SemaDeclCXX.cpp revision b001de7458d17c17e6d8b8034c7cfcefd3b70c00
1579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//
3579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//                     The LLVM Compiler Infrastructure
4579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//
5579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson// This file is distributed under the University of Illinois Open Source
6579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson// License. See LICENSE.TXT for details.
7579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//
8579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//===----------------------------------------------------------------------===//
9579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//
10579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//  This file implements semantic analysis for C++ declarations.
11579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//
12579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//===----------------------------------------------------------------------===//
13579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
14579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Sema/SemaInternal.h"
15579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Sema/CXXFieldCollector.h"
16579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Sema/Scope.h"
17579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Sema/Initialization.h"
18579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Sema/Lookup.h"
19579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/ASTConsumer.h"
20579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/ASTContext.h"
21579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/ASTMutationListener.h"
22579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/CharUnits.h"
23579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/CXXInheritance.h"
24579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/DeclVisitor.h"
25579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/ExprCXX.h"
26579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/RecordLayout.h"
27579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/StmtVisitor.h"
28579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/TypeLoc.h"
29579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/AST/TypeOrdering.h"
30579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Sema/DeclSpec.h"
31579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Sema/ParsedTemplate.h"
32579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Basic/PartialDiagnostic.h"
33579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "clang/Lex/Preprocessor.h"
34579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "llvm/ADT/DenseSet.h"
35579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include "llvm/ADT/STLExtras.h"
36579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include <map>
37579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson#include <set>
38579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
39579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilsonusing namespace clang;
40579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
41579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//===----------------------------------------------------------------------===//
42579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson// CheckDefaultArgumentVisitor
43579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson//===----------------------------------------------------------------------===//
44579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
45579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilsonnamespace {
46579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// the default argument of a parameter to determine whether it
48579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// contains any ill-formed subexpressions. For example, this will
49579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// diagnose the use of local variables or parameters within the
50579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// default argument expression.
51579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  class CheckDefaultArgumentVisitor
52579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    Expr *DefaultArg;
54579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    Sema *S;
55579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
56579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  public:
57579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      : DefaultArg(defarg), S(s) {}
59579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
60579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    bool VisitExpr(Expr *Node);
61579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  };
64579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
65579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// VisitExpr - Visit all of the children of this expression.
66579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    bool IsInvalid = false;
68579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    for (Stmt::child_range I = Node->children(); I; ++I)
69579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      IsInvalid |= Visit(*I);
70579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return IsInvalid;
71579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  }
72579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
73579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// determine whether this declaration can be used in the default
75579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// argument expression.
76579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    NamedDecl *Decl = DRE->getDecl();
78579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      // C++ [dcl.fct.default]p9
80579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   Default arguments are evaluated each time the function is
81579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   called. The order of evaluation of function arguments is
82579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   unspecified. Consequently, parameters of a function shall not
83579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   be used in default argument expressions, even if they are not
84579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   evaluated. Parameters of a function declared before a default
85579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   argument expression are in scope and can hide namespace and
86579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   class member names.
87579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      return S->Diag(DRE->getSourceRange().getBegin(),
88579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson                     diag::err_param_default_argument_references_param)
89579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson         << Param->getDeclName() << DefaultArg->getSourceRange();
90579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      // C++ [dcl.fct.default]p7
92579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   Local variables shall not be used in default argument
93579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      //   expressions.
94579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      if (VDecl->isLocalVarDecl())
95579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson        return S->Diag(DRE->getSourceRange().getBegin(),
96579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson                       diag::err_param_default_argument_references_local)
97579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    }
99579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
100579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return false;
101579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  }
102579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
103579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    // C++ [dcl.fct.default]p8:
106579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    //   The keyword this shall not be used in a default argument of a
107579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    //   member function.
108579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return S->Diag(ThisE->getSourceRange().getBegin(),
109579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson                   diag::err_param_default_argument_references_this)
110579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson               << ThisE->getSourceRange();
111579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  }
112579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson}
113579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
114579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilsonvoid Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // If we have an MSAny or unknown spec already, don't bother.
117579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return;
119579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
120579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  const FunctionProtoType *Proto
121579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    = Method->getType()->getAs<FunctionProtoType>();
122579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
123579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
125579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // If this function can throw any exceptions, make a note of that.
126579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    ClearExceptions();
128579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    ComputedEST = EST;
129579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return;
130579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  }
131579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
132579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // FIXME: If the call to this decl is using any of its default arguments, we
133579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // need to search them for potentially-throwing calls.
134579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
135579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // If this function has a basic noexcept, it doesn't affect the outcome.
136579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (EST == EST_BasicNoexcept)
137579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return;
138579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
139579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // If we have a throw-all spec at this point, ignore the function.
140579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (ComputedEST == EST_None)
141579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return;
142579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
143579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // If we're still at noexcept(true) and there's a nothrow() callee,
144579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // change to that specification.
145579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (EST == EST_DynamicNone) {
146579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    if (ComputedEST == EST_BasicNoexcept)
147579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      ComputedEST = EST_DynamicNone;
148579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return;
149579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  }
150579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
151579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // Check out noexcept specs.
152579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (EST == EST_ComputedNoexcept) {
153579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson           "Must have noexcept result for EST_ComputedNoexcept.");
156579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    assert(NR != FunctionProtoType::NR_Dependent &&
157579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson           "Should not generate implicit declarations for dependent cases, "
158579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson           "and don't know how to handle them anyway.");
159579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
160579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    // noexcept(false) -> no spec on the new function
161579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    if (NR == FunctionProtoType::NR_Throw) {
162579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      ClearExceptions();
163579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      ComputedEST = EST_None;
164579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    }
165579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    // noexcept(true) won't change anything either.
