SemaDeclCXX.cpp revision af8e6ed61b5e80ab95632b63f583af79dcb62590
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Parse/Template.h"
23#include "clang/Basic/PartialDiagnostic.h"
24#include "clang/Lex/Preprocessor.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/Compiler.h"
27#include <algorithm> // for std::equal
28#include <map>
29#include <set>
30
31using namespace clang;
32
33//===----------------------------------------------------------------------===//
34// CheckDefaultArgumentVisitor
35//===----------------------------------------------------------------------===//
36
37namespace {
38  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
39  /// the default argument of a parameter to determine whether it
40  /// contains any ill-formed subexpressions. For example, this will
41  /// diagnose the use of local variables or parameters within the
42  /// default argument expression.
43  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
44    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
45    Expr *DefaultArg;
46    Sema *S;
47
48  public:
49    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
50      : DefaultArg(defarg), S(s) {}
51
52    bool VisitExpr(Expr *Node);
53    bool VisitDeclRefExpr(DeclRefExpr *DRE);
54    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
55  };
56
57  /// VisitExpr - Visit all of the children of this expression.
58  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
59    bool IsInvalid = false;
60    for (Stmt::child_iterator I = Node->child_begin(),
61         E = Node->child_end(); I != E; ++I)
62      IsInvalid |= Visit(*I);
63    return IsInvalid;
64  }
65
66  /// VisitDeclRefExpr - Visit a reference to a declaration, to
67  /// determine whether this declaration can be used in the default
68  /// argument expression.
69  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
70    NamedDecl *Decl = DRE->getDecl();
71    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
72      // C++ [dcl.fct.default]p9
73      //   Default arguments are evaluated each time the function is
74      //   called. The order of evaluation of function arguments is
75      //   unspecified. Consequently, parameters of a function shall not
76      //   be used in default argument expressions, even if they are not
77      //   evaluated. Parameters of a function declared before a default
78      //   argument expression are in scope and can hide namespace and
79      //   class member names.
80      return S->Diag(DRE->getSourceRange().getBegin(),
81                     diag::err_param_default_argument_references_param)
82         << Param->getDeclName() << DefaultArg->getSourceRange();
83    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
84      // C++ [dcl.fct.default]p7
85      //   Local variables shall not be used in default argument
86      //   expressions.
87      if (VDecl->isBlockVarDecl())
88        return S->Diag(DRE->getSourceRange().getBegin(),
89                       diag::err_param_default_argument_references_local)
90          << VDecl->getDeclName() << DefaultArg->getSourceRange();
91    }
92
93    return false;
94  }
95
96  /// VisitCXXThisExpr - Visit a C++ "this" expression.
97  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
98    // C++ [dcl.fct.default]p8:
99    //   The keyword this shall not be used in a default argument of a
100    //   member function.
101    return S->Diag(ThisE->getSourceRange().getBegin(),
102                   diag::err_param_default_argument_references_this)
103               << ThisE->getSourceRange();
104  }
105}
106
107bool
108Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
109                              SourceLocation EqualLoc) {
110  QualType ParamType = Param->getType();
111
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
127                            Param->getDeclName(), /*DirectInit=*/false))
128    return true;
129
130  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
131
132  // Okay: add the default argument to the parameter
133  Param->setDefaultArg(Arg);
134
135  DefaultArg.release();
136
137  return false;
138}
139
140/// ActOnParamDefaultArgument - Check whether the default argument
141/// provided for a function parameter is well-formed. If so, attach it
142/// to the parameter declaration.
143void
144Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
145                                ExprArg defarg) {
146  if (!param || !defarg.get())
147    return;
148
149  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
150  UnparsedDefaultArgLocs.erase(Param);
151
152  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
153  QualType ParamType = Param->getType();
154
155  // Default arguments are only permitted in C++
156  if (!getLangOptions().CPlusPlus) {
157    Diag(EqualLoc, diag::err_param_default_argument)
158      << DefaultArg->getSourceRange();
159    Param->setInvalidDecl();
160    return;
161  }
162
163  // Check that the default argument is well-formed
164  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
165  if (DefaultArgChecker.Visit(DefaultArg.get())) {
166    Param->setInvalidDecl();
167    return;
168  }
169
170  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
171}
172
173/// ActOnParamUnparsedDefaultArgument - We've seen a default
174/// argument for a function parameter, but we can't parse it yet
175/// because we're inside a class definition. Note that this default
176/// argument will be parsed later.
177void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
178                                             SourceLocation EqualLoc,
179                                             SourceLocation ArgLoc) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184  if (Param)
185    Param->setUnparsedDefaultArg();
186
187  UnparsedDefaultArgLocs[Param] = ArgLoc;
188}
189
190/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
191/// the default argument for the parameter param failed.
192void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
193  if (!param)
194    return;
195
196  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
197
198  Param->setInvalidDecl();
199
200  UnparsedDefaultArgLocs.erase(Param);
201}
202
203/// CheckExtraCXXDefaultArguments - Check for any extra default
204/// arguments in the declarator, which is not a function declaration
205/// or definition and therefore is not permitted to have default
206/// arguments. This routine should be invoked for every declarator
207/// that is not a function declaration or definition.
208void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
209  // C++ [dcl.fct.default]p3
210  //   A default argument expression shall be specified only in the
211  //   parameter-declaration-clause of a function declaration or in a
212  //   template-parameter (14.1). It shall not be specified for a
213  //   parameter pack. If it is specified in a
214  //   parameter-declaration-clause, it shall not occur within a
215  //   declarator or abstract-declarator of a parameter-declaration.
216  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
217    DeclaratorChunk &chunk = D.getTypeObject(i);
218    if (chunk.Kind == DeclaratorChunk::Function) {
219      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
220        ParmVarDecl *Param =
221          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
222        if (Param->hasUnparsedDefaultArg()) {
223          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
224          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
225            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
226          delete Toks;
227          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
228        } else if (Param->getDefaultArg()) {
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << Param->getDefaultArg()->getSourceRange();
231          Param->setDefaultArg(0);
232        }
233      }
234    }
235  }
236}
237
238// MergeCXXFunctionDecl - Merge two declarations of the same C++
239// function, once we already know that they have the same
240// type. Subroutine of MergeFunctionDecl. Returns true if there was an
241// error, false otherwise.
242bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
243  bool Invalid = false;
244
245  // C++ [dcl.fct.default]p4:
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  //
258  // C++ [dcl.fct.default]p6:
259  //   Except for member functions of class templates, the default arguments
260  //   in a member function definition that appears outside of the class
261  //   definition are added to the set of default arguments provided by the
262  //   member function declaration in the class definition.
263  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
264    ParmVarDecl *OldParam = Old->getParamDecl(p);
265    ParmVarDecl *NewParam = New->getParamDecl(p);
266
267    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
268      // FIXME: If the parameter doesn't have an identifier then the location
269      // points to the '=' which means that the fixit hint won't remove any
270      // extra spaces between the type and the '='.
271      SourceLocation Begin = NewParam->getLocation();
272      if (NewParam->getIdentifier())
273        Begin = PP.getLocForEndOfToken(Begin);
274
275      Diag(NewParam->getLocation(),
276           diag::err_param_default_argument_redefinition)
277        << NewParam->getDefaultArgRange()
278        << CodeModificationHint::CreateRemoval(SourceRange(Begin,
279                                                        NewParam->getLocEnd()));
280
281      // Look for the function declaration where the default argument was
282      // actually written, which may be a declaration prior to Old.
283      for (FunctionDecl *Older = Old->getPreviousDeclaration();
284           Older; Older = Older->getPreviousDeclaration()) {
285        if (!Older->getParamDecl(p)->hasDefaultArg())
286          break;
287
288        OldParam = Older->getParamDecl(p);
289      }
290
291      Diag(OldParam->getLocation(), diag::note_previous_definition)
292        << OldParam->getDefaultArgRange();
293      Invalid = true;
294    } else if (OldParam->hasDefaultArg()) {
295      // Merge the old default argument into the new parameter
296      if (OldParam->hasUninstantiatedDefaultArg())
297        NewParam->setUninstantiatedDefaultArg(
298                                      OldParam->getUninstantiatedDefaultArg());
299      else
300        NewParam->setDefaultArg(OldParam->getDefaultArg());
301    } else if (NewParam->hasDefaultArg()) {
302      if (New->getDescribedFunctionTemplate()) {
303        // Paragraph 4, quoted above, only applies to non-template functions.
304        Diag(NewParam->getLocation(),
305             diag::err_param_default_argument_template_redecl)
306          << NewParam->getDefaultArgRange();
307        Diag(Old->getLocation(), diag::note_template_prev_declaration)
308          << false;
309      } else if (New->getTemplateSpecializationKind()
310                   != TSK_ImplicitInstantiation &&
311                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
312        // C++ [temp.expr.spec]p21:
313        //   Default function arguments shall not be specified in a declaration
314        //   or a definition for one of the following explicit specializations:
315        //     - the explicit specialization of a function template;
316        //     - the explicit specialization of a member function template;
317        //     - the explicit specialization of a member function of a class
318        //       template where the class template specialization to which the
319        //       member function specialization belongs is implicitly
320        //       instantiated.
321        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
322          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
323          << New->getDeclName()
324          << NewParam->getDefaultArgRange();
325      } else if (New->getDeclContext()->isDependentContext()) {
326        // C++ [dcl.fct.default]p6 (DR217):
327        //   Default arguments for a member function of a class template shall
328        //   be specified on the initial declaration of the member function
329        //   within the class template.
330        //
331        // Reading the tea leaves a bit in DR217 and its reference to DR205
332        // leads me to the conclusion that one cannot add default function
333        // arguments for an out-of-line definition of a member function of a
334        // dependent type.
335        int WhichKind = 2;
336        if (CXXRecordDecl *Record
337              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
338          if (Record->getDescribedClassTemplate())
339            WhichKind = 0;
340          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
341            WhichKind = 1;
342          else
343            WhichKind = 2;
344        }
345
346        Diag(NewParam->getLocation(),
347             diag::err_param_default_argument_member_template_redecl)
348          << WhichKind
349          << NewParam->getDefaultArgRange();
350      }
351    }
352  }
353
354  if (CheckEquivalentExceptionSpec(
355          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
356          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
357    Invalid = true;
358  }
359
360  return Invalid;
361}
362
363/// CheckCXXDefaultArguments - Verify that the default arguments for a
364/// function declaration are well-formed according to C++
365/// [dcl.fct.default].
366void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
367  unsigned NumParams = FD->getNumParams();
368  unsigned p;
369
370  // Find first parameter with a default argument
371  for (p = 0; p < NumParams; ++p) {
372    ParmVarDecl *Param = FD->getParamDecl(p);
373    if (Param->hasDefaultArg())
374      break;
375  }
376
377  // C++ [dcl.fct.default]p4:
378  //   In a given function declaration, all parameters
379  //   subsequent to a parameter with a default argument shall
380  //   have default arguments supplied in this or previous
381  //   declarations. A default argument shall not be redefined
382  //   by a later declaration (not even to the same value).
383  unsigned LastMissingDefaultArg = 0;
384  for (; p < NumParams; ++p) {
385    ParmVarDecl *Param = FD->getParamDecl(p);
386    if (!Param->hasDefaultArg()) {
387      if (Param->isInvalidDecl())
388        /* We already complained about this parameter. */;
389      else if (Param->getIdentifier())
390        Diag(Param->getLocation(),
391             diag::err_param_default_argument_missing_name)
392          << Param->getIdentifier();
393      else
394        Diag(Param->getLocation(),
395             diag::err_param_default_argument_missing);
396
397      LastMissingDefaultArg = p;
398    }
399  }
400
401  if (LastMissingDefaultArg > 0) {
402    // Some default arguments were missing. Clear out all of the
403    // default arguments up to (and including) the last missing
404    // default argument, so that we leave the function parameters
405    // in a semantically valid state.
406    for (p = 0; p <= LastMissingDefaultArg; ++p) {
407      ParmVarDecl *Param = FD->getParamDecl(p);
408      if (Param->hasDefaultArg()) {
409        if (!Param->hasUnparsedDefaultArg())
410          Param->getDefaultArg()->Destroy(Context);
411        Param->setDefaultArg(0);
412      }
413    }
414  }
415}
416
417/// isCurrentClassName - Determine whether the identifier II is the
418/// name of the class type currently being defined. In the case of
419/// nested classes, this will only return true if II is the name of
420/// the innermost class.
421bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
422                              const CXXScopeSpec *SS) {
423  CXXRecordDecl *CurDecl;
424  if (SS && SS->isSet() && !SS->isInvalid()) {
425    DeclContext *DC = computeDeclContext(*SS, true);
426    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
427  } else
428    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
429
430  if (CurDecl)
431    return &II == CurDecl->getIdentifier();
432  else
433    return false;
434}
435
436/// \brief Check the validity of a C++ base class specifier.
437///
438/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
439/// and returns NULL otherwise.
440CXXBaseSpecifier *
441Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
442                         SourceRange SpecifierRange,
443                         bool Virtual, AccessSpecifier Access,
444                         QualType BaseType,
445                         SourceLocation BaseLoc) {
446  // C++ [class.union]p1:
447  //   A union shall not have base classes.
448  if (Class->isUnion()) {
449    Diag(Class->getLocation(), diag::err_base_clause_on_union)
450      << SpecifierRange;
451    return 0;
452  }
453
454  if (BaseType->isDependentType())
455    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
456                                Class->getTagKind() == RecordDecl::TK_class,
457                                Access, BaseType);
458
459  // Base specifiers must be record types.
460  if (!BaseType->isRecordType()) {
461    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
462    return 0;
463  }
464
465  // C++ [class.union]p1:
466  //   A union shall not be used as a base class.
467  if (BaseType->isUnionType()) {
468    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
469    return 0;
470  }
471
472  // C++ [class.derived]p2:
473  //   The class-name in a base-specifier shall not be an incompletely
474  //   defined class.
475  if (RequireCompleteType(BaseLoc, BaseType,
476                          PDiag(diag::err_incomplete_base_class)
477                            << SpecifierRange))
478    return 0;
479
480  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
481  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
482  assert(BaseDecl && "Record type has no declaration");
483  BaseDecl = BaseDecl->getDefinition(Context);
484  assert(BaseDecl && "Base type is not incomplete, but has no definition");
485  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
486  assert(CXXBaseDecl && "Base type is not a C++ type");
487  if (!CXXBaseDecl->isEmpty())
488    Class->setEmpty(false);
489  if (CXXBaseDecl->isPolymorphic())
490    Class->setPolymorphic(true);
491
492  // C++ [dcl.init.aggr]p1:
493  //   An aggregate is [...] a class with [...] no base classes [...].
494  Class->setAggregate(false);
495  Class->setPOD(false);
496
497  if (Virtual) {
498    // C++ [class.ctor]p5:
499    //   A constructor is trivial if its class has no virtual base classes.
500    Class->setHasTrivialConstructor(false);
501
502    // C++ [class.copy]p6:
503    //   A copy constructor is trivial if its class has no virtual base classes.
504    Class->setHasTrivialCopyConstructor(false);
505
506    // C++ [class.copy]p11:
507    //   A copy assignment operator is trivial if its class has no virtual
508    //   base classes.
509    Class->setHasTrivialCopyAssignment(false);
510
511    // C++0x [meta.unary.prop] is_empty:
512    //    T is a class type, but not a union type, with ... no virtual base
513    //    classes
514    Class->setEmpty(false);
515  } else {
516    // C++ [class.ctor]p5:
517    //   A constructor is trivial if all the direct base classes of its
518    //   class have trivial constructors.
519    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
520      Class->setHasTrivialConstructor(false);
521
522    // C++ [class.copy]p6:
523    //   A copy constructor is trivial if all the direct base classes of its
524    //   class have trivial copy constructors.
525    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
526      Class->setHasTrivialCopyConstructor(false);
527
528    // C++ [class.copy]p11:
529    //   A copy assignment operator is trivial if all the direct base classes
530    //   of its class have trivial copy assignment operators.
531    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
532      Class->setHasTrivialCopyAssignment(false);
533  }
534
535  // C++ [class.ctor]p3:
536  //   A destructor is trivial if all the direct base classes of its class
537  //   have trivial destructors.
538  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
539    Class->setHasTrivialDestructor(false);
540
541  // Create the base specifier.
542  // FIXME: Allocate via ASTContext?
543  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
544                              Class->getTagKind() == RecordDecl::TK_class,
545                              Access, BaseType);
546}
547
548/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
549/// one entry in the base class list of a class specifier, for
550/// example:
551///    class foo : public bar, virtual private baz {
552/// 'public bar' and 'virtual private baz' are each base-specifiers.
553Sema::BaseResult
554Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
555                         bool Virtual, AccessSpecifier Access,
556                         TypeTy *basetype, SourceLocation BaseLoc) {
557  if (!classdecl)
558    return true;
559
560  AdjustDeclIfTemplate(classdecl);
561  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
562  QualType BaseType = GetTypeFromParser(basetype);
563  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
564                                                      Virtual, Access,
565                                                      BaseType, BaseLoc))
566    return BaseSpec;
567
568  return true;
569}
570
571/// \brief Performs the actual work of attaching the given base class
572/// specifiers to a C++ class.
573bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
574                                unsigned NumBases) {
575 if (NumBases == 0)
576    return false;
577
578  // Used to keep track of which base types we have already seen, so
579  // that we can properly diagnose redundant direct base types. Note
580  // that the key is always the unqualified canonical type of the base
581  // class.
582  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
583
584  // Copy non-redundant base specifiers into permanent storage.
585  unsigned NumGoodBases = 0;
586  bool Invalid = false;
587  for (unsigned idx = 0; idx < NumBases; ++idx) {
588    QualType NewBaseType
589      = Context.getCanonicalType(Bases[idx]->getType());
590    NewBaseType = NewBaseType.getUnqualifiedType();
591
592    if (KnownBaseTypes[NewBaseType]) {
593      // C++ [class.mi]p3:
594      //   A class shall not be specified as a direct base class of a
595      //   derived class more than once.
596      Diag(Bases[idx]->getSourceRange().getBegin(),
597           diag::err_duplicate_base_class)
598        << KnownBaseTypes[NewBaseType]->getType()
599        << Bases[idx]->getSourceRange();
600
601      // Delete the duplicate base class specifier; we're going to
602      // overwrite its pointer later.
603      Context.Deallocate(Bases[idx]);
604
605      Invalid = true;
606    } else {
607      // Okay, add this new base class.
608      KnownBaseTypes[NewBaseType] = Bases[idx];
609      Bases[NumGoodBases++] = Bases[idx];
610    }
611  }
612
613  // Attach the remaining base class specifiers to the derived class.
614  Class->setBases(Context, Bases, NumGoodBases);
615
616  // Delete the remaining (good) base class specifiers, since their
617  // data has been copied into the CXXRecordDecl.
618  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
619    Context.Deallocate(Bases[idx]);
620
621  return Invalid;
622}
623
624/// ActOnBaseSpecifiers - Attach the given base specifiers to the
625/// class, after checking whether there are any duplicate base
626/// classes.
627void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
628                               unsigned NumBases) {
629  if (!ClassDecl || !Bases || !NumBases)
630    return;
631
632  AdjustDeclIfTemplate(ClassDecl);
633  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
634                       (CXXBaseSpecifier**)(Bases), NumBases);
635}
636
637/// \brief Determine whether the type \p Derived is a C++ class that is
638/// derived from the type \p Base.
639bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
640  if (!getLangOptions().CPlusPlus)
641    return false;
642
643  const RecordType *DerivedRT = Derived->getAs<RecordType>();
644  if (!DerivedRT)
645    return false;
646
647  const RecordType *BaseRT = Base->getAs<RecordType>();
648  if (!BaseRT)
649    return false;
650
651  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
652  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
653  return DerivedRD->isDerivedFrom(BaseRD);
654}
655
656/// \brief Determine whether the type \p Derived is a C++ class that is
657/// derived from the type \p Base.
658bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
659  if (!getLangOptions().CPlusPlus)
660    return false;
661
662  const RecordType *DerivedRT = Derived->getAs<RecordType>();
663  if (!DerivedRT)
664    return false;
665
666  const RecordType *BaseRT = Base->getAs<RecordType>();
667  if (!BaseRT)
668    return false;
669
670  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
671  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
672  return DerivedRD->isDerivedFrom(BaseRD, Paths);
673}
674
675/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
676/// conversion (where Derived and Base are class types) is
677/// well-formed, meaning that the conversion is unambiguous (and
678/// that all of the base classes are accessible). Returns true
679/// and emits a diagnostic if the code is ill-formed, returns false
680/// otherwise. Loc is the location where this routine should point to
681/// if there is an error, and Range is the source range to highlight
682/// if there is an error.
683bool
684Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
685                                   unsigned InaccessibleBaseID,
686                                   unsigned AmbigiousBaseConvID,
687                                   SourceLocation Loc, SourceRange Range,
688                                   DeclarationName Name) {
689  // First, determine whether the path from Derived to Base is
690  // ambiguous. This is slightly more expensive than checking whether
691  // the Derived to Base conversion exists, because here we need to
692  // explore multiple paths to determine if there is an ambiguity.
693  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
694                     /*DetectVirtual=*/false);
695  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
696  assert(DerivationOkay &&
697         "Can only be used with a derived-to-base conversion");
698  (void)DerivationOkay;
699
700  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
701    // Check that the base class can be accessed.
702    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
703                                Name);
704  }
705
706  // We know that the derived-to-base conversion is ambiguous, and
707  // we're going to produce a diagnostic. Perform the derived-to-base
708  // search just one more time to compute all of the possible paths so
709  // that we can print them out. This is more expensive than any of
710  // the previous derived-to-base checks we've done, but at this point
711  // performance isn't as much of an issue.
712  Paths.clear();
713  Paths.setRecordingPaths(true);
714  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
715  assert(StillOkay && "Can only be used with a derived-to-base conversion");
716  (void)StillOkay;
717
718  // Build up a textual representation of the ambiguous paths, e.g.,
719  // D -> B -> A, that will be used to illustrate the ambiguous
720  // conversions in the diagnostic. We only print one of the paths
721  // to each base class subobject.
722  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
723
724  Diag(Loc, AmbigiousBaseConvID)
725  << Derived << Base << PathDisplayStr << Range << Name;
726  return true;
727}
728
729bool
730Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
731                                   SourceLocation Loc, SourceRange Range) {
732  return CheckDerivedToBaseConversion(Derived, Base,
733                                      diag::err_conv_to_inaccessible_base,
734                                      diag::err_ambiguous_derived_to_base_conv,
735                                      Loc, Range, DeclarationName());
736}
737
738
739/// @brief Builds a string representing ambiguous paths from a
740/// specific derived class to different subobjects of the same base
741/// class.
742///
743/// This function builds a string that can be used in error messages
744/// to show the different paths that one can take through the
745/// inheritance hierarchy to go from the derived class to different
746/// subobjects of a base class. The result looks something like this:
747/// @code
748/// struct D -> struct B -> struct A
749/// struct D -> struct C -> struct A
750/// @endcode
751std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
752  std::string PathDisplayStr;
753  std::set<unsigned> DisplayedPaths;
754  for (CXXBasePaths::paths_iterator Path = Paths.begin();
755       Path != Paths.end(); ++Path) {
756    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
757      // We haven't displayed a path to this particular base
758      // class subobject yet.
759      PathDisplayStr += "\n    ";
760      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
761      for (CXXBasePath::const_iterator Element = Path->begin();
762           Element != Path->end(); ++Element)
763        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
764    }
765  }
766
767  return PathDisplayStr;
768}
769
770//===----------------------------------------------------------------------===//
771// C++ class member Handling
772//===----------------------------------------------------------------------===//
773
774/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
775/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
776/// bitfield width if there is one and 'InitExpr' specifies the initializer if
777/// any.
778Sema::DeclPtrTy
779Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
780                               MultiTemplateParamsArg TemplateParameterLists,
781                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
782  const DeclSpec &DS = D.getDeclSpec();
783  DeclarationName Name = GetNameForDeclarator(D);
784  Expr *BitWidth = static_cast<Expr*>(BW);
785  Expr *Init = static_cast<Expr*>(InitExpr);
786  SourceLocation Loc = D.getIdentifierLoc();
787
788  bool isFunc = D.isFunctionDeclarator();
789
790  assert(!DS.isFriendSpecified());
791
792  // C++ 9.2p6: A member shall not be declared to have automatic storage
793  // duration (auto, register) or with the extern storage-class-specifier.
794  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
795  // data members and cannot be applied to names declared const or static,
796  // and cannot be applied to reference members.
797  switch (DS.getStorageClassSpec()) {
798    case DeclSpec::SCS_unspecified:
799    case DeclSpec::SCS_typedef:
800    case DeclSpec::SCS_static:
801      // FALL THROUGH.
802      break;
803    case DeclSpec::SCS_mutable:
804      if (isFunc) {
805        if (DS.getStorageClassSpecLoc().isValid())
806          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
807        else
808          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
809
810        // FIXME: It would be nicer if the keyword was ignored only for this
811        // declarator. Otherwise we could get follow-up errors.
812        D.getMutableDeclSpec().ClearStorageClassSpecs();
813      } else {
814        QualType T = GetTypeForDeclarator(D, S);
815        diag::kind err = static_cast<diag::kind>(0);
816        if (T->isReferenceType())
817          err = diag::err_mutable_reference;
818        else if (T.isConstQualified())
819          err = diag::err_mutable_const;
820        if (err != 0) {
821          if (DS.getStorageClassSpecLoc().isValid())
822            Diag(DS.getStorageClassSpecLoc(), err);
823          else
824            Diag(DS.getThreadSpecLoc(), err);
825          // FIXME: It would be nicer if the keyword was ignored only for this
826          // declarator. Otherwise we could get follow-up errors.
827          D.getMutableDeclSpec().ClearStorageClassSpecs();
828        }
829      }
830      break;
831    default:
832      if (DS.getStorageClassSpecLoc().isValid())
833        Diag(DS.getStorageClassSpecLoc(),
834             diag::err_storageclass_invalid_for_member);
835      else
836        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
837      D.getMutableDeclSpec().ClearStorageClassSpecs();
838  }
839
840  if (!isFunc &&
841      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
842      D.getNumTypeObjects() == 0) {
843    // Check also for this case:
844    //
845    // typedef int f();
846    // f a;
847    //
848    QualType TDType = GetTypeFromParser(DS.getTypeRep());
849    isFunc = TDType->isFunctionType();
850  }
851
852  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
853                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
854                      !isFunc);
855
856  Decl *Member;
857  if (isInstField) {
858    // FIXME: Check for template parameters!
859    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
860                         AS);
861    assert(Member && "HandleField never returns null");
862  } else {
863    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
864               .getAs<Decl>();
865    if (!Member) {
866      if (BitWidth) DeleteExpr(BitWidth);
867      return DeclPtrTy();
868    }
869
870    // Non-instance-fields can't have a bitfield.
871    if (BitWidth) {
872      if (Member->isInvalidDecl()) {
873        // don't emit another diagnostic.
874      } else if (isa<VarDecl>(Member)) {
875        // C++ 9.6p3: A bit-field shall not be a static member.
876        // "static member 'A' cannot be a bit-field"
877        Diag(Loc, diag::err_static_not_bitfield)
878          << Name << BitWidth->getSourceRange();
879      } else if (isa<TypedefDecl>(Member)) {
880        // "typedef member 'x' cannot be a bit-field"
881        Diag(Loc, diag::err_typedef_not_bitfield)
882          << Name << BitWidth->getSourceRange();
883      } else {
884        // A function typedef ("typedef int f(); f a;").
885        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
886        Diag(Loc, diag::err_not_integral_type_bitfield)
887          << Name << cast<ValueDecl>(Member)->getType()
888          << BitWidth->getSourceRange();
889      }
890
891      DeleteExpr(BitWidth);
892      BitWidth = 0;
893      Member->setInvalidDecl();
894    }
895
896    Member->setAccess(AS);
897
898    // If we have declared a member function template, set the access of the
899    // templated declaration as well.
900    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
901      FunTmpl->getTemplatedDecl()->setAccess(AS);
902  }
903
904  assert((Name || isInstField) && "No identifier for non-field ?");
905
906  if (Init)
907    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
908  if (Deleted) // FIXME: Source location is not very good.
909    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
910
911  if (isInstField) {
912    FieldCollector->Add(cast<FieldDecl>(Member));
913    return DeclPtrTy();
914  }
915  return DeclPtrTy::make(Member);
916}
917
918/// ActOnMemInitializer - Handle a C++ member initializer.
919Sema::MemInitResult
920Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
921                          Scope *S,
922                          const CXXScopeSpec &SS,
923                          IdentifierInfo *MemberOrBase,
924                          TypeTy *TemplateTypeTy,
925                          SourceLocation IdLoc,
926                          SourceLocation LParenLoc,
927                          ExprTy **Args, unsigned NumArgs,
928                          SourceLocation *CommaLocs,
929                          SourceLocation RParenLoc) {
930  if (!ConstructorD)
931    return true;
932
933  AdjustDeclIfTemplate(ConstructorD);
934
935  CXXConstructorDecl *Constructor
936    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
937  if (!Constructor) {
938    // The user wrote a constructor initializer on a function that is
939    // not a C++ constructor. Ignore the error for now, because we may
940    // have more member initializers coming; we'll diagnose it just
941    // once in ActOnMemInitializers.
942    return true;
943  }
944
945  CXXRecordDecl *ClassDecl = Constructor->getParent();
946
947  // C++ [class.base.init]p2:
948  //   Names in a mem-initializer-id are looked up in the scope of the
949  //   constructor’s class and, if not found in that scope, are looked
950  //   up in the scope containing the constructor’s
951  //   definition. [Note: if the constructor’s class contains a member
952  //   with the same name as a direct or virtual base class of the
953  //   class, a mem-initializer-id naming the member or base class and
954  //   composed of a single identifier refers to the class member. A
955  //   mem-initializer-id for the hidden base class may be specified
956  //   using a qualified name. ]
957  if (!SS.getScopeRep() && !TemplateTypeTy) {
958    // Look for a member, first.
959    FieldDecl *Member = 0;
960    DeclContext::lookup_result Result
961      = ClassDecl->lookup(MemberOrBase);
962    if (Result.first != Result.second)
963      Member = dyn_cast<FieldDecl>(*Result.first);
964
965    // FIXME: Handle members of an anonymous union.
966
967    if (Member)
968      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
969                                    RParenLoc);
970  }
971  // It didn't name a member, so see if it names a class.
972  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
973                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
974  if (!BaseTy)
975    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
976      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
977
978  QualType BaseType = GetTypeFromParser(BaseTy);
979
980  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
981                              RParenLoc, ClassDecl);
982}
983
984/// Checks an initializer expression for use of uninitialized fields, such as
985/// containing the field that is being initialized. Returns true if there is an
986/// uninitialized field was used an updates the SourceLocation parameter; false
987/// otherwise.
988static bool InitExprContainsUninitializedFields(const Stmt* S,
989                                                const FieldDecl* LhsField,
990                                                SourceLocation* L) {
991  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
992  if (ME) {
993    const NamedDecl* RhsField = ME->getMemberDecl();
994    if (RhsField == LhsField) {
995      // Initializing a field with itself. Throw a warning.
996      // But wait; there are exceptions!
997      // Exception #1:  The field may not belong to this record.
998      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
999      const Expr* base = ME->getBase();
1000      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1001        // Even though the field matches, it does not belong to this record.
1002        return false;
1003      }
1004      // None of the exceptions triggered; return true to indicate an
1005      // uninitialized field was used.
1006      *L = ME->getMemberLoc();
1007      return true;
1008    }
1009  }
1010  bool found = false;
1011  for (Stmt::const_child_iterator it = S->child_begin();
1012       it != S->child_end() && found == false;
1013       ++it) {
1014    if (isa<CallExpr>(S)) {
1015      // Do not descend into function calls or constructors, as the use
1016      // of an uninitialized field may be valid. One would have to inspect
1017      // the contents of the function/ctor to determine if it is safe or not.
1018      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1019      // may be safe, depending on what the function/ctor does.
1020      continue;
1021    }
1022    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1023  }
1024  return found;
1025}
1026
1027Sema::MemInitResult
1028Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1029                             unsigned NumArgs, SourceLocation IdLoc,
1030                             SourceLocation RParenLoc) {
1031  // Diagnose value-uses of fields to initialize themselves, e.g.
1032  //   foo(foo)
1033  // where foo is not also a parameter to the constructor.
1034  // TODO: implement -Wuninitialized and fold this into that framework.
1035  for (unsigned i = 0; i < NumArgs; ++i) {
1036    SourceLocation L;
1037    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1038      // FIXME: Return true in the case when other fields are used before being
1039      // uninitialized. For example, let this field be the i'th field. When
1040      // initializing the i'th field, throw a warning if any of the >= i'th
1041      // fields are used, as they are not yet initialized.
1042      // Right now we are only handling the case where the i'th field uses
1043      // itself in its initializer.
1044      Diag(L, diag::warn_field_is_uninit);
1045    }
1046  }
1047
1048  bool HasDependentArg = false;
1049  for (unsigned i = 0; i < NumArgs; i++)
1050    HasDependentArg |= Args[i]->isTypeDependent();
1051
1052  CXXConstructorDecl *C = 0;
1053  QualType FieldType = Member->getType();
1054  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1055    FieldType = Array->getElementType();
1056  if (FieldType->isDependentType()) {
1057    // Can't check init for dependent type.
1058  } else if (FieldType->isRecordType()) {
1059    // Member is a record (struct/union/class), so pass the initializer
1060    // arguments down to the record's constructor.
1061    if (!HasDependentArg) {
1062      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1063
1064      C = PerformInitializationByConstructor(FieldType,
1065                                             MultiExprArg(*this,
1066                                                          (void**)Args,
1067                                                          NumArgs),
1068                                             IdLoc,
1069                                             SourceRange(IdLoc, RParenLoc),
1070                                             Member->getDeclName(), IK_Direct,
1071                                             ConstructorArgs);
1072
1073      if (C) {
1074        // Take over the constructor arguments as our own.
1075        NumArgs = ConstructorArgs.size();
1076        Args = (Expr **)ConstructorArgs.take();
1077      }
1078    }
1079  } else if (NumArgs != 1 && NumArgs != 0) {
1080    // The member type is not a record type (or an array of record
1081    // types), so it can be only be default- or copy-initialized.
1082    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1083                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1084  } else if (!HasDependentArg) {
1085    Expr *NewExp;
1086    if (NumArgs == 0) {
1087      if (FieldType->isReferenceType()) {
1088        Diag(IdLoc, diag::err_null_intialized_reference_member)
1089              << Member->getDeclName();
1090        return Diag(Member->getLocation(), diag::note_declared_at);
1091      }
1092      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1093      NumArgs = 1;
1094    }
1095    else
1096      NewExp = (Expr*)Args[0];
1097    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1098      return true;
1099    Args[0] = NewExp;
1100  }
1101  // FIXME: Perform direct initialization of the member.
1102  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1103                                                  NumArgs, C, IdLoc, RParenLoc);
1104}
1105
1106Sema::MemInitResult
1107Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1108                           unsigned NumArgs, SourceLocation IdLoc,
1109                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1110  bool HasDependentArg = false;
1111  for (unsigned i = 0; i < NumArgs; i++)
1112    HasDependentArg |= Args[i]->isTypeDependent();
1113
1114  if (!BaseType->isDependentType()) {
1115    if (!BaseType->isRecordType())
1116      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1117        << BaseType << SourceRange(IdLoc, RParenLoc);
1118
1119    // C++ [class.base.init]p2:
1120    //   [...] Unless the mem-initializer-id names a nonstatic data
1121    //   member of the constructor’s class or a direct or virtual base
1122    //   of that class, the mem-initializer is ill-formed. A
1123    //   mem-initializer-list can initialize a base class using any
1124    //   name that denotes that base class type.
1125
1126    // First, check for a direct base class.
1127    const CXXBaseSpecifier *DirectBaseSpec = 0;
1128    for (CXXRecordDecl::base_class_const_iterator Base =
1129         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1130      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1131          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1132        // We found a direct base of this type. That's what we're
1133        // initializing.
1134        DirectBaseSpec = &*Base;
1135        break;
1136      }
1137    }
1138
1139    // Check for a virtual base class.
1140    // FIXME: We might be able to short-circuit this if we know in advance that
1141    // there are no virtual bases.
1142    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1143    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1144      // We haven't found a base yet; search the class hierarchy for a
1145      // virtual base class.
1146      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1147                         /*DetectVirtual=*/false);
1148      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1149        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1150             Path != Paths.end(); ++Path) {
1151          if (Path->back().Base->isVirtual()) {
1152            VirtualBaseSpec = Path->back().Base;
1153            break;
1154          }
1155        }
1156      }
1157    }
1158
1159    // C++ [base.class.init]p2:
1160    //   If a mem-initializer-id is ambiguous because it designates both
1161    //   a direct non-virtual base class and an inherited virtual base
1162    //   class, the mem-initializer is ill-formed.
1163    if (DirectBaseSpec && VirtualBaseSpec)
1164      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1165        << BaseType << SourceRange(IdLoc, RParenLoc);
1166    // C++ [base.class.init]p2:
1167    // Unless the mem-initializer-id names a nonstatic data membeer of the
1168    // constructor's class ot a direst or virtual base of that class, the
1169    // mem-initializer is ill-formed.
1170    if (!DirectBaseSpec && !VirtualBaseSpec)
1171      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1172      << BaseType << ClassDecl->getNameAsCString()
1173      << SourceRange(IdLoc, RParenLoc);
1174  }
1175
1176  CXXConstructorDecl *C = 0;
1177  if (!BaseType->isDependentType() && !HasDependentArg) {
1178    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1179                      Context.getCanonicalType(BaseType).getUnqualifiedType());
1180    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1181
1182    C = PerformInitializationByConstructor(BaseType,
1183                                           MultiExprArg(*this,
1184                                                        (void**)Args, NumArgs),
1185                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1186                                           Name, IK_Direct,
1187                                           ConstructorArgs);
1188    if (C) {
1189      // Take over the constructor arguments as our own.
1190      NumArgs = ConstructorArgs.size();
1191      Args = (Expr **)ConstructorArgs.take();
1192    }
1193  }
1194
1195  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1196                                                  NumArgs, C, IdLoc, RParenLoc);
1197}
1198
1199bool
1200Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1201                              CXXBaseOrMemberInitializer **Initializers,
1202                              unsigned NumInitializers,
1203                              bool IsImplicitConstructor) {
1204  // We need to build the initializer AST according to order of construction
1205  // and not what user specified in the Initializers list.
