceptionSpecification ExceptSpec(Context);
4884  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4885                                       BaseEnd = ClassDecl->bases_end();
4886       Base != BaseEnd; ++Base) {
4887    CXXRecordDecl *BaseClassDecl
4888      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4889
4890    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4891      DeclareImplicitCopyAssignment(BaseClassDecl);
4892
4893    if (CXXMethodDecl *CopyAssign
4894           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4895      ExceptSpec.CalledDecl(CopyAssign);
4896  }
4897  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4898                                  FieldEnd = ClassDecl->field_end();
4899       Field != FieldEnd;
4900       ++Field) {
4901    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4902    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4903      CXXRecordDecl *FieldClassDecl
4904        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4905
4906      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4907        DeclareImplicitCopyAssignment(FieldClassDecl);
4908
4909      if (CXXMethodDecl *CopyAssign
4910            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4911        ExceptSpec.CalledDecl(CopyAssign);
4912    }
4913  }
4914
4915  //   An implicitly-declared copy assignment operator is an inline public
4916  //   member of its class.
4917  FunctionProtoType::ExtProtoInfo EPI;
4918  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4919  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4920  EPI.NumExceptions = ExceptSpec.size();
4921  EPI.Exceptions = ExceptSpec.data();
4922  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4923  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4924  CXXMethodDecl *CopyAssignment
4925    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4926                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
4927                            /*TInfo=*/0, /*isStatic=*/false,
4928                            /*StorageClassAsWritten=*/SC_None,
4929                            /*isInline=*/true);
4930  CopyAssignment->setAccess(AS_public);
4931  CopyAssignment->setImplicit();
4932  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4933
4934  // Add the parameter to the operator.
4935  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4936                                               ClassDecl->getLocation(),
4937                                               /*Id=*/0,
4938                                               ArgType, /*TInfo=*/0,
4939                                               SC_None,
4940                                               SC_None, 0);
4941  CopyAssignment->setParams(&FromParam, 1);
4942
4943  // Note that we have added this copy-assignment operator.
4944  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4945
4946  if (Scope *S = getScopeForContext(ClassDecl))
4947    PushOnScopeChains(CopyAssignment, S, false);
4948  ClassDecl->addDecl(CopyAssignment);
4949
4950  AddOverriddenMethods(ClassDecl, CopyAssignment);
4951  return CopyAssignment;
4952}
4953
4954void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4955                                        CXXMethodDecl *CopyAssignOperator) {
4956  assert((CopyAssignOperator->isImplicit() &&
4957          CopyAssignOperator->isOverloadedOperator() &&
4958          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4959          !CopyAssignOperator->isUsed(false)) &&
4960         "DefineImplicitCopyAssignment called for wrong function");
4961
4962  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4963
4964  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4965    CopyAssignOperator->setInvalidDecl();
4966    return;
4967  }
4968
4969  CopyAssignOperator->setUsed();
4970
4971  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4972  DiagnosticErrorTrap Trap(Diags);
4973
4974  // C++0x [class.copy]p30:
4975  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4976  //   for a non-union class X performs memberwise copy assignment of its
4977  //   subobjects. The direct base classes of X are assigned first, in the
4978  //   order of their declaration in the base-specifier-list, and then the
4979  //   immediate non-static data members of X are assigned, in the order in
4980  //   which they were declared in the class definition.
4981
4982  // The statements that form the synthesized function body.
4983  ASTOwningVector<Stmt*> Statements(*this);
4984
4985  // The parameter for the "other" object, which we are copying from.
4986  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4987  Qualifiers OtherQuals = Other->getType().getQualifiers();
4988  QualType OtherRefType = Other->getType();
4989  if (const LValueReferenceType *OtherRef
4990                                = OtherRefType->getAs<LValueReferenceType>()) {
4991    OtherRefType = OtherRef->getPointeeType();
4992    OtherQuals = OtherRefType.getQualifiers();
4993  }
4994
4995  // Our location for everything implicitly-generated.
4996  SourceLocation Loc = CopyAssignOperator->getLocation();
4997
4998  // Construct a reference to the "other" object. We'll be using this
4999  // throughout the generated ASTs.
5000  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5001  assert(OtherRef && "Reference to parameter cannot fail!");
5002
5003  // Construct the "this" pointer. We'll be using this throughout the generated
5004  // ASTs.
5005  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5006  assert(This && "Reference to this cannot fail!");
5007
5008  // Assign base classes.
5009  bool Invalid = false;
5010  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5011       E = ClassDecl->bases_end(); Base != E; ++Base) {
5012    // Form the assignment:
5013    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5014    QualType BaseType = Base->getType().getUnqualifiedType();
5015    if (!BaseType->isRecordType()) {
5016      Invalid = true;
5017      continue;
5018    }
5019
5020    CXXCastPath BasePath;
5021    BasePath.push_back(Base);
5022
5023    // Construct the "from" expression, which is an implicit cast to the
5024    // appropriately-qualified base type.
5025    Expr *From = OtherRef;
5026    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5027                      CK_UncheckedDerivedToBase,
5028                      VK_LValue, &BasePath);
5029
5030    // Dereference "this".
5031    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5032
5033    // Implicitly cast "this" to the appropriately-qualified base type.
5034    Expr *ToE = To.takeAs<Expr>();
5035    ImpCastExprToType(ToE,
5036                      Context.getCVRQualifiedType(BaseType,
5037                                      CopyAssignOperator->getTypeQualifiers()),
5038                      CK_UncheckedDerivedToBase,
5039                      VK_LValue, &BasePath);
5040    To = Owned(ToE);
5041
5042    // Build the copy.
5043    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5044                                            To.get(), From,
5045                                            /*CopyingBaseSubobject=*/true);
5046    if (Copy.isInvalid()) {
5047      Diag(CurrentLocation, diag::note_member_synthesized_at)
5048        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5049      CopyAssignOperator->setInvalidDecl();
5050      return;
5051    }
5052
5053    // Success! Record the copy.
5054    Statements.push_back(Copy.takeAs<Expr>());
5055  }
5056
5057  // \brief Reference to the __builtin_memcpy function.
5058  Expr *BuiltinMemCpyRef = 0;
5059  // \brief Reference to the __builtin_objc_memmove_collectable function.
5060  Expr *CollectableMemCpyRef = 0;
5061
5062  // Assign non-static members.
5063  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5064                                  FieldEnd = ClassDecl->field_end();
5065       Field != FieldEnd; ++Field) {
5066    // Check for members of reference type; we can't copy those.
5067    if (Field->getType()->isReferenceType()) {
5068      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5069        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5070      Diag(Field->getLocation(), diag::note_declared_at);
5071      Diag(CurrentLocation, diag::note_member_synthesized_at)
5072        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5073      Invalid = true;
5074      continue;
5075    }
5076
5077    // Check for members of const-qualified, non-class type.
5078    QualType BaseType = Context.getBaseElementType(Field->getType());
5079    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5080      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5081        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5082      Diag(Field->getLocation(), diag::note_declared_at);
5083      Diag(CurrentLocation, diag::note_member_synthesized_at)
5084        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5085      Invalid = true;
5086      continue;
5087    }
5088
5089    QualType FieldType = Field->getType().getNonReferenceType();
5090    if (FieldType->isIncompleteArrayType()) {
5091      assert(ClassDecl->hasFlexibleArrayMember() &&
5092             "Incomplete array type is not valid");
5093      continue;
5094    }
5095
5096    // Build references to the field in the object we're copying from and to.
5097    CXXScopeSpec SS; // Intentionally empty
5098    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5099                              LookupMemberName);
5100    MemberLookup.addDecl(*Field);
5101    MemberLookup.resolveKind();
5102    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5103                                               Loc, /*IsArrow=*/false,
5104                                               SS, 0, MemberLookup, 0);
5105    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5106                                             Loc, /*IsArrow=*/true,
5107                                             SS, 0, MemberLookup, 0);
5108    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5109    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5110
5111    // If the field should be copied with __builtin_memcpy rather than via
5112    // explicit assignments, do so. This optimization only applies for arrays
5113    // of scalars and arrays of class type with trivial copy-assignment
5114    // operators.
5115    if (FieldType->isArrayType() &&
5116        (!BaseType->isRecordType() ||
5117         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5118           ->hasTrivialCopyAssignment())) {
5119      // Compute the size of the memory buffer to be copied.
5120      QualType SizeType = Context.getSizeType();
5121      llvm::APInt Size(Context.getTypeSize(SizeType),
5122                       Context.getTypeSizeInChars(BaseType).getQuantity());
5123      for (const ConstantArrayType *Array
5124              = Context.getAsConstantArrayType(FieldType);
5125           Array;
5126           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5127        llvm::APInt ArraySize
5128          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5129        Size *= ArraySize;
5130      }
5131
5132      // Take the address of the field references for "from" and "to".
5133      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5134      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5135
5136      bool NeedsCollectableMemCpy =
5137          (BaseType->isRecordType() &&
5138           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5139
5140      if (NeedsCollectableMemCpy) {
5141        if (!CollectableMemCpyRef) {
5142          // Create a reference to the __builtin_objc_memmove_collectable function.
5143          LookupResult R(*this,
5144                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5145                         Loc, LookupOrdinaryName);
5146          LookupName(R, TUScope, true);
5147
5148          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5149          if (!CollectableMemCpy) {
5150            // Something went horribly wrong earlier, and we will have
5151            // complained about it.
