SemaDeclCXX.cpp revision acba90f30876b4140b738f0d3dd0e50724053a96
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/STLExtras.h"
35#include <map>
36#include <set>
37
38using namespace clang;
39
40//===----------------------------------------------------------------------===//
41// CheckDefaultArgumentVisitor
42//===----------------------------------------------------------------------===//
43
44namespace {
45  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
46  /// the default argument of a parameter to determine whether it
47  /// contains any ill-formed subexpressions. For example, this will
48  /// diagnose the use of local variables or parameters within the
49  /// default argument expression.
50  class CheckDefaultArgumentVisitor
51    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
52    Expr *DefaultArg;
53    Sema *S;
54
55  public:
56    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
57      : DefaultArg(defarg), S(s) {}
58
59    bool VisitExpr(Expr *Node);
60    bool VisitDeclRefExpr(DeclRefExpr *DRE);
61    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
62  };
63
64  /// VisitExpr - Visit all of the children of this expression.
65  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
66    bool IsInvalid = false;
67    for (Stmt::child_range I = Node->children(); I; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++ [class.derived]p2:
525  //   If a class is marked with the class-virt-specifier final and it appears
526  //   as a base-type-specifier in a base-clause (10 class.derived), the program
527  //   is ill-formed.
528  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
529    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
530      << CXXBaseDecl->getDeclName();
531    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
532      << CXXBaseDecl->getDeclName();
533    return 0;
534  }
535
536  if (BaseDecl->isInvalidDecl())
537    Class->setInvalidDecl();
538
539  // Create the base specifier.
540  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
541                                        Class->getTagKind() == TTK_Class,
542                                        Access, TInfo, EllipsisLoc);
543}
544
545/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
546/// one entry in the base class list of a class specifier, for
547/// example:
548///    class foo : public bar, virtual private baz {
549/// 'public bar' and 'virtual private baz' are each base-specifiers.
550BaseResult
551Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
552                         bool Virtual, AccessSpecifier Access,
553                         ParsedType basetype, SourceLocation BaseLoc,
554                         SourceLocation EllipsisLoc) {
555  if (!classdecl)
556    return true;
557
558  AdjustDeclIfTemplate(classdecl);
559  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
560  if (!Class)
561    return true;
562
563  TypeSourceInfo *TInfo = 0;
564  GetTypeFromParser(basetype, &TInfo);
565
566  if (EllipsisLoc.isInvalid() &&
567      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
568                                      UPPC_BaseType))
569    return true;
570
571  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
572                                                      Virtual, Access, TInfo,
573                                                      EllipsisLoc))
574    return BaseSpec;
575
576  return true;
577}
578
579/// \brief Performs the actual work of attaching the given base class
580/// specifiers to a C++ class.
581bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
582                                unsigned NumBases) {
583 if (NumBases == 0)
584    return false;
585
586  // Used to keep track of which base types we have already seen, so
587  // that we can properly diagnose redundant direct base types. Note
588  // that the key is always the unqualified canonical type of the base
589  // class.
590  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
591
592  // Copy non-redundant base specifiers into permanent storage.
593  unsigned NumGoodBases = 0;
594  bool Invalid = false;
595  for (unsigned idx = 0; idx < NumBases; ++idx) {
596    QualType NewBaseType
597      = Context.getCanonicalType(Bases[idx]->getType());
598    NewBaseType = NewBaseType.getLocalUnqualifiedType();
599    if (!Class->hasObjectMember()) {
600      if (const RecordType *FDTTy =
601            NewBaseType.getTypePtr()->getAs<RecordType>())
602        if (FDTTy->getDecl()->hasObjectMember())
603          Class->setHasObjectMember(true);
604    }
605
606    if (KnownBaseTypes[NewBaseType]) {
607      // C++ [class.mi]p3:
608      //   A class shall not be specified as a direct base class of a
609      //   derived class more than once.
610      Diag(Bases[idx]->getSourceRange().getBegin(),
611           diag::err_duplicate_base_class)
612        << KnownBaseTypes[NewBaseType]->getType()
613        << Bases[idx]->getSourceRange();
614
615      // Delete the duplicate base class specifier; we're going to
616      // overwrite its pointer later.
617      Context.Deallocate(Bases[idx]);
618
619      Invalid = true;
620    } else {
621      // Okay, add this new base class.
622      KnownBaseTypes[NewBaseType] = Bases[idx];
623      Bases[NumGoodBases++] = Bases[idx];
624    }
625  }
626
627  // Attach the remaining base class specifiers to the derived class.
628  Class->setBases(Bases, NumGoodBases);
629
630  // Delete the remaining (good) base class specifiers, since their
631  // data has been copied into the CXXRecordDecl.
632  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
633    Context.Deallocate(Bases[idx]);
634
635  return Invalid;
636}
637
638/// ActOnBaseSpecifiers - Attach the given base specifiers to the
639/// class, after checking whether there are any duplicate base
640/// classes.
641void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
642                               unsigned NumBases) {
643  if (!ClassDecl || !Bases || !NumBases)
644    return;
645
646  AdjustDeclIfTemplate(ClassDecl);
647  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
648                       (CXXBaseSpecifier**)(Bases), NumBases);
649}
650
651static CXXRecordDecl *GetClassForType(QualType T) {
652  if (const RecordType *RT = T->getAs<RecordType>())
653    return cast<CXXRecordDecl>(RT->getDecl());
654  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
655    return ICT->getDecl();
656  else
657    return 0;
658}
659
660/// \brief Determine whether the type \p Derived is a C++ class that is
661/// derived from the type \p Base.
662bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
663  if (!getLangOptions().CPlusPlus)
664    return false;
665
666  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
667  if (!DerivedRD)
668    return false;
669
670  CXXRecordDecl *BaseRD = GetClassForType(Base);
671  if (!BaseRD)
672    return false;
673
674  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
675  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  return DerivedRD->isDerivedFrom(BaseRD, Paths);
693}
694
695void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
696                              CXXCastPath &BasePathArray) {
697  assert(BasePathArray.empty() && "Base path array must be empty!");
698  assert(Paths.isRecordingPaths() && "Must record paths!");
699
700  const CXXBasePath &Path = Paths.front();
701
702  // We first go backward and check if we have a virtual base.
703  // FIXME: It would be better if CXXBasePath had the base specifier for
704  // the nearest virtual base.
705  unsigned Start = 0;
706  for (unsigned I = Path.size(); I != 0; --I) {
707    if (Path[I - 1].Base->isVirtual()) {
708      Start = I - 1;
709      break;
710    }
711  }
712
713  // Now add all bases.
714  for (unsigned I = Start, E = Path.size(); I != E; ++I)
715    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
716}
717
718/// \brief Determine whether the given base path includes a virtual
719/// base class.
720bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
721  for (CXXCastPath::const_iterator B = BasePath.begin(),
722                                BEnd = BasePath.end();
723       B != BEnd; ++B)
724    if ((*B)->isVirtual())
725      return true;
726
727  return false;
728}
729
730/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
731/// conversion (where Derived and Base are class types) is
732/// well-formed, meaning that the conversion is unambiguous (and
733/// that all of the base classes are accessible). Returns true
734/// and emits a diagnostic if the code is ill-formed, returns false
735/// otherwise. Loc is the location where this routine should point to
736/// if there is an error, and Range is the source range to highlight
737/// if there is an error.
738bool
739Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
740                                   unsigned InaccessibleBaseID,
741                                   unsigned AmbigiousBaseConvID,
742                                   SourceLocation Loc, SourceRange Range,
743                                   DeclarationName Name,
744                                   CXXCastPath *BasePath) {
745  // First, determine whether the path from Derived to Base is
746  // ambiguous. This is slightly more expensive than checking whether
747  // the Derived to Base conversion exists, because here we need to
748  // explore multiple paths to determine if there is an ambiguity.
749  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
750                     /*DetectVirtual=*/false);
751  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
752  assert(DerivationOkay &&
753         "Can only be used with a derived-to-base conversion");
754  (void)DerivationOkay;
755
756  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
757    if (InaccessibleBaseID) {
758      // Check that the base class can be accessed.
759      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
760                                   InaccessibleBaseID)) {
761        case AR_inaccessible:
762          return true;
763        case AR_accessible:
764        case AR_dependent:
765        case AR_delayed:
766          break;
767      }
768    }
769
770    // Build a base path if necessary.
771    if (BasePath)
772      BuildBasePathArray(Paths, *BasePath);
773    return false;
774  }
775
776  // We know that the derived-to-base conversion is ambiguous, and
777  // we're going to produce a diagnostic. Perform the derived-to-base
778  // search just one more time to compute all of the possible paths so
779  // that we can print them out. This is more expensive than any of
780  // the previous derived-to-base checks we've done, but at this point
781  // performance isn't as much of an issue.
782  Paths.clear();
783  Paths.setRecordingPaths(true);
784  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
785  assert(StillOkay && "Can only be used with a derived-to-base conversion");
786  (void)StillOkay;
787
788  // Build up a textual representation of the ambiguous paths, e.g.,
789  // D -> B -> A, that will be used to illustrate the ambiguous
790  // conversions in the diagnostic. We only print one of the paths
791  // to each base class subobject.
792  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
793
794  Diag(Loc, AmbigiousBaseConvID)
795  << Derived << Base << PathDisplayStr << Range << Name;
796  return true;
797}
798
799bool
800Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
801                                   SourceLocation Loc, SourceRange Range,
802                                   CXXCastPath *BasePath,
803                                   bool IgnoreAccess) {
804  return CheckDerivedToBaseConversion(Derived, Base,
805                                      IgnoreAccess ? 0
806                                       : diag::err_upcast_to_inaccessible_base,
807                                      diag::err_ambiguous_derived_to_base_conv,
808                                      Loc, Range, DeclarationName(),
809                                      BasePath);
810}
811
812
813/// @brief Builds a string representing ambiguous paths from a
814/// specific derived class to different subobjects of the same base
815/// class.
816///
817/// This function builds a string that can be used in error messages
818/// to show the different paths that one can take through the
819/// inheritance hierarchy to go from the derived class to different
820/// subobjects of a base class. The result looks something like this:
821/// @code
822/// struct D -> struct B -> struct A
823/// struct D -> struct C -> struct A
824/// @endcode
825std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
826  std::string PathDisplayStr;
827  std::set<unsigned> DisplayedPaths;
828  for (CXXBasePaths::paths_iterator Path = Paths.begin();
829       Path != Paths.end(); ++Path) {
830    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
831      // We haven't displayed a path to this particular base
832      // class subobject yet.
833      PathDisplayStr += "\n    ";
834      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
835      for (CXXBasePath::const_iterator Element = Path->begin();
836           Element != Path->end(); ++Element)
837        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
838    }
839  }
840
841  return PathDisplayStr;
842}
843
844//===----------------------------------------------------------------------===//
845// C++ class member Handling
846//===----------------------------------------------------------------------===//
847
848/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
849Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
850                                 SourceLocation ASLoc,
851                                 SourceLocation ColonLoc) {
852  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
853  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
854                                                  ASLoc, ColonLoc);
855  CurContext->addHiddenDecl(ASDecl);
856  return ASDecl;
857}
858
859/// CheckOverrideControl - Check C++0x override control semantics.
860void Sema::CheckOverrideControl(const Decl *D) {
861  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
862  if (!MD || !MD->isVirtual())
863    return;
864
865  if (MD->isDependentContext())
866    return;
867
868  // C++0x [class.virtual]p3:
869  //   If a virtual function is marked with the virt-specifier override and does
870  //   not override a member function of a base class,
871  //   the program is ill-formed.
872  bool HasOverriddenMethods =
873    MD->begin_overridden_methods() != MD->end_overridden_methods();
874  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
875    Diag(MD->getLocation(),
876                 diag::err_function_marked_override_not_overriding)
877      << MD->getDeclName();
878    return;
879  }
880
881  // C++0x [class.derived]p8:
882  //   In a class definition marked with the class-virt-specifier explicit,
883  //   if a virtual member function that is neither implicitly-declared nor a
884  //   destructor overrides a member function of a base class and it is not
885  //   marked with the virt-specifier override, the program is ill-formed.
886  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
887      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
888    llvm::SmallVector<const CXXMethodDecl*, 4>
889      OverriddenMethods(MD->begin_overridden_methods(),
890                        MD->end_overridden_methods());
891
892    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
893      << MD->getDeclName()
894      << (unsigned)OverriddenMethods.size();
895
896    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
897      Diag(OverriddenMethods[I]->getLocation(),
898           diag::note_overridden_virtual_function);
899  }
900}
901
902/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
903/// function overrides a virtual member function marked 'final', according to
904/// C++0x [class.virtual]p3.
905bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
906                                                  const CXXMethodDecl *Old) {
907  if (!Old->hasAttr<FinalAttr>())
908    return false;
909
910  Diag(New->getLocation(), diag::err_final_function_overridden)
911    << New->getDeclName();
912  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
913  return true;
914}
915
916/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
917/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
918/// bitfield width if there is one and 'InitExpr' specifies the initializer if
919/// any.
920Decl *
921Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
922                               MultiTemplateParamsArg TemplateParameterLists,
923                               ExprTy *BW, const VirtSpecifiers &VS,
924                               ExprTy *InitExpr, bool IsDefinition,
925                               bool Deleted) {
926  const DeclSpec &DS = D.getDeclSpec();
927  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
928  DeclarationName Name = NameInfo.getName();
929  SourceLocation Loc = NameInfo.getLoc();
930
931  // For anonymous bitfields, the location should point to the type.
932  if (Loc.isInvalid())
933    Loc = D.getSourceRange().getBegin();
934
935  Expr *BitWidth = static_cast<Expr*>(BW);
936  Expr *Init = static_cast<Expr*>(InitExpr);
937
938  assert(isa<CXXRecordDecl>(CurContext));
939  assert(!DS.isFriendSpecified());
940
941  bool isFunc = false;
942  if (D.isFunctionDeclarator())
943    isFunc = true;
944  else if (D.getNumTypeObjects() == 0 &&
945           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
946    QualType TDType = GetTypeFromParser(DS.getRepAsType());
947    isFunc = TDType->isFunctionType();
948  }
949
950  // C++ 9.2p6: A member shall not be declared to have automatic storage
951  // duration (auto, register) or with the extern storage-class-specifier.
952  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
953  // data members and cannot be applied to names declared const or static,
954  // and cannot be applied to reference members.
955  switch (DS.getStorageClassSpec()) {
956    case DeclSpec::SCS_unspecified:
957    case DeclSpec::SCS_typedef:
958    case DeclSpec::SCS_static:
959      // FALL THROUGH.
960      break;
961    case DeclSpec::SCS_mutable:
962      if (isFunc) {
963        if (DS.getStorageClassSpecLoc().isValid())
964          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
965        else
966          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
967
968        // FIXME: It would be nicer if the keyword was ignored only for this
969        // declarator. Otherwise we could get follow-up errors.
970        D.getMutableDeclSpec().ClearStorageClassSpecs();
971      }
972      break;
973    default:
974      if (DS.getStorageClassSpecLoc().isValid())
975        Diag(DS.getStorageClassSpecLoc(),
976             diag::err_storageclass_invalid_for_member);
977      else
978        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
979      D.getMutableDeclSpec().ClearStorageClassSpecs();
980  }
981
982  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
983                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
984                      !isFunc);
985
986  Decl *Member;
987  if (isInstField) {
988    CXXScopeSpec &SS = D.getCXXScopeSpec();
989
990
991    if (SS.isSet() && !SS.isInvalid()) {
992      // The user provided a superfluous scope specifier inside a class
993      // definition:
994      //
995      // class X {
996      //   int X::member;
997      // };
998      DeclContext *DC = 0;
999      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1000        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1001        << Name << FixItHint::CreateRemoval(SS.getRange());
1002      else
1003        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1004          << Name << SS.getRange();
1005
1006      SS.clear();
1007    }
1008
1009    // FIXME: Check for template parameters!
1010    // FIXME: Check that the name is an identifier!
1011    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1012                         AS);
1013    assert(Member && "HandleField never returns null");
1014  } else {
1015    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1016    if (!Member) {
1017      return 0;
1018    }
1019
1020    // Non-instance-fields can't have a bitfield.
1021    if (BitWidth) {
1022      if (Member->isInvalidDecl()) {
1023        // don't emit another diagnostic.
1024      } else if (isa<VarDecl>(Member)) {
1025        // C++ 9.6p3: A bit-field shall not be a static member.
1026        // "static member 'A' cannot be a bit-field"
1027        Diag(Loc, diag::err_static_not_bitfield)
1028          << Name << BitWidth->getSourceRange();
1029      } else if (isa<TypedefDecl>(Member)) {
1030        // "typedef member 'x' cannot be a bit-field"
1031        Diag(Loc, diag::err_typedef_not_bitfield)
1032          << Name << BitWidth->getSourceRange();
1033      } else {
1034        // A function typedef ("typedef int f(); f a;").
1035        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1036        Diag(Loc, diag::err_not_integral_type_bitfield)
1037          << Name << cast<ValueDecl>(Member)->getType()
1038          << BitWidth->getSourceRange();
1039      }
1040
1041      BitWidth = 0;
1042      Member->setInvalidDecl();
1043    }
1044
1045    Member->setAccess(AS);
1046
1047    // If we have declared a member function template, set the access of the
1048    // templated declaration as well.
1049    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1050      FunTmpl->getTemplatedDecl()->setAccess(AS);
1051  }
1052
1053  if (VS.isOverrideSpecified()) {
1054    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1055    if (!MD || !MD->isVirtual()) {
1056      Diag(Member->getLocStart(),
1057           diag::override_keyword_only_allowed_on_virtual_member_functions)
1058        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1059    } else
1060      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1061  }
1062  if (VS.isFinalSpecified()) {
1063    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1064    if (!MD || !MD->isVirtual()) {
1065      Diag(Member->getLocStart(),
1066           diag::override_keyword_only_allowed_on_virtual_member_functions)
1067      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1068    } else
1069      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1070  }
1071
1072  CheckOverrideControl(Member);
1073
1074  assert((Name || isInstField) && "No identifier for non-field ?");
1075
1076  if (Init)
1077    AddInitializerToDecl(Member, Init, false,
1078                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1079  if (Deleted) // FIXME: Source location is not very good.
1080    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1081
1082  FinalizeDeclaration(Member);
1083
1084  if (isInstField)
1085    FieldCollector->Add(cast<FieldDecl>(Member));
1086  return Member;
1087}
1088
1089/// \brief Find the direct and/or virtual base specifiers that
1090/// correspond to the given base type, for use in base initialization
1091/// within a constructor.
1092static bool FindBaseInitializer(Sema &SemaRef,
1093                                CXXRecordDecl *ClassDecl,
1094                                QualType BaseType,
1095                                const CXXBaseSpecifier *&DirectBaseSpec,
1096                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1097  // First, check for a direct base class.
1098  DirectBaseSpec = 0;
1099  for (CXXRecordDecl::base_class_const_iterator Base
1100         = ClassDecl->bases_begin();
1101       Base != ClassDecl->bases_end(); ++Base) {
1102    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1103      // We found a direct base of this type. That's what we're
1104      // initializing.
1105      DirectBaseSpec = &*Base;
1106      break;
1107    }
1108  }
1109
1110  // Check for a virtual base class.
1111  // FIXME: We might be able to short-circuit this if we know in advance that
1112  // there are no virtual bases.
1113  VirtualBaseSpec = 0;
1114  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1115    // We haven't found a base yet; search the class hierarchy for a
1116    // virtual base class.
1117    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1118                       /*DetectVirtual=*/false);
1119    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1120                              BaseType, Paths)) {
1121      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1122           Path != Paths.end(); ++Path) {
1123        if (Path->back().Base->isVirtual()) {
1124          VirtualBaseSpec = Path->back().Base;
1125          break;
1126        }
1127      }
1128    }
1129  }
1130
1131  return DirectBaseSpec || VirtualBaseSpec;
1132}
1133
1134/// ActOnMemInitializer - Handle a C++ member initializer.
1135MemInitResult
1136Sema::ActOnMemInitializer(Decl *ConstructorD,
1137                          Scope *S,
1138                          CXXScopeSpec &SS,
1139                          IdentifierInfo *MemberOrBase,
1140                          ParsedType TemplateTypeTy,
1141                          SourceLocation IdLoc,
1142                          SourceLocation LParenLoc,
1143                          ExprTy **Args, unsigned NumArgs,
1144                          SourceLocation RParenLoc,
1145                          SourceLocation EllipsisLoc) {
1146  if (!ConstructorD)
1147    return true;
1148
1149  AdjustDeclIfTemplate(ConstructorD);
1150
1151  CXXConstructorDecl *Constructor
1152    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1153  if (!Constructor) {
1154    // The user wrote a constructor initializer on a function that is
1155    // not a C++ constructor. Ignore the error for now, because we may
1156    // have more member initializers coming; we'll diagnose it just
1157    // once in ActOnMemInitializers.
1158    return true;
1159  }
1160
1161  CXXRecordDecl *ClassDecl = Constructor->getParent();
1162
1163  // C++ [class.base.init]p2:
1164  //   Names in a mem-initializer-id are looked up in the scope of the
1165  //   constructor's class and, if not found in that scope, are looked
1166  //   up in the scope containing the constructor's definition.
1167  //   [Note: if the constructor's class contains a member with the
1168  //   same name as a direct or virtual base class of the class, a
1169  //   mem-initializer-id naming the member or base class and composed
1170  //   of a single identifier refers to the class member. A
1171  //   mem-initializer-id for the hidden base class may be specified
1172  //   using a qualified name. ]
1173  if (!SS.getScopeRep() && !TemplateTypeTy) {
1174    // Look for a member, first.
1175    FieldDecl *Member = 0;
1176    DeclContext::lookup_result Result
1177      = ClassDecl->lookup(MemberOrBase);
1178    if (Result.first != Result.second) {
1179      Member = dyn_cast<FieldDecl>(*Result.first);
1180
1181      if (Member) {
1182        if (EllipsisLoc.isValid())
1183          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1184            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1185
1186        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1187                                    LParenLoc, RParenLoc);
1188      }
1189
1190      // Handle anonymous union case.
1191      if (IndirectFieldDecl* IndirectField
1192            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1193        if (EllipsisLoc.isValid())
1194          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1195            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1196
1197         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1198                                       NumArgs, IdLoc,
1199                                       LParenLoc, RParenLoc);
1200      }
1201    }
1202  }
1203  // It didn't name a member, so see if it names a class.
1204  QualType BaseType;
1205  TypeSourceInfo *TInfo = 0;
1206
1207  if (TemplateTypeTy) {
1208    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1209  } else {
1210    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1211    LookupParsedName(R, S, &SS);
1212
1213    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1214    if (!TyD) {
1215      if (R.isAmbiguous()) return true;
1216
1217      // We don't want access-control diagnostics here.
1218      R.suppressDiagnostics();
1219
1220      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1221        bool NotUnknownSpecialization = false;
1222        DeclContext *DC = computeDeclContext(SS, false);
1223        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1224          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1225
1226        if (!NotUnknownSpecialization) {
1227          // When the scope specifier can refer to a member of an unknown
1228          // specialization, we take it as a type name.
1229          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1230                                       SS.getWithLocInContext(Context),
1231                                       *MemberOrBase, IdLoc);
1232          if (BaseType.isNull())
1233            return true;
1234
1235          R.clear();
1236          R.setLookupName(MemberOrBase);
1237        }
1238      }
1239
1240      // If no results were found, try to correct typos.
1241      if (R.empty() && BaseType.isNull() &&
1242          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1243          R.isSingleResult()) {
1244        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1245          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1246            // We have found a non-static data member with a similar
1247            // name to what was typed; complain and initialize that
1248            // member.
1249            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1250              << MemberOrBase << true << R.getLookupName()
1251              << FixItHint::CreateReplacement(R.getNameLoc(),
1252                                              R.getLookupName().getAsString());
1253            Diag(Member->getLocation(), diag::note_previous_decl)
1254              << Member->getDeclName();
1255
1256            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1257                                          LParenLoc, RParenLoc);
1258          }
1259        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1260          const CXXBaseSpecifier *DirectBaseSpec;
1261          const CXXBaseSpecifier *VirtualBaseSpec;
1262          if (FindBaseInitializer(*this, ClassDecl,
1263                                  Context.getTypeDeclType(Type),
1264                                  DirectBaseSpec, VirtualBaseSpec)) {
1265            // We have found a direct or virtual base class with a
1266            // similar name to what was typed; complain and initialize
1267            // that base class.
1268            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1269              << MemberOrBase << false << R.getLookupName()
1270              << FixItHint::CreateReplacement(R.getNameLoc(),
1271                                              R.getLookupName().getAsString());
1272
1273            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1274                                                             : VirtualBaseSpec;
1275            Diag(BaseSpec->getSourceRange().getBegin(),
1276                 diag::note_base_class_specified_here)
1277              << BaseSpec->getType()
1278              << BaseSpec->getSourceRange();
1279
1280            TyD = Type;
1281          }
1282        }
1283      }
1284
1285      if (!TyD && BaseType.isNull()) {
1286        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1287          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1288        return true;
1289      }
1290    }
1291
1292    if (BaseType.isNull()) {
1293      BaseType = Context.getTypeDeclType(TyD);
1294      if (SS.isSet()) {
1295        NestedNameSpecifier *Qualifier =
1296          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1297
1298        // FIXME: preserve source range information
1299        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1300      }
1301    }
1302  }
1303
1304  if (!TInfo)
1305    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1306
1307  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1308                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1309}
1310
1311/// Checks an initializer expression for use of uninitialized fields, such as
1312/// containing the field that is being initialized. Returns true if there is an
1313/// uninitialized field was used an updates the SourceLocation parameter; false
1314/// otherwise.
1315static bool InitExprContainsUninitializedFields(const Stmt *S,
1316                                                const ValueDecl *LhsField,
1317                                                SourceLocation *L) {
1318  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1319
1320  if (isa<CallExpr>(S)) {
1321    // Do not descend into function calls or constructors, as the use
1322    // of an uninitialized field may be valid. One would have to inspect
1323    // the contents of the function/ctor to determine if it is safe or not.
1324    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1325    // may be safe, depending on what the function/ctor does.
1326    return false;
1327  }
1328  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1329    const NamedDecl *RhsField = ME->getMemberDecl();
1330
1331    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1332      // The member expression points to a static data member.
1333      assert(VD->isStaticDataMember() &&
1334             "Member points to non-static data member!");
1335      (void)VD;
1336      return false;
1337    }
1338
1339    if (isa<EnumConstantDecl>(RhsField)) {
1340      // The member expression points to an enum.
1341      return false;
1342    }
1343
1344    if (RhsField == LhsField) {
1345      // Initializing a field with itself. Throw a warning.
1346      // But wait; there are exceptions!
1347      // Exception #1:  The field may not belong to this record.
1348      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1349      const Expr *base = ME->getBase();
1350      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1351        // Even though the field matches, it does not belong to this record.
1352        return false;
1353      }
1354      // None of the exceptions triggered; return true to indicate an
1355      // uninitialized field was used.
1356      *L = ME->getMemberLoc();
1357      return true;
1358    }
1359  } else if (isa<SizeOfAlignOfExpr>(S)) {
1360    // sizeof/alignof doesn't reference contents, do not warn.
1361    return false;
1362  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1363    // address-of doesn't reference contents (the pointer may be dereferenced
1364    // in the same expression but it would be rare; and weird).
1365    if (UOE->getOpcode() == UO_AddrOf)
1366      return false;
1367  }
1368  for (Stmt::const_child_range it = S->children(); it; ++it) {
1369    if (!*it) {
1370      // An expression such as 'member(arg ?: "")' may trigger this.
1371      continue;
1372    }
1373    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1374      return true;
1375  }
1376  return false;
1377}
1378
1379MemInitResult
1380Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1381                             unsigned NumArgs, SourceLocation IdLoc,
1382                             SourceLocation LParenLoc,
1383                             SourceLocation RParenLoc) {
1384  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1385  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1386  assert((DirectMember || IndirectMember) &&
1387         "Member must be a FieldDecl or IndirectFieldDecl");
1388
1389  if (Member->isInvalidDecl())
1390    return true;
1391
1392  // Diagnose value-uses of fields to initialize themselves, e.g.
1393  //   foo(foo)
1394  // where foo is not also a parameter to the constructor.
1395  // TODO: implement -Wuninitialized and fold this into that framework.
1396  for (unsigned i = 0; i < NumArgs; ++i) {
1397    SourceLocation L;
1398    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1399      // FIXME: Return true in the case when other fields are used before being
1400      // uninitialized. For example, let this field be the i'th field. When
1401      // initializing the i'th field, throw a warning if any of the >= i'th
1402      // fields are used, as they are not yet initialized.
1403      // Right now we are only handling the case where the i'th field uses
1404      // itself in its initializer.