1206  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1207  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1208  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1209  bool HasDependentBaseInit = false;
1210  bool HadError = false;
1211
1212  for (unsigned i = 0; i < NumInitializers; i++) {
1213    CXXBaseOrMemberInitializer *Member = Initializers[i];
1214    if (Member->isBaseInitializer()) {
1215      if (Member->getBaseClass()->isDependentType())
1216        HasDependentBaseInit = true;
1217      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1218    } else {
1219      AllBaseFields[Member->getMember()] = Member;
1220    }
1221  }
1222
1223  if (HasDependentBaseInit) {
1224    // FIXME. This does not preserve the ordering of the initializers.
1225    // Try (with -Wreorder)
1226    // template<class X> struct A {};
1227    // template<class X> struct B : A<X> {
1228    //   B() : x1(10), A<X>() {}
1229    //   int x1;
1230    // };
1231    // B<int> x;
1232    // On seeing one dependent type, we should essentially exit this routine
1233    // while preserving user-declared initializer list. When this routine is
1234    // called during instantiatiation process, this routine will rebuild the
1235    // ordered initializer list correctly.
1236
1237    // If we have a dependent base initialization, we can't determine the
1238    // association between initializers and bases; just dump the known
1239    // initializers into the list, and don't try to deal with other bases.
1240    for (unsigned i = 0; i < NumInitializers; i++) {
1241      CXXBaseOrMemberInitializer *Member = Initializers[i];
1242      if (Member->isBaseInitializer())
1243        AllToInit.push_back(Member);
1244    }
1245  } else {
1246    // Push virtual bases before others.
1247    for (CXXRecordDecl::base_class_iterator VBase =
1248         ClassDecl->vbases_begin(),
1249         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1250      if (VBase->getType()->isDependentType())
1251        continue;
1252      if (CXXBaseOrMemberInitializer *Value =
1253          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1254        CXXRecordDecl *BaseDecl =
1255          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1256        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1257        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1258          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1259        AllToInit.push_back(Value);
1260      }
1261      else {
1262        CXXRecordDecl *VBaseDecl =
1263        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1264        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1265        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1266        if (!Ctor) {
1267          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1268            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1269            << 0 << VBase->getType();
1270          Diag(VBaseDecl->getLocation(), diag::note_previous_class_decl)
1271            << Context.getTagDeclType(VBaseDecl);
1272          HadError = true;
1273          continue;
1274        }
1275
1276        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1277        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1278                                    Constructor->getLocation(), CtorArgs))
1279          continue;
1280
1281        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1282
1283        CXXBaseOrMemberInitializer *Member =
1284          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1285                                                   CtorArgs.takeAs<Expr>(),
1286                                                   CtorArgs.size(), Ctor,
1287                                                   SourceLocation(),
1288                                                   SourceLocation());
1289        AllToInit.push_back(Member);
1290      }
1291    }
1292
1293    for (CXXRecordDecl::base_class_iterator Base =
1294         ClassDecl->bases_begin(),
1295         E = ClassDecl->bases_end(); Base != E; ++Base) {
1296      // Virtuals are in the virtual base list and already constructed.
1297      if (Base->isVirtual())
1298        continue;
1299      // Skip dependent types.
1300      if (Base->getType()->isDependentType())
1301        continue;
1302      if (CXXBaseOrMemberInitializer *Value =
1303          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1304        CXXRecordDecl *BaseDecl =
1305          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1306        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1307        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1308          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1309        AllToInit.push_back(Value);
1310      }
1311      else {
1312        CXXRecordDecl *BaseDecl =
1313          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1314        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1315         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1316        if (!Ctor) {
1317          Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1318            << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1319            << 0 << Base->getType();
1320          Diag(BaseDecl->getLocation(), diag::note_previous_class_decl)
1321            << Context.getTagDeclType(BaseDecl);
1322          HadError = true;
1323          continue;
1324        }
1325
1326        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1327        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1328                                     Constructor->getLocation(), CtorArgs))
1329          continue;
1330
1331        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1332
1333        CXXBaseOrMemberInitializer *Member =
1334          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1335                                                   CtorArgs.takeAs<Expr>(),
1336                                                   CtorArgs.size(), Ctor,
1337                                                   SourceLocation(),
1338                                                   SourceLocation());
1339        AllToInit.push_back(Member);
1340      }
1341    }
1342  }
1343
1344  // non-static data members.
1345  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1346       E = ClassDecl->field_end(); Field != E; ++Field) {
1347    if ((*Field)->isAnonymousStructOrUnion()) {
1348      if (const RecordType *FieldClassType =
1349          Field->getType()->getAs<RecordType>()) {
1350        CXXRecordDecl *FieldClassDecl
1351        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1352        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1353            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1354          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1355            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1356            // set to the anonymous union data member used in the initializer
1357            // list.
1358            Value->setMember(*Field);
1359            Value->setAnonUnionMember(*FA);
1360            AllToInit.push_back(Value);
1361            break;
1362          }
1363        }
1364      }
1365      continue;
1366    }
1367    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1368      QualType FT = (*Field)->getType();
1369      if (const RecordType* RT = FT->getAs<RecordType>()) {
1370        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1371        assert(FieldRecDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1372        if (CXXConstructorDecl *Ctor =
1373              FieldRecDecl->getDefaultConstructor(Context))
1374          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1375      }
1376      AllToInit.push_back(Value);
1377      continue;
1378    }
1379
1380    if ((*Field)->getType()->isDependentType())
1381      continue;
1382
1383    QualType FT = Context.getBaseElementType((*Field)->getType());
1384    if (const RecordType* RT = FT->getAs<RecordType>()) {
1385      CXXConstructorDecl *Ctor =
1386        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1387      if (!Ctor) {
1388        Diag(Constructor->getLocation(), diag::err_missing_default_ctor)
1389          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1390          << 1 << (*Field)->getDeclName();
1391        Diag(Field->getLocation(), diag::note_field_decl);
1392        Diag(RT->getDecl()->getLocation(), diag::note_previous_class_decl)
1393          << Context.getTagDeclType(RT->getDecl());
1394        HadError = true;
1395        continue;
1396      }
1397
1398      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1399      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1400                                  Constructor->getLocation(), CtorArgs))
1401        continue;
1402
1403      CXXBaseOrMemberInitializer *Member =
1404        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1405                                                 CtorArgs.size(), Ctor,
1406                                                 SourceLocation(),
1407                                                 SourceLocation());
1408
1409      AllToInit.push_back(Member);
1410      MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1411      if (FT.isConstQualified() && Ctor->isTrivial()) {
1412        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1413          << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1414          << 1 << (*Field)->getDeclName();
1415        Diag((*Field)->getLocation(), diag::note_declared_at);
1416        HadError = true;
1417      }
1418    }
1419    else if (FT->isReferenceType()) {
1420      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1421        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1422        << 0 << (*Field)->getDeclName();
1423      Diag((*Field)->getLocation(), diag::note_declared_at);
1424      HadError = true;
1425    }
1426    else if (FT.isConstQualified()) {
1427      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1428        << (int)IsImplicitConstructor << Context.getTagDeclType(ClassDecl)
1429        << 1 << (*Field)->getDeclName();
1430      Diag((*Field)->getLocation(), diag::note_declared_at);
1431      HadError = true;
1432    }
1433  }
1434
1435  NumInitializers = AllToInit.size();
1436  if (NumInitializers > 0) {
1437    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1438    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1439      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1440
1441    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1442    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1443      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1444  }
1445
1446  return HadError;
1447}
1448
1449static void *GetKeyForTopLevelField(FieldDecl *Field) {
1450  // For anonymous unions, use the class declaration as the key.
1451  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1452    if (RT->getDecl()->isAnonymousStructOrUnion())
1453      return static_cast<void *>(RT->getDecl());
1454  }
1455  return static_cast<void *>(Field);
1456}
1457
1458static void *GetKeyForBase(QualType BaseType) {
1459  if (const RecordType *RT = BaseType->getAs<RecordType>())
1460    return (void *)RT;
1461
1462  assert(0 && "Unexpected base type!");
1463  return 0;
1464}
1465
1466static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1467                             bool MemberMaybeAnon = false) {
1468  // For fields injected into the class via declaration of an anonymous union,
1469  // use its anonymous union class declaration as the unique key.
1470  if (Member->isMemberInitializer()) {
1471    FieldDecl *Field = Member->getMember();
1472
1473    // After SetBaseOrMemberInitializers call, Field is the anonymous union
1474    // data member of the class. Data member used in the initializer list is
1475    // in AnonUnionMember field.
1476    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1477      Field = Member->getAnonUnionMember();
1478    if (Field->getDeclContext()->isRecord()) {
1479      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1480      if (RD->isAnonymousStructOrUnion())
1481        return static_cast<void *>(RD);
1482    }
1483    return static_cast<void *>(Field);
1484  }
1485
1486  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1487}
1488
1489/// ActOnMemInitializers - Handle the member initializers for a constructor.
1490void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1491                                SourceLocation ColonLoc,
1492                                MemInitTy **MemInits, unsigned NumMemInits) {
1493  if (!ConstructorDecl)
1494    return;
1495
1496  AdjustDeclIfTemplate(ConstructorDecl);
1497
1498  CXXConstructorDecl *Constructor
1499    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1500
1501  if (!Constructor) {
1502    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1503    return;
1504  }
1505
1506  if (!Constructor->isDependentContext()) {
1507    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1508    bool err = false;
1509    for (unsigned i = 0; i < NumMemInits; i++) {
1510      CXXBaseOrMemberInitializer *Member =
1511        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1512      void *KeyToMember = GetKeyForMember(Member);
1513      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1514      if (!PrevMember) {
1515        PrevMember = Member;
1516        continue;
1517      }
1518      if (FieldDecl *Field = Member->getMember())
1519        Diag(Member->getSourceLocation(),
1520             diag::error_multiple_mem_initialization)
1521        << Field->getNameAsString();
1522      else {
1523        Type *BaseClass = Member->getBaseClass();
1524        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1525        Diag(Member->getSourceLocation(),
1526             diag::error_multiple_base_initialization)
1527          << QualType(BaseClass, 0);
1528      }
1529      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1530        << 0;
1531      err = true;
1532    }
1533
1534    if (err)
1535      return;
1536  }
1537
1538  SetBaseOrMemberInitializers(Constructor,
1539                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1540                      NumMemInits, false);
1541
1542  if (Constructor->isDependentContext())
1543    return;
1544
1545  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1546      Diagnostic::Ignored &&
1547      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1548      Diagnostic::Ignored)
1549    return;
1550
1551  // Also issue warning if order of ctor-initializer list does not match order
1552  // of 1) base class declarations and 2) order of non-static data members.
1553  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1554
1555  CXXRecordDecl *ClassDecl
1556    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1557  // Push virtual bases before others.
1558  for (CXXRecordDecl::base_class_iterator VBase =
1559       ClassDecl->vbases_begin(),
1560       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1561    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1562
1563  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1564       E = ClassDecl->bases_end(); Base != E; ++Base) {
1565    // Virtuals are alread in the virtual base list and are constructed
1566    // first.
1567    if (Base->isVirtual())
1568      continue;
1569    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1570  }
1571
1572  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1573       E = ClassDecl->field_end(); Field != E; ++Field)
1574    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1575
1576  int Last = AllBaseOrMembers.size();
1577  int curIndex = 0;
1578  CXXBaseOrMemberInitializer *PrevMember = 0;
1579  for (unsigned i = 0; i < NumMemInits; i++) {
1580    CXXBaseOrMemberInitializer *Member =
1581      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1582    void *MemberInCtorList = GetKeyForMember(Member, true);
1583
1584    for (; curIndex < Last; curIndex++)
1585      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1586        break;
1587    if (curIndex == Last) {
1588      assert(PrevMember && "Member not in member list?!");
1589      // Initializer as specified in ctor-initializer list is out of order.
1590      // Issue a warning diagnostic.
1591      if (PrevMember->isBaseInitializer()) {
1592        // Diagnostics is for an initialized base class.
1593        Type *BaseClass = PrevMember->getBaseClass();
1594        Diag(PrevMember->getSourceLocation(),
1595             diag::warn_base_initialized)
1596          << QualType(BaseClass, 0);
1597      } else {
1598        FieldDecl *Field = PrevMember->getMember();
1599        Diag(PrevMember->getSourceLocation(),
1600             diag::warn_field_initialized)
1601          << Field->getNameAsString();
1602      }
1603      // Also the note!
1604      if (FieldDecl *Field = Member->getMember())
1605        Diag(Member->getSourceLocation(),
1606             diag::note_fieldorbase_initialized_here) << 0
1607          << Field->getNameAsString();
1608      else {
1609        Type *BaseClass = Member->getBaseClass();
1610        Diag(Member->getSourceLocation(),
1611             diag::note_fieldorbase_initialized_here) << 1
1612          << QualType(BaseClass, 0);
1613      }
1614      for (curIndex = 0; curIndex < Last; curIndex++)
1615        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1616          break;
1617    }
1618    PrevMember = Member;
1619  }
1620}
1621
1622void
1623Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1624  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1625  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1626
1627  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1628       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1629    if (VBase->getType()->isDependentType())
1630      continue;
1631    // Skip over virtual bases which have trivial destructors.
1632    CXXRecordDecl *BaseClassDecl
1633      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1634    if (BaseClassDecl->hasTrivialDestructor())
1635      continue;
1636    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1637      MarkDeclarationReferenced(Destructor->getLocation(),
1638                                const_cast<CXXDestructorDecl*>(Dtor));
1639
1640    uintptr_t Member =
1641    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1642      | CXXDestructorDecl::VBASE;
1643    AllToDestruct.push_back(Member);
1644  }
1645  for (CXXRecordDecl::base_class_iterator Base =
1646       ClassDecl->bases_begin(),
1647       E = ClassDecl->bases_end(); Base != E; ++Base) {
1648    if (Base->isVirtual())
1649      continue;
1650    if (Base->getType()->isDependentType())
1651      continue;
1652    // Skip over virtual bases which have trivial destructors.
1653    CXXRecordDecl *BaseClassDecl
1654    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1655    if (BaseClassDecl->hasTrivialDestructor())
1656      continue;
1657    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1658      MarkDeclarationReferenced(Destructor->getLocation(),
1659                                const_cast<CXXDestructorDecl*>(Dtor));
1660    uintptr_t Member =
1661    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1662      | CXXDestructorDecl::DRCTNONVBASE;
1663    AllToDestruct.push_back(Member);
1664  }
1665
1666  // non-static data members.
1667  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1668       E = ClassDecl->field_end(); Field != E; ++Field) {
1669    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1670
1671    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1672      // Skip over virtual bases which have trivial destructors.
1673      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1674      if (FieldClassDecl->hasTrivialDestructor())
1675        continue;
1676      if (const CXXDestructorDecl *Dtor =
1677            FieldClassDecl->getDestructor(Context))
1678        MarkDeclarationReferenced(Destructor->getLocation(),
1679                                  const_cast<CXXDestructorDecl*>(Dtor));
1680      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1681      AllToDestruct.push_back(Member);
1682    }
1683  }
1684
1685  unsigned NumDestructions = AllToDestruct.size();
1686  if (NumDestructions > 0) {
1687    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1688    uintptr_t *BaseOrMemberDestructions =
1689      new (Context) uintptr_t [NumDestructions];
1690    // Insert in reverse order.
1691    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1692      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1693    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1694  }
1695}
1696
1697void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1698  if (!CDtorDecl)
1699    return;
1700
1701  AdjustDeclIfTemplate(CDtorDecl);
1702
1703  if (CXXConstructorDecl *Constructor
1704      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1705    SetBaseOrMemberInitializers(Constructor, 0, 0, false);
1706}
1707
1708namespace {
1709  /// PureVirtualMethodCollector - traverses a class and its superclasses
1710  /// and determines if it has any pure virtual methods.
1711  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1712    ASTContext &Context;
1713
1714  public:
1715    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1716
1717  private:
1718    MethodList Methods;
1719
1720    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1721
1722  public:
1723    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1724      : Context(Ctx) {
1725
1726      MethodList List;
1727      Collect(RD, List);
1728
1729      // Copy the temporary list to methods, and make sure to ignore any
1730      // null entries.
1731      for (size_t i = 0, e = List.size(); i != e; ++i) {
1732        if (List[i])
1733          Methods.push_back(List[i]);
1734      }
1735    }
1736
1737    bool empty() const { return Methods.empty(); }
1738
1739    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1740    MethodList::const_iterator methods_end() { return Methods.end(); }
1741  };
1742
1743  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1744                                           MethodList& Methods) {
1745    // First, collect the pure virtual methods for the base classes.
1746    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1747         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1748      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1749        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1750        if (BaseDecl && BaseDecl->isAbstract())
1751          Collect(BaseDecl, Methods);
1752      }
1753    }
1754
1755    // Next, zero out any pure virtual methods that this class overrides.
1756    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1757
1758    MethodSetTy OverriddenMethods;
1759    size_t MethodsSize = Methods.size();
1760
1761    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1762         i != e; ++i) {
1763      // Traverse the record, looking for methods.
1764      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1765        // If the method is pure virtual, add it to the methods vector.
1766        if (MD->isPure())
1767          Methods.push_back(MD);
1768
1769        // Record all the overridden methods in our set.
1770        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1771             E = MD->end_overridden_methods(); I != E; ++I) {
1772          // Keep track of the overridden methods.
1773          OverriddenMethods.insert(*I);
1774        }
1775      }
1776    }
1777
1778    // Now go through the methods and zero out all the ones we know are
1779    // overridden.
1780    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1781      if (OverriddenMethods.count(Methods[i]))
1782        Methods[i] = 0;
1783    }
1784
1785  }
1786}
1787
1788
1789bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1790                                  unsigned DiagID, AbstractDiagSelID SelID,
1791                                  const CXXRecordDecl *CurrentRD) {
1792  if (SelID == -1)
1793    return RequireNonAbstractType(Loc, T,
1794                                  PDiag(DiagID), CurrentRD);
1795  else
1796    return RequireNonAbstractType(Loc, T,
1797                                  PDiag(DiagID) << SelID, CurrentRD);
1798}
1799
1800bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1801                                  const PartialDiagnostic &PD,
1802                                  const CXXRecordDecl *CurrentRD) {
1803  if (!getLangOptions().CPlusPlus)
1804    return false;
1805
1806  if (const ArrayType *AT = Context.getAsArrayType(T))
1807    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1808                                  CurrentRD);
1809
1810  if (const PointerType *PT = T->getAs<PointerType>()) {
1811    // Find the innermost pointer type.
1812    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1813      PT = T;
1814
1815    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1816      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1817  }
1818
1819  const RecordType *RT = T->getAs<RecordType>();
1820  if (!RT)
1821    return false;
1822
1823  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1824  if (!RD)
1825    return false;
1826
1827  if (CurrentRD && CurrentRD != RD)
1828    return false;
1829
1830  if (!RD->isAbstract())
1831    return false;
1832
1833  Diag(Loc, PD) << RD->getDeclName();
1834
1835  // Check if we've already emitted the list of pure virtual functions for this
1836  // class.
1837  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1838    return true;
1839
1840  PureVirtualMethodCollector Collector(Context, RD);
1841
1842  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1843       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1844    const CXXMethodDecl *MD = *I;
1845
1846    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1847      MD->getDeclName();
1848  }
1849
1850  if (!PureVirtualClassDiagSet)
1851    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1852  PureVirtualClassDiagSet->insert(RD);
1853
1854  return true;
1855}
1856
1857namespace {
1858  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1859    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1860    Sema &SemaRef;
1861    CXXRecordDecl *AbstractClass;
1862
1863    bool VisitDeclContext(const DeclContext *DC) {
1864      bool Invalid = false;
1865
1866      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1867           E = DC->decls_end(); I != E; ++I)
1868        Invalid |= Visit(*I);
1869
1870      return Invalid;
1871    }
1872
1873  public:
1874    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1875      : SemaRef(SemaRef), AbstractClass(ac) {
1876        Visit(SemaRef.Context.getTranslationUnitDecl());
1877    }
1878
1879    bool VisitFunctionDecl(const FunctionDecl *FD) {
1880      if (FD->isThisDeclarationADefinition()) {
1881        // No need to do the check if we're in a definition, because it requires
1882        // that the return/param types are complete.