5152            Invalid = true;
5153            continue;
5154          }
5155
5156          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5157                                                  CollectableMemCpy->getType(),
5158                                                  VK_LValue, Loc, 0).take();
5159          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5160        }
5161      }
5162      // Create a reference to the __builtin_memcpy builtin function.
5163      else if (!BuiltinMemCpyRef) {
5164        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5165                       LookupOrdinaryName);
5166        LookupName(R, TUScope, true);
5167
5168        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5169        if (!BuiltinMemCpy) {
5170          // Something went horribly wrong earlier, and we will have complained
5171          // about it.
5172          Invalid = true;
5173          continue;
5174        }
5175
5176        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5177                                            BuiltinMemCpy->getType(),
5178                                            VK_LValue, Loc, 0).take();
5179        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5180      }
5181
5182      ASTOwningVector<Expr*> CallArgs(*this);
5183      CallArgs.push_back(To.takeAs<Expr>());
5184      CallArgs.push_back(From.takeAs<Expr>());
5185      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5186      ExprResult Call = ExprError();
5187      if (NeedsCollectableMemCpy)
5188        Call = ActOnCallExpr(/*Scope=*/0,
5189                             CollectableMemCpyRef,
5190                             Loc, move_arg(CallArgs),
5191                             Loc);
5192      else
5193        Call = ActOnCallExpr(/*Scope=*/0,
5194                             BuiltinMemCpyRef,
5195                             Loc, move_arg(CallArgs),
5196                             Loc);
5197
5198      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5199      Statements.push_back(Call.takeAs<Expr>());
5200      continue;
5201    }
5202
5203    // Build the copy of this field.
5204    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5205                                                  To.get(), From.get(),
5206                                              /*CopyingBaseSubobject=*/false);
5207    if (Copy.isInvalid()) {
5208      Diag(CurrentLocation, diag::note_member_synthesized_at)
5209        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5210      CopyAssignOperator->setInvalidDecl();
5211      return;
5212    }
5213
5214    // Success! Record the copy.
5215    Statements.push_back(Copy.takeAs<Stmt>());
5216  }
5217
5218  if (!Invalid) {
5219    // Add a "return *this;"
5220    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5221
5222    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5223    if (Return.isInvalid())
5224      Invalid = true;
5225    else {
5226      Statements.push_back(Return.takeAs<Stmt>());
5227
5228      if (Trap.hasErrorOccurred()) {
5229        Diag(CurrentLocation, diag::note_member_synthesized_at)
5230          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5231        Invalid = true;
5232      }
5233    }
5234  }
5235
5236  if (Invalid) {
5237    CopyAssignOperator->setInvalidDecl();
5238    return;
5239  }
5240
5241  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5242                                            /*isStmtExpr=*/false);
5243  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5244  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5245}
5246
5247CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5248                                                    CXXRecordDecl *ClassDecl) {
5249  // C++ [class.copy]p4:
5250  //   If the class definition does not explicitly declare a copy
5251  //   constructor, one is declared implicitly.
5252
5253  // C++ [class.copy]p5:
5254  //   The implicitly-declared copy constructor for a class X will
5255  //   have the form
5256  //
5257  //       X::X(const X&)
5258  //
5259  //   if
5260  bool HasConstCopyConstructor = true;
5261
5262  //     -- each direct or virtual base class B of X has a copy
5263  //        constructor whose first parameter is of type const B& or
5264  //        const volatile B&, and
5265  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5266                                       BaseEnd = ClassDecl->bases_end();
5267       HasConstCopyConstructor && Base != BaseEnd;
5268       ++Base) {
5269    // Virtual bases are handled below.
5270    if (Base->isVirtual())
5271      continue;
5272
5273    CXXRecordDecl *BaseClassDecl
5274      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5275    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5276      DeclareImplicitCopyConstructor(BaseClassDecl);
5277
5278    HasConstCopyConstructor
5279      = BaseClassDecl->hasConstCopyConstructor(Context);
5280  }
5281
5282  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5283                                       BaseEnd = ClassDecl->vbases_end();
5284       HasConstCopyConstructor && Base != BaseEnd;
5285       ++Base) {
5286    CXXRecordDecl *BaseClassDecl
5287      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5288    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5289      DeclareImplicitCopyConstructor(BaseClassDecl);
5290
5291    HasConstCopyConstructor
5292      = BaseClassDecl->hasConstCopyConstructor(Context);
5293  }
5294
5295  //     -- for all the nonstatic data members of X that are of a
5296  //        class type M (or array thereof), each such class type
5297  //        has a copy constructor whose first parameter is of type
5298  //        const M& or const volatile M&.
5299  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5300                                  FieldEnd = ClassDecl->field_end();
5301       HasConstCopyConstructor && Field != FieldEnd;
5302       ++Field) {
5303    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5304    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5305      CXXRecordDecl *FieldClassDecl
5306        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5307      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5308        DeclareImplicitCopyConstructor(FieldClassDecl);
5309
5310      HasConstCopyConstructor
5311        = FieldClassDecl->hasConstCopyConstructor(Context);
5312    }
5313  }
5314
5315  //   Otherwise, the implicitly declared copy constructor will have
5316  //   the form
5317  //
5318  //       X::X(X&)
5319  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5320  QualType ArgType = ClassType;
5321  if (HasConstCopyConstructor)
5322    ArgType = ArgType.withConst();
5323  ArgType = Context.getLValueReferenceType(ArgType);
5324
5325  // C++ [except.spec]p14:
5326  //   An implicitly declared special member function (Clause 12) shall have an
5327  //   exception-specification. [...]
5328  ImplicitExceptionSpecification ExceptSpec(Context);
5329  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5330  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5331                                       BaseEnd = ClassDecl->bases_end();
5332       Base != BaseEnd;
5333       ++Base) {
5334    // Virtual bases are handled below.
5335    if (Base->isVirtual())
5336      continue;
5337
5338    CXXRecordDecl *BaseClassDecl
5339      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5340    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5341      DeclareImplicitCopyConstructor(BaseClassDecl);
5342
5343    if (CXXConstructorDecl *CopyConstructor
5344                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5345      ExceptSpec.CalledDecl(CopyConstructor);
5346  }
5347  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5348                                       BaseEnd = ClassDecl->vbases_end();
5349       Base != BaseEnd;
5350       ++Base) {
5351    CXXRecordDecl *BaseClassDecl
5352      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5353    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5354      DeclareImplicitCopyConstructor(BaseClassDecl);
5355
5356    if (CXXConstructorDecl *CopyConstructor
5357                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5358      ExceptSpec.CalledDecl(CopyConstructor);
5359  }
5360  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5361                                  FieldEnd = ClassDecl->field_end();
5362       Field != FieldEnd;
5363       ++Field) {
5364    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5365    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5366      CXXRecordDecl *FieldClassDecl
5367        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5368      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5369        DeclareImplicitCopyConstructor(FieldClassDecl);
5370
5371      if (CXXConstructorDecl *CopyConstructor
5372                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5373        ExceptSpec.CalledDecl(CopyConstructor);
5374    }
5375  }
5376
5377  //   An implicitly-declared copy constructor is an inline public
5378  //   member of its class.
5379  FunctionProtoType::ExtProtoInfo EPI;
5380  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5381  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5382  EPI.NumExceptions = ExceptSpec.size();
5383  EPI.Exceptions = ExceptSpec.data();
5384  DeclarationName Name
5385    = Context.DeclarationNames.getCXXConstructorName(
5386                                           Context.getCanonicalType(ClassType));
5387  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5388  CXXConstructorDecl *CopyConstructor
5389    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5390                                 Context.getFunctionType(Context.VoidTy,
5391                                                         &ArgType, 1, EPI),
5392                                 /*TInfo=*/0,
5393                                 /*isExplicit=*/false,
5394                                 /*isInline=*/true,
5395                                 /*isImplicitlyDeclared=*/true);
5396  CopyConstructor->setAccess(AS_public);
5397  CopyConstructor->setImplicit();
5398  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5399
5400  // Note that we have declared this constructor.
5401  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5402
5403  // Add the parameter to the constructor.
5404  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5405                                               ClassDecl->getLocation(),
5406                                               /*IdentifierInfo=*/0,
5407                                               ArgType, /*TInfo=*/0,
5408                                               SC_None,
5409                                               SC_None, 0);
5410  CopyConstructor->setParams(&FromParam, 1);
5411  if (Scope *S = getScopeForContext(ClassDecl))
5412    PushOnScopeChains(CopyConstructor, S, false);
5413  ClassDecl->addDecl(CopyConstructor);
5414
5415  return CopyConstructor;
5416}
5417
5418void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5419                                   CXXConstructorDecl *CopyConstructor,
5420                                   unsigned TypeQuals) {
5421  assert((CopyConstructor->isImplicit() &&
5422          CopyConstructor->isCopyConstructor(TypeQuals) &&
5423          !CopyConstructor->isUsed(false)) &&
5424         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5425
5426  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5427  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5428
5429  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5430  DiagnosticErrorTrap Trap(Diags);
5431
5432  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5433      Trap.hasErrorOccurred()) {
5434    Diag(CurrentLocation, diag::note_member_synthesized_at)
5435      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5436    CopyConstructor->setInvalidDecl();
5437  }  else {
5438    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5439                                               CopyConstructor->getLocation(),
5440                                               MultiStmtArg(*this, 0, 0),
5441                                               /*isStmtExpr=*/false)
5442                                                              .takeAs<Stmt>());
5443  }
5444
5445  CopyConstructor->setUsed();
5446}
5447
5448ExprResult
5449Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5450                            CXXConstructorDecl *Constructor,
5451                            MultiExprArg ExprArgs,
5452                            bool RequiresZeroInit,
5453                            unsigned ConstructKind,
5454                            SourceRange ParenRange) {
5455  bool Elidable = false;
5456
5457  // C++0x [class.copy]p34:
5458  //   When certain criteria are met, an implementation is allowed to
5459  //   omit the copy/move construction of a class object, even if the
5460  //   copy/move constructor and/or destructor for the object have
5461  //   side effects. [...]
