SemaDeclCXX.cpp revision ac5fc7c6bcb494b60fee7ce615ac931c5db6135e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  // C++ 9.2p6: A member shall not be declared to have automatic storage
554  // duration (auto, register) or with the extern storage-class-specifier.
555  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
556  // data members and cannot be applied to names declared const or static,
557  // and cannot be applied to reference members.
558  switch (DS.getStorageClassSpec()) {
559    case DeclSpec::SCS_unspecified:
560    case DeclSpec::SCS_typedef:
561    case DeclSpec::SCS_static:
562      // FALL THROUGH.
563      break;
564    case DeclSpec::SCS_mutable:
565      if (isFunc) {
566        if (DS.getStorageClassSpecLoc().isValid())
567          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
568        else
569          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
570
571        // FIXME: It would be nicer if the keyword was ignored only for this
572        // declarator. Otherwise we could get follow-up errors.
573        D.getMutableDeclSpec().ClearStorageClassSpecs();
574      } else {
575        QualType T = GetTypeForDeclarator(D, S);
576        diag::kind err = static_cast<diag::kind>(0);
577        if (T->isReferenceType())
578          err = diag::err_mutable_reference;
579        else if (T.isConstQualified())
580          err = diag::err_mutable_const;
581        if (err != 0) {
582          if (DS.getStorageClassSpecLoc().isValid())
583            Diag(DS.getStorageClassSpecLoc(), err);
584          else
585            Diag(DS.getThreadSpecLoc(), err);
586          // FIXME: It would be nicer if the keyword was ignored only for this
587          // declarator. Otherwise we could get follow-up errors.
588          D.getMutableDeclSpec().ClearStorageClassSpecs();
589        }
590      }
591      break;
592    default:
593      if (DS.getStorageClassSpecLoc().isValid())
594        Diag(DS.getStorageClassSpecLoc(),
595             diag::err_storageclass_invalid_for_member);
596      else
597        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
598      D.getMutableDeclSpec().ClearStorageClassSpecs();
599  }
600
601  if (!isFunc &&
602      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
603      D.getNumTypeObjects() == 0) {
604    // Check also for this case:
605    //
606    // typedef int f();
607    // f a;
608    //
609    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
610    isFunc = TDType->isFunctionType();
611  }
612
613  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
614                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
615                      !isFunc);
616
617  Decl *Member;
618  if (isInstField) {
619    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
620                         AS);
621    assert(Member && "HandleField never returns null");
622  } else {
623    Member = ActOnDeclarator(S, D).getAs<Decl>();
624    if (!Member) {
625      if (BitWidth) DeleteExpr(BitWidth);
626      return DeclPtrTy();
627    }
628
629    // Non-instance-fields can't have a bitfield.
630    if (BitWidth) {
631      if (Member->isInvalidDecl()) {
632        // don't emit another diagnostic.
633      } else if (isa<VarDecl>(Member)) {
634        // C++ 9.6p3: A bit-field shall not be a static member.
635        // "static member 'A' cannot be a bit-field"
636        Diag(Loc, diag::err_static_not_bitfield)
637          << Name << BitWidth->getSourceRange();
638      } else if (isa<TypedefDecl>(Member)) {
639        // "typedef member 'x' cannot be a bit-field"
640        Diag(Loc, diag::err_typedef_not_bitfield)
641          << Name << BitWidth->getSourceRange();
642      } else {
643        // A function typedef ("typedef int f(); f a;").
644        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
645        Diag(Loc, diag::err_not_integral_type_bitfield)
646          << Name << cast<ValueDecl>(Member)->getType()
647          << BitWidth->getSourceRange();
648      }
649
650      DeleteExpr(BitWidth);
651      BitWidth = 0;
652      Member->setInvalidDecl();
653    }
654
655    Member->setAccess(AS);
656  }
657
658  assert((Name || isInstField) && "No identifier for non-field ?");
659
660  if (Init)
661    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
662  if (Deleted) // FIXME: Source location is not very good.
663    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
664
665  if (isInstField) {
666    FieldCollector->Add(cast<FieldDecl>(Member));
667    return DeclPtrTy();
668  }
669  return DeclPtrTy::make(Member);
670}
671
672/// ActOnMemInitializer - Handle a C++ member initializer.
673Sema::MemInitResult
674Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
675                          Scope *S,
676                          const CXXScopeSpec &SS,
677                          IdentifierInfo *MemberOrBase,
678                          TypeTy *TemplateTypeTy,
679                          SourceLocation IdLoc,
680                          SourceLocation LParenLoc,
681                          ExprTy **Args, unsigned NumArgs,
682                          SourceLocation *CommaLocs,
683                          SourceLocation RParenLoc) {
684  if (!ConstructorD)
685    return true;
686
687  CXXConstructorDecl *Constructor
688    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
689  if (!Constructor) {
690    // The user wrote a constructor initializer on a function that is
691    // not a C++ constructor. Ignore the error for now, because we may
692    // have more member initializers coming; we'll diagnose it just
693    // once in ActOnMemInitializers.
694    return true;
695  }
696
697  CXXRecordDecl *ClassDecl = Constructor->getParent();
698
699  // C++ [class.base.init]p2:
700  //   Names in a mem-initializer-id are looked up in the scope of the
701  //   constructor’s class and, if not found in that scope, are looked
702  //   up in the scope containing the constructor’s
703  //   definition. [Note: if the constructor’s class contains a member
704  //   with the same name as a direct or virtual base class of the
705  //   class, a mem-initializer-id naming the member or base class and
706  //   composed of a single identifier refers to the class member. A
707  //   mem-initializer-id for the hidden base class may be specified
708  //   using a qualified name. ]
709  if (!SS.getScopeRep() && !TemplateTypeTy) {
710    // Look for a member, first.
711    FieldDecl *Member = 0;
712    DeclContext::lookup_result Result
713      = ClassDecl->lookup(MemberOrBase);
714    if (Result.first != Result.second)
715      Member = dyn_cast<FieldDecl>(*Result.first);
716
717    // FIXME: Handle members of an anonymous union.
718
719    if (Member)
720      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
721                                    RParenLoc);
722  }
723  // It didn't name a member, so see if it names a class.
724  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
725                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
726  if (!BaseTy)
727    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
728      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
729
730  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
731
732  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
733                              RParenLoc, ClassDecl);
734}
735
736Sema::MemInitResult
737Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
738                             unsigned NumArgs, SourceLocation IdLoc,
739                             SourceLocation RParenLoc) {
740  bool HasDependentArg = false;
741  for (unsigned i = 0; i < NumArgs; i++)
742    HasDependentArg |= Args[i]->isTypeDependent();
743
744  CXXConstructorDecl *C = 0;
745  QualType FieldType = Member->getType();
746  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
747    FieldType = Array->getElementType();
748  if (FieldType->isDependentType()) {
749    // Can't check init for dependent type.
750  } else if (FieldType->getAs<RecordType>()) {
751    if (!HasDependentArg)
752      C = PerformInitializationByConstructor(
753            FieldType, (Expr **)Args, NumArgs, IdLoc,
754            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
755  } else if (NumArgs != 1) {
756    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
757                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
758  } else if (!HasDependentArg) {
759    Expr *NewExp = (Expr*)Args[0];
760    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
761      return true;
762    Args[0] = NewExp;
763  }
764  // FIXME: Perform direct initialization of the member.
765  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
766                                                  NumArgs, C, IdLoc);
767}
768
769Sema::MemInitResult
770Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
771                           unsigned NumArgs, SourceLocation IdLoc,
772                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
773  bool HasDependentArg = false;
774  for (unsigned i = 0; i < NumArgs; i++)
775    HasDependentArg |= Args[i]->isTypeDependent();
776
777  if (!BaseType->isDependentType()) {
778    if (!BaseType->isRecordType())
779      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
780        << BaseType << SourceRange(IdLoc, RParenLoc);
781
782    // C++ [class.base.init]p2:
783    //   [...] Unless the mem-initializer-id names a nonstatic data
784    //   member of the constructor’s class or a direct or virtual base
785    //   of that class, the mem-initializer is ill-formed. A
786    //   mem-initializer-list can initialize a base class using any
787    //   name that denotes that base class type.
788
789    // First, check for a direct base class.
790    const CXXBaseSpecifier *DirectBaseSpec = 0;
791    for (CXXRecordDecl::base_class_const_iterator Base =
792         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
793      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
794          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
795        // We found a direct base of this type. That's what we're
796        // initializing.
797        DirectBaseSpec = &*Base;
798        break;
799      }
800    }
801
802    // Check for a virtual base class.
803    // FIXME: We might be able to short-circuit this if we know in advance that
804    // there are no virtual bases.
805    const CXXBaseSpecifier *VirtualBaseSpec = 0;
806    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
807      // We haven't found a base yet; search the class hierarchy for a
808      // virtual base class.
809      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
810                      /*DetectVirtual=*/false);
811      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
812        for (BasePaths::paths_iterator Path = Paths.begin();
813             Path != Paths.end(); ++Path) {
814          if (Path->back().Base->isVirtual()) {
815            VirtualBaseSpec = Path->back().Base;
816            break;
817          }
818        }
819      }
820    }
821
822    // C++ [base.class.init]p2:
823    //   If a mem-initializer-id is ambiguous because it designates both
824    //   a direct non-virtual base class and an inherited virtual base
825    //   class, the mem-initializer is ill-formed.
826    if (DirectBaseSpec && VirtualBaseSpec)
827      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
828        << BaseType << SourceRange(IdLoc, RParenLoc);
829    // C++ [base.class.init]p2:
830    // Unless the mem-initializer-id names a nonstatic data membeer of the
831    // constructor's class ot a direst or virtual base of that class, the
832    // mem-initializer is ill-formed.
833    if (!DirectBaseSpec && !VirtualBaseSpec)
834      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
835      << BaseType << ClassDecl->getNameAsCString()
836      << SourceRange(IdLoc, RParenLoc);
837  }
838
839  CXXConstructorDecl *C = 0;
840  if (!BaseType->isDependentType() && !HasDependentArg) {
841    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
842                                            Context.getCanonicalType(BaseType));
843    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
844                                           IdLoc, SourceRange(IdLoc, RParenLoc),
845                                           Name, IK_Direct);
846  }
847
848  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
849                                                  NumArgs, C, IdLoc);
850}
851
852void
853Sema::BuildBaseOrMemberInitializers(ASTContext &C,
854                                 CXXConstructorDecl *Constructor,
855                                 CXXBaseOrMemberInitializer **Initializers,
856                                 unsigned NumInitializers
857                                 ) {
858  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
859  llvm::SmallVector<FieldDecl *, 4>Members;
860
861  Constructor->setBaseOrMemberInitializers(C,
862                                           Initializers, NumInitializers,
863                                           Bases, Members);
864  for (unsigned int i = 0; i < Bases.size(); i++)
865    Diag(Bases[i]->getSourceRange().getBegin(),
866         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
867  for (unsigned int i = 0; i < Members.size(); i++)
868    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
869          << 1 << Members[i]->getType();
870}
871
872static void *GetKeyForTopLevelField(FieldDecl *Field) {
873  // For anonymous unions, use the class declaration as the key.
874  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
875    if (RT->getDecl()->isAnonymousStructOrUnion())
876      return static_cast<void *>(RT->getDecl());
877  }
878  return static_cast<void *>(Field);
879}
880
881static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
882  // For fields injected into the class via declaration of an anonymous union,
883  // use its anonymous union class declaration as the unique key.