1883        // because that requires
1884        return VisitDeclContext(FD);
1885      }
1886
1887      // Check the return type.
1888      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1889      bool Invalid =
1890        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1891                                       diag::err_abstract_type_in_decl,
1892                                       Sema::AbstractReturnType,
1893                                       AbstractClass);
1894
1895      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1896           E = FD->param_end(); I != E; ++I) {
1897        const ParmVarDecl *VD = *I;
1898        Invalid |=
1899          SemaRef.RequireNonAbstractType(VD->getLocation(),
1900                                         VD->getOriginalType(),
1901                                         diag::err_abstract_type_in_decl,
1902                                         Sema::AbstractParamType,
1903                                         AbstractClass);
1904      }
1905
1906      return Invalid;
1907    }
1908
1909    bool VisitDecl(const Decl* D) {
1910      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1911        return VisitDeclContext(DC);
1912
1913      return false;
1914    }
1915  };
1916}
1917
1918void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1919                                             DeclPtrTy TagDecl,
1920                                             SourceLocation LBrac,
1921                                             SourceLocation RBrac) {
1922  if (!TagDecl)
1923    return;
1924
1925  AdjustDeclIfTemplate(TagDecl);
1926  ActOnFields(S, RLoc, TagDecl,
1927              (DeclPtrTy*)FieldCollector->getCurFields(),
1928              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1929
1930  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1931  if (!RD->isAbstract()) {
1932    // Collect all the pure virtual methods and see if this is an abstract
1933    // class after all.
1934    PureVirtualMethodCollector Collector(Context, RD);
1935    if (!Collector.empty())
1936      RD->setAbstract(true);
1937  }
1938
1939  if (RD->isAbstract())
1940    AbstractClassUsageDiagnoser(*this, RD);
1941
1942  if (!RD->isDependentType() && !RD->isInvalidDecl())
1943    AddImplicitlyDeclaredMembersToClass(RD);
1944}
1945
1946/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1947/// special functions, such as the default constructor, copy
1948/// constructor, or destructor, to the given C++ class (C++
1949/// [special]p1).  This routine can only be executed just before the
1950/// definition of the class is complete.
1951void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1952  CanQualType ClassType
1953    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1954
1955  // FIXME: Implicit declarations have exception specifications, which are
1956  // the union of the specifications of the implicitly called functions.
1957
1958  if (!ClassDecl->hasUserDeclaredConstructor()) {
1959    // C++ [class.ctor]p5:
1960    //   A default constructor for a class X is a constructor of class X
1961    //   that can be called without an argument. If there is no
1962    //   user-declared constructor for class X, a default constructor is
1963    //   implicitly declared. An implicitly-declared default constructor
1964    //   is an inline public member of its class.
1965    DeclarationName Name
1966      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1967    CXXConstructorDecl *DefaultCon =
1968      CXXConstructorDecl::Create(Context, ClassDecl,
1969                                 ClassDecl->getLocation(), Name,
1970                                 Context.getFunctionType(Context.VoidTy,
1971                                                         0, 0, false, 0),
1972                                 /*DInfo=*/0,
1973                                 /*isExplicit=*/false,
1974                                 /*isInline=*/true,
1975                                 /*isImplicitlyDeclared=*/true);
1976    DefaultCon->setAccess(AS_public);
1977    DefaultCon->setImplicit();
1978    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1979    ClassDecl->addDecl(DefaultCon);
1980  }
1981
1982  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1983    // C++ [class.copy]p4:
1984    //   If the class definition does not explicitly declare a copy
1985    //   constructor, one is declared implicitly.
1986
1987    // C++ [class.copy]p5:
1988    //   The implicitly-declared copy constructor for a class X will
1989    //   have the form
1990    //
1991    //       X::X(const X&)
1992    //
1993    //   if
1994    bool HasConstCopyConstructor = true;
1995
1996    //     -- each direct or virtual base class B of X has a copy
1997    //        constructor whose first parameter is of type const B& or
1998    //        const volatile B&, and
1999    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2000         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2001      const CXXRecordDecl *BaseClassDecl
2002        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2003      HasConstCopyConstructor
2004        = BaseClassDecl->hasConstCopyConstructor(Context);
2005    }
2006
2007    //     -- for all the nonstatic data members of X that are of a
2008    //        class type M (or array thereof), each such class type
2009    //        has a copy constructor whose first parameter is of type
2010    //        const M& or const volatile M&.
2011    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2012         HasConstCopyConstructor && Field != ClassDecl->field_end();
2013         ++Field) {
2014      QualType FieldType = (*Field)->getType();
2015      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2016        FieldType = Array->getElementType();
2017      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2018        const CXXRecordDecl *FieldClassDecl
2019          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2020        HasConstCopyConstructor
2021          = FieldClassDecl->hasConstCopyConstructor(Context);
2022      }
2023    }
2024
2025    //   Otherwise, the implicitly declared copy constructor will have
2026    //   the form
2027    //
2028    //       X::X(X&)
2029    QualType ArgType = ClassType;
2030    if (HasConstCopyConstructor)
2031      ArgType = ArgType.withConst();
2032    ArgType = Context.getLValueReferenceType(ArgType);
2033
2034    //   An implicitly-declared copy constructor is an inline public
2035    //   member of its class.
2036    DeclarationName Name
2037      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2038    CXXConstructorDecl *CopyConstructor
2039      = CXXConstructorDecl::Create(Context, ClassDecl,
2040                                   ClassDecl->getLocation(), Name,
2041                                   Context.getFunctionType(Context.VoidTy,
2042                                                           &ArgType, 1,
2043                                                           false, 0),
2044                                   /*DInfo=*/0,
2045                                   /*isExplicit=*/false,
2046                                   /*isInline=*/true,
2047                                   /*isImplicitlyDeclared=*/true);
2048    CopyConstructor->setAccess(AS_public);
2049    CopyConstructor->setImplicit();
2050    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2051
2052    // Add the parameter to the constructor.
2053    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2054                                                 ClassDecl->getLocation(),
2055                                                 /*IdentifierInfo=*/0,
2056                                                 ArgType, /*DInfo=*/0,
2057                                                 VarDecl::None, 0);
2058    CopyConstructor->setParams(Context, &FromParam, 1);
2059    ClassDecl->addDecl(CopyConstructor);
2060  }
2061
2062  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2063    // Note: The following rules are largely analoguous to the copy
2064    // constructor rules. Note that virtual bases are not taken into account
2065    // for determining the argument type of the operator. Note also that
2066    // operators taking an object instead of a reference are allowed.
2067    //
2068    // C++ [class.copy]p10:
2069    //   If the class definition does not explicitly declare a copy
2070    //   assignment operator, one is declared implicitly.
2071    //   The implicitly-defined copy assignment operator for a class X
2072    //   will have the form
2073    //
2074    //       X& X::operator=(const X&)
2075    //
2076    //   if
2077    bool HasConstCopyAssignment = true;
2078
2079    //       -- each direct base class B of X has a copy assignment operator
2080    //          whose parameter is of type const B&, const volatile B& or B,
2081    //          and
2082    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2083         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2084      assert(!Base->getType()->isDependentType() &&
2085            "Cannot generate implicit members for class with dependent bases.");
2086      const CXXRecordDecl *BaseClassDecl
2087        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2088      const CXXMethodDecl *MD = 0;
2089      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2090                                                                     MD);
2091    }
2092
2093    //       -- for all the nonstatic data members of X that are of a class
2094    //          type M (or array thereof), each such class type has a copy
2095    //          assignment operator whose parameter is of type const M&,
2096    //          const volatile M& or M.
2097    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2098         HasConstCopyAssignment && Field != ClassDecl->field_end();
2099         ++Field) {
2100      QualType FieldType = (*Field)->getType();
2101      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2102        FieldType = Array->getElementType();
2103      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2104        const CXXRecordDecl *FieldClassDecl
2105          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2106        const CXXMethodDecl *MD = 0;
2107        HasConstCopyAssignment
2108          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2109      }
2110    }
2111
2112    //   Otherwise, the implicitly declared copy assignment operator will
2113    //   have the form
2114    //
2115    //       X& X::operator=(X&)
2116    QualType ArgType = ClassType;
2117    QualType RetType = Context.getLValueReferenceType(ArgType);
2118    if (HasConstCopyAssignment)
2119      ArgType = ArgType.withConst();
2120    ArgType = Context.getLValueReferenceType(ArgType);
2121
2122    //   An implicitly-declared copy assignment operator is an inline public
2123    //   member of its class.
2124    DeclarationName Name =
2125      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2126    CXXMethodDecl *CopyAssignment =
2127      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2128                            Context.getFunctionType(RetType, &ArgType, 1,
2129                                                    false, 0),
2130                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2131    CopyAssignment->setAccess(AS_public);
2132    CopyAssignment->setImplicit();
2133    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2134    CopyAssignment->setCopyAssignment(true);
2135
2136    // Add the parameter to the operator.
2137    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2138                                                 ClassDecl->getLocation(),
2139                                                 /*IdentifierInfo=*/0,
2140                                                 ArgType, /*DInfo=*/0,
2141                                                 VarDecl::None, 0);
2142    CopyAssignment->setParams(Context, &FromParam, 1);
2143
2144    // Don't call addedAssignmentOperator. There is no way to distinguish an
2145    // implicit from an explicit assignment operator.
2146    ClassDecl->addDecl(CopyAssignment);
2147  }
2148
2149  if (!ClassDecl->hasUserDeclaredDestructor()) {
2150    // C++ [class.dtor]p2:
2151    //   If a class has no user-declared destructor, a destructor is
2152    //   declared implicitly. An implicitly-declared destructor is an
2153    //   inline public member of its class.
2154    DeclarationName Name
2155      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2156    CXXDestructorDecl *Destructor
2157      = CXXDestructorDecl::Create(Context, ClassDecl,
2158                                  ClassDecl->getLocation(), Name,
2159                                  Context.getFunctionType(Context.VoidTy,
2160                                                          0, 0, false, 0),
2161                                  /*isInline=*/true,
2162                                  /*isImplicitlyDeclared=*/true);
2163    Destructor->setAccess(AS_public);
2164    Destructor->setImplicit();
2165    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2166    ClassDecl->addDecl(Destructor);
2167  }
2168}
2169
2170void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2171  Decl *D = TemplateD.getAs<Decl>();
2172  if (!D)
2173    return;
2174
2175  TemplateParameterList *Params = 0;
2176  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2177    Params = Template->getTemplateParameters();
2178  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2179           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2180    Params = PartialSpec->getTemplateParameters();
2181  else
2182    return;
2183
2184  for (TemplateParameterList::iterator Param = Params->begin(),
2185                                    ParamEnd = Params->end();
2186       Param != ParamEnd; ++Param) {
2187    NamedDecl *Named = cast<NamedDecl>(*Param);
2188    if (Named->getDeclName()) {
2189      S->AddDecl(DeclPtrTy::make(Named));
2190      IdResolver.AddDecl(Named);
2191    }
2192  }
2193}
2194
2195/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2196/// parsing a top-level (non-nested) C++ class, and we are now
2197/// parsing those parts of the given Method declaration that could
2198/// not be parsed earlier (C++ [class.mem]p2), such as default
2199/// arguments. This action should enter the scope of the given
2200/// Method declaration as if we had just parsed the qualified method
2201/// name. However, it should not bring the parameters into scope;
2202/// that will be performed by ActOnDelayedCXXMethodParameter.
2203void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2204  if (!MethodD)
2205    return;
2206
2207  AdjustDeclIfTemplate(MethodD);
2208
2209  CXXScopeSpec SS;
2210  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2211  QualType ClassTy
2212    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2213  SS.setScopeRep(
2214    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2215  ActOnCXXEnterDeclaratorScope(S, SS);
2216}
2217
2218/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2219/// C++ method declaration. We're (re-)introducing the given
2220/// function parameter into scope for use in parsing later parts of
2221/// the method declaration. For example, we could see an
2222/// ActOnParamDefaultArgument event for this parameter.
2223void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2224  if (!ParamD)
2225    return;
2226
2227  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2228
2229  // If this parameter has an unparsed default argument, clear it out
2230  // to make way for the parsed default argument.
2231  if (Param->hasUnparsedDefaultArg())
2232    Param->setDefaultArg(0);
2233
2234  S->AddDecl(DeclPtrTy::make(Param));
2235  if (Param->getDeclName())
2236    IdResolver.AddDecl(Param);
2237}
2238
2239/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2240/// processing the delayed method declaration for Method. The method
2241/// declaration is now considered finished. There may be a separate
2242/// ActOnStartOfFunctionDef action later (not necessarily
2243/// immediately!) for this method, if it was also defined inside the
2244/// class body.
2245void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2246  if (!MethodD)
2247    return;
2248
2249  AdjustDeclIfTemplate(MethodD);
2250
2251  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2252  CXXScopeSpec SS;
2253  QualType ClassTy
2254    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2255  SS.setScopeRep(
2256    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2257  ActOnCXXExitDeclaratorScope(S, SS);
2258
2259  // Now that we have our default arguments, check the constructor
2260  // again. It could produce additional diagnostics or affect whether
2261  // the class has implicitly-declared destructors, among other
2262  // things.
2263  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2264    CheckConstructor(Constructor);
2265
2266  // Check the default arguments, which we may have added.
2267  if (!Method->isInvalidDecl())
2268    CheckCXXDefaultArguments(Method);
2269}
2270
2271/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2272/// the well-formedness of the constructor declarator @p D with type @p
2273/// R. If there are any errors in the declarator, this routine will
2274/// emit diagnostics and set the invalid bit to true.  In any case, the type
2275/// will be updated to reflect a well-formed type for the constructor and
2276/// returned.
2277QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2278                                          FunctionDecl::StorageClass &SC) {
2279  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2280
2281  // C++ [class.ctor]p3:
2282  //   A constructor shall not be virtual (10.3) or static (9.4). A
2283  //   constructor can be invoked for a const, volatile or const
2284  //   volatile object. A constructor shall not be declared const,
2285  //   volatile, or const volatile (9.3.2).
2286  if (isVirtual) {
2287    if (!D.isInvalidType())
2288      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2289        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2290        << SourceRange(D.getIdentifierLoc());
2291    D.setInvalidType();
2292  }
2293  if (SC == FunctionDecl::Static) {
2294    if (!D.isInvalidType())
2295      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2296        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2297        << SourceRange(D.getIdentifierLoc());
2298    D.setInvalidType();
2299    SC = FunctionDecl::None;
2300  }
2301
2302  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2303  if (FTI.TypeQuals != 0) {
2304    if (FTI.TypeQuals & Qualifiers::Const)
2305      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2306        << "const" << SourceRange(D.getIdentifierLoc());
2307    if (FTI.TypeQuals & Qualifiers::Volatile)
2308      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2309        << "volatile" << SourceRange(D.getIdentifierLoc());
2310    if (FTI.TypeQuals & Qualifiers::Restrict)
2311      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2312        << "restrict" << SourceRange(D.getIdentifierLoc());
2313  }
2314
2315  // Rebuild the function type "R" without any type qualifiers (in
2316  // case any of the errors above fired) and with "void" as the
2317  // return type, since constructors don't have return types. We
2318  // *always* have to do this, because GetTypeForDeclarator will
2319  // put in a result type of "int" when none was specified.
2320  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2321  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2322                                 Proto->getNumArgs(),
2323                                 Proto->isVariadic(), 0);
2324}
2325
2326/// CheckConstructor - Checks a fully-formed constructor for
2327/// well-formedness, issuing any diagnostics required. Returns true if
2328/// the constructor declarator is invalid.
2329void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2330  CXXRecordDecl *ClassDecl
2331    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2332  if (!ClassDecl)
2333    return Constructor->setInvalidDecl();
2334
2335  // C++ [class.copy]p3:
2336  //   A declaration of a constructor for a class X is ill-formed if
2337  //   its first parameter is of type (optionally cv-qualified) X and
2338  //   either there are no other parameters or else all other
2339  //   parameters have default arguments.
2340  if (!Constructor->isInvalidDecl() &&
2341      ((Constructor->getNumParams() == 1) ||
2342       (Constructor->getNumParams() > 1 &&
2343        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2344    QualType ParamType = Constructor->getParamDecl(0)->getType();
2345    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2346    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2347      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2348      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2349        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2350      Constructor->setInvalidDecl();
2351    }
2352  }
2353
2354  // Notify the class that we've added a constructor.
2355  ClassDecl->addedConstructor(Context, Constructor);
2356}
2357
2358static inline bool
2359FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2360  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2361          FTI.ArgInfo[0].Param &&
2362          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2363}
2364
2365/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2366/// the well-formednes of the destructor declarator @p D with type @p
2367/// R. If there are any errors in the declarator, this routine will
2368/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2369/// will be updated to reflect a well-formed type for the destructor and
2370/// returned.
2371QualType Sema::CheckDestructorDeclarator(Declarator &D,
2372                                         FunctionDecl::StorageClass& SC) {
2373  // C++ [class.dtor]p1:
2374  //   [...] A typedef-name that names a class is a class-name
2375  //   (7.1.3); however, a typedef-name that names a class shall not
2376  //   be used as the identifier in the declarator for a destructor
2377  //   declaration.
2378  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2379  if (isa<TypedefType>(DeclaratorType)) {
2380    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2381      << DeclaratorType;
2382    D.setInvalidType();
2383  }
2384
2385  // C++ [class.dtor]p2:
2386  //   A destructor is used to destroy objects of its class type. A
2387  //   destructor takes no parameters, and no return type can be
2388  //   specified for it (not even void). The address of a destructor
2389  //   shall not be taken. A destructor shall not be static. A
2390  //   destructor can be invoked for a const, volatile or const
2391  //   volatile object. A destructor shall not be declared const,
2392  //   volatile or const volatile (9.3.2).
2393  if (SC == FunctionDecl::Static) {
2394    if (!D.isInvalidType())
2395      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2396        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2397        << SourceRange(D.getIdentifierLoc());
2398    SC = FunctionDecl::None;
2399    D.setInvalidType();
2400  }
2401  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2402    // Destructors don't have return types, but the parser will
2403    // happily parse something like:
2404    //
2405    //   class X {
2406    //     float ~X();
2407    //   };
2408    //
2409    // The return type will be eliminated later.
2410    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2411      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2412      << SourceRange(D.getIdentifierLoc());
2413  }
2414
2415  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2416  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2417    if (FTI.TypeQuals & Qualifiers::Const)
2418      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2419        << "const" << SourceRange(D.getIdentifierLoc());
2420    if (FTI.TypeQuals & Qualifiers::Volatile)
2421      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2422        << "volatile" << SourceRange(D.getIdentifierLoc());
2423    if (FTI.TypeQuals & Qualifiers::Restrict)
2424      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2425        << "restrict" << SourceRange(D.getIdentifierLoc());
2426    D.setInvalidType();
2427  }
2428
2429  // Make sure we don't have any parameters.
2430  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2431    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2432
2433    // Delete the parameters.
2434    FTI.freeArgs();
2435    D.setInvalidType();
2436  }
2437
2438  // Make sure the destructor isn't variadic.