1405      Diag(L, diag::warn_field_is_uninit);
1406    }
1407  }
1408
1409  bool HasDependentArg = false;
1410  for (unsigned i = 0; i < NumArgs; i++)
1411    HasDependentArg |= Args[i]->isTypeDependent();
1412
1413  Expr *Init;
1414  if (Member->getType()->isDependentType() || HasDependentArg) {
1415    // Can't check initialization for a member of dependent type or when
1416    // any of the arguments are type-dependent expressions.
1417    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                       RParenLoc);
1419
1420    // Erase any temporaries within this evaluation context; we're not
1421    // going to track them in the AST, since we'll be rebuilding the
1422    // ASTs during template instantiation.
1423    ExprTemporaries.erase(
1424              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1425                          ExprTemporaries.end());
1426  } else {
1427    // Initialize the member.
1428    InitializedEntity MemberEntity =
1429      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1430                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1431    InitializationKind Kind =
1432      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1433
1434    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1435
1436    ExprResult MemberInit =
1437      InitSeq.Perform(*this, MemberEntity, Kind,
1438                      MultiExprArg(*this, Args, NumArgs), 0);
1439    if (MemberInit.isInvalid())
1440      return true;
1441
1442    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1443
1444    // C++0x [class.base.init]p7:
1445    //   The initialization of each base and member constitutes a
1446    //   full-expression.
1447    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1448    if (MemberInit.isInvalid())
1449      return true;
1450
1451    // If we are in a dependent context, template instantiation will
1452    // perform this type-checking again. Just save the arguments that we
1453    // received in a ParenListExpr.
1454    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1455    // of the information that we have about the member
1456    // initializer. However, deconstructing the ASTs is a dicey process,
1457    // and this approach is far more likely to get the corner cases right.
1458    if (CurContext->isDependentContext())
1459      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1460                                               RParenLoc);
1461    else
1462      Init = MemberInit.get();
1463  }
1464
1465  if (DirectMember) {
1466    return new (Context) CXXCtorInitializer(Context, DirectMember,
1467                                                    IdLoc, LParenLoc, Init,
1468                                                    RParenLoc);
1469  } else {
1470    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1471                                                    IdLoc, LParenLoc, Init,
1472                                                    RParenLoc);
1473  }
1474}
1475
1476MemInitResult
1477Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1478                                 Expr **Args, unsigned NumArgs,
1479                                 SourceLocation NameLoc,
1480                                 SourceLocation LParenLoc,
1481                                 SourceLocation RParenLoc,
1482                                 CXXRecordDecl *ClassDecl) {
1483  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1484  if (!LangOpts.CPlusPlus0x)
1485    return Diag(Loc, diag::err_delegation_0x_only)
1486      << TInfo->getTypeLoc().getLocalSourceRange();
1487
1488  // Initialize the object.
1489  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1490                                     QualType(ClassDecl->getTypeForDecl(), 0));
1491  InitializationKind Kind =
1492    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1493
1494  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1495
1496  ExprResult DelegationInit =
1497    InitSeq.Perform(*this, DelegationEntity, Kind,
1498                    MultiExprArg(*this, Args, NumArgs), 0);
1499  if (DelegationInit.isInvalid())
1500    return true;
1501
1502  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1503  CXXConstructorDecl *Constructor = ConExpr->getConstructor();
1504  assert(Constructor && "Delegating constructor with no target?");
1505
1506  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1507
1508  // C++0x [class.base.init]p7:
1509  //   The initialization of each base and member constitutes a
1510  //   full-expression.
1511  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1512  if (DelegationInit.isInvalid())
1513    return true;
1514
1515  // If we are in a dependent context, template instantiation will
1516  // perform this type-checking again. Just save the arguments that we
1517  // received in a ParenListExpr.
1518  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1519  // of the information that we have about the base
1520  // initializer. However, deconstructing the ASTs is a dicey process,
1521  // and this approach is far more likely to get the corner cases right.
1522  if (CurContext->isDependentContext()) {
1523    ExprResult Init
1524      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1525                                          NumArgs, RParenLoc));
1526    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1527                                            Constructor, Init.takeAs<Expr>(),
1528                                            RParenLoc);
1529  }
1530
1531  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1532                                          DelegationInit.takeAs<Expr>(),
1533                                          RParenLoc);
1534}
1535
1536MemInitResult
1537Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1538                           Expr **Args, unsigned NumArgs,
1539                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1540                           CXXRecordDecl *ClassDecl,
1541                           SourceLocation EllipsisLoc) {
1542  bool HasDependentArg = false;
1543  for (unsigned i = 0; i < NumArgs; i++)
1544    HasDependentArg |= Args[i]->isTypeDependent();
1545
1546  SourceLocation BaseLoc
1547    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1548
1549  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1550    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1551             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1552
1553  // C++ [class.base.init]p2:
1554  //   [...] Unless the mem-initializer-id names a nonstatic data
1555  //   member of the constructor's class or a direct or virtual base
1556  //   of that class, the mem-initializer is ill-formed. A
1557  //   mem-initializer-list can initialize a base class using any
1558  //   name that denotes that base class type.
1559  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1560
1561  if (EllipsisLoc.isValid()) {
1562    // This is a pack expansion.
1563    if (!BaseType->containsUnexpandedParameterPack())  {
1564      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1565        << SourceRange(BaseLoc, RParenLoc);
1566
1567      EllipsisLoc = SourceLocation();
1568    }
1569  } else {
1570    // Check for any unexpanded parameter packs.
1571    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1572      return true;
1573
1574    for (unsigned I = 0; I != NumArgs; ++I)
1575      if (DiagnoseUnexpandedParameterPack(Args[I]))
1576        return true;
1577  }
1578
1579  // Check for direct and virtual base classes.
1580  const CXXBaseSpecifier *DirectBaseSpec = 0;
1581  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1582  if (!Dependent) {
1583    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1584                                       BaseType))
1585      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1586                                        LParenLoc, RParenLoc, ClassDecl);
1587
1588    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1589                        VirtualBaseSpec);
1590
1591    // C++ [base.class.init]p2:
1592    // Unless the mem-initializer-id names a nonstatic data member of the
1593    // constructor's class or a direct or virtual base of that class, the
1594    // mem-initializer is ill-formed.
1595    if (!DirectBaseSpec && !VirtualBaseSpec) {
1596      // If the class has any dependent bases, then it's possible that
1597      // one of those types will resolve to the same type as
1598      // BaseType. Therefore, just treat this as a dependent base
1599      // class initialization.  FIXME: Should we try to check the
1600      // initialization anyway? It seems odd.
1601      if (ClassDecl->hasAnyDependentBases())
1602        Dependent = true;
1603      else
1604        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1605          << BaseType << Context.getTypeDeclType(ClassDecl)
1606          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1607    }
1608  }
1609
1610  if (Dependent) {
1611    // Can't check initialization for a base of dependent type or when
1612    // any of the arguments are type-dependent expressions.
1613    ExprResult BaseInit
1614      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1615                                          RParenLoc));
1616
1617    // Erase any temporaries within this evaluation context; we're not
1618    // going to track them in the AST, since we'll be rebuilding the
1619    // ASTs during template instantiation.
1620    ExprTemporaries.erase(
1621              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1622                          ExprTemporaries.end());
1623
1624    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1625                                                    /*IsVirtual=*/false,
1626                                                    LParenLoc,
1627                                                    BaseInit.takeAs<Expr>(),
1628                                                    RParenLoc,
1629                                                    EllipsisLoc);
1630  }
1631
1632  // C++ [base.class.init]p2:
1633  //   If a mem-initializer-id is ambiguous because it designates both
1634  //   a direct non-virtual base class and an inherited virtual base
1635  //   class, the mem-initializer is ill-formed.
1636  if (DirectBaseSpec && VirtualBaseSpec)
1637    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1638      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1639
1640  CXXBaseSpecifier *BaseSpec
1641    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1642  if (!BaseSpec)
1643    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1644
1645  // Initialize the base.
1646  InitializedEntity BaseEntity =
1647    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1648  InitializationKind Kind =
1649    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1650
1651  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1652
1653  ExprResult BaseInit =
1654    InitSeq.Perform(*this, BaseEntity, Kind,
1655                    MultiExprArg(*this, Args, NumArgs), 0);
1656  if (BaseInit.isInvalid())
1657    return true;
1658
1659  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1660
1661  // C++0x [class.base.init]p7:
1662  //   The initialization of each base and member constitutes a
1663  //   full-expression.
1664  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1665  if (BaseInit.isInvalid())
1666    return true;
1667
1668  // If we are in a dependent context, template instantiation will
1669  // perform this type-checking again. Just save the arguments that we
1670  // received in a ParenListExpr.
1671  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1672  // of the information that we have about the base
1673  // initializer. However, deconstructing the ASTs is a dicey process,
1674  // and this approach is far more likely to get the corner cases right.
1675  if (CurContext->isDependentContext()) {
1676    ExprResult Init
1677      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1678                                          RParenLoc));
1679    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1680                                                    BaseSpec->isVirtual(),
1681                                                    LParenLoc,
1682                                                    Init.takeAs<Expr>(),
1683                                                    RParenLoc,
1684                                                    EllipsisLoc);
1685  }
1686
1687  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1688                                                  BaseSpec->isVirtual(),
1689                                                  LParenLoc,
1690                                                  BaseInit.takeAs<Expr>(),
1691                                                  RParenLoc,
1692                                                  EllipsisLoc);
1693}
1694
1695/// ImplicitInitializerKind - How an implicit base or member initializer should
1696/// initialize its base or member.
1697enum ImplicitInitializerKind {
1698  IIK_Default,
1699  IIK_Copy,
1700  IIK_Move
1701};
1702
1703static bool
1704BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1705                             ImplicitInitializerKind ImplicitInitKind,
1706                             CXXBaseSpecifier *BaseSpec,
1707                             bool IsInheritedVirtualBase,
1708                             CXXCtorInitializer *&CXXBaseInit) {
1709  InitializedEntity InitEntity
1710    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1711                                        IsInheritedVirtualBase);
1712
1713  ExprResult BaseInit;
1714
1715  switch (ImplicitInitKind) {
1716  case IIK_Default: {
1717    InitializationKind InitKind
1718      = InitializationKind::CreateDefault(Constructor->getLocation());
1719    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1720    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1721                               MultiExprArg(SemaRef, 0, 0));
1722    break;
1723  }
1724
1725  case IIK_Copy: {
1726    ParmVarDecl *Param = Constructor->getParamDecl(0);
1727    QualType ParamType = Param->getType().getNonReferenceType();
1728
1729    Expr *CopyCtorArg =
1730      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1731                          Constructor->getLocation(), ParamType,
1732                          VK_LValue, 0);
1733
1734    // Cast to the base class to avoid ambiguities.
1735    QualType ArgTy =
1736      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1737                                       ParamType.getQualifiers());
1738
1739    CXXCastPath BasePath;
1740    BasePath.push_back(BaseSpec);
1741    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1742                              CK_UncheckedDerivedToBase,
1743                              VK_LValue, &BasePath);
1744
1745    InitializationKind InitKind
1746      = InitializationKind::CreateDirect(Constructor->getLocation(),
1747                                         SourceLocation(), SourceLocation());
1748    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1749                                   &CopyCtorArg, 1);
1750    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1751                               MultiExprArg(&CopyCtorArg, 1));
1752    break;
1753  }
1754
1755  case IIK_Move:
1756    assert(false && "Unhandled initializer kind!");
1757  }
1758
1759  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1760  if (BaseInit.isInvalid())
1761    return true;
1762
1763  CXXBaseInit =
1764    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1765               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1766                                                        SourceLocation()),
1767                                             BaseSpec->isVirtual(),
1768                                             SourceLocation(),
1769                                             BaseInit.takeAs<Expr>(),
1770                                             SourceLocation(),
1771                                             SourceLocation());
1772
1773  return false;
1774}
1775
1776static bool
1777BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1778                               ImplicitInitializerKind ImplicitInitKind,
1779                               FieldDecl *Field,
1780                               CXXCtorInitializer *&CXXMemberInit) {
1781  if (Field->isInvalidDecl())
1782    return true;
1783
1784  SourceLocation Loc = Constructor->getLocation();
1785
1786  if (ImplicitInitKind == IIK_Copy) {
1787    ParmVarDecl *Param = Constructor->getParamDecl(0);
1788    QualType ParamType = Param->getType().getNonReferenceType();
1789
1790    Expr *MemberExprBase =
1791      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1792                          Loc, ParamType, VK_LValue, 0);
1793
1794    // Build a reference to this field within the parameter.
1795    CXXScopeSpec SS;
1796    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1797                              Sema::LookupMemberName);
1798    MemberLookup.addDecl(Field, AS_public);
1799    MemberLookup.resolveKind();
1800    ExprResult CopyCtorArg
1801      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1802                                         ParamType, Loc,
1803                                         /*IsArrow=*/false,
1804                                         SS,
1805                                         /*FirstQualifierInScope=*/0,
1806                                         MemberLookup,
1807                                         /*TemplateArgs=*/0);
1808    if (CopyCtorArg.isInvalid())
1809      return true;
1810
1811    // When the field we are copying is an array, create index variables for
1812    // each dimension of the array. We use these index variables to subscript
1813    // the source array, and other clients (e.g., CodeGen) will perform the
1814    // necessary iteration with these index variables.
1815    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1816    QualType BaseType = Field->getType();
1817    QualType SizeType = SemaRef.Context.getSizeType();
1818    while (const ConstantArrayType *Array
1819                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1820      // Create the iteration variable for this array index.
1821      IdentifierInfo *IterationVarName = 0;
1822      {
1823        llvm::SmallString<8> Str;
1824        llvm::raw_svector_ostream OS(Str);
1825        OS << "__i" << IndexVariables.size();
1826        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1827      }
1828      VarDecl *IterationVar
1829        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1830                          IterationVarName, SizeType,
1831                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1832                          SC_None, SC_None);
1833      IndexVariables.push_back(IterationVar);
1834
1835      // Create a reference to the iteration variable.
1836      ExprResult IterationVarRef
1837        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1838      assert(!IterationVarRef.isInvalid() &&
1839             "Reference to invented variable cannot fail!");
1840
1841      // Subscript the array with this iteration variable.
1842      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1843                                                            Loc,
1844                                                        IterationVarRef.take(),
1845                                                            Loc);
1846      if (CopyCtorArg.isInvalid())
1847        return true;
1848
1849      BaseType = Array->getElementType();
1850    }
1851
1852    // Construct the entity that we will be initializing. For an array, this
1853    // will be first element in the array, which may require several levels
1854    // of array-subscript entities.
1855    llvm::SmallVector<InitializedEntity, 4> Entities;
1856    Entities.reserve(1 + IndexVariables.size());
1857    Entities.push_back(InitializedEntity::InitializeMember(Field));
1858    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1859      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1860                                                              0,
1861                                                              Entities.back()));
1862
1863    // Direct-initialize to use the copy constructor.
1864    InitializationKind InitKind =
1865      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1866
1867    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1868    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1869                                   &CopyCtorArgE, 1);
1870
1871    ExprResult MemberInit
1872      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1873                        MultiExprArg(&CopyCtorArgE, 1));
1874    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1875    if (MemberInit.isInvalid())
1876      return true;
1877
1878    CXXMemberInit
1879      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1880                                           MemberInit.takeAs<Expr>(), Loc,
1881                                           IndexVariables.data(),
1882                                           IndexVariables.size());
1883    return false;
1884  }
1885
1886  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1887
1888  QualType FieldBaseElementType =
1889    SemaRef.Context.getBaseElementType(Field->getType());
1890
1891  if (FieldBaseElementType->isRecordType()) {
1892    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1893    InitializationKind InitKind =
1894      InitializationKind::CreateDefault(Loc);
1895
1896    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1897    ExprResult MemberInit =
1898      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1899
1900    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1901    if (MemberInit.isInvalid())
1902      return true;
1903
1904    CXXMemberInit =
1905      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1906                                                       Field, Loc, Loc,
1907                                                       MemberInit.get(),
1908                                                       Loc);
1909    return false;
1910  }
1911
1912  if (FieldBaseElementType->isReferenceType()) {
1913    SemaRef.Diag(Constructor->getLocation(),
1914                 diag::err_uninitialized_member_in_ctor)
1915    << (int)Constructor->isImplicit()
1916    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1917    << 0 << Field->getDeclName();
1918    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1919    return true;
1920  }
1921
1922  if (FieldBaseElementType.isConstQualified()) {
1923    SemaRef.Diag(Constructor->getLocation(),
1924                 diag::err_uninitialized_member_in_ctor)
1925    << (int)Constructor->isImplicit()
1926    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1927    << 1 << Field->getDeclName();
1928    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1929    return true;
1930  }
1931
1932  // Nothing to initialize.
1933  CXXMemberInit = 0;
1934  return false;
1935}
1936
1937namespace {
1938struct BaseAndFieldInfo {
1939  Sema &S;
1940  CXXConstructorDecl *Ctor;
1941  bool AnyErrorsInInits;
1942  ImplicitInitializerKind IIK;
1943  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1944  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1945
1946  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1947    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1948    // FIXME: Handle implicit move constructors.
1949    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1950      IIK = IIK_Copy;
1951    else
1952      IIK = IIK_Default;
1953  }
1954};
1955}
1956
1957static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1958                                    FieldDecl *Top, FieldDecl *Field) {
1959
1960  // Overwhelmingly common case: we have a direct initializer for this field.
1961  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1962    Info.AllToInit.push_back(Init);
1963    return false;
1964  }
1965
1966  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1967    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1968    assert(FieldClassType && "anonymous struct/union without record type");
1969    CXXRecordDecl *FieldClassDecl
1970      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1971
1972    // Even though union members never have non-trivial default
1973    // constructions in C++03, we still build member initializers for aggregate
1974    // record types which can be union members, and C++0x allows non-trivial
1975    // default constructors for union members, so we ensure that only one
1976    // member is initialized for these.
1977    if (FieldClassDecl->isUnion()) {
1978      // First check for an explicit initializer for one field.
1979      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1980           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1981        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1982          Info.AllToInit.push_back(Init);
1983
1984          // Once we've initialized a field of an anonymous union, the union
1985          // field in the class is also initialized, so exit immediately.
1986          return false;
1987        } else if ((*FA)->isAnonymousStructOrUnion()) {
1988          if (CollectFieldInitializer(Info, Top, *FA))
1989            return true;
1990        }
1991      }
1992
1993      // Fallthrough and construct a default initializer for the union as
1994      // a whole, which can call its default constructor if such a thing exists
1995      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1996      // behavior going forward with C++0x, when anonymous unions there are
1997      // finalized, we should revisit this.
1998    } else {
1999      // For structs, we simply descend through to initialize all members where
2000      // necessary.
2001      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2002           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2003        if (CollectFieldInitializer(Info, Top, *FA))
2004          return true;
2005      }
2006    }
2007  }
2008
2009  // Don't try to build an implicit initializer if there were semantic
2010  // errors in any of the initializers (and therefore we might be
2011  // missing some that the user actually wrote).
2012  if (Info.AnyErrorsInInits)
2013    return false;
2014
2015  CXXCtorInitializer *Init = 0;
2016  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2017    return true;
2018
2019  if (Init)
2020    Info.AllToInit.push_back(Init);
2021
2022  return false;
2023}
2024
2025bool
2026Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2027                                  CXXCtorInitializer **Initializers,
2028                                  unsigned NumInitializers,
2029                                  bool AnyErrors) {
2030  if (Constructor->getDeclContext()->isDependentContext()) {
2031    // Just store the initializers as written, they will be checked during
2032    // instantiation.
2033    if (NumInitializers > 0) {
2034      Constructor->setNumCtorInitializers(NumInitializers);
2035      CXXCtorInitializer **baseOrMemberInitializers =
2036        new (Context) CXXCtorInitializer*[NumInitializers];
2037      memcpy(baseOrMemberInitializers, Initializers,
2038             NumInitializers * sizeof(CXXCtorInitializer*));
2039      Constructor->setCtorInitializers(baseOrMemberInitializers);
2040    }
2041
2042    return false;
2043  }
2044
2045  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2046
2047  // We need to build the initializer AST according to order of construction
2048  // and not what user specified in the Initializers list.
2049  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2050  if (!ClassDecl)
2051    return true;
2052
2053  bool HadError = false;
2054
2055  for (unsigned i = 0; i < NumInitializers; i++) {
2056    CXXCtorInitializer *Member = Initializers[i];
2057
2058    if (Member->isBaseInitializer())
2059      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2060    else
2061      Info.AllBaseFields[Member->getAnyMember()] = Member;
2062  }
2063
2064  // Keep track of the direct virtual bases.
2065  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2066  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2067       E = ClassDecl->bases_end(); I != E; ++I) {
2068    if (I->isVirtual())
2069      DirectVBases.insert(I);
2070  }
2071
2072  // Push virtual bases before others.
2073  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2074       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2075
2076    if (CXXCtorInitializer *Value
2077        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2078      Info.AllToInit.push_back(Value);
2079    } else if (!AnyErrors) {
2080      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2081      CXXCtorInitializer *CXXBaseInit;
2082      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2083                                       VBase, IsInheritedVirtualBase,
2084                                       CXXBaseInit)) {
2085        HadError = true;
2086        continue;
2087      }
2088
2089      Info.AllToInit.push_back(CXXBaseInit);
2090    }
2091  }
2092
2093  // Non-virtual bases.
2094  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2095       E = ClassDecl->bases_end(); Base != E; ++Base) {
2096    // Virtuals are in the virtual base list and already constructed.
2097    if (Base->isVirtual())
2098      continue;
2099
2100    if (CXXCtorInitializer *Value
2101          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2102      Info.AllToInit.push_back(Value);
2103    } else if (!AnyErrors) {
2104      CXXCtorInitializer *CXXBaseInit;
2105      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2106                                       Base, /*IsInheritedVirtualBase=*/false,
2107                                       CXXBaseInit)) {
2108        HadError = true;
2109        continue;
2110      }
2111
2112      Info.AllToInit.push_back(CXXBaseInit);
2113    }
2114  }
2115
2116  // Fields.
2117  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2118       E = ClassDecl->field_end(); Field != E; ++Field) {
2119    if ((*Field)->getType()->isIncompleteArrayType()) {
2120      assert(ClassDecl->hasFlexibleArrayMember() &&
2121             "Incomplete array type is not valid");
2122      continue;
2123    }
2124    if (CollectFieldInitializer(Info, *Field, *Field))
2125      HadError = true;
2126  }
2127
2128  NumInitializers = Info.AllToInit.size();
2129  if (NumInitializers > 0) {
2130    Constructor->setNumCtorInitializers(NumInitializers);
2131    CXXCtorInitializer **baseOrMemberInitializers =
2132      new (Context) CXXCtorInitializer*[NumInitializers];
2133    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2134           NumInitializers * sizeof(CXXCtorInitializer*));
2135    Constructor->setCtorInitializers(baseOrMemberInitializers);
2136
2137    // Constructors implicitly reference the base and member
2138    // destructors.
2139    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2140                                           Constructor->getParent());
2141  }
2142
2143  return HadError;
2144}
2145
2146static void *GetKeyForTopLevelField(FieldDecl *Field) {
2147  // For anonymous unions, use the class declaration as the key.
2148  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2149    if (RT->getDecl()->isAnonymousStructOrUnion())
2150      return static_cast<void *>(RT->getDecl());
2151  }
2152  return static_cast<void *>(Field);
2153}
2154
2155static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2156  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2157}
2158
2159static void *GetKeyForMember(ASTContext &Context,
2160                             CXXCtorInitializer *Member) {
2161  if (!Member->isAnyMemberInitializer())
2162    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2163
2164  // For fields injected into the class via declaration of an anonymous union,
2165  // use its anonymous union class declaration as the unique key.
2166  FieldDecl *Field = Member->getAnyMember();
2167
2168  // If the field is a member of an anonymous struct or union, our key
2169  // is the anonymous record decl that's a direct child of the class.
2170  RecordDecl *RD = Field->getParent();
2171  if (RD->isAnonymousStructOrUnion()) {
2172    while (true) {
2173      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2174      if (Parent->isAnonymousStructOrUnion())
2175        RD = Parent;
2176      else
2177        break;
2178    }
2179
2180    return static_cast<void *>(RD);
2181  }
2182
2183  return static_cast<void *>(Field);
2184}
2185
2186static void
2187DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2188                                  const CXXConstructorDecl *Constructor,
2189                                  CXXCtorInitializer **Inits,
2190                                  unsigned NumInits) {
2191  if (Constructor->getDeclContext()->isDependentContext())
2192    return;
2193
2194  // Don't check initializers order unless the warning is enabled at the
2195  // location of at least one initializer.
2196  bool ShouldCheckOrder = false;
2197  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2198    CXXCtorInitializer *Init = Inits[InitIndex];
2199    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2200                                         Init->getSourceLocation())
2201          != Diagnostic::Ignored) {
2202      ShouldCheckOrder = true;
2203      break;
2204    }
2205  }
2206  if (!ShouldCheckOrder)
2207    return;
2208
2209  // Build the list of bases and members in the order that they'll
2210  // actually be initialized.  The explicit initializers should be in
2211  // this same order but may be missing things.
2212  llvm::SmallVector<const void*, 32> IdealInitKeys;
2213
2214  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2215
2216  // 1. Virtual bases.
2217  for (CXXRecordDecl::base_class_const_iterator VBase =
2218       ClassDecl->vbases_begin(),
2219       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2220    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2221
2222  // 2. Non-virtual bases.
2223  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2224       E = ClassDecl->bases_end(); Base != E; ++Base) {
2225    if (Base->isVirtual())
2226      continue;
2227    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2228  }
2229
2230  // 3. Direct fields.
2231  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2232       E = ClassDecl->field_end(); Field != E; ++Field)
2233    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2234
2235  unsigned NumIdealInits = IdealInitKeys.size();
2236  unsigned IdealIndex = 0;
2237
2238  CXXCtorInitializer *PrevInit = 0;
2239  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2240    CXXCtorInitializer *Init = Inits[InitIndex];
2241    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2242
2243    // Scan forward to try to find this initializer in the idealized
2244    // initializers list.
2245    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2246      if (InitKey == IdealInitKeys[IdealIndex])
2247        break;
2248
2249    // If we didn't find this initializer, it must be because we
2250    // scanned past it on a previous iteration.  That can only
2251    // happen if we're out of order;  emit a warning.
2252    if (IdealIndex == NumIdealInits && PrevInit) {
2253      Sema::SemaDiagnosticBuilder D =
2254        SemaRef.Diag(PrevInit->getSourceLocation(),
2255                     diag::warn_initializer_out_of_order);
2256
2257      if (PrevInit->isAnyMemberInitializer())
2258        D << 0 << PrevInit->getAnyMember()->getDeclName();
2259      else
2260        D << 1 << PrevInit->getBaseClassInfo()->getType();
2261
2262      if (Init->isAnyMemberInitializer())
2263        D << 0 << Init->getAnyMember()->getDeclName();
2264      else
2265        D << 1 << Init->getBaseClassInfo()->getType();
2266
2267      // Move back to the initializer's location in the ideal list.
2268      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2269        if (InitKey == IdealInitKeys[IdealIndex])
2270          break;
2271
2272      assert(IdealIndex != NumIdealInits &&
2273             "initializer not found in initializer list");
2274    }
2275
2276    PrevInit = Init;
2277  }
2278}
2279
2280namespace {
2281bool CheckRedundantInit(Sema &S,
2282                        CXXCtorInitializer *Init,
2283                        CXXCtorInitializer *&PrevInit) {
2284  if (!PrevInit) {
2285    PrevInit = Init;
2286    return false;
2287  }
2288
2289  if (FieldDecl *Field = Init->getMember())
2290    S.Diag(Init->getSourceLocation(),
2291           diag::err_multiple_mem_initialization)
2292      << Field->getDeclName()
2293      << Init->getSourceRange();
2294  else {
2295    const Type *BaseClass = Init->getBaseClass();
2296    assert(BaseClass && "neither field nor base");
2297    S.Diag(Init->getSourceLocation(),
2298           diag::err_multiple_base_initialization)
2299      << QualType(BaseClass, 0)
2300      << Init->getSourceRange();
2301  }
2302  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2303    << 0 << PrevInit->getSourceRange();
2304
2305  return true;
2306}
2307
2308typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2309typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2310
2311bool CheckRedundantUnionInit(Sema &S,
2312                             CXXCtorInitializer *Init,
2313                             RedundantUnionMap &Unions) {
2314  FieldDecl *Field = Init->getAnyMember();
2315  RecordDecl *Parent = Field->getParent();
2316  if (!Parent->isAnonymousStructOrUnion())
2317    return false;
2318
2319  NamedDecl *Child = Field;
2320  do {
2321    if (Parent->isUnion()) {
2322      UnionEntry &En = Unions[Parent];
2323      if (En.first && En.first != Child) {
2324        S.Diag(Init->getSourceLocation(),
2325               diag::err_multiple_mem_union_initialization)
2326          << Field->getDeclName()
2327          << Init->getSourceRange();
2328        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2329          << 0 << En.second->getSourceRange();
2330        return true;
2331      } else if (!En.first) {
2332        En.first = Child;
2333        En.second = Init;
2334      }
2335    }
2336
2337    Child = Parent;
2338    Parent = cast<RecordDecl>(Parent->getDeclContext());
2339  } while (Parent->isAnonymousStructOrUnion());
2340
2341  return false;
2342}
2343}
2344
2345/// ActOnMemInitializers - Handle the member initializers for a constructor.