884  if (FieldDecl *Field = Member->getMember()) {
885    if (Field->getDeclContext()->isRecord()) {
886      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
887      if (RD->isAnonymousStructOrUnion())
888        return static_cast<void *>(RD);
889    }
890    return static_cast<void *>(Field);
891  }
892  return static_cast<RecordType *>(Member->getBaseClass());
893}
894
895void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
896                                SourceLocation ColonLoc,
897                                MemInitTy **MemInits, unsigned NumMemInits) {
898  if (!ConstructorDecl)
899    return;
900
901  CXXConstructorDecl *Constructor
902    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
903
904  if (!Constructor) {
905    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
906    return;
907  }
908  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
909  bool err = false;
910  for (unsigned i = 0; i < NumMemInits; i++) {
911    CXXBaseOrMemberInitializer *Member =
912      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
913    void *KeyToMember = GetKeyForMember(Member);
914    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
915    if (!PrevMember) {
916      PrevMember = Member;
917      continue;
918    }
919    if (FieldDecl *Field = Member->getMember())
920      Diag(Member->getSourceLocation(),
921           diag::error_multiple_mem_initialization)
922      << Field->getNameAsString();
923    else {
924      Type *BaseClass = Member->getBaseClass();
925      assert(BaseClass && "ActOnMemInitializers - neither field or base");
926      Diag(Member->getSourceLocation(),
927           diag::error_multiple_base_initialization)
928        << BaseClass->getDesugaredType(true);
929    }
930    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
931      << 0;
932    err = true;
933  }
934  if (!err)
935    BuildBaseOrMemberInitializers(Context, Constructor,
936                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
937                      NumMemInits);
938
939  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
940               != Diagnostic::Ignored ||
941               Diags.getDiagnosticLevel(diag::warn_field_initialized)
942               != Diagnostic::Ignored)) {
943    // Also issue warning if order of ctor-initializer list does not match order
944    // of 1) base class declarations and 2) order of non-static data members.
945    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
946
947    CXXRecordDecl *ClassDecl
948      = cast<CXXRecordDecl>(Constructor->getDeclContext());
949    // Push virtual bases before others.
950    for (CXXRecordDecl::base_class_iterator VBase =
951         ClassDecl->vbases_begin(),
952         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
953      AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
954
955    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
956         E = ClassDecl->bases_end(); Base != E; ++Base) {
957      // Virtuals are alread in the virtual base list and are constructed
958      // first.
959      if (Base->isVirtual())
960        continue;
961      AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
962    }
963
964    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
965         E = ClassDecl->field_end(); Field != E; ++Field)
966      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
967
968    int Last = AllBaseOrMembers.size();
969    int curIndex = 0;
970    CXXBaseOrMemberInitializer *PrevMember = 0;
971    for (unsigned i = 0; i < NumMemInits; i++) {
972      CXXBaseOrMemberInitializer *Member =
973        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
974      void *MemberInCtorList = GetKeyForMember(Member);
975
976      for (; curIndex < Last; curIndex++)
977        if (MemberInCtorList == AllBaseOrMembers[curIndex])
978          break;
979      if (curIndex == Last) {
980        assert(PrevMember && "Member not in member list?!");
981        // Initializer as specified in ctor-initializer list is out of order.
982        // Issue a warning diagnostic.
983        if (PrevMember->isBaseInitializer()) {
984          // Diagnostics is for an initialized base class.
985          Type *BaseClass = PrevMember->getBaseClass();
986          Diag(PrevMember->getSourceLocation(),
987               diag::warn_base_initialized)
988                << BaseClass->getDesugaredType(true);
989        } else {
990          FieldDecl *Field = PrevMember->getMember();
991          Diag(PrevMember->getSourceLocation(),
992               diag::warn_field_initialized)
993            << Field->getNameAsString();
994        }
995        // Also the note!
996        if (FieldDecl *Field = Member->getMember())
997          Diag(Member->getSourceLocation(),
998               diag::note_fieldorbase_initialized_here) << 0
999            << Field->getNameAsString();
1000        else {
1001          Type *BaseClass = Member->getBaseClass();
1002          Diag(Member->getSourceLocation(),
1003               diag::note_fieldorbase_initialized_here) << 1
1004            << BaseClass->getDesugaredType(true);
1005        }
1006        for (curIndex = 0; curIndex < Last; curIndex++)
1007          if (MemberInCtorList == AllBaseOrMembers[curIndex])
1008            break;
1009      }
1010      PrevMember = Member;
1011    }
1012  }
1013}
1014
1015void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1016  if (!CDtorDecl)
1017    return;
1018
1019  if (CXXConstructorDecl *Constructor
1020      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1021    BuildBaseOrMemberInitializers(Context,
1022                                     Constructor,
1023                                     (CXXBaseOrMemberInitializer **)0, 0);
1024}
1025
1026namespace {
1027  /// PureVirtualMethodCollector - traverses a class and its superclasses
1028  /// and determines if it has any pure virtual methods.
1029  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1030    ASTContext &Context;
1031
1032  public:
1033    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1034
1035  private:
1036    MethodList Methods;
1037
1038    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1039
1040  public:
1041    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1042      : Context(Ctx) {
1043
1044      MethodList List;
1045      Collect(RD, List);
1046
1047      // Copy the temporary list to methods, and make sure to ignore any
1048      // null entries.
1049      for (size_t i = 0, e = List.size(); i != e; ++i) {
1050        if (List[i])
1051          Methods.push_back(List[i]);
1052      }
1053    }
1054
1055    bool empty() const { return Methods.empty(); }
1056
1057    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1058    MethodList::const_iterator methods_end() { return Methods.end(); }
1059  };
1060
1061  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1062                                           MethodList& Methods) {
1063    // First, collect the pure virtual methods for the base classes.
1064    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1065         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1066      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1067        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1068        if (BaseDecl && BaseDecl->isAbstract())
1069          Collect(BaseDecl, Methods);
1070      }
1071    }
1072
1073    // Next, zero out any pure virtual methods that this class overrides.
1074    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1075
1076    MethodSetTy OverriddenMethods;
1077    size_t MethodsSize = Methods.size();
1078
1079    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1080         i != e; ++i) {
1081      // Traverse the record, looking for methods.
1082      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1083        // If the method is pure virtual, add it to the methods vector.
1084        if (MD->isPure()) {
1085          Methods.push_back(MD);
1086          continue;
1087        }
1088
1089        // Otherwise, record all the overridden methods in our set.
1090        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1091             E = MD->end_overridden_methods(); I != E; ++I) {
1092          // Keep track of the overridden methods.
1093          OverriddenMethods.insert(*I);
1094        }
1095      }
1096    }
1097
1098    // Now go through the methods and zero out all the ones we know are
1099    // overridden.
1100    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1101      if (OverriddenMethods.count(Methods[i]))
1102        Methods[i] = 0;
1103    }
1104
1105  }
1106}
1107
1108bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1109                                  unsigned DiagID, AbstractDiagSelID SelID,
1110                                  const CXXRecordDecl *CurrentRD) {
1111
1112  if (!getLangOptions().CPlusPlus)
1113    return false;
1114
1115  if (const ArrayType *AT = Context.getAsArrayType(T))
1116    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1117                                  CurrentRD);
1118
1119  if (const PointerType *PT = T->getAs<PointerType>()) {
1120    // Find the innermost pointer type.
1121    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1122      PT = T;
1123
1124    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1125      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1126                                    CurrentRD);
1127  }
1128
1129  const RecordType *RT = T->getAs<RecordType>();
1130  if (!RT)
1131    return false;
1132
1133  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1134  if (!RD)
1135    return false;
1136
1137  if (CurrentRD && CurrentRD != RD)
1138    return false;
1139
1140  if (!RD->isAbstract())
1141    return false;
1142
1143  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1144
1145  // Check if we've already emitted the list of pure virtual functions for this
1146  // class.
1147  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1148    return true;
1149
1150  PureVirtualMethodCollector Collector(Context, RD);
1151
1152  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1153       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1154    const CXXMethodDecl *MD = *I;
1155
1156    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1157      MD->getDeclName();
1158  }
1159
1160  if (!PureVirtualClassDiagSet)
1161    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1162  PureVirtualClassDiagSet->insert(RD);
1163
1164  return true;
1165}
1166
1167namespace {
1168  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1169    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1170    Sema &SemaRef;
1171    CXXRecordDecl *AbstractClass;
1172
1173    bool VisitDeclContext(const DeclContext *DC) {
1174      bool Invalid = false;
1175
1176      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1177           E = DC->decls_end(); I != E; ++I)
1178        Invalid |= Visit(*I);
1179
1180      return Invalid;
1181    }
1182
1183  public:
1184    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1185      : SemaRef(SemaRef), AbstractClass(ac) {
1186        Visit(SemaRef.Context.getTranslationUnitDecl());
1187    }
1188
1189    bool VisitFunctionDecl(const FunctionDecl *FD) {
1190      if (FD->isThisDeclarationADefinition()) {
1191        // No need to do the check if we're in a definition, because it requires
1192        // that the return/param types are complete.
1193        // because that requires
1194        return VisitDeclContext(FD);
1195      }
1196
1197      // Check the return type.
1198      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1199      bool Invalid =
1200        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1201                                       diag::err_abstract_type_in_decl,
1202                                       Sema::AbstractReturnType,
1203                                       AbstractClass);
1204
1205      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1206           E = FD->param_end(); I != E; ++I) {
1207        const ParmVarDecl *VD = *I;
1208        Invalid |=
1209          SemaRef.RequireNonAbstractType(VD->getLocation(),
1210                                         VD->getOriginalType(),
1211                                         diag::err_abstract_type_in_decl,
1212                                         Sema::AbstractParamType,
1213                                         AbstractClass);
1214      }
1215
1216      return Invalid;
1217    }
1218
1219    bool VisitDecl(const Decl* D) {
1220      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1221        return VisitDeclContext(DC);
1222
1223      return false;
1224    }
1225  };
1226}
1227
1228void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1229                                             DeclPtrTy TagDecl,
1230                                             SourceLocation LBrac,
1231                                             SourceLocation RBrac) {
1232  if (!TagDecl)
1233    return;
1234
1235  AdjustDeclIfTemplate(TagDecl);
1236  ActOnFields(S, RLoc, TagDecl,
1237              (DeclPtrTy*)FieldCollector->getCurFields(),
1238              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1239
1240  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1241  if (!RD->isAbstract()) {
1242    // Collect all the pure virtual methods and see if this is an abstract
1243    // class after all.
1244    PureVirtualMethodCollector Collector(Context, RD);
1245    if (!Collector.empty())
1246      RD->setAbstract(true);
1247  }
1248
1249  if (RD->isAbstract())
1250    AbstractClassUsageDiagnoser(*this, RD);
1251
1252  if (!RD->isDependentType())
1253    AddImplicitlyDeclaredMembersToClass(RD);
1254}
1255
1256/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1257/// special functions, such as the default constructor, copy
1258/// constructor, or destructor, to the given C++ class (C++
1259/// [special]p1).  This routine can only be executed just before the
1260/// definition of the class is complete.
1261void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1262  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1263  ClassType = Context.getCanonicalType(ClassType);
1264
1265  // FIXME: Implicit declarations have exception specifications, which are
1266  // the union of the specifications of the implicitly called functions.
1267
1268  if (!ClassDecl->hasUserDeclaredConstructor()) {
1269    // C++ [class.ctor]p5:
1270    //   A default constructor for a class X is a constructor of class X
1271    //   that can be called without an argument. If there is no
1272    //   user-declared constructor for class X, a default constructor is
1273    //   implicitly declared. An implicitly-declared default constructor
1274    //   is an inline public member of its class.
1275    DeclarationName Name
1276      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1277    CXXConstructorDecl *DefaultCon =
1278      CXXConstructorDecl::Create(Context, ClassDecl,
1279                                 ClassDecl->getLocation(), Name,
1280                                 Context.getFunctionType(Context.VoidTy,
1281                                                         0, 0, false, 0),
1282                                 /*isExplicit=*/false,
1283                                 /*isInline=*/true,
1284                                 /*isImplicitlyDeclared=*/true);
1285    DefaultCon->setAccess(AS_public);
1286    DefaultCon->setImplicit();
1287    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1288    ClassDecl->addDecl(DefaultCon);
1289  }
1290
1291  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1292    // C++ [class.copy]p4:
1293    //   If the class definition does not explicitly declare a copy
1294    //   constructor, one is declared implicitly.