2439  if (FTI.isVariadic) {
2440    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2441    D.setInvalidType();
2442  }
2443
2444  // Rebuild the function type "R" without any type qualifiers or
2445  // parameters (in case any of the errors above fired) and with
2446  // "void" as the return type, since destructors don't have return
2447  // types. We *always* have to do this, because GetTypeForDeclarator
2448  // will put in a result type of "int" when none was specified.
2449  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2450}
2451
2452/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2453/// well-formednes of the conversion function declarator @p D with
2454/// type @p R. If there are any errors in the declarator, this routine
2455/// will emit diagnostics and return true. Otherwise, it will return
2456/// false. Either way, the type @p R will be updated to reflect a
2457/// well-formed type for the conversion operator.
2458void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2459                                     FunctionDecl::StorageClass& SC) {
2460  // C++ [class.conv.fct]p1:
2461  //   Neither parameter types nor return type can be specified. The
2462  //   type of a conversion function (8.3.5) is "function taking no
2463  //   parameter returning conversion-type-id."
2464  if (SC == FunctionDecl::Static) {
2465    if (!D.isInvalidType())
2466      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2467        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2468        << SourceRange(D.getIdentifierLoc());
2469    D.setInvalidType();
2470    SC = FunctionDecl::None;
2471  }
2472  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2473    // Conversion functions don't have return types, but the parser will
2474    // happily parse something like:
2475    //
2476    //   class X {
2477    //     float operator bool();
2478    //   };
2479    //
2480    // The return type will be changed later anyway.
2481    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2482      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2483      << SourceRange(D.getIdentifierLoc());
2484  }
2485
2486  // Make sure we don't have any parameters.
2487  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2488    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2489
2490    // Delete the parameters.
2491    D.getTypeObject(0).Fun.freeArgs();
2492    D.setInvalidType();
2493  }
2494
2495  // Make sure the conversion function isn't variadic.
2496  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2497    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2498    D.setInvalidType();
2499  }
2500
2501  // C++ [class.conv.fct]p4:
2502  //   The conversion-type-id shall not represent a function type nor
2503  //   an array type.
2504  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2505  if (ConvType->isArrayType()) {
2506    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2507    ConvType = Context.getPointerType(ConvType);
2508    D.setInvalidType();
2509  } else if (ConvType->isFunctionType()) {
2510    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2511    ConvType = Context.getPointerType(ConvType);
2512    D.setInvalidType();
2513  }
2514
2515  // Rebuild the function type "R" without any parameters (in case any
2516  // of the errors above fired) and with the conversion type as the
2517  // return type.
2518  R = Context.getFunctionType(ConvType, 0, 0, false,
2519                              R->getAs<FunctionProtoType>()->getTypeQuals());
2520
2521  // C++0x explicit conversion operators.
2522  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2523    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2524         diag::warn_explicit_conversion_functions)
2525      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2526}
2527
2528/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2529/// the declaration of the given C++ conversion function. This routine
2530/// is responsible for recording the conversion function in the C++
2531/// class, if possible.
2532Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2533  assert(Conversion && "Expected to receive a conversion function declaration");
2534
2535  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2536
2537  // Make sure we aren't redeclaring the conversion function.
2538  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2539
2540  // C++ [class.conv.fct]p1:
2541  //   [...] A conversion function is never used to convert a
2542  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2543  //   same object type (or a reference to it), to a (possibly
2544  //   cv-qualified) base class of that type (or a reference to it),
2545  //   or to (possibly cv-qualified) void.
2546  // FIXME: Suppress this warning if the conversion function ends up being a
2547  // virtual function that overrides a virtual function in a base class.
2548  QualType ClassType
2549    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2550  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2551    ConvType = ConvTypeRef->getPointeeType();
2552  if (ConvType->isRecordType()) {
2553    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2554    if (ConvType == ClassType)
2555      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2556        << ClassType;
2557    else if (IsDerivedFrom(ClassType, ConvType))
2558      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2559        <<  ClassType << ConvType;
2560  } else if (ConvType->isVoidType()) {
2561    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2562      << ClassType << ConvType;
2563  }
2564
2565  if (Conversion->getPreviousDeclaration()) {
2566    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2567    if (FunctionTemplateDecl *ConversionTemplate
2568          = Conversion->getDescribedFunctionTemplate())
2569      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2570    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2571    for (OverloadedFunctionDecl::function_iterator
2572           Conv = Conversions->function_begin(),
2573           ConvEnd = Conversions->function_end();
2574         Conv != ConvEnd; ++Conv) {
2575      if (*Conv == ExpectedPrevDecl) {
2576        *Conv = Conversion;
2577        return DeclPtrTy::make(Conversion);
2578      }
2579    }
2580    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2581  } else if (FunctionTemplateDecl *ConversionTemplate
2582               = Conversion->getDescribedFunctionTemplate())
2583    ClassDecl->addConversionFunction(ConversionTemplate);
2584  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2585    ClassDecl->addConversionFunction(Conversion);
2586
2587  return DeclPtrTy::make(Conversion);
2588}
2589
2590//===----------------------------------------------------------------------===//
2591// Namespace Handling
2592//===----------------------------------------------------------------------===//
2593
2594/// ActOnStartNamespaceDef - This is called at the start of a namespace
2595/// definition.
2596Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2597                                             SourceLocation IdentLoc,
2598                                             IdentifierInfo *II,
2599                                             SourceLocation LBrace) {
2600  NamespaceDecl *Namespc =
2601      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2602  Namespc->setLBracLoc(LBrace);
2603
2604  Scope *DeclRegionScope = NamespcScope->getParent();
2605
2606  if (II) {
2607    // C++ [namespace.def]p2:
2608    // The identifier in an original-namespace-definition shall not have been
2609    // previously defined in the declarative region in which the
2610    // original-namespace-definition appears. The identifier in an
2611    // original-namespace-definition is the name of the namespace. Subsequently
2612    // in that declarative region, it is treated as an original-namespace-name.
2613
2614    NamedDecl *PrevDecl
2615      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2616
2617    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2618      // This is an extended namespace definition.
2619      // Attach this namespace decl to the chain of extended namespace
2620      // definitions.
2621      OrigNS->setNextNamespace(Namespc);
2622      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2623
2624      // Remove the previous declaration from the scope.
2625      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2626        IdResolver.RemoveDecl(OrigNS);
2627        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2628      }
2629    } else if (PrevDecl) {
2630      // This is an invalid name redefinition.
2631      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2632       << Namespc->getDeclName();
2633      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2634      Namespc->setInvalidDecl();
2635      // Continue on to push Namespc as current DeclContext and return it.
2636    } else if (II->isStr("std") &&
2637               CurContext->getLookupContext()->isTranslationUnit()) {
2638      // This is the first "real" definition of the namespace "std", so update
2639      // our cache of the "std" namespace to point at this definition.
2640      if (StdNamespace) {
2641        // We had already defined a dummy namespace "std". Link this new
2642        // namespace definition to the dummy namespace "std".
2643        StdNamespace->setNextNamespace(Namespc);
2644        StdNamespace->setLocation(IdentLoc);
2645        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2646      }
2647
2648      // Make our StdNamespace cache point at the first real definition of the
2649      // "std" namespace.
2650      StdNamespace = Namespc;
2651    }
2652
2653    PushOnScopeChains(Namespc, DeclRegionScope);
2654  } else {
2655    // Anonymous namespaces.
2656
2657    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2658    //   behaves as if it were replaced by
2659    //     namespace unique { /* empty body */ }
2660    //     using namespace unique;
2661    //     namespace unique { namespace-body }
2662    //   where all occurrences of 'unique' in a translation unit are
2663    //   replaced by the same identifier and this identifier differs
2664    //   from all other identifiers in the entire program.
2665
2666    // We just create the namespace with an empty name and then add an
2667    // implicit using declaration, just like the standard suggests.
2668    //
2669    // CodeGen enforces the "universally unique" aspect by giving all
2670    // declarations semantically contained within an anonymous
2671    // namespace internal linkage.
2672
2673    assert(Namespc->isAnonymousNamespace());
2674    CurContext->addDecl(Namespc);
2675
2676    UsingDirectiveDecl* UD
2677      = UsingDirectiveDecl::Create(Context, CurContext,
2678                                   /* 'using' */ LBrace,
2679                                   /* 'namespace' */ SourceLocation(),
2680                                   /* qualifier */ SourceRange(),
2681                                   /* NNS */ NULL,
2682                                   /* identifier */ SourceLocation(),
2683                                   Namespc,
2684                                   /* Ancestor */ CurContext);
2685    UD->setImplicit();
2686    CurContext->addDecl(UD);
2687  }
2688
2689  // Although we could have an invalid decl (i.e. the namespace name is a
2690  // redefinition), push it as current DeclContext and try to continue parsing.
2691  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2692  // for the namespace has the declarations that showed up in that particular
2693  // namespace definition.
2694  PushDeclContext(NamespcScope, Namespc);
2695  return DeclPtrTy::make(Namespc);
2696}
2697
2698/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2699/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2700void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2701  Decl *Dcl = D.getAs<Decl>();
2702  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2703  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2704  Namespc->setRBracLoc(RBrace);
2705  PopDeclContext();
2706}
2707
2708Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2709                                          SourceLocation UsingLoc,
2710                                          SourceLocation NamespcLoc,
2711                                          const CXXScopeSpec &SS,
2712                                          SourceLocation IdentLoc,
2713                                          IdentifierInfo *NamespcName,
2714                                          AttributeList *AttrList) {
2715  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2716  assert(NamespcName && "Invalid NamespcName.");
2717  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2718  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2719
2720  UsingDirectiveDecl *UDir = 0;
2721
2722  // Lookup namespace name.
2723  LookupResult R;
2724  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2725  if (R.isAmbiguous()) {
2726    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2727    return DeclPtrTy();
2728  }
2729  if (!R.empty()) {
2730    NamedDecl *NS = R.getFoundDecl();
2731    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2732    // C++ [namespace.udir]p1:
2733    //   A using-directive specifies that the names in the nominated
2734    //   namespace can be used in the scope in which the
2735    //   using-directive appears after the using-directive. During
2736    //   unqualified name lookup (3.4.1), the names appear as if they
2737    //   were declared in the nearest enclosing namespace which
2738    //   contains both the using-directive and the nominated
2739    //   namespace. [Note: in this context, "contains" means "contains
2740    //   directly or indirectly". ]
2741
2742    // Find enclosing context containing both using-directive and
2743    // nominated namespace.
2744    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2745    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2746      CommonAncestor = CommonAncestor->getParent();
2747
2748    UDir = UsingDirectiveDecl::Create(Context,
2749                                      CurContext, UsingLoc,
2750                                      NamespcLoc,
2751                                      SS.getRange(),
2752                                      (NestedNameSpecifier *)SS.getScopeRep(),
2753                                      IdentLoc,
2754                                      cast<NamespaceDecl>(NS),
2755                                      CommonAncestor);
2756    PushUsingDirective(S, UDir);
2757  } else {
2758    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2759  }
2760
2761  // FIXME: We ignore attributes for now.
2762  delete AttrList;
2763  return DeclPtrTy::make(UDir);
2764}
2765
2766void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2767  // If scope has associated entity, then using directive is at namespace
2768  // or translation unit scope. We add UsingDirectiveDecls, into
2769  // it's lookup structure.
2770  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2771    Ctx->addDecl(UDir);
2772  else
2773    // Otherwise it is block-sope. using-directives will affect lookup
2774    // only to the end of scope.
2775    S->PushUsingDirective(DeclPtrTy::make(UDir));
2776}
2777
2778
2779Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2780                                            AccessSpecifier AS,
2781                                            SourceLocation UsingLoc,
2782                                            const CXXScopeSpec &SS,
2783                                            UnqualifiedId &Name,
2784                                            AttributeList *AttrList,
2785                                            bool IsTypeName) {
2786  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2787
2788  switch (Name.getKind()) {
2789  case UnqualifiedId::IK_Identifier:
2790  case UnqualifiedId::IK_OperatorFunctionId:
2791  case UnqualifiedId::IK_ConversionFunctionId:
2792    break;
2793
2794  case UnqualifiedId::IK_ConstructorName:
2795    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
2796      << SS.getRange();
2797    return DeclPtrTy();
2798
2799  case UnqualifiedId::IK_DestructorName:
2800    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
2801      << SS.getRange();
2802    return DeclPtrTy();
2803
2804  case UnqualifiedId::IK_TemplateId:
2805    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
2806      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
2807    return DeclPtrTy();
2808  }
2809
2810  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
2811  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS,
2812                                        Name.getSourceRange().getBegin(),
2813                                        TargetName, AttrList, IsTypeName);
2814  if (UD) {
2815    PushOnScopeChains(UD, S);
2816    UD->setAccess(AS);
2817  }
2818
2819  return DeclPtrTy::make(UD);
2820}
2821
2822NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2823                                       const CXXScopeSpec &SS,
2824                                       SourceLocation IdentLoc,
2825                                       DeclarationName Name,
2826                                       AttributeList *AttrList,
2827                                       bool IsTypeName) {
2828  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2829  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2830
2831  // FIXME: We ignore attributes for now.
2832  delete AttrList;
2833
2834  if (SS.isEmpty()) {
2835    Diag(IdentLoc, diag::err_using_requires_qualname);
2836    return 0;
2837  }
2838
2839  NestedNameSpecifier *NNS =
2840    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2841
2842  DeclContext *LookupContext = computeDeclContext(SS);
2843  if (!LookupContext) {
2844    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2845                                       SS.getRange(), NNS,
2846                                       IdentLoc, Name, IsTypeName);
2847  }
2848
2849  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2850    // C++0x N2914 [namespace.udecl]p3:
2851    // A using-declaration used as a member-declaration shall refer to a member
2852    // of a base class of the class being defined, shall refer to a member of an
2853    // anonymous union that is a member of a base class of the class being
2854    // defined, or shall refer to an enumerator for an enumeration type that is
2855    // a member of a base class of the class being defined.
2856
2857    CXXRecordDecl *LookupRD = dyn_cast<CXXRecordDecl>(LookupContext);
2858    if (!LookupRD || !RD->isDerivedFrom(LookupRD)) {
2859      Diag(SS.getRange().getBegin(),
2860           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2861        << NNS << RD->getDeclName();
2862      return 0;
2863    }
2864  } else {
2865    // C++0x N2914 [namespace.udecl]p8:
2866    // A using-declaration for a class member shall be a member-declaration.
2867    if (isa<CXXRecordDecl>(LookupContext)) {
2868      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2869        << SS.getRange();
2870      return 0;
2871    }
2872  }
2873
2874  // Lookup target name.
2875  LookupResult R;
2876  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2877
2878  if (R.empty()) {
2879    Diag(IdentLoc, diag::err_no_member)
2880      << Name << LookupContext << SS.getRange();
2881    return 0;
2882  }
2883
2884  // FIXME: handle ambiguity?
2885  NamedDecl *ND = R.getAsSingleDecl(Context);
2886
2887  if (IsTypeName && !isa<TypeDecl>(ND)) {
2888    Diag(IdentLoc, diag::err_using_typename_non_type);
2889    return 0;
2890  }
2891
2892  // C++0x N2914 [namespace.udecl]p6:
2893  // A using-declaration shall not name a namespace.
2894  if (isa<NamespaceDecl>(ND)) {
2895    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2896      << SS.getRange();
2897    return 0;
2898  }
2899
2900  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2901                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2902}
2903
2904/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2905/// is a namespace alias, returns the namespace it points to.
2906static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2907  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2908    return AD->getNamespace();
2909  return dyn_cast_or_null<NamespaceDecl>(D);
2910}
2911
2912Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2913                                             SourceLocation NamespaceLoc,
2914                                             SourceLocation AliasLoc,
2915                                             IdentifierInfo *Alias,
2916                                             const CXXScopeSpec &SS,
2917                                             SourceLocation IdentLoc,
2918                                             IdentifierInfo *Ident) {
2919
2920  // Lookup the namespace name.
2921  LookupResult R;
2922  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2923
2924  // Check if we have a previous declaration with the same name.
2925  if (NamedDecl *PrevDecl
2926        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2927    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2928      // We already have an alias with the same name that points to the same
2929      // namespace, so don't create a new one.
2930      if (!R.isAmbiguous() && !R.empty() &&
2931          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2932        return DeclPtrTy();
2933    }
2934
2935    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2936      diag::err_redefinition_different_kind;
2937    Diag(AliasLoc, DiagID) << Alias;
2938    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2939    return DeclPtrTy();
2940  }
2941
2942  if (R.isAmbiguous()) {
2943    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2944    return DeclPtrTy();
2945  }
2946
2947  if (R.empty()) {
2948    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2949    return DeclPtrTy();
2950  }
2951
2952  NamespaceAliasDecl *AliasDecl =
2953    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2954                               Alias, SS.getRange(),
2955                               (NestedNameSpecifier *)SS.getScopeRep(),
2956                               IdentLoc, R.getFoundDecl());
2957
2958  CurContext->addDecl(AliasDecl);
2959  return DeclPtrTy::make(AliasDecl);
2960}
2961
2962void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2963                                            CXXConstructorDecl *Constructor) {
2964  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2965          !Constructor->isUsed()) &&
2966    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2967
2968  CXXRecordDecl *ClassDecl
2969    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2970  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2971
2972  if (SetBaseOrMemberInitializers(Constructor, 0, 0, true)) {
2973    Diag(CurrentLocation, diag::note_ctor_synthesized_at)
2974      << Context.getTagDeclType(ClassDecl);
2975    Constructor->setInvalidDecl();
2976  } else {
2977    Constructor->setUsed();
2978  }
2979  return;
2980}
2981
2982void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2983                                    CXXDestructorDecl *Destructor) {
2984  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2985         "DefineImplicitDestructor - call it for implicit default dtor");
2986
2987  CXXRecordDecl *ClassDecl
2988  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2989  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2990  // C++ [class.dtor] p5
2991  // Before the implicitly-declared default destructor for a class is
2992  // implicitly defined, all the implicitly-declared default destructors
2993  // for its base class and its non-static data members shall have been
2994  // implicitly defined.
2995  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2996       E = ClassDecl->bases_end(); Base != E; ++Base) {
2997    CXXRecordDecl *BaseClassDecl
2998      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2999    if (!BaseClassDecl->hasTrivialDestructor()) {
3000      if (CXXDestructorDecl *BaseDtor =
3001          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
3002        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
3003      else
3004        assert(false &&
3005               "DefineImplicitDestructor - missing dtor in a base class");
3006    }
3007  }
3008
3009  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3010       E = ClassDecl->field_end(); Field != E; ++Field) {
3011    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3012    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3013      FieldType = Array->getElementType();
3014    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3015      CXXRecordDecl *FieldClassDecl
3016        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3017      if (!FieldClassDecl->hasTrivialDestructor()) {
3018        if (CXXDestructorDecl *FieldDtor =
3019            const_cast<CXXDestructorDecl*>(
3020                                        FieldClassDecl->getDestructor(Context)))
3021          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
3022        else
3023          assert(false &&
3024          "DefineImplicitDestructor - missing dtor in class of a data member");
3025      }
3026    }
3027  }
3028  Destructor->setUsed();
3029}
3030
3031void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3032                                          CXXMethodDecl *MethodDecl) {
3033  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3034          MethodDecl->getOverloadedOperator() == OO_Equal &&
3035          !MethodDecl->isUsed()) &&
3036         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3037
3038  CXXRecordDecl *ClassDecl
3039    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3040
3041  // C++[class.copy] p12
3042  // Before the implicitly-declared copy assignment operator for a class is
3043  // implicitly defined, all implicitly-declared copy assignment operators
3044  // for its direct base classes and its nonstatic data members shall have
3045  // been implicitly defined.