166579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return;
167579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  }
168579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
169579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  assert(ComputedEST != EST_None &&
171579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson         "Shouldn't collect exceptions when throw-all is guaranteed.");
172579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  ComputedEST = EST_Dynamic;
173579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // Record the exceptions in this function's exception specification.
174579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson                                          EEnd = Proto->exception_end();
176579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson       E != EEnd; ++E)
177579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson      Exceptions.push_back(*E);
179579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson}
180579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
181579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilsonvoid Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return;
184579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
185579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // FIXME:
186579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  //
187579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // C++0x [except.spec]p14:
188579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  //   [An] implicit exception-specification specifies the type-id T if and
189579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // only if T is allowed by the exception-specification of a function directly
190579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // invoked by f's implicit definition; f shall allow all exceptions if any
191579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // function it directly invokes allows all exceptions, and f shall allow no
192579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // exceptions if every function it directly invokes allows no exceptions.
193579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  //
194579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // Note in particular that if an implicit exception-specification is generated
195579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // for a function containing a throw-expression, that specification can still
196579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // be noexcept(true).
197579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  //
198579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // Note also that 'directly invoked' is not defined in the standard, and there
199579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // is no indication that we should only consider potentially-evaluated calls.
200579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  //
201579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // Ultimately we should implement the intent of the standard: the exception
202579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // specification should be the set of exceptions which can be thrown by the
203579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // implicit definition. For now, we assume that any non-nothrow expression can
204579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  // throw any exception.
205579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
206579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (E->CanThrow(*Context))
207579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    ComputedEST = EST_None;
208579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson}
209579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
210579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilsonbool
211579d7739c53a2707ad711a2d2cae46d7d782f06Jesse WilsonSema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson                              SourceLocation EqualLoc) {
213579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson                          diag::err_typecheck_decl_incomplete_type)) {
215579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    Param->setInvalidDecl();
216579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson    return true;
217579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson  }
218579d7739c53a2707ad711a2d2cae46d7d782f06Jesse Wilson
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (!Inits.count(Field)) {
814    if (!Diagnosed) {
815      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
816      Diagnosed = true;
817    }
818    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
819  } else if (Field->isAnonymousStructOrUnion()) {
820    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
821    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
822         I != E; ++I)
823      // If an anonymous union contains an anonymous struct of which any member
824      // is initialized, all members must be initialized.
825      if (!RD->isUnion() || Inits.count(*I))
826        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
827  }
828}
829
830/// Check the body for the given constexpr function declaration only contains
831/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
832///
833/// \return true if the body is OK, false if we have diagnosed a problem.
834bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
835  if (isa<CXXTryStmt>(Body)) {
836    // C++0x [dcl.constexpr]p3:
837    //  The definition of a constexpr function shall satisfy the following
838    //  constraints: [...]
839    // - its function-body shall be = delete, = default, or a
840    //   compound-statement
841    //
842    // C++0x [dcl.constexpr]p4:
843    //  In the definition of a constexpr constructor, [...]
844    // - its function-body shall not be a function-try-block;
845    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
846      << isa<CXXConstructorDecl>(Dcl);
847    return false;
848  }
849
850  // - its function-body shall be [...] a compound-statement that contains only
851  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
852
853  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
854  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
855         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
856    switch ((*BodyIt)->getStmtClass()) {
857    case Stmt::NullStmtClass:
858      //   - null statements,
859      continue;
860
861    case Stmt::DeclStmtClass:
862      //   - static_assert-declarations
863      //   - using-declarations,
864      //   - using-directives,
865      //   - typedef declarations and alias-declarations that do not define
866      //     classes or enumerations,
867      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
868        return false;
869      continue;
870
871    case Stmt::ReturnStmtClass:
872      //   - and exactly one return statement;
873      if (isa<CXXConstructorDecl>(Dcl))
874        break;
875
876      ReturnStmts.push_back((*BodyIt)->getLocStart());
877      // FIXME
878      // - every constructor call and implicit conversion used in initializing
879      //   the return value shall be one of those allowed in a constant
880      //   expression.
881      // Deal with this as part of a general check that the function can produce
882      // a constant expression (for [dcl.constexpr]p5).
883      continue;
884
885    default:
886      break;
887    }
888
889    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
890      << isa<CXXConstructorDecl>(Dcl);
891    return false;
892  }
893
894  if (const CXXConstructorDecl *Constructor
895        = dyn_cast<CXXConstructorDecl>(Dcl)) {
896    const CXXRecordDecl *RD = Constructor->getParent();
897    // - every non-static data member and base class sub-object shall be
898    //   initialized;
899    if (RD->isUnion()) {
900      // DR1359: Exactly one member of a union shall be initialized.
901      if (Constructor->getNumCtorInitializers() == 0) {
902        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
903        return false;
904      }
905    } else if (!Constructor->isDelegatingConstructor()) {
906      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
907
908      // Skip detailed checking if we have enough initializers, and we would
909      // allow at most one initializer per member.
910      bool AnyAnonStructUnionMembers = false;
911      unsigned Fields = 0;
912      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
913           E = RD->field_end(); I != E; ++I, ++Fields) {
914        if ((*I)->isAnonymousStructOrUnion()) {
915          AnyAnonStructUnionMembers = true;
916          break;
917        }
918      }
919      if (AnyAnonStructUnionMembers ||
920          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
921        // Check initialization of non-static data members. Base classes are
922        // always initialized so do not need to be checked. Dependent bases
923        // might not have initializers in the member initializer list.