5462  //     - when a temporary class object that has not been bound to a
5463  //       reference (12.2) would be copied/moved to a class object
5464  //       with the same cv-unqualified type, the copy/move operation
5465  //       can be omitted by constructing the temporary object
5466  //       directly into the target of the omitted copy/move
5467  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5468      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5469    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5470    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5471  }
5472
5473  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5474                               Elidable, move(ExprArgs), RequiresZeroInit,
5475                               ConstructKind, ParenRange);
5476}
5477
5478/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5479/// including handling of its default argument expressions.
5480ExprResult
5481Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5482                            CXXConstructorDecl *Constructor, bool Elidable,
5483                            MultiExprArg ExprArgs,
5484                            bool RequiresZeroInit,
5485                            unsigned ConstructKind,
5486                            SourceRange ParenRange) {
5487  unsigned NumExprs = ExprArgs.size();
5488  Expr **Exprs = (Expr **)ExprArgs.release();
5489
5490  MarkDeclarationReferenced(ConstructLoc, Constructor);
5491  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5492                                        Constructor, Elidable, Exprs, NumExprs,
5493                                        RequiresZeroInit,
5494              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5495                                        ParenRange));
5496}
5497
5498bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5499                                        CXXConstructorDecl *Constructor,
5500                                        MultiExprArg Exprs) {
5501  // FIXME: Provide the correct paren SourceRange when available.
5502  ExprResult TempResult =
5503    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5504                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5505                          SourceRange());
5506  if (TempResult.isInvalid())
5507    return true;
5508
5509  Expr *Temp = TempResult.takeAs<Expr>();
5510  CheckImplicitConversions(Temp, VD->getLocation());
5511  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5512  Temp = MaybeCreateExprWithCleanups(Temp);
5513  VD->setInit(Temp);
5514
5515  return false;
5516}
5517
5518void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5519  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5520  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5521      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5522    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5523    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5524    CheckDestructorAccess(VD->getLocation(), Destructor,
5525                          PDiag(diag::err_access_dtor_var)
5526                            << VD->getDeclName()
5527                            << VD->getType());
5528
5529    // TODO: this should be re-enabled for static locals by !CXAAtExit
5530    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5531      Diag(VD->getLocation(), diag::warn_global_destructor);
5532  }
5533}
5534
5535/// AddCXXDirectInitializerToDecl - This action is called immediately after
5536/// ActOnDeclarator, when a C++ direct initializer is present.
5537/// e.g: "int x(1);"
5538void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5539                                         SourceLocation LParenLoc,
5540                                         MultiExprArg Exprs,
5541                                         SourceLocation RParenLoc) {
5542  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5543
5544  // If there is no declaration, there was an error parsing it.  Just ignore
5545  // the initializer.
5546  if (RealDecl == 0)
5547    return;
5548
5549  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5550  if (!VDecl) {
5551    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5552    RealDecl->setInvalidDecl();
5553    return;
5554  }
5555
5556  // We will represent direct-initialization similarly to copy-initialization:
5557  //    int x(1);  -as-> int x = 1;
5558  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5559  //
5560  // Clients that want to distinguish between the two forms, can check for
5561  // direct initializer using VarDecl::hasCXXDirectInitializer().
5562  // A major benefit is that clients that don't particularly care about which
5563  // exactly form was it (like the CodeGen) can handle both cases without
5564  // special case code.
5565
5566  // C++ 8.5p11:
5567  // The form of initialization (using parentheses or '=') is generally
5568  // insignificant, but does matter when the entity being initialized has a
5569  // class type.
5570
5571  if (!VDecl->getType()->isDependentType() &&
5572      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5573                          diag::err_typecheck_decl_incomplete_type)) {
5574    VDecl->setInvalidDecl();
5575    return;
5576  }
5577
5578  // The variable can not have an abstract class type.
5579  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5580                             diag::err_abstract_type_in_decl,
5581                             AbstractVariableType))
5582    VDecl->setInvalidDecl();
5583
5584  const VarDecl *Def;
5585  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5586    Diag(VDecl->getLocation(), diag::err_redefinition)
5587    << VDecl->getDeclName();
5588    Diag(Def->getLocation(), diag::note_previous_definition);
5589    VDecl->setInvalidDecl();
5590    return;
5591  }
5592
5593  // C++ [class.static.data]p4
5594  //   If a static data member is of const integral or const
5595  //   enumeration type, its declaration in the class definition can
5596  //   specify a constant-initializer which shall be an integral
5597  //   constant expression (5.19). In that case, the member can appear
5598  //   in integral constant expressions. The member shall still be
5599  //   defined in a namespace scope if it is used in the program and the
5600  //   namespace scope definition shall not contain an initializer.
5601  //
5602  // We already performed a redefinition check above, but for static
5603  // data members we also need to check whether there was an in-class
5604  // declaration with an initializer.
5605  const VarDecl* PrevInit = 0;
5606  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5607    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5608    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5609    return;
5610  }
5611
5612  bool IsDependent = false;
5613  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5614    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5615      VDecl->setInvalidDecl();
5616      return;
5617    }
5618
5619    if (Exprs.get()[I]->isTypeDependent())
5620      IsDependent = true;
5621  }
5622
5623  // If either the declaration has a dependent type or if any of the
5624  // expressions is type-dependent, we represent the initialization
5625  // via a ParenListExpr for later use during template instantiation.
5626  if (VDecl->getType()->isDependentType() || IsDependent) {
5627    // Let clients know that initialization was done with a direct initializer.
5628    VDecl->setCXXDirectInitializer(true);
5629
5630    // Store the initialization expressions as a ParenListExpr.
5631    unsigned NumExprs = Exprs.size();
5632    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5633                                               (Expr **)Exprs.release(),
5634                                               NumExprs, RParenLoc));
5635    return;
5636  }
5637
5638  // Capture the variable that is being initialized and the style of
5639  // initialization.
5640  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5641
5642  // FIXME: Poor source location information.
5643  InitializationKind Kind
5644    = InitializationKind::CreateDirect(VDecl->getLocation(),
5645                                       LParenLoc, RParenLoc);
5646
5647  InitializationSequence InitSeq(*this, Entity, Kind,
5648                                 Exprs.get(), Exprs.size());
5649  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5650  if (Result.isInvalid()) {
5651    VDecl->setInvalidDecl();
5652    return;
5653  }
5654
5655  CheckImplicitConversions(Result.get(), LParenLoc);
5656
5657  Result = MaybeCreateExprWithCleanups(Result);
5658  VDecl->setInit(Result.takeAs<Expr>());
5659  VDecl->setCXXDirectInitializer(true);
5660
5661  CheckCompleteVariableDeclaration(VDecl);
5662}
5663
5664/// \brief Given a constructor and the set of arguments provided for the
5665/// constructor, convert the arguments and add any required default arguments
5666/// to form a proper call to this constructor.
5667///
5668/// \returns true if an error occurred, false otherwise.
5669bool
5670Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5671                              MultiExprArg ArgsPtr,
5672                              SourceLocation Loc,
5673                              ASTOwningVector<Expr*> &ConvertedArgs) {
5674  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5675  unsigned NumArgs = ArgsPtr.size();
5676  Expr **Args = (Expr **)ArgsPtr.get();
5677
5678  const FunctionProtoType *Proto
5679    = Constructor->getType()->getAs<FunctionProtoType>();
5680  assert(Proto && "Constructor without a prototype?");
5681  unsigned NumArgsInProto = Proto->getNumArgs();
5682
5683  // If too few arguments are available, we'll fill in the rest with defaults.
5684  if (NumArgs < NumArgsInProto)
5685    ConvertedArgs.reserve(NumArgsInProto);
5686  else
5687    ConvertedArgs.reserve(NumArgs);
5688
5689  VariadicCallType CallType =
5690    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5691  llvm::SmallVector<Expr *, 8> AllArgs;
5692  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5693                                        Proto, 0, Args, NumArgs, AllArgs,
5694                                        CallType);
5695  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5696    ConvertedArgs.push_back(AllArgs[i]);
5697  return Invalid;
5698}
5699
5700static inline bool
5701CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5702                                       const FunctionDecl *FnDecl) {
5703  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5704  if (isa<NamespaceDecl>(DC)) {
5705    return SemaRef.Diag(FnDecl->getLocation(),
5706                        diag::err_operator_new_delete_declared_in_namespace)
5707      << FnDecl->getDeclName();
5708  }
5709
5710  if (isa<TranslationUnitDecl>(DC) &&
5711      FnDecl->getStorageClass() == SC_Static) {
5712    return SemaRef.Diag(FnDecl->getLocation(),
5713                        diag::err_operator_new_delete_declared_static)
5714      << FnDecl->getDeclName();
5715  }
5716
5717  return false;
5718}
5719
5720static inline bool
5721CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5722                            CanQualType ExpectedResultType,
5723                            CanQualType ExpectedFirstParamType,
5724                            unsigned DependentParamTypeDiag,
5725                            unsigned InvalidParamTypeDiag) {
5726  QualType ResultType =
5727    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5728
5729  // Check that the result type is not dependent.