3046  bool err = false;
3047  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3048       E = ClassDecl->bases_end(); Base != E; ++Base) {
3049    CXXRecordDecl *BaseClassDecl
3050      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3051    if (CXXMethodDecl *BaseAssignOpMethod =
3052          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3053      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3054  }
3055  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3056       E = ClassDecl->field_end(); Field != E; ++Field) {
3057    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3058    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3059      FieldType = Array->getElementType();
3060    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3061      CXXRecordDecl *FieldClassDecl
3062        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3063      if (CXXMethodDecl *FieldAssignOpMethod =
3064          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3065        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3066    } else if (FieldType->isReferenceType()) {
3067      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3068      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3069      Diag(Field->getLocation(), diag::note_declared_at);
3070      Diag(CurrentLocation, diag::note_first_required_here);
3071      err = true;
3072    } else if (FieldType.isConstQualified()) {
3073      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3074      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3075      Diag(Field->getLocation(), diag::note_declared_at);
3076      Diag(CurrentLocation, diag::note_first_required_here);
3077      err = true;
3078    }
3079  }
3080  if (!err)
3081    MethodDecl->setUsed();
3082}
3083
3084CXXMethodDecl *
3085Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3086                              CXXRecordDecl *ClassDecl) {
3087  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3088  QualType RHSType(LHSType);
3089  // If class's assignment operator argument is const/volatile qualified,
3090  // look for operator = (const/volatile B&). Otherwise, look for
3091  // operator = (B&).
3092  RHSType = Context.getCVRQualifiedType(RHSType,
3093                                     ParmDecl->getType().getCVRQualifiers());
3094  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3095                                                          LHSType,
3096                                                          SourceLocation()));
3097  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3098                                                          RHSType,
3099                                                          SourceLocation()));
3100  Expr *Args[2] = { &*LHS, &*RHS };
3101  OverloadCandidateSet CandidateSet;
3102  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3103                              CandidateSet);
3104  OverloadCandidateSet::iterator Best;
3105  if (BestViableFunction(CandidateSet,
3106                         ClassDecl->getLocation(), Best) == OR_Success)
3107    return cast<CXXMethodDecl>(Best->Function);
3108  assert(false &&
3109         "getAssignOperatorMethod - copy assignment operator method not found");
3110  return 0;
3111}
3112
3113void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3114                                   CXXConstructorDecl *CopyConstructor,
3115                                   unsigned TypeQuals) {
3116  assert((CopyConstructor->isImplicit() &&
3117          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3118          !CopyConstructor->isUsed()) &&
3119         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3120
3121  CXXRecordDecl *ClassDecl
3122    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3123  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3124  // C++ [class.copy] p209
3125  // Before the implicitly-declared copy constructor for a class is
3126  // implicitly defined, all the implicitly-declared copy constructors
3127  // for its base class and its non-static data members shall have been
3128  // implicitly defined.
3129  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3130       Base != ClassDecl->bases_end(); ++Base) {
3131    CXXRecordDecl *BaseClassDecl
3132      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3133    if (CXXConstructorDecl *BaseCopyCtor =
3134        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3135      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3136  }
3137  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3138                                  FieldEnd = ClassDecl->field_end();
3139       Field != FieldEnd; ++Field) {
3140    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3141    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3142      FieldType = Array->getElementType();
3143    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3144      CXXRecordDecl *FieldClassDecl
3145        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3146      if (CXXConstructorDecl *FieldCopyCtor =
3147          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3148        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3149    }
3150  }
3151  CopyConstructor->setUsed();
3152}
3153
3154Sema::OwningExprResult
3155Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3156                            CXXConstructorDecl *Constructor,
3157                            MultiExprArg ExprArgs) {
3158  bool Elidable = false;
3159
3160  // C++ [class.copy]p15:
3161  //   Whenever a temporary class object is copied using a copy constructor, and
3162  //   this object and the copy have the same cv-unqualified type, an
3163  //   implementation is permitted to treat the original and the copy as two
3164  //   different ways of referring to the same object and not perform a copy at
3165  //   all, even if the class copy constructor or destructor have side effects.
3166
3167  // FIXME: Is this enough?
3168  if (Constructor->isCopyConstructor(Context)) {
3169    Expr *E = ((Expr **)ExprArgs.get())[0];
3170    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3171      E = BE->getSubExpr();
3172    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3173      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3174        E = ICE->getSubExpr();
3175
3176    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3177      Elidable = true;
3178  }
3179
3180  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3181                               Elidable, move(ExprArgs));
3182}
3183
3184/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3185/// including handling of its default argument expressions.
3186Sema::OwningExprResult
3187Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3188                            CXXConstructorDecl *Constructor, bool Elidable,
3189                            MultiExprArg ExprArgs) {
3190  unsigned NumExprs = ExprArgs.size();
3191  Expr **Exprs = (Expr **)ExprArgs.release();
3192
3193  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3194                                        Elidable, Exprs, NumExprs));
3195}
3196
3197Sema::OwningExprResult
3198Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3199                                  QualType Ty,
3200                                  SourceLocation TyBeginLoc,
3201                                  MultiExprArg Args,
3202                                  SourceLocation RParenLoc) {
3203  unsigned NumExprs = Args.size();
3204  Expr **Exprs = (Expr **)Args.release();
3205
3206  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3207                                                    TyBeginLoc, Exprs,
3208                                                    NumExprs, RParenLoc));
3209}
3210
3211
3212bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3213                                        CXXConstructorDecl *Constructor,
3214                                        MultiExprArg Exprs) {
3215  OwningExprResult TempResult =
3216    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3217                          move(Exprs));
3218  if (TempResult.isInvalid())
3219    return true;
3220
3221  Expr *Temp = TempResult.takeAs<Expr>();
3222  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3223  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3224  VD->setInit(Context, Temp);
3225
3226  return false;
3227}
3228
3229void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3230  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3231                                  DeclInitType->getAs<RecordType>()->getDecl());
3232  if (!ClassDecl->hasTrivialDestructor())
3233    if (CXXDestructorDecl *Destructor =
3234        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3235      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3236}
3237
3238/// AddCXXDirectInitializerToDecl - This action is called immediately after
3239/// ActOnDeclarator, when a C++ direct initializer is present.
3240/// e.g: "int x(1);"
3241void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3242                                         SourceLocation LParenLoc,
3243                                         MultiExprArg Exprs,
3244                                         SourceLocation *CommaLocs,
3245                                         SourceLocation RParenLoc) {
3246  unsigned NumExprs = Exprs.size();
3247  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3248  Decl *RealDecl = Dcl.getAs<Decl>();
3249
3250  // If there is no declaration, there was an error parsing it.  Just ignore
3251  // the initializer.
3252  if (RealDecl == 0)
3253    return;
3254
3255  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3256  if (!VDecl) {
3257    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3258    RealDecl->setInvalidDecl();
3259    return;
3260  }
3261
3262  // We will represent direct-initialization similarly to copy-initialization:
3263  //    int x(1);  -as-> int x = 1;
3264  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3265  //
3266  // Clients that want to distinguish between the two forms, can check for
3267  // direct initializer using VarDecl::hasCXXDirectInitializer().
3268  // A major benefit is that clients that don't particularly care about which
3269  // exactly form was it (like the CodeGen) can handle both cases without
3270  // special case code.
3271
3272  // If either the declaration has a dependent type or if any of the expressions
3273  // is type-dependent, we represent the initialization via a ParenListExpr for
3274  // later use during template instantiation.
3275  if (VDecl->getType()->isDependentType() ||
3276      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3277    // Let clients know that initialization was done with a direct initializer.
3278    VDecl->setCXXDirectInitializer(true);
3279
3280    // Store the initialization expressions as a ParenListExpr.
3281    unsigned NumExprs = Exprs.size();
3282    VDecl->setInit(Context,
3283                   new (Context) ParenListExpr(Context, LParenLoc,
3284                                               (Expr **)Exprs.release(),
3285                                               NumExprs, RParenLoc));
3286    return;
3287  }
3288
3289
3290  // C++ 8.5p11:
3291  // The form of initialization (using parentheses or '=') is generally
3292  // insignificant, but does matter when the entity being initialized has a
3293  // class type.
3294  QualType DeclInitType = VDecl->getType();
3295  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3296    DeclInitType = Context.getBaseElementType(Array);
3297
3298  // FIXME: This isn't the right place to complete the type.
3299  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3300                          diag::err_typecheck_decl_incomplete_type)) {
3301    VDecl->setInvalidDecl();
3302    return;
3303  }
3304
3305  if (VDecl->getType()->isRecordType()) {
3306    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3307
3308    CXXConstructorDecl *Constructor
3309      = PerformInitializationByConstructor(DeclInitType,
3310                                           move(Exprs),
3311                                           VDecl->getLocation(),
3312                                           SourceRange(VDecl->getLocation(),
3313                                                       RParenLoc),
3314                                           VDecl->getDeclName(),
3315                                           IK_Direct,
3316                                           ConstructorArgs);
3317    if (!Constructor)
3318      RealDecl->setInvalidDecl();
3319    else {
3320      VDecl->setCXXDirectInitializer(true);
3321      if (InitializeVarWithConstructor(VDecl, Constructor,
3322                                       move_arg(ConstructorArgs)))
3323        RealDecl->setInvalidDecl();
3324      FinalizeVarWithDestructor(VDecl, DeclInitType);
3325    }
3326    return;
3327  }
3328
3329  if (NumExprs > 1) {
3330    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3331      << SourceRange(VDecl->getLocation(), RParenLoc);
3332    RealDecl->setInvalidDecl();
3333    return;
3334  }
3335
3336  // Let clients know that initialization was done with a direct initializer.
3337  VDecl->setCXXDirectInitializer(true);
3338
3339  assert(NumExprs == 1 && "Expected 1 expression");
3340  // Set the init expression, handles conversions.
3341  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3342                       /*DirectInit=*/true);
3343}
3344
3345/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3346/// may occur as part of direct-initialization or copy-initialization.
3347///
3348/// \param ClassType the type of the object being initialized, which must have
3349/// class type.
3350///
3351/// \param ArgsPtr the arguments provided to initialize the object
3352///
3353/// \param Loc the source location where the initialization occurs
3354///
3355/// \param Range the source range that covers the entire initialization
3356///
3357/// \param InitEntity the name of the entity being initialized, if known
3358///
3359/// \param Kind the type of initialization being performed
3360///
3361/// \param ConvertedArgs a vector that will be filled in with the
3362/// appropriately-converted arguments to the constructor (if initialization
3363/// succeeded).
3364///
3365/// \returns the constructor used to initialize the object, if successful.
3366/// Otherwise, emits a diagnostic and returns NULL.
3367CXXConstructorDecl *
3368Sema::PerformInitializationByConstructor(QualType ClassType,
3369                                         MultiExprArg ArgsPtr,
3370                                         SourceLocation Loc, SourceRange Range,
3371                                         DeclarationName InitEntity,
3372                                         InitializationKind Kind,
3373                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3374  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3375  assert(ClassRec && "Can only initialize a class type here");
3376  Expr **Args = (Expr **)ArgsPtr.get();
3377  unsigned NumArgs = ArgsPtr.size();
3378
3379  // C++ [dcl.init]p14:
3380  //   If the initialization is direct-initialization, or if it is
3381  //   copy-initialization where the cv-unqualified version of the
3382  //   source type is the same class as, or a derived class of, the
3383  //   class of the destination, constructors are considered. The
3384  //   applicable constructors are enumerated (13.3.1.3), and the
3385  //   best one is chosen through overload resolution (13.3). The
3386  //   constructor so selected is called to initialize the object,
3387  //   with the initializer expression(s) as its argument(s). If no
3388  //   constructor applies, or the overload resolution is ambiguous,
3389  //   the initialization is ill-formed.
3390  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3391  OverloadCandidateSet CandidateSet;
3392
3393  // Add constructors to the overload set.
3394  DeclarationName ConstructorName
3395    = Context.DeclarationNames.getCXXConstructorName(
3396                      Context.getCanonicalType(ClassType).getUnqualifiedType());
3397  DeclContext::lookup_const_iterator Con, ConEnd;
3398  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3399       Con != ConEnd; ++Con) {
3400    // Find the constructor (which may be a template).
3401    CXXConstructorDecl *Constructor = 0;
3402    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3403    if (ConstructorTmpl)
3404      Constructor
3405        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3406    else
3407      Constructor = cast<CXXConstructorDecl>(*Con);
3408
3409    if ((Kind == IK_Direct) ||
3410        (Kind == IK_Copy &&
3411         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3412        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3413      if (ConstructorTmpl)
3414        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3415                                     Args, NumArgs, CandidateSet);
3416      else
3417        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3418    }
3419  }
3420
3421  // FIXME: When we decide not to synthesize the implicitly-declared
3422  // constructors, we'll need to make them appear here.
3423
3424  OverloadCandidateSet::iterator Best;
3425  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3426  case OR_Success:
3427    // We found a constructor. Break out so that we can convert the arguments
3428    // appropriately.
3429    break;
3430
3431  case OR_No_Viable_Function:
3432    if (InitEntity)
3433      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3434        << InitEntity << Range;
3435    else
3436      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3437        << ClassType << Range;
3438    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3439    return 0;
3440
3441  case OR_Ambiguous:
3442    if (InitEntity)
3443      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3444    else
3445      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3446    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3447    return 0;
3448
3449  case OR_Deleted:
3450    if (InitEntity)
3451      Diag(Loc, diag::err_ovl_deleted_init)
3452        << Best->Function->isDeleted()
3453        << InitEntity << Range;
3454    else
3455      Diag(Loc, diag::err_ovl_deleted_init)
3456        << Best->Function->isDeleted()
3457        << InitEntity << Range;
3458    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3459    return 0;
3460  }
3461
3462  // Convert the arguments, fill in default arguments, etc.
3463  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3464  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3465    return 0;
3466
3467  return Constructor;
3468}
3469
3470/// \brief Given a constructor and the set of arguments provided for the
3471/// constructor, convert the arguments and add any required default arguments
3472/// to form a proper call to this constructor.
3473///
3474/// \returns true if an error occurred, false otherwise.
3475bool
3476Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3477                              MultiExprArg ArgsPtr,
3478                              SourceLocation Loc,
3479                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3480  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3481  unsigned NumArgs = ArgsPtr.size();
3482  Expr **Args = (Expr **)ArgsPtr.get();
3483
3484  const FunctionProtoType *Proto
3485    = Constructor->getType()->getAs<FunctionProtoType>();
3486  assert(Proto && "Constructor without a prototype?");
3487  unsigned NumArgsInProto = Proto->getNumArgs();
3488  unsigned NumArgsToCheck = NumArgs;
3489
3490  // If too few arguments are available, we'll fill in the rest with defaults.
3491  if (NumArgs < NumArgsInProto) {
3492    NumArgsToCheck = NumArgsInProto;
3493    ConvertedArgs.reserve(NumArgsInProto);
3494  } else {
3495    ConvertedArgs.reserve(NumArgs);
3496    if (NumArgs > NumArgsInProto)
3497      NumArgsToCheck = NumArgsInProto;
3498  }
3499
3500  // Convert arguments
3501  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3502    QualType ProtoArgType = Proto->getArgType(i);
3503
3504    Expr *Arg;
3505    if (i < NumArgs) {
3506      Arg = Args[i];
3507
3508      // Pass the argument.
3509      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3510        return true;
3511
3512      Args[i] = 0;
3513    } else {
3514      ParmVarDecl *Param = Constructor->getParamDecl(i);
3515
3516      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3517      if (DefArg.isInvalid())
3518        return true;
3519
3520      Arg = DefArg.takeAs<Expr>();
3521    }
3522
3523    ConvertedArgs.push_back(Arg);
3524  }
3525
3526  // If this is a variadic call, handle args passed through "...".
3527  if (Proto->isVariadic()) {
3528    // Promote the arguments (C99 6.5.2.2p7).
3529    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3530      Expr *Arg = Args[i];
3531      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3532        return true;
3533
3534      ConvertedArgs.push_back(Arg);
3535      Args[i] = 0;
3536    }
3537  }
3538
3539  return false;
3540}
3541
3542/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3543/// determine whether they are reference-related,
3544/// reference-compatible, reference-compatible with added
3545/// qualification, or incompatible, for use in C++ initialization by
3546/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3547/// type, and the first type (T1) is the pointee type of the reference
3548/// type being initialized.
3549Sema::ReferenceCompareResult
3550Sema::CompareReferenceRelationship(SourceLocation Loc,
3551                                   QualType OrigT1, QualType OrigT2,
3552                                   bool& DerivedToBase) {
3553  assert(!OrigT1->isReferenceType() &&
3554    "T1 must be the pointee type of the reference type");
3555  assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
3556
3557  QualType T1 = Context.getCanonicalType(OrigT1);
3558  QualType T2 = Context.getCanonicalType(OrigT2);
3559  QualType UnqualT1 = T1.getUnqualifiedType();
3560  QualType UnqualT2 = T2.getUnqualifiedType();
3561
3562  // C++ [dcl.init.ref]p4:
3563  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3564  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3565  //   T1 is a base class of T2.
3566  if (UnqualT1 == UnqualT2)
3567    DerivedToBase = false;
3568  else if (!RequireCompleteType(Loc, OrigT1, PDiag()) &&
3569           !RequireCompleteType(Loc, OrigT2, PDiag()) &&
3570           IsDerivedFrom(UnqualT2, UnqualT1))
3571    DerivedToBase = true;
3572  else
3573    return Ref_Incompatible;
3574
3575  // At this point, we know that T1 and T2 are reference-related (at
3576  // least).
3577
3578  // C++ [dcl.init.ref]p4:
3579  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3580  //   reference-related to T2 and cv1 is the same cv-qualification
3581  //   as, or greater cv-qualification than, cv2. For purposes of
3582  //   overload resolution, cases for which cv1 is greater
3583  //   cv-qualification than cv2 are identified as
3584  //   reference-compatible with added qualification (see 13.3.3.2).
3585  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3586    return Ref_Compatible;
3587  else if (T1.isMoreQualifiedThan(T2))
3588    return Ref_Compatible_With_Added_Qualification;
3589  else
3590    return Ref_Related;
3591}
3592
3593/// CheckReferenceInit - Check the initialization of a reference
3594/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3595/// the initializer (either a simple initializer or an initializer
3596/// list), and DeclType is the type of the declaration. When ICS is
3597/// non-null, this routine will compute the implicit conversion
3598/// sequence according to C++ [over.ics.ref] and will not produce any
3599/// diagnostics; when ICS is null, it will emit diagnostics when any
3600/// errors are found. Either way, a return value of true indicates
3601/// that there was a failure, a return value of false indicates that
3602/// the reference initialization succeeded.
3603///
3604/// When @p SuppressUserConversions, user-defined conversions are
3605/// suppressed.
3606/// When @p AllowExplicit, we also permit explicit user-defined
3607/// conversion functions.
3608/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3609bool
3610Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3611                         SourceLocation DeclLoc,
3612                         bool SuppressUserConversions,
3613                         bool AllowExplicit, bool ForceRValue,
3614                         ImplicitConversionSequence *ICS) {
3615  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3616
3617  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3618  QualType T2 = Init->getType();
3619
3620  // If the initializer is the address of an overloaded function, try
3621  // to resolve the overloaded function. If all goes well, T2 is the
3622  // type of the resulting function.
3623  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3624    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3625                                                          ICS != 0);
3626    if (Fn) {
3627      // Since we're performing this reference-initialization for
3628      // real, update the initializer with the resulting function.
