SemaDeclCXX.cpp revision ad26b7376b6fd71d14b9b893eaa1ba79e029c830
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28#include <set>
29
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// CheckDefaultArgumentVisitor
34//===----------------------------------------------------------------------===//
35
36namespace {
37  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
38  /// the default argument of a parameter to determine whether it
39  /// contains any ill-formed subexpressions. For example, this will
40  /// diagnose the use of local variables or parameters within the
41  /// default argument expression.
42  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
43    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
44    Expr *DefaultArg;
45    Sema *S;
46
47  public:
48    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
49      : DefaultArg(defarg), S(s) {}
50
51    bool VisitExpr(Expr *Node);
52    bool VisitDeclRefExpr(DeclRefExpr *DRE);
53    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
54  };
55
56  /// VisitExpr - Visit all of the children of this expression.
57  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
58    bool IsInvalid = false;
59    for (Stmt::child_iterator I = Node->child_begin(),
60         E = Node->child_end(); I != E; ++I)
61      IsInvalid |= Visit(*I);
62    return IsInvalid;
63  }
64
65  /// VisitDeclRefExpr - Visit a reference to a declaration, to
66  /// determine whether this declaration can be used in the default
67  /// argument expression.
68  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
69    NamedDecl *Decl = DRE->getDecl();
70    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
71      // C++ [dcl.fct.default]p9
72      //   Default arguments are evaluated each time the function is
73      //   called. The order of evaluation of function arguments is
74      //   unspecified. Consequently, parameters of a function shall not
75      //   be used in default argument expressions, even if they are not
76      //   evaluated. Parameters of a function declared before a default
77      //   argument expression are in scope and can hide namespace and
78      //   class member names.
79      return S->Diag(DRE->getSourceRange().getBegin(),
80                     diag::err_param_default_argument_references_param)
81         << Param->getDeclName() << DefaultArg->getSourceRange();
82    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p7
84      //   Local variables shall not be used in default argument
85      //   expressions.
86      if (VDecl->isBlockVarDecl())
87        return S->Diag(DRE->getSourceRange().getBegin(),
88                       diag::err_param_default_argument_references_local)
89          << VDecl->getDeclName() << DefaultArg->getSourceRange();
90    }
91
92    return false;
93  }
94
95  /// VisitCXXThisExpr - Visit a C++ "this" expression.
96  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
97    // C++ [dcl.fct.default]p8:
98    //   The keyword this shall not be used in a default argument of a
99    //   member function.
100    return S->Diag(ThisE->getSourceRange().getBegin(),
101                   diag::err_param_default_argument_references_this)
102               << ThisE->getSourceRange();
103  }
104}
105
106bool
107Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
108                              SourceLocation EqualLoc) {
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //   For non-template functions, default arguments can be added in
246  //   later declarations of a function in the same
247  //   scope. Declarations in different scopes have completely
248  //   distinct sets of default arguments. That is, declarations in
249  //   inner scopes do not acquire default arguments from
250  //   declarations in outer scopes, and vice versa. In a given
251  //   function declaration, all parameters subsequent to a
252  //   parameter with a default argument shall have default
253  //   arguments supplied in this or previous declarations. A
254  //   default argument shall not be redefined by a later
255  //   declaration (not even to the same value).
256  //
257  // C++ [dcl.fct.default]p6:
258  //   Except for member functions of class templates, the default arguments
259  //   in a member function definition that appears outside of the class
260  //   definition are added to the set of default arguments provided by the
261  //   member function declaration in the class definition.
262  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
263    ParmVarDecl *OldParam = Old->getParamDecl(p);
264    ParmVarDecl *NewParam = New->getParamDecl(p);
265
266    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
267      // FIXME: If the parameter doesn't have an identifier then the location
268      // points to the '=' which means that the fixit hint won't remove any
269      // extra spaces between the type and the '='.
270      SourceLocation Begin = NewParam->getLocation();
271      if (IdentifierInfo *II = NewParam->getIdentifier())
272        Begin = Begin.getFileLocWithOffset(II->getLength());
273
274      Diag(NewParam->getLocation(),
275           diag::err_param_default_argument_redefinition)
276        << NewParam->getDefaultArgRange()
277        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
278                                                        NewParam->getLocEnd()));
279
280      // Look for the function declaration where the default argument was
281      // actually written, which may be a declaration prior to Old.
282      for (FunctionDecl *Older = Old->getPreviousDeclaration();
283           Older; Older = Older->getPreviousDeclaration()) {
284        if (!Older->getParamDecl(p)->hasDefaultArg())
285          break;
286
287        OldParam = Older->getParamDecl(p);
288      }
289
290      Diag(OldParam->getLocation(), diag::note_previous_definition)
291        << OldParam->getDefaultArgRange();
292      Invalid = true;
293    } else if (OldParam->hasDefaultArg()) {
294      // Merge the old default argument into the new parameter
295      if (OldParam->hasUninstantiatedDefaultArg())
296        NewParam->setUninstantiatedDefaultArg(
297                                      OldParam->getUninstantiatedDefaultArg());
298      else
299        NewParam->setDefaultArg(OldParam->getDefaultArg());
300    } else if (NewParam->hasDefaultArg()) {
301      if (New->getDescribedFunctionTemplate()) {
302        // Paragraph 4, quoted above, only applies to non-template functions.
303        Diag(NewParam->getLocation(),
304             diag::err_param_default_argument_template_redecl)
305          << NewParam->getDefaultArgRange();
306        Diag(Old->getLocation(), diag::note_template_prev_declaration)
307          << false;
308      } else if (New->getTemplateSpecializationKind()
309                   != TSK_ImplicitInstantiation &&
310                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
311        // C++ [temp.expr.spec]p21:
312        //   Default function arguments shall not be specified in a declaration
313        //   or a definition for one of the following explicit specializations:
314        //     - the explicit specialization of a function template;
315        //     - the explicit specialization of a member function template;
316        //     - the explicit specialization of a member function of a class
317        //       template where the class template specialization to which the
318        //       member function specialization belongs is implicitly
319        //       instantiated.
320        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
321          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
322          << New->getDeclName()
323          << NewParam->getDefaultArgRange();
324      } else if (New->getDeclContext()->isDependentContext()) {
325        // C++ [dcl.fct.default]p6 (DR217):
326        //   Default arguments for a member function of a class template shall
327        //   be specified on the initial declaration of the member function
328        //   within the class template.
329        //
330        // Reading the tea leaves a bit in DR217 and its reference to DR205
331        // leads me to the conclusion that one cannot add default function
332        // arguments for an out-of-line definition of a member function of a
333        // dependent type.
334        int WhichKind = 2;
335        if (CXXRecordDecl *Record
336              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
337          if (Record->getDescribedClassTemplate())
338            WhichKind = 0;
339          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
340            WhichKind = 1;
341          else
342            WhichKind = 2;
343        }
344
345        Diag(NewParam->getLocation(),
346             diag::err_param_default_argument_member_template_redecl)
347          << WhichKind
348          << NewParam->getDefaultArgRange();
349      }
350    }
351  }
352
353  if (CheckEquivalentExceptionSpec(
354          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
355          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
356    Invalid = true;
357  }
358
359  return Invalid;
360}
361
362/// CheckCXXDefaultArguments - Verify that the default arguments for a
363/// function declaration are well-formed according to C++
364/// [dcl.fct.default].
365void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
366  unsigned NumParams = FD->getNumParams();
367  unsigned p;
368
369  // Find first parameter with a default argument
370  for (p = 0; p < NumParams; ++p) {
371    ParmVarDecl *Param = FD->getParamDecl(p);
372    if (Param->hasDefaultArg())
373      break;
374  }
375
376  // C++ [dcl.fct.default]p4:
377  //   In a given function declaration, all parameters
378  //   subsequent to a parameter with a default argument shall
379  //   have default arguments supplied in this or previous
380  //   declarations. A default argument shall not be redefined
381  //   by a later declaration (not even to the same value).
382  unsigned LastMissingDefaultArg = 0;
383  for (; p < NumParams; ++p) {
384    ParmVarDecl *Param = FD->getParamDecl(p);
385    if (!Param->hasDefaultArg()) {
386      if (Param->isInvalidDecl())
387        /* We already complained about this parameter. */;
388      else if (Param->getIdentifier())
389        Diag(Param->getLocation(),
390             diag::err_param_default_argument_missing_name)
391          << Param->getIdentifier();
392      else
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing);
395
396      LastMissingDefaultArg = p;
397    }
398  }
399
400  if (LastMissingDefaultArg > 0) {
401    // Some default arguments were missing. Clear out all of the
402    // default arguments up to (and including) the last missing
403    // default argument, so that we leave the function parameters
404    // in a semantically valid state.
405    for (p = 0; p <= LastMissingDefaultArg; ++p) {
406      ParmVarDecl *Param = FD->getParamDecl(p);
407      if (Param->hasDefaultArg()) {
408        if (!Param->hasUnparsedDefaultArg())
409          Param->getDefaultArg()->Destroy(Context);
410        Param->setDefaultArg(0);
411      }
412    }
413  }
414}
415
416/// isCurrentClassName - Determine whether the identifier II is the
417/// name of the class type currently being defined. In the case of
418/// nested classes, this will only return true if II is the name of
419/// the innermost class.
420bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
421                              const CXXScopeSpec *SS) {
422  CXXRecordDecl *CurDecl;
423  if (SS && SS->isSet() && !SS->isInvalid()) {
424    DeclContext *DC = computeDeclContext(*SS, true);
425    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
426  } else
427    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
428
429  if (CurDecl)
430    return &II == CurDecl->getIdentifier();
431  else
432    return false;
433}
434
435/// \brief Check the validity of a C++ base class specifier.
436///
437/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
438/// and returns NULL otherwise.
439CXXBaseSpecifier *
440Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
441                         SourceRange SpecifierRange,
442                         bool Virtual, AccessSpecifier Access,
443                         QualType BaseType,
444                         SourceLocation BaseLoc) {
445  // C++ [class.union]p1:
446  //   A union shall not have base classes.
447  if (Class->isUnion()) {
448    Diag(Class->getLocation(), diag::err_base_clause_on_union)
449      << SpecifierRange;
450    return 0;
451  }
452
453  if (BaseType->isDependentType())
454    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
455                                Class->getTagKind() == RecordDecl::TK_class,
456                                Access, BaseType);
457
458  // Base specifiers must be record types.
459  if (!BaseType->isRecordType()) {
460    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
461    return 0;
462  }
463
464  // C++ [class.union]p1:
465  //   A union shall not be used as a base class.
466  if (BaseType->isUnionType()) {
467    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
468    return 0;
469  }
470
471  // C++ [class.derived]p2:
472  //   The class-name in a base-specifier shall not be an incompletely
473  //   defined class.
474  if (RequireCompleteType(BaseLoc, BaseType,
475                          PDiag(diag::err_incomplete_base_class)
476                            << SpecifierRange))
477    return 0;
478
479  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
480  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
481  assert(BaseDecl && "Record type has no declaration");
482  BaseDecl = BaseDecl->getDefinition(Context);
483  assert(BaseDecl && "Base type is not incomplete, but has no definition");
484  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
485  assert(CXXBaseDecl && "Base type is not a C++ type");
486  if (!CXXBaseDecl->isEmpty())
487    Class->setEmpty(false);
488  if (CXXBaseDecl->isPolymorphic())
489    Class->setPolymorphic(true);
490
491  // C++ [dcl.init.aggr]p1:
492  //   An aggregate is [...] a class with [...] no base classes [...].
493  Class->setAggregate(false);
494  Class->setPOD(false);
495
496  if (Virtual) {
497    // C++ [class.ctor]p5:
498    //   A constructor is trivial if its class has no virtual base classes.
499    Class->setHasTrivialConstructor(false);
500
501    // C++ [class.copy]p6:
502    //   A copy constructor is trivial if its class has no virtual base classes.
503    Class->setHasTrivialCopyConstructor(false);
504
505    // C++ [class.copy]p11:
506    //   A copy assignment operator is trivial if its class has no virtual
507    //   base classes.
508    Class->setHasTrivialCopyAssignment(false);
509
510    // C++0x [meta.unary.prop] is_empty:
511    //    T is a class type, but not a union type, with ... no virtual base
512    //    classes
513    Class->setEmpty(false);
514  } else {
515    // C++ [class.ctor]p5:
516    //   A constructor is trivial if all the direct base classes of its
517    //   class have trivial constructors.
518    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
519      Class->setHasTrivialConstructor(false);
520
521    // C++ [class.copy]p6:
522    //   A copy constructor is trivial if all the direct base classes of its
523    //   class have trivial copy constructors.
524    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
525      Class->setHasTrivialCopyConstructor(false);
526
527    // C++ [class.copy]p11:
528    //   A copy assignment operator is trivial if all the direct base classes
529    //   of its class have trivial copy assignment operators.
530    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
531      Class->setHasTrivialCopyAssignment(false);
532  }
533
534  // C++ [class.ctor]p3:
535  //   A destructor is trivial if all the direct base classes of its class
536  //   have trivial destructors.
537  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
538    Class->setHasTrivialDestructor(false);
539
540  // Create the base specifier.
541  // FIXME: Allocate via ASTContext?
542  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
543                              Class->getTagKind() == RecordDecl::TK_class,
544                              Access, BaseType);
545}
546
547/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
548/// one entry in the base class list of a class specifier, for
549/// example:
550///    class foo : public bar, virtual private baz {
551/// 'public bar' and 'virtual private baz' are each base-specifiers.
552Sema::BaseResult
553Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
554                         bool Virtual, AccessSpecifier Access,
555                         TypeTy *basetype, SourceLocation BaseLoc) {
556  if (!classdecl)
557    return true;
558
559  AdjustDeclIfTemplate(classdecl);
560  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
561  QualType BaseType = GetTypeFromParser(basetype);
562  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
563                                                      Virtual, Access,
564                                                      BaseType, BaseLoc))
565    return BaseSpec;
566
567  return true;
568}
569
570/// \brief Performs the actual work of attaching the given base class
571/// specifiers to a C++ class.
572bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
573                                unsigned NumBases) {
574 if (NumBases == 0)
575    return false;
576
577  // Used to keep track of which base types we have already seen, so
578  // that we can properly diagnose redundant direct base types. Note
579  // that the key is always the unqualified canonical type of the base
580  // class.
581  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
582
583  // Copy non-redundant base specifiers into permanent storage.
584  unsigned NumGoodBases = 0;
585  bool Invalid = false;
586  for (unsigned idx = 0; idx < NumBases; ++idx) {
587    QualType NewBaseType
588      = Context.getCanonicalType(Bases[idx]->getType());
589    NewBaseType = NewBaseType.getUnqualifiedType();
590
591    if (KnownBaseTypes[NewBaseType]) {
592      // C++ [class.mi]p3:
593      //   A class shall not be specified as a direct base class of a
594      //   derived class more than once.
595      Diag(Bases[idx]->getSourceRange().getBegin(),
596           diag::err_duplicate_base_class)
597        << KnownBaseTypes[NewBaseType]->getType()
598        << Bases[idx]->getSourceRange();
599
600      // Delete the duplicate base class specifier; we're going to
601      // overwrite its pointer later.
602      Context.Deallocate(Bases[idx]);
603
604      Invalid = true;
605    } else {
606      // Okay, add this new base class.
607      KnownBaseTypes[NewBaseType] = Bases[idx];
608      Bases[NumGoodBases++] = Bases[idx];
609    }
610  }
611
612  // Attach the remaining base class specifiers to the derived class.
613  Class->setBases(Context, Bases, NumGoodBases);
614
615  // Delete the remaining (good) base class specifiers, since their
616  // data has been copied into the CXXRecordDecl.
617  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
618    Context.Deallocate(Bases[idx]);
619
620  return Invalid;
621}
622
623/// ActOnBaseSpecifiers - Attach the given base specifiers to the
624/// class, after checking whether there are any duplicate base
625/// classes.
626void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
627                               unsigned NumBases) {
628  if (!ClassDecl || !Bases || !NumBases)
629    return;
630
631  AdjustDeclIfTemplate(ClassDecl);
632  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
633                       (CXXBaseSpecifier**)(Bases), NumBases);
634}
635
636/// \brief Determine whether the type \p Derived is a C++ class that is
637/// derived from the type \p Base.
638bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
639  if (!getLangOptions().CPlusPlus)
640    return false;
641
642  const RecordType *DerivedRT = Derived->getAs<RecordType>();
643  if (!DerivedRT)
644    return false;
645
646  const RecordType *BaseRT = Base->getAs<RecordType>();
647  if (!BaseRT)
648    return false;
649
650  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
651  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
652  return DerivedRD->isDerivedFrom(BaseRD);
653}
654
655/// \brief Determine whether the type \p Derived is a C++ class that is
656/// derived from the type \p Base.
657bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
658  if (!getLangOptions().CPlusPlus)
659    return false;
660
661  const RecordType *DerivedRT = Derived->getAs<RecordType>();
662  if (!DerivedRT)
663    return false;
664
665  const RecordType *BaseRT = Base->getAs<RecordType>();
666  if (!BaseRT)
667    return false;
668
669  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
670  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
671  return DerivedRD->isDerivedFrom(BaseRD, Paths);
672}
673
674/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
675/// conversion (where Derived and Base are class types) is
676/// well-formed, meaning that the conversion is unambiguous (and
677/// that all of the base classes are accessible). Returns true
678/// and emits a diagnostic if the code is ill-formed, returns false
679/// otherwise. Loc is the location where this routine should point to
680/// if there is an error, and Range is the source range to highlight
681/// if there is an error.
682bool
683Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
684                                   unsigned InaccessibleBaseID,
685                                   unsigned AmbigiousBaseConvID,
686                                   SourceLocation Loc, SourceRange Range,
687                                   DeclarationName Name) {
688  // First, determine whether the path from Derived to Base is
689  // ambiguous. This is slightly more expensive than checking whether
690  // the Derived to Base conversion exists, because here we need to
691  // explore multiple paths to determine if there is an ambiguity.
692  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
693                     /*DetectVirtual=*/false);
694  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
695  assert(DerivationOkay &&
696         "Can only be used with a derived-to-base conversion");
697  (void)DerivationOkay;
698
699  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
700    // Check that the base class can be accessed.
701    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
702                                Name);
703  }
704
705  // We know that the derived-to-base conversion is ambiguous, and
706  // we're going to produce a diagnostic. Perform the derived-to-base
707  // search just one more time to compute all of the possible paths so
708  // that we can print them out. This is more expensive than any of
709  // the previous derived-to-base checks we've done, but at this point
710  // performance isn't as much of an issue.
711  Paths.clear();
712  Paths.setRecordingPaths(true);
713  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
714  assert(StillOkay && "Can only be used with a derived-to-base conversion");
715  (void)StillOkay;
716
717  // Build up a textual representation of the ambiguous paths, e.g.,
718  // D -> B -> A, that will be used to illustrate the ambiguous
719  // conversions in the diagnostic. We only print one of the paths
720  // to each base class subobject.