2346void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2347                                SourceLocation ColonLoc,
2348                                MemInitTy **meminits, unsigned NumMemInits,
2349                                bool AnyErrors) {
2350  if (!ConstructorDecl)
2351    return;
2352
2353  AdjustDeclIfTemplate(ConstructorDecl);
2354
2355  CXXConstructorDecl *Constructor
2356    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2357
2358  if (!Constructor) {
2359    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2360    return;
2361  }
2362
2363  CXXCtorInitializer **MemInits =
2364    reinterpret_cast<CXXCtorInitializer **>(meminits);
2365
2366  // Mapping for the duplicate initializers check.
2367  // For member initializers, this is keyed with a FieldDecl*.
2368  // For base initializers, this is keyed with a Type*.
2369  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2370
2371  // Mapping for the inconsistent anonymous-union initializers check.
2372  RedundantUnionMap MemberUnions;
2373
2374  bool HadError = false;
2375  for (unsigned i = 0; i < NumMemInits; i++) {
2376    CXXCtorInitializer *Init = MemInits[i];
2377
2378    // Set the source order index.
2379    Init->setSourceOrder(i);
2380
2381    if (Init->isAnyMemberInitializer()) {
2382      FieldDecl *Field = Init->getAnyMember();
2383      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2384          CheckRedundantUnionInit(*this, Init, MemberUnions))
2385        HadError = true;
2386    } else if (Init->isBaseInitializer()) {
2387      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2388      if (CheckRedundantInit(*this, Init, Members[Key]))
2389        HadError = true;
2390    } else {
2391      assert(Init->isDelegatingInitializer());
2392      // This must be the only initializer
2393      if (i != 0 || NumMemInits > 1) {
2394        Diag(MemInits[0]->getSourceLocation(),
2395             diag::err_delegating_initializer_alone)
2396          << MemInits[0]->getSourceRange();
2397        HadError = true;
2398      }
2399    }
2400  }
2401
2402  if (HadError)
2403    return;
2404
2405  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2406
2407  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2408}
2409
2410void
2411Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2412                                             CXXRecordDecl *ClassDecl) {
2413  // Ignore dependent contexts.
2414  if (ClassDecl->isDependentContext())
2415    return;
2416
2417  // FIXME: all the access-control diagnostics are positioned on the
2418  // field/base declaration.  That's probably good; that said, the
2419  // user might reasonably want to know why the destructor is being
2420  // emitted, and we currently don't say.
2421
2422  // Non-static data members.
2423  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2424       E = ClassDecl->field_end(); I != E; ++I) {
2425    FieldDecl *Field = *I;
2426    if (Field->isInvalidDecl())
2427      continue;
2428    QualType FieldType = Context.getBaseElementType(Field->getType());
2429
2430    const RecordType* RT = FieldType->getAs<RecordType>();
2431    if (!RT)
2432      continue;
2433
2434    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2435    if (FieldClassDecl->hasTrivialDestructor())
2436      continue;
2437
2438    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2439    CheckDestructorAccess(Field->getLocation(), Dtor,
2440                          PDiag(diag::err_access_dtor_field)
2441                            << Field->getDeclName()
2442                            << FieldType);
2443
2444    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2445  }
2446
2447  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2448
2449  // Bases.
2450  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2451       E = ClassDecl->bases_end(); Base != E; ++Base) {
2452    // Bases are always records in a well-formed non-dependent class.
2453    const RecordType *RT = Base->getType()->getAs<RecordType>();
2454
2455    // Remember direct virtual bases.
2456    if (Base->isVirtual())
2457      DirectVirtualBases.insert(RT);
2458
2459    // Ignore trivial destructors.
2460    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2461    if (BaseClassDecl->hasTrivialDestructor())
2462      continue;
2463
2464    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2465
2466    // FIXME: caret should be on the start of the class name
2467    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2468                          PDiag(diag::err_access_dtor_base)
2469                            << Base->getType()
2470                            << Base->getSourceRange());
2471
2472    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2473  }
2474
2475  // Virtual bases.
2476  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2477       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2478
2479    // Bases are always records in a well-formed non-dependent class.
2480    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2481
2482    // Ignore direct virtual bases.
2483    if (DirectVirtualBases.count(RT))
2484      continue;
2485
2486    // Ignore trivial destructors.
2487    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2488    if (BaseClassDecl->hasTrivialDestructor())
2489      continue;
2490
2491    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2492    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2493                          PDiag(diag::err_access_dtor_vbase)
2494                            << VBase->getType());
2495
2496    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2497  }
2498}
2499
2500void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2501  if (!CDtorDecl)
2502    return;
2503
2504  if (CXXConstructorDecl *Constructor
2505      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2506    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2507}
2508
2509bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2510                                  unsigned DiagID, AbstractDiagSelID SelID) {
2511  if (SelID == -1)
2512    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2513  else
2514    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2515}
2516
2517bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2518                                  const PartialDiagnostic &PD) {
2519  if (!getLangOptions().CPlusPlus)
2520    return false;
2521
2522  if (const ArrayType *AT = Context.getAsArrayType(T))
2523    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2524
2525  if (const PointerType *PT = T->getAs<PointerType>()) {
2526    // Find the innermost pointer type.
2527    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2528      PT = T;
2529
2530    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2531      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2532  }
2533
2534  const RecordType *RT = T->getAs<RecordType>();
2535  if (!RT)
2536    return false;
2537
2538  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2539
2540  // We can't answer whether something is abstract until it has a
2541  // definition.  If it's currently being defined, we'll walk back
2542  // over all the declarations when we have a full definition.
2543  const CXXRecordDecl *Def = RD->getDefinition();
2544  if (!Def || Def->isBeingDefined())
2545    return false;
2546
2547  if (!RD->isAbstract())
2548    return false;
2549
2550  Diag(Loc, PD) << RD->getDeclName();
2551  DiagnoseAbstractType(RD);
2552
2553  return true;
2554}
2555
2556void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2557  // Check if we've already emitted the list of pure virtual functions
2558  // for this class.
2559  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2560    return;
2561
2562  CXXFinalOverriderMap FinalOverriders;
2563  RD->getFinalOverriders(FinalOverriders);
2564
2565  // Keep a set of seen pure methods so we won't diagnose the same method
2566  // more than once.
2567  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2568
2569  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2570                                   MEnd = FinalOverriders.end();
2571       M != MEnd;
2572       ++M) {
2573    for (OverridingMethods::iterator SO = M->second.begin(),
2574                                  SOEnd = M->second.end();
2575         SO != SOEnd; ++SO) {
2576      // C++ [class.abstract]p4:
2577      //   A class is abstract if it contains or inherits at least one
2578      //   pure virtual function for which the final overrider is pure
2579      //   virtual.
2580
2581      //
2582      if (SO->second.size() != 1)
2583        continue;
2584
2585      if (!SO->second.front().Method->isPure())
2586        continue;
2587
2588      if (!SeenPureMethods.insert(SO->second.front().Method))
2589        continue;
2590
2591      Diag(SO->second.front().Method->getLocation(),
2592           diag::note_pure_virtual_function)
2593        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2594    }
2595  }
2596
2597  if (!PureVirtualClassDiagSet)
2598    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2599  PureVirtualClassDiagSet->insert(RD);
2600}
2601
2602namespace {
2603struct AbstractUsageInfo {
2604  Sema &S;
2605  CXXRecordDecl *Record;
2606  CanQualType AbstractType;
2607  bool Invalid;
2608
2609  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2610    : S(S), Record(Record),
2611      AbstractType(S.Context.getCanonicalType(
2612                   S.Context.getTypeDeclType(Record))),
2613      Invalid(false) {}
2614
2615  void DiagnoseAbstractType() {
2616    if (Invalid) return;
2617    S.DiagnoseAbstractType(Record);
2618    Invalid = true;
2619  }
2620
2621  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2622};
2623
2624struct CheckAbstractUsage {
2625  AbstractUsageInfo &Info;
2626  const NamedDecl *Ctx;
2627
2628  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2629    : Info(Info), Ctx(Ctx) {}
2630
2631  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2632    switch (TL.getTypeLocClass()) {
2633#define ABSTRACT_TYPELOC(CLASS, PARENT)
2634#define TYPELOC(CLASS, PARENT) \
2635    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2636#include "clang/AST/TypeLocNodes.def"
2637    }
2638  }
2639
2640  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2641    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2642    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2643      if (!TL.getArg(I))
2644        continue;
2645
2646      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2647      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2648    }
2649  }
2650
2651  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2652    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2653  }
2654
2655  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2656    // Visit the type parameters from a permissive context.
2657    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2658      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2659      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2660        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2661          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2662      // TODO: other template argument types?
2663    }
2664  }
2665
2666  // Visit pointee types from a permissive context.
2667#define CheckPolymorphic(Type) \
2668  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2669    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2670  }
2671  CheckPolymorphic(PointerTypeLoc)
2672  CheckPolymorphic(ReferenceTypeLoc)
2673  CheckPolymorphic(MemberPointerTypeLoc)
2674  CheckPolymorphic(BlockPointerTypeLoc)
2675
2676  /// Handle all the types we haven't given a more specific
2677  /// implementation for above.
2678  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2679    // Every other kind of type that we haven't called out already
2680    // that has an inner type is either (1) sugar or (2) contains that
2681    // inner type in some way as a subobject.
2682    if (TypeLoc Next = TL.getNextTypeLoc())
2683      return Visit(Next, Sel);
2684
2685    // If there's no inner type and we're in a permissive context,
2686    // don't diagnose.
2687    if (Sel == Sema::AbstractNone) return;
2688
2689    // Check whether the type matches the abstract type.
2690    QualType T = TL.getType();
2691    if (T->isArrayType()) {
2692      Sel = Sema::AbstractArrayType;
2693      T = Info.S.Context.getBaseElementType(T);
2694    }
2695    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2696    if (CT != Info.AbstractType) return;
2697
2698    // It matched; do some magic.
2699    if (Sel == Sema::AbstractArrayType) {
2700      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2701        << T << TL.getSourceRange();
2702    } else {
2703      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2704        << Sel << T << TL.getSourceRange();
2705    }
2706    Info.DiagnoseAbstractType();
2707  }
2708};
2709
2710void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2711                                  Sema::AbstractDiagSelID Sel) {
2712  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2713}
2714
2715}
2716
2717/// Check for invalid uses of an abstract type in a method declaration.
2718static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2719                                    CXXMethodDecl *MD) {
2720  // No need to do the check on definitions, which require that
2721  // the return/param types be complete.
2722  if (MD->isThisDeclarationADefinition())
2723    return;
2724
2725  // For safety's sake, just ignore it if we don't have type source
2726  // information.  This should never happen for non-implicit methods,
2727  // but...
2728  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2729    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2730}
2731
2732/// Check for invalid uses of an abstract type within a class definition.
2733static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2734                                    CXXRecordDecl *RD) {
2735  for (CXXRecordDecl::decl_iterator
2736         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2737    Decl *D = *I;
2738    if (D->isImplicit()) continue;
2739
2740    // Methods and method templates.
2741    if (isa<CXXMethodDecl>(D)) {
2742      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2743    } else if (isa<FunctionTemplateDecl>(D)) {
2744      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2745      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2746
2747    // Fields and static variables.
2748    } else if (isa<FieldDecl>(D)) {
2749      FieldDecl *FD = cast<FieldDecl>(D);
2750      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2751        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2752    } else if (isa<VarDecl>(D)) {
2753      VarDecl *VD = cast<VarDecl>(D);
2754      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2755        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2756
2757    // Nested classes and class templates.
2758    } else if (isa<CXXRecordDecl>(D)) {
2759      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2760    } else if (isa<ClassTemplateDecl>(D)) {
2761      CheckAbstractClassUsage(Info,
2762                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2763    }
2764  }
2765}
2766
2767/// \brief Perform semantic checks on a class definition that has been
2768/// completing, introducing implicitly-declared members, checking for
2769/// abstract types, etc.
2770void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2771  if (!Record)
2772    return;
2773
2774  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2775    AbstractUsageInfo Info(*this, Record);
2776    CheckAbstractClassUsage(Info, Record);
2777  }
2778
2779  // If this is not an aggregate type and has no user-declared constructor,
2780  // complain about any non-static data members of reference or const scalar
2781  // type, since they will never get initializers.
2782  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2783      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2784    bool Complained = false;
2785    for (RecordDecl::field_iterator F = Record->field_begin(),
2786                                 FEnd = Record->field_end();
2787         F != FEnd; ++F) {
2788      if (F->getType()->isReferenceType() ||
2789          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2790        if (!Complained) {
2791          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2792            << Record->getTagKind() << Record;
2793          Complained = true;
2794        }
2795
2796        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2797          << F->getType()->isReferenceType()
2798          << F->getDeclName();
2799      }
2800    }
2801  }
2802
2803  if (Record->isDynamicClass() && !Record->isDependentType())
2804    DynamicClasses.push_back(Record);
2805
2806  if (Record->getIdentifier()) {
2807    // C++ [class.mem]p13:
2808    //   If T is the name of a class, then each of the following shall have a
2809    //   name different from T:
2810    //     - every member of every anonymous union that is a member of class T.
2811    //
2812    // C++ [class.mem]p14:
2813    //   In addition, if class T has a user-declared constructor (12.1), every
2814    //   non-static data member of class T shall have a name different from T.
2815    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2816         R.first != R.second; ++R.first) {
2817      NamedDecl *D = *R.first;
2818      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2819          isa<IndirectFieldDecl>(D)) {
2820        Diag(D->getLocation(), diag::err_member_name_of_class)
2821          << D->getDeclName();
2822        break;
2823      }
2824    }
2825  }
2826
2827  // Warn if the class has virtual methods but non-virtual public destructor.
2828  if (Record->isPolymorphic() && !Record->isDependentType()) {
2829    CXXDestructorDecl *dtor = Record->getDestructor();
2830    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2831      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2832           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2833  }
2834
2835  // See if a method overloads virtual methods in a base
2836  /// class without overriding any.
2837  if (!Record->isDependentType()) {
2838    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2839                                     MEnd = Record->method_end();
2840         M != MEnd; ++M) {
2841      if (!(*M)->isStatic())
2842        DiagnoseHiddenVirtualMethods(Record, *M);
2843    }
2844  }
2845
2846  // Declare inherited constructors. We do this eagerly here because:
2847  // - The standard requires an eager diagnostic for conflicting inherited
2848  //   constructors from different classes.
2849  // - The lazy declaration of the other implicit constructors is so as to not
2850  //   waste space and performance on classes that are not meant to be
2851  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2852  //   have inherited constructors.
2853  DeclareInheritedConstructors(Record);
2854}
2855
2856/// \brief Data used with FindHiddenVirtualMethod
2857namespace {
2858  struct FindHiddenVirtualMethodData {
2859    Sema *S;
2860    CXXMethodDecl *Method;
2861    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2862    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2863  };
2864}
2865
2866/// \brief Member lookup function that determines whether a given C++
2867/// method overloads virtual methods in a base class without overriding any,
2868/// to be used with CXXRecordDecl::lookupInBases().
2869static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2870                                    CXXBasePath &Path,
2871                                    void *UserData) {
2872  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2873
2874  FindHiddenVirtualMethodData &Data
2875    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2876
2877  DeclarationName Name = Data.Method->getDeclName();
2878  assert(Name.getNameKind() == DeclarationName::Identifier);
2879
2880  bool foundSameNameMethod = false;
2881  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2882  for (Path.Decls = BaseRecord->lookup(Name);
2883       Path.Decls.first != Path.Decls.second;
2884       ++Path.Decls.first) {
2885    NamedDecl *D = *Path.Decls.first;
2886    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2887      MD = MD->getCanonicalDecl();
2888      foundSameNameMethod = true;
2889      // Interested only in hidden virtual methods.
2890      if (!MD->isVirtual())
2891        continue;
2892      // If the method we are checking overrides a method from its base
2893      // don't warn about the other overloaded methods.
2894      if (!Data.S->IsOverload(Data.Method, MD, false))
2895        return true;
2896      // Collect the overload only if its hidden.
2897      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2898        overloadedMethods.push_back(MD);
2899    }
2900  }
2901
2902  if (foundSameNameMethod)
2903    Data.OverloadedMethods.append(overloadedMethods.begin(),
2904                                   overloadedMethods.end());
2905  return foundSameNameMethod;
2906}
2907
2908/// \brief See if a method overloads virtual methods in a base class without
2909/// overriding any.
2910void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2911  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2912                               MD->getLocation()) == Diagnostic::Ignored)
2913    return;
2914  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2915    return;
2916
2917  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2918                     /*bool RecordPaths=*/false,
2919                     /*bool DetectVirtual=*/false);
2920  FindHiddenVirtualMethodData Data;
2921  Data.Method = MD;
2922  Data.S = this;
2923
2924  // Keep the base methods that were overriden or introduced in the subclass
2925  // by 'using' in a set. A base method not in this set is hidden.
2926  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2927       res.first != res.second; ++res.first) {
2928    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2929      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2930                                          E = MD->end_overridden_methods();
2931           I != E; ++I)
2932        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2933    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2934      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2935        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2936  }
2937
2938  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2939      !Data.OverloadedMethods.empty()) {
2940    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2941      << MD << (Data.OverloadedMethods.size() > 1);
2942
2943    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2944      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2945      Diag(overloadedMD->getLocation(),
2946           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2947    }
2948  }
2949}
2950
2951void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2952                                             Decl *TagDecl,
2953                                             SourceLocation LBrac,
2954                                             SourceLocation RBrac,
2955                                             AttributeList *AttrList) {
2956  if (!TagDecl)
2957    return;
2958
2959  AdjustDeclIfTemplate(TagDecl);
2960
2961  ActOnFields(S, RLoc, TagDecl,
2962              // strict aliasing violation!
2963              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2964              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2965
2966  CheckCompletedCXXClass(
2967                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2968}
2969
2970namespace {
2971  /// \brief Helper class that collects exception specifications for
2972  /// implicitly-declared special member functions.
2973  class ImplicitExceptionSpecification {
2974    ASTContext &Context;
2975    bool AllowsAllExceptions;
2976    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2977    llvm::SmallVector<QualType, 4> Exceptions;
2978
2979  public:
2980    explicit ImplicitExceptionSpecification(ASTContext &Context)
2981      : Context(Context), AllowsAllExceptions(false) { }
2982
2983    /// \brief Whether the special member function should have any
2984    /// exception specification at all.
2985    bool hasExceptionSpecification() const {
2986      return !AllowsAllExceptions;
2987    }
2988
2989    /// \brief Whether the special member function should have a
2990    /// throw(...) exception specification (a Microsoft extension).
2991    bool hasAnyExceptionSpecification() const {
2992      return false;
2993    }
2994
2995    /// \brief The number of exceptions in the exception specification.
2996    unsigned size() const { return Exceptions.size(); }
2997
2998    /// \brief The set of exceptions in the exception specification.
2999    const QualType *data() const { return Exceptions.data(); }
3000
3001    /// \brief Note that
3002    void CalledDecl(CXXMethodDecl *Method) {
3003      // If we already know that we allow all exceptions, do nothing.
3004      if (AllowsAllExceptions || !Method)
3005        return;
3006
3007      const FunctionProtoType *Proto
3008        = Method->getType()->getAs<FunctionProtoType>();
3009
3010      // If this function can throw any exceptions, make a note of that.
3011      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
3012        AllowsAllExceptions = true;
3013        ExceptionsSeen.clear();
3014        Exceptions.clear();
3015        return;
3016      }
3017
3018      // Record the exceptions in this function's exception specification.
3019      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
3020                                              EEnd = Proto->exception_end();
3021           E != EEnd; ++E)
3022        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
3023          Exceptions.push_back(*E);
3024    }
3025  };
3026}
3027
3028
3029/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3030/// special functions, such as the default constructor, copy
3031/// constructor, or destructor, to the given C++ class (C++
3032/// [special]p1).  This routine can only be executed just before the
3033/// definition of the class is complete.
3034void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3035  if (!ClassDecl->hasUserDeclaredConstructor())
3036    ++ASTContext::NumImplicitDefaultConstructors;
3037
3038  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3039    ++ASTContext::NumImplicitCopyConstructors;
3040
3041  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3042    ++ASTContext::NumImplicitCopyAssignmentOperators;
3043
3044    // If we have a dynamic class, then the copy assignment operator may be
3045    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3046    // it shows up in the right place in the vtable and that we diagnose
3047    // problems with the implicit exception specification.
3048    if (ClassDecl->isDynamicClass())
3049      DeclareImplicitCopyAssignment(ClassDecl);
3050  }
3051
3052  if (!ClassDecl->hasUserDeclaredDestructor()) {
3053    ++ASTContext::NumImplicitDestructors;
3054
3055    // If we have a dynamic class, then the destructor may be virtual, so we
3056    // have to declare the destructor immediately. This ensures that, e.g., it
3057    // shows up in the right place in the vtable and that we diagnose problems
3058    // with the implicit exception specification.
3059    if (ClassDecl->isDynamicClass())
3060      DeclareImplicitDestructor(ClassDecl);
3061  }
3062}
3063
3064void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3065  if (!D)
3066    return;
3067
3068  TemplateParameterList *Params = 0;
3069  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3070    Params = Template->getTemplateParameters();
3071  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3072           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3073    Params = PartialSpec->getTemplateParameters();
3074  else
3075    return;
3076
3077  for (TemplateParameterList::iterator Param = Params->begin(),
3078                                    ParamEnd = Params->end();
3079       Param != ParamEnd; ++Param) {
3080    NamedDecl *Named = cast<NamedDecl>(*Param);
3081    if (Named->getDeclName()) {
3082      S->AddDecl(Named);
3083      IdResolver.AddDecl(Named);
3084    }
3085  }
3086}
3087
3088void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3089  if (!RecordD) return;
3090  AdjustDeclIfTemplate(RecordD);
3091  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3092  PushDeclContext(S, Record);
3093}
3094
3095void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3096  if (!RecordD) return;
3097  PopDeclContext();
3098}
3099
3100/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3101/// parsing a top-level (non-nested) C++ class, and we are now
3102/// parsing those parts of the given Method declaration that could
3103/// not be parsed earlier (C++ [class.mem]p2), such as default
3104/// arguments. This action should enter the scope of the given
3105/// Method declaration as if we had just parsed the qualified method
3106/// name. However, it should not bring the parameters into scope;
3107/// that will be performed by ActOnDelayedCXXMethodParameter.
3108void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3109}
3110
3111/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3112/// C++ method declaration. We're (re-)introducing the given
3113/// function parameter into scope for use in parsing later parts of
3114/// the method declaration. For example, we could see an
3115/// ActOnParamDefaultArgument event for this parameter.
3116void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3117  if (!ParamD)
3118    return;
3119
3120  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3121
3122  // If this parameter has an unparsed default argument, clear it out
3123  // to make way for the parsed default argument.
3124  if (Param->hasUnparsedDefaultArg())
3125    Param->setDefaultArg(0);
3126
3127  S->AddDecl(Param);
3128  if (Param->getDeclName())
3129    IdResolver.AddDecl(Param);
3130}
3131
3132/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3133/// processing the delayed method declaration for Method. The method
3134/// declaration is now considered finished. There may be a separate
3135/// ActOnStartOfFunctionDef action later (not necessarily
3136/// immediately!) for this method, if it was also defined inside the
3137/// class body.
3138void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3139  if (!MethodD)
3140    return;
3141
3142  AdjustDeclIfTemplate(MethodD);
3143
3144  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3145
3146  // Now that we have our default arguments, check the constructor
3147  // again. It could produce additional diagnostics or affect whether
3148  // the class has implicitly-declared destructors, among other
3149  // things.
3150  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3151    CheckConstructor(Constructor);
3152
3153  // Check the default arguments, which we may have added.
3154  if (!Method->isInvalidDecl())
3155    CheckCXXDefaultArguments(Method);
3156}
3157
3158/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3159/// the well-formedness of the constructor declarator @p D with type @p
3160/// R. If there are any errors in the declarator, this routine will
3161/// emit diagnostics and set the invalid bit to true.  In any case, the type
3162/// will be updated to reflect a well-formed type for the constructor and
3163/// returned.
3164QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3165                                          StorageClass &SC) {
3166  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3167
3168  // C++ [class.ctor]p3:
3169  //   A constructor shall not be virtual (10.3) or static (9.4). A
3170  //   constructor can be invoked for a const, volatile or const
3171  //   volatile object. A constructor shall not be declared const,
3172  //   volatile, or const volatile (9.3.2).
3173  if (isVirtual) {
3174    if (!D.isInvalidType())
3175      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3176        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3177        << SourceRange(D.getIdentifierLoc());
3178    D.setInvalidType();
3179  }
3180  if (SC == SC_Static) {
3181    if (!D.isInvalidType())
3182      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3183        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3184        << SourceRange(D.getIdentifierLoc());
3185    D.setInvalidType();
3186    SC = SC_None;
3187  }
3188
3189  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3190  if (FTI.TypeQuals != 0) {
3191    if (FTI.TypeQuals & Qualifiers::Const)
3192      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3193        << "const" << SourceRange(D.getIdentifierLoc());
3194    if (FTI.TypeQuals & Qualifiers::Volatile)
3195      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3196        << "volatile" << SourceRange(D.getIdentifierLoc());
3197    if (FTI.TypeQuals & Qualifiers::Restrict)
3198      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3199        << "restrict" << SourceRange(D.getIdentifierLoc());
3200    D.setInvalidType();
3201  }
3202
3203  // C++0x [class.ctor]p4:
3204  //   A constructor shall not be declared with a ref-qualifier.
3205  if (FTI.hasRefQualifier()) {
3206    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3207      << FTI.RefQualifierIsLValueRef
3208      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3209    D.setInvalidType();
3210  }
3211
3212  // Rebuild the function type "R" without any type qualifiers (in
3213  // case any of the errors above fired) and with "void" as the
3214  // return type, since constructors don't have return types.
3215  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3216  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3217    return R;
3218
3219  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3220  EPI.TypeQuals = 0;
3221  EPI.RefQualifier = RQ_None;
3222
3223  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3224                                 Proto->getNumArgs(), EPI);
3225}
3226
3227/// CheckConstructor - Checks a fully-formed constructor for
3228/// well-formedness, issuing any diagnostics required. Returns true if
3229/// the constructor declarator is invalid.
3230void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3231  CXXRecordDecl *ClassDecl
3232    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3233  if (!ClassDecl)
3234    return Constructor->setInvalidDecl();
3235
3236  // C++ [class.copy]p3:
3237  //   A declaration of a constructor for a class X is ill-formed if
3238  //   its first parameter is of type (optionally cv-qualified) X and
3239  //   either there are no other parameters or else all other
3240  //   parameters have default arguments.
3241  if (!Constructor->isInvalidDecl() &&
3242      ((Constructor->getNumParams() == 1) ||
3243       (Constructor->getNumParams() > 1 &&
3244        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3245      Constructor->getTemplateSpecializationKind()
3246                                              != TSK_ImplicitInstantiation) {
3247    QualType ParamType = Constructor->getParamDecl(0)->getType();
3248    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3249    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3250      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3251      const char *ConstRef
3252        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3253                                                        : " const &";
3254      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3255        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3256
3257      // FIXME: Rather that making the constructor invalid, we should endeavor
3258      // to fix the type.
3259      Constructor->setInvalidDecl();
3260    }
3261  }
3262}
3263
3264/// CheckDestructor - Checks a fully-formed destructor definition for
3265/// well-formedness, issuing any diagnostics required.  Returns true
3266/// on error.
3267bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3268  CXXRecordDecl *RD = Destructor->getParent();
3269
3270  if (Destructor->isVirtual()) {
3271    SourceLocation Loc;
3272
3273    if (!Destructor->isImplicit())
3274      Loc = Destructor->getLocation();
3275    else
3276      Loc = RD->getLocation();
3277
3278    // If we have a virtual destructor, look up the deallocation function
3279    FunctionDecl *OperatorDelete = 0;
3280    DeclarationName Name =
3281    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3282    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3283      return true;
3284
3285    MarkDeclarationReferenced(Loc, OperatorDelete);
3286
3287    Destructor->setOperatorDelete(OperatorDelete);
3288  }
3289
3290  return false;
3291}
3292
3293static inline bool
3294FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3295  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3296          FTI.ArgInfo[0].Param &&
3297          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3298}
3299
3300/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3301/// the well-formednes of the destructor declarator @p D with type @p
3302/// R. If there are any errors in the declarator, this routine will
3303/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3304/// will be updated to reflect a well-formed type for the destructor and
3305/// returned.