5730  if (ResultType->isDependentType())
5731    return SemaRef.Diag(FnDecl->getLocation(),
5732                        diag::err_operator_new_delete_dependent_result_type)
5733    << FnDecl->getDeclName() << ExpectedResultType;
5734
5735  // Check that the result type is what we expect.
5736  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5737    return SemaRef.Diag(FnDecl->getLocation(),
5738                        diag::err_operator_new_delete_invalid_result_type)
5739    << FnDecl->getDeclName() << ExpectedResultType;
5740
5741  // A function template must have at least 2 parameters.
5742  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5743    return SemaRef.Diag(FnDecl->getLocation(),
5744                      diag::err_operator_new_delete_template_too_few_parameters)
5745        << FnDecl->getDeclName();
5746
5747  // The function decl must have at least 1 parameter.
5748  if (FnDecl->getNumParams() == 0)
5749    return SemaRef.Diag(FnDecl->getLocation(),
5750                        diag::err_operator_new_delete_too_few_parameters)
5751      << FnDecl->getDeclName();
5752
5753  // Check the the first parameter type is not dependent.
5754  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5755  if (FirstParamType->isDependentType())
5756    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5757      << FnDecl->getDeclName() << ExpectedFirstParamType;
5758
5759  // Check that the first parameter type is what we expect.
5760  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5761      ExpectedFirstParamType)
5762    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5763    << FnDecl->getDeclName() << ExpectedFirstParamType;
5764
5765  return false;
5766}
5767
5768static bool
5769CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5770  // C++ [basic.stc.dynamic.allocation]p1:
5771  //   A program is ill-formed if an allocation function is declared in a
5772  //   namespace scope other than global scope or declared static in global
5773  //   scope.
5774  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5775    return true;
5776
5777  CanQualType SizeTy =
5778    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5779
5780  // C++ [basic.stc.dynamic.allocation]p1:
5781  //  The return type shall be void*. The first parameter shall have type
5782  //  std::size_t.
5783  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5784                                  SizeTy,
5785                                  diag::err_operator_new_dependent_param_type,
5786                                  diag::err_operator_new_param_type))
5787    return true;
5788
5789  // C++ [basic.stc.dynamic.allocation]p1:
5790  //  The first parameter shall not have an associated default argument.
5791  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5792    return SemaRef.Diag(FnDecl->getLocation(),
5793                        diag::err_operator_new_default_arg)
5794      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5795
5796  return false;
5797}
5798
5799static bool
5800CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5801  // C++ [basic.stc.dynamic.deallocation]p1:
5802  //   A program is ill-formed if deallocation functions are declared in a
5803  //   namespace scope other than global scope or declared static in global
5804  //   scope.
5805  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5806    return true;
5807
5808  // C++ [basic.stc.dynamic.deallocation]p2:
5809  //   Each deallocation function shall return void and its first parameter
5810  //   shall be void*.
5811  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5812                                  SemaRef.Context.VoidPtrTy,
5813                                 diag::err_operator_delete_dependent_param_type,
5814                                 diag::err_operator_delete_param_type))
5815    return true;
5816
5817  return false;
5818}
5819
5820/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5821/// of this overloaded operator is well-formed. If so, returns false;
5822/// otherwise, emits appropriate diagnostics and returns true.
5823bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5824  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5825         "Expected an overloaded operator declaration");
5826
5827  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5828
5829  // C++ [over.oper]p5:
5830  //   The allocation and deallocation functions, operator new,
5831  //   operator new[], operator delete and operator delete[], are
5832  //   described completely in 3.7.3. The attributes and restrictions
5833  //   found in the rest of this subclause do not apply to them unless
5834  //   explicitly stated in 3.7.3.
5835  if (Op == OO_Delete || Op == OO_Array_Delete)
5836    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5837
5838  if (Op == OO_New || Op == OO_Array_New)
5839    return CheckOperatorNewDeclaration(*this, FnDecl);
5840
5841  // C++ [over.oper]p6:
5842  //   An operator function shall either be a non-static member
5843  //   function or be a non-member function and have at least one
5844  //   parameter whose type is a class, a reference to a class, an
5845  //   enumeration, or a reference to an enumeration.
5846  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5847    if (MethodDecl->isStatic())
5848      return Diag(FnDecl->getLocation(),
5849                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5850  } else {
5851    bool ClassOrEnumParam = false;
5852    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5853                                   ParamEnd = FnDecl->param_end();
5854         Param != ParamEnd; ++Param) {
5855      QualType ParamType = (*Param)->getType().getNonReferenceType();
5856      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5857          ParamType->isEnumeralType()) {
5858        ClassOrEnumParam = true;
5859        break;
5860      }
5861    }
5862
5863    if (!ClassOrEnumParam)
5864      return Diag(FnDecl->getLocation(),
5865                  diag::err_operator_overload_needs_class_or_enum)
5866        << FnDecl->getDeclName();
5867  }
5868
5869  // C++ [over.oper]p8:
5870  //   An operator function cannot have default arguments (8.3.6),
5871  //   except where explicitly stated below.
5872  //
5873  // Only the function-call operator allows default arguments
5874  // (C++ [over.call]p1).
5875  if (Op != OO_Call) {
5876    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5877         Param != FnDecl->param_end(); ++Param) {
5878      if ((*Param)->hasDefaultArg())
5879        return Diag((*Param)->getLocation(),
5880                    diag::err_operator_overload_default_arg)
5881          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5882    }
5883  }
5884
5885  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5886    { false, false, false }
5887#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5888    , { Unary, Binary, MemberOnly }
5889#include "clang/Basic/OperatorKinds.def"
5890  };
5891
5892  bool CanBeUnaryOperator = OperatorUses[Op][0];
5893  bool CanBeBinaryOperator = OperatorUses[Op][1];
5894  bool MustBeMemberOperator = OperatorUses[Op][2];
5895
5896  // C++ [over.oper]p8:
5897  //   [...] Operator functions cannot have more or fewer parameters
5898  //   than the number required for the corresponding operator, as
5899  //   described in the rest of this subclause.
5900  unsigned NumParams = FnDecl->getNumParams()
5901                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5902  if (Op != OO_Call &&
5903      ((NumParams == 1 && !CanBeUnaryOperator) ||
5904       (NumParams == 2 && !CanBeBinaryOperator) ||
5905       (NumParams < 1) || (NumParams > 2))) {
5906    // We have the wrong number of parameters.
5907    unsigned ErrorKind;
5908    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5909      ErrorKind = 2;  // 2 -> unary or binary.
5910    } else if (CanBeUnaryOperator) {
5911      ErrorKind = 0;  // 0 -> unary
5912    } else {
5913      assert(CanBeBinaryOperator &&
5914             "All non-call overloaded operators are unary or binary!");
5915      ErrorKind = 1;  // 1 -> binary
5916    }
5917
5918    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5919      << FnDecl->getDeclName() << NumParams << ErrorKind;
5920  }
5921
5922  // Overloaded operators other than operator() cannot be variadic.
5923  if (Op != OO_Call &&
5924      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5925    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5926      << FnDecl->getDeclName();
5927  }
5928
5929  // Some operators must be non-static member functions.
5930  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5931    return Diag(FnDecl->getLocation(),
5932                diag::err_operator_overload_must_be_member)
5933      << FnDecl->getDeclName();
5934  }
5935
5936  // C++ [over.inc]p1:
5937  //   The user-defined function called operator++ implements the
5938  //   prefix and postfix ++ operator. If this function is a member
5939  //   function with no parameters, or a non-member function with one
5940  //   parameter of class or enumeration type, it defines the prefix
5941  //   increment operator ++ for objects of that type. If the function
5942  //   is a member function with one parameter (which shall be of type
5943  //   int) or a non-member function with two parameters (the second
5944  //   of which shall be of type int), it defines the postfix
5945  //   increment operator ++ for objects of that type.
5946  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5947    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5948    bool ParamIsInt = false;
5949    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5950      ParamIsInt = BT->getKind() == BuiltinType::Int;
5951
5952    if (!ParamIsInt)
5953      return Diag(LastParam->getLocation(),
5954                  diag::err_operator_overload_post_incdec_must_be_int)
5955        << LastParam->getType() << (Op == OO_MinusMinus);
5956  }
5957
5958  return false;
5959}
5960
5961/// CheckLiteralOperatorDeclaration - Check whether the declaration
5962/// of this literal operator function is well-formed. If so, returns
5963/// false; otherwise, emits appropriate diagnostics and returns true.
5964bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5965  DeclContext *DC = FnDecl->getDeclContext();
5966  Decl::Kind Kind = DC->getDeclKind();
5967  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5968      Kind != Decl::LinkageSpec) {
5969    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5970      << FnDecl->getDeclName();
5971    return true;
5972  }
5973
5974  bool Valid = false;
5975
5976  // template <char...> type operator "" name() is the only valid template
5977  // signature, and the only valid signature with no parameters.
5978  if (FnDecl->param_size() == 0) {
5979    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5980      // Must have only one template parameter
5981      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5982      if (Params->size() == 1) {
5983        NonTypeTemplateParmDecl *PmDecl =
5984          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5985
5986        // The template parameter must be a char parameter pack.
5987        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5988            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5989          Valid = true;
5990      }
5991    }
5992  } else {
5993    // Check the first parameter
5994    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5995
5996    QualType T = (*Param)->getType();
5997
5998    // unsigned long long int, long double, and any character type are allowed
5999    // as the only parameters.