924        llvm::SmallSet<Decl*, 16> Inits;
925        for (CXXConstructorDecl::init_const_iterator
926               I = Constructor->init_begin(), E = Constructor->init_end();
927             I != E; ++I) {
928          if (FieldDecl *FD = (*I)->getMember())
929            Inits.insert(FD);
930          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
931            Inits.insert(ID->chain_begin(), ID->chain_end());
932        }
933
934        bool Diagnosed = false;
935        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936             E = RD->field_end(); I != E; ++I)
937          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
938        if (Diagnosed)
939          return false;
940      }
941    }
942
943    // FIXME
944    // - every constructor involved in initializing non-static data members
945    //   and base class sub-objects shall be a constexpr constructor;
946    // - every assignment-expression that is an initializer-clause appearing
947    //   directly or indirectly within a brace-or-equal-initializer for
948    //   a non-static data member that is not named by a mem-initializer-id
949    //   shall be a constant expression; and
950    // - every implicit conversion used in converting a constructor argument
951    //   to the corresponding parameter type and converting
952    //   a full-expression to the corresponding member type shall be one of
953    //   those allowed in a constant expression.
954    // Deal with these as part of a general check that the function can produce
955    // a constant expression (for [dcl.constexpr]p5).
956  } else {
957    if (ReturnStmts.empty()) {
958      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
959      return false;
960    }
961    if (ReturnStmts.size() > 1) {
962      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
963      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
964        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
965      return false;
966    }
967  }
968
969  return true;
970}
971
972/// isCurrentClassName - Determine whether the identifier II is the
973/// name of the class type currently being defined. In the case of
974/// nested classes, this will only return true if II is the name of
975/// the innermost class.
976bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
977                              const CXXScopeSpec *SS) {
978  assert(getLangOptions().CPlusPlus && "No class names in C!");
979
980  CXXRecordDecl *CurDecl;
981  if (SS && SS->isSet() && !SS->isInvalid()) {
982    DeclContext *DC = computeDeclContext(*SS, true);
983    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
984  } else
985    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
986
987  if (CurDecl && CurDecl->getIdentifier())
988    return &II == CurDecl->getIdentifier();
989  else
990    return false;
991}
992
993/// \brief Check the validity of a C++ base class specifier.
994///
995/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
996/// and returns NULL otherwise.
997CXXBaseSpecifier *
998Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
999                         SourceRange SpecifierRange,
1000                         bool Virtual, AccessSpecifier Access,
1001                         TypeSourceInfo *TInfo,
1002                         SourceLocation EllipsisLoc) {
1003  QualType BaseType = TInfo->getType();
1004
1005  // C++ [class.union]p1:
1006  //   A union shall not have base classes.
1007  if (Class->isUnion()) {
1008    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1009      << SpecifierRange;
1010    return 0;
1011  }
1012
1013  if (EllipsisLoc.isValid() &&
1014      !TInfo->getType()->containsUnexpandedParameterPack()) {
1015    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1016      << TInfo->getTypeLoc().getSourceRange();
1017    EllipsisLoc = SourceLocation();
1018  }
1019
1020  if (BaseType->isDependentType())
1021    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1022                                          Class->getTagKind() == TTK_Class,
1023                                          Access, TInfo, EllipsisLoc);
1024
1025  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1026
1027  // Base specifiers must be record types.
1028  if (!BaseType->isRecordType()) {
1029    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1030    return 0;
1031  }
1032
1033  // C++ [class.union]p1:
1034  //   A union shall not be used as a base class.
1035  if (BaseType->isUnionType()) {
1036    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1037    return 0;
1038  }
1039
1040  // C++ [class.derived]p2:
1041  //   The class-name in a base-specifier shall not be an incompletely
1042  //   defined class.
1043  if (RequireCompleteType(BaseLoc, BaseType,
1044                          PDiag(diag::err_incomplete_base_class)
1045                            << SpecifierRange)) {
1046    Class->setInvalidDecl();
1047    return 0;
1048  }
1049
1050  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1051  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1052  assert(BaseDecl && "Record type has no declaration");
1053  BaseDecl = BaseDecl->getDefinition();
1054  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1055  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1056  assert(CXXBaseDecl && "Base type is not a C++ type");
1057
1058  // C++ [class]p3:
1059  //   If a class is marked final and it appears as a base-type-specifier in
1060  //   base-clause, the program is ill-formed.
1061  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1062    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1063      << CXXBaseDecl->getDeclName();
1064    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1065      << CXXBaseDecl->getDeclName();
1066    return 0;
1067  }
1068
1069  if (BaseDecl->isInvalidDecl())
1070    Class->setInvalidDecl();
1071
1072  // Create the base specifier.
1073  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1074                                        Class->getTagKind() == TTK_Class,
1075                                        Access, TInfo, EllipsisLoc);
1076}
1077
1078/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1079/// one entry in the base class list of a class specifier, for
1080/// example:
1081///    class foo : public bar, virtual private baz {
1082/// 'public bar' and 'virtual private baz' are each base-specifiers.
1083BaseResult
1084Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1085                         bool Virtual, AccessSpecifier Access,
1086                         ParsedType basetype, SourceLocation BaseLoc,
1087                         SourceLocation EllipsisLoc) {
1088  if (!classdecl)
1089    return true;
1090
1091  AdjustDeclIfTemplate(classdecl);
1092  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1093  if (!Class)
1094    return true;
1095
1096  TypeSourceInfo *TInfo = 0;
1097  GetTypeFromParser(basetype, &TInfo);
1098
1099  if (EllipsisLoc.isInvalid() &&
1100      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1101                                      UPPC_BaseType))
1102    return true;
1103
1104  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1105                                                      Virtual, Access, TInfo,
1106                                                      EllipsisLoc))
1107    return BaseSpec;
1108
1109  return true;
1110}
1111
1112/// \brief Performs the actual work of attaching the given base class
1113/// specifiers to a C++ class.