721  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
722
723  Diag(Loc, AmbigiousBaseConvID)
724  << Derived << Base << PathDisplayStr << Range << Name;
725  return true;
726}
727
728bool
729Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
730                                   SourceLocation Loc, SourceRange Range) {
731  return CheckDerivedToBaseConversion(Derived, Base,
732                                      diag::err_conv_to_inaccessible_base,
733                                      diag::err_ambiguous_derived_to_base_conv,
734                                      Loc, Range, DeclarationName());
735}
736
737
738/// @brief Builds a string representing ambiguous paths from a
739/// specific derived class to different subobjects of the same base
740/// class.
741///
742/// This function builds a string that can be used in error messages
743/// to show the different paths that one can take through the
744/// inheritance hierarchy to go from the derived class to different
745/// subobjects of a base class. The result looks something like this:
746/// @code
747/// struct D -> struct B -> struct A
748/// struct D -> struct C -> struct A
749/// @endcode
750std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
751  std::string PathDisplayStr;
752  std::set<unsigned> DisplayedPaths;
753  for (CXXBasePaths::paths_iterator Path = Paths.begin();
754       Path != Paths.end(); ++Path) {
755    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
756      // We haven't displayed a path to this particular base
757      // class subobject yet.
758      PathDisplayStr += "\n    ";
759      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
760      for (CXXBasePath::const_iterator Element = Path->begin();
761           Element != Path->end(); ++Element)
762        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
763    }
764  }
765
766  return PathDisplayStr;
767}
768
769//===----------------------------------------------------------------------===//
770// C++ class member Handling
771//===----------------------------------------------------------------------===//
772
773/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
774/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
775/// bitfield width if there is one and 'InitExpr' specifies the initializer if
776/// any.
777Sema::DeclPtrTy
778Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
779                               MultiTemplateParamsArg TemplateParameterLists,
780                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
781  const DeclSpec &DS = D.getDeclSpec();
782  DeclarationName Name = GetNameForDeclarator(D);
783  Expr *BitWidth = static_cast<Expr*>(BW);
784  Expr *Init = static_cast<Expr*>(InitExpr);
785  SourceLocation Loc = D.getIdentifierLoc();
786
787  bool isFunc = D.isFunctionDeclarator();
788
789  assert(!DS.isFriendSpecified());
790
791  // C++ 9.2p6: A member shall not be declared to have automatic storage
792  // duration (auto, register) or with the extern storage-class-specifier.
793  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
794  // data members and cannot be applied to names declared const or static,
795  // and cannot be applied to reference members.
796  switch (DS.getStorageClassSpec()) {
797    case DeclSpec::SCS_unspecified:
798    case DeclSpec::SCS_typedef:
799    case DeclSpec::SCS_static:
800      // FALL THROUGH.
801      break;
802    case DeclSpec::SCS_mutable:
803      if (isFunc) {
804        if (DS.getStorageClassSpecLoc().isValid())
805          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
806        else
807          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
808
809        // FIXME: It would be nicer if the keyword was ignored only for this
810        // declarator. Otherwise we could get follow-up errors.
811        D.getMutableDeclSpec().ClearStorageClassSpecs();
812      } else {
813        QualType T = GetTypeForDeclarator(D, S);
814        diag::kind err = static_cast<diag::kind>(0);
815        if (T->isReferenceType())
816          err = diag::err_mutable_reference;
817        else if (T.isConstQualified())
818          err = diag::err_mutable_const;
819        if (err != 0) {
820          if (DS.getStorageClassSpecLoc().isValid())
821            Diag(DS.getStorageClassSpecLoc(), err);
822          else
823            Diag(DS.getThreadSpecLoc(), err);
824          // FIXME: It would be nicer if the keyword was ignored only for this
825          // declarator. Otherwise we could get follow-up errors.
826          D.getMutableDeclSpec().ClearStorageClassSpecs();
827        }
828      }
829      break;
830    default:
831      if (DS.getStorageClassSpecLoc().isValid())
832        Diag(DS.getStorageClassSpecLoc(),
833             diag::err_storageclass_invalid_for_member);
834      else
835        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
836      D.getMutableDeclSpec().ClearStorageClassSpecs();
837  }
838
839  if (!isFunc &&
840      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
841      D.getNumTypeObjects() == 0) {
842    // Check also for this case:
843    //
844    // typedef int f();
845    // f a;
846    //
847    QualType TDType = GetTypeFromParser(DS.getTypeRep());
848    isFunc = TDType->isFunctionType();
849  }
850
851  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
852                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
853                      !isFunc);
854
855  Decl *Member;
856  if (isInstField) {
857    // FIXME: Check for template parameters!
858    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
859                         AS);
860    assert(Member && "HandleField never returns null");
861  } else {
862    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
863               .getAs<Decl>();
864    if (!Member) {
865      if (BitWidth) DeleteExpr(BitWidth);
866      return DeclPtrTy();
867    }
868
869    // Non-instance-fields can't have a bitfield.
870    if (BitWidth) {
871      if (Member->isInvalidDecl()) {
872        // don't emit another diagnostic.
873      } else if (isa<VarDecl>(Member)) {
874        // C++ 9.6p3: A bit-field shall not be a static member.
875        // "static member 'A' cannot be a bit-field"
876        Diag(Loc, diag::err_static_not_bitfield)
877          << Name << BitWidth->getSourceRange();
878      } else if (isa<TypedefDecl>(Member)) {
879        // "typedef member 'x' cannot be a bit-field"
880        Diag(Loc, diag::err_typedef_not_bitfield)
881          << Name << BitWidth->getSourceRange();
882      } else {
883        // A function typedef ("typedef int f(); f a;").
884        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
885        Diag(Loc, diag::err_not_integral_type_bitfield)
886          << Name << cast<ValueDecl>(Member)->getType()
887          << BitWidth->getSourceRange();
888      }
889
890      DeleteExpr(BitWidth);
891      BitWidth = 0;
892      Member->setInvalidDecl();
893    }
894
895    Member->setAccess(AS);
896
897    // If we have declared a member function template, set the access of the
898    // templated declaration as well.
899    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
900      FunTmpl->getTemplatedDecl()->setAccess(AS);
901  }
902
903  assert((Name || isInstField) && "No identifier for non-field ?");
904
905  if (Init)
906    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
907  if (Deleted) // FIXME: Source location is not very good.
908    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
909
910  if (isInstField) {
911    FieldCollector->Add(cast<FieldDecl>(Member));
912    return DeclPtrTy();
913  }
914  return DeclPtrTy::make(Member);
915}
916
917/// ActOnMemInitializer - Handle a C++ member initializer.
918Sema::MemInitResult
919Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
920                          Scope *S,
921                          const CXXScopeSpec &SS,
922                          IdentifierInfo *MemberOrBase,
923                          TypeTy *TemplateTypeTy,
924                          SourceLocation IdLoc,
925                          SourceLocation LParenLoc,
926                          ExprTy **Args, unsigned NumArgs,
927                          SourceLocation *CommaLocs,
928                          SourceLocation RParenLoc) {
929  if (!ConstructorD)
930    return true;
931
932  AdjustDeclIfTemplate(ConstructorD);
933
934  CXXConstructorDecl *Constructor
935    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
936  if (!Constructor) {
937    // The user wrote a constructor initializer on a function that is
938    // not a C++ constructor. Ignore the error for now, because we may
939    // have more member initializers coming; we'll diagnose it just
940    // once in ActOnMemInitializers.
941    return true;
942  }
943
944  CXXRecordDecl *ClassDecl = Constructor->getParent();
945
946  // C++ [class.base.init]p2:
947  //   Names in a mem-initializer-id are looked up in the scope of the
948  //   constructor’s class and, if not found in that scope, are looked
949  //   up in the scope containing the constructor’s
950  //   definition. [Note: if the constructor’s class contains a member
951  //   with the same name as a direct or virtual base class of the
952  //   class, a mem-initializer-id naming the member or base class and
953  //   composed of a single identifier refers to the class member. A
954  //   mem-initializer-id for the hidden base class may be specified
955  //   using a qualified name. ]
956  if (!SS.getScopeRep() && !TemplateTypeTy) {
957    // Look for a member, first.
958    FieldDecl *Member = 0;
959    DeclContext::lookup_result Result
960      = ClassDecl->lookup(MemberOrBase);
961    if (Result.first != Result.second)
962      Member = dyn_cast<FieldDecl>(*Result.first);
963
964    // FIXME: Handle members of an anonymous union.
965
966    if (Member)
967      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
968                                    RParenLoc);
969  }
970  // It didn't name a member, so see if it names a class.
971  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
972                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
973  if (!BaseTy)
974    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
975      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
976
977  QualType BaseType = GetTypeFromParser(BaseTy);
978
979  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
980                              RParenLoc, ClassDecl);
981}
982
983/// Checks an initializer expression for use of uninitialized fields, such as
984/// containing the field that is being initialized. Returns true if there is an
985/// uninitialized field was used an updates the SourceLocation parameter; false
986/// otherwise.
987static bool InitExprContainsUninitializedFields(const Stmt* S,
988                                                const FieldDecl* LhsField,
989                                                SourceLocation* L) {
990  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
991  if (ME) {
992    const NamedDecl* RhsField = ME->getMemberDecl();
993    if (RhsField == LhsField) {
994      // Initializing a field with itself. Throw a warning.
995      // But wait; there are exceptions!
996      // Exception #1:  The field may not belong to this record.
997      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
998      const Expr* base = ME->getBase();
999      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1000        // Even though the field matches, it does not belong to this record.
1001        return false;
1002      }
1003      // None of the exceptions triggered; return true to indicate an
1004      // uninitialized field was used.
1005      *L = ME->getMemberLoc();
1006      return true;
1007    }
1008  }
1009  bool found = false;
1010  for (Stmt::const_child_iterator it = S->child_begin();
1011       it != S->child_end() && found == false;
1012       ++it) {
1013    if (isa<CallExpr>(S)) {
1014      // Do not descend into function calls or constructors, as the use
1015      // of an uninitialized field may be valid. One would have to inspect
1016      // the contents of the function/ctor to determine if it is safe or not.
1017      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1018      // may be safe, depending on what the function/ctor does.
1019      continue;
1020    }
1021    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1022  }
1023  return found;
1024}
1025
1026Sema::MemInitResult
1027Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1028                             unsigned NumArgs, SourceLocation IdLoc,
1029                             SourceLocation RParenLoc) {
1030  // Diagnose value-uses of fields to initialize themselves, e.g.
1031  //   foo(foo)
1032  // where foo is not also a parameter to the constructor.
1033  // TODO: implement -Wuninitialized and fold this into that framework.
1034  for (unsigned i = 0; i < NumArgs; ++i) {
1035    SourceLocation L;
1036    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1037      // FIXME: Return true in the case when other fields are used before being
1038      // uninitialized. For example, let this field be the i'th field. When
1039      // initializing the i'th field, throw a warning if any of the >= i'th
1040      // fields are used, as they are not yet initialized.
1041      // Right now we are only handling the case where the i'th field uses
1042      // itself in its initializer.
1043      Diag(L, diag::warn_field_is_uninit);
1044    }
1045  }
1046
1047  bool HasDependentArg = false;
1048  for (unsigned i = 0; i < NumArgs; i++)
1049    HasDependentArg |= Args[i]->isTypeDependent();
1050
1051  CXXConstructorDecl *C = 0;
1052  QualType FieldType = Member->getType();
1053  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1054    FieldType = Array->getElementType();
1055  if (FieldType->isDependentType()) {
1056    // Can't check init for dependent type.
1057  } else if (FieldType->isRecordType()) {
1058    // Member is a record (struct/union/class), so pass the initializer
1059    // arguments down to the record's constructor.
1060    if (!HasDependentArg) {
1061      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1062
1063      C = PerformInitializationByConstructor(FieldType,
1064                                             MultiExprArg(*this,
1065                                                          (void**)Args,
1066                                                          NumArgs),
1067                                             IdLoc,
1068                                             SourceRange(IdLoc, RParenLoc),
1069                                             Member->getDeclName(), IK_Direct,
1070                                             ConstructorArgs);
1071
1072      if (C) {
1073        // Take over the constructor arguments as our own.
1074        NumArgs = ConstructorArgs.size();
1075        Args = (Expr **)ConstructorArgs.take();
1076      }
1077    }
1078  } else if (NumArgs != 1 && NumArgs != 0) {
1079    // The member type is not a record type (or an array of record
1080    // types), so it can be only be default- or copy-initialized.
1081    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1082                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1083  } else if (!HasDependentArg) {
1084    Expr *NewExp;
1085    if (NumArgs == 0) {
1086      if (FieldType->isReferenceType()) {
1087        Diag(IdLoc, diag::err_null_intialized_reference_member)
1088              << Member->getDeclName();
1089        return Diag(Member->getLocation(), diag::note_declared_at);
1090      }
1091      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1092      NumArgs = 1;
1093    }
1094    else
1095      NewExp = (Expr*)Args[0];
1096    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1097      return true;
1098    Args[0] = NewExp;
1099  }
1100  // FIXME: Perform direct initialization of the member.
1101  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1102                                                  NumArgs, C, IdLoc, RParenLoc);
1103}
1104
1105Sema::MemInitResult
1106Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1107                           unsigned NumArgs, SourceLocation IdLoc,
1108                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1109  bool HasDependentArg = false;
1110  for (unsigned i = 0; i < NumArgs; i++)
1111    HasDependentArg |= Args[i]->isTypeDependent();
1112
1113  if (!BaseType->isDependentType()) {
1114    if (!BaseType->isRecordType())
1115      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1116        << BaseType << SourceRange(IdLoc, RParenLoc);
1117
1118    // C++ [class.base.init]p2:
1119    //   [...] Unless the mem-initializer-id names a nonstatic data
1120    //   member of the constructor’s class or a direct or virtual base
1121    //   of that class, the mem-initializer is ill-formed. A
1122    //   mem-initializer-list can initialize a base class using any
1123    //   name that denotes that base class type.
1124
1125    // First, check for a direct base class.
1126    const CXXBaseSpecifier *DirectBaseSpec = 0;
1127    for (CXXRecordDecl::base_class_const_iterator Base =
1128         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1129      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1130          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1131        // We found a direct base of this type. That's what we're
1132        // initializing.
1133        DirectBaseSpec = &*Base;
1134        break;
1135      }
1136    }
1137
1138    // Check for a virtual base class.
1139    // FIXME: We might be able to short-circuit this if we know in advance that
1140    // there are no virtual bases.
1141    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1142    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1143      // We haven't found a base yet; search the class hierarchy for a
1144      // virtual base class.
1145      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1146                         /*DetectVirtual=*/false);
1147      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1148        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1149             Path != Paths.end(); ++Path) {
1150          if (Path->back().Base->isVirtual()) {
1151            VirtualBaseSpec = Path->back().Base;
1152            break;
1153          }
1154        }
1155      }
1156    }
1157
1158    // C++ [base.class.init]p2:
1159    //   If a mem-initializer-id is ambiguous because it designates both
1160    //   a direct non-virtual base class and an inherited virtual base
1161    //   class, the mem-initializer is ill-formed.
1162    if (DirectBaseSpec && VirtualBaseSpec)
1163      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1164        << BaseType << SourceRange(IdLoc, RParenLoc);
1165    // C++ [base.class.init]p2:
1166    // Unless the mem-initializer-id names a nonstatic data membeer of the
1167    // constructor's class ot a direst or virtual base of that class, the
1168    // mem-initializer is ill-formed.
1169    if (!DirectBaseSpec && !VirtualBaseSpec)
1170      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1171      << BaseType << ClassDecl->getNameAsCString()
1172      << SourceRange(IdLoc, RParenLoc);
1173  }
1174
1175  CXXConstructorDecl *C = 0;
1176  if (!BaseType->isDependentType() && !HasDependentArg) {
1177    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1178                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1179    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1180
1181    C = PerformInitializationByConstructor(BaseType,
1182                                           MultiExprArg(*this,
1183                                                        (void**)Args, NumArgs),
1184                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1185                                           Name, IK_Direct,
1186                                           ConstructorArgs);
1187    if (C) {
1188      // Take over the constructor arguments as our own.
1189      NumArgs = ConstructorArgs.size();
1190      Args = (Expr **)ConstructorArgs.take();
1191    }
1192  }
1193
1194  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1195                                                  NumArgs, C, IdLoc, RParenLoc);
1196}
1197
1198bool
1199Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1200                              CXXBaseOrMemberInitializer **Initializers,
1201                              unsigned NumInitializers,
1202                              bool IsImplicitConstructor) {
1203  // We need to build the initializer AST according to order of construction
1204  // and not what user specified in the Initializers list.
1205  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1206  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1207  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1208  bool HasDependentBaseInit = false;
1209  bool HadError = false;
1210
1211  for (unsigned i = 0; i < NumInitializers; i++) {
1212    CXXBaseOrMemberInitializer *Member = Initializers[i];
1213    if (Member->isBaseInitializer()) {
1214      if (Member->getBaseClass()->isDependentType())
1215        HasDependentBaseInit = true;
1216      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1217    } else {
1218      AllBaseFields[Member->getMember()] = Member;
1219    }
1220  }
1221
1222  if (HasDependentBaseInit) {
1223    // FIXME. This does not preserve the ordering of the initializers.
1224    // Try (with -Wreorder)
1225    // template<class X> struct A {};
1226    // template<class X> struct B : A<X> {
1227    //   B() : x1(10), A<X>() {}
1228    //   int x1;
1229    // };
1230    // B<int> x;
1231    // On seeing one dependent type, we should essentially exit this routine
1232    // while preserving user-declared initializer list. When this routine is
1233    // called during instantiatiation process, this routine will rebuild the
1234    // ordered initializer list correctly.
1235
1236    // If we have a dependent base initialization, we can't determine the
1237    // association between initializers and bases; just dump the known
1238    // initializers into the list, and don't try to deal with other bases.
1239    for (unsigned i = 0; i < NumInitializers; i++) {
1240      CXXBaseOrMemberInitializer *Member = Initializers[i];
1241      if (Member->isBaseInitializer())
1242        AllToInit.push_back(Member);
1243    }
1244  } else {
1245    // Push virtual bases before others.
1246    for (CXXRecordDecl::base_class_iterator VBase =
1247         ClassDecl->vbases_begin(),
1248         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1249      if (VBase->getType()->isDependentType())
1250        continue;
1251      if (CXXBaseOrMemberInitializer *Value =
1252          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1253        CXXRecordDecl *BaseDecl =
1254          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1255        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1256        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1257          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1258        AllToInit.push_back(Value);
1259      }
1260      else {
1261        CXXRecordDecl *VBaseDecl =
1262        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1263        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1264        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1265        if (!Ctor) {
1266          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1267            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1268            << 0 << VBase->getType();
1269          Diag(VBaseDecl->getLocation(), diag::note_previous_class_decl)
1270            << Context.getTagDeclType(VBaseDecl);
1271          HadError = true;
1272          continue;
1273        }
1274
1275        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1276        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1277                                    Constructor->getLocation(), CtorArgs))
1278          continue;
1279
1280        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1281
1282        CXXBaseOrMemberInitializer *Member =
1283          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1284                                                   CtorArgs.takeAs<Expr>(),
1285                                                   CtorArgs.size(), Ctor,
1286                                                   SourceLocation(),
1287                                                   SourceLocation());
1288        AllToInit.push_back(Member);
1289      }
1290    }
1291
1292    for (CXXRecordDecl::base_class_iterator Base =
1293         ClassDecl->bases_begin(),
1294         E = ClassDecl->bases_end(); Base != E; ++Base) {
1295      // Virtuals are in the virtual base list and already constructed.