3306QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3307                                         StorageClass& SC) {
3308  // C++ [class.dtor]p1:
3309  //   [...] A typedef-name that names a class is a class-name
3310  //   (7.1.3); however, a typedef-name that names a class shall not
3311  //   be used as the identifier in the declarator for a destructor
3312  //   declaration.
3313  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3314  if (isa<TypedefType>(DeclaratorType))
3315    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3316      << DeclaratorType;
3317
3318  // C++ [class.dtor]p2:
3319  //   A destructor is used to destroy objects of its class type. A
3320  //   destructor takes no parameters, and no return type can be
3321  //   specified for it (not even void). The address of a destructor
3322  //   shall not be taken. A destructor shall not be static. A
3323  //   destructor can be invoked for a const, volatile or const
3324  //   volatile object. A destructor shall not be declared const,
3325  //   volatile or const volatile (9.3.2).
3326  if (SC == SC_Static) {
3327    if (!D.isInvalidType())
3328      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3329        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3330        << SourceRange(D.getIdentifierLoc())
3331        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3332
3333    SC = SC_None;
3334  }
3335  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3336    // Destructors don't have return types, but the parser will
3337    // happily parse something like:
3338    //
3339    //   class X {
3340    //     float ~X();
3341    //   };
3342    //
3343    // The return type will be eliminated later.
3344    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3345      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3346      << SourceRange(D.getIdentifierLoc());
3347  }
3348
3349  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3350  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3351    if (FTI.TypeQuals & Qualifiers::Const)
3352      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3353        << "const" << SourceRange(D.getIdentifierLoc());
3354    if (FTI.TypeQuals & Qualifiers::Volatile)
3355      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3356        << "volatile" << SourceRange(D.getIdentifierLoc());
3357    if (FTI.TypeQuals & Qualifiers::Restrict)
3358      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3359        << "restrict" << SourceRange(D.getIdentifierLoc());
3360    D.setInvalidType();
3361  }
3362
3363  // C++0x [class.dtor]p2:
3364  //   A destructor shall not be declared with a ref-qualifier.
3365  if (FTI.hasRefQualifier()) {
3366    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3367      << FTI.RefQualifierIsLValueRef
3368      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3369    D.setInvalidType();
3370  }
3371
3372  // Make sure we don't have any parameters.
3373  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3374    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3375
3376    // Delete the parameters.
3377    FTI.freeArgs();
3378    D.setInvalidType();
3379  }
3380
3381  // Make sure the destructor isn't variadic.
3382  if (FTI.isVariadic) {
3383    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3384    D.setInvalidType();
3385  }
3386
3387  // Rebuild the function type "R" without any type qualifiers or
3388  // parameters (in case any of the errors above fired) and with
3389  // "void" as the return type, since destructors don't have return
3390  // types.
3391  if (!D.isInvalidType())
3392    return R;
3393
3394  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3395  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3396  EPI.Variadic = false;
3397  EPI.TypeQuals = 0;
3398  EPI.RefQualifier = RQ_None;
3399  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3400}
3401
3402/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3403/// well-formednes of the conversion function declarator @p D with
3404/// type @p R. If there are any errors in the declarator, this routine
3405/// will emit diagnostics and return true. Otherwise, it will return
3406/// false. Either way, the type @p R will be updated to reflect a
3407/// well-formed type for the conversion operator.
3408void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3409                                     StorageClass& SC) {
3410  // C++ [class.conv.fct]p1:
3411  //   Neither parameter types nor return type can be specified. The
3412  //   type of a conversion function (8.3.5) is "function taking no
3413  //   parameter returning conversion-type-id."
3414  if (SC == SC_Static) {
3415    if (!D.isInvalidType())
3416      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3417        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3418        << SourceRange(D.getIdentifierLoc());
3419    D.setInvalidType();
3420    SC = SC_None;
3421  }
3422
3423  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3424
3425  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3426    // Conversion functions don't have return types, but the parser will
3427    // happily parse something like:
3428    //
3429    //   class X {
3430    //     float operator bool();
3431    //   };
3432    //
3433    // The return type will be changed later anyway.
3434    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3435      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3436      << SourceRange(D.getIdentifierLoc());
3437    D.setInvalidType();
3438  }
3439
3440  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3441
3442  // Make sure we don't have any parameters.
3443  if (Proto->getNumArgs() > 0) {
3444    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3445
3446    // Delete the parameters.
3447    D.getFunctionTypeInfo().freeArgs();
3448    D.setInvalidType();
3449  } else if (Proto->isVariadic()) {
3450    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3451    D.setInvalidType();
3452  }
3453
3454  // Diagnose "&operator bool()" and other such nonsense.  This
3455  // is actually a gcc extension which we don't support.
3456  if (Proto->getResultType() != ConvType) {
3457    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3458      << Proto->getResultType();
3459    D.setInvalidType();
3460    ConvType = Proto->getResultType();
3461  }
3462
3463  // C++ [class.conv.fct]p4:
3464  //   The conversion-type-id shall not represent a function type nor
3465  //   an array type.
3466  if (ConvType->isArrayType()) {
3467    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3468    ConvType = Context.getPointerType(ConvType);
3469    D.setInvalidType();
3470  } else if (ConvType->isFunctionType()) {
3471    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3472    ConvType = Context.getPointerType(ConvType);
3473    D.setInvalidType();
3474  }
3475
3476  // Rebuild the function type "R" without any parameters (in case any
3477  // of the errors above fired) and with the conversion type as the
3478  // return type.
3479  if (D.isInvalidType())
3480    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3481
3482  // C++0x explicit conversion operators.
3483  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3484    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3485         diag::warn_explicit_conversion_functions)
3486      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3487}
3488
3489/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3490/// the declaration of the given C++ conversion function. This routine
3491/// is responsible for recording the conversion function in the C++
3492/// class, if possible.
3493Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3494  assert(Conversion && "Expected to receive a conversion function declaration");
3495
3496  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3497
3498  // Make sure we aren't redeclaring the conversion function.
3499  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3500
3501  // C++ [class.conv.fct]p1:
3502  //   [...] A conversion function is never used to convert a
3503  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3504  //   same object type (or a reference to it), to a (possibly
3505  //   cv-qualified) base class of that type (or a reference to it),
3506  //   or to (possibly cv-qualified) void.
3507  // FIXME: Suppress this warning if the conversion function ends up being a
3508  // virtual function that overrides a virtual function in a base class.
3509  QualType ClassType
3510    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3511  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3512    ConvType = ConvTypeRef->getPointeeType();
3513  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3514      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3515    /* Suppress diagnostics for instantiations. */;
3516  else if (ConvType->isRecordType()) {
3517    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3518    if (ConvType == ClassType)
3519      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3520        << ClassType;
3521    else if (IsDerivedFrom(ClassType, ConvType))
3522      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3523        <<  ClassType << ConvType;
3524  } else if (ConvType->isVoidType()) {
3525    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3526      << ClassType << ConvType;
3527  }
3528
3529  if (FunctionTemplateDecl *ConversionTemplate
3530                                = Conversion->getDescribedFunctionTemplate())
3531    return ConversionTemplate;
3532
3533  return Conversion;
3534}
3535
3536//===----------------------------------------------------------------------===//
3537// Namespace Handling
3538//===----------------------------------------------------------------------===//
3539
3540
3541
3542/// ActOnStartNamespaceDef - This is called at the start of a namespace
3543/// definition.
3544Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3545                                   SourceLocation InlineLoc,
3546                                   SourceLocation NamespaceLoc,
3547                                   SourceLocation IdentLoc,
3548                                   IdentifierInfo *II,
3549                                   SourceLocation LBrace,
3550                                   AttributeList *AttrList) {
3551  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
3552  // For anonymous namespace, take the location of the left brace.
3553  SourceLocation Loc = II ? IdentLoc : LBrace;
3554  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3555                                                 StartLoc, Loc, II);
3556  Namespc->setInline(InlineLoc.isValid());
3557
3558  Scope *DeclRegionScope = NamespcScope->getParent();
3559
3560  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3561
3562  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3563    PushNamespaceVisibilityAttr(Attr);
3564
3565  if (II) {
3566    // C++ [namespace.def]p2:
3567    //   The identifier in an original-namespace-definition shall not
3568    //   have been previously defined in the declarative region in
3569    //   which the original-namespace-definition appears. The
3570    //   identifier in an original-namespace-definition is the name of
3571    //   the namespace. Subsequently in that declarative region, it is
3572    //   treated as an original-namespace-name.
3573    //
3574    // Since namespace names are unique in their scope, and we don't
3575    // look through using directives, just
3576    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3577    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3578
3579    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3580      // This is an extended namespace definition.
3581      if (Namespc->isInline() != OrigNS->isInline()) {
3582        // inline-ness must match
3583        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3584          << Namespc->isInline();
3585        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3586        Namespc->setInvalidDecl();
3587        // Recover by ignoring the new namespace's inline status.
3588        Namespc->setInline(OrigNS->isInline());
3589      }
3590
3591      // Attach this namespace decl to the chain of extended namespace
3592      // definitions.
3593      OrigNS->setNextNamespace(Namespc);
3594      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3595
3596      // Remove the previous declaration from the scope.
3597      if (DeclRegionScope->isDeclScope(OrigNS)) {
3598        IdResolver.RemoveDecl(OrigNS);
3599        DeclRegionScope->RemoveDecl(OrigNS);
3600      }
3601    } else if (PrevDecl) {
3602      // This is an invalid name redefinition.
3603      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3604       << Namespc->getDeclName();
3605      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3606      Namespc->setInvalidDecl();
3607      // Continue on to push Namespc as current DeclContext and return it.
3608    } else if (II->isStr("std") &&
3609               CurContext->getRedeclContext()->isTranslationUnit()) {
3610      // This is the first "real" definition of the namespace "std", so update
3611      // our cache of the "std" namespace to point at this definition.
3612      if (NamespaceDecl *StdNS = getStdNamespace()) {
3613        // We had already defined a dummy namespace "std". Link this new
3614        // namespace definition to the dummy namespace "std".
3615        StdNS->setNextNamespace(Namespc);
3616        StdNS->setLocation(IdentLoc);
3617        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3618      }
3619
3620      // Make our StdNamespace cache point at the first real definition of the
3621      // "std" namespace.
3622      StdNamespace = Namespc;
3623    }
3624
3625    PushOnScopeChains(Namespc, DeclRegionScope);
3626  } else {
3627    // Anonymous namespaces.
3628    assert(Namespc->isAnonymousNamespace());
3629
3630    // Link the anonymous namespace into its parent.
3631    NamespaceDecl *PrevDecl;
3632    DeclContext *Parent = CurContext->getRedeclContext();
3633    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3634      PrevDecl = TU->getAnonymousNamespace();
3635      TU->setAnonymousNamespace(Namespc);
3636    } else {
3637      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3638      PrevDecl = ND->getAnonymousNamespace();
3639      ND->setAnonymousNamespace(Namespc);
3640    }
3641
3642    // Link the anonymous namespace with its previous declaration.
3643    if (PrevDecl) {
3644      assert(PrevDecl->isAnonymousNamespace());
3645      assert(!PrevDecl->getNextNamespace());
3646      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3647      PrevDecl->setNextNamespace(Namespc);
3648
3649      if (Namespc->isInline() != PrevDecl->isInline()) {
3650        // inline-ness must match
3651        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3652          << Namespc->isInline();
3653        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3654        Namespc->setInvalidDecl();
3655        // Recover by ignoring the new namespace's inline status.
3656        Namespc->setInline(PrevDecl->isInline());
3657      }
3658    }
3659
3660    CurContext->addDecl(Namespc);
3661
3662    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3663    //   behaves as if it were replaced by
3664    //     namespace unique { /* empty body */ }
3665    //     using namespace unique;
3666    //     namespace unique { namespace-body }
3667    //   where all occurrences of 'unique' in a translation unit are
3668    //   replaced by the same identifier and this identifier differs
3669    //   from all other identifiers in the entire program.
3670
3671    // We just create the namespace with an empty name and then add an
3672    // implicit using declaration, just like the standard suggests.
3673    //
3674    // CodeGen enforces the "universally unique" aspect by giving all
3675    // declarations semantically contained within an anonymous
3676    // namespace internal linkage.
3677
3678    if (!PrevDecl) {
3679      UsingDirectiveDecl* UD
3680        = UsingDirectiveDecl::Create(Context, CurContext,
3681                                     /* 'using' */ LBrace,
3682                                     /* 'namespace' */ SourceLocation(),
3683                                     /* qualifier */ NestedNameSpecifierLoc(),
3684                                     /* identifier */ SourceLocation(),
3685                                     Namespc,
3686                                     /* Ancestor */ CurContext);
3687      UD->setImplicit();
3688      CurContext->addDecl(UD);
3689    }
3690  }
3691
3692  // Although we could have an invalid decl (i.e. the namespace name is a
3693  // redefinition), push it as current DeclContext and try to continue parsing.
3694  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3695  // for the namespace has the declarations that showed up in that particular
3696  // namespace definition.
3697  PushDeclContext(NamespcScope, Namespc);
3698  return Namespc;
3699}
3700
3701/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3702/// is a namespace alias, returns the namespace it points to.
3703static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3704  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3705    return AD->getNamespace();
3706  return dyn_cast_or_null<NamespaceDecl>(D);
3707}
3708
3709/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3710/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3711void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3712  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3713  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3714  Namespc->setRBraceLoc(RBrace);
3715  PopDeclContext();
3716  if (Namespc->hasAttr<VisibilityAttr>())
3717    PopPragmaVisibility();
3718}
3719
3720CXXRecordDecl *Sema::getStdBadAlloc() const {
3721  return cast_or_null<CXXRecordDecl>(
3722                                  StdBadAlloc.get(Context.getExternalSource()));
3723}
3724
3725NamespaceDecl *Sema::getStdNamespace() const {
3726  return cast_or_null<NamespaceDecl>(
3727                                 StdNamespace.get(Context.getExternalSource()));
3728}
3729
3730/// \brief Retrieve the special "std" namespace, which may require us to
3731/// implicitly define the namespace.
3732NamespaceDecl *Sema::getOrCreateStdNamespace() {
3733  if (!StdNamespace) {
3734    // The "std" namespace has not yet been defined, so build one implicitly.
3735    StdNamespace = NamespaceDecl::Create(Context,
3736                                         Context.getTranslationUnitDecl(),
3737                                         SourceLocation(), SourceLocation(),
3738                                         &PP.getIdentifierTable().get("std"));
3739    getStdNamespace()->setImplicit(true);
3740  }
3741
3742  return getStdNamespace();
3743}
3744
3745Decl *Sema::ActOnUsingDirective(Scope *S,
3746                                          SourceLocation UsingLoc,
3747                                          SourceLocation NamespcLoc,
3748                                          CXXScopeSpec &SS,
3749                                          SourceLocation IdentLoc,
3750                                          IdentifierInfo *NamespcName,
3751                                          AttributeList *AttrList) {
3752  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3753  assert(NamespcName && "Invalid NamespcName.");
3754  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3755
3756  // This can only happen along a recovery path.
3757  while (S->getFlags() & Scope::TemplateParamScope)
3758    S = S->getParent();
3759  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3760
3761  UsingDirectiveDecl *UDir = 0;
3762  NestedNameSpecifier *Qualifier = 0;
3763  if (SS.isSet())
3764    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3765
3766  // Lookup namespace name.
3767  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3768  LookupParsedName(R, S, &SS);
3769  if (R.isAmbiguous())
3770    return 0;
3771
3772  if (R.empty()) {
3773    // Allow "using namespace std;" or "using namespace ::std;" even if
3774    // "std" hasn't been defined yet, for GCC compatibility.
3775    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3776        NamespcName->isStr("std")) {
3777      Diag(IdentLoc, diag::ext_using_undefined_std);
3778      R.addDecl(getOrCreateStdNamespace());
3779      R.resolveKind();
3780    }
3781    // Otherwise, attempt typo correction.
3782    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3783                                                       CTC_NoKeywords, 0)) {
3784      if (R.getAsSingle<NamespaceDecl>() ||
3785          R.getAsSingle<NamespaceAliasDecl>()) {
3786        if (DeclContext *DC = computeDeclContext(SS, false))
3787          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3788            << NamespcName << DC << Corrected << SS.getRange()
3789            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3790        else
3791          Diag(IdentLoc, diag::err_using_directive_suggest)
3792            << NamespcName << Corrected
3793            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3794        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3795          << Corrected;
3796
3797        NamespcName = Corrected.getAsIdentifierInfo();
3798      } else {
3799        R.clear();
3800        R.setLookupName(NamespcName);
3801      }
3802    }
3803  }
3804
3805  if (!R.empty()) {
3806    NamedDecl *Named = R.getFoundDecl();
3807    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3808        && "expected namespace decl");
3809    // C++ [namespace.udir]p1:
3810    //   A using-directive specifies that the names in the nominated
3811    //   namespace can be used in the scope in which the
3812    //   using-directive appears after the using-directive. During
3813    //   unqualified name lookup (3.4.1), the names appear as if they
3814    //   were declared in the nearest enclosing namespace which
3815    //   contains both the using-directive and the nominated
3816    //   namespace. [Note: in this context, "contains" means "contains
3817    //   directly or indirectly". ]
3818
3819    // Find enclosing context containing both using-directive and
3820    // nominated namespace.
3821    NamespaceDecl *NS = getNamespaceDecl(Named);
3822    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3823    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3824      CommonAncestor = CommonAncestor->getParent();
3825
3826    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3827                                      SS.getWithLocInContext(Context),
3828                                      IdentLoc, Named, CommonAncestor);
3829    PushUsingDirective(S, UDir);
3830  } else {
3831    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3832  }
3833
3834  // FIXME: We ignore attributes for now.
3835  return UDir;
3836}
3837
3838void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3839  // If scope has associated entity, then using directive is at namespace
3840  // or translation unit scope. We add UsingDirectiveDecls, into
3841  // it's lookup structure.
3842  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3843    Ctx->addDecl(UDir);
3844  else
3845    // Otherwise it is block-sope. using-directives will affect lookup
3846    // only to the end of scope.
3847    S->PushUsingDirective(UDir);
3848}
3849
3850
3851Decl *Sema::ActOnUsingDeclaration(Scope *S,
3852                                  AccessSpecifier AS,
3853                                  bool HasUsingKeyword,
3854                                  SourceLocation UsingLoc,
3855                                  CXXScopeSpec &SS,
3856                                  UnqualifiedId &Name,
3857                                  AttributeList *AttrList,
3858                                  bool IsTypeName,
3859                                  SourceLocation TypenameLoc) {
3860  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3861
3862  switch (Name.getKind()) {
3863  case UnqualifiedId::IK_Identifier:
3864  case UnqualifiedId::IK_OperatorFunctionId:
3865  case UnqualifiedId::IK_LiteralOperatorId:
3866  case UnqualifiedId::IK_ConversionFunctionId:
3867    break;
3868
3869  case UnqualifiedId::IK_ConstructorName:
3870  case UnqualifiedId::IK_ConstructorTemplateId:
3871    // C++0x inherited constructors.
3872    if (getLangOptions().CPlusPlus0x) break;
3873
3874    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3875      << SS.getRange();
3876    return 0;
3877
3878  case UnqualifiedId::IK_DestructorName:
3879    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3880      << SS.getRange();
3881    return 0;
3882
3883  case UnqualifiedId::IK_TemplateId:
3884    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3885      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3886    return 0;
3887  }
3888
3889  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3890  DeclarationName TargetName = TargetNameInfo.getName();
3891  if (!TargetName)
3892    return 0;
3893
3894  // Warn about using declarations.
3895  // TODO: store that the declaration was written without 'using' and
3896  // talk about access decls instead of using decls in the
3897  // diagnostics.
3898  if (!HasUsingKeyword) {
3899    UsingLoc = Name.getSourceRange().getBegin();
3900
3901    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3902      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3903  }
3904
3905  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3906      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3907    return 0;
3908
3909  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3910                                        TargetNameInfo, AttrList,
3911                                        /* IsInstantiation */ false,
3912                                        IsTypeName, TypenameLoc);
3913  if (UD)
3914    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3915
3916  return UD;
3917}
3918
3919/// \brief Determine whether a using declaration considers the given
3920/// declarations as "equivalent", e.g., if they are redeclarations of
3921/// the same entity or are both typedefs of the same type.
3922static bool
3923IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3924                         bool &SuppressRedeclaration) {
3925  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3926    SuppressRedeclaration = false;
3927    return true;
3928  }
3929
3930  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3931    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3932      SuppressRedeclaration = true;
3933      return Context.hasSameType(TD1->getUnderlyingType(),
3934                                 TD2->getUnderlyingType());
3935    }
3936
3937  return false;
3938}
3939
3940
3941/// Determines whether to create a using shadow decl for a particular
3942/// decl, given the set of decls existing prior to this using lookup.
3943bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3944                                const LookupResult &Previous) {
3945  // Diagnose finding a decl which is not from a base class of the
3946  // current class.  We do this now because there are cases where this
3947  // function will silently decide not to build a shadow decl, which
3948  // will pre-empt further diagnostics.
3949  //
3950  // We don't need to do this in C++0x because we do the check once on
3951  // the qualifier.
3952  //
3953  // FIXME: diagnose the following if we care enough:
3954  //   struct A { int foo; };
3955  //   struct B : A { using A::foo; };
3956  //   template <class T> struct C : A {};
3957  //   template <class T> struct D : C<T> { using B::foo; } // <---
3958  // This is invalid (during instantiation) in C++03 because B::foo
3959  // resolves to the using decl in B, which is not a base class of D<T>.
3960  // We can't diagnose it immediately because C<T> is an unknown
3961  // specialization.  The UsingShadowDecl in D<T> then points directly
3962  // to A::foo, which will look well-formed when we instantiate.
3963  // The right solution is to not collapse the shadow-decl chain.
3964  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3965    DeclContext *OrigDC = Orig->getDeclContext();
3966
3967    // Handle enums and anonymous structs.
3968    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3969    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3970    while (OrigRec->isAnonymousStructOrUnion())
3971      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3972
3973    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3974      if (OrigDC == CurContext) {
3975        Diag(Using->getLocation(),
3976             diag::err_using_decl_nested_name_specifier_is_current_class)
3977          << Using->getQualifierLoc().getSourceRange();
3978        Diag(Orig->getLocation(), diag::note_using_decl_target);
3979        return true;
3980      }
3981
3982      Diag(Using->getQualifierLoc().getBeginLoc(),
3983           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3984        << Using->getQualifier()
3985        << cast<CXXRecordDecl>(CurContext)
3986        << Using->getQualifierLoc().getSourceRange();
3987      Diag(Orig->getLocation(), diag::note_using_decl_target);
3988      return true;
3989    }
3990  }
3991
3992  if (Previous.empty()) return false;
3993
3994  NamedDecl *Target = Orig;
3995  if (isa<UsingShadowDecl>(Target))
3996    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3997
3998  // If the target happens to be one of the previous declarations, we
3999  // don't have a conflict.
4000  //
4001  // FIXME: but we might be increasing its access, in which case we
4002  // should redeclare it.
4003  NamedDecl *NonTag = 0, *Tag = 0;
4004  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4005         I != E; ++I) {
4006    NamedDecl *D = (*I)->getUnderlyingDecl();
4007    bool Result;
4008    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4009      return Result;
4010
4011    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4012  }
4013
4014  if (Target->isFunctionOrFunctionTemplate()) {
4015    FunctionDecl *FD;
4016    if (isa<FunctionTemplateDecl>(Target))
4017      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4018    else
4019      FD = cast<FunctionDecl>(Target);
4020
4021    NamedDecl *OldDecl = 0;
4022    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4023    case Ovl_Overload:
4024      return false;
4025
4026    case Ovl_NonFunction:
4027      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4028      break;
4029
4030    // We found a decl with the exact signature.
4031    case Ovl_Match:
4032      // If we're in a record, we want to hide the target, so we
4033      // return true (without a diagnostic) to tell the caller not to
4034      // build a shadow decl.
4035      if (CurContext->isRecord())
4036        return true;
4037
4038      // If we're not in a record, this is an error.
4039      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4040      break;
4041    }
4042
4043    Diag(Target->getLocation(), diag::note_using_decl_target);
4044    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4045    return true;
4046  }
4047
4048  // Target is not a function.
4049
4050  if (isa<TagDecl>(Target)) {
4051    // No conflict between a tag and a non-tag.
4052    if (!Tag) return false;
4053
4054    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4055    Diag(Target->getLocation(), diag::note_using_decl_target);
4056    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4057    return true;
4058  }
4059
4060  // No conflict between a tag and a non-tag.
4061  if (!NonTag) return false;
4062
4063  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4064  Diag(Target->getLocation(), diag::note_using_decl_target);
4065  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4066  return true;
4067}
4068
4069/// Builds a shadow declaration corresponding to a 'using' declaration.
4070UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4071                                            UsingDecl *UD,
4072                                            NamedDecl *Orig) {
4073
4074  // If we resolved to another shadow declaration, just coalesce them.
4075  NamedDecl *Target = Orig;
4076  if (isa<UsingShadowDecl>(Target)) {
4077    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4078    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4079  }
4080
4081  UsingShadowDecl *Shadow
4082    = UsingShadowDecl::Create(Context, CurContext,
4083                              UD->getLocation(), UD, Target);
4084  UD->addShadowDecl(Shadow);
4085
4086  Shadow->setAccess(UD->getAccess());
4087  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4088    Shadow->setInvalidDecl();
4089
4090  if (S)
4091    PushOnScopeChains(Shadow, S);
4092  else
4093    CurContext->addDecl(Shadow);
4094
4095
4096  return Shadow;
4097}
4098
4099/// Hides a using shadow declaration.  This is required by the current
4100/// using-decl implementation when a resolvable using declaration in a
4101/// class is followed by a declaration which would hide or override
4102/// one or more of the using decl's targets; for example:
4103///
4104///   struct Base { void foo(int); };
4105///   struct Derived : Base {
4106///     using Base::foo;
4107///     void foo(int);
4108///   };
4109///
4110/// The governing language is C++03 [namespace.udecl]p12:
4111///
4112///   When a using-declaration brings names from a base class into a
4113///   derived class scope, member functions in the derived class
4114///   override and/or hide member functions with the same name and
4115///   parameter types in a base class (rather than conflicting).
4116///
4117/// There are two ways to implement this:
4118///   (1) optimistically create shadow decls when they're not hidden
4119///       by existing declarations, or
4120///   (2) don't create any shadow decls (or at least don't make them
4121///       visible) until we've fully parsed/instantiated the class.
4122/// The problem with (1) is that we might have to retroactively remove
4123/// a shadow decl, which requires several O(n) operations because the
4124/// decl structures are (very reasonably) not designed for removal.
4125/// (2) avoids this but is very fiddly and phase-dependent.
4126void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4127  if (Shadow->getDeclName().getNameKind() ==
4128        DeclarationName::CXXConversionFunctionName)
4129    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4130
4131  // Remove it from the DeclContext...
4132  Shadow->getDeclContext()->removeDecl(Shadow);
4133
4134  // ...and the scope, if applicable...
4135  if (S) {
4136    S->RemoveDecl(Shadow);
4137    IdResolver.RemoveDecl(Shadow);
4138  }
4139
4140  // ...and the using decl.
4141  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4142
4143  // TODO: complain somehow if Shadow was used.  It shouldn't
4144  // be possible for this to happen, because...?
4145}
4146
4147/// Builds a using declaration.
4148///
4149/// \param IsInstantiation - Whether this call arises from an
4150///   instantiation of an unresolved using declaration.  We treat
4151///   the lookup differently for these declarations.
4152NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4153                                       SourceLocation UsingLoc,
4154                                       CXXScopeSpec &SS,
4155                                       const DeclarationNameInfo &NameInfo,
4156                                       AttributeList *AttrList,
4157                                       bool IsInstantiation,
4158                                       bool IsTypeName,
4159                                       SourceLocation TypenameLoc) {
4160  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4161  SourceLocation IdentLoc = NameInfo.getLoc();
4162  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4163
4164  // FIXME: We ignore attributes for now.
4165
4166  if (SS.isEmpty()) {
4167    Diag(IdentLoc, diag::err_using_requires_qualname);
4168    return 0;
4169  }
4170
4171  // Do the redeclaration lookup in the current scope.