1114bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1115                                unsigned NumBases) {
1116 if (NumBases == 0)
1117    return false;
1118
1119  // Used to keep track of which base types we have already seen, so
1120  // that we can properly diagnose redundant direct base types. Note
1121  // that the key is always the unqualified canonical type of the base
1122  // class.
1123  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1124
1125  // Copy non-redundant base specifiers into permanent storage.
1126  unsigned NumGoodBases = 0;
1127  bool Invalid = false;
1128  for (unsigned idx = 0; idx < NumBases; ++idx) {
1129    QualType NewBaseType
1130      = Context.getCanonicalType(Bases[idx]->getType());
1131    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1132    if (KnownBaseTypes[NewBaseType]) {
1133      // C++ [class.mi]p3:
1134      //   A class shall not be specified as a direct base class of a
1135      //   derived class more than once.
1136      Diag(Bases[idx]->getSourceRange().getBegin(),
1137           diag::err_duplicate_base_class)
1138        << KnownBaseTypes[NewBaseType]->getType()
1139        << Bases[idx]->getSourceRange();
1140
1141      // Delete the duplicate base class specifier; we're going to
1142      // overwrite its pointer later.
1143      Context.Deallocate(Bases[idx]);
1144
1145      Invalid = true;
1146    } else {
1147      // Okay, add this new base class.
1148      KnownBaseTypes[NewBaseType] = Bases[idx];
1149      Bases[NumGoodBases++] = Bases[idx];
1150    }
1151  }
1152
1153  // Attach the remaining base class specifiers to the derived class.
1154  Class->setBases(Bases, NumGoodBases);
1155
1156  // Delete the remaining (good) base class specifiers, since their
1157  // data has been copied into the CXXRecordDecl.
1158  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1159    Context.Deallocate(Bases[idx]);
1160
1161  return Invalid;
1162}
1163
1164/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1165/// class, after checking whether there are any duplicate base
1166/// classes.
1167void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1168                               unsigned NumBases) {
1169  if (!ClassDecl || !Bases || !NumBases)
1170    return;
1171
1172  AdjustDeclIfTemplate(ClassDecl);
1173  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1174                       (CXXBaseSpecifier**)(Bases), NumBases);
1175}
1176
1177static CXXRecordDecl *GetClassForType(QualType T) {
1178  if (const RecordType *RT = T->getAs<RecordType>())
1179    return cast<CXXRecordDecl>(RT->getDecl());
1180  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1181    return ICT->getDecl();
1182  else
1183    return 0;
1184}
1185
1186/// \brief Determine whether the type \p Derived is a C++ class that is
1187/// derived from the type \p Base.
1188bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1189  if (!getLangOptions().CPlusPlus)
1190    return false;
1191
1192  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1193  if (!DerivedRD)
1194    return false;
1195
1196  CXXRecordDecl *BaseRD = GetClassForType(Base);
1197  if (!BaseRD)
1198    return false;
1199
1200  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1201  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1202}
1203
1204/// \brief Determine whether the type \p Derived is a C++ class that is
1205/// derived from the type \p Base.
1206bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1207  if (!getLangOptions().CPlusPlus)
1208    return false;
1209
1210  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1211  if (!DerivedRD)
1212    return false;
1213
1214  CXXRecordDecl *BaseRD = GetClassForType(Base);
1215  if (!BaseRD)
1216    return false;
1217
1218  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1219}
1220
1221void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1222                              CXXCastPath &BasePathArray) {
1223  assert(BasePathArray.empty() && "Base path array must be empty!");
1224  assert(Paths.isRecordingPaths() && "Must record paths!");
1225
1226  const CXXBasePath &Path = Paths.front();
1227
1228  // We first go backward and check if we have a virtual base.
1229  // FIXME: It would be better if CXXBasePath had the base specifier for
1230  // the nearest virtual base.
1231  unsigned Start = 0;
1232  for (unsigned I = Path.size(); I != 0; --I) {
1233    if (Path[I - 1].Base->isVirtual()) {
1234      Start = I - 1;
1235      break;
1236    }
1237  }
1238
1239  // Now add all bases.
1240  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1241    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1242}
1243
1244/// \brief Determine whether the given base path includes a virtual
1245/// base class.
1246bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1247  for (CXXCastPath::const_iterator B = BasePath.begin(),
1248                                BEnd = BasePath.end();
1249       B != BEnd; ++B)
1250    if ((*B)->isVirtual())
1251      return true;
1252
1253  return false;
1254}
1255
1256/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1257/// conversion (where Derived and Base are class types) is
1258/// well-formed, meaning that the conversion is unambiguous (and
1259/// that all of the base classes are accessible). Returns true
1260/// and emits a diagnostic if the code is ill-formed, returns false
1261/// otherwise. Loc is the location where this routine should point to
1262/// if there is an error, and Range is the source range to highlight
1263/// if there is an error.
1264bool
1265Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1266                                   unsigned InaccessibleBaseID,
1267                                   unsigned AmbigiousBaseConvID,
1268                                   SourceLocation Loc, SourceRange Range,
1269                                   DeclarationName Name,
1270                                   CXXCastPath *BasePath) {
1271  // First, determine whether the path from Derived to Base is
1272  // ambiguous. This is slightly more expensive than checking whether
1273  // the Derived to Base conversion exists, because here we need to
1274  // explore multiple paths to determine if there is an ambiguity.