1295
1296    // C++ [class.copy]p5:
1297    //   The implicitly-declared copy constructor for a class X will
1298    //   have the form
1299    //
1300    //       X::X(const X&)
1301    //
1302    //   if
1303    bool HasConstCopyConstructor = true;
1304
1305    //     -- each direct or virtual base class B of X has a copy
1306    //        constructor whose first parameter is of type const B& or
1307    //        const volatile B&, and
1308    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1309         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1310      const CXXRecordDecl *BaseClassDecl
1311        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1312      HasConstCopyConstructor
1313        = BaseClassDecl->hasConstCopyConstructor(Context);
1314    }
1315
1316    //     -- for all the nonstatic data members of X that are of a
1317    //        class type M (or array thereof), each such class type
1318    //        has a copy constructor whose first parameter is of type
1319    //        const M& or const volatile M&.
1320    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1321         HasConstCopyConstructor && Field != ClassDecl->field_end();
1322         ++Field) {
1323      QualType FieldType = (*Field)->getType();
1324      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1325        FieldType = Array->getElementType();
1326      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1327        const CXXRecordDecl *FieldClassDecl
1328          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1329        HasConstCopyConstructor
1330          = FieldClassDecl->hasConstCopyConstructor(Context);
1331      }
1332    }
1333
1334    //   Otherwise, the implicitly declared copy constructor will have
1335    //   the form
1336    //
1337    //       X::X(X&)
1338    QualType ArgType = ClassType;
1339    if (HasConstCopyConstructor)
1340      ArgType = ArgType.withConst();
1341    ArgType = Context.getLValueReferenceType(ArgType);
1342
1343    //   An implicitly-declared copy constructor is an inline public
1344    //   member of its class.
1345    DeclarationName Name
1346      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1347    CXXConstructorDecl *CopyConstructor
1348      = CXXConstructorDecl::Create(Context, ClassDecl,
1349                                   ClassDecl->getLocation(), Name,
1350                                   Context.getFunctionType(Context.VoidTy,
1351                                                           &ArgType, 1,
1352                                                           false, 0),
1353                                   /*isExplicit=*/false,
1354                                   /*isInline=*/true,
1355                                   /*isImplicitlyDeclared=*/true);
1356    CopyConstructor->setAccess(AS_public);
1357    CopyConstructor->setImplicit();
1358    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1359
1360    // Add the parameter to the constructor.
1361    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1362                                                 ClassDecl->getLocation(),
1363                                                 /*IdentifierInfo=*/0,
1364                                                 ArgType, VarDecl::None, 0);
1365    CopyConstructor->setParams(Context, &FromParam, 1);
1366    ClassDecl->addDecl(CopyConstructor);
1367  }
1368
1369  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1370    // Note: The following rules are largely analoguous to the copy
1371    // constructor rules. Note that virtual bases are not taken into account
1372    // for determining the argument type of the operator. Note also that
1373    // operators taking an object instead of a reference are allowed.
1374    //
1375    // C++ [class.copy]p10:
1376    //   If the class definition does not explicitly declare a copy
1377    //   assignment operator, one is declared implicitly.
1378    //   The implicitly-defined copy assignment operator for a class X
1379    //   will have the form
1380    //
1381    //       X& X::operator=(const X&)
1382    //
1383    //   if
1384    bool HasConstCopyAssignment = true;
1385
1386    //       -- each direct base class B of X has a copy assignment operator
1387    //          whose parameter is of type const B&, const volatile B& or B,
1388    //          and
1389    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1390         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1391      const CXXRecordDecl *BaseClassDecl
1392        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1393      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1394    }
1395
1396    //       -- for all the nonstatic data members of X that are of a class
1397    //          type M (or array thereof), each such class type has a copy
1398    //          assignment operator whose parameter is of type const M&,
1399    //          const volatile M& or M.
1400    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1401         HasConstCopyAssignment && Field != ClassDecl->field_end();
1402         ++Field) {
1403      QualType FieldType = (*Field)->getType();
1404      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1405        FieldType = Array->getElementType();
1406      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1407        const CXXRecordDecl *FieldClassDecl
1408          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1409        HasConstCopyAssignment
1410          = FieldClassDecl->hasConstCopyAssignment(Context);
1411      }
1412    }
1413
1414    //   Otherwise, the implicitly declared copy assignment operator will
1415    //   have the form
1416    //
1417    //       X& X::operator=(X&)
1418    QualType ArgType = ClassType;
1419    QualType RetType = Context.getLValueReferenceType(ArgType);
1420    if (HasConstCopyAssignment)
1421      ArgType = ArgType.withConst();
1422    ArgType = Context.getLValueReferenceType(ArgType);
1423
1424    //   An implicitly-declared copy assignment operator is an inline public
1425    //   member of its class.
1426    DeclarationName Name =
1427      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1428    CXXMethodDecl *CopyAssignment =
1429      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1430                            Context.getFunctionType(RetType, &ArgType, 1,
1431                                                    false, 0),
1432                            /*isStatic=*/false, /*isInline=*/true);
1433    CopyAssignment->setAccess(AS_public);
1434    CopyAssignment->setImplicit();
1435    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1436
1437    // Add the parameter to the operator.
1438    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1439                                                 ClassDecl->getLocation(),
1440                                                 /*IdentifierInfo=*/0,
1441                                                 ArgType, VarDecl::None, 0);
1442    CopyAssignment->setParams(Context, &FromParam, 1);
1443
1444    // Don't call addedAssignmentOperator. There is no way to distinguish an
1445    // implicit from an explicit assignment operator.
1446    ClassDecl->addDecl(CopyAssignment);
1447  }
1448
1449  if (!ClassDecl->hasUserDeclaredDestructor()) {
1450    // C++ [class.dtor]p2:
1451    //   If a class has no user-declared destructor, a destructor is
1452    //   declared implicitly. An implicitly-declared destructor is an
1453    //   inline public member of its class.
1454    DeclarationName Name
1455      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1456    CXXDestructorDecl *Destructor
1457      = CXXDestructorDecl::Create(Context, ClassDecl,
1458                                  ClassDecl->getLocation(), Name,
1459                                  Context.getFunctionType(Context.VoidTy,
1460                                                          0, 0, false, 0),
1461                                  /*isInline=*/true,
1462                                  /*isImplicitlyDeclared=*/true);
1463    Destructor->setAccess(AS_public);
1464    Destructor->setImplicit();
1465    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1466    ClassDecl->addDecl(Destructor);
1467  }
1468}
1469
1470void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1471  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1472  if (!Template)
1473    return;
1474
1475  TemplateParameterList *Params = Template->getTemplateParameters();
1476  for (TemplateParameterList::iterator Param = Params->begin(),
1477                                    ParamEnd = Params->end();
1478       Param != ParamEnd; ++Param) {
1479    NamedDecl *Named = cast<NamedDecl>(*Param);
1480    if (Named->getDeclName()) {
1481      S->AddDecl(DeclPtrTy::make(Named));
1482      IdResolver.AddDecl(Named);
1483    }
1484  }
1485}
1486
1487/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1488/// parsing a top-level (non-nested) C++ class, and we are now
1489/// parsing those parts of the given Method declaration that could
1490/// not be parsed earlier (C++ [class.mem]p2), such as default
1491/// arguments. This action should enter the scope of the given
1492/// Method declaration as if we had just parsed the qualified method
1493/// name. However, it should not bring the parameters into scope;
1494/// that will be performed by ActOnDelayedCXXMethodParameter.
1495void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1496  if (!MethodD)
1497    return;
1498
1499  CXXScopeSpec SS;
1500  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1501  QualType ClassTy
1502    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1503  SS.setScopeRep(
1504    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1505  ActOnCXXEnterDeclaratorScope(S, SS);
1506}
1507
1508/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1509/// C++ method declaration. We're (re-)introducing the given
1510/// function parameter into scope for use in parsing later parts of
1511/// the method declaration. For example, we could see an
1512/// ActOnParamDefaultArgument event for this parameter.
1513void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1514  if (!ParamD)
1515    return;
1516
1517  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1518
1519  // If this parameter has an unparsed default argument, clear it out
1520  // to make way for the parsed default argument.
1521  if (Param->hasUnparsedDefaultArg())
1522    Param->setDefaultArg(0);
1523
1524  S->AddDecl(DeclPtrTy::make(Param));
1525  if (Param->getDeclName())
1526    IdResolver.AddDecl(Param);
1527}
1528
1529/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1530/// processing the delayed method declaration for Method. The method
1531/// declaration is now considered finished. There may be a separate
1532/// ActOnStartOfFunctionDef action later (not necessarily
1533/// immediately!) for this method, if it was also defined inside the
1534/// class body.
1535void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1536  if (!MethodD)
1537    return;
1538
1539  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1540  CXXScopeSpec SS;
1541  QualType ClassTy
1542    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1543  SS.setScopeRep(
1544    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1545  ActOnCXXExitDeclaratorScope(S, SS);
1546
1547  // Now that we have our default arguments, check the constructor
1548  // again. It could produce additional diagnostics or affect whether
1549  // the class has implicitly-declared destructors, among other
1550  // things.
1551  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1552    CheckConstructor(Constructor);
1553
1554  // Check the default arguments, which we may have added.
1555  if (!Method->isInvalidDecl())
1556    CheckCXXDefaultArguments(Method);
1557}
1558
1559/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1560/// the well-formedness of the constructor declarator @p D with type @p
1561/// R. If there are any errors in the declarator, this routine will
1562/// emit diagnostics and set the invalid bit to true.  In any case, the type
1563/// will be updated to reflect a well-formed type for the constructor and
1564/// returned.
1565QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1566                                          FunctionDecl::StorageClass &SC) {
1567  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1568
1569  // C++ [class.ctor]p3:
1570  //   A constructor shall not be virtual (10.3) or static (9.4). A
1571  //   constructor can be invoked for a const, volatile or const
1572  //   volatile object. A constructor shall not be declared const,
1573  //   volatile, or const volatile (9.3.2).
1574  if (isVirtual) {
1575    if (!D.isInvalidType())
1576      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1577        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1578        << SourceRange(D.getIdentifierLoc());
1579    D.setInvalidType();
1580  }
1581  if (SC == FunctionDecl::Static) {
1582    if (!D.isInvalidType())
1583      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1584        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1585        << SourceRange(D.getIdentifierLoc());
1586    D.setInvalidType();
1587    SC = FunctionDecl::None;
1588  }
1589
1590  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1591  if (FTI.TypeQuals != 0) {
1592    if (FTI.TypeQuals & QualType::Const)
1593      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1594        << "const" << SourceRange(D.getIdentifierLoc());
1595    if (FTI.TypeQuals & QualType::Volatile)
1596      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1597        << "volatile" << SourceRange(D.getIdentifierLoc());
1598    if (FTI.TypeQuals & QualType::Restrict)
1599      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1600        << "restrict" << SourceRange(D.getIdentifierLoc());
1601  }
1602
1603  // Rebuild the function type "R" without any type qualifiers (in
1604  // case any of the errors above fired) and with "void" as the
1605  // return type, since constructors don't have return types. We
1606  // *always* have to do this, because GetTypeForDeclarator will
1607  // put in a result type of "int" when none was specified.
1608  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1609  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1610                                 Proto->getNumArgs(),
1611                                 Proto->isVariadic(), 0);
1612}
1613
1614/// CheckConstructor - Checks a fully-formed constructor for
1615/// well-formedness, issuing any diagnostics required. Returns true if
1616/// the constructor declarator is invalid.
1617void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1618  CXXRecordDecl *ClassDecl
1619    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1620  if (!ClassDecl)
1621    return Constructor->setInvalidDecl();
1622
1623  // C++ [class.copy]p3:
1624  //   A declaration of a constructor for a class X is ill-formed if
1625  //   its first parameter is of type (optionally cv-qualified) X and
1626  //   either there are no other parameters or else all other
1627  //   parameters have default arguments.
1628  if (!Constructor->isInvalidDecl() &&
1629      ((Constructor->getNumParams() == 1) ||
1630       (Constructor->getNumParams() > 1 &&
1631        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1632    QualType ParamType = Constructor->getParamDecl(0)->getType();
1633    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1634    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1635      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1636      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1637        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1638      Constructor->setInvalidDecl();
1639    }
1640  }
1641
1642  // Notify the class that we've added a constructor.