1296      if (Base->isVirtual())
1297        continue;
1298      // Skip dependent types.
1299      if (Base->getType()->isDependentType())
1300        continue;
1301      if (CXXBaseOrMemberInitializer *Value =
1302          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1303        CXXRecordDecl *BaseDecl =
1304          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1305        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1306        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1307          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1308        AllToInit.push_back(Value);
1309      }
1310      else {
1311        CXXRecordDecl *BaseDecl =
1312          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1313        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1314         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1315        if (!Ctor) {
1316          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1317            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1318            << 0 << Base->getType();
1319          Diag(BaseDecl->getLocation(), diag::note_previous_class_decl)
1320            << Context.getTagDeclType(BaseDecl);
1321          HadError = true;
1322          continue;
1323        }
1324
1325        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1326        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1327                                     Constructor->getLocation(), CtorArgs))
1328          continue;
1329
1330        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1331
1332        CXXBaseOrMemberInitializer *Member =
1333          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1334                                                   CtorArgs.takeAs<Expr>(),
1335                                                   CtorArgs.size(), Ctor,
1336                                                   SourceLocation(),
1337                                                   SourceLocation());
1338        AllToInit.push_back(Member);
1339      }
1340    }
1341  }
1342
1343  // non-static data members.
1344  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1345       E = ClassDecl->field_end(); Field != E; ++Field) {
1346    if ((*Field)->isAnonymousStructOrUnion()) {
1347      if (const RecordType *FieldClassType =
1348          Field->getType()->getAs<RecordType>()) {
1349        CXXRecordDecl *FieldClassDecl
1350        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1351        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1352            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1353          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1354            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1355            // set to the anonymous union data member used in the initializer
1356            // list.
1357            Value->setMember(*Field);
1358            Value->setAnonUnionMember(*FA);
1359            AllToInit.push_back(Value);
1360            break;
1361          }
1362        }
1363      }
1364      continue;
1365    }
1366    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1367      QualType FT = (*Field)->getType();
1368      if (const RecordType* RT = FT->getAs<RecordType>()) {
1369        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1370        assert(FieldRecDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1371        if (CXXConstructorDecl *Ctor =
1372              FieldRecDecl->getDefaultConstructor(Context))
1373          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1374      }
1375      AllToInit.push_back(Value);
1376      continue;
1377    }
1378
1379    if ((*Field)->getType()->isDependentType())
1380      continue;
1381
1382    QualType FT = Context.getBaseElementType((*Field)->getType());
1383    if (const RecordType* RT = FT->getAs<RecordType>()) {
1384      CXXConstructorDecl *Ctor =
1385        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1386      if (!Ctor) {
1387        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1388          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1389          << 1 << (*Field)->getDeclName();
1390        Diag(Field->getLocation(), diag::note_field_decl);
1391        Diag(RT->getDecl()->getLocation(), diag::note_previous_class_decl)
1392          << Context.getTagDeclType(RT->getDecl());
1393        HadError = true;
1394        continue;
1395      }
1396
1397      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1398      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1399                                  Constructor->getLocation(), CtorArgs))
1400        continue;
1401
1402      CXXBaseOrMemberInitializer *Member =
1403        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1404                                                 CtorArgs.size(), Ctor,
1405                                                 SourceLocation(),
1406                                                 SourceLocation());
1407
1408      AllToInit.push_back(Member);
1409      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1410      if (FT.isConstQualified() && Ctor->isTrivial()) {
1411        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1412          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1413          << 1 << (*Field)->getDeclName();
1414        Diag((*Field)->getLocation(), diag::note_declared_at);
1415        HadError = true;
1416      }
1417    }
1418    else if (FT->isReferenceType()) {
1419      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1420        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1421        << 0 << (*Field)->getDeclName();
1422      Diag((*Field)->getLocation(), diag::note_declared_at);
1423      HadError = true;
1424    }
1425    else if (FT.isConstQualified()) {
1426      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1427        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1428        << 1 << (*Field)->getDeclName();
1429      Diag((*Field)->getLocation(), diag::note_declared_at);
1430      HadError = true;
1431    }
1432  }
1433
1434  NumInitializers = AllToInit.size();
1435  if (NumInitializers > 0) {
1436    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1437    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1438      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1439
1440    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1441    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1442      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1443  }
1444
1445  return HadError;
1446}
1447
1448static void *GetKeyForTopLevelField(FieldDecl *Field) {
1449  // For anonymous unions, use the class declaration as the key.
1450  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1451    if (RT->getDecl()->isAnonymousStructOrUnion())
1452      return static_cast<void *>(RT->getDecl());
1453  }
1454  return static_cast<void *>(Field);
1455}
1456
1457static void *GetKeyForBase(QualType BaseType) {
1458  if (const RecordType *RT = BaseType->getAs<RecordType>())
1459    return (void *)RT;
1460
1461  assert(0 && "Unexpected base type!");
1462  return 0;
1463}
1464
1465static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1466                             bool MemberMaybeAnon = false) {
1467  // For fields injected into the class via declaration of an anonymous union,
1468  // use its anonymous union class declaration as the unique key.
1469  if (Member->isMemberInitializer()) {
1470    FieldDecl *Field = Member->getMember();
1471
1472    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1473    // data member of the class. Data member used in the initializer list is
1474    // in AnonUnionMember field.
1475    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1476      Field = Member->getAnonUnionMember();
1477    if (Field->getDeclContext()->isRecord()) {
1478      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1479      if (RD->isAnonymousStructOrUnion())
1480        return static_cast<void *>(RD);
1481    }
1482    return static_cast<void *>(Field);
1483  }
1484
1485  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1486}
1487
1488/// ActOnMemInitializers - Handle the member initializers for a constructor.
1489void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1490                                SourceLocation ColonLoc,
1491                                MemInitTy **MemInits, unsigned NumMemInits) {
1492  if (!ConstructorDecl)
1493    return;
1494
1495  AdjustDeclIfTemplate(ConstructorDecl);
1496
1497  CXXConstructorDecl *Constructor
1498    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1499
1500  if (!Constructor) {
1501    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1502    return;
1503  }
1504
1505  if (!Constructor->isDependentContext()) {
1506    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1507    bool err = false;
1508    for (unsigned i = 0; i < NumMemInits; i++) {
1509      CXXBaseOrMemberInitializer *Member =
1510        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1511      void *KeyToMember = GetKeyForMember(Member);
1512      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1513      if (!PrevMember) {
1514        PrevMember = Member;
1515        continue;
1516      }
1517      if (FieldDecl *Field = Member->getMember())
1518        Diag(Member->getSourceLocation(),
1519             diag::error_multiple_mem_initialization)
1520        << Field->getNameAsString();
1521      else {
1522        Type *BaseClass = Member->getBaseClass();
1523        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1524        Diag(Member->getSourceLocation(),
1525             diag::error_multiple_base_initialization)
1526          << QualType(BaseClass, 0);
1527      }
1528      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1529        << 0;
1530      err = true;
1531    }
1532
1533    if (err)
1534      return;
1535  }
1536
1537  SetBaseOrMemberInitializers(Constructor,
1538                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1539                      NumMemInits, false);
1540
1541  if (Constructor->isDependentContext())
1542    return;
1543
1544  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1545      Diagnostic::Ignored &&
1546      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1547      Diagnostic::Ignored)
1548    return;
1549
1550  // Also issue warning if order of ctor-initializer list does not match order
1551  // of 1) base class declarations and 2) order of non-static data members.
1552  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1553
1554  CXXRecordDecl *ClassDecl
1555    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1556  // Push virtual bases before others.
1557  for (CXXRecordDecl::base_class_iterator VBase =
1558       ClassDecl->vbases_begin(),
1559       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1560    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1561
1562  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1563       E = ClassDecl->bases_end(); Base != E; ++Base) {
1564    // Virtuals are alread in the virtual base list and are constructed
1565    // first.
1566    if (Base->isVirtual())
1567      continue;
1568    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1569  }
1570
1571  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1572       E = ClassDecl->field_end(); Field != E; ++Field)
1573    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1574
1575  int Last = AllBaseOrMembers.size();
1576  int curIndex = 0;
1577  CXXBaseOrMemberInitializer *PrevMember = 0;
1578  for (unsigned i = 0; i < NumMemInits; i++) {
1579    CXXBaseOrMemberInitializer *Member =
1580      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1581    void *MemberInCtorList = GetKeyForMember(Member, true);
1582
1583    for (; curIndex < Last; curIndex++)
1584      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1585        break;
1586    if (curIndex == Last) {
1587      assert(PrevMember && "Member not in member list?!");
1588      // Initializer as specified in ctor-initializer list is out of order.
1589      // Issue a warning diagnostic.
1590      if (PrevMember->isBaseInitializer()) {
1591        // Diagnostics is for an initialized base class.
1592        Type *BaseClass = PrevMember->getBaseClass();
1593        Diag(PrevMember->getSourceLocation(),
1594             diag::warn_base_initialized)
1595          << QualType(BaseClass, 0);
1596      } else {
1597        FieldDecl *Field = PrevMember->getMember();
1598        Diag(PrevMember->getSourceLocation(),
1599             diag::warn_field_initialized)
1600          << Field->getNameAsString();
1601      }
1602      // Also the note!
1603      if (FieldDecl *Field = Member->getMember())
1604        Diag(Member->getSourceLocation(),
1605             diag::note_fieldorbase_initialized_here) << 0
1606          << Field->getNameAsString();
1607      else {
1608        Type *BaseClass = Member->getBaseClass();
1609        Diag(Member->getSourceLocation(),
1610             diag::note_fieldorbase_initialized_here) << 1
1611          << QualType(BaseClass, 0);
1612      }
1613      for (curIndex = 0; curIndex < Last; curIndex++)
1614        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1615          break;
1616    }
1617    PrevMember = Member;
1618  }
1619}
1620
1621void
1622Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1623  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1624  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1625
1626  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1627       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1628    if (VBase->getType()->isDependentType())
1629      continue;
1630    // Skip over virtual bases which have trivial destructors.
1631    CXXRecordDecl *BaseClassDecl
1632      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1633    if (BaseClassDecl->hasTrivialDestructor())
1634      continue;
1635    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1636      MarkDeclarationReferenced(Destructor->getLocation(),
1637                                const_cast<CXXDestructorDecl*>(Dtor));
1638
1639    uintptr_t Member =
1640    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1641      | CXXDestructorDecl::VBASE;
1642    AllToDestruct.push_back(Member);
1643  }
1644  for (CXXRecordDecl::base_class_iterator Base =
1645       ClassDecl->bases_begin(),
1646       E = ClassDecl->bases_end(); Base != E; ++Base) {
1647    if (Base->isVirtual())
1648      continue;
1649    if (Base->getType()->isDependentType())
1650      continue;
1651    // Skip over virtual bases which have trivial destructors.
1652    CXXRecordDecl *BaseClassDecl
1653    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1654    if (BaseClassDecl->hasTrivialDestructor())
1655      continue;
1656    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1657      MarkDeclarationReferenced(Destructor->getLocation(),
1658                                const_cast<CXXDestructorDecl*>(Dtor));
1659    uintptr_t Member =
1660    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1661      | CXXDestructorDecl::DRCTNONVBASE;
1662    AllToDestruct.push_back(Member);
1663  }
1664
1665  // non-static data members.
1666  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1667       E = ClassDecl->field_end(); Field != E; ++Field) {
1668    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1669
1670    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1671      // Skip over virtual bases which have trivial destructors.
1672      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1673      if (FieldClassDecl->hasTrivialDestructor())
1674        continue;
1675      if (const CXXDestructorDecl *Dtor =
1676            FieldClassDecl->getDestructor(Context))
1677        MarkDeclarationReferenced(Destructor->getLocation(),
1678                                  const_cast<CXXDestructorDecl*>(Dtor));
1679      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1680      AllToDestruct.push_back(Member);
1681    }
1682  }
1683
1684  unsigned NumDestructions = AllToDestruct.size();
1685  if (NumDestructions > 0) {
1686    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1687    uintptr_t *BaseOrMemberDestructions =
1688      new (Context) uintptr_t [NumDestructions];
1689    // Insert in reverse order.
1690    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1691      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1692    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1693  }
1694}
1695
1696void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1697  if (!CDtorDecl)
1698    return;
1699
1700  AdjustDeclIfTemplate(CDtorDecl);
1701
1702  if (CXXConstructorDecl *Constructor
1703      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1704    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1705}
1706
1707namespace {
1708  /// PureVirtualMethodCollector - traverses a class and its superclasses
1709  /// and determines if it has any pure virtual methods.
1710  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1711    ASTContext &Context;
1712
1713  public:
1714    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1715
1716  private:
1717    MethodList Methods;
1718
1719    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1720
1721  public:
1722    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1723      : Context(Ctx) {
1724
1725      MethodList List;
1726      Collect(RD, List);
1727
1728      // Copy the temporary list to methods, and make sure to ignore any
1729      // null entries.
1730      for (size_t i = 0, e = List.size(); i != e; ++i) {
1731        if (List[i])
1732          Methods.push_back(List[i]);
1733      }
1734    }
1735
1736    bool empty() const { return Methods.empty(); }
1737
1738    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1739    MethodList::const_iterator methods_end() { return Methods.end(); }
1740  };
1741
1742  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1743                                           MethodList& Methods) {
1744    // First, collect the pure virtual methods for the base classes.
1745    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1746         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1747      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1748        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1749        if (BaseDecl && BaseDecl->isAbstract())
1750          Collect(BaseDecl, Methods);
1751      }
1752    }
1753
1754    // Next, zero out any pure virtual methods that this class overrides.
1755    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1756
1757    MethodSetTy OverriddenMethods;
1758    size_t MethodsSize = Methods.size();
1759
1760    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1761         i != e; ++i) {
1762      // Traverse the record, looking for methods.
1763      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1764        // If the method is pure virtual, add it to the methods vector.
1765        if (MD->isPure())
1766          Methods.push_back(MD);
1767
1768        // Record all the overridden methods in our set.
1769        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1770             E = MD->end_overridden_methods(); I != E; ++I) {
1771          // Keep track of the overridden methods.
1772          OverriddenMethods.insert(*I);
1773        }
1774      }
1775    }
1776
1777    // Now go through the methods and zero out all the ones we know are
1778    // overridden.
1779    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1780      if (OverriddenMethods.count(Methods[i]))
1781        Methods[i] = 0;
1782    }
1783
1784  }
1785}
1786
1787
1788bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1789                                  unsigned DiagID, AbstractDiagSelID SelID,
1790                                  const CXXRecordDecl *CurrentRD) {
1791  if (SelID == -1)
1792    return RequireNonAbstractType(Loc, T,
1793                                  PDiag(DiagID), CurrentRD);
1794  else
1795    return RequireNonAbstractType(Loc, T,
1796                                  PDiag(DiagID) << SelID, CurrentRD);
1797}
1798
1799bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1800                                  const PartialDiagnostic &PD,
1801                                  const CXXRecordDecl *CurrentRD) {
1802  if (!getLangOptions().CPlusPlus)
1803    return false;
1804
1805  if (const ArrayType *AT = Context.getAsArrayType(T))
1806    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1807                                  CurrentRD);
1808
1809  if (const PointerType *PT = T->getAs<PointerType>()) {
1810    // Find the innermost pointer type.
1811    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1812      PT = T;
1813
1814    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1815      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1816  }
1817
1818  const RecordType *RT = T->getAs<RecordType>();
1819  if (!RT)
1820    return false;
1821
1822  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1823  if (!RD)
1824    return false;
1825
1826  if (CurrentRD && CurrentRD != RD)
1827    return false;
1828
1829  if (!RD->isAbstract())
1830    return false;
1831
1832  Diag(Loc, PD) << RD->getDeclName();
1833
1834  // Check if we've already emitted the list of pure virtual functions for this
1835  // class.
1836  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1837    return true;
1838
1839  PureVirtualMethodCollector Collector(Context, RD);
1840
1841  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1842       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1843    const CXXMethodDecl *MD = *I;
1844
1845    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1846      MD->getDeclName();
1847  }
1848
1849  if (!PureVirtualClassDiagSet)
1850    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1851  PureVirtualClassDiagSet->insert(RD);
1852
1853  return true;
1854}
1855
1856namespace {
1857  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1858    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1859    Sema &SemaRef;
1860    CXXRecordDecl *AbstractClass;
1861
1862    bool VisitDeclContext(const DeclContext *DC) {
1863      bool Invalid = false;
1864
1865      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1866           E = DC->decls_end(); I != E; ++I)
1867        Invalid |= Visit(*I);
1868
1869      return Invalid;
1870    }
1871
1872  public:
1873    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1874      : SemaRef(SemaRef), AbstractClass(ac) {
1875        Visit(SemaRef.Context.getTranslationUnitDecl());
1876    }
1877
1878    bool VisitFunctionDecl(const FunctionDecl *FD) {
1879      if (FD->isThisDeclarationADefinition()) {
1880        // No need to do the check if we're in a definition, because it requires
1881        // that the return/param types are complete.
1882        // because that requires
1883        return VisitDeclContext(FD);
1884      }
1885
1886      // Check the return type.
1887      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1888      bool Invalid =
1889        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1890                                       diag::err_abstract_type_in_decl,
1891                                       Sema::AbstractReturnType,
1892                                       AbstractClass);
1893
1894      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1895           E = FD->param_end(); I != E; ++I) {
1896        const ParmVarDecl *VD = *I;
1897        Invalid |=
1898          SemaRef.RequireNonAbstractType(VD->getLocation(),
1899                                         VD->getOriginalType(),
1900                                         diag::err_abstract_type_in_decl,
1901                                         Sema::AbstractParamType,
1902                                         AbstractClass);
1903      }
1904
1905      return Invalid;
1906    }
1907
1908    bool VisitDecl(const Decl* D) {
1909      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1910        return VisitDeclContext(DC);
1911
1912      return false;
1913    }
1914  };
1915}
1916
1917void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1918                                             DeclPtrTy TagDecl,
1919                                             SourceLocation LBrac,
1920                                             SourceLocation RBrac) {
1921  if (!TagDecl)
1922    return;
1923
1924  AdjustDeclIfTemplate(TagDecl);
1925  ActOnFields(S, RLoc, TagDecl,
1926              (DeclPtrTy*)FieldCollector->getCurFields(),
1927              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1928
1929  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1930  if (!RD->isAbstract()) {
1931    // Collect all the pure virtual methods and see if this is an abstract
1932    // class after all.