1275  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1276                     /*DetectVirtual=*/false);
1277  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1278  assert(DerivationOkay &&
1279         "Can only be used with a derived-to-base conversion");
1280  (void)DerivationOkay;
1281
1282  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1283    if (InaccessibleBaseID) {
1284      // Check that the base class can be accessed.
1285      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1286                                   InaccessibleBaseID)) {
1287        case AR_inaccessible:
1288          return true;
1289        case AR_accessible:
1290        case AR_dependent:
1291        case AR_delayed:
1292          break;
1293      }
1294    }
1295
1296    // Build a base path if necessary.
1297    if (BasePath)
1298      BuildBasePathArray(Paths, *BasePath);
1299    return false;
1300  }
1301
1302  // We know that the derived-to-base conversion is ambiguous, and
1303  // we're going to produce a diagnostic. Perform the derived-to-base
1304  // search just one more time to compute all of the possible paths so
1305  // that we can print them out. This is more expensive than any of
1306  // the previous derived-to-base checks we've done, but at this point
1307  // performance isn't as much of an issue.
1308  Paths.clear();
1309  Paths.setRecordingPaths(true);
1310  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1311  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1312  (void)StillOkay;
1313
1314  // Build up a textual representation of the ambiguous paths, e.g.,
1315  // D -> B -> A, that will be used to illustrate the ambiguous
1316  // conversions in the diagnostic. We only print one of the paths
1317  // to each base class subobject.
1318  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1319
1320  Diag(Loc, AmbigiousBaseConvID)
1321  << Derived << Base << PathDisplayStr << Range << Name;
1322  return true;
1323}
1324
1325bool
1326Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1327                                   SourceLocation Loc, SourceRange Range,
1328                                   CXXCastPath *BasePath,
1329                                   bool IgnoreAccess) {
1330  return CheckDerivedToBaseConversion(Derived, Base,
1331                                      IgnoreAccess ? 0
1332                                       : diag::err_upcast_to_inaccessible_base,
1333                                      diag::err_ambiguous_derived_to_base_conv,
1334                                      Loc, Range, DeclarationName(),
1335                                      BasePath);
1336}
1337
1338
1339/// @brief Builds a string representing ambiguous paths from a
1340/// specific derived class to different subobjects of the same base
1341/// class.
1342///
1343/// This function builds a string that can be used in error messages
1344/// to show the different paths that one can take through the
1345/// inheritance hierarchy to go from the derived class to different
1346/// subobjects of a base class. The result looks something like this:
1347/// @code
1348/// struct D -> struct B -> struct A
1349/// struct D -> struct C -> struct A
1350/// @endcode
1351std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1352  std::string PathDisplayStr;
1353  std::set<unsigned> DisplayedPaths;
1354  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1355       Path != Paths.end(); ++Path) {
1356    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1357      // We haven't displayed a path to this particular base
1358      // class subobject yet.
1359      PathDisplayStr += "\n    ";
1360      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1361      for (CXXBasePath::const_iterator Element = Path->begin();
1362           Element != Path->end(); ++Element)
1363        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1364    }
1365  }
1366
1367  return PathDisplayStr;
1368}
1369
1370//===----------------------------------------------------------------------===//
1371// C++ class member Handling
1372//===----------------------------------------------------------------------===//
1373
1374/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1375Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1376                                 SourceLocation ASLoc,
1377                                 SourceLocation ColonLoc) {
1378  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1379  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1380                                                  ASLoc, ColonLoc);
1381  CurContext->addHiddenDecl(ASDecl);
1382  return ASDecl;
1383}
1384
1385/// CheckOverrideControl - Check C++0x override control semantics.
1386void Sema::CheckOverrideControl(const Decl *D) {
1387  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1388  if (!MD || !MD->isVirtual())
1389    return;
1390
1391  if (MD->isDependentContext())
1392    return;
1393
1394  // C++0x [class.virtual]p3:
1395  //   If a virtual function is marked with the virt-specifier override and does
1396  //   not override a member function of a base class,
1397  //   the program is ill-formed.
1398  bool HasOverriddenMethods =
1399    MD->begin_overridden_methods() != MD->end_overridden_methods();
1400  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1401    Diag(MD->getLocation(),
1402                 diag::err_function_marked_override_not_overriding)
1403      << MD->getDeclName();
1404    return;
1405  }
1406}
1407
1408/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1409/// function overrides a virtual member function marked 'final', according to
1410/// C++0x [class.virtual]p3.
1411bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1412                                                  const CXXMethodDecl *Old) {
1413  if (!Old->hasAttr<FinalAttr>())
1414    return false;
1415
1416  Diag(New->getLocation(), diag::err_final_function_overridden)
1417    << New->getDeclName();
1418  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1419  return true;
1420}
1421
1422/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1423/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1424/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1425/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1426/// present but parsing it has been deferred.
1427Decl *
1428Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1429                               MultiTemplateParamsArg TemplateParameterLists,
1430                               Expr *BW, const VirtSpecifiers &VS,
1431                               Expr *InitExpr, bool HasDeferredInit,
1432                               bool IsDefinition) {
1433  const DeclSpec &DS = D.getDeclSpec();
1434  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1435  DeclarationName Name = NameInfo.getName();
1436  SourceLocation Loc = NameInfo.getLoc();
1437
1438  // For anonymous bitfields, the location should point to the type.
1439  if (Loc.isInvalid())
1440    Loc = D.getSourceRange().getBegin();
1441
1442  Expr *BitWidth = static_cast<Expr*>(BW);
1443  Expr *Init = static_cast<Expr*>(InitExpr);
1444
1445  assert(isa<CXXRecordDecl>(CurContext));
1446  assert(!DS.isFriendSpecified());
1447  assert(!Init || !HasDeferredInit);
1448
1449  bool isFunc = D.isDeclarationOfFunction();
1450
1451  // C++ 9.2p6: A member shall not be declared to have automatic storage
1452  // duration (auto, register) or with the extern storage-class-specifier.