1643  ClassDecl->addedConstructor(Context, Constructor);
1644}
1645
1646static inline bool
1647FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1648  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1649          FTI.ArgInfo[0].Param &&
1650          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1651}
1652
1653/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1654/// the well-formednes of the destructor declarator @p D with type @p
1655/// R. If there are any errors in the declarator, this routine will
1656/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1657/// will be updated to reflect a well-formed type for the destructor and
1658/// returned.
1659QualType Sema::CheckDestructorDeclarator(Declarator &D,
1660                                         FunctionDecl::StorageClass& SC) {
1661  // C++ [class.dtor]p1:
1662  //   [...] A typedef-name that names a class is a class-name
1663  //   (7.1.3); however, a typedef-name that names a class shall not
1664  //   be used as the identifier in the declarator for a destructor
1665  //   declaration.
1666  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1667  if (isa<TypedefType>(DeclaratorType)) {
1668    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1669      << DeclaratorType;
1670    D.setInvalidType();
1671  }
1672
1673  // C++ [class.dtor]p2:
1674  //   A destructor is used to destroy objects of its class type. A
1675  //   destructor takes no parameters, and no return type can be
1676  //   specified for it (not even void). The address of a destructor
1677  //   shall not be taken. A destructor shall not be static. A
1678  //   destructor can be invoked for a const, volatile or const
1679  //   volatile object. A destructor shall not be declared const,
1680  //   volatile or const volatile (9.3.2).
1681  if (SC == FunctionDecl::Static) {
1682    if (!D.isInvalidType())
1683      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1684        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1685        << SourceRange(D.getIdentifierLoc());
1686    SC = FunctionDecl::None;
1687    D.setInvalidType();
1688  }
1689  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1690    // Destructors don't have return types, but the parser will
1691    // happily parse something like:
1692    //
1693    //   class X {
1694    //     float ~X();
1695    //   };
1696    //
1697    // The return type will be eliminated later.
1698    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1699      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1700      << SourceRange(D.getIdentifierLoc());
1701  }
1702
1703  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1704  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1705    if (FTI.TypeQuals & QualType::Const)
1706      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1707        << "const" << SourceRange(D.getIdentifierLoc());
1708    if (FTI.TypeQuals & QualType::Volatile)
1709      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1710        << "volatile" << SourceRange(D.getIdentifierLoc());
1711    if (FTI.TypeQuals & QualType::Restrict)
1712      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1713        << "restrict" << SourceRange(D.getIdentifierLoc());
1714    D.setInvalidType();
1715  }
1716
1717  // Make sure we don't have any parameters.
1718  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1719    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1720
1721    // Delete the parameters.
1722    FTI.freeArgs();
1723    D.setInvalidType();
1724  }
1725
1726  // Make sure the destructor isn't variadic.
1727  if (FTI.isVariadic) {
1728    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1729    D.setInvalidType();
1730  }
1731
1732  // Rebuild the function type "R" without any type qualifiers or
1733  // parameters (in case any of the errors above fired) and with
1734  // "void" as the return type, since destructors don't have return
1735  // types. We *always* have to do this, because GetTypeForDeclarator
1736  // will put in a result type of "int" when none was specified.
1737  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1738}
1739
1740/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1741/// well-formednes of the conversion function declarator @p D with
1742/// type @p R. If there are any errors in the declarator, this routine
1743/// will emit diagnostics and return true. Otherwise, it will return
1744/// false. Either way, the type @p R will be updated to reflect a
1745/// well-formed type for the conversion operator.
1746void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1747                                     FunctionDecl::StorageClass& SC) {
1748  // C++ [class.conv.fct]p1:
1749  //   Neither parameter types nor return type can be specified. The
1750  //   type of a conversion function (8.3.5) is “function taking no
1751  //   parameter returning conversion-type-id.”
1752  if (SC == FunctionDecl::Static) {
1753    if (!D.isInvalidType())
1754      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1755        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1756        << SourceRange(D.getIdentifierLoc());
1757    D.setInvalidType();
1758    SC = FunctionDecl::None;
1759  }
1760  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1761    // Conversion functions don't have return types, but the parser will
1762    // happily parse something like:
1763    //
1764    //   class X {
1765    //     float operator bool();
1766    //   };
1767    //
1768    // The return type will be changed later anyway.
1769    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1770      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1771      << SourceRange(D.getIdentifierLoc());
1772  }
1773
1774  // Make sure we don't have any parameters.
1775  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1776    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1777
1778    // Delete the parameters.
1779    D.getTypeObject(0).Fun.freeArgs();
1780    D.setInvalidType();
1781  }
1782
1783  // Make sure the conversion function isn't variadic.
1784  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1785    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1786    D.setInvalidType();
1787  }
1788
1789  // C++ [class.conv.fct]p4:
1790  //   The conversion-type-id shall not represent a function type nor
1791  //   an array type.
1792  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1793  if (ConvType->isArrayType()) {
1794    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1795    ConvType = Context.getPointerType(ConvType);
1796    D.setInvalidType();
1797  } else if (ConvType->isFunctionType()) {
1798    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1799    ConvType = Context.getPointerType(ConvType);
1800    D.setInvalidType();
1801  }
1802
1803  // Rebuild the function type "R" without any parameters (in case any
1804  // of the errors above fired) and with the conversion type as the
1805  // return type.
1806  R = Context.getFunctionType(ConvType, 0, 0, false,
1807                              R->getAsFunctionProtoType()->getTypeQuals());
1808
1809  // C++0x explicit conversion operators.
1810  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1811    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1812         diag::warn_explicit_conversion_functions)
1813      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1814}
1815
1816/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1817/// the declaration of the given C++ conversion function. This routine
1818/// is responsible for recording the conversion function in the C++
1819/// class, if possible.
1820Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1821  assert(Conversion && "Expected to receive a conversion function declaration");
1822
1823  // Set the lexical context of this conversion function
1824  Conversion->setLexicalDeclContext(CurContext);
1825
1826  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1827
1828  // Make sure we aren't redeclaring the conversion function.
1829  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1830
1831  // C++ [class.conv.fct]p1:
1832  //   [...] A conversion function is never used to convert a
1833  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1834  //   same object type (or a reference to it), to a (possibly
1835  //   cv-qualified) base class of that type (or a reference to it),
1836  //   or to (possibly cv-qualified) void.
1837  // FIXME: Suppress this warning if the conversion function ends up being a
1838  // virtual function that overrides a virtual function in a base class.
1839  QualType ClassType
1840    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1841  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1842    ConvType = ConvTypeRef->getPointeeType();
1843  if (ConvType->isRecordType()) {
1844    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1845    if (ConvType == ClassType)
1846      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1847        << ClassType;
1848    else if (IsDerivedFrom(ClassType, ConvType))
1849      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1850        <<  ClassType << ConvType;
1851  } else if (ConvType->isVoidType()) {
1852    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1853      << ClassType << ConvType;
1854  }
1855
1856  if (Conversion->getPreviousDeclaration()) {
1857    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1858    for (OverloadedFunctionDecl::function_iterator
1859           Conv = Conversions->function_begin(),
1860           ConvEnd = Conversions->function_end();
1861         Conv != ConvEnd; ++Conv) {
1862      if (*Conv
1863            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1864        *Conv = Conversion;
1865        return DeclPtrTy::make(Conversion);
1866      }
1867    }
1868    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1869  } else
1870    ClassDecl->addConversionFunction(Context, Conversion);
1871
1872  return DeclPtrTy::make(Conversion);
1873}
1874
1875//===----------------------------------------------------------------------===//
1876// Namespace Handling
1877//===----------------------------------------------------------------------===//
1878
1879/// ActOnStartNamespaceDef - This is called at the start of a namespace
1880/// definition.
1881Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1882                                             SourceLocation IdentLoc,
1883                                             IdentifierInfo *II,
1884                                             SourceLocation LBrace) {
1885  NamespaceDecl *Namespc =
1886      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1887  Namespc->setLBracLoc(LBrace);
1888
1889  Scope *DeclRegionScope = NamespcScope->getParent();
1890
1891  if (II) {
1892    // C++ [namespace.def]p2:
1893    // The identifier in an original-namespace-definition shall not have been
1894    // previously defined in the declarative region in which the
1895    // original-namespace-definition appears. The identifier in an
1896    // original-namespace-definition is the name of the namespace. Subsequently
1897    // in that declarative region, it is treated as an original-namespace-name.
1898
1899    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1900                                     true);
1901
1902    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1903      // This is an extended namespace definition.
1904      // Attach this namespace decl to the chain of extended namespace
1905      // definitions.
1906      OrigNS->setNextNamespace(Namespc);
1907      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1908
1909      // Remove the previous declaration from the scope.
1910      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1911        IdResolver.RemoveDecl(OrigNS);
1912        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1913      }
1914    } else if (PrevDecl) {
1915      // This is an invalid name redefinition.
1916      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1917       << Namespc->getDeclName();
1918      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1919      Namespc->setInvalidDecl();
1920      // Continue on to push Namespc as current DeclContext and return it.
1921    }
1922
1923    PushOnScopeChains(Namespc, DeclRegionScope);
1924  } else {
1925    // FIXME: Handle anonymous namespaces
1926  }
1927
1928  // Although we could have an invalid decl (i.e. the namespace name is a
1929  // redefinition), push it as current DeclContext and try to continue parsing.
1930  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1931  // for the namespace has the declarations that showed up in that particular
1932  // namespace definition.
1933  PushDeclContext(NamespcScope, Namespc);
1934  return DeclPtrTy::make(Namespc);
1935}
1936
1937/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1938/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1939void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1940  Decl *Dcl = D.getAs<Decl>();
1941  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1942  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1943  Namespc->setRBracLoc(RBrace);
1944  PopDeclContext();
1945}
1946
1947Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1948                                          SourceLocation UsingLoc,
1949                                          SourceLocation NamespcLoc,
1950                                          const CXXScopeSpec &SS,
1951                                          SourceLocation IdentLoc,
1952                                          IdentifierInfo *NamespcName,
1953                                          AttributeList *AttrList) {
1954  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1955  assert(NamespcName && "Invalid NamespcName.");
1956  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1957  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1958
1959  UsingDirectiveDecl *UDir = 0;
1960
1961  // Lookup namespace name.
1962  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1963                                    LookupNamespaceName, false);
1964  if (R.isAmbiguous()) {
1965    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1966    return DeclPtrTy();
1967  }
1968  if (NamedDecl *NS = R) {
1969    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1970    // C++ [namespace.udir]p1:
1971    //   A using-directive specifies that the names in the nominated
1972    //   namespace can be used in the scope in which the
1973    //   using-directive appears after the using-directive. During
1974    //   unqualified name lookup (3.4.1), the names appear as if they
1975    //   were declared in the nearest enclosing namespace which
1976    //   contains both the using-directive and the nominated
1977    //   namespace. [Note: in this context, “contains” means “contains
1978    //   directly or indirectly”. ]
1979
1980    // Find enclosing context containing both using-directive and
1981    // nominated namespace.
1982    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1983    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1984      CommonAncestor = CommonAncestor->getParent();
1985
1986    UDir = UsingDirectiveDecl::Create(Context,
1987                                      CurContext, UsingLoc,
1988                                      NamespcLoc,
1989                                      SS.getRange(),
1990                                      (NestedNameSpecifier *)SS.getScopeRep(),
1991                                      IdentLoc,
1992                                      cast<NamespaceDecl>(NS),
1993                                      CommonAncestor);
1994    PushUsingDirective(S, UDir);
1995  } else {
1996    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1997  }
1998
1999  // FIXME: We ignore attributes for now.
2000  delete AttrList;
2001  return DeclPtrTy::make(UDir);
2002}
2003
2004void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2005  // If scope has associated entity, then using directive is at namespace
2006  // or translation unit scope. We add UsingDirectiveDecls, into
2007  // it's lookup structure.
2008  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2009    Ctx->addDecl(UDir);
2010  else
2011    // Otherwise it is block-sope. using-directives will affect lookup
2012    // only to the end of scope.