1933    PureVirtualMethodCollector Collector(Context, RD);
1934    if (!Collector.empty())
1935      RD->setAbstract(true);
1936  }
1937
1938  if (RD->isAbstract())
1939    AbstractClassUsageDiagnoser(*this, RD);
1940
1941  if (!RD->isDependentType() && !RD->isInvalidDecl())
1942    AddImplicitlyDeclaredMembersToClass(RD);
1943}
1944
1945/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1946/// special functions, such as the default constructor, copy
1947/// constructor, or destructor, to the given C++ class (C++
1948/// [special]p1).  This routine can only be executed just before the
1949/// definition of the class is complete.
1950void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1951  CanQualType ClassType
1952    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1953
1954  // FIXME: Implicit declarations have exception specifications, which are
1955  // the union of the specifications of the implicitly called functions.
1956
1957  if (!ClassDecl->hasUserDeclaredConstructor()) {
1958    // C++ [class.ctor]p5:
1959    //   A default constructor for a class X is a constructor of class X
1960    //   that can be called without an argument. If there is no
1961    //   user-declared constructor for class X, a default constructor is
1962    //   implicitly declared. An implicitly-declared default constructor
1963    //   is an inline public member of its class.
1964    DeclarationName Name
1965      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1966    CXXConstructorDecl *DefaultCon =
1967      CXXConstructorDecl::Create(Context, ClassDecl,
1968                                 ClassDecl->getLocation(), Name,
1969                                 Context.getFunctionType(Context.VoidTy,
1970                                                         0, 0, false, 0),
1971                                 /*DInfo=*/0,
1972                                 /*isExplicit=*/false,
1973                                 /*isInline=*/true,
1974                                 /*isImplicitlyDeclared=*/true);
1975    DefaultCon->setAccess(AS_public);
1976    DefaultCon->setImplicit();
1977    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1978    ClassDecl->addDecl(DefaultCon);
1979  }
1980
1981  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1982    // C++ [class.copy]p4:
1983    //   If the class definition does not explicitly declare a copy
1984    //   constructor, one is declared implicitly.
1985
1986    // C++ [class.copy]p5:
1987    //   The implicitly-declared copy constructor for a class X will
1988    //   have the form
1989    //
1990    //       X::X(const X&)
1991    //
1992    //   if
1993    bool HasConstCopyConstructor = true;
1994
1995    //     -- each direct or virtual base class B of X has a copy
1996    //        constructor whose first parameter is of type const B& or
1997    //        const volatile B&, and
1998    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1999         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2000      const CXXRecordDecl *BaseClassDecl
2001        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2002      HasConstCopyConstructor
2003        = BaseClassDecl->hasConstCopyConstructor(Context);
2004    }
2005
2006    //     -- for all the nonstatic data members of X that are of a
2007    //        class type M (or array thereof), each such class type
2008    //        has a copy constructor whose first parameter is of type
2009    //        const M& or const volatile M&.
2010    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2011         HasConstCopyConstructor && Field != ClassDecl->field_end();
2012         ++Field) {
2013      QualType FieldType = (*Field)->getType();
2014      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2015        FieldType = Array->getElementType();
2016      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2017        const CXXRecordDecl *FieldClassDecl
2018          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2019        HasConstCopyConstructor
2020          = FieldClassDecl->hasConstCopyConstructor(Context);
2021      }
2022    }
2023
2024    //   Otherwise, the implicitly declared copy constructor will have
2025    //   the form
2026    //
2027    //       X::X(X&)
2028    QualType ArgType = ClassType;
2029    if (HasConstCopyConstructor)
2030      ArgType = ArgType.withConst();
2031    ArgType = Context.getLValueReferenceType(ArgType);
2032
2033    //   An implicitly-declared copy constructor is an inline public
2034    //   member of its class.
2035    DeclarationName Name
2036      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2037    CXXConstructorDecl *CopyConstructor
2038      = CXXConstructorDecl::Create(Context, ClassDecl,
2039                                   ClassDecl->getLocation(), Name,
2040                                   Context.getFunctionType(Context.VoidTy,
2041                                                           &ArgType, 1,
2042                                                           false, 0),
2043                                   /*DInfo=*/0,
2044                                   /*isExplicit=*/false,
2045                                   /*isInline=*/true,
2046                                   /*isImplicitlyDeclared=*/true);
2047    CopyConstructor->setAccess(AS_public);
2048    CopyConstructor->setImplicit();
2049    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2050
2051    // Add the parameter to the constructor.
2052    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2053                                                 ClassDecl->getLocation(),
2054                                                 /*IdentifierInfo=*/0,
2055                                                 ArgType, /*DInfo=*/0,
2056                                                 VarDecl::None, 0);
2057    CopyConstructor->setParams(Context, &FromParam, 1);
2058    ClassDecl->addDecl(CopyConstructor);
2059  }
2060
2061  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2062    // Note: The following rules are largely analoguous to the copy
2063    // constructor rules. Note that virtual bases are not taken into account
2064    // for determining the argument type of the operator. Note also that
2065    // operators taking an object instead of a reference are allowed.
2066    //
2067    // C++ [class.copy]p10:
2068    //   If the class definition does not explicitly declare a copy
2069    //   assignment operator, one is declared implicitly.
2070    //   The implicitly-defined copy assignment operator for a class X
2071    //   will have the form
2072    //
2073    //       X& X::operator=(const X&)
2074    //
2075    //   if
2076    bool HasConstCopyAssignment = true;
2077
2078    //       -- each direct base class B of X has a copy assignment operator
2079    //          whose parameter is of type const B&, const volatile B& or B,
2080    //          and
2081    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2082         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2083      assert(!Base->getType()->isDependentType() &&
2084            "Cannot generate implicit members for class with dependent bases.");
2085      const CXXRecordDecl *BaseClassDecl
2086        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2087      const CXXMethodDecl *MD = 0;
2088      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2089                                                                     MD);
2090    }
2091
2092    //       -- for all the nonstatic data members of X that are of a class
2093    //          type M (or array thereof), each such class type has a copy
2094    //          assignment operator whose parameter is of type const M&,
2095    //          const volatile M& or M.
2096    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2097         HasConstCopyAssignment && Field != ClassDecl->field_end();
2098         ++Field) {
2099      QualType FieldType = (*Field)->getType();
2100      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2101        FieldType = Array->getElementType();
2102      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2103        const CXXRecordDecl *FieldClassDecl
2104          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2105        const CXXMethodDecl *MD = 0;
2106        HasConstCopyAssignment
2107          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2108      }
2109    }
2110
2111    //   Otherwise, the implicitly declared copy assignment operator will
2112    //   have the form
2113    //
2114    //       X& X::operator=(X&)
2115    QualType ArgType = ClassType;
2116    QualType RetType = Context.getLValueReferenceType(ArgType);
2117    if (HasConstCopyAssignment)
2118      ArgType = ArgType.withConst();
2119    ArgType = Context.getLValueReferenceType(ArgType);
2120
2121    //   An implicitly-declared copy assignment operator is an inline public
2122    //   member of its class.
2123    DeclarationName Name =
2124      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2125    CXXMethodDecl *CopyAssignment =
2126      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2127                            Context.getFunctionType(RetType, &ArgType, 1,
2128                                                    false, 0),
2129                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2130    CopyAssignment->setAccess(AS_public);
2131    CopyAssignment->setImplicit();
2132    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2133    CopyAssignment->setCopyAssignment(true);
2134
2135    // Add the parameter to the operator.
2136    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2137                                                 ClassDecl->getLocation(),
2138                                                 /*IdentifierInfo=*/0,
2139                                                 ArgType, /*DInfo=*/0,
2140                                                 VarDecl::None, 0);
2141    CopyAssignment->setParams(Context, &FromParam, 1);
2142
2143    // Don't call addedAssignmentOperator. There is no way to distinguish an
2144    // implicit from an explicit assignment operator.
2145    ClassDecl->addDecl(CopyAssignment);
2146  }
2147
2148  if (!ClassDecl->hasUserDeclaredDestructor()) {
2149    // C++ [class.dtor]p2:
2150    //   If a class has no user-declared destructor, a destructor is
2151    //   declared implicitly. An implicitly-declared destructor is an
2152    //   inline public member of its class.
2153    DeclarationName Name
2154      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2155    CXXDestructorDecl *Destructor
2156      = CXXDestructorDecl::Create(Context, ClassDecl,
2157                                  ClassDecl->getLocation(), Name,
2158                                  Context.getFunctionType(Context.VoidTy,
2159                                                          0, 0, false, 0),
2160                                  /*isInline=*/true,
2161                                  /*isImplicitlyDeclared=*/true);
2162    Destructor->setAccess(AS_public);
2163    Destructor->setImplicit();
2164    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2165    ClassDecl->addDecl(Destructor);
2166  }
2167}
2168
2169void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2170  Decl *D = TemplateD.getAs<Decl>();
2171  if (!D)
2172    return;
2173
2174  TemplateParameterList *Params = 0;
2175  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2176    Params = Template->getTemplateParameters();
2177  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2178           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2179    Params = PartialSpec->getTemplateParameters();
2180  else
2181    return;
2182
2183  for (TemplateParameterList::iterator Param = Params->begin(),
2184                                    ParamEnd = Params->end();
2185       Param != ParamEnd; ++Param) {
2186    NamedDecl *Named = cast<NamedDecl>(*Param);
2187    if (Named->getDeclName()) {
2188      S->AddDecl(DeclPtrTy::make(Named));
2189      IdResolver.AddDecl(Named);
2190    }
2191  }
2192}
2193
2194/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2195/// parsing a top-level (non-nested) C++ class, and we are now
2196/// parsing those parts of the given Method declaration that could
2197/// not be parsed earlier (C++ [class.mem]p2), such as default
2198/// arguments. This action should enter the scope of the given
2199/// Method declaration as if we had just parsed the qualified method
2200/// name. However, it should not bring the parameters into scope;
2201/// that will be performed by ActOnDelayedCXXMethodParameter.
2202void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2203  if (!MethodD)
2204    return;
2205
2206  AdjustDeclIfTemplate(MethodD);
2207
2208  CXXScopeSpec SS;
2209  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2210  QualType ClassTy
2211    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2212  SS.setScopeRep(
2213    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2214  ActOnCXXEnterDeclaratorScope(S, SS);
2215}
2216
2217/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2218/// C++ method declaration. We're (re-)introducing the given
2219/// function parameter into scope for use in parsing later parts of
2220/// the method declaration. For example, we could see an
2221/// ActOnParamDefaultArgument event for this parameter.
2222void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2223  if (!ParamD)
2224    return;
2225
2226  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2227
2228  // If this parameter has an unparsed default argument, clear it out
2229  // to make way for the parsed default argument.
2230  if (Param->hasUnparsedDefaultArg())
2231    Param->setDefaultArg(0);
2232
2233  S->AddDecl(DeclPtrTy::make(Param));
2234  if (Param->getDeclName())
2235    IdResolver.AddDecl(Param);
2236}
2237
2238/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2239/// processing the delayed method declaration for Method. The method
2240/// declaration is now considered finished. There may be a separate
2241/// ActOnStartOfFunctionDef action later (not necessarily
2242/// immediately!) for this method, if it was also defined inside the
2243/// class body.
2244void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2245  if (!MethodD)
2246    return;
2247
2248  AdjustDeclIfTemplate(MethodD);
2249
2250  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2251  CXXScopeSpec SS;
2252  QualType ClassTy
2253    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2254  SS.setScopeRep(
2255    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2256  ActOnCXXExitDeclaratorScope(S, SS);
2257
2258  // Now that we have our default arguments, check the constructor
2259  // again. It could produce additional diagnostics or affect whether
2260  // the class has implicitly-declared destructors, among other
2261  // things.
2262  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2263    CheckConstructor(Constructor);
2264
2265  // Check the default arguments, which we may have added.
2266  if (!Method->isInvalidDecl())
2267    CheckCXXDefaultArguments(Method);
2268}
2269
2270/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2271/// the well-formedness of the constructor declarator @p D with type @p
2272/// R. If there are any errors in the declarator, this routine will
2273/// emit diagnostics and set the invalid bit to true.  In any case, the type
2274/// will be updated to reflect a well-formed type for the constructor and
2275/// returned.
2276QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2277                                          FunctionDecl::StorageClass &SC) {
2278  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2279
2280  // C++ [class.ctor]p3:
2281  //   A constructor shall not be virtual (10.3) or static (9.4). A
2282  //   constructor can be invoked for a const, volatile or const
2283  //   volatile object. A constructor shall not be declared const,
2284  //   volatile, or const volatile (9.3.2).
2285  if (isVirtual) {
2286    if (!D.isInvalidType())
2287      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2288        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2289        << SourceRange(D.getIdentifierLoc());
2290    D.setInvalidType();
2291  }
2292  if (SC == FunctionDecl::Static) {
2293    if (!D.isInvalidType())
2294      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2295        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2296        << SourceRange(D.getIdentifierLoc());
2297    D.setInvalidType();
2298    SC = FunctionDecl::None;
2299  }
2300
2301  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2302  if (FTI.TypeQuals != 0) {
2303    if (FTI.TypeQuals & Qualifiers::Const)
2304      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2305        << "const" << SourceRange(D.getIdentifierLoc());
2306    if (FTI.TypeQuals & Qualifiers::Volatile)
2307      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2308        << "volatile" << SourceRange(D.getIdentifierLoc());
2309    if (FTI.TypeQuals & Qualifiers::Restrict)
2310      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2311        << "restrict" << SourceRange(D.getIdentifierLoc());
2312  }
2313
2314  // Rebuild the function type "R" without any type qualifiers (in
2315  // case any of the errors above fired) and with "void" as the
2316  // return type, since constructors don't have return types. We
2317  // *always* have to do this, because GetTypeForDeclarator will
2318  // put in a result type of "int" when none was specified.
2319  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2320  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2321                                 Proto->getNumArgs(),
2322                                 Proto->isVariadic(), 0);
2323}
2324
2325/// CheckConstructor - Checks a fully-formed constructor for
2326/// well-formedness, issuing any diagnostics required. Returns true if
2327/// the constructor declarator is invalid.
2328void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2329  CXXRecordDecl *ClassDecl
2330    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2331  if (!ClassDecl)
2332    return Constructor->setInvalidDecl();
2333
2334  // C++ [class.copy]p3:
2335  //   A declaration of a constructor for a class X is ill-formed if
2336  //   its first parameter is of type (optionally cv-qualified) X and
2337  //   either there are no other parameters or else all other
2338  //   parameters have default arguments.
2339  if (!Constructor->isInvalidDecl() &&
2340      ((Constructor->getNumParams() == 1) ||
2341       (Constructor->getNumParams() > 1 &&
2342        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2343    QualType ParamType = Constructor->getParamDecl(0)->getType();
2344    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2345    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2346      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2347      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2348        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2349      Constructor->setInvalidDecl();
2350    }
2351  }
2352
2353  // Notify the class that we've added a constructor.
2354  ClassDecl->addedConstructor(Context, Constructor);
2355}
2356
2357static inline bool
2358FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2359  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2360          FTI.ArgInfo[0].Param &&
2361          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2362}
2363
2364/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2365/// the well-formednes of the destructor declarator @p D with type @p
2366/// R. If there are any errors in the declarator, this routine will
2367/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2368/// will be updated to reflect a well-formed type for the destructor and
2369/// returned.
2370QualType Sema::CheckDestructorDeclarator(Declarator &D,
2371                                         FunctionDecl::StorageClass& SC) {
2372  // C++ [class.dtor]p1:
2373  //   [...] A typedef-name that names a class is a class-name
2374  //   (7.1.3); however, a typedef-name that names a class shall not
2375  //   be used as the identifier in the declarator for a destructor
2376  //   declaration.
2377  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2378  if (isa<TypedefType>(DeclaratorType)) {
2379    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2380      << DeclaratorType;
2381    D.setInvalidType();
2382  }
2383
2384  // C++ [class.dtor]p2:
2385  //   A destructor is used to destroy objects of its class type. A
2386  //   destructor takes no parameters, and no return type can be
2387  //   specified for it (not even void). The address of a destructor
2388  //   shall not be taken. A destructor shall not be static. A
2389  //   destructor can be invoked for a const, volatile or const
2390  //   volatile object. A destructor shall not be declared const,
2391  //   volatile or const volatile (9.3.2).
2392  if (SC == FunctionDecl::Static) {
2393    if (!D.isInvalidType())
2394      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2395        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2396        << SourceRange(D.getIdentifierLoc());
2397    SC = FunctionDecl::None;
2398    D.setInvalidType();
2399  }
2400  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2401    // Destructors don't have return types, but the parser will
2402    // happily parse something like:
2403    //
2404    //   class X {
2405    //     float ~X();
2406    //   };
2407    //
2408    // The return type will be eliminated later.
2409    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2410      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2411      << SourceRange(D.getIdentifierLoc());
2412  }
2413
2414  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2415  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2416    if (FTI.TypeQuals & Qualifiers::Const)
2417      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2418        << "const" << SourceRange(D.getIdentifierLoc());
2419    if (FTI.TypeQuals & Qualifiers::Volatile)
2420      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2421        << "volatile" << SourceRange(D.getIdentifierLoc());
2422    if (FTI.TypeQuals & Qualifiers::Restrict)
2423      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2424        << "restrict" << SourceRange(D.getIdentifierLoc());
2425    D.setInvalidType();
2426  }
2427
2428  // Make sure we don't have any parameters.
2429  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2430    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2431
2432    // Delete the parameters.
2433    FTI.freeArgs();
2434    D.setInvalidType();
2435  }
2436
2437  // Make sure the destructor isn't variadic.
2438  if (FTI.isVariadic) {
2439    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2440    D.setInvalidType();
2441  }
2442
2443  // Rebuild the function type "R" without any type qualifiers or
2444  // parameters (in case any of the errors above fired) and with
2445  // "void" as the return type, since destructors don't have return
2446  // types. We *always* have to do this, because GetTypeForDeclarator
2447  // will put in a result type of "int" when none was specified.
2448  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2449}
2450
2451/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2452/// well-formednes of the conversion function declarator @p D with
2453/// type @p R. If there are any errors in the declarator, this routine
2454/// will emit diagnostics and return true. Otherwise, it will return
2455/// false. Either way, the type @p R will be updated to reflect a
2456/// well-formed type for the conversion operator.
2457void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2458                                     FunctionDecl::StorageClass& SC) {
2459  // C++ [class.conv.fct]p1:
2460  //   Neither parameter types nor return type can be specified. The
2461  //   type of a conversion function (8.3.5) is "function taking no
2462  //   parameter returning conversion-type-id."
2463  if (SC == FunctionDecl::Static) {
2464    if (!D.isInvalidType())
2465      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2466        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2467        << SourceRange(D.getIdentifierLoc());
2468    D.setInvalidType();
2469    SC = FunctionDecl::None;
2470  }
2471  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2472    // Conversion functions don't have return types, but the parser will
2473    // happily parse something like:
2474    //
2475    //   class X {
2476    //     float operator bool();
2477    //   };
2478    //
2479    // The return type will be changed later anyway.