1453  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1454  // data members and cannot be applied to names declared const or static,
1455  // and cannot be applied to reference members.
1456  switch (DS.getStorageClassSpec()) {
1457    case DeclSpec::SCS_unspecified:
1458    case DeclSpec::SCS_typedef:
1459    case DeclSpec::SCS_static:
1460      // FALL THROUGH.
1461      break;
1462    case DeclSpec::SCS_mutable:
1463      if (isFunc) {
1464        if (DS.getStorageClassSpecLoc().isValid())
1465          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1466        else
1467          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1468
1469        // FIXME: It would be nicer if the keyword was ignored only for this
1470        // declarator. Otherwise we could get follow-up errors.
1471        D.getMutableDeclSpec().ClearStorageClassSpecs();
1472      }
1473      break;
1474    default:
1475      if (DS.getStorageClassSpecLoc().isValid())
1476        Diag(DS.getStorageClassSpecLoc(),
1477             diag::err_storageclass_invalid_for_member);
1478      else
1479        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1480      D.getMutableDeclSpec().ClearStorageClassSpecs();
1481  }
1482
1483  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1484                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1485                      !isFunc);
1486
1487  Decl *Member;
1488  if (isInstField) {
1489    CXXScopeSpec &SS = D.getCXXScopeSpec();
1490
1491    // FIXME: Check that the name is an identifier!
1492    IdentifierInfo *II = Name.getAsIdentifierInfo();
1493
1494    // Member field could not be with "template" keyword.
1495    // So TemplateParameterLists should be empty in this case.
1496    if (TemplateParameterLists.size()) {
1497      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1498      if (TemplateParams->size()) {
1499        // There is no such thing as a member field template.
1500        Diag(D.getIdentifierLoc(), diag::err_template_member)
1501            << II
1502            << SourceRange(TemplateParams->getTemplateLoc(),
1503                TemplateParams->getRAngleLoc());
1504      } else {
1505        // There is an extraneous 'template<>' for this member.
1506        Diag(TemplateParams->getTemplateLoc(),
1507            diag::err_template_member_noparams)
1508            << II
1509            << SourceRange(TemplateParams->getTemplateLoc(),
1510                TemplateParams->getRAngleLoc());
1511      }
1512      return 0;
1513    }
1514
1515    if (SS.isSet() && !SS.isInvalid()) {
1516      // The user provided a superfluous scope specifier inside a class
1517      // definition:
1518      //
1519      // class X {
1520      //   int X::member;
1521      // };
1522      DeclContext *DC = 0;
1523      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1524        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1525        << Name << FixItHint::CreateRemoval(SS.getRange());
1526      else
1527        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1528          << Name << SS.getRange();
1529
1530      SS.clear();
1531    }
1532
1533    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1534                         HasDeferredInit, AS);
1535    assert(Member && "HandleField never returns null");
1536  } else {
1537    assert(!HasDeferredInit);
1538
1539    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1540    if (!Member) {
1541      return 0;
1542    }
1543
1544    // Non-instance-fields can't have a bitfield.
1545    if (BitWidth) {
1546      if (Member->isInvalidDecl()) {
1547        // don't emit another diagnostic.
1548      } else if (isa<VarDecl>(Member)) {
1549        // C++ 9.6p3: A bit-field shall not be a static member.
1550        // "static member 'A' cannot be a bit-field"
1551        Diag(Loc, diag::err_static_not_bitfield)
1552          << Name << BitWidth->getSourceRange();
1553      } else if (isa<TypedefDecl>(Member)) {
1554        // "typedef member 'x' cannot be a bit-field"
1555        Diag(Loc, diag::err_typedef_not_bitfield)
1556          << Name << BitWidth->getSourceRange();
1557      } else {
1558        // A function typedef ("typedef int f(); f a;").
1559        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1560        Diag(Loc, diag::err_not_integral_type_bitfield)
1561          << Name << cast<ValueDecl>(Member)->getType()
1562          << BitWidth->getSourceRange();
1563      }
1564
1565      BitWidth = 0;
1566      Member->setInvalidDecl();
1567    }
1568
1569    Member->setAccess(AS);
1570
1571    // If we have declared a member function template, set the access of the
1572    // templated declaration as well.
1573    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1574      FunTmpl->getTemplatedDecl()->setAccess(AS);
1575  }
1576
1577  if (VS.isOverrideSpecified()) {
1578    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1579    if (!MD || !MD->isVirtual()) {
1580      Diag(Member->getLocStart(),
1581           diag::override_keyword_only_allowed_on_virtual_member_functions)
1582        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1583    } else
1584      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1585  }
1586  if (VS.isFinalSpecified()) {
1587    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1588    if (!MD || !MD->isVirtual()) {
1589      Diag(Member->getLocStart(),
1590           diag::override_keyword_only_allowed_on_virtual_member_functions)
1591      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1592    } else
1593      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1594  }
1595
1596  if (VS.getLastLocation().isValid()) {
1597    // Update the end location of a method that has a virt-specifiers.
1598    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1599      MD->setRangeEnd(VS.getLastLocation());
1600  }
1601
1602  CheckOverrideControl(Member);
1603
1604  assert((Name || isInstField) && "No identifier for non-field ?");
1605
1606  if (Init)
1607    AddInitializerToDecl(Member, Init, false,
1608                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1609  else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1610    ActOnUninitializedDecl(Member, DS.getTypeSpecType() == DeclSpec::TST_auto);
1611
1612  FinalizeDeclaration(Member);
1613
1614  if (isInstField)
1615    FieldCollector->Add(cast<FieldDecl>(Member));
1616  return Member;
1617}
1618
1619/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1620/// in-class initializer for a non-static C++ class member, and after
1621/// instantiating an in-class initializer in a class template. Such actions
1622/// are deferred until the class is complete.