4172  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4173                        ForRedeclaration);
4174  Previous.setHideTags(false);
4175  if (S) {
4176    LookupName(Previous, S);
4177
4178    // It is really dumb that we have to do this.
4179    LookupResult::Filter F = Previous.makeFilter();
4180    while (F.hasNext()) {
4181      NamedDecl *D = F.next();
4182      if (!isDeclInScope(D, CurContext, S))
4183        F.erase();
4184    }
4185    F.done();
4186  } else {
4187    assert(IsInstantiation && "no scope in non-instantiation");
4188    assert(CurContext->isRecord() && "scope not record in instantiation");
4189    LookupQualifiedName(Previous, CurContext);
4190  }
4191
4192  // Check for invalid redeclarations.
4193  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4194    return 0;
4195
4196  // Check for bad qualifiers.
4197  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4198    return 0;
4199
4200  DeclContext *LookupContext = computeDeclContext(SS);
4201  NamedDecl *D;
4202  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4203  if (!LookupContext) {
4204    if (IsTypeName) {
4205      // FIXME: not all declaration name kinds are legal here
4206      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4207                                              UsingLoc, TypenameLoc,
4208                                              QualifierLoc,
4209                                              IdentLoc, NameInfo.getName());
4210    } else {
4211      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4212                                           QualifierLoc, NameInfo);
4213    }
4214  } else {
4215    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4216                          NameInfo, IsTypeName);
4217  }
4218  D->setAccess(AS);
4219  CurContext->addDecl(D);
4220
4221  if (!LookupContext) return D;
4222  UsingDecl *UD = cast<UsingDecl>(D);
4223
4224  if (RequireCompleteDeclContext(SS, LookupContext)) {
4225    UD->setInvalidDecl();
4226    return UD;
4227  }
4228
4229  // Constructor inheriting using decls get special treatment.
4230  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4231    if (CheckInheritedConstructorUsingDecl(UD))
4232      UD->setInvalidDecl();
4233    return UD;
4234  }
4235
4236  // Otherwise, look up the target name.
4237
4238  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4239
4240  // Unlike most lookups, we don't always want to hide tag
4241  // declarations: tag names are visible through the using declaration
4242  // even if hidden by ordinary names, *except* in a dependent context
4243  // where it's important for the sanity of two-phase lookup.
4244  if (!IsInstantiation)
4245    R.setHideTags(false);
4246
4247  LookupQualifiedName(R, LookupContext);
4248
4249  if (R.empty()) {
4250    Diag(IdentLoc, diag::err_no_member)
4251      << NameInfo.getName() << LookupContext << SS.getRange();
4252    UD->setInvalidDecl();
4253    return UD;
4254  }
4255
4256  if (R.isAmbiguous()) {
4257    UD->setInvalidDecl();
4258    return UD;
4259  }
4260
4261  if (IsTypeName) {
4262    // If we asked for a typename and got a non-type decl, error out.
4263    if (!R.getAsSingle<TypeDecl>()) {
4264      Diag(IdentLoc, diag::err_using_typename_non_type);
4265      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4266        Diag((*I)->getUnderlyingDecl()->getLocation(),
4267             diag::note_using_decl_target);
4268      UD->setInvalidDecl();
4269      return UD;
4270    }
4271  } else {
4272    // If we asked for a non-typename and we got a type, error out,
4273    // but only if this is an instantiation of an unresolved using
4274    // decl.  Otherwise just silently find the type name.
4275    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4276      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4277      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4278      UD->setInvalidDecl();
4279      return UD;
4280    }
4281  }
4282
4283  // C++0x N2914 [namespace.udecl]p6:
4284  // A using-declaration shall not name a namespace.
4285  if (R.getAsSingle<NamespaceDecl>()) {
4286    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4287      << SS.getRange();
4288    UD->setInvalidDecl();
4289    return UD;
4290  }
4291
4292  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4293    if (!CheckUsingShadowDecl(UD, *I, Previous))
4294      BuildUsingShadowDecl(S, UD, *I);
4295  }
4296
4297  return UD;
4298}
4299
4300/// Additional checks for a using declaration referring to a constructor name.
4301bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4302  if (UD->isTypeName()) {
4303    // FIXME: Cannot specify typename when specifying constructor
4304    return true;
4305  }
4306
4307  const Type *SourceType = UD->getQualifier()->getAsType();
4308  assert(SourceType &&
4309         "Using decl naming constructor doesn't have type in scope spec.");
4310  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4311
4312  // Check whether the named type is a direct base class.
4313  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4314  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4315  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4316       BaseIt != BaseE; ++BaseIt) {
4317    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4318    if (CanonicalSourceType == BaseType)
4319      break;
4320  }
4321
4322  if (BaseIt == BaseE) {
4323    // Did not find SourceType in the bases.
4324    Diag(UD->getUsingLocation(),
4325         diag::err_using_decl_constructor_not_in_direct_base)
4326      << UD->getNameInfo().getSourceRange()
4327      << QualType(SourceType, 0) << TargetClass;
4328    return true;
4329  }
4330
4331  BaseIt->setInheritConstructors();
4332
4333  return false;
4334}
4335
4336/// Checks that the given using declaration is not an invalid
4337/// redeclaration.  Note that this is checking only for the using decl
4338/// itself, not for any ill-formedness among the UsingShadowDecls.
4339bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4340                                       bool isTypeName,
4341                                       const CXXScopeSpec &SS,
4342                                       SourceLocation NameLoc,
4343                                       const LookupResult &Prev) {
4344  // C++03 [namespace.udecl]p8:
4345  // C++0x [namespace.udecl]p10:
4346  //   A using-declaration is a declaration and can therefore be used
4347  //   repeatedly where (and only where) multiple declarations are
4348  //   allowed.
4349  //
4350  // That's in non-member contexts.
4351  if (!CurContext->getRedeclContext()->isRecord())
4352    return false;
4353
4354  NestedNameSpecifier *Qual
4355    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4356
4357  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4358    NamedDecl *D = *I;
4359
4360    bool DTypename;
4361    NestedNameSpecifier *DQual;
4362    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4363      DTypename = UD->isTypeName();
4364      DQual = UD->getQualifier();
4365    } else if (UnresolvedUsingValueDecl *UD
4366                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4367      DTypename = false;
4368      DQual = UD->getQualifier();
4369    } else if (UnresolvedUsingTypenameDecl *UD
4370                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4371      DTypename = true;
4372      DQual = UD->getQualifier();
4373    } else continue;
4374
4375    // using decls differ if one says 'typename' and the other doesn't.
4376    // FIXME: non-dependent using decls?
4377    if (isTypeName != DTypename) continue;
4378
4379    // using decls differ if they name different scopes (but note that
4380    // template instantiation can cause this check to trigger when it
4381    // didn't before instantiation).
4382    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4383        Context.getCanonicalNestedNameSpecifier(DQual))
4384      continue;
4385
4386    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4387    Diag(D->getLocation(), diag::note_using_decl) << 1;
4388    return true;
4389  }
4390
4391  return false;
4392}
4393
4394
4395/// Checks that the given nested-name qualifier used in a using decl
4396/// in the current context is appropriately related to the current
4397/// scope.  If an error is found, diagnoses it and returns true.
4398bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4399                                   const CXXScopeSpec &SS,
4400                                   SourceLocation NameLoc) {
4401  DeclContext *NamedContext = computeDeclContext(SS);
4402
4403  if (!CurContext->isRecord()) {
4404    // C++03 [namespace.udecl]p3:
4405    // C++0x [namespace.udecl]p8:
4406    //   A using-declaration for a class member shall be a member-declaration.
4407
4408    // If we weren't able to compute a valid scope, it must be a
4409    // dependent class scope.
4410    if (!NamedContext || NamedContext->isRecord()) {
4411      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4412        << SS.getRange();
4413      return true;
4414    }
4415
4416    // Otherwise, everything is known to be fine.
4417    return false;
4418  }
4419
4420  // The current scope is a record.
4421
4422  // If the named context is dependent, we can't decide much.
4423  if (!NamedContext) {
4424    // FIXME: in C++0x, we can diagnose if we can prove that the
4425    // nested-name-specifier does not refer to a base class, which is
4426    // still possible in some cases.
4427
4428    // Otherwise we have to conservatively report that things might be
4429    // okay.
4430    return false;
4431  }
4432
4433  if (!NamedContext->isRecord()) {
4434    // Ideally this would point at the last name in the specifier,
4435    // but we don't have that level of source info.
4436    Diag(SS.getRange().getBegin(),
4437         diag::err_using_decl_nested_name_specifier_is_not_class)
4438      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4439    return true;
4440  }
4441
4442  if (!NamedContext->isDependentContext() &&
4443      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4444    return true;
4445
4446  if (getLangOptions().CPlusPlus0x) {
4447    // C++0x [namespace.udecl]p3:
4448    //   In a using-declaration used as a member-declaration, the
4449    //   nested-name-specifier shall name a base class of the class
4450    //   being defined.
4451
4452    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4453                                 cast<CXXRecordDecl>(NamedContext))) {
4454      if (CurContext == NamedContext) {
4455        Diag(NameLoc,
4456             diag::err_using_decl_nested_name_specifier_is_current_class)
4457          << SS.getRange();
4458        return true;
4459      }
4460
4461      Diag(SS.getRange().getBegin(),
4462           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4463        << (NestedNameSpecifier*) SS.getScopeRep()
4464        << cast<CXXRecordDecl>(CurContext)
4465        << SS.getRange();
4466      return true;
4467    }
4468
4469    return false;
4470  }
4471
4472  // C++03 [namespace.udecl]p4:
4473  //   A using-declaration used as a member-declaration shall refer
4474  //   to a member of a base class of the class being defined [etc.].
4475
4476  // Salient point: SS doesn't have to name a base class as long as
4477  // lookup only finds members from base classes.  Therefore we can
4478  // diagnose here only if we can prove that that can't happen,
4479  // i.e. if the class hierarchies provably don't intersect.
4480
4481  // TODO: it would be nice if "definitely valid" results were cached
4482  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4483  // need to be repeated.
4484
4485  struct UserData {
4486    llvm::DenseSet<const CXXRecordDecl*> Bases;
4487
4488    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4489      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4490      Data->Bases.insert(Base);
4491      return true;
4492    }
4493
4494    bool hasDependentBases(const CXXRecordDecl *Class) {
4495      return !Class->forallBases(collect, this);
4496    }
4497
4498    /// Returns true if the base is dependent or is one of the
4499    /// accumulated base classes.
4500    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4501      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4502      return !Data->Bases.count(Base);
4503    }
4504
4505    bool mightShareBases(const CXXRecordDecl *Class) {
4506      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4507    }
4508  };
4509
4510  UserData Data;
4511
4512  // Returns false if we find a dependent base.
4513  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4514    return false;
4515
4516  // Returns false if the class has a dependent base or if it or one
4517  // of its bases is present in the base set of the current context.
4518  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4519    return false;
4520
4521  Diag(SS.getRange().getBegin(),
4522       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4523    << (NestedNameSpecifier*) SS.getScopeRep()
4524    << cast<CXXRecordDecl>(CurContext)
4525    << SS.getRange();
4526
4527  return true;
4528}
4529
4530Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4531                                             SourceLocation NamespaceLoc,
4532                                             SourceLocation AliasLoc,
4533                                             IdentifierInfo *Alias,
4534                                             CXXScopeSpec &SS,
4535                                             SourceLocation IdentLoc,
4536                                             IdentifierInfo *Ident) {
4537
4538  // Lookup the namespace name.
4539  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4540  LookupParsedName(R, S, &SS);
4541
4542  // Check if we have a previous declaration with the same name.
4543  NamedDecl *PrevDecl
4544    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4545                       ForRedeclaration);
4546  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4547    PrevDecl = 0;
4548
4549  if (PrevDecl) {
4550    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4551      // We already have an alias with the same name that points to the same
4552      // namespace, so don't create a new one.
4553      // FIXME: At some point, we'll want to create the (redundant)
4554      // declaration to maintain better source information.
4555      if (!R.isAmbiguous() && !R.empty() &&
4556          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4557        return 0;
4558    }
4559
4560    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4561      diag::err_redefinition_different_kind;
4562    Diag(AliasLoc, DiagID) << Alias;
4563    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4564    return 0;
4565  }
4566
4567  if (R.isAmbiguous())
4568    return 0;
4569
4570  if (R.empty()) {
4571    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4572                                                CTC_NoKeywords, 0)) {
4573      if (R.getAsSingle<NamespaceDecl>() ||
4574          R.getAsSingle<NamespaceAliasDecl>()) {
4575        if (DeclContext *DC = computeDeclContext(SS, false))
4576          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4577            << Ident << DC << Corrected << SS.getRange()
4578            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4579        else
4580          Diag(IdentLoc, diag::err_using_directive_suggest)
4581            << Ident << Corrected
4582            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4583
4584        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4585          << Corrected;
4586
4587        Ident = Corrected.getAsIdentifierInfo();
4588      } else {
4589        R.clear();
4590        R.setLookupName(Ident);
4591      }
4592    }
4593
4594    if (R.empty()) {
4595      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4596      return 0;
4597    }
4598  }
4599
4600  NamespaceAliasDecl *AliasDecl =
4601    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4602                               Alias, SS.getWithLocInContext(Context),
4603                               IdentLoc, R.getFoundDecl());
4604
4605  PushOnScopeChains(AliasDecl, S);
4606  return AliasDecl;
4607}
4608
4609namespace {
4610  /// \brief Scoped object used to handle the state changes required in Sema
4611  /// to implicitly define the body of a C++ member function;
4612  class ImplicitlyDefinedFunctionScope {
4613    Sema &S;
4614    Sema::ContextRAII SavedContext;
4615
4616  public:
4617    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4618      : S(S), SavedContext(S, Method)
4619    {
4620      S.PushFunctionScope();
4621      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4622    }
4623
4624    ~ImplicitlyDefinedFunctionScope() {
4625      S.PopExpressionEvaluationContext();
4626      S.PopFunctionOrBlockScope();
4627    }
4628  };
4629}
4630
4631static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4632                                                       CXXRecordDecl *D) {
4633  ASTContext &Context = Self.Context;
4634  QualType ClassType = Context.getTypeDeclType(D);
4635  DeclarationName ConstructorName
4636    = Context.DeclarationNames.getCXXConstructorName(
4637                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4638
4639  DeclContext::lookup_const_iterator Con, ConEnd;
4640  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4641       Con != ConEnd; ++Con) {
4642    // FIXME: In C++0x, a constructor template can be a default constructor.
4643    if (isa<FunctionTemplateDecl>(*Con))
4644      continue;
4645
4646    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4647    if (Constructor->isDefaultConstructor())
4648      return Constructor;
4649  }
4650  return 0;
4651}
4652
4653CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4654                                                     CXXRecordDecl *ClassDecl) {
4655  // C++ [class.ctor]p5:
4656  //   A default constructor for a class X is a constructor of class X
4657  //   that can be called without an argument. If there is no
4658  //   user-declared constructor for class X, a default constructor is
4659  //   implicitly declared. An implicitly-declared default constructor
4660  //   is an inline public member of its class.
4661  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4662         "Should not build implicit default constructor!");
4663
4664  // C++ [except.spec]p14:
4665  //   An implicitly declared special member function (Clause 12) shall have an
4666  //   exception-specification. [...]
4667  ImplicitExceptionSpecification ExceptSpec(Context);
4668
4669  // Direct base-class destructors.
4670  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4671                                       BEnd = ClassDecl->bases_end();
4672       B != BEnd; ++B) {
4673    if (B->isVirtual()) // Handled below.
4674      continue;
4675
4676    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4677      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4678      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4679        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4680      else if (CXXConstructorDecl *Constructor
4681                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4682        ExceptSpec.CalledDecl(Constructor);
4683    }
4684  }
4685
4686  // Virtual base-class destructors.
4687  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4688                                       BEnd = ClassDecl->vbases_end();
4689       B != BEnd; ++B) {
4690    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4691      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4692      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4693        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4694      else if (CXXConstructorDecl *Constructor
4695                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4696        ExceptSpec.CalledDecl(Constructor);
4697    }
4698  }
4699
4700  // Field destructors.
4701  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4702                               FEnd = ClassDecl->field_end();
4703       F != FEnd; ++F) {
4704    if (const RecordType *RecordTy
4705              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4706      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4707      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4708        ExceptSpec.CalledDecl(
4709                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4710      else if (CXXConstructorDecl *Constructor
4711                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4712        ExceptSpec.CalledDecl(Constructor);
4713    }
4714  }
4715
4716  FunctionProtoType::ExtProtoInfo EPI;
4717  EPI.ExceptionSpecType = ExceptSpec.hasExceptionSpecification() ?
4718    (ExceptSpec.hasAnyExceptionSpecification() ? EST_DynamicAny : EST_Dynamic) :
4719    EST_None;
4720  EPI.NumExceptions = ExceptSpec.size();
4721  EPI.Exceptions = ExceptSpec.data();
4722
4723  // Create the actual constructor declaration.
4724  CanQualType ClassType
4725    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4726  SourceLocation ClassLoc = ClassDecl->getLocation();
4727  DeclarationName Name
4728    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4729  DeclarationNameInfo NameInfo(Name, ClassLoc);
4730  CXXConstructorDecl *DefaultCon
4731    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
4732                                 Context.getFunctionType(Context.VoidTy,
4733                                                         0, 0, EPI),
4734                                 /*TInfo=*/0,
4735                                 /*isExplicit=*/false,
4736                                 /*isInline=*/true,
4737                                 /*isImplicitlyDeclared=*/true);
4738  DefaultCon->setAccess(AS_public);
4739  DefaultCon->setImplicit();
4740  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4741
4742  // Note that we have declared this constructor.
4743  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4744
4745  if (Scope *S = getScopeForContext(ClassDecl))
4746    PushOnScopeChains(DefaultCon, S, false);
4747  ClassDecl->addDecl(DefaultCon);
4748
4749  return DefaultCon;
4750}
4751
4752void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4753                                            CXXConstructorDecl *Constructor) {
4754  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4755          !Constructor->isUsed(false)) &&
4756    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4757
4758  CXXRecordDecl *ClassDecl = Constructor->getParent();
4759  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4760
4761  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4762  DiagnosticErrorTrap Trap(Diags);
4763  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4764      Trap.hasErrorOccurred()) {
4765    Diag(CurrentLocation, diag::note_member_synthesized_at)
4766      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4767    Constructor->setInvalidDecl();
4768    return;
4769  }
4770
4771  SourceLocation Loc = Constructor->getLocation();
4772  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4773
4774  Constructor->setUsed();
4775  MarkVTableUsed(CurrentLocation, ClassDecl);
4776}
4777
4778void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4779  // We start with an initial pass over the base classes to collect those that
4780  // inherit constructors from. If there are none, we can forgo all further
4781  // processing.
4782  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4783  BasesVector BasesToInheritFrom;
4784  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4785                                          BaseE = ClassDecl->bases_end();
4786         BaseIt != BaseE; ++BaseIt) {
4787    if (BaseIt->getInheritConstructors()) {
4788      QualType Base = BaseIt->getType();
4789      if (Base->isDependentType()) {
4790        // If we inherit constructors from anything that is dependent, just
4791        // abort processing altogether. We'll get another chance for the
4792        // instantiations.
4793        return;
4794      }
4795      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4796    }
4797  }
4798  if (BasesToInheritFrom.empty())
4799    return;
4800
4801  // Now collect the constructors that we already have in the current class.
4802  // Those take precedence over inherited constructors.
4803  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4804  //   unless there is a user-declared constructor with the same signature in
4805  //   the class where the using-declaration appears.
4806  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4807  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4808                                    CtorE = ClassDecl->ctor_end();
4809       CtorIt != CtorE; ++CtorIt) {
4810    ExistingConstructors.insert(
4811        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4812  }
4813
4814  Scope *S = getScopeForContext(ClassDecl);
4815  DeclarationName CreatedCtorName =
4816      Context.DeclarationNames.getCXXConstructorName(
4817          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4818
4819  // Now comes the true work.
4820  // First, we keep a map from constructor types to the base that introduced
4821  // them. Needed for finding conflicting constructors. We also keep the
4822  // actually inserted declarations in there, for pretty diagnostics.
4823  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4824  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4825  ConstructorToSourceMap InheritedConstructors;
4826  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4827                             BaseE = BasesToInheritFrom.end();
4828       BaseIt != BaseE; ++BaseIt) {
4829    const RecordType *Base = *BaseIt;
4830    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4831    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4832    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4833                                      CtorE = BaseDecl->ctor_end();
4834         CtorIt != CtorE; ++CtorIt) {
4835      // Find the using declaration for inheriting this base's constructors.
4836      DeclarationName Name =
4837          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4838      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4839          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4840      SourceLocation UsingLoc = UD ? UD->getLocation() :
4841                                     ClassDecl->getLocation();
4842
4843      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4844      //   from the class X named in the using-declaration consists of actual
4845      //   constructors and notional constructors that result from the
4846      //   transformation of defaulted parameters as follows:
4847      //   - all non-template default constructors of X, and
4848      //   - for each non-template constructor of X that has at least one
4849      //     parameter with a default argument, the set of constructors that
4850      //     results from omitting any ellipsis parameter specification and
4851      //     successively omitting parameters with a default argument from the
4852      //     end of the parameter-type-list.
4853      CXXConstructorDecl *BaseCtor = *CtorIt;
4854      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4855      const FunctionProtoType *BaseCtorType =
4856          BaseCtor->getType()->getAs<FunctionProtoType>();
4857
4858      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4859                    maxParams = BaseCtor->getNumParams();
4860           params <= maxParams; ++params) {
4861        // Skip default constructors. They're never inherited.
4862        if (params == 0)
4863          continue;
4864        // Skip copy and move constructors for the same reason.
4865        if (CanBeCopyOrMove && params == 1)
4866          continue;
4867
4868        // Build up a function type for this particular constructor.
4869        // FIXME: The working paper does not consider that the exception spec
4870        // for the inheriting constructor might be larger than that of the
4871        // source. This code doesn't yet, either.
4872        const Type *NewCtorType;
4873        if (params == maxParams)
4874          NewCtorType = BaseCtorType;
4875        else {
4876          llvm::SmallVector<QualType, 16> Args;
4877          for (unsigned i = 0; i < params; ++i) {
4878            Args.push_back(BaseCtorType->getArgType(i));
4879          }
4880          FunctionProtoType::ExtProtoInfo ExtInfo =
4881              BaseCtorType->getExtProtoInfo();
4882          ExtInfo.Variadic = false;
4883          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4884                                                Args.data(), params, ExtInfo)
4885                       .getTypePtr();
4886        }
4887        const Type *CanonicalNewCtorType =
4888            Context.getCanonicalType(NewCtorType);
4889
4890        // Now that we have the type, first check if the class already has a
4891        // constructor with this signature.
4892        if (ExistingConstructors.count(CanonicalNewCtorType))
4893          continue;
4894
4895        // Then we check if we have already declared an inherited constructor
4896        // with this signature.
4897        std::pair<ConstructorToSourceMap::iterator, bool> result =
4898            InheritedConstructors.insert(std::make_pair(
4899                CanonicalNewCtorType,
4900                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
4901        if (!result.second) {
4902          // Already in the map. If it came from a different class, that's an
4903          // error. Not if it's from the same.
4904          CanQualType PreviousBase = result.first->second.first;
4905          if (CanonicalBase != PreviousBase) {
4906            const CXXConstructorDecl *PrevCtor = result.first->second.second;
4907            const CXXConstructorDecl *PrevBaseCtor =
4908                PrevCtor->getInheritedConstructor();
4909            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
4910
4911            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
4912            Diag(BaseCtor->getLocation(),
4913                 diag::note_using_decl_constructor_conflict_current_ctor);
4914            Diag(PrevBaseCtor->getLocation(),
4915                 diag::note_using_decl_constructor_conflict_previous_ctor);
4916            Diag(PrevCtor->getLocation(),
4917                 diag::note_using_decl_constructor_conflict_previous_using);
4918          }
4919          continue;
4920        }
4921
4922        // OK, we're there, now add the constructor.
4923        // C++0x [class.inhctor]p8: [...] that would be performed by a
4924        //   user-writtern inline constructor [...]
4925        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
4926        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
4927            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
4928            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
4929            /*ImplicitlyDeclared=*/true);
4930        NewCtor->setAccess(BaseCtor->getAccess());
4931
4932        // Build up the parameter decls and add them.
4933        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
4934        for (unsigned i = 0; i < params; ++i) {
4935          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
4936                                                   UsingLoc, UsingLoc,
4937                                                   /*IdentifierInfo=*/0,
4938                                                   BaseCtorType->getArgType(i),
4939                                                   /*TInfo=*/0, SC_None,
4940                                                   SC_None, /*DefaultArg=*/0));
4941        }
4942        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
4943        NewCtor->setInheritedConstructor(BaseCtor);
4944
4945        PushOnScopeChains(NewCtor, S, false);
4946        ClassDecl->addDecl(NewCtor);
4947        result.first->second.second = NewCtor;
4948      }
4949    }
4950  }
4951}
4952
4953CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4954  // C++ [class.dtor]p2:
4955  //   If a class has no user-declared destructor, a destructor is
4956  //   declared implicitly. An implicitly-declared destructor is an
4957  //   inline public member of its class.
4958
4959  // C++ [except.spec]p14:
4960  //   An implicitly declared special member function (Clause 12) shall have
4961  //   an exception-specification.
4962  ImplicitExceptionSpecification ExceptSpec(Context);
4963
4964  // Direct base-class destructors.
4965  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4966                                       BEnd = ClassDecl->bases_end();
4967       B != BEnd; ++B) {
4968    if (B->isVirtual()) // Handled below.
4969      continue;
4970
4971    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4972      ExceptSpec.CalledDecl(
4973                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4974  }
4975
4976  // Virtual base-class destructors.
4977  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4978                                       BEnd = ClassDecl->vbases_end();
4979       B != BEnd; ++B) {
4980    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4981      ExceptSpec.CalledDecl(
4982                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4983  }
4984
4985  // Field destructors.
4986  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4987                               FEnd = ClassDecl->field_end();
4988       F != FEnd; ++F) {
4989    if (const RecordType *RecordTy
4990        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4991      ExceptSpec.CalledDecl(
4992                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4993  }
4994
4995  // Create the actual destructor declaration.
4996  FunctionProtoType::ExtProtoInfo EPI;
4997  EPI.ExceptionSpecType = ExceptSpec.hasExceptionSpecification() ?
4998    (ExceptSpec.hasAnyExceptionSpecification() ? EST_DynamicAny : EST_Dynamic) :
4999    EST_None;
5000  EPI.NumExceptions = ExceptSpec.size();
5001  EPI.Exceptions = ExceptSpec.data();
5002  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5003
5004  CanQualType ClassType
5005    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5006  SourceLocation ClassLoc = ClassDecl->getLocation();
5007  DeclarationName Name
5008    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5009  DeclarationNameInfo NameInfo(Name, ClassLoc);
5010  CXXDestructorDecl *Destructor
5011    = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5012                                /*isInline=*/true,
5013                                /*isImplicitlyDeclared=*/true);
5014  Destructor->setAccess(AS_public);
5015  Destructor->setImplicit();
5016  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5017
5018  // Note that we have declared this destructor.
5019  ++ASTContext::NumImplicitDestructorsDeclared;
5020
5021  // Introduce this destructor into its scope.
5022  if (Scope *S = getScopeForContext(ClassDecl))
5023    PushOnScopeChains(Destructor, S, false);
5024  ClassDecl->addDecl(Destructor);
5025
5026  // This could be uniqued if it ever proves significant.
5027  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5028
5029  AddOverriddenMethods(ClassDecl, Destructor);
5030
5031  return Destructor;
5032}
5033
5034void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5035                                    CXXDestructorDecl *Destructor) {
5036  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
5037         "DefineImplicitDestructor - call it for implicit default dtor");
5038  CXXRecordDecl *ClassDecl = Destructor->getParent();
5039  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
5040
5041  if (Destructor->isInvalidDecl())
5042    return;
5043
5044  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
5045
5046  DiagnosticErrorTrap Trap(Diags);
5047  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5048                                         Destructor->getParent());
5049
5050  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
5051    Diag(CurrentLocation, diag::note_member_synthesized_at)
5052      << CXXDestructor << Context.getTagDeclType(ClassDecl);
5053
5054    Destructor->setInvalidDecl();
5055    return;
5056  }
5057
5058  SourceLocation Loc = Destructor->getLocation();
5059  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5060
5061  Destructor->setUsed();
5062  MarkVTableUsed(CurrentLocation, ClassDecl);
5063}
5064
5065/// \brief Builds a statement that copies the given entity from \p From to
5066/// \c To.
5067///
5068/// This routine is used to copy the members of a class with an
5069/// implicitly-declared copy assignment operator. When the entities being
5070/// copied are arrays, this routine builds for loops to copy them.