6000    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6001        Context.hasSameType(T, Context.LongDoubleTy) ||
6002        Context.hasSameType(T, Context.CharTy) ||
6003        Context.hasSameType(T, Context.WCharTy) ||
6004        Context.hasSameType(T, Context.Char16Ty) ||
6005        Context.hasSameType(T, Context.Char32Ty)) {
6006      if (++Param == FnDecl->param_end())
6007        Valid = true;
6008      goto FinishedParams;
6009    }
6010
6011    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6012    const PointerType *PT = T->getAs<PointerType>();
6013    if (!PT)
6014      goto FinishedParams;
6015    T = PT->getPointeeType();
6016    if (!T.isConstQualified())
6017      goto FinishedParams;
6018    T = T.getUnqualifiedType();
6019
6020    // Move on to the second parameter;
6021    ++Param;
6022
6023    // If there is no second parameter, the first must be a const char *
6024    if (Param == FnDecl->param_end()) {
6025      if (Context.hasSameType(T, Context.CharTy))
6026        Valid = true;
6027      goto FinishedParams;
6028    }
6029
6030    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6031    // are allowed as the first parameter to a two-parameter function
6032    if (!(Context.hasSameType(T, Context.CharTy) ||
6033          Context.hasSameType(T, Context.WCharTy) ||
6034          Context.hasSameType(T, Context.Char16Ty) ||
6035          Context.hasSameType(T, Context.Char32Ty)))
6036      goto FinishedParams;
6037
6038    // The second and final parameter must be an std::size_t
6039    T = (*Param)->getType().getUnqualifiedType();
6040    if (Context.hasSameType(T, Context.getSizeType()) &&
6041        ++Param == FnDecl->param_end())
6042      Valid = true;
6043  }
6044
6045  // FIXME: This diagnostic is absolutely terrible.
6046FinishedParams:
6047  if (!Valid) {
6048    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6049      << FnDecl->getDeclName();
6050    return true;
6051  }
6052
6053  return false;
6054}
6055
6056/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6057/// linkage specification, including the language and (if present)
6058/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6059/// the location of the language string literal, which is provided
6060/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6061/// the '{' brace. Otherwise, this linkage specification does not
6062/// have any braces.
6063Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6064                                           SourceLocation LangLoc,
6065                                           llvm::StringRef Lang,
6066                                           SourceLocation LBraceLoc) {
6067  LinkageSpecDecl::LanguageIDs Language;
6068  if (Lang == "\"C\"")
6069    Language = LinkageSpecDecl::lang_c;
6070  else if (Lang == "\"C++\"")
6071    Language = LinkageSpecDecl::lang_cxx;
6072  else {
6073    Diag(LangLoc, diag::err_bad_language);
6074    return 0;
6075  }
6076
6077  // FIXME: Add all the various semantics of linkage specifications
6078
6079  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6080                                               LangLoc, Language,
6081                                               LBraceLoc.isValid());
6082  CurContext->addDecl(D);
6083  PushDeclContext(S, D);
6084  return D;
6085}
6086
6087/// ActOnFinishLinkageSpecification - Complete the definition of
6088/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6089/// valid, it's the position of the closing '}' brace in a linkage
6090/// specification that uses braces.
6091Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6092                                                      Decl *LinkageSpec,
6093                                                      SourceLocation RBraceLoc) {
6094  if (LinkageSpec)
6095    PopDeclContext();
6096  return LinkageSpec;
6097}
6098
6099/// \brief Perform semantic analysis for the variable declaration that
6100/// occurs within a C++ catch clause, returning the newly-created
6101/// variable.
6102VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6103                                         TypeSourceInfo *TInfo,
6104                                         IdentifierInfo *Name,
6105                                         SourceLocation Loc) {
6106  bool Invalid = false;
6107  QualType ExDeclType = TInfo->getType();
6108
6109  // Arrays and functions decay.
6110  if (ExDeclType->isArrayType())
6111    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6112  else if (ExDeclType->isFunctionType())
6113    ExDeclType = Context.getPointerType(ExDeclType);
6114
6115  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6116  // The exception-declaration shall not denote a pointer or reference to an
6117  // incomplete type, other than [cv] void*.
6118  // N2844 forbids rvalue references.
6119  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6120    Diag(Loc, diag::err_catch_rvalue_ref);
6121    Invalid = true;
6122  }
6123
6124  // GCC allows catching pointers and references to incomplete types
6125  // as an extension; so do we, but we warn by default.
6126
6127  QualType BaseType = ExDeclType;
6128  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6129  unsigned DK = diag::err_catch_incomplete;
6130  bool IncompleteCatchIsInvalid = true;
6131  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6132    BaseType = Ptr->getPointeeType();
6133    Mode = 1;
6134    DK = diag::ext_catch_incomplete_ptr;
6135    IncompleteCatchIsInvalid = false;
6136  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6137    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6138    BaseType = Ref->getPointeeType();
6139    Mode = 2;
6140    DK = diag::ext_catch_incomplete_ref;
6141    IncompleteCatchIsInvalid = false;
6142  }
6143  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6144      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6145      IncompleteCatchIsInvalid)
6146    Invalid = true;
6147
6148  if (!Invalid && !ExDeclType->isDependentType() &&
6149      RequireNonAbstractType(Loc, ExDeclType,
6150                             diag::err_abstract_type_in_decl,
6151                             AbstractVariableType))
6152    Invalid = true;
6153
6154  // Only the non-fragile NeXT runtime currently supports C++ catches
6155  // of ObjC types, and no runtime supports catching ObjC types by value.
6156  if (!Invalid && getLangOptions().ObjC1) {
6157    QualType T = ExDeclType;
6158    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6159      T = RT->getPointeeType();
6160
6161    if (T->isObjCObjectType()) {
6162      Diag(Loc, diag::err_objc_object_catch);
6163      Invalid = true;
6164    } else if (T->isObjCObjectPointerType()) {
6165      if (!getLangOptions().NeXTRuntime) {
6166        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6167        Invalid = true;
6168      } else if (!getLangOptions().ObjCNonFragileABI) {
6169        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6170        Invalid = true;
6171      }
6172    }
6173  }
6174
6175  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6176                                    Name, ExDeclType, TInfo, SC_None,
6177                                    SC_None);
6178  ExDecl->setExceptionVariable(true);
6179
6180  if (!Invalid) {
6181    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6182      // C++ [except.handle]p16:
6183      //   The object declared in an exception-declaration or, if the
6184      //   exception-declaration does not specify a name, a temporary (12.2) is
6185      //   copy-initialized (8.5) from the exception object. [...]
6186      //   The object is destroyed when the handler exits, after the destruction
6187      //   of any automatic objects initialized within the handler.
6188      //
6189      // We just pretend to initialize the object with itself, then make sure
6190      // it can be destroyed later.
6191      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6192      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6193                                            Loc, ExDeclType, VK_LValue, 0);
6194      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6195                                                               SourceLocation());
6196      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6197      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6198                                         MultiExprArg(*this, &ExDeclRef, 1));
6199      if (Result.isInvalid())
6200        Invalid = true;
6201      else
6202        FinalizeVarWithDestructor(ExDecl, RecordTy);
6203    }
6204  }
6205
6206  if (Invalid)
6207    ExDecl->setInvalidDecl();
6208
6209  return ExDecl;
6210}
6211
6212/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6213/// handler.
6214Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6215  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6216  bool Invalid = D.isInvalidType();
6217
6218  // Check for unexpanded parameter packs.
6219  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6220                                               UPPC_ExceptionType)) {
6221    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6222                                             D.getIdentifierLoc());
6223    Invalid = true;
6224  }
6225
6226  IdentifierInfo *II = D.getIdentifier();
6227  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6228                                             LookupOrdinaryName,
6229                                             ForRedeclaration)) {
6230    // The scope should be freshly made just for us. There is just no way
6231    // it contains any previous declaration.
6232    assert(!S->isDeclScope(PrevDecl));
6233    if (PrevDecl->isTemplateParameter()) {
6234      // Maybe we will complain about the shadowed template parameter.
6235      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6236    }
6237  }
6238
6239  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6240    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6241      << D.getCXXScopeSpec().getRange();
6242    Invalid = true;
6243  }
6244
6245  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6246                                              D.getIdentifier(),
6247                                              D.getIdentifierLoc());
6248
6249  if (Invalid)
6250    ExDecl->setInvalidDecl();
6251
6252  // Add the exception declaration into this scope.
6253  if (II)
6254    PushOnScopeChains(ExDecl, S);
6255  else
6256    CurContext->addDecl(ExDecl);
6257
6258  ProcessDeclAttributes(S, ExDecl, D);
6259  return ExDecl;
6260}
6261
6262Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6263                                         Expr *AssertExpr,
6264                                         Expr *AssertMessageExpr_) {
6265  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6266
6267  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6268    llvm::APSInt Value(32);
6269    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6270      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6271        AssertExpr->getSourceRange();
6272      return 0;
6273    }
6274
6275    if (Value == 0) {
6276      Diag(AssertLoc, diag::err_static_assert_failed)
6277        << AssertMessage->getString() << AssertExpr->getSourceRange();
6278    }
6279  }
6280
6281  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6282    return 0;
6283
6284  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6285                                        AssertExpr, AssertMessage);
6286
6287  CurContext->addDecl(Decl);
6288  return Decl;
6289}
6290
6291/// \brief Perform semantic analysis of the given friend type declaration.
6292///
6293/// \returns A friend declaration that.