2480    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2481      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2482      << SourceRange(D.getIdentifierLoc());
2483  }
2484
2485  // Make sure we don't have any parameters.
2486  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2487    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2488
2489    // Delete the parameters.
2490    D.getTypeObject(0).Fun.freeArgs();
2491    D.setInvalidType();
2492  }
2493
2494  // Make sure the conversion function isn't variadic.
2495  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2496    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2497    D.setInvalidType();
2498  }
2499
2500  // C++ [class.conv.fct]p4:
2501  //   The conversion-type-id shall not represent a function type nor
2502  //   an array type.
2503  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2504  if (ConvType->isArrayType()) {
2505    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2506    ConvType = Context.getPointerType(ConvType);
2507    D.setInvalidType();
2508  } else if (ConvType->isFunctionType()) {
2509    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2510    ConvType = Context.getPointerType(ConvType);
2511    D.setInvalidType();
2512  }
2513
2514  // Rebuild the function type "R" without any parameters (in case any
2515  // of the errors above fired) and with the conversion type as the
2516  // return type.
2517  R = Context.getFunctionType(ConvType, 0, 0, false,
2518                              R->getAs<FunctionProtoType>()->getTypeQuals());
2519
2520  // C++0x explicit conversion operators.
2521  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2522    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2523         diag::warn_explicit_conversion_functions)
2524      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2525}
2526
2527/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2528/// the declaration of the given C++ conversion function. This routine
2529/// is responsible for recording the conversion function in the C++
2530/// class, if possible.
2531Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2532  assert(Conversion && "Expected to receive a conversion function declaration");
2533
2534  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2535
2536  // Make sure we aren't redeclaring the conversion function.
2537  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2538
2539  // C++ [class.conv.fct]p1:
2540  //   [...] A conversion function is never used to convert a
2541  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2542  //   same object type (or a reference to it), to a (possibly
2543  //   cv-qualified) base class of that type (or a reference to it),
2544  //   or to (possibly cv-qualified) void.
2545  // FIXME: Suppress this warning if the conversion function ends up being a
2546  // virtual function that overrides a virtual function in a base class.
2547  QualType ClassType
2548    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2549  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2550    ConvType = ConvTypeRef->getPointeeType();
2551  if (ConvType->isRecordType()) {
2552    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2553    if (ConvType == ClassType)
2554      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2555        << ClassType;
2556    else if (IsDerivedFrom(ClassType, ConvType))
2557      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2558        <<  ClassType << ConvType;
2559  } else if (ConvType->isVoidType()) {
2560    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2561      << ClassType << ConvType;
2562  }
2563
2564  if (Conversion->getPreviousDeclaration()) {
2565    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2566    if (FunctionTemplateDecl *ConversionTemplate
2567          = Conversion->getDescribedFunctionTemplate())
2568      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2569    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2570    for (OverloadedFunctionDecl::function_iterator
2571           Conv = Conversions->function_begin(),
2572           ConvEnd = Conversions->function_end();
2573         Conv != ConvEnd; ++Conv) {
2574      if (*Conv == ExpectedPrevDecl) {
2575        *Conv = Conversion;
2576        return DeclPtrTy::make(Conversion);
2577      }
2578    }
2579    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2580  } else if (FunctionTemplateDecl *ConversionTemplate
2581               = Conversion->getDescribedFunctionTemplate())
2582    ClassDecl->addConversionFunction(ConversionTemplate);
2583  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2584    ClassDecl->addConversionFunction(Conversion);
2585
2586  return DeclPtrTy::make(Conversion);
2587}
2588
2589//===----------------------------------------------------------------------===//
2590// Namespace Handling
2591//===----------------------------------------------------------------------===//
2592
2593/// ActOnStartNamespaceDef - This is called at the start of a namespace
2594/// definition.
2595Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2596                                             SourceLocation IdentLoc,
2597                                             IdentifierInfo *II,
2598                                             SourceLocation LBrace) {
2599  NamespaceDecl *Namespc =
2600      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2601  Namespc->setLBracLoc(LBrace);
2602
2603  Scope *DeclRegionScope = NamespcScope->getParent();
2604
2605  if (II) {
2606    // C++ [namespace.def]p2:
2607    // The identifier in an original-namespace-definition shall not have been
2608    // previously defined in the declarative region in which the
2609    // original-namespace-definition appears. The identifier in an
2610    // original-namespace-definition is the name of the namespace. Subsequently
2611    // in that declarative region, it is treated as an original-namespace-name.
2612
2613    NamedDecl *PrevDecl
2614      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2615
2616    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2617      // This is an extended namespace definition.
2618      // Attach this namespace decl to the chain of extended namespace
2619      // definitions.
2620      OrigNS->setNextNamespace(Namespc);
2621      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2622
2623      // Remove the previous declaration from the scope.
2624      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2625        IdResolver.RemoveDecl(OrigNS);
2626        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2627      }
2628    } else if (PrevDecl) {
2629      // This is an invalid name redefinition.
2630      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2631       << Namespc->getDeclName();
2632      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2633      Namespc->setInvalidDecl();
2634      // Continue on to push Namespc as current DeclContext and return it.
2635    } else if (II->isStr("std") &&
2636               CurContext->getLookupContext()->isTranslationUnit()) {
2637      // This is the first "real" definition of the namespace "std", so update
2638      // our cache of the "std" namespace to point at this definition.
2639      if (StdNamespace) {
2640        // We had already defined a dummy namespace "std". Link this new
2641        // namespace definition to the dummy namespace "std".
2642        StdNamespace->setNextNamespace(Namespc);
2643        StdNamespace->setLocation(IdentLoc);
2644        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2645      }
2646
2647      // Make our StdNamespace cache point at the first real definition of the
2648      // "std" namespace.
2649      StdNamespace = Namespc;
2650    }
2651
2652    PushOnScopeChains(Namespc, DeclRegionScope);
2653  } else {
2654    // Anonymous namespaces.
2655
2656    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2657    //   behaves as if it were replaced by
2658    //     namespace unique { /* empty body */ }
2659    //     using namespace unique;
2660    //     namespace unique { namespace-body }
2661    //   where all occurrences of 'unique' in a translation unit are
2662    //   replaced by the same identifier and this identifier differs
2663    //   from all other identifiers in the entire program.
2664
2665    // We just create the namespace with an empty name and then add an
2666    // implicit using declaration, just like the standard suggests.
2667    //
2668    // CodeGen enforces the "universally unique" aspect by giving all
2669    // declarations semantically contained within an anonymous
2670    // namespace internal linkage.
2671
2672    assert(Namespc->isAnonymousNamespace());
2673    CurContext->addDecl(Namespc);
2674
2675    UsingDirectiveDecl* UD
2676      = UsingDirectiveDecl::Create(Context, CurContext,
2677                                   /* 'using' */ LBrace,
2678                                   /* 'namespace' */ SourceLocation(),
2679                                   /* qualifier */ SourceRange(),
2680                                   /* NNS */ NULL,
2681                                   /* identifier */ SourceLocation(),
2682                                   Namespc,
2683                                   /* Ancestor */ CurContext);
2684    UD->setImplicit();
2685    CurContext->addDecl(UD);
2686  }
2687
2688  // Although we could have an invalid decl (i.e. the namespace name is a
2689  // redefinition), push it as current DeclContext and try to continue parsing.
2690  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2691  // for the namespace has the declarations that showed up in that particular
2692  // namespace definition.
2693  PushDeclContext(NamespcScope, Namespc);
2694  return DeclPtrTy::make(Namespc);
2695}
2696
2697/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2698/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2699void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2700  Decl *Dcl = D.getAs<Decl>();
2701  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2702  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2703  Namespc->setRBracLoc(RBrace);
2704  PopDeclContext();
2705}
2706
2707Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2708                                          SourceLocation UsingLoc,
2709                                          SourceLocation NamespcLoc,
2710                                          const CXXScopeSpec &SS,
2711                                          SourceLocation IdentLoc,
2712                                          IdentifierInfo *NamespcName,
2713                                          AttributeList *AttrList) {
2714  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2715  assert(NamespcName && "Invalid NamespcName.");
2716  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2717  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2718
2719  UsingDirectiveDecl *UDir = 0;
2720
2721  // Lookup namespace name.
2722  LookupResult R;
2723  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2724  if (R.isAmbiguous()) {
2725    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2726    return DeclPtrTy();
2727  }
2728  if (!R.empty()) {
2729    NamedDecl *NS = R.getFoundDecl();
2730    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2731    // C++ [namespace.udir]p1:
2732    //   A using-directive specifies that the names in the nominated
2733    //   namespace can be used in the scope in which the
2734    //   using-directive appears after the using-directive. During
2735    //   unqualified name lookup (3.4.1), the names appear as if they
2736    //   were declared in the nearest enclosing namespace which
2737    //   contains both the using-directive and the nominated
2738    //   namespace. [Note: in this context, "contains" means "contains
2739    //   directly or indirectly". ]
2740
2741    // Find enclosing context containing both using-directive and
2742    // nominated namespace.
2743    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2744    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2745      CommonAncestor = CommonAncestor->getParent();
2746
2747    UDir = UsingDirectiveDecl::Create(Context,
2748                                      CurContext, UsingLoc,
2749                                      NamespcLoc,
2750                                      SS.getRange(),
2751                                      (NestedNameSpecifier *)SS.getScopeRep(),
2752                                      IdentLoc,
2753                                      cast<NamespaceDecl>(NS),
2754                                      CommonAncestor);
2755    PushUsingDirective(S, UDir);
2756  } else {
2757    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2758  }
2759
2760  // FIXME: We ignore attributes for now.
2761  delete AttrList;
2762  return DeclPtrTy::make(UDir);
2763}
2764
2765void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2766  // If scope has associated entity, then using directive is at namespace
2767  // or translation unit scope. We add UsingDirectiveDecls, into
2768  // it's lookup structure.
2769  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2770    Ctx->addDecl(UDir);
2771  else
2772    // Otherwise it is block-sope. using-directives will affect lookup
2773    // only to the end of scope.
2774    S->PushUsingDirective(DeclPtrTy::make(UDir));
2775}
2776
2777
2778Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2779                                            AccessSpecifier AS,
2780                                            SourceLocation UsingLoc,
2781                                            const CXXScopeSpec &SS,
2782                                            UnqualifiedId &Name,
2783                                            AttributeList *AttrList,
2784                                            bool IsTypeName) {
2785  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2786
2787  switch (Name.getKind()) {
2788  case UnqualifiedId::IK_Identifier:
2789  case UnqualifiedId::IK_OperatorFunctionId:
2790  case UnqualifiedId::IK_ConversionFunctionId:
2791    break;
2792
2793  case UnqualifiedId::IK_ConstructorName:
2794    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2795      << SS.getRange();
2796    return DeclPtrTy();
2797
2798  case UnqualifiedId::IK_DestructorName:
2799    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2800      << SS.getRange();
2801    return DeclPtrTy();
2802
2803  case UnqualifiedId::IK_TemplateId:
2804    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2805      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2806    return DeclPtrTy();
2807  }
2808
2809  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2810  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS,
2811                                        Name.getSourceRange().getBegin(),
2812                                        TargetName, AttrList, IsTypeName);
2813  if (UD) {
2814    PushOnScopeChains(UD, S);
2815    UD->setAccess(AS);
2816  }
2817
2818  return DeclPtrTy::make(UD);
2819}
2820
2821NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2822                                       const CXXScopeSpec &SS,
2823                                       SourceLocation IdentLoc,
2824                                       DeclarationName Name,
2825                                       AttributeList *AttrList,
2826                                       bool IsTypeName) {
2827  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2828  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2829
2830  // FIXME: We ignore attributes for now.
2831  delete AttrList;
2832
2833  if (SS.isEmpty()) {
2834    Diag(IdentLoc, diag::err_using_requires_qualname);
2835    return 0;
2836  }
2837
2838  NestedNameSpecifier *NNS =
2839    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2840
2841  if (isUnknownSpecialization(SS)) {
2842    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2843                                       SS.getRange(), NNS,
2844                                       IdentLoc, Name, IsTypeName);
2845  }
2846
2847  DeclContext *LookupContext = 0;
2848
2849  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2850    // C++0x N2914 [namespace.udecl]p3:
2851    // A using-declaration used as a member-declaration shall refer to a member
2852    // of a base class of the class being defined, shall refer to a member of an
2853    // anonymous union that is a member of a base class of the class being
2854    // defined, or shall refer to an enumerator for an enumeration type that is
2855    // a member of a base class of the class being defined.
2856    const Type *Ty = NNS->getAsType();
2857    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2858      Diag(SS.getRange().getBegin(),
2859           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2860        << NNS << RD->getDeclName();
2861      return 0;
2862    }
2863
2864    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2865    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2866  } else {
2867    // C++0x N2914 [namespace.udecl]p8:
2868    // A using-declaration for a class member shall be a member-declaration.
2869    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2870      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2871        << SS.getRange();
2872      return 0;
2873    }
2874
2875    // C++0x N2914 [namespace.udecl]p9:
2876    // In a using-declaration, a prefix :: refers to the global namespace.
2877    if (NNS->getKind() == NestedNameSpecifier::Global)
2878      LookupContext = Context.getTranslationUnitDecl();
2879    else
2880      LookupContext = NNS->getAsNamespace();
2881  }
2882
2883
2884  // Lookup target name.
2885  LookupResult R;
2886  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2887
2888  if (R.empty()) {
2889    Diag(IdentLoc, diag::err_no_member)
2890      << Name << LookupContext << SS.getRange();
2891    return 0;
2892  }
2893
2894  // FIXME: handle ambiguity?
2895  NamedDecl *ND = R.getAsSingleDecl(Context);
2896
2897  if (IsTypeName && !isa<TypeDecl>(ND)) {
2898    Diag(IdentLoc, diag::err_using_typename_non_type);
2899    return 0;
2900  }
2901
2902  // C++0x N2914 [namespace.udecl]p6:
2903  // A using-declaration shall not name a namespace.
2904  if (isa<NamespaceDecl>(ND)) {
2905    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2906      << SS.getRange();
2907    return 0;
2908  }
2909
2910  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2911                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2912}
2913
2914/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2915/// is a namespace alias, returns the namespace it points to.
2916static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2917  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2918    return AD->getNamespace();
2919  return dyn_cast_or_null<NamespaceDecl>(D);
2920}
2921
2922Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2923                                             SourceLocation NamespaceLoc,
2924                                             SourceLocation AliasLoc,
2925                                             IdentifierInfo *Alias,
2926                                             const CXXScopeSpec &SS,
2927                                             SourceLocation IdentLoc,
2928                                             IdentifierInfo *Ident) {
2929
2930  // Lookup the namespace name.
2931  LookupResult R;
2932  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2933
2934  // Check if we have a previous declaration with the same name.
2935  if (NamedDecl *PrevDecl
2936        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2937    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2938      // We already have an alias with the same name that points to the same
2939      // namespace, so don't create a new one.
2940      if (!R.isAmbiguous() && !R.empty() &&
2941          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2942        return DeclPtrTy();
2943    }
2944
2945    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2946      diag::err_redefinition_different_kind;
2947    Diag(AliasLoc, DiagID) << Alias;
2948    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2949    return DeclPtrTy();
2950  }
2951
2952  if (R.isAmbiguous()) {
2953    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2954    return DeclPtrTy();
2955  }
2956
2957  if (R.empty()) {
2958    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2959    return DeclPtrTy();
2960  }
2961
2962  NamespaceAliasDecl *AliasDecl =
2963    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2964                               Alias, SS.getRange(),
2965                               (NestedNameSpecifier *)SS.getScopeRep(),
2966                               IdentLoc, R.getFoundDecl());
2967
2968  CurContext->addDecl(AliasDecl);
2969  return DeclPtrTy::make(AliasDecl);
2970}
2971
2972void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2973                                            CXXConstructorDecl *Constructor) {
2974  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2975          !Constructor->isUsed()) &&
2976    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2977
2978  CXXRecordDecl *ClassDecl
2979    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2980  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2981
2982  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
2983    Diag(CurrentLocation, diag::note_ctor_synthesized_at)
2984      << Context.getTagDeclType(ClassDecl);
2985    Constructor->setInvalidDecl();
2986  } else {
2987    Constructor->setUsed();
2988  }
2989  return;
2990}
2991
2992void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2993                                    CXXDestructorDecl *Destructor) {
2994  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2995         "DefineImplicitDestructor - call it for implicit default dtor");
2996
2997  CXXRecordDecl *ClassDecl
2998  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2999  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3000  // C++ [class.dtor] p5
3001  // Before the implicitly-declared default destructor for a class is
3002  // implicitly defined, all the implicitly-declared default destructors
3003  // for its base class and its non-static data members shall have been
3004  // implicitly defined.
3005  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3006       E = ClassDecl->bases_end(); Base != E; ++Base) {
3007    CXXRecordDecl *BaseClassDecl
3008      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3009    if (!BaseClassDecl->hasTrivialDestructor()) {
3010      if (CXXDestructorDecl *BaseDtor =
3011          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3012        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3013      else
3014        assert(false &&
3015               "DefineImplicitDestructor - missing dtor in a base class");
3016    }
3017  }
3018
3019  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3020       E = ClassDecl->field_end(); Field != E; ++Field) {
3021    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3022    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3023      FieldType = Array->getElementType();
3024    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3025      CXXRecordDecl *FieldClassDecl
3026        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3027      if (!FieldClassDecl->hasTrivialDestructor()) {
3028        if (CXXDestructorDecl *FieldDtor =
3029            const_cast<CXXDestructorDecl*>(
3030                                        FieldClassDecl->getDestructor(Context)))
3031          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3032        else
3033          assert(false &&
3034          "DefineImplicitDestructor - missing dtor in class of a data member");
3035      }
3036    }
3037  }
3038  Destructor->setUsed();
3039}
3040
3041void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3042                                          CXXMethodDecl *MethodDecl) {
3043  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3044          MethodDecl->getOverloadedOperator() == OO_Equal &&
3045          !MethodDecl->isUsed()) &&
3046         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3047
3048  CXXRecordDecl *ClassDecl
3049    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3050
3051  // C++[class.copy] p12
3052  // Before the implicitly-declared copy assignment operator for a class is
3053  // implicitly defined, all implicitly-declared copy assignment operators
3054  // for its direct base classes and its nonstatic data members shall have
3055  // been implicitly defined.