5071///
5072/// \param S The Sema object used for type-checking.
5073///
5074/// \param Loc The location where the implicit copy is being generated.
5075///
5076/// \param T The type of the expressions being copied. Both expressions must
5077/// have this type.
5078///
5079/// \param To The expression we are copying to.
5080///
5081/// \param From The expression we are copying from.
5082///
5083/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5084/// Otherwise, it's a non-static member subobject.
5085///
5086/// \param Depth Internal parameter recording the depth of the recursion.
5087///
5088/// \returns A statement or a loop that copies the expressions.
5089static StmtResult
5090BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5091                      Expr *To, Expr *From,
5092                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5093  // C++0x [class.copy]p30:
5094  //   Each subobject is assigned in the manner appropriate to its type:
5095  //
5096  //     - if the subobject is of class type, the copy assignment operator
5097  //       for the class is used (as if by explicit qualification; that is,
5098  //       ignoring any possible virtual overriding functions in more derived
5099  //       classes);
5100  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5101    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5102
5103    // Look for operator=.
5104    DeclarationName Name
5105      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5106    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5107    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5108
5109    // Filter out any result that isn't a copy-assignment operator.
5110    LookupResult::Filter F = OpLookup.makeFilter();
5111    while (F.hasNext()) {
5112      NamedDecl *D = F.next();
5113      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5114        if (Method->isCopyAssignmentOperator())
5115          continue;
5116
5117      F.erase();
5118    }
5119    F.done();
5120
5121    // Suppress the protected check (C++ [class.protected]) for each of the
5122    // assignment operators we found. This strange dance is required when
5123    // we're assigning via a base classes's copy-assignment operator. To
5124    // ensure that we're getting the right base class subobject (without
5125    // ambiguities), we need to cast "this" to that subobject type; to
5126    // ensure that we don't go through the virtual call mechanism, we need
5127    // to qualify the operator= name with the base class (see below). However,
5128    // this means that if the base class has a protected copy assignment
5129    // operator, the protected member access check will fail. So, we
5130    // rewrite "protected" access to "public" access in this case, since we
5131    // know by construction that we're calling from a derived class.
5132    if (CopyingBaseSubobject) {
5133      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5134           L != LEnd; ++L) {
5135        if (L.getAccess() == AS_protected)
5136          L.setAccess(AS_public);
5137      }
5138    }
5139
5140    // Create the nested-name-specifier that will be used to qualify the
5141    // reference to operator=; this is required to suppress the virtual
5142    // call mechanism.
5143    CXXScopeSpec SS;
5144    SS.MakeTrivial(S.Context,
5145                   NestedNameSpecifier::Create(S.Context, 0, false,
5146                                               T.getTypePtr()),
5147                   Loc);
5148
5149    // Create the reference to operator=.
5150    ExprResult OpEqualRef
5151      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5152                                   /*FirstQualifierInScope=*/0, OpLookup,
5153                                   /*TemplateArgs=*/0,
5154                                   /*SuppressQualifierCheck=*/true);
5155    if (OpEqualRef.isInvalid())
5156      return StmtError();
5157
5158    // Build the call to the assignment operator.
5159
5160    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5161                                                  OpEqualRef.takeAs<Expr>(),
5162                                                  Loc, &From, 1, Loc);
5163    if (Call.isInvalid())
5164      return StmtError();
5165
5166    return S.Owned(Call.takeAs<Stmt>());
5167  }
5168
5169  //     - if the subobject is of scalar type, the built-in assignment
5170  //       operator is used.
5171  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5172  if (!ArrayTy) {
5173    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5174    if (Assignment.isInvalid())
5175      return StmtError();
5176
5177    return S.Owned(Assignment.takeAs<Stmt>());
5178  }
5179
5180  //     - if the subobject is an array, each element is assigned, in the
5181  //       manner appropriate to the element type;
5182
5183  // Construct a loop over the array bounds, e.g.,
5184  //
5185  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5186  //
5187  // that will copy each of the array elements.
5188  QualType SizeType = S.Context.getSizeType();
5189
5190  // Create the iteration variable.
5191  IdentifierInfo *IterationVarName = 0;
5192  {
5193    llvm::SmallString<8> Str;
5194    llvm::raw_svector_ostream OS(Str);
5195    OS << "__i" << Depth;
5196    IterationVarName = &S.Context.Idents.get(OS.str());
5197  }
5198  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
5199                                          IterationVarName, SizeType,
5200                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5201                                          SC_None, SC_None);
5202
5203  // Initialize the iteration variable to zero.
5204  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5205  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5206
5207  // Create a reference to the iteration variable; we'll use this several
5208  // times throughout.
5209  Expr *IterationVarRef
5210    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5211  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5212
5213  // Create the DeclStmt that holds the iteration variable.
5214  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5215
5216  // Create the comparison against the array bound.
5217  llvm::APInt Upper
5218    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5219  Expr *Comparison
5220    = new (S.Context) BinaryOperator(IterationVarRef,
5221                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5222                                     BO_NE, S.Context.BoolTy,
5223                                     VK_RValue, OK_Ordinary, Loc);
5224
5225  // Create the pre-increment of the iteration variable.
5226  Expr *Increment
5227    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5228                                    VK_LValue, OK_Ordinary, Loc);
5229
5230  // Subscript the "from" and "to" expressions with the iteration variable.
5231  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5232                                                         IterationVarRef, Loc));
5233  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5234                                                       IterationVarRef, Loc));
5235
5236  // Build the copy for an individual element of the array.
5237  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5238                                          To, From, CopyingBaseSubobject,
5239                                          Depth + 1);
5240  if (Copy.isInvalid())
5241    return StmtError();
5242
5243  // Construct the loop that copies all elements of this array.
5244  return S.ActOnForStmt(Loc, Loc, InitStmt,
5245                        S.MakeFullExpr(Comparison),
5246                        0, S.MakeFullExpr(Increment),
5247                        Loc, Copy.take());
5248}
5249
5250/// \brief Determine whether the given class has a copy assignment operator
5251/// that accepts a const-qualified argument.
5252static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5253  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5254
5255  if (!Class->hasDeclaredCopyAssignment())
5256    S.DeclareImplicitCopyAssignment(Class);
5257
5258  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5259  DeclarationName OpName
5260    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5261
5262  DeclContext::lookup_const_iterator Op, OpEnd;
5263  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5264    // C++ [class.copy]p9:
5265    //   A user-declared copy assignment operator is a non-static non-template
5266    //   member function of class X with exactly one parameter of type X, X&,
5267    //   const X&, volatile X& or const volatile X&.
5268    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5269    if (!Method)
5270      continue;
5271
5272    if (Method->isStatic())
5273      continue;
5274    if (Method->getPrimaryTemplate())
5275      continue;
5276    const FunctionProtoType *FnType =
5277    Method->getType()->getAs<FunctionProtoType>();
5278    assert(FnType && "Overloaded operator has no prototype.");
5279    // Don't assert on this; an invalid decl might have been left in the AST.
5280    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5281      continue;
5282    bool AcceptsConst = true;
5283    QualType ArgType = FnType->getArgType(0);
5284    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5285      ArgType = Ref->getPointeeType();
5286      // Is it a non-const lvalue reference?
5287      if (!ArgType.isConstQualified())
5288        AcceptsConst = false;
5289    }
5290    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5291      continue;
5292
5293    // We have a single argument of type cv X or cv X&, i.e. we've found the
5294    // copy assignment operator. Return whether it accepts const arguments.
5295    return AcceptsConst;
5296  }
5297  assert(Class->isInvalidDecl() &&
5298         "No copy assignment operator declared in valid code.");
5299  return false;
5300}
5301
5302CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5303  // Note: The following rules are largely analoguous to the copy
5304  // constructor rules. Note that virtual bases are not taken into account
5305  // for determining the argument type of the operator. Note also that
5306  // operators taking an object instead of a reference are allowed.
5307
5308
5309  // C++ [class.copy]p10:
5310  //   If the class definition does not explicitly declare a copy
5311  //   assignment operator, one is declared implicitly.
5312  //   The implicitly-defined copy assignment operator for a class X
5313  //   will have the form
5314  //
5315  //       X& X::operator=(const X&)
5316  //
5317  //   if
5318  bool HasConstCopyAssignment = true;
5319
5320  //       -- each direct base class B of X has a copy assignment operator
5321  //          whose parameter is of type const B&, const volatile B& or B,
5322  //          and
5323  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5324                                       BaseEnd = ClassDecl->bases_end();
5325       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5326    assert(!Base->getType()->isDependentType() &&
5327           "Cannot generate implicit members for class with dependent bases.");
5328    const CXXRecordDecl *BaseClassDecl
5329      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5330    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5331  }
5332
5333  //       -- for all the nonstatic data members of X that are of a class
5334  //          type M (or array thereof), each such class type has a copy
5335  //          assignment operator whose parameter is of type const M&,
5336  //          const volatile M& or M.
5337  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5338                                  FieldEnd = ClassDecl->field_end();
5339       HasConstCopyAssignment && Field != FieldEnd;
5340       ++Field) {
5341    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5342    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5343      const CXXRecordDecl *FieldClassDecl
5344        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5345      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5346    }
5347  }
5348
5349  //   Otherwise, the implicitly declared copy assignment operator will
5350  //   have the form
5351  //
5352  //       X& X::operator=(X&)
5353  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5354  QualType RetType = Context.getLValueReferenceType(ArgType);
5355  if (HasConstCopyAssignment)
5356    ArgType = ArgType.withConst();
5357  ArgType = Context.getLValueReferenceType(ArgType);
5358
5359  // C++ [except.spec]p14:
5360  //   An implicitly declared special member function (Clause 12) shall have an
5361  //   exception-specification. [...]
5362  ImplicitExceptionSpecification ExceptSpec(Context);
5363  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5364                                       BaseEnd = ClassDecl->bases_end();
5365       Base != BaseEnd; ++Base) {
5366    CXXRecordDecl *BaseClassDecl
5367      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5368
5369    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5370      DeclareImplicitCopyAssignment(BaseClassDecl);
5371
5372    if (CXXMethodDecl *CopyAssign
5373           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5374      ExceptSpec.CalledDecl(CopyAssign);
5375  }
5376  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5377                                  FieldEnd = ClassDecl->field_end();
5378       Field != FieldEnd;
5379       ++Field) {
5380    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5381    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5382      CXXRecordDecl *FieldClassDecl
5383        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5384
5385      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5386        DeclareImplicitCopyAssignment(FieldClassDecl);
5387
5388      if (CXXMethodDecl *CopyAssign
5389            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5390        ExceptSpec.CalledDecl(CopyAssign);
5391    }
5392  }
5393
5394  //   An implicitly-declared copy assignment operator is an inline public
5395  //   member of its class.
5396  FunctionProtoType::ExtProtoInfo EPI;
5397  EPI.ExceptionSpecType = ExceptSpec.hasExceptionSpecification() ?
5398    (ExceptSpec.hasAnyExceptionSpecification() ? EST_DynamicAny : EST_Dynamic) :
5399    EST_None;
5400  EPI.NumExceptions = ExceptSpec.size();
5401  EPI.Exceptions = ExceptSpec.data();
5402  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5403  SourceLocation ClassLoc = ClassDecl->getLocation();
5404  DeclarationNameInfo NameInfo(Name, ClassLoc);
5405  CXXMethodDecl *CopyAssignment
5406    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5407                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5408                            /*TInfo=*/0, /*isStatic=*/false,
5409                            /*StorageClassAsWritten=*/SC_None,
5410                            /*isInline=*/true);
5411  CopyAssignment->setAccess(AS_public);
5412  CopyAssignment->setImplicit();
5413  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5414
5415  // Add the parameter to the operator.
5416  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5417                                               ClassLoc, ClassLoc, /*Id=*/0,
5418                                               ArgType, /*TInfo=*/0,
5419                                               SC_None,
5420                                               SC_None, 0);
5421  CopyAssignment->setParams(&FromParam, 1);
5422
5423  // Note that we have added this copy-assignment operator.
5424  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5425
5426  if (Scope *S = getScopeForContext(ClassDecl))
5427    PushOnScopeChains(CopyAssignment, S, false);
5428  ClassDecl->addDecl(CopyAssignment);
5429
5430  AddOverriddenMethods(ClassDecl, CopyAssignment);
5431  return CopyAssignment;
5432}
5433
5434void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5435                                        CXXMethodDecl *CopyAssignOperator) {
5436  assert((CopyAssignOperator->isImplicit() &&
5437          CopyAssignOperator->isOverloadedOperator() &&
5438          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5439          !CopyAssignOperator->isUsed(false)) &&
5440         "DefineImplicitCopyAssignment called for wrong function");
5441
5442  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5443
5444  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5445    CopyAssignOperator->setInvalidDecl();
5446    return;
5447  }
5448
5449  CopyAssignOperator->setUsed();
5450
5451  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5452  DiagnosticErrorTrap Trap(Diags);
5453
5454  // C++0x [class.copy]p30:
5455  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5456  //   for a non-union class X performs memberwise copy assignment of its
5457  //   subobjects. The direct base classes of X are assigned first, in the
5458  //   order of their declaration in the base-specifier-list, and then the
5459  //   immediate non-static data members of X are assigned, in the order in
5460  //   which they were declared in the class definition.
5461
5462  // The statements that form the synthesized function body.
5463  ASTOwningVector<Stmt*> Statements(*this);
5464
5465  // The parameter for the "other" object, which we are copying from.
5466  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5467  Qualifiers OtherQuals = Other->getType().getQualifiers();
5468  QualType OtherRefType = Other->getType();
5469  if (const LValueReferenceType *OtherRef
5470                                = OtherRefType->getAs<LValueReferenceType>()) {
5471    OtherRefType = OtherRef->getPointeeType();
5472    OtherQuals = OtherRefType.getQualifiers();
5473  }
5474
5475  // Our location for everything implicitly-generated.
5476  SourceLocation Loc = CopyAssignOperator->getLocation();
5477
5478  // Construct a reference to the "other" object. We'll be using this
5479  // throughout the generated ASTs.
5480  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5481  assert(OtherRef && "Reference to parameter cannot fail!");
5482
5483  // Construct the "this" pointer. We'll be using this throughout the generated
5484  // ASTs.
5485  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5486  assert(This && "Reference to this cannot fail!");
5487
5488  // Assign base classes.
5489  bool Invalid = false;
5490  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5491       E = ClassDecl->bases_end(); Base != E; ++Base) {
5492    // Form the assignment:
5493    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5494    QualType BaseType = Base->getType().getUnqualifiedType();
5495    if (!BaseType->isRecordType()) {
5496      Invalid = true;
5497      continue;
5498    }
5499
5500    CXXCastPath BasePath;
5501    BasePath.push_back(Base);
5502
5503    // Construct the "from" expression, which is an implicit cast to the
5504    // appropriately-qualified base type.
5505    Expr *From = OtherRef;
5506    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5507                      CK_UncheckedDerivedToBase,
5508                      VK_LValue, &BasePath);
5509
5510    // Dereference "this".
5511    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5512
5513    // Implicitly cast "this" to the appropriately-qualified base type.
5514    Expr *ToE = To.takeAs<Expr>();
5515    ImpCastExprToType(ToE,
5516                      Context.getCVRQualifiedType(BaseType,
5517                                      CopyAssignOperator->getTypeQualifiers()),
5518                      CK_UncheckedDerivedToBase,
5519                      VK_LValue, &BasePath);
5520    To = Owned(ToE);
5521
5522    // Build the copy.
5523    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5524                                            To.get(), From,
5525                                            /*CopyingBaseSubobject=*/true);
5526    if (Copy.isInvalid()) {
5527      Diag(CurrentLocation, diag::note_member_synthesized_at)
5528        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5529      CopyAssignOperator->setInvalidDecl();
5530      return;
5531    }
5532
5533    // Success! Record the copy.
5534    Statements.push_back(Copy.takeAs<Expr>());
5535  }
5536
5537  // \brief Reference to the __builtin_memcpy function.
5538  Expr *BuiltinMemCpyRef = 0;
5539  // \brief Reference to the __builtin_objc_memmove_collectable function.
5540  Expr *CollectableMemCpyRef = 0;
5541
5542  // Assign non-static members.
5543  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5544                                  FieldEnd = ClassDecl->field_end();
5545       Field != FieldEnd; ++Field) {
5546    // Check for members of reference type; we can't copy those.
5547    if (Field->getType()->isReferenceType()) {
5548      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5549        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5550      Diag(Field->getLocation(), diag::note_declared_at);
5551      Diag(CurrentLocation, diag::note_member_synthesized_at)
5552        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5553      Invalid = true;
5554      continue;
5555    }
5556
5557    // Check for members of const-qualified, non-class type.
5558    QualType BaseType = Context.getBaseElementType(Field->getType());
5559    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5560      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5561        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5562      Diag(Field->getLocation(), diag::note_declared_at);
5563      Diag(CurrentLocation, diag::note_member_synthesized_at)
5564        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5565      Invalid = true;
5566      continue;
5567    }
5568
5569    QualType FieldType = Field->getType().getNonReferenceType();
5570    if (FieldType->isIncompleteArrayType()) {
5571      assert(ClassDecl->hasFlexibleArrayMember() &&
5572             "Incomplete array type is not valid");
5573      continue;
5574    }
5575
5576    // Build references to the field in the object we're copying from and to.
5577    CXXScopeSpec SS; // Intentionally empty
5578    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5579                              LookupMemberName);
5580    MemberLookup.addDecl(*Field);
5581    MemberLookup.resolveKind();
5582    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5583                                               Loc, /*IsArrow=*/false,
5584                                               SS, 0, MemberLookup, 0);
5585    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5586                                             Loc, /*IsArrow=*/true,
5587                                             SS, 0, MemberLookup, 0);
5588    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5589    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5590
5591    // If the field should be copied with __builtin_memcpy rather than via
5592    // explicit assignments, do so. This optimization only applies for arrays
5593    // of scalars and arrays of class type with trivial copy-assignment
5594    // operators.
5595    if (FieldType->isArrayType() &&
5596        (!BaseType->isRecordType() ||
5597         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5598           ->hasTrivialCopyAssignment())) {
5599      // Compute the size of the memory buffer to be copied.
5600      QualType SizeType = Context.getSizeType();
5601      llvm::APInt Size(Context.getTypeSize(SizeType),
5602                       Context.getTypeSizeInChars(BaseType).getQuantity());
5603      for (const ConstantArrayType *Array
5604              = Context.getAsConstantArrayType(FieldType);
5605           Array;
5606           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5607        llvm::APInt ArraySize
5608          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5609        Size *= ArraySize;
5610      }
5611
5612      // Take the address of the field references for "from" and "to".
5613      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5614      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5615
5616      bool NeedsCollectableMemCpy =
5617          (BaseType->isRecordType() &&
5618           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5619
5620      if (NeedsCollectableMemCpy) {
5621        if (!CollectableMemCpyRef) {
5622          // Create a reference to the __builtin_objc_memmove_collectable function.
5623          LookupResult R(*this,
5624                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5625                         Loc, LookupOrdinaryName);
5626          LookupName(R, TUScope, true);
5627
5628          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5629          if (!CollectableMemCpy) {
5630            // Something went horribly wrong earlier, and we will have
5631            // complained about it.
5632            Invalid = true;
5633            continue;
5634          }
5635
5636          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5637                                                  CollectableMemCpy->getType(),
5638                                                  VK_LValue, Loc, 0).take();
5639          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5640        }
5641      }
5642      // Create a reference to the __builtin_memcpy builtin function.
5643      else if (!BuiltinMemCpyRef) {
5644        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5645                       LookupOrdinaryName);
5646        LookupName(R, TUScope, true);
5647
5648        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5649        if (!BuiltinMemCpy) {
5650          // Something went horribly wrong earlier, and we will have complained
5651          // about it.
5652          Invalid = true;
5653          continue;
5654        }
5655
5656        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5657                                            BuiltinMemCpy->getType(),
5658                                            VK_LValue, Loc, 0).take();
5659        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5660      }
5661
5662      ASTOwningVector<Expr*> CallArgs(*this);
5663      CallArgs.push_back(To.takeAs<Expr>());
5664      CallArgs.push_back(From.takeAs<Expr>());
5665      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5666      ExprResult Call = ExprError();
5667      if (NeedsCollectableMemCpy)
5668        Call = ActOnCallExpr(/*Scope=*/0,
5669                             CollectableMemCpyRef,
5670                             Loc, move_arg(CallArgs),
5671                             Loc);
5672      else
5673        Call = ActOnCallExpr(/*Scope=*/0,
5674                             BuiltinMemCpyRef,
5675                             Loc, move_arg(CallArgs),
5676                             Loc);
5677
5678      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5679      Statements.push_back(Call.takeAs<Expr>());
5680      continue;
5681    }
5682
5683    // Build the copy of this field.
5684    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5685                                                  To.get(), From.get(),
5686                                              /*CopyingBaseSubobject=*/false);
5687    if (Copy.isInvalid()) {
5688      Diag(CurrentLocation, diag::note_member_synthesized_at)
5689        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5690      CopyAssignOperator->setInvalidDecl();
5691      return;
5692    }
5693
5694    // Success! Record the copy.
5695    Statements.push_back(Copy.takeAs<Stmt>());
5696  }
5697
5698  if (!Invalid) {
5699    // Add a "return *this;"
5700    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5701
5702    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5703    if (Return.isInvalid())
5704      Invalid = true;
5705    else {
5706      Statements.push_back(Return.takeAs<Stmt>());
5707
5708      if (Trap.hasErrorOccurred()) {
5709        Diag(CurrentLocation, diag::note_member_synthesized_at)
5710          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5711        Invalid = true;
5712      }
5713    }
5714  }
5715
5716  if (Invalid) {
5717    CopyAssignOperator->setInvalidDecl();
5718    return;
5719  }
5720
5721  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5722                                            /*isStmtExpr=*/false);
5723  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5724  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5725}
5726
5727CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5728                                                    CXXRecordDecl *ClassDecl) {
5729  // C++ [class.copy]p4:
5730  //   If the class definition does not explicitly declare a copy
5731  //   constructor, one is declared implicitly.
5732
5733  // C++ [class.copy]p5:
5734  //   The implicitly-declared copy constructor for a class X will
5735  //   have the form
5736  //
5737  //       X::X(const X&)
5738  //
5739  //   if
5740  bool HasConstCopyConstructor = true;
5741
5742  //     -- each direct or virtual base class B of X has a copy
5743  //        constructor whose first parameter is of type const B& or
5744  //        const volatile B&, and
5745  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5746                                       BaseEnd = ClassDecl->bases_end();
5747       HasConstCopyConstructor && Base != BaseEnd;
5748       ++Base) {
5749    // Virtual bases are handled below.
5750    if (Base->isVirtual())
5751      continue;
5752
5753    CXXRecordDecl *BaseClassDecl
5754      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5755    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5756      DeclareImplicitCopyConstructor(BaseClassDecl);
5757
5758    HasConstCopyConstructor
5759      = BaseClassDecl->hasConstCopyConstructor(Context);
5760  }
5761
5762  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5763                                       BaseEnd = ClassDecl->vbases_end();
5764       HasConstCopyConstructor && Base != BaseEnd;
5765       ++Base) {
5766    CXXRecordDecl *BaseClassDecl
5767      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5768    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5769      DeclareImplicitCopyConstructor(BaseClassDecl);
5770
5771    HasConstCopyConstructor
5772      = BaseClassDecl->hasConstCopyConstructor(Context);
5773  }
5774
5775  //     -- for all the nonstatic data members of X that are of a
5776  //        class type M (or array thereof), each such class type
5777  //        has a copy constructor whose first parameter is of type
5778  //        const M& or const volatile M&.
5779  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5780                                  FieldEnd = ClassDecl->field_end();
5781       HasConstCopyConstructor && Field != FieldEnd;
5782       ++Field) {
5783    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5784    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5785      CXXRecordDecl *FieldClassDecl
5786        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5787      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5788        DeclareImplicitCopyConstructor(FieldClassDecl);
5789
5790      HasConstCopyConstructor
5791        = FieldClassDecl->hasConstCopyConstructor(Context);
5792    }
5793  }
5794
5795  //   Otherwise, the implicitly declared copy constructor will have
5796  //   the form
5797  //
5798  //       X::X(X&)
5799  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5800  QualType ArgType = ClassType;
5801  if (HasConstCopyConstructor)
5802    ArgType = ArgType.withConst();
5803  ArgType = Context.getLValueReferenceType(ArgType);
5804
5805  // C++ [except.spec]p14:
5806  //   An implicitly declared special member function (Clause 12) shall have an
5807  //   exception-specification. [...]
5808  ImplicitExceptionSpecification ExceptSpec(Context);
5809  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5810  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5811                                       BaseEnd = ClassDecl->bases_end();
5812       Base != BaseEnd;
5813       ++Base) {
5814    // Virtual bases are handled below.
5815    if (Base->isVirtual())
5816      continue;
5817
5818    CXXRecordDecl *BaseClassDecl
5819      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5820    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5821      DeclareImplicitCopyConstructor(BaseClassDecl);
5822
5823    if (CXXConstructorDecl *CopyConstructor
5824                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5825      ExceptSpec.CalledDecl(CopyConstructor);
5826  }
5827  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5828                                       BaseEnd = ClassDecl->vbases_end();
5829       Base != BaseEnd;
5830       ++Base) {
5831    CXXRecordDecl *BaseClassDecl
5832      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5833    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5834      DeclareImplicitCopyConstructor(BaseClassDecl);
5835
5836    if (CXXConstructorDecl *CopyConstructor
5837                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5838      ExceptSpec.CalledDecl(CopyConstructor);
5839  }
5840  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5841                                  FieldEnd = ClassDecl->field_end();
5842       Field != FieldEnd;
5843       ++Field) {
5844    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5845    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5846      CXXRecordDecl *FieldClassDecl
5847        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5848      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5849        DeclareImplicitCopyConstructor(FieldClassDecl);
5850
5851      if (CXXConstructorDecl *CopyConstructor
5852                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5853        ExceptSpec.CalledDecl(CopyConstructor);
5854    }
5855  }
5856
5857  //   An implicitly-declared copy constructor is an inline public
5858  //   member of its class.
5859  FunctionProtoType::ExtProtoInfo EPI;
5860  EPI.ExceptionSpecType = ExceptSpec.hasExceptionSpecification() ?
5861    (ExceptSpec.hasAnyExceptionSpecification() ? EST_DynamicAny : EST_Dynamic) :
5862    EST_None;
5863  EPI.NumExceptions = ExceptSpec.size();
5864  EPI.Exceptions = ExceptSpec.data();
5865  DeclarationName Name
5866    = Context.DeclarationNames.getCXXConstructorName(
5867                                           Context.getCanonicalType(ClassType));
5868  SourceLocation ClassLoc = ClassDecl->getLocation();
5869  DeclarationNameInfo NameInfo(Name, ClassLoc);
5870  CXXConstructorDecl *CopyConstructor
5871    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5872                                 Context.getFunctionType(Context.VoidTy,
5873                                                         &ArgType, 1, EPI),
5874                                 /*TInfo=*/0,
5875                                 /*isExplicit=*/false,
5876                                 /*isInline=*/true,
5877                                 /*isImplicitlyDeclared=*/true);
5878  CopyConstructor->setAccess(AS_public);
5879  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5880
5881  // Note that we have declared this constructor.
5882  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5883
5884  // Add the parameter to the constructor.
5885  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5886                                               ClassLoc, ClassLoc,
5887                                               /*IdentifierInfo=*/0,
5888                                               ArgType, /*TInfo=*/0,
5889                                               SC_None,
5890                                               SC_None, 0);
5891  CopyConstructor->setParams(&FromParam, 1);
5892  if (Scope *S = getScopeForContext(ClassDecl))
5893    PushOnScopeChains(CopyConstructor, S, false);
5894  ClassDecl->addDecl(CopyConstructor);
5895
5896  return CopyConstructor;
5897}
5898
5899void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5900                                   CXXConstructorDecl *CopyConstructor,
5901                                   unsigned TypeQuals) {
5902  assert((CopyConstructor->isImplicit() &&
5903          CopyConstructor->isCopyConstructor(TypeQuals) &&
5904          !CopyConstructor->isUsed(false)) &&
5905         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5906
5907  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5908  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5909
5910  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5911  DiagnosticErrorTrap Trap(Diags);
5912
5913  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5914      Trap.hasErrorOccurred()) {
5915    Diag(CurrentLocation, diag::note_member_synthesized_at)
5916      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5917    CopyConstructor->setInvalidDecl();
5918  }  else {
5919    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5920                                               CopyConstructor->getLocation(),
5921                                               MultiStmtArg(*this, 0, 0),
5922                                               /*isStmtExpr=*/false)
5923                                                              .takeAs<Stmt>());
5924  }
5925
5926  CopyConstructor->setUsed();
5927}
5928
5929ExprResult
5930Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5931                            CXXConstructorDecl *Constructor,
5932                            MultiExprArg ExprArgs,
5933                            bool RequiresZeroInit,
5934                            unsigned ConstructKind,
5935                            SourceRange ParenRange) {
5936  bool Elidable = false;
5937
5938  // C++0x [class.copy]p34:
5939  //   When certain criteria are met, an implementation is allowed to
5940  //   omit the copy/move construction of a class object, even if the
5941  //   copy/move constructor and/or destructor for the object have
5942  //   side effects. [...]