6294FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6295                                      TypeSourceInfo *TSInfo) {
6296  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6297
6298  QualType T = TSInfo->getType();
6299  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6300
6301  if (!getLangOptions().CPlusPlus0x) {
6302    // C++03 [class.friend]p2:
6303    //   An elaborated-type-specifier shall be used in a friend declaration
6304    //   for a class.*
6305    //
6306    //   * The class-key of the elaborated-type-specifier is required.
6307    if (!ActiveTemplateInstantiations.empty()) {
6308      // Do not complain about the form of friend template types during
6309      // template instantiation; we will already have complained when the
6310      // template was declared.
6311    } else if (!T->isElaboratedTypeSpecifier()) {
6312      // If we evaluated the type to a record type, suggest putting
6313      // a tag in front.
6314      if (const RecordType *RT = T->getAs<RecordType>()) {
6315        RecordDecl *RD = RT->getDecl();
6316
6317        std::string InsertionText = std::string(" ") + RD->getKindName();
6318
6319        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6320          << (unsigned) RD->getTagKind()
6321          << T
6322          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6323                                        InsertionText);
6324      } else {
6325        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6326          << T
6327          << SourceRange(FriendLoc, TypeRange.getEnd());
6328      }
6329    } else if (T->getAs<EnumType>()) {
6330      Diag(FriendLoc, diag::ext_enum_friend)
6331        << T
6332        << SourceRange(FriendLoc, TypeRange.getEnd());
6333    }
6334  }
6335
6336  // C++0x [class.friend]p3:
6337  //   If the type specifier in a friend declaration designates a (possibly
6338  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6339  //   the friend declaration is ignored.
6340
6341  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6342  // in [class.friend]p3 that we do not implement.
6343
6344  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6345}
6346
6347/// Handle a friend tag declaration where the scope specifier was
6348/// templated.
6349Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6350                                    unsigned TagSpec, SourceLocation TagLoc,
6351                                    CXXScopeSpec &SS,
6352                                    IdentifierInfo *Name, SourceLocation NameLoc,
6353                                    AttributeList *Attr,
6354                                    MultiTemplateParamsArg TempParamLists) {
6355  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6356
6357  bool isExplicitSpecialization = false;
6358  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6359  bool Invalid = false;
6360
6361  if (TemplateParameterList *TemplateParams
6362        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6363                                                  TempParamLists.get(),
6364                                                  TempParamLists.size(),
6365                                                  /*friend*/ true,
6366                                                  isExplicitSpecialization,
6367                                                  Invalid)) {
6368    --NumMatchedTemplateParamLists;
6369
6370    if (TemplateParams->size() > 0) {
6371      // This is a declaration of a class template.
6372      if (Invalid)
6373        return 0;
6374
6375      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6376                                SS, Name, NameLoc, Attr,
6377                                TemplateParams, AS_public).take();
6378    } else {
6379      // The "template<>" header is extraneous.
6380      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6381        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6382      isExplicitSpecialization = true;
6383    }
6384  }
6385
6386  if (Invalid) return 0;
6387
6388  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6389
6390  bool isAllExplicitSpecializations = true;
6391  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6392    if (TempParamLists.get()[I]->size()) {
6393      isAllExplicitSpecializations = false;
6394      break;
6395    }
6396  }
6397
6398  // FIXME: don't ignore attributes.
6399
6400  // If it's explicit specializations all the way down, just forget
6401  // about the template header and build an appropriate non-templated
6402  // friend.  TODO: for source fidelity, remember the headers.
6403  if (isAllExplicitSpecializations) {
6404    ElaboratedTypeKeyword Keyword
6405      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6406    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6407                                   TagLoc, SS.getRange(), NameLoc);
6408    if (T.isNull())
6409      return 0;
6410
6411    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6412    if (isa<DependentNameType>(T)) {
6413      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6414      TL.setKeywordLoc(TagLoc);
6415      TL.setQualifierRange(SS.getRange());
6416      TL.setNameLoc(NameLoc);
6417    } else {
6418      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6419      TL.setKeywordLoc(TagLoc);
6420      TL.setQualifierRange(SS.getRange());
6421      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6422    }
6423
6424    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6425                                            TSI, FriendLoc);
6426    Friend->setAccess(AS_public);
6427    CurContext->addDecl(Friend);
6428    return Friend;
6429  }
6430
6431  // Handle the case of a templated-scope friend class.  e.g.
6432  //   template <class T> class A<T>::B;
6433  // FIXME: we don't support these right now.
6434  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6435  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6436  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6437  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6438  TL.setKeywordLoc(TagLoc);
6439  TL.setQualifierRange(SS.getRange());
6440  TL.setNameLoc(NameLoc);
6441
6442  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6443                                          TSI, FriendLoc);
6444  Friend->setAccess(AS_public);
6445  Friend->setUnsupportedFriend(true);
6446  CurContext->addDecl(Friend);
6447  return Friend;
6448}
6449
6450
6451/// Handle a friend type declaration.  This works in tandem with
6452/// ActOnTag.
6453///
6454/// Notes on friend class templates:
6455///
6456/// We generally treat friend class declarations as if they were
6457/// declaring a class.  So, for example, the elaborated type specifier
6458/// in a friend declaration is required to obey the restrictions of a
6459/// class-head (i.e. no typedefs in the scope chain), template
6460/// parameters are required to match up with simple template-ids, &c.
6461/// However, unlike when declaring a template specialization, it's
6462/// okay to refer to a template specialization without an empty
6463/// template parameter declaration, e.g.
6464///   friend class A<T>::B<unsigned>;
6465/// We permit this as a special case; if there are any template
6466/// parameters present at all, require proper matching, i.e.
6467///   template <> template <class T> friend class A<int>::B;
6468Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6469                                MultiTemplateParamsArg TempParams) {
6470  SourceLocation Loc = DS.getSourceRange().getBegin();
6471
6472  assert(DS.isFriendSpecified());
6473  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6474
6475  // Try to convert the decl specifier to a type.  This works for
6476  // friend templates because ActOnTag never produces a ClassTemplateDecl
6477  // for a TUK_Friend.
6478  Declarator TheDeclarator(DS, Declarator::MemberContext);
6479  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6480  QualType T = TSI->getType();
6481  if (TheDeclarator.isInvalidType())
6482    return 0;
6483
6484  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6485    return 0;
6486
6487  // This is definitely an error in C++98.  It's probably meant to
6488  // be forbidden in C++0x, too, but the specification is just
6489  // poorly written.
6490  //
6491  // The problem is with declarations like the following:
6492  //   template <T> friend A<T>::foo;
6493  // where deciding whether a class C is a friend or not now hinges
6494  // on whether there exists an instantiation of A that causes
6495  // 'foo' to equal C.  There are restrictions on class-heads
6496  // (which we declare (by fiat) elaborated friend declarations to
6497  // be) that makes this tractable.
6498  //
6499  // FIXME: handle "template <> friend class A<T>;", which
6500  // is possibly well-formed?  Who even knows?
6501  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6502    Diag(Loc, diag::err_tagless_friend_type_template)
6503      << DS.getSourceRange();
6504    return 0;
6505  }
6506
6507  // C++98 [class.friend]p1: A friend of a class is a function
6508  //   or class that is not a member of the class . . .
6509  // This is fixed in DR77, which just barely didn't make the C++03
6510  // deadline.  It's also a very silly restriction that seriously
6511  // affects inner classes and which nobody else seems to implement;
6512  // thus we never diagnose it, not even in -pedantic.
6513  //
6514  // But note that we could warn about it: it's always useless to
6515  // friend one of your own members (it's not, however, worthless to
6516  // friend a member of an arbitrary specialization of your template).
6517
6518  Decl *D;
6519  if (unsigned NumTempParamLists = TempParams.size())
6520    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6521                                   NumTempParamLists,
6522                                   TempParams.release(),
6523                                   TSI,
6524                                   DS.getFriendSpecLoc());
6525  else
6526    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6527
6528  if (!D)
6529    return 0;
6530
6531  D->setAccess(AS_public);
6532  CurContext->addDecl(D);
6533
6534  return D;
6535}
6536
6537Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6538                                    MultiTemplateParamsArg TemplateParams) {
6539  const DeclSpec &DS = D.getDeclSpec();
6540
6541  assert(DS.isFriendSpecified());
6542  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6543
6544  SourceLocation Loc = D.getIdentifierLoc();
6545  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6546  QualType T = TInfo->getType();
6547
6548  // C++ [class.friend]p1
6549  //   A friend of a class is a function or class....
6550  // Note that this sees through typedefs, which is intended.
6551  // It *doesn't* see through dependent types, which is correct
6552  // according to [temp.arg.type]p3:
6553  //   If a declaration acquires a function type through a
6554  //   type dependent on a template-parameter and this causes
6555  //   a declaration that does not use the syntactic form of a
6556  //   function declarator to have a function type, the program
6557  //   is ill-formed.
6558  if (!T->isFunctionType()) {
6559    Diag(Loc, diag::err_unexpected_friend);
6560
6561    // It might be worthwhile to try to recover by creating an
6562    // appropriate declaration.
6563    return 0;
6564  }
6565
6566  // C++ [namespace.memdef]p3
6567  //  - If a friend declaration in a non-local class first declares a
6568  //    class or function, the friend class or function is a member
6569  //    of the innermost enclosing namespace.
6570  //  - The name of the friend is not found by simple name lookup
6571  //    until a matching declaration is provided in that namespace
6572  //    scope (either before or after the class declaration granting
6573  //    friendship).