3056  bool err = false;
3057  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3058       E = ClassDecl->bases_end(); Base != E; ++Base) {
3059    CXXRecordDecl *BaseClassDecl
3060      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3061    if (CXXMethodDecl *BaseAssignOpMethod =
3062          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3063      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3064  }
3065  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3066       E = ClassDecl->field_end(); Field != E; ++Field) {
3067    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3068    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3069      FieldType = Array->getElementType();
3070    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3071      CXXRecordDecl *FieldClassDecl
3072        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3073      if (CXXMethodDecl *FieldAssignOpMethod =
3074          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3075        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3076    } else if (FieldType->isReferenceType()) {
3077      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3078      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3079      Diag(Field->getLocation(), diag::note_declared_at);
3080      Diag(CurrentLocation, diag::note_first_required_here);
3081      err = true;
3082    } else if (FieldType.isConstQualified()) {
3083      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3084      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3085      Diag(Field->getLocation(), diag::note_declared_at);
3086      Diag(CurrentLocation, diag::note_first_required_here);
3087      err = true;
3088    }
3089  }
3090  if (!err)
3091    MethodDecl->setUsed();
3092}
3093
3094CXXMethodDecl *
3095Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3096                              CXXRecordDecl *ClassDecl) {
3097  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3098  QualType RHSType(LHSType);
3099  // If class's assignment operator argument is const/volatile qualified,
3100  // look for operator = (const/volatile B&). Otherwise, look for
3101  // operator = (B&).
3102  RHSType = Context.getCVRQualifiedType(RHSType,
3103                                     ParmDecl->getType().getCVRQualifiers());
3104  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3105                                                          LHSType,
3106                                                          SourceLocation()));
3107  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3108                                                          RHSType,
3109                                                          SourceLocation()));
3110  Expr *Args[2] = { &*LHS, &*RHS };
3111  OverloadCandidateSet CandidateSet;
3112  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3113                              CandidateSet);
3114  OverloadCandidateSet::iterator Best;
3115  if (BestViableFunction(CandidateSet,
3116                         ClassDecl->getLocation(), Best) == OR_Success)
3117    return cast<CXXMethodDecl>(Best->Function);
3118  assert(false &&
3119         "getAssignOperatorMethod - copy assignment operator method not found");
3120  return 0;
3121}
3122
3123void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3124                                   CXXConstructorDecl *CopyConstructor,
3125                                   unsigned TypeQuals) {
3126  assert((CopyConstructor->isImplicit() &&
3127          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3128          !CopyConstructor->isUsed()) &&
3129         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3130
3131  CXXRecordDecl *ClassDecl
3132    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3133  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3134  // C++ [class.copy] p209
3135  // Before the implicitly-declared copy constructor for a class is
3136  // implicitly defined, all the implicitly-declared copy constructors
3137  // for its base class and its non-static data members shall have been
3138  // implicitly defined.
3139  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3140       Base != ClassDecl->bases_end(); ++Base) {
3141    CXXRecordDecl *BaseClassDecl
3142      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3143    if (CXXConstructorDecl *BaseCopyCtor =
3144        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3145      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3146  }
3147  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3148                                  FieldEnd = ClassDecl->field_end();
3149       Field != FieldEnd; ++Field) {
3150    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3151    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3152      FieldType = Array->getElementType();
3153    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3154      CXXRecordDecl *FieldClassDecl
3155        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3156      if (CXXConstructorDecl *FieldCopyCtor =
3157          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3158        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3159    }
3160  }
3161  CopyConstructor->setUsed();
3162}
3163
3164Sema::OwningExprResult
3165Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3166                            CXXConstructorDecl *Constructor,
3167                            MultiExprArg ExprArgs) {
3168  bool Elidable = false;
3169
3170  // C++ [class.copy]p15:
3171  //   Whenever a temporary class object is copied using a copy constructor, and
3172  //   this object and the copy have the same cv-unqualified type, an
3173  //   implementation is permitted to treat the original and the copy as two
3174  //   different ways of referring to the same object and not perform a copy at
3175  //   all, even if the class copy constructor or destructor have side effects.
3176
3177  // FIXME: Is this enough?
3178  if (Constructor->isCopyConstructor(Context)) {
3179    Expr *E = ((Expr **)ExprArgs.get())[0];
3180    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3181      E = BE->getSubExpr();
3182    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3183      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3184        E = ICE->getSubExpr();
3185
3186    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3187      Elidable = true;
3188  }
3189
3190  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3191                               Elidable, move(ExprArgs));
3192}
3193
3194/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3195/// including handling of its default argument expressions.
3196Sema::OwningExprResult
3197Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3198                            CXXConstructorDecl *Constructor, bool Elidable,
3199                            MultiExprArg ExprArgs) {
3200  unsigned NumExprs = ExprArgs.size();
3201  Expr **Exprs = (Expr **)ExprArgs.release();
3202
3203  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3204                                        Elidable, Exprs, NumExprs));
3205}
3206
3207Sema::OwningExprResult
3208Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3209                                  QualType Ty,
3210                                  SourceLocation TyBeginLoc,
3211                                  MultiExprArg Args,
3212                                  SourceLocation RParenLoc) {
3213  unsigned NumExprs = Args.size();
3214  Expr **Exprs = (Expr **)Args.release();
3215
3216  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3217                                                    TyBeginLoc, Exprs,
3218                                                    NumExprs, RParenLoc));
3219}
3220
3221
3222bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3223                                        CXXConstructorDecl *Constructor,
3224                                        MultiExprArg Exprs) {
3225  OwningExprResult TempResult =
3226    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3227                          move(Exprs));
3228  if (TempResult.isInvalid())
3229    return true;
3230
3231  Expr *Temp = TempResult.takeAs<Expr>();
3232  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3233  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3234  VD->setInit(Context, Temp);
3235
3236  return false;
3237}
3238
3239void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3240  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3241                                  DeclInitType->getAs<RecordType>()->getDecl());
3242  if (!ClassDecl->hasTrivialDestructor())
3243    if (CXXDestructorDecl *Destructor =
3244        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3245      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3246}
3247
3248/// AddCXXDirectInitializerToDecl - This action is called immediately after
3249/// ActOnDeclarator, when a C++ direct initializer is present.
3250/// e.g: "int x(1);"
3251void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3252                                         SourceLocation LParenLoc,
3253                                         MultiExprArg Exprs,
3254                                         SourceLocation *CommaLocs,
3255                                         SourceLocation RParenLoc) {
3256  unsigned NumExprs = Exprs.size();
3257  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3258  Decl *RealDecl = Dcl.getAs<Decl>();
3259
3260  // If there is no declaration, there was an error parsing it.  Just ignore
3261  // the initializer.
3262  if (RealDecl == 0)
3263    return;
3264
3265  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3266  if (!VDecl) {
3267    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3268    RealDecl->setInvalidDecl();
3269    return;
3270  }
3271
3272  // We will represent direct-initialization similarly to copy-initialization:
3273  //    int x(1);  -as-> int x = 1;
3274  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3275  //
3276  // Clients that want to distinguish between the two forms, can check for
3277  // direct initializer using VarDecl::hasCXXDirectInitializer().
3278  // A major benefit is that clients that don't particularly care about which
3279  // exactly form was it (like the CodeGen) can handle both cases without
3280  // special case code.
3281
3282  // If either the declaration has a dependent type or if any of the expressions
3283  // is type-dependent, we represent the initialization via a ParenListExpr for
3284  // later use during template instantiation.
3285  if (VDecl->getType()->isDependentType() ||
3286      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3287    // Let clients know that initialization was done with a direct initializer.
3288    VDecl->setCXXDirectInitializer(true);
3289
3290    // Store the initialization expressions as a ParenListExpr.
3291    unsigned NumExprs = Exprs.size();
3292    VDecl->setInit(Context,
3293                   new (Context) ParenListExpr(Context, LParenLoc,
3294                                               (Expr **)Exprs.release(),
3295                                               NumExprs, RParenLoc));
3296    return;
3297  }
3298
3299
3300  // C++ 8.5p11:
3301  // The form of initialization (using parentheses or '=') is generally
3302  // insignificant, but does matter when the entity being initialized has a
3303  // class type.
3304  QualType DeclInitType = VDecl->getType();
3305  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3306    DeclInitType = Context.getBaseElementType(Array);
3307
3308  // FIXME: This isn't the right place to complete the type.
3309  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3310                          diag::err_typecheck_decl_incomplete_type)) {
3311    VDecl->setInvalidDecl();
3312    return;
3313  }
3314
3315  if (VDecl->getType()->isRecordType()) {
3316    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3317
3318    CXXConstructorDecl *Constructor
3319      = PerformInitializationByConstructor(DeclInitType,
3320                                           move(Exprs),
3321                                           VDecl->getLocation(),
3322                                           SourceRange(VDecl->getLocation(),
3323                                                       RParenLoc),
3324                                           VDecl->getDeclName(),
3325                                           IK_Direct,
3326                                           ConstructorArgs);
3327    if (!Constructor)
3328      RealDecl->setInvalidDecl();
3329    else {
3330      VDecl->setCXXDirectInitializer(true);
3331      if (InitializeVarWithConstructor(VDecl, Constructor,
3332                                       move_arg(ConstructorArgs)))
3333        RealDecl->setInvalidDecl();
3334      FinalizeVarWithDestructor(VDecl, DeclInitType);
3335    }
3336    return;
3337  }
3338
3339  if (NumExprs > 1) {
3340    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3341      << SourceRange(VDecl->getLocation(), RParenLoc);
3342    RealDecl->setInvalidDecl();
3343    return;
3344  }
3345
3346  // Let clients know that initialization was done with a direct initializer.
3347  VDecl->setCXXDirectInitializer(true);
3348
3349  assert(NumExprs == 1 && "Expected 1 expression");
3350  // Set the init expression, handles conversions.
3351  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3352                       /*DirectInit=*/true);
3353}
3354
3355/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3356/// may occur as part of direct-initialization or copy-initialization.
3357///
3358/// \param ClassType the type of the object being initialized, which must have
3359/// class type.
3360///
3361/// \param ArgsPtr the arguments provided to initialize the object
3362///
3363/// \param Loc the source location where the initialization occurs
3364///
3365/// \param Range the source range that covers the entire initialization
3366///
3367/// \param InitEntity the name of the entity being initialized, if known
3368///
3369/// \param Kind the type of initialization being performed
3370///
3371/// \param ConvertedArgs a vector that will be filled in with the
3372/// appropriately-converted arguments to the constructor (if initialization
3373/// succeeded).
3374///
3375/// \returns the constructor used to initialize the object, if successful.
3376/// Otherwise, emits a diagnostic and returns NULL.
3377CXXConstructorDecl *
3378Sema::PerformInitializationByConstructor(QualType ClassType,
3379                                         MultiExprArg ArgsPtr,
3380                                         SourceLocation Loc, SourceRange Range,
3381                                         DeclarationName InitEntity,
3382                                         InitializationKind Kind,
3383                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3384  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3385  assert(ClassRec && "Can only initialize a class type here");
3386  Expr **Args = (Expr **)ArgsPtr.get();
3387  unsigned NumArgs = ArgsPtr.size();
3388
3389  // C++ [dcl.init]p14:
3390  //   If the initialization is direct-initialization, or if it is
3391  //   copy-initialization where the cv-unqualified version of the
3392  //   source type is the same class as, or a derived class of, the
3393  //   class of the destination, constructors are considered. The
3394  //   applicable constructors are enumerated (13.3.1.3), and the
3395  //   best one is chosen through overload resolution (13.3). The
3396  //   constructor so selected is called to initialize the object,
3397  //   with the initializer expression(s) as its argument(s). If no
3398  //   constructor applies, or the overload resolution is ambiguous,
3399  //   the initialization is ill-formed.
3400  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3401  OverloadCandidateSet CandidateSet;
3402
3403  // Add constructors to the overload set.
3404  DeclarationName ConstructorName
3405    = Context.DeclarationNames.getCXXConstructorName(
3406                      Context.getCanonicalType(ClassType).getUnqualifiedType());
3407  DeclContext::lookup_const_iterator Con, ConEnd;
3408  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3409       Con != ConEnd; ++Con) {
3410    // Find the constructor (which may be a template).
3411    CXXConstructorDecl *Constructor = 0;
3412    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3413    if (ConstructorTmpl)
3414      Constructor
3415        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3416    else
3417      Constructor = cast<CXXConstructorDecl>(*Con);
3418
3419    if ((Kind == IK_Direct) ||
3420        (Kind == IK_Copy &&
3421         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3422        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3423      if (ConstructorTmpl)
3424        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3425                                     Args, NumArgs, CandidateSet);
3426      else
3427        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3428    }
3429  }
3430
3431  // FIXME: When we decide not to synthesize the implicitly-declared
3432  // constructors, we'll need to make them appear here.
3433
3434  OverloadCandidateSet::iterator Best;
3435  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3436  case OR_Success:
3437    // We found a constructor. Break out so that we can convert the arguments
3438    // appropriately.
3439    break;
3440
3441  case OR_No_Viable_Function:
3442    if (InitEntity)
3443      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3444        << InitEntity << Range;
3445    else
3446      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3447        << ClassType << Range;
3448    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3449    return 0;
3450
3451  case OR_Ambiguous:
3452    if (InitEntity)
3453      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3454    else
3455      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3456    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3457    return 0;
3458
3459  case OR_Deleted:
3460    if (InitEntity)
3461      Diag(Loc, diag::err_ovl_deleted_init)
3462        << Best->Function->isDeleted()
3463        << InitEntity << Range;
3464    else
3465      Diag(Loc, diag::err_ovl_deleted_init)
3466        << Best->Function->isDeleted()
3467        << InitEntity << Range;
3468    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3469    return 0;
3470  }
3471
3472  // Convert the arguments, fill in default arguments, etc.
3473  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3474  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3475    return 0;
3476
3477  return Constructor;
3478}
3479
3480/// \brief Given a constructor and the set of arguments provided for the
3481/// constructor, convert the arguments and add any required default arguments
3482/// to form a proper call to this constructor.
3483///
3484/// \returns true if an error occurred, false otherwise.
3485bool
3486Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3487                              MultiExprArg ArgsPtr,
3488                              SourceLocation Loc,
3489                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3490  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3491  unsigned NumArgs = ArgsPtr.size();
3492  Expr **Args = (Expr **)ArgsPtr.get();
3493
3494  const FunctionProtoType *Proto
3495    = Constructor->getType()->getAs<FunctionProtoType>();
3496  assert(Proto && "Constructor without a prototype?");
3497  unsigned NumArgsInProto = Proto->getNumArgs();
3498  unsigned NumArgsToCheck = NumArgs;
3499
3500  // If too few arguments are available, we'll fill in the rest with defaults.
3501  if (NumArgs < NumArgsInProto) {
3502    NumArgsToCheck = NumArgsInProto;
3503    ConvertedArgs.reserve(NumArgsInProto);
3504  } else {
3505    ConvertedArgs.reserve(NumArgs);
3506    if (NumArgs > NumArgsInProto)
3507      NumArgsToCheck = NumArgsInProto;
3508  }
3509
3510  // Convert arguments
3511  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3512    QualType ProtoArgType = Proto->getArgType(i);
3513
3514    Expr *Arg;
3515    if (i < NumArgs) {
3516      Arg = Args[i];
3517
3518      // Pass the argument.
3519      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3520        return true;
3521
3522      Args[i] = 0;
3523    } else {
3524      ParmVarDecl *Param = Constructor->getParamDecl(i);
3525
3526      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3527      if (DefArg.isInvalid())
3528        return true;
3529
3530      Arg = DefArg.takeAs<Expr>();
3531    }
3532
3533    ConvertedArgs.push_back(Arg);
3534  }
3535
3536  // If this is a variadic call, handle args passed through "...".
3537  if (Proto->isVariadic()) {
3538    // Promote the arguments (C99 6.5.2.2p7).
3539    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3540      Expr *Arg = Args[i];
3541      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3542        return true;
3543
3544      ConvertedArgs.push_back(Arg);
3545      Args[i] = 0;
3546    }
3547  }
3548
3549  return false;
3550}
3551
3552/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3553/// determine whether they are reference-related,
3554/// reference-compatible, reference-compatible with added
3555/// qualification, or incompatible, for use in C++ initialization by
3556/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3557/// type, and the first type (T1) is the pointee type of the reference
3558/// type being initialized.
3559Sema::ReferenceCompareResult
3560Sema::CompareReferenceRelationship(SourceLocation Loc,
3561                                   QualType OrigT1, QualType OrigT2,
3562                                   bool& DerivedToBase) {
3563  assert(!OrigT1->isReferenceType() &&
3564    "T1 must be the pointee type of the reference type");
3565  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3566
3567  QualType T1 = Context.getCanonicalType(OrigT1);
3568  QualType T2 = Context.getCanonicalType(OrigT2);
3569  QualType UnqualT1 = T1.getUnqualifiedType();
3570  QualType UnqualT2 = T2.getUnqualifiedType();
3571
3572  // C++ [dcl.init.ref]p4:
3573  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3574  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3575  //   T1 is a base class of T2.
3576  if (UnqualT1 == UnqualT2)
3577    DerivedToBase = false;
3578  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3579           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3580           IsDerivedFrom(UnqualT2, UnqualT1))
3581    DerivedToBase = true;
3582  else
3583    return Ref_Incompatible;
3584
3585  // At this point, we know that T1 and T2 are reference-related (at
3586  // least).
3587
3588  // C++ [dcl.init.ref]p4:
3589  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3590  //   reference-related to T2 and cv1 is the same cv-qualification
3591  //   as, or greater cv-qualification than, cv2. For purposes of
3592  //   overload resolution, cases for which cv1 is greater
3593  //   cv-qualification than cv2 are identified as
3594  //   reference-compatible with added qualification (see 13.3.3.2).
3595  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3596    return Ref_Compatible;
3597  else if (T1.isMoreQualifiedThan(T2))
3598    return Ref_Compatible_With_Added_Qualification;
3599  else
3600    return Ref_Related;
3601}
3602
3603/// CheckReferenceInit - Check the initialization of a reference
3604/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3605/// the initializer (either a simple initializer or an initializer
3606/// list), and DeclType is the type of the declaration. When ICS is
3607/// non-null, this routine will compute the implicit conversion
3608/// sequence according to C++ [over.ics.ref] and will not produce any
3609/// diagnostics; when ICS is null, it will emit diagnostics when any
3610/// errors are found. Either way, a return value of true indicates
3611/// that there was a failure, a return value of false indicates that
3612/// the reference initialization succeeded.
3613///
3614/// When @p SuppressUserConversions, user-defined conversions are
3615/// suppressed.
3616/// When @p AllowExplicit, we also permit explicit user-defined
3617/// conversion functions.
3618/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3619bool
3620Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3621                         SourceLocation DeclLoc,
3622                         bool SuppressUserConversions,
3623                         bool AllowExplicit, bool ForceRValue,
3624                         ImplicitConversionSequence *ICS) {
3625  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3626
3627  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3628  QualType T2 = Init->getType();
3629
3630  // If the initializer is the address of an overloaded function, try
3631  // to resolve the overloaded function. If all goes well, T2 is the
3632  // type of the resulting function.
3633  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3634    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3635                                                          ICS != 0);
3636    if (Fn) {
3637      // Since we're performing this reference-initialization for
3638      // real, update the initializer with the resulting function.
3639      if (!ICS) {
3640        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3641          return true;
3642
3643        Init = FixOverloadedFunctionReference(Init, Fn);
3644      }
3645
3646      T2 = Fn->getType();
3647    }
3648  }
3649
3650  // Compute some basic properties of the types and the initializer.