2013    S->PushUsingDirective(DeclPtrTy::make(UDir));
2014}
2015
2016
2017Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2018                                          SourceLocation UsingLoc,
2019                                          const CXXScopeSpec &SS,
2020                                          SourceLocation IdentLoc,
2021                                          IdentifierInfo *TargetName,
2022                                          OverloadedOperatorKind Op,
2023                                          AttributeList *AttrList,
2024                                          bool IsTypeName) {
2025  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2026  assert((TargetName || Op) && "Invalid TargetName.");
2027  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2028  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2029
2030  UsingDecl *UsingAlias = 0;
2031
2032  DeclarationName Name;
2033  if (TargetName)
2034    Name = TargetName;
2035  else
2036    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2037
2038  // Lookup target name.
2039  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
2040
2041  if (NamedDecl *NS = R) {
2042    if (IsTypeName && !isa<TypeDecl>(NS)) {
2043      Diag(IdentLoc, diag::err_using_typename_non_type);
2044    }
2045    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2046        NS->getLocation(), UsingLoc, NS,
2047        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
2048        IsTypeName);
2049    PushOnScopeChains(UsingAlias, S);
2050  } else {
2051    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
2052  }
2053
2054  // FIXME: We ignore attributes for now.
2055  delete AttrList;
2056  return DeclPtrTy::make(UsingAlias);
2057}
2058
2059/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2060/// is a namespace alias, returns the namespace it points to.
2061static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2062  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2063    return AD->getNamespace();
2064  return dyn_cast_or_null<NamespaceDecl>(D);
2065}
2066
2067Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2068                                             SourceLocation NamespaceLoc,
2069                                             SourceLocation AliasLoc,
2070                                             IdentifierInfo *Alias,
2071                                             const CXXScopeSpec &SS,
2072                                             SourceLocation IdentLoc,
2073                                             IdentifierInfo *Ident) {
2074
2075  // Lookup the namespace name.
2076  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2077
2078  // Check if we have a previous declaration with the same name.
2079  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2080    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2081      // We already have an alias with the same name that points to the same
2082      // namespace, so don't create a new one.
2083      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2084        return DeclPtrTy();
2085    }
2086
2087    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2088      diag::err_redefinition_different_kind;
2089    Diag(AliasLoc, DiagID) << Alias;
2090    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2091    return DeclPtrTy();
2092  }
2093
2094  if (R.isAmbiguous()) {
2095    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2096    return DeclPtrTy();
2097  }
2098
2099  if (!R) {
2100    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2101    return DeclPtrTy();
2102  }
2103
2104  NamespaceAliasDecl *AliasDecl =
2105    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2106                               Alias, SS.getRange(),
2107                               (NestedNameSpecifier *)SS.getScopeRep(),
2108                               IdentLoc, R);
2109
2110  CurContext->addDecl(AliasDecl);
2111  return DeclPtrTy::make(AliasDecl);
2112}
2113
2114void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2115                                            CXXConstructorDecl *Constructor) {
2116  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2117          !Constructor->isUsed()) &&
2118    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2119
2120  CXXRecordDecl *ClassDecl
2121    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2122  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2123  // Before the implicitly-declared default constructor for a class is
2124  // implicitly defined, all the implicitly-declared default constructors
2125  // for its base class and its non-static data members shall have been
2126  // implicitly defined.
2127  bool err = false;
2128  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2129       E = ClassDecl->bases_end(); Base != E; ++Base) {
2130    CXXRecordDecl *BaseClassDecl
2131      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2132    if (!BaseClassDecl->hasTrivialConstructor()) {
2133      if (CXXConstructorDecl *BaseCtor =
2134            BaseClassDecl->getDefaultConstructor(Context))
2135        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2136      else {
2137        Diag(CurrentLocation, diag::err_defining_default_ctor)
2138          << Context.getTagDeclType(ClassDecl) << 1
2139          << Context.getTagDeclType(BaseClassDecl);
2140        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2141              << Context.getTagDeclType(BaseClassDecl);
2142        err = true;
2143      }
2144    }
2145  }
2146  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2147       E = ClassDecl->field_end(); Field != E; ++Field) {
2148    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2149    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2150      FieldType = Array->getElementType();
2151    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2152      CXXRecordDecl *FieldClassDecl
2153        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2154      if (!FieldClassDecl->hasTrivialConstructor()) {
2155        if (CXXConstructorDecl *FieldCtor =
2156            FieldClassDecl->getDefaultConstructor(Context))
2157          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2158        else {
2159          Diag(CurrentLocation, diag::err_defining_default_ctor)
2160          << Context.getTagDeclType(ClassDecl) << 0 <<
2161              Context.getTagDeclType(FieldClassDecl);
2162          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2163          << Context.getTagDeclType(FieldClassDecl);
2164          err = true;
2165        }
2166      }
2167    } else if (FieldType->isReferenceType()) {
2168      Diag(CurrentLocation, diag::err_unintialized_member)
2169        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2170      Diag((*Field)->getLocation(), diag::note_declared_at);
2171      err = true;
2172    } else if (FieldType.isConstQualified()) {
2173      Diag(CurrentLocation, diag::err_unintialized_member)
2174        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2175       Diag((*Field)->getLocation(), diag::note_declared_at);
2176      err = true;
2177    }
2178  }
2179  if (!err)
2180    Constructor->setUsed();
2181  else
2182    Constructor->setInvalidDecl();
2183}
2184
2185void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2186                                            CXXDestructorDecl *Destructor) {
2187  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2188         "DefineImplicitDestructor - call it for implicit default dtor");
2189
2190  CXXRecordDecl *ClassDecl
2191  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2192  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2193  // C++ [class.dtor] p5
2194  // Before the implicitly-declared default destructor for a class is
2195  // implicitly defined, all the implicitly-declared default destructors
2196  // for its base class and its non-static data members shall have been
2197  // implicitly defined.
2198  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2199       E = ClassDecl->bases_end(); Base != E; ++Base) {
2200    CXXRecordDecl *BaseClassDecl
2201      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2202    if (!BaseClassDecl->hasTrivialDestructor()) {
2203      if (CXXDestructorDecl *BaseDtor =
2204          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2205        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2206      else
2207        assert(false &&
2208               "DefineImplicitDestructor - missing dtor in a base class");
2209    }
2210  }
2211
2212  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2213       E = ClassDecl->field_end(); Field != E; ++Field) {
2214    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2215    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2216      FieldType = Array->getElementType();
2217    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2218      CXXRecordDecl *FieldClassDecl
2219        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2220      if (!FieldClassDecl->hasTrivialDestructor()) {
2221        if (CXXDestructorDecl *FieldDtor =
2222            const_cast<CXXDestructorDecl*>(
2223                                        FieldClassDecl->getDestructor(Context)))
2224          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2225        else
2226          assert(false &&
2227          "DefineImplicitDestructor - missing dtor in class of a data member");
2228      }
2229    }
2230  }
2231  Destructor->setUsed();
2232}
2233
2234void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2235                                          CXXMethodDecl *MethodDecl) {
2236  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2237          MethodDecl->getOverloadedOperator() == OO_Equal &&
2238          !MethodDecl->isUsed()) &&
2239         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2240
2241  CXXRecordDecl *ClassDecl
2242    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2243
2244  // C++[class.copy] p12
2245  // Before the implicitly-declared copy assignment operator for a class is
2246  // implicitly defined, all implicitly-declared copy assignment operators
2247  // for its direct base classes and its nonstatic data members shall have
2248  // been implicitly defined.
2249  bool err = false;
2250  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2251       E = ClassDecl->bases_end(); Base != E; ++Base) {
2252    CXXRecordDecl *BaseClassDecl
2253      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2254    if (CXXMethodDecl *BaseAssignOpMethod =
2255          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2256      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2257  }
2258  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2259       E = ClassDecl->field_end(); Field != E; ++Field) {
2260    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2261    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2262      FieldType = Array->getElementType();
2263    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2264      CXXRecordDecl *FieldClassDecl
2265        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2266      if (CXXMethodDecl *FieldAssignOpMethod =
2267          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2268        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2269    } else if (FieldType->isReferenceType()) {
2270      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2271      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2272      Diag(Field->getLocation(), diag::note_declared_at);
2273      Diag(CurrentLocation, diag::note_first_required_here);
2274      err = true;
2275    } else if (FieldType.isConstQualified()) {
2276      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2277      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2278      Diag(Field->getLocation(), diag::note_declared_at);
2279      Diag(CurrentLocation, diag::note_first_required_here);
2280      err = true;
2281    }
2282  }
2283  if (!err)
2284    MethodDecl->setUsed();
2285}
2286
2287CXXMethodDecl *
2288Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2289                              CXXRecordDecl *ClassDecl) {
2290  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2291  QualType RHSType(LHSType);
2292  // If class's assignment operator argument is const/volatile qualified,
2293  // look for operator = (const/volatile B&). Otherwise, look for
2294  // operator = (B&).
2295  if (ParmDecl->getType().isConstQualified())
2296    RHSType.addConst();
2297  if (ParmDecl->getType().isVolatileQualified())
2298    RHSType.addVolatile();
2299  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2300                                                          LHSType,
2301                                                          SourceLocation()));
2302  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2303                                                          RHSType,
2304                                                          SourceLocation()));
2305  Expr *Args[2] = { &*LHS, &*RHS };
2306  OverloadCandidateSet CandidateSet;
2307  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2308                              CandidateSet);
2309  OverloadCandidateSet::iterator Best;
2310  if (BestViableFunction(CandidateSet,
2311                         ClassDecl->getLocation(), Best) == OR_Success)
2312    return cast<CXXMethodDecl>(Best->Function);
2313  assert(false &&
2314         "getAssignOperatorMethod - copy assignment operator method not found");
2315  return 0;
2316}
2317
2318void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2319                                   CXXConstructorDecl *CopyConstructor,
2320                                   unsigned TypeQuals) {
2321  assert((CopyConstructor->isImplicit() &&
2322          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2323          !CopyConstructor->isUsed()) &&
2324         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2325
2326  CXXRecordDecl *ClassDecl
2327    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2328  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2329  // C++ [class.copy] p209
2330  // Before the implicitly-declared copy constructor for a class is
2331  // implicitly defined, all the implicitly-declared copy constructors
2332  // for its base class and its non-static data members shall have been
2333  // implicitly defined.
2334  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2335       Base != ClassDecl->bases_end(); ++Base) {
2336    CXXRecordDecl *BaseClassDecl
2337      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2338    if (CXXConstructorDecl *BaseCopyCtor =
2339        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2340      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2341  }
2342  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2343                                  FieldEnd = ClassDecl->field_end();
2344       Field != FieldEnd; ++Field) {
2345    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2346    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2347      FieldType = Array->getElementType();
2348    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2349      CXXRecordDecl *FieldClassDecl
2350        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2351      if (CXXConstructorDecl *FieldCopyCtor =
2352          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2353        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2354    }
2355  }
2356  CopyConstructor->setUsed();
2357}
2358
2359void Sema::InitializeVarWithConstructor(VarDecl *VD,
2360                                        CXXConstructorDecl *Constructor,
2361                                        QualType DeclInitType,
2362                                        Expr **Exprs, unsigned NumExprs) {
2363  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2364                                        false, Exprs, NumExprs);
2365  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2366  VD->setInit(Context, Temp);
2367}
2368
2369void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2370{
2371  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2372                                  DeclInitType->getAs<RecordType>()->getDecl());
2373  if (!ClassDecl->hasTrivialDestructor())
2374    if (CXXDestructorDecl *Destructor =
2375        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2376      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2377}
2378
2379/// AddCXXDirectInitializerToDecl - This action is called immediately after
2380/// ActOnDeclarator, when a C++ direct initializer is present.
2381/// e.g: "int x(1);"
2382void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2383                                         SourceLocation LParenLoc,
2384                                         MultiExprArg Exprs,
2385                                         SourceLocation *CommaLocs,
2386                                         SourceLocation RParenLoc) {
2387  unsigned NumExprs = Exprs.size();
2388  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2389  Decl *RealDecl = Dcl.getAs<Decl>();
2390
2391  // If there is no declaration, there was an error parsing it.  Just ignore
2392  // the initializer.