6574  //  - If a friend function is called, its name may be found by the
6575  //    name lookup that considers functions from namespaces and
6576  //    classes associated with the types of the function arguments.
6577  //  - When looking for a prior declaration of a class or a function
6578  //    declared as a friend, scopes outside the innermost enclosing
6579  //    namespace scope are not considered.
6580
6581  CXXScopeSpec &SS = D.getCXXScopeSpec();
6582  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6583  DeclarationName Name = NameInfo.getName();
6584  assert(Name);
6585
6586  // Check for unexpanded parameter packs.
6587  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6588      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6589      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6590    return 0;
6591
6592  // The context we found the declaration in, or in which we should
6593  // create the declaration.
6594  DeclContext *DC;
6595  Scope *DCScope = S;
6596  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6597                        ForRedeclaration);
6598
6599  // FIXME: there are different rules in local classes
6600
6601  // There are four cases here.
6602  //   - There's no scope specifier, in which case we just go to the
6603  //     appropriate scope and look for a function or function template
6604  //     there as appropriate.
6605  // Recover from invalid scope qualifiers as if they just weren't there.
6606  if (SS.isInvalid() || !SS.isSet()) {
6607    // C++0x [namespace.memdef]p3:
6608    //   If the name in a friend declaration is neither qualified nor
6609    //   a template-id and the declaration is a function or an
6610    //   elaborated-type-specifier, the lookup to determine whether
6611    //   the entity has been previously declared shall not consider
6612    //   any scopes outside the innermost enclosing namespace.
6613    // C++0x [class.friend]p11:
6614    //   If a friend declaration appears in a local class and the name
6615    //   specified is an unqualified name, a prior declaration is
6616    //   looked up without considering scopes that are outside the
6617    //   innermost enclosing non-class scope. For a friend function
6618    //   declaration, if there is no prior declaration, the program is
6619    //   ill-formed.
6620    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6621    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6622
6623    // Find the appropriate context according to the above.
6624    DC = CurContext;
6625    while (true) {
6626      // Skip class contexts.  If someone can cite chapter and verse
6627      // for this behavior, that would be nice --- it's what GCC and
6628      // EDG do, and it seems like a reasonable intent, but the spec
6629      // really only says that checks for unqualified existing
6630      // declarations should stop at the nearest enclosing namespace,
6631      // not that they should only consider the nearest enclosing
6632      // namespace.
6633      while (DC->isRecord())
6634        DC = DC->getParent();
6635
6636      LookupQualifiedName(Previous, DC);
6637
6638      // TODO: decide what we think about using declarations.
6639      if (isLocal || !Previous.empty())
6640        break;
6641
6642      if (isTemplateId) {
6643        if (isa<TranslationUnitDecl>(DC)) break;
6644      } else {
6645        if (DC->isFileContext()) break;
6646      }
6647      DC = DC->getParent();
6648    }
6649
6650    // C++ [class.friend]p1: A friend of a class is a function or
6651    //   class that is not a member of the class . . .
6652    // C++0x changes this for both friend types and functions.
6653    // Most C++ 98 compilers do seem to give an error here, so
6654    // we do, too.
6655    if (!Previous.empty() && DC->Equals(CurContext)
6656        && !getLangOptions().CPlusPlus0x)
6657      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6658
6659    DCScope = getScopeForDeclContext(S, DC);
6660
6661  //   - There's a non-dependent scope specifier, in which case we
6662  //     compute it and do a previous lookup there for a function
6663  //     or function template.
6664  } else if (!SS.getScopeRep()->isDependent()) {
6665    DC = computeDeclContext(SS);
6666    if (!DC) return 0;
6667
6668    if (RequireCompleteDeclContext(SS, DC)) return 0;
6669
6670    LookupQualifiedName(Previous, DC);
6671
6672    // Ignore things found implicitly in the wrong scope.
6673    // TODO: better diagnostics for this case.  Suggesting the right
6674    // qualified scope would be nice...
6675    LookupResult::Filter F = Previous.makeFilter();
6676    while (F.hasNext()) {
6677      NamedDecl *D = F.next();
6678      if (!DC->InEnclosingNamespaceSetOf(
6679              D->getDeclContext()->getRedeclContext()))
6680        F.erase();
6681    }
6682    F.done();
6683
6684    if (Previous.empty()) {
6685      D.setInvalidType();
6686      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6687      return 0;
6688    }
6689
6690    // C++ [class.friend]p1: A friend of a class is a function or
6691    //   class that is not a member of the class . . .
6692    if (DC->Equals(CurContext))
6693      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6694
6695  //   - There's a scope specifier that does not match any template
6696  //     parameter lists, in which case we use some arbitrary context,
6697  //     create a method or method template, and wait for instantiation.
6698  //   - There's a scope specifier that does match some template
6699  //     parameter lists, which we don't handle right now.
6700  } else {
6701    DC = CurContext;
6702    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6703  }
6704
6705  if (!DC->isRecord()) {
6706    // This implies that it has to be an operator or function.
6707    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6708        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6709        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6710      Diag(Loc, diag::err_introducing_special_friend) <<
6711        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6712         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6713      return 0;
6714    }
6715  }
6716
6717  bool Redeclaration = false;
6718  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6719                                          move(TemplateParams),
6720                                          IsDefinition,
6721                                          Redeclaration);
6722  if (!ND) return 0;
6723
6724  assert(ND->getDeclContext() == DC);
6725  assert(ND->getLexicalDeclContext() == CurContext);
6726
6727  // Add the function declaration to the appropriate lookup tables,
6728  // adjusting the redeclarations list as necessary.  We don't
6729  // want to do this yet if the friending class is dependent.
6730  //
6731  // Also update the scope-based lookup if the target context's
6732  // lookup context is in lexical scope.
6733  if (!CurContext->isDependentContext()) {
6734    DC = DC->getRedeclContext();
6735    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6736    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6737      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6738  }
6739
6740  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6741                                       D.getIdentifierLoc(), ND,
6742                                       DS.getFriendSpecLoc());
6743  FrD->setAccess(AS_public);
6744  CurContext->addDecl(FrD);
6745
6746  if (ND->isInvalidDecl())
6747    FrD->setInvalidDecl();
6748  else {
6749    FunctionDecl *FD;
6750    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6751      FD = FTD->getTemplatedDecl();
6752    else
6753      FD = cast<FunctionDecl>(ND);
6754
6755    // Mark templated-scope function declarations as unsupported.
6756    if (FD->getNumTemplateParameterLists())
6757      FrD->setUnsupportedFriend(true);
6758  }
6759
6760  return ND;
6761}
6762
6763void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6764  AdjustDeclIfTemplate(Dcl);
6765
6766  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6767  if (!Fn) {
6768    Diag(DelLoc, diag::err_deleted_non_function);
6769    return;
6770  }
6771  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6772    Diag(DelLoc, diag::err_deleted_decl_not_first);
6773    Diag(Prev->getLocation(), diag::note_previous_declaration);
6774    // If the declaration wasn't the first, we delete the function anyway for
6775    // recovery.
6776  }
6777  Fn->setDeleted();
6778}
6779
6780static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6781  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6782       ++CI) {
6783    Stmt *SubStmt = *CI;
6784    if (!SubStmt)
6785      continue;
6786    if (isa<ReturnStmt>(SubStmt))
6787      Self.Diag(SubStmt->getSourceRange().getBegin(),
6788           diag::err_return_in_constructor_handler);
6789    if (!isa<Expr>(SubStmt))
6790      SearchForReturnInStmt(Self, SubStmt);
6791  }
6792}
6793
6794void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6795  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6796    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6797    SearchForReturnInStmt(*this, Handler);
6798  }
6799}
6800
6801bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6802                                             const CXXMethodDecl *Old) {
6803  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6804  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6805
6806  if (Context.hasSameType(NewTy, OldTy) ||
6807      NewTy->isDependentType() || OldTy->isDependentType())
6808    return false;
6809
6810  // Check if the return types are covariant
6811  QualType NewClassTy, OldClassTy;
6812
6813  /// Both types must be pointers or references to classes.
6814  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6815    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6816      NewClassTy = NewPT->getPointeeType();
6817      OldClassTy = OldPT->getPointeeType();
6818    }
6819  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6820    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6821      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6822        NewClassTy = NewRT->getPointeeType();
6823        OldClassTy = OldRT->getPointeeType();
6824      }
6825    }
6826  }
6827
6828  // The return types aren't either both pointers or references to a class type.
6829  if (NewClassTy.isNull()) {
6830    Diag(New->getLocation(),
6831         diag::err_different_return_type_for_overriding_virtual_function)
6832      << New->getDeclName() << NewTy << OldTy;
6833    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6834
6835    return true;
6836  }
6837
6838  // C++ [class.virtual]p6:
6839  //   If the return type of D::f differs from the return type of B::f, the
6840  //   class type in the return type of D::f shall be complete at the point of
6841  //   declaration of D::f or shall be the class type D.
6842  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6843    if (!RT->isBeingDefined() &&
6844        RequireCompleteType(New->getLocation(), NewClassTy,
6845                            PDiag(diag::err_covariant_return_incomplete)
6846                              << New->getDeclName()))
6847    return true;
6848  }
6849
6850  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6851    // Check if the new class derives from the old class.
6852    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6853      Diag(New->getLocation(),
6854           diag::err_covariant_return_not_derived)
6855      << New->getDeclName() << NewTy << OldTy;
6856      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6857      return true;
6858    }
6859
6860    // Check if we the conversion from derived to base is valid.