3651  bool isRValRef = DeclType->isRValueReferenceType();
3652  bool DerivedToBase = false;
3653  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3654                                                  Init->isLvalue(Context);
3655  ReferenceCompareResult RefRelationship
3656    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3657
3658  // Most paths end in a failed conversion.
3659  if (ICS)
3660    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3661
3662  // C++ [dcl.init.ref]p5:
3663  //   A reference to type "cv1 T1" is initialized by an expression
3664  //   of type "cv2 T2" as follows:
3665
3666  //     -- If the initializer expression
3667
3668  // Rvalue references cannot bind to lvalues (N2812).
3669  // There is absolutely no situation where they can. In particular, note that
3670  // this is ill-formed, even if B has a user-defined conversion to A&&:
3671  //   B b;
3672  //   A&& r = b;
3673  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3674    if (!ICS)
3675      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3676        << Init->getSourceRange();
3677    return true;
3678  }
3679
3680  bool BindsDirectly = false;
3681  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3682  //          reference-compatible with "cv2 T2," or
3683  //
3684  // Note that the bit-field check is skipped if we are just computing
3685  // the implicit conversion sequence (C++ [over.best.ics]p2).
3686  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3687      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3688    BindsDirectly = true;
3689
3690    if (ICS) {
3691      // C++ [over.ics.ref]p1:
3692      //   When a parameter of reference type binds directly (8.5.3)
3693      //   to an argument expression, the implicit conversion sequence
3694      //   is the identity conversion, unless the argument expression
3695      //   has a type that is a derived class of the parameter type,
3696      //   in which case the implicit conversion sequence is a
3697      //   derived-to-base Conversion (13.3.3.1).
3698      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3699      ICS->Standard.First = ICK_Identity;
3700      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3701      ICS->Standard.Third = ICK_Identity;
3702      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3703      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3704      ICS->Standard.ReferenceBinding = true;
3705      ICS->Standard.DirectBinding = true;
3706      ICS->Standard.RRefBinding = false;
3707      ICS->Standard.CopyConstructor = 0;
3708
3709      // Nothing more to do: the inaccessibility/ambiguity check for
3710      // derived-to-base conversions is suppressed when we're
3711      // computing the implicit conversion sequence (C++
3712      // [over.best.ics]p2).
3713      return false;
3714    } else {
3715      // Perform the conversion.
3716      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3717      if (DerivedToBase)
3718        CK = CastExpr::CK_DerivedToBase;
3719      else if(CheckExceptionSpecCompatibility(Init, T1))
3720        return true;
3721      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3722    }
3723  }
3724
3725  //       -- has a class type (i.e., T2 is a class type) and can be
3726  //          implicitly converted to an lvalue of type "cv3 T3,"
3727  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3728  //          92) (this conversion is selected by enumerating the
3729  //          applicable conversion functions (13.3.1.6) and choosing
3730  //          the best one through overload resolution (13.3)),
3731  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3732      !RequireCompleteType(DeclLoc, T2, 0)) {
3733    CXXRecordDecl *T2RecordDecl
3734      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3735
3736    OverloadCandidateSet CandidateSet;
3737    OverloadedFunctionDecl *Conversions
3738      = T2RecordDecl->getVisibleConversionFunctions();
3739    for (OverloadedFunctionDecl::function_iterator Func
3740           = Conversions->function_begin();
3741         Func != Conversions->function_end(); ++Func) {
3742      FunctionTemplateDecl *ConvTemplate
3743        = dyn_cast<FunctionTemplateDecl>(*Func);
3744      CXXConversionDecl *Conv;
3745      if (ConvTemplate)
3746        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3747      else
3748        Conv = cast<CXXConversionDecl>(*Func);
3749
3750      // If the conversion function doesn't return a reference type,
3751      // it can't be considered for this conversion.
3752      if (Conv->getConversionType()->isLValueReferenceType() &&
3753          (AllowExplicit || !Conv->isExplicit())) {
3754        if (ConvTemplate)
3755          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3756                                         CandidateSet);
3757        else
3758          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3759      }
3760    }
3761
3762    OverloadCandidateSet::iterator Best;
3763    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3764    case OR_Success:
3765      // This is a direct binding.
3766      BindsDirectly = true;
3767
3768      if (ICS) {
3769        // C++ [over.ics.ref]p1:
3770        //
3771        //   [...] If the parameter binds directly to the result of
3772        //   applying a conversion function to the argument
3773        //   expression, the implicit conversion sequence is a
3774        //   user-defined conversion sequence (13.3.3.1.2), with the
3775        //   second standard conversion sequence either an identity
3776        //   conversion or, if the conversion function returns an
3777        //   entity of a type that is a derived class of the parameter
3778        //   type, a derived-to-base Conversion.
3779        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3780        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3781        ICS->UserDefined.After = Best->FinalConversion;
3782        ICS->UserDefined.ConversionFunction = Best->Function;
3783        ICS->UserDefined.EllipsisConversion = false;
3784        assert(ICS->UserDefined.After.ReferenceBinding &&
3785               ICS->UserDefined.After.DirectBinding &&
3786               "Expected a direct reference binding!");
3787        return false;
3788      } else {
3789        OwningExprResult InitConversion =
3790          BuildCXXCastArgument(DeclLoc, QualType(),
3791                               CastExpr::CK_UserDefinedConversion,
3792                               cast<CXXMethodDecl>(Best->Function),
3793                               Owned(Init));
3794        Init = InitConversion.takeAs<Expr>();
3795
3796        if (CheckExceptionSpecCompatibility(Init, T1))
3797          return true;
3798        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3799                          /*isLvalue=*/true);
3800      }
3801      break;
3802
3803    case OR_Ambiguous:
3804      if (ICS) {
3805        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3806             Cand != CandidateSet.end(); ++Cand)
3807          if (Cand->Viable)
3808            ICS->ConversionFunctionSet.push_back(Cand->Function);
3809        break;
3810      }
3811      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3812            << Init->getSourceRange();
3813      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3814      return true;
3815
3816    case OR_No_Viable_Function:
3817    case OR_Deleted:
3818      // There was no suitable conversion, or we found a deleted
3819      // conversion; continue with other checks.
3820      break;
3821    }
3822  }
3823
3824  if (BindsDirectly) {
3825    // C++ [dcl.init.ref]p4:
3826    //   [...] In all cases where the reference-related or
3827    //   reference-compatible relationship of two types is used to
3828    //   establish the validity of a reference binding, and T1 is a
3829    //   base class of T2, a program that necessitates such a binding
3830    //   is ill-formed if T1 is an inaccessible (clause 11) or
3831    //   ambiguous (10.2) base class of T2.
3832    //
3833    // Note that we only check this condition when we're allowed to
3834    // complain about errors, because we should not be checking for
3835    // ambiguity (or inaccessibility) unless the reference binding
3836    // actually happens.
3837    if (DerivedToBase)
3838      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3839                                          Init->getSourceRange());
3840    else
3841      return false;
3842  }
3843
3844  //     -- Otherwise, the reference shall be to a non-volatile const
3845  //        type (i.e., cv1 shall be const), or the reference shall be an
3846  //        rvalue reference and the initializer expression shall be an rvalue.
3847  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3848    if (!ICS)
3849      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3850        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3851        << T2 << Init->getSourceRange();
3852    return true;
3853  }
3854
3855  //       -- If the initializer expression is an rvalue, with T2 a
3856  //          class type, and "cv1 T1" is reference-compatible with
3857  //          "cv2 T2," the reference is bound in one of the
3858  //          following ways (the choice is implementation-defined):
3859  //
3860  //          -- The reference is bound to the object represented by
3861  //             the rvalue (see 3.10) or to a sub-object within that
3862  //             object.
3863  //
3864  //          -- A temporary of type "cv1 T2" [sic] is created, and
3865  //             a constructor is called to copy the entire rvalue
3866  //             object into the temporary. The reference is bound to
3867  //             the temporary or to a sub-object within the
3868  //             temporary.
3869  //
3870  //          The constructor that would be used to make the copy
3871  //          shall be callable whether or not the copy is actually
3872  //          done.
3873  //
3874  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3875  // freedom, so we will always take the first option and never build
3876  // a temporary in this case. FIXME: We will, however, have to check
3877  // for the presence of a copy constructor in C++98/03 mode.
3878  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3879      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3880    if (ICS) {
3881      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3882      ICS->Standard.First = ICK_Identity;
3883      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3884      ICS->Standard.Third = ICK_Identity;
3885      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3886      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3887      ICS->Standard.ReferenceBinding = true;
3888      ICS->Standard.DirectBinding = false;
3889      ICS->Standard.RRefBinding = isRValRef;
3890      ICS->Standard.CopyConstructor = 0;
3891    } else {
3892      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3893      if (DerivedToBase)
3894        CK = CastExpr::CK_DerivedToBase;
3895      else if(CheckExceptionSpecCompatibility(Init, T1))
3896        return true;
3897      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3898    }
3899    return false;
3900  }
3901
3902  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3903  //          initialized from the initializer expression using the
3904  //          rules for a non-reference copy initialization (8.5). The
3905  //          reference is then bound to the temporary. If T1 is
3906  //          reference-related to T2, cv1 must be the same
3907  //          cv-qualification as, or greater cv-qualification than,
3908  //          cv2; otherwise, the program is ill-formed.
3909  if (RefRelationship == Ref_Related) {
3910    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3911    // we would be reference-compatible or reference-compatible with
3912    // added qualification. But that wasn't the case, so the reference
3913    // initialization fails.
3914    if (!ICS)
3915      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3916        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3917        << T2 << Init->getSourceRange();
3918    return true;
3919  }
3920
3921  // If at least one of the types is a class type, the types are not
3922  // related, and we aren't allowed any user conversions, the
3923  // reference binding fails. This case is important for breaking
3924  // recursion, since TryImplicitConversion below will attempt to
3925  // create a temporary through the use of a copy constructor.
3926  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3927      (T1->isRecordType() || T2->isRecordType())) {
3928    if (!ICS)
3929      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3930        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3931    return true;
3932  }
3933
3934  // Actually try to convert the initializer to T1.
3935  if (ICS) {
3936    // C++ [over.ics.ref]p2:
3937    //
3938    //   When a parameter of reference type is not bound directly to
3939    //   an argument expression, the conversion sequence is the one
3940    //   required to convert the argument expression to the
3941    //   underlying type of the reference according to
3942    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3943    //   to copy-initializing a temporary of the underlying type with
3944    //   the argument expression. Any difference in top-level
3945    //   cv-qualification is subsumed by the initialization itself
3946    //   and does not constitute a conversion.
3947    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3948                                 /*AllowExplicit=*/false,
3949                                 /*ForceRValue=*/false,
3950                                 /*InOverloadResolution=*/false);
3951
3952    // Of course, that's still a reference binding.
3953    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3954      ICS->Standard.ReferenceBinding = true;
3955      ICS->Standard.RRefBinding = isRValRef;
3956    } else if (ICS->ConversionKind ==
3957              ImplicitConversionSequence::UserDefinedConversion) {
3958      ICS->UserDefined.After.ReferenceBinding = true;
3959      ICS->UserDefined.After.RRefBinding = isRValRef;
3960    }
3961    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3962  } else {
3963    ImplicitConversionSequence Conversions;
3964    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3965                                                   false, false,
3966                                                   Conversions);
3967    if (badConversion) {
3968      if ((Conversions.ConversionKind  ==
3969            ImplicitConversionSequence::BadConversion)
3970          && !Conversions.ConversionFunctionSet.empty()) {
3971        Diag(DeclLoc,
3972             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3973        for (int j = Conversions.ConversionFunctionSet.size()-1;
3974             j >= 0; j--) {
3975          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3976          Diag(Func->getLocation(), diag::err_ovl_candidate);
3977        }
3978      }
3979      else {
3980        if (isRValRef)
3981          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3982            << Init->getSourceRange();
3983        else
3984          Diag(DeclLoc, diag::err_invalid_initialization)
3985            << DeclType << Init->getType() << Init->getSourceRange();
3986      }
3987    }
3988    return badConversion;
3989  }
3990}
3991
3992/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3993/// of this overloaded operator is well-formed. If so, returns false;
3994/// otherwise, emits appropriate diagnostics and returns true.
3995bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3996  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3997         "Expected an overloaded operator declaration");
3998
3999  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4000
4001  // C++ [over.oper]p5:
4002  //   The allocation and deallocation functions, operator new,
4003  //   operator new[], operator delete and operator delete[], are
4004  //   described completely in 3.7.3. The attributes and restrictions
4005  //   found in the rest of this subclause do not apply to them unless
4006  //   explicitly stated in 3.7.3.
4007  // FIXME: Write a separate routine for checking this. For now, just allow it.
4008  if (Op == OO_New || Op == OO_Array_New ||
4009      Op == OO_Delete || Op == OO_Array_Delete)
4010    return false;
4011
4012  // C++ [over.oper]p6:
4013  //   An operator function shall either be a non-static member
4014  //   function or be a non-member function and have at least one
4015  //   parameter whose type is a class, a reference to a class, an
4016  //   enumeration, or a reference to an enumeration.
4017  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4018    if (MethodDecl->isStatic())
4019      return Diag(FnDecl->getLocation(),
4020                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4021  } else {
4022    bool ClassOrEnumParam = false;
4023    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4024                                   ParamEnd = FnDecl->param_end();
4025         Param != ParamEnd; ++Param) {
4026      QualType ParamType = (*Param)->getType().getNonReferenceType();
4027      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4028          ParamType->isEnumeralType()) {
4029        ClassOrEnumParam = true;
4030        break;
4031      }
4032    }
4033
4034    if (!ClassOrEnumParam)
4035      return Diag(FnDecl->getLocation(),
4036                  diag::err_operator_overload_needs_class_or_enum)
4037        << FnDecl->getDeclName();
4038  }
4039
4040  // C++ [over.oper]p8:
4041  //   An operator function cannot have default arguments (8.3.6),
4042  //   except where explicitly stated below.
4043  //
4044  // Only the function-call operator allows default arguments
4045  // (C++ [over.call]p1).
4046  if (Op != OO_Call) {
4047    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4048         Param != FnDecl->param_end(); ++Param) {
4049      if ((*Param)->hasUnparsedDefaultArg())
4050        return Diag((*Param)->getLocation(),
4051                    diag::err_operator_overload_default_arg)
4052          << FnDecl->getDeclName();
4053      else if (Expr *DefArg = (*Param)->getDefaultArg())
4054        return Diag((*Param)->getLocation(),
4055                    diag::err_operator_overload_default_arg)
4056          << FnDecl->getDeclName() << DefArg->getSourceRange();
4057    }
4058  }
4059
4060  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4061    { false, false, false }
4062#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4063    , { Unary, Binary, MemberOnly }
4064#include "clang/Basic/OperatorKinds.def"
4065  };
4066
4067  bool CanBeUnaryOperator = OperatorUses[Op][0];
4068  bool CanBeBinaryOperator = OperatorUses[Op][1];
4069  bool MustBeMemberOperator = OperatorUses[Op][2];
4070
4071  // C++ [over.oper]p8:
4072  //   [...] Operator functions cannot have more or fewer parameters
4073  //   than the number required for the corresponding operator, as
4074  //   described in the rest of this subclause.
4075  unsigned NumParams = FnDecl->getNumParams()
4076                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4077  if (Op != OO_Call &&
4078      ((NumParams == 1 && !CanBeUnaryOperator) ||
4079       (NumParams == 2 && !CanBeBinaryOperator) ||
4080       (NumParams < 1) || (NumParams > 2))) {
4081    // We have the wrong number of parameters.
4082    unsigned ErrorKind;
4083    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4084      ErrorKind = 2;  // 2 -> unary or binary.
4085    } else if (CanBeUnaryOperator) {
4086      ErrorKind = 0;  // 0 -> unary
4087    } else {
4088      assert(CanBeBinaryOperator &&
4089             "All non-call overloaded operators are unary or binary!");
4090      ErrorKind = 1;  // 1 -> binary
4091    }
4092
4093    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4094      << FnDecl->getDeclName() << NumParams << ErrorKind;
4095  }
4096
4097  // Overloaded operators other than operator() cannot be variadic.
4098  if (Op != OO_Call &&
4099      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4100    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4101      << FnDecl->getDeclName();
4102  }
4103
4104  // Some operators must be non-static member functions.
4105  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4106    return Diag(FnDecl->getLocation(),
4107                diag::err_operator_overload_must_be_member)
4108      << FnDecl->getDeclName();
4109  }
4110
4111  // C++ [over.inc]p1:
4112  //   The user-defined function called operator++ implements the
4113  //   prefix and postfix ++ operator. If this function is a member
4114  //   function with no parameters, or a non-member function with one
4115  //   parameter of class or enumeration type, it defines the prefix
4116  //   increment operator ++ for objects of that type. If the function
4117  //   is a member function with one parameter (which shall be of type
4118  //   int) or a non-member function with two parameters (the second
4119  //   of which shall be of type int), it defines the postfix
4120  //   increment operator ++ for objects of that type.
4121  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4122    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4123    bool ParamIsInt = false;
4124    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4125      ParamIsInt = BT->getKind() == BuiltinType::Int;
4126
4127    if (!ParamIsInt)
4128      return Diag(LastParam->getLocation(),
4129                  diag::err_operator_overload_post_incdec_must_be_int)
4130        << LastParam->getType() << (Op == OO_MinusMinus);
4131  }
4132
4133  // Notify the class if it got an assignment operator.
4134  if (Op == OO_Equal) {
4135    // Would have returned earlier otherwise.
4136    assert(isa<CXXMethodDecl>(FnDecl) &&
4137      "Overloaded = not member, but not filtered.");
4138    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4139    Method->getParent()->addedAssignmentOperator(Context, Method);
4140  }
4141
4142  return false;
4143}
4144
4145/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4146/// linkage specification, including the language and (if present)
4147/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4148/// the location of the language string literal, which is provided
4149/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4150/// the '{' brace. Otherwise, this linkage specification does not
4151/// have any braces.
4152Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4153                                                     SourceLocation ExternLoc,
4154                                                     SourceLocation LangLoc,
4155                                                     const char *Lang,
4156                                                     unsigned StrSize,
4157                                                     SourceLocation LBraceLoc) {
4158  LinkageSpecDecl::LanguageIDs Language;
4159  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4160    Language = LinkageSpecDecl::lang_c;
4161  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4162    Language = LinkageSpecDecl::lang_cxx;
4163  else {
4164    Diag(LangLoc, diag::err_bad_language);
4165    return DeclPtrTy();
4166  }
4167
4168  // FIXME: Add all the various semantics of linkage specifications
4169
4170  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4171                                               LangLoc, Language,
4172                                               LBraceLoc.isValid());
4173  CurContext->addDecl(D);
4174  PushDeclContext(S, D);
4175  return DeclPtrTy::make(D);
4176}
4177
4178/// ActOnFinishLinkageSpecification - Completely the definition of
4179/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4180/// valid, it's the position of the closing '}' brace in a linkage
4181/// specification that uses braces.