2393  if (RealDecl == 0)
2394    return;
2395
2396  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2397  if (!VDecl) {
2398    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2399    RealDecl->setInvalidDecl();
2400    return;
2401  }
2402
2403  // FIXME: Need to handle dependent types and expressions here.
2404
2405  // We will treat direct-initialization as a copy-initialization:
2406  //    int x(1);  -as-> int x = 1;
2407  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2408  //
2409  // Clients that want to distinguish between the two forms, can check for
2410  // direct initializer using VarDecl::hasCXXDirectInitializer().
2411  // A major benefit is that clients that don't particularly care about which
2412  // exactly form was it (like the CodeGen) can handle both cases without
2413  // special case code.
2414
2415  // C++ 8.5p11:
2416  // The form of initialization (using parentheses or '=') is generally
2417  // insignificant, but does matter when the entity being initialized has a
2418  // class type.
2419  QualType DeclInitType = VDecl->getType();
2420  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2421    DeclInitType = Array->getElementType();
2422
2423  // FIXME: This isn't the right place to complete the type.
2424  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2425                          diag::err_typecheck_decl_incomplete_type)) {
2426    VDecl->setInvalidDecl();
2427    return;
2428  }
2429
2430  if (VDecl->getType()->isRecordType()) {
2431    CXXConstructorDecl *Constructor
2432      = PerformInitializationByConstructor(DeclInitType,
2433                                           (Expr **)Exprs.get(), NumExprs,
2434                                           VDecl->getLocation(),
2435                                           SourceRange(VDecl->getLocation(),
2436                                                       RParenLoc),
2437                                           VDecl->getDeclName(),
2438                                           IK_Direct);
2439    if (!Constructor)
2440      RealDecl->setInvalidDecl();
2441    else {
2442      VDecl->setCXXDirectInitializer(true);
2443      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2444                                   (Expr**)Exprs.release(), NumExprs);
2445      FinalizeVarWithDestructor(VDecl, DeclInitType);
2446    }
2447    return;
2448  }
2449
2450  if (NumExprs > 1) {
2451    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2452      << SourceRange(VDecl->getLocation(), RParenLoc);
2453    RealDecl->setInvalidDecl();
2454    return;
2455  }
2456
2457  // Let clients know that initialization was done with a direct initializer.
2458  VDecl->setCXXDirectInitializer(true);
2459
2460  assert(NumExprs == 1 && "Expected 1 expression");
2461  // Set the init expression, handles conversions.
2462  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2463                       /*DirectInit=*/true);
2464}
2465
2466/// PerformInitializationByConstructor - Perform initialization by
2467/// constructor (C++ [dcl.init]p14), which may occur as part of
2468/// direct-initialization or copy-initialization. We are initializing
2469/// an object of type @p ClassType with the given arguments @p
2470/// Args. @p Loc is the location in the source code where the
2471/// initializer occurs (e.g., a declaration, member initializer,
2472/// functional cast, etc.) while @p Range covers the whole
2473/// initialization. @p InitEntity is the entity being initialized,
2474/// which may by the name of a declaration or a type. @p Kind is the
2475/// kind of initialization we're performing, which affects whether
2476/// explicit constructors will be considered. When successful, returns
2477/// the constructor that will be used to perform the initialization;
2478/// when the initialization fails, emits a diagnostic and returns
2479/// null.
2480CXXConstructorDecl *
2481Sema::PerformInitializationByConstructor(QualType ClassType,
2482                                         Expr **Args, unsigned NumArgs,
2483                                         SourceLocation Loc, SourceRange Range,
2484                                         DeclarationName InitEntity,
2485                                         InitializationKind Kind) {
2486  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2487  assert(ClassRec && "Can only initialize a class type here");
2488
2489  // C++ [dcl.init]p14:
2490  //
2491  //   If the initialization is direct-initialization, or if it is
2492  //   copy-initialization where the cv-unqualified version of the
2493  //   source type is the same class as, or a derived class of, the
2494  //   class of the destination, constructors are considered. The
2495  //   applicable constructors are enumerated (13.3.1.3), and the
2496  //   best one is chosen through overload resolution (13.3). The
2497  //   constructor so selected is called to initialize the object,
2498  //   with the initializer expression(s) as its argument(s). If no
2499  //   constructor applies, or the overload resolution is ambiguous,
2500  //   the initialization is ill-formed.
2501  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2502  OverloadCandidateSet CandidateSet;
2503
2504  // Add constructors to the overload set.
2505  DeclarationName ConstructorName
2506    = Context.DeclarationNames.getCXXConstructorName(
2507                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2508  DeclContext::lookup_const_iterator Con, ConEnd;
2509  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2510       Con != ConEnd; ++Con) {
2511    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2512    if ((Kind == IK_Direct) ||
2513        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2514        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2515      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2516  }
2517
2518  // FIXME: When we decide not to synthesize the implicitly-declared
2519  // constructors, we'll need to make them appear here.
2520
2521  OverloadCandidateSet::iterator Best;
2522  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2523  case OR_Success:
2524    // We found a constructor. Return it.
2525    return cast<CXXConstructorDecl>(Best->Function);
2526
2527  case OR_No_Viable_Function:
2528    if (InitEntity)
2529      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2530        << InitEntity << Range;
2531    else
2532      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2533        << ClassType << Range;
2534    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2535    return 0;
2536
2537  case OR_Ambiguous:
2538    if (InitEntity)
2539      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2540    else
2541      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2542    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2543    return 0;
2544
2545  case OR_Deleted:
2546    if (InitEntity)
2547      Diag(Loc, diag::err_ovl_deleted_init)
2548        << Best->Function->isDeleted()
2549        << InitEntity << Range;
2550    else
2551      Diag(Loc, diag::err_ovl_deleted_init)
2552        << Best->Function->isDeleted()
2553        << InitEntity << Range;
2554    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2555    return 0;
2556  }
2557
2558  return 0;
2559}
2560
2561/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2562/// determine whether they are reference-related,
2563/// reference-compatible, reference-compatible with added
2564/// qualification, or incompatible, for use in C++ initialization by
2565/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2566/// type, and the first type (T1) is the pointee type of the reference
2567/// type being initialized.
2568Sema::ReferenceCompareResult
2569Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2570                                   bool& DerivedToBase) {
2571  assert(!T1->isReferenceType() &&
2572    "T1 must be the pointee type of the reference type");
2573  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2574
2575  T1 = Context.getCanonicalType(T1);
2576  T2 = Context.getCanonicalType(T2);
2577  QualType UnqualT1 = T1.getUnqualifiedType();
2578  QualType UnqualT2 = T2.getUnqualifiedType();
2579
2580  // C++ [dcl.init.ref]p4:
2581  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2582  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2583  //   T1 is a base class of T2.
2584  if (UnqualT1 == UnqualT2)
2585    DerivedToBase = false;
2586  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2587    DerivedToBase = true;
2588  else
2589    return Ref_Incompatible;
2590
2591  // At this point, we know that T1 and T2 are reference-related (at
2592  // least).
2593
2594  // C++ [dcl.init.ref]p4:
2595  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2596  //   reference-related to T2 and cv1 is the same cv-qualification
2597  //   as, or greater cv-qualification than, cv2. For purposes of
2598  //   overload resolution, cases for which cv1 is greater
2599  //   cv-qualification than cv2 are identified as
2600  //   reference-compatible with added qualification (see 13.3.3.2).
2601  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2602    return Ref_Compatible;
2603  else if (T1.isMoreQualifiedThan(T2))
2604    return Ref_Compatible_With_Added_Qualification;
2605  else
2606    return Ref_Related;
2607}
2608
2609/// CheckReferenceInit - Check the initialization of a reference
2610/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2611/// the initializer (either a simple initializer or an initializer
2612/// list), and DeclType is the type of the declaration. When ICS is
2613/// non-null, this routine will compute the implicit conversion
2614/// sequence according to C++ [over.ics.ref] and will not produce any
2615/// diagnostics; when ICS is null, it will emit diagnostics when any
2616/// errors are found. Either way, a return value of true indicates
2617/// that there was a failure, a return value of false indicates that
2618/// the reference initialization succeeded.
2619///
2620/// When @p SuppressUserConversions, user-defined conversions are
2621/// suppressed.
2622/// When @p AllowExplicit, we also permit explicit user-defined
2623/// conversion functions.
2624/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2625bool
2626Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2627                         ImplicitConversionSequence *ICS,
2628                         bool SuppressUserConversions,
2629                         bool AllowExplicit, bool ForceRValue) {
2630  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2631
2632  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2633  QualType T2 = Init->getType();
2634
2635  // If the initializer is the address of an overloaded function, try
2636  // to resolve the overloaded function. If all goes well, T2 is the
2637  // type of the resulting function.
2638  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2639    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2640                                                          ICS != 0);
2641    if (Fn) {
2642      // Since we're performing this reference-initialization for
2643      // real, update the initializer with the resulting function.
2644      if (!ICS) {
2645        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2646          return true;
2647
2648        FixOverloadedFunctionReference(Init, Fn);
2649      }
2650
2651      T2 = Fn->getType();
2652    }
2653  }
2654
2655  // Compute some basic properties of the types and the initializer.
2656  bool isRValRef = DeclType->isRValueReferenceType();
2657  bool DerivedToBase = false;
2658  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2659                                                  Init->isLvalue(Context);
2660  ReferenceCompareResult RefRelationship
2661    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2662
2663  // Most paths end in a failed conversion.
2664  if (ICS)
2665    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2666
2667  // C++ [dcl.init.ref]p5:
2668  //   A reference to type “cv1 T1” is initialized by an expression
2669  //   of type “cv2 T2” as follows:
2670
2671  //     -- If the initializer expression
2672
2673  // Rvalue references cannot bind to lvalues (N2812).
2674  // There is absolutely no situation where they can. In particular, note that
2675  // this is ill-formed, even if B has a user-defined conversion to A&&:
2676  //   B b;
2677  //   A&& r = b;
2678  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2679    if (!ICS)
2680      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2681        << Init->getSourceRange();
2682    return true;
2683  }
2684
2685  bool BindsDirectly = false;
2686  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2687  //          reference-compatible with “cv2 T2,” or
2688  //
2689  // Note that the bit-field check is skipped if we are just computing
2690  // the implicit conversion sequence (C++ [over.best.ics]p2).
2691  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2692      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2693    BindsDirectly = true;
2694
2695    if (ICS) {
2696      // C++ [over.ics.ref]p1:
2697      //   When a parameter of reference type binds directly (8.5.3)
2698      //   to an argument expression, the implicit conversion sequence
2699      //   is the identity conversion, unless the argument expression
2700      //   has a type that is a derived class of the parameter type,
2701      //   in which case the implicit conversion sequence is a
2702      //   derived-to-base Conversion (13.3.3.1).
2703      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2704      ICS->Standard.First = ICK_Identity;
2705      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2706      ICS->Standard.Third = ICK_Identity;
2707      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2708      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2709      ICS->Standard.ReferenceBinding = true;
2710      ICS->Standard.DirectBinding = true;
2711      ICS->Standard.RRefBinding = false;
2712      ICS->Standard.CopyConstructor = 0;
2713
2714      // Nothing more to do: the inaccessibility/ambiguity check for
2715      // derived-to-base conversions is suppressed when we're
2716      // computing the implicit conversion sequence (C++
2717      // [over.best.ics]p2).
2718      return false;
2719    } else {
2720      // Perform the conversion.
2721      // FIXME: Binding to a subobject of the lvalue is going to require more
2722      // AST annotation than this.
2723      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2724    }
2725  }
2726
2727  //       -- has a class type (i.e., T2 is a class type) and can be
2728  //          implicitly converted to an lvalue of type “cv3 T3,”
2729  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2730  //          92) (this conversion is selected by enumerating the
2731  //          applicable conversion functions (13.3.1.6) and choosing
2732  //          the best one through overload resolution (13.3)),
2733  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2734    // FIXME: Look for conversions in base classes!