6861    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6862                    diag::err_covariant_return_inaccessible_base,
6863                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6864                    // FIXME: Should this point to the return type?
6865                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6866      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6867      return true;
6868    }
6869  }
6870
6871  // The qualifiers of the return types must be the same.
6872  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6873    Diag(New->getLocation(),
6874         diag::err_covariant_return_type_different_qualifications)
6875    << New->getDeclName() << NewTy << OldTy;
6876    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6877    return true;
6878  };
6879
6880
6881  // The new class type must have the same or less qualifiers as the old type.
6882  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6883    Diag(New->getLocation(),
6884         diag::err_covariant_return_type_class_type_more_qualified)
6885    << New->getDeclName() << NewTy << OldTy;
6886    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6887    return true;
6888  };
6889
6890  return false;
6891}
6892
6893bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6894                                             const CXXMethodDecl *Old)
6895{
6896  if (Old->hasAttr<FinalAttr>()) {
6897    Diag(New->getLocation(), diag::err_final_function_overridden)
6898      << New->getDeclName();
6899    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6900    return true;
6901  }
6902
6903  return false;
6904}
6905
6906/// \brief Mark the given method pure.
6907///
6908/// \param Method the method to be marked pure.
6909///
6910/// \param InitRange the source range that covers the "0" initializer.
6911bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6912  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6913    Method->setPure();
6914    return false;
6915  }
6916
6917  if (!Method->isInvalidDecl())
6918    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6919      << Method->getDeclName() << InitRange;
6920  return true;
6921}
6922
6923/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6924/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6925/// is a fresh scope pushed for just this purpose.
6926///
6927/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6928/// static data member of class X, names should be looked up in the scope of
6929/// class X.
6930void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6931  // If there is no declaration, there was an error parsing it.
6932  if (D == 0) return;
6933
6934  // We should only get called for declarations with scope specifiers, like:
6935  //   int foo::bar;
6936  assert(D->isOutOfLine());
6937  EnterDeclaratorContext(S, D->getDeclContext());
6938}
6939
6940/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6941/// initializer for the out-of-line declaration 'D'.
6942void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6943  // If there is no declaration, there was an error parsing it.
6944  if (D == 0) return;
6945
6946  assert(D->isOutOfLine());
6947  ExitDeclaratorContext(S);
6948}
6949
6950/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6951/// C++ if/switch/while/for statement.
6952/// e.g: "if (int x = f()) {...}"
6953DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6954  // C++ 6.4p2:
6955  // The declarator shall not specify a function or an array.
6956  // The type-specifier-seq shall not contain typedef and shall not declare a
6957  // new class or enumeration.
6958  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6959         "Parser allowed 'typedef' as storage class of condition decl.");
6960
6961  TagDecl *OwnedTag = 0;
6962  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6963  QualType Ty = TInfo->getType();
6964
6965  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6966                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6967                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6968    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6969      << D.getSourceRange();
6970    return DeclResult();
6971  } else if (OwnedTag && OwnedTag->isDefinition()) {
6972    // The type-specifier-seq shall not declare a new class or enumeration.
6973    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6974  }
6975
6976  Decl *Dcl = ActOnDeclarator(S, D);
6977  if (!Dcl)
6978    return DeclResult();
6979
6980  return Dcl;
6981}
6982
6983void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6984                          bool DefinitionRequired) {
6985  // Ignore any vtable uses in unevaluated operands or for classes that do
6986  // not have a vtable.
6987  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6988      CurContext->isDependentContext() ||
6989      ExprEvalContexts.back().Context == Unevaluated)
6990    return;
6991
6992  // Try to insert this class into the map.
6993  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6994  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6995    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6996  if (!Pos.second) {
6997    // If we already had an entry, check to see if we are promoting this vtable
6998    // to required a definition. If so, we need to reappend to the VTableUses
6999    // list, since we may have already processed the first entry.
7000    if (DefinitionRequired && !Pos.first->second) {
7001      Pos.first->second = true;
7002    } else {
7003      // Otherwise, we can early exit.
7004      return;
7005    }
7006  }
7007
7008  // Local classes need to have their virtual members marked
7009  // immediately. For all other classes, we mark their virtual members
7010  // at the end of the translation unit.
7011  if (Class->isLocalClass())
7012    MarkVirtualMembersReferenced(Loc, Class);
7013  else
7014    VTableUses.push_back(std::make_pair(Class, Loc));
7015}
7016
7017bool Sema::DefineUsedVTables() {
7018  if (VTableUses.empty())
7019    return false;
7020
7021  // Note: The VTableUses vector could grow as a result of marking
7022  // the members of a class as "used", so we check the size each
7023  // time through the loop and prefer indices (with are stable) to
7024  // iterators (which are not).
7025  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7026    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7027    if (!Class)
7028      continue;
7029
7030    SourceLocation Loc = VTableUses[I].second;
7031
7032    // If this class has a key function, but that key function is
7033    // defined in another translation unit, we don't need to emit the
7034    // vtable even though we're using it.
7035    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7036    if (KeyFunction && !KeyFunction->hasBody()) {
7037      switch (KeyFunction->getTemplateSpecializationKind()) {
7038      case TSK_Undeclared:
7039      case TSK_ExplicitSpecialization:
7040      case TSK_ExplicitInstantiationDeclaration:
7041        // The key function is in another translation unit.
7042        continue;
7043
7044      case TSK_ExplicitInstantiationDefinition:
7045      case TSK_ImplicitInstantiation:
7046        // We will be instantiating the key function.
7047        break;
7048      }
7049    } else if (!KeyFunction) {
7050      // If we have a class with no key function that is the subject
7051      // of an explicit instantiation declaration, suppress the
7052      // vtable; it will live with the explicit instantiation
7053      // definition.
7054      bool IsExplicitInstantiationDeclaration
7055        = Class->getTemplateSpecializationKind()
7056                                      == TSK_ExplicitInstantiationDeclaration;
7057      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7058                                 REnd = Class->redecls_end();
7059           R != REnd; ++R) {
7060        TemplateSpecializationKind TSK
7061          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7062        if (TSK == TSK_ExplicitInstantiationDeclaration)
7063          IsExplicitInstantiationDeclaration = true;
7064        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7065          IsExplicitInstantiationDeclaration = false;
7066          break;
7067        }
7068      }
7069
7070      if (IsExplicitInstantiationDeclaration)
7071        continue;
7072    }
7073
7074    // Mark all of the virtual members of this class as referenced, so
7075    // that we can build a vtable. Then, tell the AST consumer that a
7076    // vtable for this class is required.
7077    MarkVirtualMembersReferenced(Loc, Class);
7078    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7079    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7080
7081    // Optionally warn if we're emitting a weak vtable.
7082    if (Class->getLinkage() == ExternalLinkage &&
7083        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7084      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7085        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7086    }
7087  }
7088  VTableUses.clear();
7089
7090  return true;
7091}
7092
7093void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7094                                        const CXXRecordDecl *RD) {
7095  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7096       e = RD->method_end(); i != e; ++i) {
7097    CXXMethodDecl *MD = *i;
7098
7099    // C++ [basic.def.odr]p2:
7100    //   [...] A virtual member function is used if it is not pure. [...]
7101    if (MD->isVirtual() && !MD->isPure())
7102      MarkDeclarationReferenced(Loc, MD);
7103  }
7104
7105  // Only classes that have virtual bases need a VTT.
7106  if (RD->getNumVBases() == 0)
7107    return;
7108
7109  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7110           e = RD->bases_end(); i != e; ++i) {
7111    const CXXRecordDecl *Base =
7112        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7113    if (Base->getNumVBases() == 0)
7114      continue;
7115    MarkVirtualMembersReferenced(Loc, Base);
7116  }
7117}
7118
7119/// SetIvarInitializers - This routine builds initialization ASTs for the
7120/// Objective-C implementation whose ivars need be initialized.
7121void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7122  if (!getLangOptions().CPlusPlus)
7123    return;
7124  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7125    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7126    CollectIvarsToConstructOrDestruct(OID, ivars);
7127    if (ivars.empty())
7128      return;
7129    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7130    for (unsigned i = 0; i < ivars.size(); i++) {
7131      FieldDecl *Field = ivars[i];
7132      if (Field->isInvalidDecl())
7133        continue;
7134
7135      CXXCtorInitializer *Member;
7136      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7137      InitializationKind InitKind =
7138        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7139
7140      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7141      ExprResult MemberInit =
7142        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7143      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7144      // Note, MemberInit could actually come back empty if no initialization
7145      // is required (e.g., because it would call a trivial default constructor)
7146      if (!MemberInit.get() || MemberInit.isInvalid())
7147        continue;
7148
7149      Member =
7150        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7151                                         SourceLocation(),
7152                                         MemberInit.takeAs<Expr>(),
7153                                         SourceLocation());
7154      AllToInit.push_back(Member);
7155
7156      // Be sure that the destructor is accessible and is marked as referenced.
7157      if (const RecordType *RecordTy
7158                  = Context.getBaseElementType(Field->getType())
7159                                                        ->getAs<RecordType>()) {
7160                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7161        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7162          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7163          CheckDestructorAccess(Field->getLocation(), Destructor,
7164                            PDiag(diag::err_access_dtor_ivar)
7165                              << Context.getBaseElementType(Field->getType()));
7166        }
7167      }
7168    }
7169    ObjCImplementation->setIvarInitializers(Context,
7170                                            AllToInit.data(), AllToInit.size());
7171  }
7172}
7173