1623void
1624Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1625                                       Expr *InitExpr) {
1626  FieldDecl *FD = cast<FieldDecl>(D);
1627
1628  if (!InitExpr) {
1629    FD->setInvalidDecl();
1630    FD->removeInClassInitializer();
1631    return;
1632  }
1633
1634  ExprResult Init = InitExpr;
1635  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1636    // FIXME: if there is no EqualLoc, this is list-initialization.
1637    Init = PerformCopyInitialization(
1638      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1639    if (Init.isInvalid()) {
1640      FD->setInvalidDecl();
1641      return;
1642    }
1643
1644    CheckImplicitConversions(Init.get(), EqualLoc);
1645  }
1646
1647  // C++0x [class.base.init]p7:
1648  //   The initialization of each base and member constitutes a
1649  //   full-expression.
1650  Init = MaybeCreateExprWithCleanups(Init);
1651  if (Init.isInvalid()) {
1652    FD->setInvalidDecl();
1653    return;
1654  }
1655
1656  InitExpr = Init.release();
1657
1658  FD->setInClassInitializer(InitExpr);
1659}
1660
1661/// \brief Find the direct and/or virtual base specifiers that
1662/// correspond to the given base type, for use in base initialization
1663/// within a constructor.
1664static bool FindBaseInitializer(Sema &SemaRef,
1665                                CXXRecordDecl *ClassDecl,
1666                                QualType BaseType,
1667                                const CXXBaseSpecifier *&DirectBaseSpec,
1668                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1669  // First, check for a direct base class.
1670  DirectBaseSpec = 0;
1671  for (CXXRecordDecl::base_class_const_iterator Base
1672         = ClassDecl->bases_begin();
1673       Base != ClassDecl->bases_end(); ++Base) {
1674    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1675      // We found a direct base of this type. That's what we're
1676      // initializing.
1677      DirectBaseSpec = &*Base;
1678      break;
1679    }
1680  }
1681
1682  // Check for a virtual base class.
1683  // FIXME: We might be able to short-circuit this if we know in advance that
1684  // there are no virtual bases.
1685  VirtualBaseSpec = 0;
1686  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1687    // We haven't found a base yet; search the class hierarchy for a
1688    // virtual base class.
1689    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1690                       /*DetectVirtual=*/false);
1691    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1692                              BaseType, Paths)) {
1693      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1694           Path != Paths.end(); ++Path) {
1695        if (Path->back().Base->isVirtual()) {
1696          VirtualBaseSpec = Path->back().Base;
1697          break;
1698        }
1699      }
1700    }
1701  }
1702
1703  return DirectBaseSpec || VirtualBaseSpec;
1704}
1705
1706/// \brief Handle a C++ member initializer using braced-init-list syntax.
1707MemInitResult
1708Sema::ActOnMemInitializer(Decl *ConstructorD,
1709                          Scope *S,
1710                          CXXScopeSpec &SS,
1711                          IdentifierInfo *MemberOrBase,
1712                          ParsedType TemplateTypeTy,
1713                          SourceLocation IdLoc,
1714                          Expr *InitList,
1715                          SourceLocation EllipsisLoc) {
1716  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1717                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1718}
1719
1720/// \brief Handle a C++ member initializer using parentheses syntax.
1721MemInitResult
1722Sema::ActOnMemInitializer(Decl *ConstructorD,
1723                          Scope *S,
1724                          CXXScopeSpec &SS,
1725                          IdentifierInfo *MemberOrBase,
1726                          ParsedType TemplateTypeTy,
1727                          SourceLocation IdLoc,
1728                          SourceLocation LParenLoc,
1729                          Expr **Args, unsigned NumArgs,
1730                          SourceLocation RParenLoc,
1731                          SourceLocation EllipsisLoc) {
1732  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1733                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1734                                                     RParenLoc),
1735                             EllipsisLoc);
1736}
1737
1738/// \brief Handle a C++ member initializer.
1739MemInitResult
1740Sema::BuildMemInitializer(Decl *ConstructorD,
1741                          Scope *S,
1742                          CXXScopeSpec &SS,
1743                          IdentifierInfo *MemberOrBase,
1744                          ParsedType TemplateTypeTy,
1745                          SourceLocation IdLoc,
1746                          const MultiInitializer &Args,
1747                          SourceLocation EllipsisLoc) {
1748  if (!ConstructorD)
1749    return true;
1750
1751  AdjustDeclIfTemplate(ConstructorD);
1752
1753  CXXConstructorDecl *Constructor
1754    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1755  if (!Constructor) {
1756    // The user wrote a constructor initializer on a function that is
1757    // not a C++ constructor. Ignore the error for now, because we may
1758    // have more member initializers coming; we'll diagnose it just
1759    // once in ActOnMemInitializers.
1760    return true;
1761  }
1762
1763  CXXRecordDecl *ClassDecl = Constructor->getParent();
1764
1765  // C++ [class.base.init]p2:
1766  //   Names in a mem-initializer-id are looked up in the scope of the
1767  //   constructor's class and, if not found in that scope, are looked
1768  //   up in the scope containing the constructor's definition.