2735    CXXRecordDecl *T2RecordDecl
2736      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
2737
2738    OverloadCandidateSet CandidateSet;
2739    OverloadedFunctionDecl *Conversions
2740      = T2RecordDecl->getConversionFunctions();
2741    for (OverloadedFunctionDecl::function_iterator Func
2742           = Conversions->function_begin();
2743         Func != Conversions->function_end(); ++Func) {
2744      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2745
2746      // If the conversion function doesn't return a reference type,
2747      // it can't be considered for this conversion.
2748      if (Conv->getConversionType()->isLValueReferenceType() &&
2749          (AllowExplicit || !Conv->isExplicit()))
2750        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2751    }
2752
2753    OverloadCandidateSet::iterator Best;
2754    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2755    case OR_Success:
2756      // This is a direct binding.
2757      BindsDirectly = true;
2758
2759      if (ICS) {
2760        // C++ [over.ics.ref]p1:
2761        //
2762        //   [...] If the parameter binds directly to the result of
2763        //   applying a conversion function to the argument
2764        //   expression, the implicit conversion sequence is a
2765        //   user-defined conversion sequence (13.3.3.1.2), with the
2766        //   second standard conversion sequence either an identity
2767        //   conversion or, if the conversion function returns an
2768        //   entity of a type that is a derived class of the parameter
2769        //   type, a derived-to-base Conversion.
2770        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2771        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2772        ICS->UserDefined.After = Best->FinalConversion;
2773        ICS->UserDefined.ConversionFunction = Best->Function;
2774        assert(ICS->UserDefined.After.ReferenceBinding &&
2775               ICS->UserDefined.After.DirectBinding &&
2776               "Expected a direct reference binding!");
2777        return false;
2778      } else {
2779        // Perform the conversion.
2780        // FIXME: Binding to a subobject of the lvalue is going to require more
2781        // AST annotation than this.
2782        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
2783      }
2784      break;
2785
2786    case OR_Ambiguous:
2787      assert(false && "Ambiguous reference binding conversions not implemented.");
2788      return true;
2789
2790    case OR_No_Viable_Function:
2791    case OR_Deleted:
2792      // There was no suitable conversion, or we found a deleted
2793      // conversion; continue with other checks.
2794      break;
2795    }
2796  }
2797
2798  if (BindsDirectly) {
2799    // C++ [dcl.init.ref]p4:
2800    //   [...] In all cases where the reference-related or
2801    //   reference-compatible relationship of two types is used to
2802    //   establish the validity of a reference binding, and T1 is a
2803    //   base class of T2, a program that necessitates such a binding
2804    //   is ill-formed if T1 is an inaccessible (clause 11) or
2805    //   ambiguous (10.2) base class of T2.
2806    //
2807    // Note that we only check this condition when we're allowed to
2808    // complain about errors, because we should not be checking for
2809    // ambiguity (or inaccessibility) unless the reference binding
2810    // actually happens.
2811    if (DerivedToBase)
2812      return CheckDerivedToBaseConversion(T2, T1,
2813                                          Init->getSourceRange().getBegin(),
2814                                          Init->getSourceRange());
2815    else
2816      return false;
2817  }
2818
2819  //     -- Otherwise, the reference shall be to a non-volatile const
2820  //        type (i.e., cv1 shall be const), or the reference shall be an
2821  //        rvalue reference and the initializer expression shall be an rvalue.
2822  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2823    if (!ICS)
2824      Diag(Init->getSourceRange().getBegin(),
2825           diag::err_not_reference_to_const_init)
2826        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2827        << T2 << Init->getSourceRange();
2828    return true;
2829  }
2830
2831  //       -- If the initializer expression is an rvalue, with T2 a
2832  //          class type, and “cv1 T1” is reference-compatible with
2833  //          “cv2 T2,” the reference is bound in one of the
2834  //          following ways (the choice is implementation-defined):
2835  //
2836  //          -- The reference is bound to the object represented by
2837  //             the rvalue (see 3.10) or to a sub-object within that
2838  //             object.
2839  //
2840  //          -- A temporary of type “cv1 T2” [sic] is created, and
2841  //             a constructor is called to copy the entire rvalue
2842  //             object into the temporary. The reference is bound to
2843  //             the temporary or to a sub-object within the
2844  //             temporary.
2845  //
2846  //          The constructor that would be used to make the copy
2847  //          shall be callable whether or not the copy is actually
2848  //          done.
2849  //
2850  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2851  // freedom, so we will always take the first option and never build
2852  // a temporary in this case. FIXME: We will, however, have to check
2853  // for the presence of a copy constructor in C++98/03 mode.
2854  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2855      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2856    if (ICS) {
2857      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2858      ICS->Standard.First = ICK_Identity;
2859      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2860      ICS->Standard.Third = ICK_Identity;
2861      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2862      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2863      ICS->Standard.ReferenceBinding = true;
2864      ICS->Standard.DirectBinding = false;
2865      ICS->Standard.RRefBinding = isRValRef;
2866      ICS->Standard.CopyConstructor = 0;
2867    } else {
2868      // FIXME: Binding to a subobject of the rvalue is going to require more
2869      // AST annotation than this.
2870      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
2871    }
2872    return false;
2873  }
2874
2875  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2876  //          initialized from the initializer expression using the
2877  //          rules for a non-reference copy initialization (8.5). The
2878  //          reference is then bound to the temporary. If T1 is
2879  //          reference-related to T2, cv1 must be the same
2880  //          cv-qualification as, or greater cv-qualification than,
2881  //          cv2; otherwise, the program is ill-formed.
2882  if (RefRelationship == Ref_Related) {
2883    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2884    // we would be reference-compatible or reference-compatible with
2885    // added qualification. But that wasn't the case, so the reference
2886    // initialization fails.
2887    if (!ICS)
2888      Diag(Init->getSourceRange().getBegin(),
2889           diag::err_reference_init_drops_quals)
2890        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2891        << T2 << Init->getSourceRange();
2892    return true;
2893  }
2894
2895  // If at least one of the types is a class type, the types are not
2896  // related, and we aren't allowed any user conversions, the
2897  // reference binding fails. This case is important for breaking
2898  // recursion, since TryImplicitConversion below will attempt to
2899  // create a temporary through the use of a copy constructor.
2900  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2901      (T1->isRecordType() || T2->isRecordType())) {
2902    if (!ICS)
2903      Diag(Init->getSourceRange().getBegin(),
2904           diag::err_typecheck_convert_incompatible)
2905        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2906    return true;
2907  }
2908
2909  // Actually try to convert the initializer to T1.
2910  if (ICS) {
2911    // C++ [over.ics.ref]p2:
2912    //
2913    //   When a parameter of reference type is not bound directly to
2914    //   an argument expression, the conversion sequence is the one
2915    //   required to convert the argument expression to the
2916    //   underlying type of the reference according to
2917    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2918    //   to copy-initializing a temporary of the underlying type with
2919    //   the argument expression. Any difference in top-level
2920    //   cv-qualification is subsumed by the initialization itself
2921    //   and does not constitute a conversion.
2922    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2923    // Of course, that's still a reference binding.
2924    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2925      ICS->Standard.ReferenceBinding = true;
2926      ICS->Standard.RRefBinding = isRValRef;
2927    } else if(ICS->ConversionKind ==
2928              ImplicitConversionSequence::UserDefinedConversion) {
2929      ICS->UserDefined.After.ReferenceBinding = true;
2930      ICS->UserDefined.After.RRefBinding = isRValRef;
2931    }
2932    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2933  } else {
2934    return PerformImplicitConversion(Init, T1, "initializing");
2935  }
2936}
2937
2938/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2939/// of this overloaded operator is well-formed. If so, returns false;
2940/// otherwise, emits appropriate diagnostics and returns true.
2941bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2942  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2943         "Expected an overloaded operator declaration");
2944
2945  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2946
2947  // C++ [over.oper]p5:
2948  //   The allocation and deallocation functions, operator new,
2949  //   operator new[], operator delete and operator delete[], are
2950  //   described completely in 3.7.3. The attributes and restrictions
2951  //   found in the rest of this subclause do not apply to them unless
2952  //   explicitly stated in 3.7.3.
2953  // FIXME: Write a separate routine for checking this. For now, just allow it.
2954  if (Op == OO_New || Op == OO_Array_New ||
2955      Op == OO_Delete || Op == OO_Array_Delete)
2956    return false;
2957
2958  // C++ [over.oper]p6:
2959  //   An operator function shall either be a non-static member
2960  //   function or be a non-member function and have at least one
2961  //   parameter whose type is a class, a reference to a class, an
2962  //   enumeration, or a reference to an enumeration.
2963  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2964    if (MethodDecl->isStatic())
2965      return Diag(FnDecl->getLocation(),
2966                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2967  } else {
2968    bool ClassOrEnumParam = false;
2969    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2970                                   ParamEnd = FnDecl->param_end();
2971         Param != ParamEnd; ++Param) {
2972      QualType ParamType = (*Param)->getType().getNonReferenceType();
2973      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2974          ParamType->isEnumeralType()) {
2975        ClassOrEnumParam = true;
2976        break;
2977      }
2978    }
2979
2980    if (!ClassOrEnumParam)
2981      return Diag(FnDecl->getLocation(),
2982                  diag::err_operator_overload_needs_class_or_enum)
2983        << FnDecl->getDeclName();
2984  }
2985
2986  // C++ [over.oper]p8:
2987  //   An operator function cannot have default arguments (8.3.6),
2988  //   except where explicitly stated below.
2989  //
2990  // Only the function-call operator allows default arguments
2991  // (C++ [over.call]p1).
2992  if (Op != OO_Call) {
2993    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2994         Param != FnDecl->param_end(); ++Param) {
2995      if ((*Param)->hasUnparsedDefaultArg())
2996        return Diag((*Param)->getLocation(),
2997                    diag::err_operator_overload_default_arg)
2998          << FnDecl->getDeclName();
2999      else if (Expr *DefArg = (*Param)->getDefaultArg())
3000        return Diag((*Param)->getLocation(),
3001                    diag::err_operator_overload_default_arg)
3002          << FnDecl->getDeclName() << DefArg->getSourceRange();
3003    }
3004  }
3005
3006  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3007    { false, false, false }
3008#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3009    , { Unary, Binary, MemberOnly }
3010#include "clang/Basic/OperatorKinds.def"
3011  };
3012
3013  bool CanBeUnaryOperator = OperatorUses[Op][0];
3014  bool CanBeBinaryOperator = OperatorUses[Op][1];
3015  bool MustBeMemberOperator = OperatorUses[Op][2];
3016
3017  // C++ [over.oper]p8:
3018  //   [...] Operator functions cannot have more or fewer parameters
3019  //   than the number required for the corresponding operator, as
3020  //   described in the rest of this subclause.
3021  unsigned NumParams = FnDecl->getNumParams()
3022                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3023  if (Op != OO_Call &&
3024      ((NumParams == 1 && !CanBeUnaryOperator) ||
3025       (NumParams == 2 && !CanBeBinaryOperator) ||
3026       (NumParams < 1) || (NumParams > 2))) {
3027    // We have the wrong number of parameters.
3028    unsigned ErrorKind;
3029    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3030      ErrorKind = 2;  // 2 -> unary or binary.
3031    } else if (CanBeUnaryOperator) {
3032      ErrorKind = 0;  // 0 -> unary
3033    } else {
3034      assert(CanBeBinaryOperator &&
3035             "All non-call overloaded operators are unary or binary!");
3036      ErrorKind = 1;  // 1 -> binary
3037    }
3038
3039    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3040      << FnDecl->getDeclName() << NumParams << ErrorKind;
3041  }
3042
3043  // Overloaded operators other than operator() cannot be variadic.
3044  if (Op != OO_Call &&
3045      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3046    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3047      << FnDecl->getDeclName();
3048  }
3049
3050  // Some operators must be non-static member functions.