3629      if (!ICS) {
3630        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3631          return true;
3632
3633        Init = FixOverloadedFunctionReference(Init, Fn);
3634      }
3635
3636      T2 = Fn->getType();
3637    }
3638  }
3639
3640  // Compute some basic properties of the types and the initializer.
3641  bool isRValRef = DeclType->isRValueReferenceType();
3642  bool DerivedToBase = false;
3643  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3644                                                  Init->isLvalue(Context);
3645  ReferenceCompareResult RefRelationship
3646    = CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase);
3647
3648  // Most paths end in a failed conversion.
3649  if (ICS)
3650    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3651
3652  // C++ [dcl.init.ref]p5:
3653  //   A reference to type "cv1 T1" is initialized by an expression
3654  //   of type "cv2 T2" as follows:
3655
3656  //     -- If the initializer expression
3657
3658  // Rvalue references cannot bind to lvalues (N2812).
3659  // There is absolutely no situation where they can. In particular, note that
3660  // this is ill-formed, even if B has a user-defined conversion to A&&:
3661  //   B b;
3662  //   A&& r = b;
3663  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3664    if (!ICS)
3665      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3666        << Init->getSourceRange();
3667    return true;
3668  }
3669
3670  bool BindsDirectly = false;
3671  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3672  //          reference-compatible with "cv2 T2," or
3673  //
3674  // Note that the bit-field check is skipped if we are just computing
3675  // the implicit conversion sequence (C++ [over.best.ics]p2).
3676  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3677      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3678    BindsDirectly = true;
3679
3680    if (ICS) {
3681      // C++ [over.ics.ref]p1:
3682      //   When a parameter of reference type binds directly (8.5.3)
3683      //   to an argument expression, the implicit conversion sequence
3684      //   is the identity conversion, unless the argument expression
3685      //   has a type that is a derived class of the parameter type,
3686      //   in which case the implicit conversion sequence is a
3687      //   derived-to-base Conversion (13.3.3.1).
3688      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3689      ICS->Standard.First = ICK_Identity;
3690      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3691      ICS->Standard.Third = ICK_Identity;
3692      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3693      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3694      ICS->Standard.ReferenceBinding = true;
3695      ICS->Standard.DirectBinding = true;
3696      ICS->Standard.RRefBinding = false;
3697      ICS->Standard.CopyConstructor = 0;
3698
3699      // Nothing more to do: the inaccessibility/ambiguity check for
3700      // derived-to-base conversions is suppressed when we're
3701      // computing the implicit conversion sequence (C++
3702      // [over.best.ics]p2).
3703      return false;
3704    } else {
3705      // Perform the conversion.
3706      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3707      if (DerivedToBase)
3708        CK = CastExpr::CK_DerivedToBase;
3709      else if(CheckExceptionSpecCompatibility(Init, T1))
3710        return true;
3711      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3712    }
3713  }
3714
3715  //       -- has a class type (i.e., T2 is a class type) and can be
3716  //          implicitly converted to an lvalue of type "cv3 T3,"
3717  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3718  //          92) (this conversion is selected by enumerating the
3719  //          applicable conversion functions (13.3.1.6) and choosing
3720  //          the best one through overload resolution (13.3)),
3721  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3722      !RequireCompleteType(DeclLoc, T2, 0)) {
3723    CXXRecordDecl *T2RecordDecl
3724      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3725
3726    OverloadCandidateSet CandidateSet;
3727    OverloadedFunctionDecl *Conversions
3728      = T2RecordDecl->getVisibleConversionFunctions();
3729    for (OverloadedFunctionDecl::function_iterator Func
3730           = Conversions->function_begin();
3731         Func != Conversions->function_end(); ++Func) {
3732      FunctionTemplateDecl *ConvTemplate
3733        = dyn_cast<FunctionTemplateDecl>(*Func);
3734      CXXConversionDecl *Conv;
3735      if (ConvTemplate)
3736        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3737      else
3738        Conv = cast<CXXConversionDecl>(*Func);
3739
3740      // If the conversion function doesn't return a reference type,
3741      // it can't be considered for this conversion.
3742      if (Conv->getConversionType()->isLValueReferenceType() &&
3743          (AllowExplicit || !Conv->isExplicit())) {
3744        if (ConvTemplate)
3745          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3746                                         CandidateSet);
3747        else
3748          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3749      }
3750    }
3751
3752    OverloadCandidateSet::iterator Best;
3753    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3754    case OR_Success:
3755      // This is a direct binding.
3756      BindsDirectly = true;
3757
3758      if (ICS) {
3759        // C++ [over.ics.ref]p1:
3760        //
3761        //   [...] If the parameter binds directly to the result of
3762        //   applying a conversion function to the argument
3763        //   expression, the implicit conversion sequence is a
3764        //   user-defined conversion sequence (13.3.3.1.2), with the
3765        //   second standard conversion sequence either an identity
3766        //   conversion or, if the conversion function returns an
3767        //   entity of a type that is a derived class of the parameter
3768        //   type, a derived-to-base Conversion.
3769        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3770        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3771        ICS->UserDefined.After = Best->FinalConversion;
3772        ICS->UserDefined.ConversionFunction = Best->Function;
3773        ICS->UserDefined.EllipsisConversion = false;
3774        assert(ICS->UserDefined.After.ReferenceBinding &&
3775               ICS->UserDefined.After.DirectBinding &&
3776               "Expected a direct reference binding!");
3777        return false;
3778      } else {
3779        OwningExprResult InitConversion =
3780          BuildCXXCastArgument(DeclLoc, QualType(),
3781                               CastExpr::CK_UserDefinedConversion,
3782                               cast<CXXMethodDecl>(Best->Function),
3783                               Owned(Init));
3784        Init = InitConversion.takeAs<Expr>();
3785
3786        if (CheckExceptionSpecCompatibility(Init, T1))
3787          return true;
3788        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3789                          /*isLvalue=*/true);
3790      }
3791      break;
3792
3793    case OR_Ambiguous:
3794      if (ICS) {
3795        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3796             Cand != CandidateSet.end(); ++Cand)
3797          if (Cand->Viable)
3798            ICS->ConversionFunctionSet.push_back(Cand->Function);
3799        break;
3800      }
3801      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3802            << Init->getSourceRange();
3803      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3804      return true;
3805
3806    case OR_No_Viable_Function:
3807    case OR_Deleted:
3808      // There was no suitable conversion, or we found a deleted
3809      // conversion; continue with other checks.
3810      break;
3811    }
3812  }
3813
3814  if (BindsDirectly) {
3815    // C++ [dcl.init.ref]p4:
3816    //   [...] In all cases where the reference-related or
3817    //   reference-compatible relationship of two types is used to
3818    //   establish the validity of a reference binding, and T1 is a
3819    //   base class of T2, a program that necessitates such a binding
3820    //   is ill-formed if T1 is an inaccessible (clause 11) or
3821    //   ambiguous (10.2) base class of T2.
3822    //
3823    // Note that we only check this condition when we're allowed to
3824    // complain about errors, because we should not be checking for
3825    // ambiguity (or inaccessibility) unless the reference binding
3826    // actually happens.
3827    if (DerivedToBase)
3828      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3829                                          Init->getSourceRange());
3830    else
3831      return false;
3832  }
3833
3834  //     -- Otherwise, the reference shall be to a non-volatile const
3835  //        type (i.e., cv1 shall be const), or the reference shall be an
3836  //        rvalue reference and the initializer expression shall be an rvalue.
3837  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3838    if (!ICS)
3839      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3840        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3841        << T2 << Init->getSourceRange();
3842    return true;
3843  }
3844
3845  //       -- If the initializer expression is an rvalue, with T2 a
3846  //          class type, and "cv1 T1" is reference-compatible with
3847  //          "cv2 T2," the reference is bound in one of the
3848  //          following ways (the choice is implementation-defined):
3849  //
3850  //          -- The reference is bound to the object represented by
3851  //             the rvalue (see 3.10) or to a sub-object within that
3852  //             object.
3853  //
3854  //          -- A temporary of type "cv1 T2" [sic] is created, and
3855  //             a constructor is called to copy the entire rvalue
3856  //             object into the temporary. The reference is bound to
3857  //             the temporary or to a sub-object within the
3858  //             temporary.
3859  //
3860  //          The constructor that would be used to make the copy
3861  //          shall be callable whether or not the copy is actually
3862  //          done.
3863  //
3864  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3865  // freedom, so we will always take the first option and never build
3866  // a temporary in this case. FIXME: We will, however, have to check
3867  // for the presence of a copy constructor in C++98/03 mode.
3868  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3869      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3870    if (ICS) {
3871      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3872      ICS->Standard.First = ICK_Identity;
3873      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3874      ICS->Standard.Third = ICK_Identity;
3875      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3876      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3877      ICS->Standard.ReferenceBinding = true;
3878      ICS->Standard.DirectBinding = false;
3879      ICS->Standard.RRefBinding = isRValRef;
3880      ICS->Standard.CopyConstructor = 0;
3881    } else {
3882      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3883      if (DerivedToBase)
3884        CK = CastExpr::CK_DerivedToBase;
3885      else if(CheckExceptionSpecCompatibility(Init, T1))
3886        return true;
3887      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3888    }
3889    return false;
3890  }
3891
3892  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3893  //          initialized from the initializer expression using the
3894  //          rules for a non-reference copy initialization (8.5). The
3895  //          reference is then bound to the temporary. If T1 is
3896  //          reference-related to T2, cv1 must be the same
3897  //          cv-qualification as, or greater cv-qualification than,
3898  //          cv2; otherwise, the program is ill-formed.
3899  if (RefRelationship == Ref_Related) {
3900    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3901    // we would be reference-compatible or reference-compatible with
3902    // added qualification. But that wasn't the case, so the reference
3903    // initialization fails.
3904    if (!ICS)
3905      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3906        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3907        << T2 << Init->getSourceRange();
3908    return true;
3909  }
3910
3911  // If at least one of the types is a class type, the types are not
3912  // related, and we aren't allowed any user conversions, the
3913  // reference binding fails. This case is important for breaking
3914  // recursion, since TryImplicitConversion below will attempt to
3915  // create a temporary through the use of a copy constructor.
3916  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3917      (T1->isRecordType() || T2->isRecordType())) {
3918    if (!ICS)
3919      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3920        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3921    return true;
3922  }
3923
3924  // Actually try to convert the initializer to T1.
3925  if (ICS) {
3926    // C++ [over.ics.ref]p2:
3927    //
3928    //   When a parameter of reference type is not bound directly to
3929    //   an argument expression, the conversion sequence is the one
3930    //   required to convert the argument expression to the
3931    //   underlying type of the reference according to
3932    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3933    //   to copy-initializing a temporary of the underlying type with
3934    //   the argument expression. Any difference in top-level
3935    //   cv-qualification is subsumed by the initialization itself
3936    //   and does not constitute a conversion.
3937    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3938                                 /*AllowExplicit=*/false,
3939                                 /*ForceRValue=*/false,
3940                                 /*InOverloadResolution=*/false);
3941
3942    // Of course, that's still a reference binding.
3943    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3944      ICS->Standard.ReferenceBinding = true;
3945      ICS->Standard.RRefBinding = isRValRef;
3946    } else if (ICS->ConversionKind ==
3947              ImplicitConversionSequence::UserDefinedConversion) {
3948      ICS->UserDefined.After.ReferenceBinding = true;
3949      ICS->UserDefined.After.RRefBinding = isRValRef;
3950    }
3951    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3952  } else {
3953    ImplicitConversionSequence Conversions;
3954    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3955                                                   false, false,
3956                                                   Conversions);
3957    if (badConversion) {
3958      if ((Conversions.ConversionKind  ==
3959            ImplicitConversionSequence::BadConversion)
3960          && !Conversions.ConversionFunctionSet.empty()) {
3961        Diag(DeclLoc,
3962             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3963        for (int j = Conversions.ConversionFunctionSet.size()-1;
3964             j >= 0; j--) {
3965          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3966          Diag(Func->getLocation(), diag::err_ovl_candidate);
3967        }
3968      }
3969      else {
3970        if (isRValRef)
3971          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3972            << Init->getSourceRange();
3973        else
3974          Diag(DeclLoc, diag::err_invalid_initialization)
3975            << DeclType << Init->getType() << Init->getSourceRange();
3976      }
3977    }
3978    return badConversion;
3979  }
3980}
3981
3982/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3983/// of this overloaded operator is well-formed. If so, returns false;
3984/// otherwise, emits appropriate diagnostics and returns true.
3985bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3986  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3987         "Expected an overloaded operator declaration");
3988
3989  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3990
3991  // C++ [over.oper]p5:
3992  //   The allocation and deallocation functions, operator new,
3993  //   operator new[], operator delete and operator delete[], are
3994  //   described completely in 3.7.3. The attributes and restrictions
3995  //   found in the rest of this subclause do not apply to them unless
3996  //   explicitly stated in 3.7.3.
3997  // FIXME: Write a separate routine for checking this. For now, just allow it.
3998  if (Op == OO_Delete || Op == OO_Array_Delete)
3999    return false;
4000
4001  if (Op == OO_New || Op == OO_Array_New) {
4002    bool ret = false;
4003    if (FunctionDecl::param_iterator Param = FnDecl->param_begin()) {
4004      QualType SizeTy = Context.getCanonicalType(Context.getSizeType());
4005      QualType T = Context.getCanonicalType((*Param)->getType());
4006      if (!T->isDependentType() && SizeTy != T) {
4007        Diag(FnDecl->getLocation(),
4008             diag::err_operator_new_param_type) << FnDecl->getDeclName()
4009              << SizeTy;
4010        ret = true;
4011      }
4012    }
4013    QualType ResultTy = Context.getCanonicalType(FnDecl->getResultType());
4014    if (!ResultTy->isDependentType() && ResultTy != Context.VoidPtrTy)
4015      return Diag(FnDecl->getLocation(),
4016                  diag::err_operator_new_result_type) << FnDecl->getDeclName()
4017                  << Context.VoidPtrTy;
4018    return ret;
4019  }
4020
4021  // C++ [over.oper]p6:
4022  //   An operator function shall either be a non-static member
4023  //   function or be a non-member function and have at least one
4024  //   parameter whose type is a class, a reference to a class, an
4025  //   enumeration, or a reference to an enumeration.
4026  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4027    if (MethodDecl->isStatic())
4028      return Diag(FnDecl->getLocation(),
4029                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4030  } else {
4031    bool ClassOrEnumParam = false;
4032    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4033                                   ParamEnd = FnDecl->param_end();
4034         Param != ParamEnd; ++Param) {
4035      QualType ParamType = (*Param)->getType().getNonReferenceType();
4036      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4037          ParamType->isEnumeralType()) {
4038        ClassOrEnumParam = true;
4039        break;
4040      }
4041    }
4042
4043    if (!ClassOrEnumParam)
4044      return Diag(FnDecl->getLocation(),
4045                  diag::err_operator_overload_needs_class_or_enum)
4046        << FnDecl->getDeclName();
4047  }
4048
4049  // C++ [over.oper]p8:
4050  //   An operator function cannot have default arguments (8.3.6),
4051  //   except where explicitly stated below.
4052  //
4053  // Only the function-call operator allows default arguments
4054  // (C++ [over.call]p1).
4055  if (Op != OO_Call) {
4056    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4057         Param != FnDecl->param_end(); ++Param) {
4058      if ((*Param)->hasUnparsedDefaultArg())
4059        return Diag((*Param)->getLocation(),
4060                    diag::err_operator_overload_default_arg)
4061          << FnDecl->getDeclName();
4062      else if (Expr *DefArg = (*Param)->getDefaultArg())
4063        return Diag((*Param)->getLocation(),
4064                    diag::err_operator_overload_default_arg)
4065          << FnDecl->getDeclName() << DefArg->getSourceRange();
4066    }
4067  }
4068
4069  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4070    { false, false, false }
4071#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4072    , { Unary, Binary, MemberOnly }
4073#include "clang/Basic/OperatorKinds.def"
4074  };
4075
4076  bool CanBeUnaryOperator = OperatorUses[Op][0];
4077  bool CanBeBinaryOperator = OperatorUses[Op][1];
4078  bool MustBeMemberOperator = OperatorUses[Op][2];
4079
4080  // C++ [over.oper]p8:
4081  //   [...] Operator functions cannot have more or fewer parameters
4082  //   than the number required for the corresponding operator, as
4083  //   described in the rest of this subclause.
4084  unsigned NumParams = FnDecl->getNumParams()
4085                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4086  if (Op != OO_Call &&
4087      ((NumParams == 1 && !CanBeUnaryOperator) ||
4088       (NumParams == 2 && !CanBeBinaryOperator) ||
4089       (NumParams < 1) || (NumParams > 2))) {
4090    // We have the wrong number of parameters.
4091    unsigned ErrorKind;
4092    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4093      ErrorKind = 2;  // 2 -> unary or binary.
4094    } else if (CanBeUnaryOperator) {
4095      ErrorKind = 0;  // 0 -> unary
4096    } else {
4097      assert(CanBeBinaryOperator &&
4098             "All non-call overloaded operators are unary or binary!");
4099      ErrorKind = 1;  // 1 -> binary
4100    }
4101
4102    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4103      << FnDecl->getDeclName() << NumParams << ErrorKind;
4104  }
4105
4106  // Overloaded operators other than operator() cannot be variadic.
4107  if (Op != OO_Call &&
4108      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4109    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4110      << FnDecl->getDeclName();
4111  }
4112
4113  // Some operators must be non-static member functions.
4114  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4115    return Diag(FnDecl->getLocation(),
4116                diag::err_operator_overload_must_be_member)
4117      << FnDecl->getDeclName();
4118  }
4119
4120  // C++ [over.inc]p1:
4121  //   The user-defined function called operator++ implements the
4122  //   prefix and postfix ++ operator. If this function is a member
4123  //   function with no parameters, or a non-member function with one
4124  //   parameter of class or enumeration type, it defines the prefix
4125  //   increment operator ++ for objects of that type. If the function
4126  //   is a member function with one parameter (which shall be of type
4127  //   int) or a non-member function with two parameters (the second
4128  //   of which shall be of type int), it defines the postfix
4129  //   increment operator ++ for objects of that type.
4130  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4131    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4132    bool ParamIsInt = false;
4133    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4134      ParamIsInt = BT->getKind() == BuiltinType::Int;
4135
4136    if (!ParamIsInt)
4137      return Diag(LastParam->getLocation(),
4138                  diag::err_operator_overload_post_incdec_must_be_int)
4139        << LastParam->getType() << (Op == OO_MinusMinus);
4140  }
4141
4142  // Notify the class if it got an assignment operator.
4143  if (Op == OO_Equal) {
4144    // Would have returned earlier otherwise.
4145    assert(isa<CXXMethodDecl>(FnDecl) &&
4146      "Overloaded = not member, but not filtered.");
4147    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4148    Method->getParent()->addedAssignmentOperator(Context, Method);
4149  }
4150
4151  return false;
4152}
4153
4154/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4155/// linkage specification, including the language and (if present)
4156/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4157/// the location of the language string literal, which is provided
4158/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4159/// the '{' brace. Otherwise, this linkage specification does not
4160/// have any braces.