5943  //     - when a temporary class object that has not been bound to a
5944  //       reference (12.2) would be copied/moved to a class object
5945  //       with the same cv-unqualified type, the copy/move operation
5946  //       can be omitted by constructing the temporary object
5947  //       directly into the target of the omitted copy/move
5948  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5949      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
5950    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5951    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5952  }
5953
5954  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5955                               Elidable, move(ExprArgs), RequiresZeroInit,
5956                               ConstructKind, ParenRange);
5957}
5958
5959/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5960/// including handling of its default argument expressions.
5961ExprResult
5962Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5963                            CXXConstructorDecl *Constructor, bool Elidable,
5964                            MultiExprArg ExprArgs,
5965                            bool RequiresZeroInit,
5966                            unsigned ConstructKind,
5967                            SourceRange ParenRange) {
5968  unsigned NumExprs = ExprArgs.size();
5969  Expr **Exprs = (Expr **)ExprArgs.release();
5970
5971  MarkDeclarationReferenced(ConstructLoc, Constructor);
5972  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5973                                        Constructor, Elidable, Exprs, NumExprs,
5974                                        RequiresZeroInit,
5975              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5976                                        ParenRange));
5977}
5978
5979bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5980                                        CXXConstructorDecl *Constructor,
5981                                        MultiExprArg Exprs) {
5982  // FIXME: Provide the correct paren SourceRange when available.
5983  ExprResult TempResult =
5984    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5985                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5986                          SourceRange());
5987  if (TempResult.isInvalid())
5988    return true;
5989
5990  Expr *Temp = TempResult.takeAs<Expr>();
5991  CheckImplicitConversions(Temp, VD->getLocation());
5992  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5993  Temp = MaybeCreateExprWithCleanups(Temp);
5994  VD->setInit(Temp);
5995
5996  return false;
5997}
5998
5999void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6000  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6001  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
6002      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
6003    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6004    MarkDeclarationReferenced(VD->getLocation(), Destructor);
6005    CheckDestructorAccess(VD->getLocation(), Destructor,
6006                          PDiag(diag::err_access_dtor_var)
6007                            << VD->getDeclName()
6008                            << VD->getType());
6009
6010    // TODO: this should be re-enabled for static locals by !CXAAtExit
6011    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
6012      Diag(VD->getLocation(), diag::warn_global_destructor);
6013  }
6014}
6015
6016/// AddCXXDirectInitializerToDecl - This action is called immediately after
6017/// ActOnDeclarator, when a C++ direct initializer is present.
6018/// e.g: "int x(1);"
6019void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
6020                                         SourceLocation LParenLoc,
6021                                         MultiExprArg Exprs,
6022                                         SourceLocation RParenLoc,
6023                                         bool TypeMayContainAuto) {
6024  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
6025
6026  // If there is no declaration, there was an error parsing it.  Just ignore
6027  // the initializer.
6028  if (RealDecl == 0)
6029    return;
6030
6031  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6032  if (!VDecl) {
6033    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6034    RealDecl->setInvalidDecl();
6035    return;
6036  }
6037
6038  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6039  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6040    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
6041    if (Exprs.size() > 1) {
6042      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
6043           diag::err_auto_var_init_multiple_expressions)
6044        << VDecl->getDeclName() << VDecl->getType()
6045        << VDecl->getSourceRange();
6046      RealDecl->setInvalidDecl();
6047      return;
6048    }
6049
6050    Expr *Init = Exprs.get()[0];
6051    QualType DeducedType;
6052    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
6053      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
6054        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
6055        << Init->getSourceRange();
6056      RealDecl->setInvalidDecl();
6057      return;
6058    }
6059    VDecl->setType(DeducedType);
6060
6061    // If this is a redeclaration, check that the type we just deduced matches
6062    // the previously declared type.
6063    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6064      MergeVarDeclTypes(VDecl, Old);
6065  }
6066
6067  // We will represent direct-initialization similarly to copy-initialization:
6068  //    int x(1);  -as-> int x = 1;
6069  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6070  //
6071  // Clients that want to distinguish between the two forms, can check for
6072  // direct initializer using VarDecl::hasCXXDirectInitializer().
6073  // A major benefit is that clients that don't particularly care about which
6074  // exactly form was it (like the CodeGen) can handle both cases without
6075  // special case code.
6076
6077  // C++ 8.5p11:
6078  // The form of initialization (using parentheses or '=') is generally
6079  // insignificant, but does matter when the entity being initialized has a
6080  // class type.
6081
6082  if (!VDecl->getType()->isDependentType() &&
6083      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6084                          diag::err_typecheck_decl_incomplete_type)) {
6085    VDecl->setInvalidDecl();
6086    return;
6087  }
6088
6089  // The variable can not have an abstract class type.
6090  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6091                             diag::err_abstract_type_in_decl,
6092                             AbstractVariableType))
6093    VDecl->setInvalidDecl();
6094
6095  const VarDecl *Def;
6096  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6097    Diag(VDecl->getLocation(), diag::err_redefinition)
6098    << VDecl->getDeclName();
6099    Diag(Def->getLocation(), diag::note_previous_definition);
6100    VDecl->setInvalidDecl();
6101    return;
6102  }
6103
6104  // C++ [class.static.data]p4
6105  //   If a static data member is of const integral or const
6106  //   enumeration type, its declaration in the class definition can
6107  //   specify a constant-initializer which shall be an integral
6108  //   constant expression (5.19). In that case, the member can appear
6109  //   in integral constant expressions. The member shall still be
6110  //   defined in a namespace scope if it is used in the program and the
6111  //   namespace scope definition shall not contain an initializer.
6112  //
6113  // We already performed a redefinition check above, but for static
6114  // data members we also need to check whether there was an in-class
6115  // declaration with an initializer.
6116  const VarDecl* PrevInit = 0;
6117  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6118    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6119    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6120    return;
6121  }
6122
6123  bool IsDependent = false;
6124  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6125    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6126      VDecl->setInvalidDecl();
6127      return;
6128    }
6129
6130    if (Exprs.get()[I]->isTypeDependent())
6131      IsDependent = true;
6132  }
6133
6134  // If either the declaration has a dependent type or if any of the
6135  // expressions is type-dependent, we represent the initialization
6136  // via a ParenListExpr for later use during template instantiation.
6137  if (VDecl->getType()->isDependentType() || IsDependent) {
6138    // Let clients know that initialization was done with a direct initializer.
6139    VDecl->setCXXDirectInitializer(true);
6140
6141    // Store the initialization expressions as a ParenListExpr.
6142    unsigned NumExprs = Exprs.size();
6143    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6144                                               (Expr **)Exprs.release(),
6145                                               NumExprs, RParenLoc));
6146    return;
6147  }
6148
6149  // Capture the variable that is being initialized and the style of
6150  // initialization.
6151  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6152
6153  // FIXME: Poor source location information.
6154  InitializationKind Kind
6155    = InitializationKind::CreateDirect(VDecl->getLocation(),
6156                                       LParenLoc, RParenLoc);
6157
6158  InitializationSequence InitSeq(*this, Entity, Kind,
6159                                 Exprs.get(), Exprs.size());
6160  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6161  if (Result.isInvalid()) {
6162    VDecl->setInvalidDecl();
6163    return;
6164  }
6165
6166  CheckImplicitConversions(Result.get(), LParenLoc);
6167
6168  Result = MaybeCreateExprWithCleanups(Result);
6169  VDecl->setInit(Result.takeAs<Expr>());
6170  VDecl->setCXXDirectInitializer(true);
6171
6172  CheckCompleteVariableDeclaration(VDecl);
6173}
6174
6175/// \brief Given a constructor and the set of arguments provided for the
6176/// constructor, convert the arguments and add any required default arguments
6177/// to form a proper call to this constructor.
6178///
6179/// \returns true if an error occurred, false otherwise.
6180bool
6181Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6182                              MultiExprArg ArgsPtr,
6183                              SourceLocation Loc,
6184                              ASTOwningVector<Expr*> &ConvertedArgs) {
6185  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6186  unsigned NumArgs = ArgsPtr.size();
6187  Expr **Args = (Expr **)ArgsPtr.get();
6188
6189  const FunctionProtoType *Proto
6190    = Constructor->getType()->getAs<FunctionProtoType>();
6191  assert(Proto && "Constructor without a prototype?");
6192  unsigned NumArgsInProto = Proto->getNumArgs();
6193
6194  // If too few arguments are available, we'll fill in the rest with defaults.
6195  if (NumArgs < NumArgsInProto)
6196    ConvertedArgs.reserve(NumArgsInProto);
6197  else
6198    ConvertedArgs.reserve(NumArgs);
6199
6200  VariadicCallType CallType =
6201    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6202  llvm::SmallVector<Expr *, 8> AllArgs;
6203  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6204                                        Proto, 0, Args, NumArgs, AllArgs,
6205                                        CallType);
6206  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6207    ConvertedArgs.push_back(AllArgs[i]);
6208  return Invalid;
6209}
6210
6211static inline bool
6212CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6213                                       const FunctionDecl *FnDecl) {
6214  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6215  if (isa<NamespaceDecl>(DC)) {
6216    return SemaRef.Diag(FnDecl->getLocation(),
6217                        diag::err_operator_new_delete_declared_in_namespace)
6218      << FnDecl->getDeclName();
6219  }
6220
6221  if (isa<TranslationUnitDecl>(DC) &&
6222      FnDecl->getStorageClass() == SC_Static) {
6223    return SemaRef.Diag(FnDecl->getLocation(),
6224                        diag::err_operator_new_delete_declared_static)
6225      << FnDecl->getDeclName();
6226  }
6227
6228  return false;
6229}
6230
6231static inline bool
6232CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6233                            CanQualType ExpectedResultType,
6234                            CanQualType ExpectedFirstParamType,
6235                            unsigned DependentParamTypeDiag,
6236                            unsigned InvalidParamTypeDiag) {
6237  QualType ResultType =
6238    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6239
6240  // Check that the result type is not dependent.
6241  if (ResultType->isDependentType())
6242    return SemaRef.Diag(FnDecl->getLocation(),
6243                        diag::err_operator_new_delete_dependent_result_type)
6244    << FnDecl->getDeclName() << ExpectedResultType;
6245
6246  // Check that the result type is what we expect.
6247  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6248    return SemaRef.Diag(FnDecl->getLocation(),
6249                        diag::err_operator_new_delete_invalid_result_type)
6250    << FnDecl->getDeclName() << ExpectedResultType;
6251
6252  // A function template must have at least 2 parameters.
6253  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6254    return SemaRef.Diag(FnDecl->getLocation(),
6255                      diag::err_operator_new_delete_template_too_few_parameters)
6256        << FnDecl->getDeclName();
6257
6258  // The function decl must have at least 1 parameter.
6259  if (FnDecl->getNumParams() == 0)
6260    return SemaRef.Diag(FnDecl->getLocation(),
6261                        diag::err_operator_new_delete_too_few_parameters)
6262      << FnDecl->getDeclName();
6263
6264  // Check the the first parameter type is not dependent.
6265  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6266  if (FirstParamType->isDependentType())
6267    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6268      << FnDecl->getDeclName() << ExpectedFirstParamType;
6269
6270  // Check that the first parameter type is what we expect.
6271  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6272      ExpectedFirstParamType)
6273    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6274    << FnDecl->getDeclName() << ExpectedFirstParamType;
6275
6276  return false;
6277}
6278
6279static bool
6280CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6281  // C++ [basic.stc.dynamic.allocation]p1:
6282  //   A program is ill-formed if an allocation function is declared in a
6283  //   namespace scope other than global scope or declared static in global
6284  //   scope.
6285  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6286    return true;
6287
6288  CanQualType SizeTy =
6289    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6290
6291  // C++ [basic.stc.dynamic.allocation]p1:
6292  //  The return type shall be void*. The first parameter shall have type
6293  //  std::size_t.
6294  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6295                                  SizeTy,
6296                                  diag::err_operator_new_dependent_param_type,
6297                                  diag::err_operator_new_param_type))
6298    return true;
6299
6300  // C++ [basic.stc.dynamic.allocation]p1:
6301  //  The first parameter shall not have an associated default argument.
6302  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6303    return SemaRef.Diag(FnDecl->getLocation(),
6304                        diag::err_operator_new_default_arg)
6305      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6306
6307  return false;
6308}
6309
6310static bool
6311CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6312  // C++ [basic.stc.dynamic.deallocation]p1:
6313  //   A program is ill-formed if deallocation functions are declared in a
6314  //   namespace scope other than global scope or declared static in global
6315  //   scope.
6316  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6317    return true;
6318
6319  // C++ [basic.stc.dynamic.deallocation]p2:
6320  //   Each deallocation function shall return void and its first parameter
6321  //   shall be void*.
6322  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6323                                  SemaRef.Context.VoidPtrTy,
6324                                 diag::err_operator_delete_dependent_param_type,
6325                                 diag::err_operator_delete_param_type))
6326    return true;
6327
6328  return false;
6329}
6330
6331/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6332/// of this overloaded operator is well-formed. If so, returns false;
6333/// otherwise, emits appropriate diagnostics and returns true.
6334bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6335  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6336         "Expected an overloaded operator declaration");
6337
6338  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6339
6340  // C++ [over.oper]p5:
6341  //   The allocation and deallocation functions, operator new,
6342  //   operator new[], operator delete and operator delete[], are
6343  //   described completely in 3.7.3. The attributes and restrictions
6344  //   found in the rest of this subclause do not apply to them unless
6345  //   explicitly stated in 3.7.3.
6346  if (Op == OO_Delete || Op == OO_Array_Delete)
6347    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6348
6349  if (Op == OO_New || Op == OO_Array_New)
6350    return CheckOperatorNewDeclaration(*this, FnDecl);
6351
6352  // C++ [over.oper]p6:
6353  //   An operator function shall either be a non-static member
6354  //   function or be a non-member function and have at least one
6355  //   parameter whose type is a class, a reference to a class, an
6356  //   enumeration, or a reference to an enumeration.
6357  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6358    if (MethodDecl->isStatic())
6359      return Diag(FnDecl->getLocation(),
6360                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6361  } else {
6362    bool ClassOrEnumParam = false;
6363    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6364                                   ParamEnd = FnDecl->param_end();
6365         Param != ParamEnd; ++Param) {
6366      QualType ParamType = (*Param)->getType().getNonReferenceType();
6367      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6368          ParamType->isEnumeralType()) {
6369        ClassOrEnumParam = true;
6370        break;
6371      }
6372    }
6373
6374    if (!ClassOrEnumParam)
6375      return Diag(FnDecl->getLocation(),
6376                  diag::err_operator_overload_needs_class_or_enum)
6377        << FnDecl->getDeclName();
6378  }
6379
6380  // C++ [over.oper]p8:
6381  //   An operator function cannot have default arguments (8.3.6),
6382  //   except where explicitly stated below.
6383  //
6384  // Only the function-call operator allows default arguments
6385  // (C++ [over.call]p1).
6386  if (Op != OO_Call) {
6387    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6388         Param != FnDecl->param_end(); ++Param) {
6389      if ((*Param)->hasDefaultArg())
6390        return Diag((*Param)->getLocation(),
6391                    diag::err_operator_overload_default_arg)
6392          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6393    }
6394  }
6395
6396  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6397    { false, false, false }
6398#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6399    , { Unary, Binary, MemberOnly }
6400#include "clang/Basic/OperatorKinds.def"
6401  };
6402
6403  bool CanBeUnaryOperator = OperatorUses[Op][0];
6404  bool CanBeBinaryOperator = OperatorUses[Op][1];
6405  bool MustBeMemberOperator = OperatorUses[Op][2];
6406
6407  // C++ [over.oper]p8:
6408  //   [...] Operator functions cannot have more or fewer parameters
6409  //   than the number required for the corresponding operator, as
6410  //   described in the rest of this subclause.
6411  unsigned NumParams = FnDecl->getNumParams()
6412                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6413  if (Op != OO_Call &&
6414      ((NumParams == 1 && !CanBeUnaryOperator) ||
6415       (NumParams == 2 && !CanBeBinaryOperator) ||
6416       (NumParams < 1) || (NumParams > 2))) {
6417    // We have the wrong number of parameters.
6418    unsigned ErrorKind;
6419    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6420      ErrorKind = 2;  // 2 -> unary or binary.
6421    } else if (CanBeUnaryOperator) {
6422      ErrorKind = 0;  // 0 -> unary
6423    } else {
6424      assert(CanBeBinaryOperator &&
6425             "All non-call overloaded operators are unary or binary!");
6426      ErrorKind = 1;  // 1 -> binary
6427    }
6428
6429    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6430      << FnDecl->getDeclName() << NumParams << ErrorKind;
6431  }
6432
6433  // Overloaded operators other than operator() cannot be variadic.
6434  if (Op != OO_Call &&
6435      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6436    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6437      << FnDecl->getDeclName();
6438  }
6439
6440  // Some operators must be non-static member functions.
6441  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6442    return Diag(FnDecl->getLocation(),
6443                diag::err_operator_overload_must_be_member)
6444      << FnDecl->getDeclName();
6445  }
6446
6447  // C++ [over.inc]p1:
6448  //   The user-defined function called operator++ implements the
6449  //   prefix and postfix ++ operator. If this function is a member
6450  //   function with no parameters, or a non-member function with one
6451  //   parameter of class or enumeration type, it defines the prefix
6452  //   increment operator ++ for objects of that type. If the function
6453  //   is a member function with one parameter (which shall be of type
6454  //   int) or a non-member function with two parameters (the second
6455  //   of which shall be of type int), it defines the postfix
6456  //   increment operator ++ for objects of that type.
6457  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6458    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6459    bool ParamIsInt = false;
6460    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6461      ParamIsInt = BT->getKind() == BuiltinType::Int;
6462
6463    if (!ParamIsInt)
6464      return Diag(LastParam->getLocation(),
6465                  diag::err_operator_overload_post_incdec_must_be_int)
6466        << LastParam->getType() << (Op == OO_MinusMinus);
6467  }
6468
6469  return false;
6470}
6471
6472/// CheckLiteralOperatorDeclaration - Check whether the declaration
6473/// of this literal operator function is well-formed. If so, returns
6474/// false; otherwise, emits appropriate diagnostics and returns true.
6475bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6476  DeclContext *DC = FnDecl->getDeclContext();
6477  Decl::Kind Kind = DC->getDeclKind();
6478  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6479      Kind != Decl::LinkageSpec) {
6480    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6481      << FnDecl->getDeclName();
6482    return true;
6483  }
6484
6485  bool Valid = false;
6486
6487  // template <char...> type operator "" name() is the only valid template
6488  // signature, and the only valid signature with no parameters.
6489  if (FnDecl->param_size() == 0) {
6490    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6491      // Must have only one template parameter
6492      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6493      if (Params->size() == 1) {
6494        NonTypeTemplateParmDecl *PmDecl =
6495          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6496
6497        // The template parameter must be a char parameter pack.
6498        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6499            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6500          Valid = true;
6501      }
6502    }
6503  } else {
6504    // Check the first parameter
6505    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6506
6507    QualType T = (*Param)->getType();
6508
6509    // unsigned long long int, long double, and any character type are allowed
6510    // as the only parameters.
6511    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6512        Context.hasSameType(T, Context.LongDoubleTy) ||
6513        Context.hasSameType(T, Context.CharTy) ||
6514        Context.hasSameType(T, Context.WCharTy) ||
6515        Context.hasSameType(T, Context.Char16Ty) ||
6516        Context.hasSameType(T, Context.Char32Ty)) {
6517      if (++Param == FnDecl->param_end())
6518        Valid = true;
6519      goto FinishedParams;
6520    }
6521
6522    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6523    const PointerType *PT = T->getAs<PointerType>();
6524    if (!PT)
6525      goto FinishedParams;
6526    T = PT->getPointeeType();
6527    if (!T.isConstQualified())
6528      goto FinishedParams;
6529    T = T.getUnqualifiedType();
6530
6531    // Move on to the second parameter;
6532    ++Param;
6533
6534    // If there is no second parameter, the first must be a const char *
6535    if (Param == FnDecl->param_end()) {
6536      if (Context.hasSameType(T, Context.CharTy))
6537        Valid = true;
6538      goto FinishedParams;
6539    }
6540
6541    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6542    // are allowed as the first parameter to a two-parameter function
6543    if (!(Context.hasSameType(T, Context.CharTy) ||
6544          Context.hasSameType(T, Context.WCharTy) ||
6545          Context.hasSameType(T, Context.Char16Ty) ||
6546          Context.hasSameType(T, Context.Char32Ty)))
6547      goto FinishedParams;
6548
6549    // The second and final parameter must be an std::size_t
6550    T = (*Param)->getType().getUnqualifiedType();
6551    if (Context.hasSameType(T, Context.getSizeType()) &&
6552        ++Param == FnDecl->param_end())
6553      Valid = true;
6554  }
6555
6556  // FIXME: This diagnostic is absolutely terrible.
6557FinishedParams:
6558  if (!Valid) {
6559    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6560      << FnDecl->getDeclName();
6561    return true;
6562  }
6563
6564  return false;
6565}
6566
6567/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6568/// linkage specification, including the language and (if present)
6569/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6570/// the location of the language string literal, which is provided
6571/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6572/// the '{' brace. Otherwise, this linkage specification does not
6573/// have any braces.
6574Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6575                                           SourceLocation LangLoc,
6576                                           llvm::StringRef Lang,
6577                                           SourceLocation LBraceLoc) {
6578  LinkageSpecDecl::LanguageIDs Language;
6579  if (Lang == "\"C\"")
6580    Language = LinkageSpecDecl::lang_c;
6581  else if (Lang == "\"C++\"")
6582    Language = LinkageSpecDecl::lang_cxx;
6583  else {
6584    Diag(LangLoc, diag::err_bad_language);
6585    return 0;
6586  }
6587
6588  // FIXME: Add all the various semantics of linkage specifications
6589
6590  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6591                                               LangLoc, Language);
6592  CurContext->addDecl(D);
6593  PushDeclContext(S, D);
6594  return D;
6595}
6596
6597/// ActOnFinishLinkageSpecification - Complete the definition of
6598/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6599/// valid, it's the position of the closing '}' brace in a linkage
6600/// specification that uses braces.
6601Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6602                                            Decl *LinkageSpec,
6603                                            SourceLocation RBraceLoc) {
6604  if (LinkageSpec) {
6605    if (RBraceLoc.isValid()) {
6606      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
6607      LSDecl->setRBraceLoc(RBraceLoc);
6608    }
6609    PopDeclContext();
6610  }
6611  return LinkageSpec;
6612}
6613
6614/// \brief Perform semantic analysis for the variable declaration that
6615/// occurs within a C++ catch clause, returning the newly-created
6616/// variable.
6617VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6618                                         TypeSourceInfo *TInfo,
6619                                         SourceLocation StartLoc,
6620                                         SourceLocation Loc,
6621                                         IdentifierInfo *Name) {
6622  bool Invalid = false;
6623  QualType ExDeclType = TInfo->getType();
6624
6625  // Arrays and functions decay.
6626  if (ExDeclType->isArrayType())
6627    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6628  else if (ExDeclType->isFunctionType())
6629    ExDeclType = Context.getPointerType(ExDeclType);
6630
6631  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6632  // The exception-declaration shall not denote a pointer or reference to an
6633  // incomplete type, other than [cv] void*.
6634  // N2844 forbids rvalue references.
6635  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6636    Diag(Loc, diag::err_catch_rvalue_ref);
6637    Invalid = true;
6638  }
6639
6640  // GCC allows catching pointers and references to incomplete types
6641  // as an extension; so do we, but we warn by default.
6642
6643  QualType BaseType = ExDeclType;
6644  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6645  unsigned DK = diag::err_catch_incomplete;
6646  bool IncompleteCatchIsInvalid = true;
6647  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6648    BaseType = Ptr->getPointeeType();
6649    Mode = 1;
6650    DK = diag::ext_catch_incomplete_ptr;
6651    IncompleteCatchIsInvalid = false;
6652  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6653    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6654    BaseType = Ref->getPointeeType();
6655    Mode = 2;
6656    DK = diag::ext_catch_incomplete_ref;
6657    IncompleteCatchIsInvalid = false;
6658  }
6659  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6660      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6661      IncompleteCatchIsInvalid)
6662    Invalid = true;
6663
6664  if (!Invalid && !ExDeclType->isDependentType() &&
6665      RequireNonAbstractType(Loc, ExDeclType,
6666                             diag::err_abstract_type_in_decl,
6667                             AbstractVariableType))
6668    Invalid = true;
6669
6670  // Only the non-fragile NeXT runtime currently supports C++ catches
6671  // of ObjC types, and no runtime supports catching ObjC types by value.
6672  if (!Invalid && getLangOptions().ObjC1) {
6673    QualType T = ExDeclType;
6674    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6675      T = RT->getPointeeType();
6676
6677    if (T->isObjCObjectType()) {
6678      Diag(Loc, diag::err_objc_object_catch);
6679      Invalid = true;
6680    } else if (T->isObjCObjectPointerType()) {
6681      if (!getLangOptions().NeXTRuntime) {
6682        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6683        Invalid = true;
6684      } else if (!getLangOptions().ObjCNonFragileABI) {
6685        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6686        Invalid = true;
6687      }
6688    }
6689  }
6690
6691  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
6692                                    ExDeclType, TInfo, SC_None, SC_None);
6693  ExDecl->setExceptionVariable(true);
6694
6695  if (!Invalid) {
6696    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6697      // C++ [except.handle]p16:
6698      //   The object declared in an exception-declaration or, if the
6699      //   exception-declaration does not specify a name, a temporary (12.2) is
6700      //   copy-initialized (8.5) from the exception object. [...]
6701      //   The object is destroyed when the handler exits, after the destruction
6702      //   of any automatic objects initialized within the handler.
6703      //
6704      // We just pretend to initialize the object with itself, then make sure
6705      // it can be destroyed later.
6706      QualType initType = ExDeclType;
6707
6708      InitializedEntity entity =
6709        InitializedEntity::InitializeVariable(ExDecl);
6710      InitializationKind initKind =
6711        InitializationKind::CreateCopy(Loc, SourceLocation());
6712
6713      Expr *opaqueValue =
6714        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6715      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6716      ExprResult result = sequence.Perform(*this, entity, initKind,
6717                                           MultiExprArg(&opaqueValue, 1));
6718      if (result.isInvalid())
6719        Invalid = true;
6720      else {
6721        // If the constructor used was non-trivial, set this as the
6722        // "initializer".
6723        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6724        if (!construct->getConstructor()->isTrivial()) {
6725          Expr *init = MaybeCreateExprWithCleanups(construct);
6726          ExDecl->setInit(init);
6727        }
6728
6729        // And make sure it's destructable.
6730        FinalizeVarWithDestructor(ExDecl, recordType);
6731      }
6732    }
6733  }
6734
6735  if (Invalid)
6736    ExDecl->setInvalidDecl();
6737
6738  return ExDecl;
6739}
6740
6741/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6742/// handler.
6743Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6744  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6745  bool Invalid = D.isInvalidType();
6746
6747  // Check for unexpanded parameter packs.
6748  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6749                                               UPPC_ExceptionType)) {
6750    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6751                                             D.getIdentifierLoc());
6752    Invalid = true;
6753  }
6754
6755  IdentifierInfo *II = D.getIdentifier();
6756  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6757                                             LookupOrdinaryName,
6758                                             ForRedeclaration)) {
6759    // The scope should be freshly made just for us. There is just no way
6760    // it contains any previous declaration.
6761    assert(!S->isDeclScope(PrevDecl));
6762    if (PrevDecl->isTemplateParameter()) {
6763      // Maybe we will complain about the shadowed template parameter.
6764      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6765    }
6766  }
6767
6768  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6769    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6770      << D.getCXXScopeSpec().getRange();
6771    Invalid = true;
6772  }
6773
6774  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6775                                              D.getSourceRange().getBegin(),
6776                                              D.getIdentifierLoc(),
6777                                              D.getIdentifier());
6778  if (Invalid)
6779    ExDecl->setInvalidDecl();
6780
6781  // Add the exception declaration into this scope.