3051  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3052    return Diag(FnDecl->getLocation(),
3053                diag::err_operator_overload_must_be_member)
3054      << FnDecl->getDeclName();
3055  }
3056
3057  // C++ [over.inc]p1:
3058  //   The user-defined function called operator++ implements the
3059  //   prefix and postfix ++ operator. If this function is a member
3060  //   function with no parameters, or a non-member function with one
3061  //   parameter of class or enumeration type, it defines the prefix
3062  //   increment operator ++ for objects of that type. If the function
3063  //   is a member function with one parameter (which shall be of type
3064  //   int) or a non-member function with two parameters (the second
3065  //   of which shall be of type int), it defines the postfix
3066  //   increment operator ++ for objects of that type.
3067  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3068    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3069    bool ParamIsInt = false;
3070    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3071      ParamIsInt = BT->getKind() == BuiltinType::Int;
3072
3073    if (!ParamIsInt)
3074      return Diag(LastParam->getLocation(),
3075                  diag::err_operator_overload_post_incdec_must_be_int)
3076        << LastParam->getType() << (Op == OO_MinusMinus);
3077  }
3078
3079  // Notify the class if it got an assignment operator.
3080  if (Op == OO_Equal) {
3081    // Would have returned earlier otherwise.
3082    assert(isa<CXXMethodDecl>(FnDecl) &&
3083      "Overloaded = not member, but not filtered.");
3084    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3085    Method->getParent()->addedAssignmentOperator(Context, Method);
3086  }
3087
3088  return false;
3089}
3090
3091/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3092/// linkage specification, including the language and (if present)
3093/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3094/// the location of the language string literal, which is provided
3095/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3096/// the '{' brace. Otherwise, this linkage specification does not
3097/// have any braces.
3098Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3099                                                     SourceLocation ExternLoc,
3100                                                     SourceLocation LangLoc,
3101                                                     const char *Lang,
3102                                                     unsigned StrSize,
3103                                                     SourceLocation LBraceLoc) {
3104  LinkageSpecDecl::LanguageIDs Language;
3105  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3106    Language = LinkageSpecDecl::lang_c;
3107  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3108    Language = LinkageSpecDecl::lang_cxx;
3109  else {
3110    Diag(LangLoc, diag::err_bad_language);
3111    return DeclPtrTy();
3112  }
3113
3114  // FIXME: Add all the various semantics of linkage specifications
3115
3116  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3117                                               LangLoc, Language,
3118                                               LBraceLoc.isValid());
3119  CurContext->addDecl(D);
3120  PushDeclContext(S, D);
3121  return DeclPtrTy::make(D);
3122}
3123
3124/// ActOnFinishLinkageSpecification - Completely the definition of
3125/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3126/// valid, it's the position of the closing '}' brace in a linkage
3127/// specification that uses braces.
3128Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3129                                                      DeclPtrTy LinkageSpec,
3130                                                      SourceLocation RBraceLoc) {
3131  if (LinkageSpec)
3132    PopDeclContext();
3133  return LinkageSpec;
3134}
3135
3136/// \brief Perform semantic analysis for the variable declaration that
3137/// occurs within a C++ catch clause, returning the newly-created
3138/// variable.
3139VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3140                                         IdentifierInfo *Name,
3141                                         SourceLocation Loc,
3142                                         SourceRange Range) {
3143  bool Invalid = false;
3144
3145  // Arrays and functions decay.
3146  if (ExDeclType->isArrayType())
3147    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3148  else if (ExDeclType->isFunctionType())
3149    ExDeclType = Context.getPointerType(ExDeclType);
3150
3151  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3152  // The exception-declaration shall not denote a pointer or reference to an
3153  // incomplete type, other than [cv] void*.
3154  // N2844 forbids rvalue references.
3155  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3156    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3157    Invalid = true;
3158  }
3159
3160  QualType BaseType = ExDeclType;
3161  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3162  unsigned DK = diag::err_catch_incomplete;
3163  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3164    BaseType = Ptr->getPointeeType();
3165    Mode = 1;
3166    DK = diag::err_catch_incomplete_ptr;
3167  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3168    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3169    BaseType = Ref->getPointeeType();
3170    Mode = 2;
3171    DK = diag::err_catch_incomplete_ref;
3172  }
3173  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3174      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3175    Invalid = true;
3176
3177  if (!Invalid && !ExDeclType->isDependentType() &&
3178      RequireNonAbstractType(Loc, ExDeclType,
3179                             diag::err_abstract_type_in_decl,
3180                             AbstractVariableType))
3181    Invalid = true;
3182
3183  // FIXME: Need to test for ability to copy-construct and destroy the
3184  // exception variable.
3185
3186  // FIXME: Need to check for abstract classes.
3187
3188  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3189                                    Name, ExDeclType, VarDecl::None,
3190                                    Range.getBegin());
3191
3192  if (Invalid)
3193    ExDecl->setInvalidDecl();
3194
3195  return ExDecl;
3196}
3197
3198/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3199/// handler.
3200Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3201  QualType ExDeclType = GetTypeForDeclarator(D, S);
3202
3203  bool Invalid = D.isInvalidType();
3204  IdentifierInfo *II = D.getIdentifier();
3205  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3206    // The scope should be freshly made just for us. There is just no way
3207    // it contains any previous declaration.
3208    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3209    if (PrevDecl->isTemplateParameter()) {
3210      // Maybe we will complain about the shadowed template parameter.
3211      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3212    }
3213  }
3214
3215  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3216    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3217      << D.getCXXScopeSpec().getRange();
3218    Invalid = true;
3219  }
3220
3221  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3222                                              D.getIdentifier(),
3223                                              D.getIdentifierLoc(),
3224                                            D.getDeclSpec().getSourceRange());
3225
3226  if (Invalid)
3227    ExDecl->setInvalidDecl();
3228
3229  // Add the exception declaration into this scope.
3230  if (II)
3231    PushOnScopeChains(ExDecl, S);
3232  else
3233    CurContext->addDecl(ExDecl);
3234
3235  ProcessDeclAttributes(S, ExDecl, D);
3236  return DeclPtrTy::make(ExDecl);
3237}
3238
3239Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3240                                                   ExprArg assertexpr,
3241                                                   ExprArg assertmessageexpr) {
3242  Expr *AssertExpr = (Expr *)assertexpr.get();
3243  StringLiteral *AssertMessage =
3244    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3245
3246  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3247    llvm::APSInt Value(32);
3248    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3249      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3250        AssertExpr->getSourceRange();
3251      return DeclPtrTy();
3252    }
3253
3254    if (Value == 0) {
3255      std::string str(AssertMessage->getStrData(),
3256                      AssertMessage->getByteLength());
3257      Diag(AssertLoc, diag::err_static_assert_failed)
3258        << str << AssertExpr->getSourceRange();
3259    }
3260  }
3261
3262  assertexpr.release();
3263  assertmessageexpr.release();
3264  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3265                                        AssertExpr, AssertMessage);
3266
3267  CurContext->addDecl(Decl);
3268  return DeclPtrTy::make(Decl);
3269}
3270
3271bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3272  if (!(S->getFlags() & Scope::ClassScope)) {
3273    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3274    return true;
3275  }
3276
3277  return false;
3278}
3279
3280void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3281  Decl *Dcl = dcl.getAs<Decl>();
3282  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3283  if (!Fn) {
3284    Diag(DelLoc, diag::err_deleted_non_function);
3285    return;
3286  }
3287  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3288    Diag(DelLoc, diag::err_deleted_decl_not_first);
3289    Diag(Prev->getLocation(), diag::note_previous_declaration);
3290    // If the declaration wasn't the first, we delete the function anyway for
3291    // recovery.
3292  }
3293  Fn->setDeleted();
3294}
3295
3296static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3297  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3298       ++CI) {
3299    Stmt *SubStmt = *CI;
3300    if (!SubStmt)
3301      continue;
3302    if (isa<ReturnStmt>(SubStmt))
3303      Self.Diag(SubStmt->getSourceRange().getBegin(),
3304           diag::err_return_in_constructor_handler);
3305    if (!isa<Expr>(SubStmt))
3306      SearchForReturnInStmt(Self, SubStmt);
3307  }
3308}
3309
3310void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3311  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3312    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3313    SearchForReturnInStmt(*this, Handler);
3314  }
3315}
3316
3317bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3318                                             const CXXMethodDecl *Old) {
3319  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3320  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3321
3322  QualType CNewTy = Context.getCanonicalType(NewTy);
3323  QualType COldTy = Context.getCanonicalType(OldTy);
3324
3325  if (CNewTy == COldTy &&
3326      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3327    return false;
3328
3329  // Check if the return types are covariant
3330  QualType NewClassTy, OldClassTy;
3331
3332  /// Both types must be pointers or references to classes.
3333  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3334    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3335      NewClassTy = NewPT->getPointeeType();
3336      OldClassTy = OldPT->getPointeeType();
3337    }
3338  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3339    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3340      NewClassTy = NewRT->getPointeeType();
3341      OldClassTy = OldRT->getPointeeType();
3342    }
3343  }
3344
3345  // The return types aren't either both pointers or references to a class type.
3346  if (NewClassTy.isNull()) {
3347    Diag(New->getLocation(),
3348         diag::err_different_return_type_for_overriding_virtual_function)
3349      << New->getDeclName() << NewTy << OldTy;
3350    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3351
3352    return true;
3353  }
3354
3355  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3356    // Check if the new class derives from the old class.
3357    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3358      Diag(New->getLocation(),
3359           diag::err_covariant_return_not_derived)
3360      << New->getDeclName() << NewTy << OldTy;
3361      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3362      return true;
3363    }
3364
3365    // Check if we the conversion from derived to base is valid.
3366    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3367                      diag::err_covariant_return_inaccessible_base,
3368                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3369                      // FIXME: Should this point to the return type?
3370                      New->getLocation(), SourceRange(), New->getDeclName())) {
3371      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3372      return true;
3373    }
3374  }
3375
3376  // The qualifiers of the return types must be the same.
3377  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3378    Diag(New->getLocation(),
3379         diag::err_covariant_return_type_different_qualifications)
3380    << New->getDeclName() << NewTy << OldTy;
3381    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3382    return true;
3383  };
3384
3385
3386  // The new class type must have the same or less qualifiers as the old type.
3387  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3388    Diag(New->getLocation(),
3389         diag::err_covariant_return_type_class_type_more_qualified)
3390    << New->getDeclName() << NewTy << OldTy;
3391    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3392    return true;
3393  };
3394
3395  return false;
3396}
3397
3398bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3399                                                const CXXMethodDecl *Old)
3400{
3401  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3402                                  diag::note_overridden_virtual_function,
3403                                  Old->getType()->getAsFunctionProtoType(),
3404                                  Old->getLocation(),
3405                                  New->getType()->getAsFunctionProtoType(),
3406                                  New->getLocation());
3407}
3408
3409/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3410/// initializer for the declaration 'Dcl'.
3411/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3412/// static data member of class X, names should be looked up in the scope of
3413/// class X.
3414void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3415  Decl *D = Dcl.getAs<Decl>();
3416  // If there is no declaration, there was an error parsing it.
3417  if (D == 0)
3418    return;
3419
3420  // Check whether it is a declaration with a nested name specifier like
3421  // int foo::bar;
3422  if (!D->isOutOfLine())
3423    return;
3424
3425  // C++ [basic.lookup.unqual]p13
3426  //
3427  // A name used in the definition of a static data member of class X
3428  // (after the qualified-id of the static member) is looked up as if the name
3429  // was used in a member function of X.
3430
3431  // Change current context into the context of the initializing declaration.
3432  EnterDeclaratorContext(S, D->getDeclContext());
3433}
3434
3435/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3436/// initializer for the declaration 'Dcl'.
3437void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3438  Decl *D = Dcl.getAs<Decl>();
3439  // If there is no declaration, there was an error parsing it.
3440  if (D == 0)
3441    return;
3442
3443  // Check whether it is a declaration with a nested name specifier like
3444  // int foo::bar;
3445  if (!D->isOutOfLine())
3446    return;
3447
3448  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3449  ExitDeclaratorContext(S);
3450}
3451