4161Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4162                                                     SourceLocation ExternLoc,
4163                                                     SourceLocation LangLoc,
4164                                                     const char *Lang,
4165                                                     unsigned StrSize,
4166                                                     SourceLocation LBraceLoc) {
4167  LinkageSpecDecl::LanguageIDs Language;
4168  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4169    Language = LinkageSpecDecl::lang_c;
4170  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4171    Language = LinkageSpecDecl::lang_cxx;
4172  else {
4173    Diag(LangLoc, diag::err_bad_language);
4174    return DeclPtrTy();
4175  }
4176
4177  // FIXME: Add all the various semantics of linkage specifications
4178
4179  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4180                                               LangLoc, Language,
4181                                               LBraceLoc.isValid());
4182  CurContext->addDecl(D);
4183  PushDeclContext(S, D);
4184  return DeclPtrTy::make(D);
4185}
4186
4187/// ActOnFinishLinkageSpecification - Completely the definition of
4188/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4189/// valid, it's the position of the closing '}' brace in a linkage
4190/// specification that uses braces.
4191Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4192                                                      DeclPtrTy LinkageSpec,
4193                                                      SourceLocation RBraceLoc) {
4194  if (LinkageSpec)
4195    PopDeclContext();
4196  return LinkageSpec;
4197}
4198
4199/// \brief Perform semantic analysis for the variable declaration that
4200/// occurs within a C++ catch clause, returning the newly-created
4201/// variable.
4202VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4203                                         DeclaratorInfo *DInfo,
4204                                         IdentifierInfo *Name,
4205                                         SourceLocation Loc,
4206                                         SourceRange Range) {
4207  bool Invalid = false;
4208
4209  // Arrays and functions decay.
4210  if (ExDeclType->isArrayType())
4211    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4212  else if (ExDeclType->isFunctionType())
4213    ExDeclType = Context.getPointerType(ExDeclType);
4214
4215  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4216  // The exception-declaration shall not denote a pointer or reference to an
4217  // incomplete type, other than [cv] void*.
4218  // N2844 forbids rvalue references.
4219  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4220    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4221    Invalid = true;
4222  }
4223
4224  QualType BaseType = ExDeclType;
4225  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4226  unsigned DK = diag::err_catch_incomplete;
4227  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4228    BaseType = Ptr->getPointeeType();
4229    Mode = 1;
4230    DK = diag::err_catch_incomplete_ptr;
4231  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4232    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4233    BaseType = Ref->getPointeeType();
4234    Mode = 2;
4235    DK = diag::err_catch_incomplete_ref;
4236  }
4237  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4238      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4239    Invalid = true;
4240
4241  if (!Invalid && !ExDeclType->isDependentType() &&
4242      RequireNonAbstractType(Loc, ExDeclType,
4243                             diag::err_abstract_type_in_decl,
4244                             AbstractVariableType))
4245    Invalid = true;
4246
4247  // FIXME: Need to test for ability to copy-construct and destroy the
4248  // exception variable.
4249
4250  // FIXME: Need to check for abstract classes.
4251
4252  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4253                                    Name, ExDeclType, DInfo, VarDecl::None);
4254
4255  if (Invalid)
4256    ExDecl->setInvalidDecl();
4257
4258  return ExDecl;
4259}
4260
4261/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4262/// handler.
4263Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4264  DeclaratorInfo *DInfo = 0;
4265  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4266
4267  bool Invalid = D.isInvalidType();
4268  IdentifierInfo *II = D.getIdentifier();
4269  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4270    // The scope should be freshly made just for us. There is just no way
4271    // it contains any previous declaration.
4272    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4273    if (PrevDecl->isTemplateParameter()) {
4274      // Maybe we will complain about the shadowed template parameter.
4275      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4276    }
4277  }
4278
4279  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4280    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4281      << D.getCXXScopeSpec().getRange();
4282    Invalid = true;
4283  }
4284
4285  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4286                                              D.getIdentifier(),
4287                                              D.getIdentifierLoc(),
4288                                            D.getDeclSpec().getSourceRange());
4289
4290  if (Invalid)
4291    ExDecl->setInvalidDecl();
4292
4293  // Add the exception declaration into this scope.
4294  if (II)
4295    PushOnScopeChains(ExDecl, S);
4296  else
4297    CurContext->addDecl(ExDecl);
4298
4299  ProcessDeclAttributes(S, ExDecl, D);
4300  return DeclPtrTy::make(ExDecl);
4301}
4302
4303Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4304                                                   ExprArg assertexpr,
4305                                                   ExprArg assertmessageexpr) {
4306  Expr *AssertExpr = (Expr *)assertexpr.get();
4307  StringLiteral *AssertMessage =
4308    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4309
4310  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4311    llvm::APSInt Value(32);
4312    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4313      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4314        AssertExpr->getSourceRange();
4315      return DeclPtrTy();
4316    }
4317
4318    if (Value == 0) {
4319      std::string str(AssertMessage->getStrData(),
4320                      AssertMessage->getByteLength());
4321      Diag(AssertLoc, diag::err_static_assert_failed)
4322        << str << AssertExpr->getSourceRange();
4323    }
4324  }
4325
4326  assertexpr.release();
4327  assertmessageexpr.release();
4328  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4329                                        AssertExpr, AssertMessage);
4330
4331  CurContext->addDecl(Decl);
4332  return DeclPtrTy::make(Decl);
4333}
4334
4335/// Handle a friend type declaration.  This works in tandem with
4336/// ActOnTag.
4337///
4338/// Notes on friend class templates:
4339///
4340/// We generally treat friend class declarations as if they were
4341/// declaring a class.  So, for example, the elaborated type specifier
4342/// in a friend declaration is required to obey the restrictions of a
4343/// class-head (i.e. no typedefs in the scope chain), template
4344/// parameters are required to match up with simple template-ids, &c.
4345/// However, unlike when declaring a template specialization, it's
4346/// okay to refer to a template specialization without an empty
4347/// template parameter declaration, e.g.
4348///   friend class A<T>::B<unsigned>;
4349/// We permit this as a special case; if there are any template
4350/// parameters present at all, require proper matching, i.e.
4351///   template <> template <class T> friend class A<int>::B;
4352Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4353                                          MultiTemplateParamsArg TempParams) {
4354  SourceLocation Loc = DS.getSourceRange().getBegin();
4355
4356  assert(DS.isFriendSpecified());
4357  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4358
4359  // Try to convert the decl specifier to a type.  This works for
4360  // friend templates because ActOnTag never produces a ClassTemplateDecl
4361  // for a TUK_Friend.
4362  Declarator TheDeclarator(DS, Declarator::MemberContext);
4363  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4364  if (TheDeclarator.isInvalidType())
4365    return DeclPtrTy();
4366
4367  // This is definitely an error in C++98.  It's probably meant to
4368  // be forbidden in C++0x, too, but the specification is just
4369  // poorly written.
4370  //
4371  // The problem is with declarations like the following:
4372  //   template <T> friend A<T>::foo;
4373  // where deciding whether a class C is a friend or not now hinges
4374  // on whether there exists an instantiation of A that causes
4375  // 'foo' to equal C.  There are restrictions on class-heads
4376  // (which we declare (by fiat) elaborated friend declarations to
4377  // be) that makes this tractable.
4378  //
4379  // FIXME: handle "template <> friend class A<T>;", which
4380  // is possibly well-formed?  Who even knows?
4381  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4382    Diag(Loc, diag::err_tagless_friend_type_template)
4383      << DS.getSourceRange();
4384    return DeclPtrTy();
4385  }
4386
4387  // C++ [class.friend]p2:
4388  //   An elaborated-type-specifier shall be used in a friend declaration
4389  //   for a class.*
4390  //   * The class-key of the elaborated-type-specifier is required.
4391  // This is one of the rare places in Clang where it's legitimate to
4392  // ask about the "spelling" of the type.
4393  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4394    // If we evaluated the type to a record type, suggest putting
4395    // a tag in front.
4396    if (const RecordType *RT = T->getAs<RecordType>()) {
4397      RecordDecl *RD = RT->getDecl();
4398
4399      std::string InsertionText = std::string(" ") + RD->getKindName();
4400
4401      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4402        << (unsigned) RD->getTagKind()
4403        << T
4404        << SourceRange(DS.getFriendSpecLoc())
4405        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4406                                                 InsertionText);
4407      return DeclPtrTy();
4408    }else {
4409      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4410          << DS.getSourceRange();
4411      return DeclPtrTy();
4412    }
4413  }
4414
4415  // Enum types cannot be friends.
4416  if (T->getAs<EnumType>()) {
4417    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4418      << SourceRange(DS.getFriendSpecLoc());
4419    return DeclPtrTy();
4420  }
4421
4422  // C++98 [class.friend]p1: A friend of a class is a function
4423  //   or class that is not a member of the class . . .
4424  // But that's a silly restriction which nobody implements for
4425  // inner classes, and C++0x removes it anyway, so we only report
4426  // this (as a warning) if we're being pedantic.
4427  if (!getLangOptions().CPlusPlus0x)
4428    if (const RecordType *RT = T->getAs<RecordType>())
4429      if (RT->getDecl()->getDeclContext() == CurContext)
4430        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4431
4432  Decl *D;
4433  if (TempParams.size())
4434    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4435                                   TempParams.size(),
4436                                 (TemplateParameterList**) TempParams.release(),
4437                                   T.getTypePtr(),
4438                                   DS.getFriendSpecLoc());
4439  else
4440    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4441                           DS.getFriendSpecLoc());
4442  D->setAccess(AS_public);
4443  CurContext->addDecl(D);
4444
4445  return DeclPtrTy::make(D);
4446}
4447
4448Sema::DeclPtrTy
4449Sema::ActOnFriendFunctionDecl(Scope *S,
4450                              Declarator &D,
4451                              bool IsDefinition,
4452                              MultiTemplateParamsArg TemplateParams) {
4453  const DeclSpec &DS = D.getDeclSpec();
4454
4455  assert(DS.isFriendSpecified());
4456  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4457
4458  SourceLocation Loc = D.getIdentifierLoc();
4459  DeclaratorInfo *DInfo = 0;
4460  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4461
4462  // C++ [class.friend]p1
4463  //   A friend of a class is a function or class....
4464  // Note that this sees through typedefs, which is intended.
4465  // It *doesn't* see through dependent types, which is correct
4466  // according to [temp.arg.type]p3:
4467  //   If a declaration acquires a function type through a
4468  //   type dependent on a template-parameter and this causes
4469  //   a declaration that does not use the syntactic form of a
4470  //   function declarator to have a function type, the program
4471  //   is ill-formed.
4472  if (!T->isFunctionType()) {
4473    Diag(Loc, diag::err_unexpected_friend);
4474
4475    // It might be worthwhile to try to recover by creating an
4476    // appropriate declaration.
4477    return DeclPtrTy();
4478  }
4479
4480  // C++ [namespace.memdef]p3
4481  //  - If a friend declaration in a non-local class first declares a
4482  //    class or function, the friend class or function is a member
4483  //    of the innermost enclosing namespace.
4484  //  - The name of the friend is not found by simple name lookup
4485  //    until a matching declaration is provided in that namespace
4486  //    scope (either before or after the class declaration granting
4487  //    friendship).
4488  //  - If a friend function is called, its name may be found by the
4489  //    name lookup that considers functions from namespaces and
4490  //    classes associated with the types of the function arguments.
4491  //  - When looking for a prior declaration of a class or a function
4492  //    declared as a friend, scopes outside the innermost enclosing
4493  //    namespace scope are not considered.
4494
4495  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4496  DeclarationName Name = GetNameForDeclarator(D);
4497  assert(Name);
4498
4499  // The context we found the declaration in, or in which we should
4500  // create the declaration.
4501  DeclContext *DC;
4502
4503  // FIXME: handle local classes
4504
4505  // Recover from invalid scope qualifiers as if they just weren't there.
4506  NamedDecl *PrevDecl = 0;
4507  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4508    // FIXME: RequireCompleteDeclContext
4509    DC = computeDeclContext(ScopeQual);
4510
4511    // FIXME: handle dependent contexts
4512    if (!DC) return DeclPtrTy();
4513
4514    LookupResult R;
4515    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4516    PrevDecl = R.getAsSingleDecl(Context);
4517
4518    // If searching in that context implicitly found a declaration in
4519    // a different context, treat it like it wasn't found at all.
4520    // TODO: better diagnostics for this case.  Suggesting the right
4521    // qualified scope would be nice...
4522    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4523      D.setInvalidType();
4524      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4525      return DeclPtrTy();
4526    }
4527
4528    // C++ [class.friend]p1: A friend of a class is a function or
4529    //   class that is not a member of the class . . .
4530    if (DC->Equals(CurContext))
4531      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4532
4533  // Otherwise walk out to the nearest namespace scope looking for matches.
4534  } else {
4535    // TODO: handle local class contexts.
4536
4537    DC = CurContext;
4538    while (true) {
4539      // Skip class contexts.  If someone can cite chapter and verse
4540      // for this behavior, that would be nice --- it's what GCC and
4541      // EDG do, and it seems like a reasonable intent, but the spec
4542      // really only says that checks for unqualified existing
4543      // declarations should stop at the nearest enclosing namespace,
4544      // not that they should only consider the nearest enclosing
4545      // namespace.
4546      while (DC->isRecord())
4547        DC = DC->getParent();
4548
4549      LookupResult R;
4550      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4551      PrevDecl = R.getAsSingleDecl(Context);
4552
4553      // TODO: decide what we think about using declarations.
4554      if (PrevDecl)
4555        break;
4556
4557      if (DC->isFileContext()) break;
4558      DC = DC->getParent();
4559    }
4560
4561    // C++ [class.friend]p1: A friend of a class is a function or
4562    //   class that is not a member of the class . . .
4563    // C++0x changes this for both friend types and functions.
4564    // Most C++ 98 compilers do seem to give an error here, so
4565    // we do, too.
4566    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4567      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4568  }
4569
4570  if (DC->isFileContext()) {
4571    // This implies that it has to be an operator or function.
4572    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4573        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4574        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4575      Diag(Loc, diag::err_introducing_special_friend) <<
4576        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4577         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4578      return DeclPtrTy();
4579    }
4580  }
4581
4582  bool Redeclaration = false;
4583  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4584                                          move(TemplateParams),
4585                                          IsDefinition,
4586                                          Redeclaration);
4587  if (!ND) return DeclPtrTy();
4588
4589  assert(ND->getDeclContext() == DC);
4590  assert(ND->getLexicalDeclContext() == CurContext);
4591
4592  // Add the function declaration to the appropriate lookup tables,
4593  // adjusting the redeclarations list as necessary.  We don't
4594  // want to do this yet if the friending class is dependent.
4595  //
4596  // Also update the scope-based lookup if the target context's
4597  // lookup context is in lexical scope.
4598  if (!CurContext->isDependentContext()) {
4599    DC = DC->getLookupContext();
4600    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4601    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4602      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4603  }
4604
4605  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4606                                       D.getIdentifierLoc(), ND,
4607                                       DS.getFriendSpecLoc());
4608  FrD->setAccess(AS_public);
4609  CurContext->addDecl(FrD);
4610
4611  return DeclPtrTy::make(ND);
4612}
4613
4614void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4615  AdjustDeclIfTemplate(dcl);
4616
4617  Decl *Dcl = dcl.getAs<Decl>();
4618  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4619  if (!Fn) {
4620    Diag(DelLoc, diag::err_deleted_non_function);
4621    return;
4622  }
4623  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4624    Diag(DelLoc, diag::err_deleted_decl_not_first);
4625    Diag(Prev->getLocation(), diag::note_previous_declaration);
4626    // If the declaration wasn't the first, we delete the function anyway for
4627    // recovery.
4628  }
4629  Fn->setDeleted();
4630}
4631
4632static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4633  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4634       ++CI) {
4635    Stmt *SubStmt = *CI;
4636    if (!SubStmt)
4637      continue;
4638    if (isa<ReturnStmt>(SubStmt))
4639      Self.Diag(SubStmt->getSourceRange().getBegin(),
4640           diag::err_return_in_constructor_handler);
4641    if (!isa<Expr>(SubStmt))
4642      SearchForReturnInStmt(Self, SubStmt);
4643  }
4644}
4645
4646void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4647  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4648    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4649    SearchForReturnInStmt(*this, Handler);
4650  }
4651}
4652
4653bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4654                                             const CXXMethodDecl *Old) {
4655  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4656  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4657
4658  QualType CNewTy = Context.getCanonicalType(NewTy);
4659  QualType COldTy = Context.getCanonicalType(OldTy);
4660
4661  if (CNewTy == COldTy &&
4662      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4663    return false;
4664
4665  // Check if the return types are covariant
4666  QualType NewClassTy, OldClassTy;
4667
4668  /// Both types must be pointers or references to classes.
4669  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4670    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4671      NewClassTy = NewPT->getPointeeType();
4672      OldClassTy = OldPT->getPointeeType();
4673    }
4674  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4675    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4676      NewClassTy = NewRT->getPointeeType();
4677      OldClassTy = OldRT->getPointeeType();
4678    }
4679  }
4680
4681  // The return types aren't either both pointers or references to a class type.
4682  if (NewClassTy.isNull()) {
4683    Diag(New->getLocation(),
4684         diag::err_different_return_type_for_overriding_virtual_function)
4685      << New->getDeclName() << NewTy << OldTy;
4686    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4687
4688    return true;
4689  }
4690
4691  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4692    // Check if the new class derives from the old class.
4693    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4694      Diag(New->getLocation(),
4695           diag::err_covariant_return_not_derived)
4696      << New->getDeclName() << NewTy << OldTy;
4697      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4698      return true;
4699    }
4700
4701    // Check if we the conversion from derived to base is valid.
4702    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4703                      diag::err_covariant_return_inaccessible_base,
4704                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4705                      // FIXME: Should this point to the return type?
4706                      New->getLocation(), SourceRange(), New->getDeclName())) {
4707      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4708      return true;
4709    }
4710  }
4711
4712  // The qualifiers of the return types must be the same.
4713  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4714    Diag(New->getLocation(),
4715         diag::err_covariant_return_type_different_qualifications)
4716    << New->getDeclName() << NewTy << OldTy;
4717    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4718    return true;
4719  };
4720
4721
4722  // The new class type must have the same or less qualifiers as the old type.
4723  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4724    Diag(New->getLocation(),
4725         diag::err_covariant_return_type_class_type_more_qualified)
4726    << New->getDeclName() << NewTy << OldTy;
4727    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4728    return true;
4729  };
4730
4731  return false;
4732}
4733
4734/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4735/// initializer for the declaration 'Dcl'.
4736/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4737/// static data member of class X, names should be looked up in the scope of
4738/// class X.
4739void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4740  AdjustDeclIfTemplate(Dcl);
4741
4742  Decl *D = Dcl.getAs<Decl>();
4743  // If there is no declaration, there was an error parsing it.
4744  if (D == 0)
4745    return;
4746
4747  // Check whether it is a declaration with a nested name specifier like
4748  // int foo::bar;
4749  if (!D->isOutOfLine())
4750    return;
4751
4752  // C++ [basic.lookup.unqual]p13
4753  //
4754  // A name used in the definition of a static data member of class X
4755  // (after the qualified-id of the static member) is looked up as if the name
4756  // was used in a member function of X.
4757
4758  // Change current context into the context of the initializing declaration.
4759  EnterDeclaratorContext(S, D->getDeclContext());
4760}
4761
4762/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4763/// initializer for the declaration 'Dcl'.
4764void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4765  AdjustDeclIfTemplate(Dcl);
4766
4767  Decl *D = Dcl.getAs<Decl>();
4768  // If there is no declaration, there was an error parsing it.
4769  if (D == 0)
4770    return;
4771
4772  // Check whether it is a declaration with a nested name specifier like
4773  // int foo::bar;
4774  if (!D->isOutOfLine())
4775    return;
4776
4777  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4778  ExitDeclaratorContext(S);
4779}
4780