6782  if (II)
6783    PushOnScopeChains(ExDecl, S);
6784  else
6785    CurContext->addDecl(ExDecl);
6786
6787  ProcessDeclAttributes(S, ExDecl, D);
6788  return ExDecl;
6789}
6790
6791Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6792                                         Expr *AssertExpr,
6793                                         Expr *AssertMessageExpr_) {
6794  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6795
6796  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6797    llvm::APSInt Value(32);
6798    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6799      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6800        AssertExpr->getSourceRange();
6801      return 0;
6802    }
6803
6804    if (Value == 0) {
6805      Diag(AssertLoc, diag::err_static_assert_failed)
6806        << AssertMessage->getString() << AssertExpr->getSourceRange();
6807    }
6808  }
6809
6810  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6811    return 0;
6812
6813  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6814                                        AssertExpr, AssertMessage);
6815
6816  CurContext->addDecl(Decl);
6817  return Decl;
6818}
6819
6820/// \brief Perform semantic analysis of the given friend type declaration.
6821///
6822/// \returns A friend declaration that.
6823FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6824                                      TypeSourceInfo *TSInfo) {
6825  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6826
6827  QualType T = TSInfo->getType();
6828  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6829
6830  if (!getLangOptions().CPlusPlus0x) {
6831    // C++03 [class.friend]p2:
6832    //   An elaborated-type-specifier shall be used in a friend declaration
6833    //   for a class.*
6834    //
6835    //   * The class-key of the elaborated-type-specifier is required.
6836    if (!ActiveTemplateInstantiations.empty()) {
6837      // Do not complain about the form of friend template types during
6838      // template instantiation; we will already have complained when the
6839      // template was declared.
6840    } else if (!T->isElaboratedTypeSpecifier()) {
6841      // If we evaluated the type to a record type, suggest putting
6842      // a tag in front.
6843      if (const RecordType *RT = T->getAs<RecordType>()) {
6844        RecordDecl *RD = RT->getDecl();
6845
6846        std::string InsertionText = std::string(" ") + RD->getKindName();
6847
6848        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6849          << (unsigned) RD->getTagKind()
6850          << T
6851          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6852                                        InsertionText);
6853      } else {
6854        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6855          << T
6856          << SourceRange(FriendLoc, TypeRange.getEnd());
6857      }
6858    } else if (T->getAs<EnumType>()) {
6859      Diag(FriendLoc, diag::ext_enum_friend)
6860        << T
6861        << SourceRange(FriendLoc, TypeRange.getEnd());
6862    }
6863  }
6864
6865  // C++0x [class.friend]p3:
6866  //   If the type specifier in a friend declaration designates a (possibly
6867  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6868  //   the friend declaration is ignored.
6869
6870  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6871  // in [class.friend]p3 that we do not implement.
6872
6873  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6874}
6875
6876/// Handle a friend tag declaration where the scope specifier was
6877/// templated.
6878Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6879                                    unsigned TagSpec, SourceLocation TagLoc,
6880                                    CXXScopeSpec &SS,
6881                                    IdentifierInfo *Name, SourceLocation NameLoc,
6882                                    AttributeList *Attr,
6883                                    MultiTemplateParamsArg TempParamLists) {
6884  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6885
6886  bool isExplicitSpecialization = false;
6887  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6888  bool Invalid = false;
6889
6890  if (TemplateParameterList *TemplateParams
6891        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6892                                                  TempParamLists.get(),
6893                                                  TempParamLists.size(),
6894                                                  /*friend*/ true,
6895                                                  isExplicitSpecialization,
6896                                                  Invalid)) {
6897    --NumMatchedTemplateParamLists;
6898
6899    if (TemplateParams->size() > 0) {
6900      // This is a declaration of a class template.
6901      if (Invalid)
6902        return 0;
6903
6904      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6905                                SS, Name, NameLoc, Attr,
6906                                TemplateParams, AS_public).take();
6907    } else {
6908      // The "template<>" header is extraneous.
6909      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6910        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6911      isExplicitSpecialization = true;
6912    }
6913  }
6914
6915  if (Invalid) return 0;
6916
6917  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6918
6919  bool isAllExplicitSpecializations = true;
6920  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6921    if (TempParamLists.get()[I]->size()) {
6922      isAllExplicitSpecializations = false;
6923      break;
6924    }
6925  }
6926
6927  // FIXME: don't ignore attributes.
6928
6929  // If it's explicit specializations all the way down, just forget
6930  // about the template header and build an appropriate non-templated
6931  // friend.  TODO: for source fidelity, remember the headers.
6932  if (isAllExplicitSpecializations) {
6933    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6934    ElaboratedTypeKeyword Keyword
6935      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6936    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
6937                                   *Name, NameLoc);
6938    if (T.isNull())
6939      return 0;
6940
6941    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6942    if (isa<DependentNameType>(T)) {
6943      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6944      TL.setKeywordLoc(TagLoc);
6945      TL.setQualifierLoc(QualifierLoc);
6946      TL.setNameLoc(NameLoc);
6947    } else {
6948      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6949      TL.setKeywordLoc(TagLoc);
6950      TL.setQualifierLoc(QualifierLoc);
6951      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6952    }
6953
6954    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6955                                            TSI, FriendLoc);
6956    Friend->setAccess(AS_public);
6957    CurContext->addDecl(Friend);
6958    return Friend;
6959  }
6960
6961  // Handle the case of a templated-scope friend class.  e.g.
6962  //   template <class T> class A<T>::B;
6963  // FIXME: we don't support these right now.
6964  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6965  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6966  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6967  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6968  TL.setKeywordLoc(TagLoc);
6969  TL.setQualifierLoc(SS.getWithLocInContext(Context));
6970  TL.setNameLoc(NameLoc);
6971
6972  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6973                                          TSI, FriendLoc);
6974  Friend->setAccess(AS_public);
6975  Friend->setUnsupportedFriend(true);
6976  CurContext->addDecl(Friend);
6977  return Friend;
6978}
6979
6980
6981/// Handle a friend type declaration.  This works in tandem with
6982/// ActOnTag.
6983///
6984/// Notes on friend class templates:
6985///
6986/// We generally treat friend class declarations as if they were
6987/// declaring a class.  So, for example, the elaborated type specifier
6988/// in a friend declaration is required to obey the restrictions of a
6989/// class-head (i.e. no typedefs in the scope chain), template
6990/// parameters are required to match up with simple template-ids, &c.
6991/// However, unlike when declaring a template specialization, it's
6992/// okay to refer to a template specialization without an empty
6993/// template parameter declaration, e.g.
6994///   friend class A<T>::B<unsigned>;
6995/// We permit this as a special case; if there are any template
6996/// parameters present at all, require proper matching, i.e.
6997///   template <> template <class T> friend class A<int>::B;
6998Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6999                                MultiTemplateParamsArg TempParams) {
7000  SourceLocation Loc = DS.getSourceRange().getBegin();
7001
7002  assert(DS.isFriendSpecified());
7003  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7004
7005  // Try to convert the decl specifier to a type.  This works for
7006  // friend templates because ActOnTag never produces a ClassTemplateDecl
7007  // for a TUK_Friend.
7008  Declarator TheDeclarator(DS, Declarator::MemberContext);
7009  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
7010  QualType T = TSI->getType();
7011  if (TheDeclarator.isInvalidType())
7012    return 0;
7013
7014  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
7015    return 0;
7016
7017  // This is definitely an error in C++98.  It's probably meant to
7018  // be forbidden in C++0x, too, but the specification is just
7019  // poorly written.
7020  //
7021  // The problem is with declarations like the following:
7022  //   template <T> friend A<T>::foo;
7023  // where deciding whether a class C is a friend or not now hinges
7024  // on whether there exists an instantiation of A that causes
7025  // 'foo' to equal C.  There are restrictions on class-heads
7026  // (which we declare (by fiat) elaborated friend declarations to
7027  // be) that makes this tractable.
7028  //
7029  // FIXME: handle "template <> friend class A<T>;", which
7030  // is possibly well-formed?  Who even knows?
7031  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
7032    Diag(Loc, diag::err_tagless_friend_type_template)
7033      << DS.getSourceRange();
7034    return 0;
7035  }
7036
7037  // C++98 [class.friend]p1: A friend of a class is a function
7038  //   or class that is not a member of the class . . .
7039  // This is fixed in DR77, which just barely didn't make the C++03
7040  // deadline.  It's also a very silly restriction that seriously
7041  // affects inner classes and which nobody else seems to implement;
7042  // thus we never diagnose it, not even in -pedantic.
7043  //
7044  // But note that we could warn about it: it's always useless to
7045  // friend one of your own members (it's not, however, worthless to
7046  // friend a member of an arbitrary specialization of your template).
7047
7048  Decl *D;
7049  if (unsigned NumTempParamLists = TempParams.size())
7050    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
7051                                   NumTempParamLists,
7052                                   TempParams.release(),
7053                                   TSI,
7054                                   DS.getFriendSpecLoc());
7055  else
7056    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
7057
7058  if (!D)
7059    return 0;
7060
7061  D->setAccess(AS_public);
7062  CurContext->addDecl(D);
7063
7064  return D;
7065}
7066
7067Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7068                                    MultiTemplateParamsArg TemplateParams) {
7069  const DeclSpec &DS = D.getDeclSpec();
7070
7071  assert(DS.isFriendSpecified());
7072  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7073
7074  SourceLocation Loc = D.getIdentifierLoc();
7075  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7076  QualType T = TInfo->getType();
7077
7078  // C++ [class.friend]p1
7079  //   A friend of a class is a function or class....
7080  // Note that this sees through typedefs, which is intended.
7081  // It *doesn't* see through dependent types, which is correct
7082  // according to [temp.arg.type]p3:
7083  //   If a declaration acquires a function type through a
7084  //   type dependent on a template-parameter and this causes
7085  //   a declaration that does not use the syntactic form of a
7086  //   function declarator to have a function type, the program
7087  //   is ill-formed.
7088  if (!T->isFunctionType()) {
7089    Diag(Loc, diag::err_unexpected_friend);
7090
7091    // It might be worthwhile to try to recover by creating an
7092    // appropriate declaration.
7093    return 0;
7094  }
7095
7096  // C++ [namespace.memdef]p3
7097  //  - If a friend declaration in a non-local class first declares a
7098  //    class or function, the friend class or function is a member
7099  //    of the innermost enclosing namespace.
7100  //  - The name of the friend is not found by simple name lookup
7101  //    until a matching declaration is provided in that namespace
7102  //    scope (either before or after the class declaration granting
7103  //    friendship).
7104  //  - If a friend function is called, its name may be found by the
7105  //    name lookup that considers functions from namespaces and
7106  //    classes associated with the types of the function arguments.
7107  //  - When looking for a prior declaration of a class or a function
7108  //    declared as a friend, scopes outside the innermost enclosing
7109  //    namespace scope are not considered.
7110
7111  CXXScopeSpec &SS = D.getCXXScopeSpec();
7112  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7113  DeclarationName Name = NameInfo.getName();
7114  assert(Name);
7115
7116  // Check for unexpanded parameter packs.
7117  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7118      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7119      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7120    return 0;
7121
7122  // The context we found the declaration in, or in which we should
7123  // create the declaration.
7124  DeclContext *DC;
7125  Scope *DCScope = S;
7126  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7127                        ForRedeclaration);
7128
7129  // FIXME: there are different rules in local classes
7130
7131  // There are four cases here.
7132  //   - There's no scope specifier, in which case we just go to the
7133  //     appropriate scope and look for a function or function template
7134  //     there as appropriate.
7135  // Recover from invalid scope qualifiers as if they just weren't there.
7136  if (SS.isInvalid() || !SS.isSet()) {
7137    // C++0x [namespace.memdef]p3:
7138    //   If the name in a friend declaration is neither qualified nor
7139    //   a template-id and the declaration is a function or an
7140    //   elaborated-type-specifier, the lookup to determine whether
7141    //   the entity has been previously declared shall not consider
7142    //   any scopes outside the innermost enclosing namespace.
7143    // C++0x [class.friend]p11:
7144    //   If a friend declaration appears in a local class and the name
7145    //   specified is an unqualified name, a prior declaration is
7146    //   looked up without considering scopes that are outside the
7147    //   innermost enclosing non-class scope. For a friend function
7148    //   declaration, if there is no prior declaration, the program is
7149    //   ill-formed.
7150    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7151    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7152
7153    // Find the appropriate context according to the above.
7154    DC = CurContext;
7155    while (true) {
7156      // Skip class contexts.  If someone can cite chapter and verse
7157      // for this behavior, that would be nice --- it's what GCC and
7158      // EDG do, and it seems like a reasonable intent, but the spec
7159      // really only says that checks for unqualified existing
7160      // declarations should stop at the nearest enclosing namespace,
7161      // not that they should only consider the nearest enclosing
7162      // namespace.
7163      while (DC->isRecord())
7164        DC = DC->getParent();
7165
7166      LookupQualifiedName(Previous, DC);
7167
7168      // TODO: decide what we think about using declarations.
7169      if (isLocal || !Previous.empty())
7170        break;
7171
7172      if (isTemplateId) {
7173        if (isa<TranslationUnitDecl>(DC)) break;
7174      } else {
7175        if (DC->isFileContext()) break;
7176      }
7177      DC = DC->getParent();
7178    }
7179
7180    // C++ [class.friend]p1: A friend of a class is a function or
7181    //   class that is not a member of the class . . .
7182    // C++0x changes this for both friend types and functions.
7183    // Most C++ 98 compilers do seem to give an error here, so
7184    // we do, too.
7185    if (!Previous.empty() && DC->Equals(CurContext)
7186        && !getLangOptions().CPlusPlus0x)
7187      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7188
7189    DCScope = getScopeForDeclContext(S, DC);
7190
7191  //   - There's a non-dependent scope specifier, in which case we
7192  //     compute it and do a previous lookup there for a function
7193  //     or function template.
7194  } else if (!SS.getScopeRep()->isDependent()) {
7195    DC = computeDeclContext(SS);
7196    if (!DC) return 0;
7197
7198    if (RequireCompleteDeclContext(SS, DC)) return 0;
7199
7200    LookupQualifiedName(Previous, DC);
7201
7202    // Ignore things found implicitly in the wrong scope.
7203    // TODO: better diagnostics for this case.  Suggesting the right
7204    // qualified scope would be nice...
7205    LookupResult::Filter F = Previous.makeFilter();
7206    while (F.hasNext()) {
7207      NamedDecl *D = F.next();
7208      if (!DC->InEnclosingNamespaceSetOf(
7209              D->getDeclContext()->getRedeclContext()))
7210        F.erase();
7211    }
7212    F.done();
7213
7214    if (Previous.empty()) {
7215      D.setInvalidType();
7216      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7217      return 0;
7218    }
7219
7220    // C++ [class.friend]p1: A friend of a class is a function or
7221    //   class that is not a member of the class . . .
7222    if (DC->Equals(CurContext))
7223      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7224
7225  //   - There's a scope specifier that does not match any template
7226  //     parameter lists, in which case we use some arbitrary context,
7227  //     create a method or method template, and wait for instantiation.
7228  //   - There's a scope specifier that does match some template
7229  //     parameter lists, which we don't handle right now.
7230  } else {
7231    DC = CurContext;
7232    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7233  }
7234
7235  if (!DC->isRecord()) {
7236    // This implies that it has to be an operator or function.
7237    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7238        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7239        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7240      Diag(Loc, diag::err_introducing_special_friend) <<
7241        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7242         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7243      return 0;
7244    }
7245  }
7246
7247  bool Redeclaration = false;
7248  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7249                                          move(TemplateParams),
7250                                          IsDefinition,
7251                                          Redeclaration);
7252  if (!ND) return 0;
7253
7254  assert(ND->getDeclContext() == DC);
7255  assert(ND->getLexicalDeclContext() == CurContext);
7256
7257  // Add the function declaration to the appropriate lookup tables,
7258  // adjusting the redeclarations list as necessary.  We don't
7259  // want to do this yet if the friending class is dependent.
7260  //
7261  // Also update the scope-based lookup if the target context's
7262  // lookup context is in lexical scope.
7263  if (!CurContext->isDependentContext()) {
7264    DC = DC->getRedeclContext();
7265    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7266    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7267      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7268  }
7269
7270  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7271                                       D.getIdentifierLoc(), ND,
7272                                       DS.getFriendSpecLoc());
7273  FrD->setAccess(AS_public);
7274  CurContext->addDecl(FrD);
7275
7276  if (ND->isInvalidDecl())
7277    FrD->setInvalidDecl();
7278  else {
7279    FunctionDecl *FD;
7280    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7281      FD = FTD->getTemplatedDecl();
7282    else
7283      FD = cast<FunctionDecl>(ND);
7284
7285    // Mark templated-scope function declarations as unsupported.
7286    if (FD->getNumTemplateParameterLists())
7287      FrD->setUnsupportedFriend(true);
7288  }
7289
7290  return ND;
7291}
7292
7293void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7294  AdjustDeclIfTemplate(Dcl);
7295
7296  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7297  if (!Fn) {
7298    Diag(DelLoc, diag::err_deleted_non_function);
7299    return;
7300  }
7301  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7302    Diag(DelLoc, diag::err_deleted_decl_not_first);
7303    Diag(Prev->getLocation(), diag::note_previous_declaration);
7304    // If the declaration wasn't the first, we delete the function anyway for
7305    // recovery.
7306  }
7307  Fn->setDeleted();
7308}
7309
7310static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7311  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7312    Stmt *SubStmt = *CI;
7313    if (!SubStmt)
7314      continue;
7315    if (isa<ReturnStmt>(SubStmt))
7316      Self.Diag(SubStmt->getSourceRange().getBegin(),
7317           diag::err_return_in_constructor_handler);
7318    if (!isa<Expr>(SubStmt))
7319      SearchForReturnInStmt(Self, SubStmt);
7320  }
7321}
7322
7323void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7324  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7325    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7326    SearchForReturnInStmt(*this, Handler);
7327  }
7328}
7329
7330bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7331                                             const CXXMethodDecl *Old) {
7332  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7333  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7334
7335  if (Context.hasSameType(NewTy, OldTy) ||
7336      NewTy->isDependentType() || OldTy->isDependentType())
7337    return false;
7338
7339  // Check if the return types are covariant
7340  QualType NewClassTy, OldClassTy;
7341
7342  /// Both types must be pointers or references to classes.
7343  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7344    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7345      NewClassTy = NewPT->getPointeeType();
7346      OldClassTy = OldPT->getPointeeType();
7347    }
7348  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7349    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7350      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7351        NewClassTy = NewRT->getPointeeType();
7352        OldClassTy = OldRT->getPointeeType();
7353      }
7354    }
7355  }
7356
7357  // The return types aren't either both pointers or references to a class type.
7358  if (NewClassTy.isNull()) {
7359    Diag(New->getLocation(),
7360         diag::err_different_return_type_for_overriding_virtual_function)
7361      << New->getDeclName() << NewTy << OldTy;
7362    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7363
7364    return true;
7365  }
7366
7367  // C++ [class.virtual]p6:
7368  //   If the return type of D::f differs from the return type of B::f, the
7369  //   class type in the return type of D::f shall be complete at the point of
7370  //   declaration of D::f or shall be the class type D.
7371  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7372    if (!RT->isBeingDefined() &&
7373        RequireCompleteType(New->getLocation(), NewClassTy,
7374                            PDiag(diag::err_covariant_return_incomplete)
7375                              << New->getDeclName()))
7376    return true;
7377  }
7378
7379  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7380    // Check if the new class derives from the old class.
7381    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7382      Diag(New->getLocation(),
7383           diag::err_covariant_return_not_derived)
7384      << New->getDeclName() << NewTy << OldTy;
7385      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7386      return true;
7387    }
7388
7389    // Check if we the conversion from derived to base is valid.
7390    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7391                    diag::err_covariant_return_inaccessible_base,
7392                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7393                    // FIXME: Should this point to the return type?
7394                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7395      // FIXME: this note won't trigger for delayed access control
7396      // diagnostics, and it's impossible to get an undelayed error
7397      // here from access control during the original parse because
7398      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7399      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7400      return true;
7401    }
7402  }
7403
7404  // The qualifiers of the return types must be the same.
7405  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7406    Diag(New->getLocation(),
7407         diag::err_covariant_return_type_different_qualifications)
7408    << New->getDeclName() << NewTy << OldTy;
7409    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7410    return true;
7411  };
7412
7413
7414  // The new class type must have the same or less qualifiers as the old type.
7415  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7416    Diag(New->getLocation(),
7417         diag::err_covariant_return_type_class_type_more_qualified)
7418    << New->getDeclName() << NewTy << OldTy;
7419    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7420    return true;
7421  };
7422
7423  return false;
7424}
7425
7426/// \brief Mark the given method pure.
7427///
7428/// \param Method the method to be marked pure.
7429///
7430/// \param InitRange the source range that covers the "0" initializer.
7431bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7432  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7433    Method->setPure();
7434    return false;
7435  }
7436
7437  if (!Method->isInvalidDecl())
7438    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7439      << Method->getDeclName() << InitRange;
7440  return true;
7441}
7442
7443/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7444/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7445/// is a fresh scope pushed for just this purpose.
7446///
7447/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7448/// static data member of class X, names should be looked up in the scope of
7449/// class X.
7450void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7451  // If there is no declaration, there was an error parsing it.
7452  if (D == 0) return;
7453
7454  // We should only get called for declarations with scope specifiers, like:
7455  //   int foo::bar;
7456  assert(D->isOutOfLine());
7457  EnterDeclaratorContext(S, D->getDeclContext());
7458}
7459
7460/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7461/// initializer for the out-of-line declaration 'D'.
7462void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7463  // If there is no declaration, there was an error parsing it.
7464  if (D == 0) return;
7465
7466  assert(D->isOutOfLine());
7467  ExitDeclaratorContext(S);
7468}
7469
7470/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7471/// C++ if/switch/while/for statement.
7472/// e.g: "if (int x = f()) {...}"
7473DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7474  // C++ 6.4p2:
7475  // The declarator shall not specify a function or an array.
7476  // The type-specifier-seq shall not contain typedef and shall not declare a
7477  // new class or enumeration.
7478  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7479         "Parser allowed 'typedef' as storage class of condition decl.");
7480
7481  TagDecl *OwnedTag = 0;
7482  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7483  QualType Ty = TInfo->getType();
7484
7485  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7486                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7487                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7488    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7489      << D.getSourceRange();
7490    return DeclResult();
7491  } else if (OwnedTag && OwnedTag->isDefinition()) {
7492    // The type-specifier-seq shall not declare a new class or enumeration.
7493    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7494  }
7495
7496  Decl *Dcl = ActOnDeclarator(S, D);
7497  if (!Dcl)
7498    return DeclResult();
7499
7500  return Dcl;
7501}
7502
7503void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7504                          bool DefinitionRequired) {
7505  // Ignore any vtable uses in unevaluated operands or for classes that do
7506  // not have a vtable.
7507  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7508      CurContext->isDependentContext() ||
7509      ExprEvalContexts.back().Context == Unevaluated)
7510    return;
7511
7512  // Try to insert this class into the map.
7513  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7514  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7515    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7516  if (!Pos.second) {
7517    // If we already had an entry, check to see if we are promoting this vtable
7518    // to required a definition. If so, we need to reappend to the VTableUses
7519    // list, since we may have already processed the first entry.
7520    if (DefinitionRequired && !Pos.first->second) {
7521      Pos.first->second = true;
7522    } else {
7523      // Otherwise, we can early exit.
7524      return;
7525    }
7526  }
7527
7528  // Local classes need to have their virtual members marked
7529  // immediately. For all other classes, we mark their virtual members
7530  // at the end of the translation unit.
7531  if (Class->isLocalClass())
7532    MarkVirtualMembersReferenced(Loc, Class);
7533  else
7534    VTableUses.push_back(std::make_pair(Class, Loc));
7535}
7536
7537bool Sema::DefineUsedVTables() {
7538  if (VTableUses.empty())
7539    return false;
7540
7541  // Note: The VTableUses vector could grow as a result of marking
7542  // the members of a class as "used", so we check the size each
7543  // time through the loop and prefer indices (with are stable) to
7544  // iterators (which are not).
7545  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7546    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7547    if (!Class)
7548      continue;
7549
7550    SourceLocation Loc = VTableUses[I].second;
7551
7552    // If this class has a key function, but that key function is
7553    // defined in another translation unit, we don't need to emit the
7554    // vtable even though we're using it.
7555    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7556    if (KeyFunction && !KeyFunction->hasBody()) {
7557      switch (KeyFunction->getTemplateSpecializationKind()) {
7558      case TSK_Undeclared:
7559      case TSK_ExplicitSpecialization:
7560      case TSK_ExplicitInstantiationDeclaration:
7561        // The key function is in another translation unit.
7562        continue;
7563
7564      case TSK_ExplicitInstantiationDefinition:
7565      case TSK_ImplicitInstantiation:
7566        // We will be instantiating the key function.
7567        break;
7568      }
7569    } else if (!KeyFunction) {
7570      // If we have a class with no key function that is the subject
7571      // of an explicit instantiation declaration, suppress the
7572      // vtable; it will live with the explicit instantiation
7573      // definition.
7574      bool IsExplicitInstantiationDeclaration
7575        = Class->getTemplateSpecializationKind()
7576                                      == TSK_ExplicitInstantiationDeclaration;
7577      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7578                                 REnd = Class->redecls_end();
7579           R != REnd; ++R) {
7580        TemplateSpecializationKind TSK
7581          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7582        if (TSK == TSK_ExplicitInstantiationDeclaration)
7583          IsExplicitInstantiationDeclaration = true;
7584        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7585          IsExplicitInstantiationDeclaration = false;
7586          break;
7587        }
7588      }
7589
7590      if (IsExplicitInstantiationDeclaration)
7591        continue;
7592    }
7593
7594    // Mark all of the virtual members of this class as referenced, so
7595    // that we can build a vtable. Then, tell the AST consumer that a
7596    // vtable for this class is required.
7597    MarkVirtualMembersReferenced(Loc, Class);
7598    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7599    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7600
7601    // Optionally warn if we're emitting a weak vtable.
7602    if (Class->getLinkage() == ExternalLinkage &&
7603        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7604      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7605        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7606    }
7607  }
7608  VTableUses.clear();
7609
7610  return true;
7611}
7612
7613void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7614                                        const CXXRecordDecl *RD) {
7615  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7616       e = RD->method_end(); i != e; ++i) {
7617    CXXMethodDecl *MD = *i;
7618
7619    // C++ [basic.def.odr]p2:
7620    //   [...] A virtual member function is used if it is not pure. [...]
7621    if (MD->isVirtual() && !MD->isPure())
7622      MarkDeclarationReferenced(Loc, MD);
7623  }
7624
7625  // Only classes that have virtual bases need a VTT.
7626  if (RD->getNumVBases() == 0)
7627    return;
7628
7629  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7630           e = RD->bases_end(); i != e; ++i) {
7631    const CXXRecordDecl *Base =
7632        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7633    if (Base->getNumVBases() == 0)
7634      continue;
7635    MarkVirtualMembersReferenced(Loc, Base);
7636  }
7637}
7638
7639/// SetIvarInitializers - This routine builds initialization ASTs for the
7640/// Objective-C implementation whose ivars need be initialized.
7641void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7642  if (!getLangOptions().CPlusPlus)
7643    return;
7644  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7645    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7646    CollectIvarsToConstructOrDestruct(OID, ivars);
7647    if (ivars.empty())
7648      return;
7649    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7650    for (unsigned i = 0; i < ivars.size(); i++) {
7651      FieldDecl *Field = ivars[i];
7652      if (Field->isInvalidDecl())
7653        continue;
7654
7655      CXXCtorInitializer *Member;
7656      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7657      InitializationKind InitKind =
7658        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7659
7660      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7661      ExprResult MemberInit =
7662        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7663      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7664      // Note, MemberInit could actually come back empty if no initialization
7665      // is required (e.g., because it would call a trivial default constructor)
7666      if (!MemberInit.get() || MemberInit.isInvalid())
7667        continue;
7668
7669      Member =
7670        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7671                                         SourceLocation(),
7672                                         MemberInit.takeAs<Expr>(),
7673                                         SourceLocation());
7674      AllToInit.push_back(Member);
7675
7676      // Be sure that the destructor is accessible and is marked as referenced.
7677      if (const RecordType *RecordTy
7678                  = Context.getBaseElementType(Field->getType())
7679                                                        ->getAs<RecordType>()) {
7680                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7681        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7682          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7683          CheckDestructorAccess(Field->getLocation(), Destructor,
7684                            PDiag(diag::err_access_dtor_ivar)
7685                              << Context.getBaseElementType(Field->getType()));
7686        }
7687      }
7688    }
7689    ObjCImplementation->setIvarInitializers(Context,
7690                                            AllToInit.data(), AllToInit.size());
7691  }
7692}
7693