4182Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4183                                                      DeclPtrTy LinkageSpec,
4184                                                      SourceLocation RBraceLoc) {
4185  if (LinkageSpec)
4186    PopDeclContext();
4187  return LinkageSpec;
4188}
4189
4190/// \brief Perform semantic analysis for the variable declaration that
4191/// occurs within a C++ catch clause, returning the newly-created
4192/// variable.
4193VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4194                                         DeclaratorInfo *DInfo,
4195                                         IdentifierInfo *Name,
4196                                         SourceLocation Loc,
4197                                         SourceRange Range) {
4198  bool Invalid = false;
4199
4200  // Arrays and functions decay.
4201  if (ExDeclType->isArrayType())
4202    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4203  else if (ExDeclType->isFunctionType())
4204    ExDeclType = Context.getPointerType(ExDeclType);
4205
4206  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4207  // The exception-declaration shall not denote a pointer or reference to an
4208  // incomplete type, other than [cv] void*.
4209  // N2844 forbids rvalue references.
4210  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4211    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4212    Invalid = true;
4213  }
4214
4215  QualType BaseType = ExDeclType;
4216  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4217  unsigned DK = diag::err_catch_incomplete;
4218  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4219    BaseType = Ptr->getPointeeType();
4220    Mode = 1;
4221    DK = diag::err_catch_incomplete_ptr;
4222  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4223    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4224    BaseType = Ref->getPointeeType();
4225    Mode = 2;
4226    DK = diag::err_catch_incomplete_ref;
4227  }
4228  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4229      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4230    Invalid = true;
4231
4232  if (!Invalid && !ExDeclType->isDependentType() &&
4233      RequireNonAbstractType(Loc, ExDeclType,
4234                             diag::err_abstract_type_in_decl,
4235                             AbstractVariableType))
4236    Invalid = true;
4237
4238  // FIXME: Need to test for ability to copy-construct and destroy the
4239  // exception variable.
4240
4241  // FIXME: Need to check for abstract classes.
4242
4243  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4244                                    Name, ExDeclType, DInfo, VarDecl::None);
4245
4246  if (Invalid)
4247    ExDecl->setInvalidDecl();
4248
4249  return ExDecl;
4250}
4251
4252/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4253/// handler.
4254Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4255  DeclaratorInfo *DInfo = 0;
4256  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4257
4258  bool Invalid = D.isInvalidType();
4259  IdentifierInfo *II = D.getIdentifier();
4260  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4261    // The scope should be freshly made just for us. There is just no way
4262    // it contains any previous declaration.
4263    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4264    if (PrevDecl->isTemplateParameter()) {
4265      // Maybe we will complain about the shadowed template parameter.
4266      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4267    }
4268  }
4269
4270  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4271    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4272      << D.getCXXScopeSpec().getRange();
4273    Invalid = true;
4274  }
4275
4276  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4277                                              D.getIdentifier(),
4278                                              D.getIdentifierLoc(),
4279                                            D.getDeclSpec().getSourceRange());
4280
4281  if (Invalid)
4282    ExDecl->setInvalidDecl();
4283
4284  // Add the exception declaration into this scope.
4285  if (II)
4286    PushOnScopeChains(ExDecl, S);
4287  else
4288    CurContext->addDecl(ExDecl);
4289
4290  ProcessDeclAttributes(S, ExDecl, D);
4291  return DeclPtrTy::make(ExDecl);
4292}
4293
4294Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4295                                                   ExprArg assertexpr,
4296                                                   ExprArg assertmessageexpr) {
4297  Expr *AssertExpr = (Expr *)assertexpr.get();
4298  StringLiteral *AssertMessage =
4299    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4300
4301  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4302    llvm::APSInt Value(32);
4303    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4304      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4305        AssertExpr->getSourceRange();
4306      return DeclPtrTy();
4307    }
4308
4309    if (Value == 0) {
4310      std::string str(AssertMessage->getStrData(),
4311                      AssertMessage->getByteLength());
4312      Diag(AssertLoc, diag::err_static_assert_failed)
4313        << str << AssertExpr->getSourceRange();
4314    }
4315  }
4316
4317  assertexpr.release();
4318  assertmessageexpr.release();
4319  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4320                                        AssertExpr, AssertMessage);
4321
4322  CurContext->addDecl(Decl);
4323  return DeclPtrTy::make(Decl);
4324}
4325
4326/// Handle a friend type declaration.  This works in tandem with
4327/// ActOnTag.
4328///
4329/// Notes on friend class templates:
4330///
4331/// We generally treat friend class declarations as if they were
4332/// declaring a class.  So, for example, the elaborated type specifier
4333/// in a friend declaration is required to obey the restrictions of a
4334/// class-head (i.e. no typedefs in the scope chain), template
4335/// parameters are required to match up with simple template-ids, &c.
4336/// However, unlike when declaring a template specialization, it's
4337/// okay to refer to a template specialization without an empty
4338/// template parameter declaration, e.g.
4339///   friend class A<T>::B<unsigned>;
4340/// We permit this as a special case; if there are any template
4341/// parameters present at all, require proper matching, i.e.
4342///   template <> template <class T> friend class A<int>::B;
4343Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4344                                          MultiTemplateParamsArg TempParams) {
4345  SourceLocation Loc = DS.getSourceRange().getBegin();
4346
4347  assert(DS.isFriendSpecified());
4348  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4349
4350  // Try to convert the decl specifier to a type.  This works for
4351  // friend templates because ActOnTag never produces a ClassTemplateDecl
4352  // for a TUK_Friend.
4353  Declarator TheDeclarator(DS, Declarator::MemberContext);
4354  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4355  if (TheDeclarator.isInvalidType())
4356    return DeclPtrTy();
4357
4358  // This is definitely an error in C++98.  It's probably meant to
4359  // be forbidden in C++0x, too, but the specification is just
4360  // poorly written.
4361  //
4362  // The problem is with declarations like the following:
4363  //   template <T> friend A<T>::foo;
4364  // where deciding whether a class C is a friend or not now hinges
4365  // on whether there exists an instantiation of A that causes
4366  // 'foo' to equal C.  There are restrictions on class-heads
4367  // (which we declare (by fiat) elaborated friend declarations to
4368  // be) that makes this tractable.
4369  //
4370  // FIXME: handle "template <> friend class A<T>;", which
4371  // is possibly well-formed?  Who even knows?
4372  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4373    Diag(Loc, diag::err_tagless_friend_type_template)
4374      << DS.getSourceRange();
4375    return DeclPtrTy();
4376  }
4377
4378  // C++ [class.friend]p2:
4379  //   An elaborated-type-specifier shall be used in a friend declaration
4380  //   for a class.*
4381  //   * The class-key of the elaborated-type-specifier is required.
4382  // This is one of the rare places in Clang where it's legitimate to
4383  // ask about the "spelling" of the type.
4384  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4385    // If we evaluated the type to a record type, suggest putting
4386    // a tag in front.
4387    if (const RecordType *RT = T->getAs<RecordType>()) {
4388      RecordDecl *RD = RT->getDecl();
4389
4390      std::string InsertionText = std::string(" ") + RD->getKindName();
4391
4392      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4393        << (unsigned) RD->getTagKind()
4394        << T
4395        << SourceRange(DS.getFriendSpecLoc())
4396        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4397                                                 InsertionText);
4398      return DeclPtrTy();
4399    }else {
4400      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4401          << DS.getSourceRange();
4402      return DeclPtrTy();
4403    }
4404  }
4405
4406  // Enum types cannot be friends.
4407  if (T->getAs<EnumType>()) {
4408    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4409      << SourceRange(DS.getFriendSpecLoc());
4410    return DeclPtrTy();
4411  }
4412
4413  // C++98 [class.friend]p1: A friend of a class is a function
4414  //   or class that is not a member of the class . . .
4415  // But that's a silly restriction which nobody implements for
4416  // inner classes, and C++0x removes it anyway, so we only report
4417  // this (as a warning) if we're being pedantic.
4418  if (!getLangOptions().CPlusPlus0x)
4419    if (const RecordType *RT = T->getAs<RecordType>())
4420      if (RT->getDecl()->getDeclContext() == CurContext)
4421        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4422
4423  Decl *D;
4424  if (TempParams.size())
4425    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4426                                   TempParams.size(),
4427                                 (TemplateParameterList**) TempParams.release(),
4428                                   T.getTypePtr(),
4429                                   DS.getFriendSpecLoc());
4430  else
4431    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4432                           DS.getFriendSpecLoc());
4433  D->setAccess(AS_public);
4434  CurContext->addDecl(D);
4435
4436  return DeclPtrTy::make(D);
4437}
4438
4439Sema::DeclPtrTy
4440Sema::ActOnFriendFunctionDecl(Scope *S,
4441                              Declarator &D,
4442                              bool IsDefinition,
4443                              MultiTemplateParamsArg TemplateParams) {
4444  const DeclSpec &DS = D.getDeclSpec();
4445
4446  assert(DS.isFriendSpecified());
4447  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4448
4449  SourceLocation Loc = D.getIdentifierLoc();
4450  DeclaratorInfo *DInfo = 0;
4451  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4452
4453  // C++ [class.friend]p1
4454  //   A friend of a class is a function or class....
4455  // Note that this sees through typedefs, which is intended.
4456  // It *doesn't* see through dependent types, which is correct
4457  // according to [temp.arg.type]p3:
4458  //   If a declaration acquires a function type through a
4459  //   type dependent on a template-parameter and this causes
4460  //   a declaration that does not use the syntactic form of a
4461  //   function declarator to have a function type, the program
4462  //   is ill-formed.
4463  if (!T->isFunctionType()) {
4464    Diag(Loc, diag::err_unexpected_friend);
4465
4466    // It might be worthwhile to try to recover by creating an
4467    // appropriate declaration.
4468    return DeclPtrTy();
4469  }
4470
4471  // C++ [namespace.memdef]p3
4472  //  - If a friend declaration in a non-local class first declares a
4473  //    class or function, the friend class or function is a member
4474  //    of the innermost enclosing namespace.
4475  //  - The name of the friend is not found by simple name lookup
4476  //    until a matching declaration is provided in that namespace
4477  //    scope (either before or after the class declaration granting
4478  //    friendship).
4479  //  - If a friend function is called, its name may be found by the
4480  //    name lookup that considers functions from namespaces and
4481  //    classes associated with the types of the function arguments.
4482  //  - When looking for a prior declaration of a class or a function
4483  //    declared as a friend, scopes outside the innermost enclosing
4484  //    namespace scope are not considered.
4485
4486  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4487  DeclarationName Name = GetNameForDeclarator(D);
4488  assert(Name);
4489
4490  // The context we found the declaration in, or in which we should
4491  // create the declaration.
4492  DeclContext *DC;
4493
4494  // FIXME: handle local classes
4495
4496  // Recover from invalid scope qualifiers as if they just weren't there.
4497  NamedDecl *PrevDecl = 0;
4498  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4499    // FIXME: RequireCompleteDeclContext
4500    DC = computeDeclContext(ScopeQual);
4501
4502    // FIXME: handle dependent contexts
4503    if (!DC) return DeclPtrTy();
4504
4505    LookupResult R;
4506    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4507    PrevDecl = R.getAsSingleDecl(Context);
4508
4509    // If searching in that context implicitly found a declaration in
4510    // a different context, treat it like it wasn't found at all.
4511    // TODO: better diagnostics for this case.  Suggesting the right
4512    // qualified scope would be nice...
4513    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4514      D.setInvalidType();
4515      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4516      return DeclPtrTy();
4517    }
4518
4519    // C++ [class.friend]p1: A friend of a class is a function or
4520    //   class that is not a member of the class . . .
4521    if (DC->Equals(CurContext))
4522      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4523
4524  // Otherwise walk out to the nearest namespace scope looking for matches.
4525  } else {
4526    // TODO: handle local class contexts.
4527
4528    DC = CurContext;
4529    while (true) {
4530      // Skip class contexts.  If someone can cite chapter and verse
4531      // for this behavior, that would be nice --- it's what GCC and
4532      // EDG do, and it seems like a reasonable intent, but the spec
4533      // really only says that checks for unqualified existing
4534      // declarations should stop at the nearest enclosing namespace,
4535      // not that they should only consider the nearest enclosing
4536      // namespace.
4537      while (DC->isRecord())
4538        DC = DC->getParent();
4539
4540      LookupResult R;
4541      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4542      PrevDecl = R.getAsSingleDecl(Context);
4543
4544      // TODO: decide what we think about using declarations.
4545      if (PrevDecl)
4546        break;
4547
4548      if (DC->isFileContext()) break;
4549      DC = DC->getParent();
4550    }
4551
4552    // C++ [class.friend]p1: A friend of a class is a function or
4553    //   class that is not a member of the class . . .
4554    // C++0x changes this for both friend types and functions.
4555    // Most C++ 98 compilers do seem to give an error here, so
4556    // we do, too.
4557    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4558      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4559  }
4560
4561  if (DC->isFileContext()) {
4562    // This implies that it has to be an operator or function.
4563    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4564        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4565        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4566      Diag(Loc, diag::err_introducing_special_friend) <<
4567        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4568         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4569      return DeclPtrTy();
4570    }
4571  }
4572
4573  bool Redeclaration = false;
4574  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4575                                          move(TemplateParams),
4576                                          IsDefinition,
4577                                          Redeclaration);
4578  if (!ND) return DeclPtrTy();
4579
4580  assert(ND->getDeclContext() == DC);
4581  assert(ND->getLexicalDeclContext() == CurContext);
4582
4583  // Add the function declaration to the appropriate lookup tables,
4584  // adjusting the redeclarations list as necessary.  We don't
4585  // want to do this yet if the friending class is dependent.
4586  //
4587  // Also update the scope-based lookup if the target context's
4588  // lookup context is in lexical scope.
4589  if (!CurContext->isDependentContext()) {
4590    DC = DC->getLookupContext();
4591    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4592    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4593      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4594  }
4595
4596  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4597                                       D.getIdentifierLoc(), ND,
4598                                       DS.getFriendSpecLoc());
4599  FrD->setAccess(AS_public);
4600  CurContext->addDecl(FrD);
4601
4602  return DeclPtrTy::make(ND);
4603}
4604
4605void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4606  AdjustDeclIfTemplate(dcl);
4607
4608  Decl *Dcl = dcl.getAs<Decl>();
4609  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4610  if (!Fn) {
4611    Diag(DelLoc, diag::err_deleted_non_function);
4612    return;
4613  }
4614  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4615    Diag(DelLoc, diag::err_deleted_decl_not_first);
4616    Diag(Prev->getLocation(), diag::note_previous_declaration);
4617    // If the declaration wasn't the first, we delete the function anyway for
4618    // recovery.
4619  }
4620  Fn->setDeleted();
4621}
4622
4623static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4624  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4625       ++CI) {
4626    Stmt *SubStmt = *CI;
4627    if (!SubStmt)
4628      continue;
4629    if (isa<ReturnStmt>(SubStmt))
4630      Self.Diag(SubStmt->getSourceRange().getBegin(),
4631           diag::err_return_in_constructor_handler);
4632    if (!isa<Expr>(SubStmt))
4633      SearchForReturnInStmt(Self, SubStmt);
4634  }
4635}
4636
4637void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4638  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4639    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4640    SearchForReturnInStmt(*this, Handler);
4641  }
4642}
4643
4644bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4645                                             const CXXMethodDecl *Old) {
4646  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4647  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4648
4649  QualType CNewTy = Context.getCanonicalType(NewTy);
4650  QualType COldTy = Context.getCanonicalType(OldTy);
4651
4652  if (CNewTy == COldTy &&
4653      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4654    return false;
4655
4656  // Check if the return types are covariant
4657  QualType NewClassTy, OldClassTy;
4658
4659  /// Both types must be pointers or references to classes.
4660  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4661    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4662      NewClassTy = NewPT->getPointeeType();
4663      OldClassTy = OldPT->getPointeeType();
4664    }
4665  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4666    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4667      NewClassTy = NewRT->getPointeeType();
4668      OldClassTy = OldRT->getPointeeType();
4669    }
4670  }
4671
4672  // The return types aren't either both pointers or references to a class type.
4673  if (NewClassTy.isNull()) {
4674    Diag(New->getLocation(),
4675         diag::err_different_return_type_for_overriding_virtual_function)
4676      << New->getDeclName() << NewTy << OldTy;
4677    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4678
4679    return true;
4680  }
4681
4682  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4683    // Check if the new class derives from the old class.
4684    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4685      Diag(New->getLocation(),
4686           diag::err_covariant_return_not_derived)
4687      << New->getDeclName() << NewTy << OldTy;
4688      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4689      return true;
4690    }
4691
4692    // Check if we the conversion from derived to base is valid.
4693    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4694                      diag::err_covariant_return_inaccessible_base,
4695                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4696                      // FIXME: Should this point to the return type?
4697                      New->getLocation(), SourceRange(), New->getDeclName())) {
4698      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4699      return true;
4700    }
4701  }
4702
4703  // The qualifiers of the return types must be the same.
4704  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4705    Diag(New->getLocation(),
4706         diag::err_covariant_return_type_different_qualifications)
4707    << New->getDeclName() << NewTy << OldTy;
4708    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4709    return true;
4710  };
4711
4712
4713  // The new class type must have the same or less qualifiers as the old type.
4714  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4715    Diag(New->getLocation(),
4716         diag::err_covariant_return_type_class_type_more_qualified)
4717    << New->getDeclName() << NewTy << OldTy;
4718    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4719    return true;
4720  };
4721
4722  return false;
4723}
4724
4725/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4726/// initializer for the declaration 'Dcl'.
4727/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4728/// static data member of class X, names should be looked up in the scope of
4729/// class X.
4730void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4731  AdjustDeclIfTemplate(Dcl);
4732
4733  Decl *D = Dcl.getAs<Decl>();
4734  // If there is no declaration, there was an error parsing it.
4735  if (D == 0)
4736    return;
4737
4738  // Check whether it is a declaration with a nested name specifier like
4739  // int foo::bar;
4740  if (!D->isOutOfLine())
4741    return;
4742
4743  // C++ [basic.lookup.unqual]p13
4744  //
4745  // A name used in the definition of a static data member of class X
4746  // (after the qualified-id of the static member) is looked up as if the name
4747  // was used in a member function of X.
4748
4749  // Change current context into the context of the initializing declaration.
4750  EnterDeclaratorContext(S, D->getDeclContext());
4751}
4752
4753/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4754/// initializer for the declaration 'Dcl'.
4755void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4756  AdjustDeclIfTemplate(Dcl);
4757
4758  Decl *D = Dcl.getAs<Decl>();
4759  // If there is no declaration, there was an error parsing it.
4760  if (D == 0)
4761    return;
4762
4763  // Check whether it is a declaration with a nested name specifier like
4764  // int foo::bar;
4765  if (!D->isOutOfLine())
4766    return;
4767
4768  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4769  ExitDeclaratorContext(S);
4770}
4771