1769  //   [Note: if the constructor's class contains a member with the
1770  //   same name as a direct or virtual base class of the class, a
1771  //   mem-initializer-id naming the member or base class and composed
1772  //   of a single identifier refers to the class member. A
1773  //   mem-initializer-id for the hidden base class may be specified
1774  //   using a qualified name. ]
1775  if (!SS.getScopeRep() && !TemplateTypeTy) {
1776    // Look for a member, first.
1777    FieldDecl *Member = 0;
1778    DeclContext::lookup_result Result
1779      = ClassDecl->lookup(MemberOrBase);
1780    if (Result.first != Result.second) {
1781      Member = dyn_cast<FieldDecl>(*Result.first);
1782
1783      if (Member) {
1784        if (EllipsisLoc.isValid())
1785          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1786            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1787
1788        return BuildMemberInitializer(Member, Args, IdLoc);
1789      }
1790
1791      // Handle anonymous union case.
1792      if (IndirectFieldDecl* IndirectField
1793            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1794        if (EllipsisLoc.isValid())
1795          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1796            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1797
1798         return BuildMemberInitializer(IndirectField, Args, IdLoc);
1799      }
1800    }
1801  }
1802  // It didn't name a member, so see if it names a class.
1803  QualType BaseType;
1804  TypeSourceInfo *TInfo = 0;
1805
1806  if (TemplateTypeTy) {
1807    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1808  } else {
1809    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1810    LookupParsedName(R, S, &SS);
1811
1812    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1813    if (!TyD) {
1814      if (R.isAmbiguous()) return true;
1815
1816      // We don't want access-control diagnostics here.
1817      R.suppressDiagnostics();
1818
1819      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1820        bool NotUnknownSpecialization = false;
1821        DeclContext *DC = computeDeclContext(SS, false);
1822        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1823          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1824
1825        if (!NotUnknownSpecialization) {
1826          // When the scope specifier can refer to a member of an unknown
1827          // specialization, we take it as a type name.
1828          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1829                                       SS.getWithLocInContext(Context),
1830                                       *MemberOrBase, IdLoc);
1831          if (BaseType.isNull())
1832            return true;
1833
1834          R.clear();
1835          R.setLookupName(MemberOrBase);
1836        }
1837      }
1838
1839      // If no results were found, try to correct typos.
1840      TypoCorrection Corr;
1841      if (R.empty() && BaseType.isNull() &&
1842          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1843                              ClassDecl, false, CTC_NoKeywords))) {
1844        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1845        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1846        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1847          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1848            // We have found a non-static data member with a similar
1849            // name to what was typed; complain and initialize that
1850            // member.
1851            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1852              << MemberOrBase << true << CorrectedQuotedStr
1853              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1854            Diag(Member->getLocation(), diag::note_previous_decl)
1855              << CorrectedQuotedStr;
1856
1857            return BuildMemberInitializer(Member, Args, IdLoc);
1858          }
1859        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1860          const CXXBaseSpecifier *DirectBaseSpec;
1861          const CXXBaseSpecifier *VirtualBaseSpec;
1862          if (FindBaseInitializer(*this, ClassDecl,
1863                                  Context.getTypeDeclType(Type),
1864                                  DirectBaseSpec, VirtualBaseSpec)) {
1865            // We have found a direct or virtual base class with a
1866            // similar name to what was typed; complain and initialize
1867            // that base class.
1868            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1869              << MemberOrBase << false << CorrectedQuotedStr
1870              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1871
1872            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1873                                                             : VirtualBaseSpec;
1874            Diag(BaseSpec->getSourceRange().getBegin(),
1875                 diag::note_base_class_specified_here)
1876              << BaseSpec->getType()
1877              << BaseSpec->getSourceRange();
1878
1879            TyD = Type;
1880          }
1881        }
1882      }
1883
1884      if (!TyD && BaseType.isNull()) {
1885        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1886          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1887        return true;
1888      }
1889    }
1890
1891    if (BaseType.isNull()) {
1892      BaseType = Context.getTypeDeclType(TyD);
1893      if (SS.isSet()) {
1894        NestedNameSpecifier *Qualifier =
1895          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1896
1897        // FIXME: preserve source range information
1898        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1899      }
1900    }
1901  }
1902
1903  if (!TInfo)
1904    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1905
1906  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1907}
1908
1909/// Checks a member initializer expression for cases where reference (or
1910/// pointer) members are bound to by-value parameters (or their addresses).
1911static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1912                                               Expr *Init,
1913                                               SourceLocation IdLoc) {
1914  QualType MemberTy = Member->getType();
1915
1916  // We only handle pointers and references currently.
1917  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1918  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1919    return;
1920
1921  const bool IsPointer = MemberTy->isPointerType();
1922  if (IsPointer) {
1923    if (const UnaryOperator *Op
1924          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1925      // The only case we're worried about with pointers requires taking the
1926      // address.
1927      if (Op->getOpcode() != UO_AddrOf)
1928        return;
1929
1930      Init = Op->getSubExpr();
1931    } else {
1932      // We only handle address-of expression initializers for pointers.
1933      return;
1934    }
1935  }
1936
1937  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1938    // Taking the address of a temporary will be diagnosed as a hard error.
1939    if (IsPointer)
1940      return;
1941
1942    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1943      << Member << Init->getSourceRange();
1944  } else if (const DeclRefExpr *DRE
1945               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1946    // We only warn when referring to a non-reference parameter declaration.
1947    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1948    if (!Parameter || Parameter->getType()->isReferenceType())
1949      return;
1950
1951    S.Diag(Init->getExprLoc(),
1952           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1953                     : diag::warn_bind_ref_member_to_parameter)
1954      << Member << Parameter << Init->getSourceRange();
1955  } else {
1956    // Other initializers are fine.
1957    return;
1958  }
1959
1960  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1961    << (unsigned)IsPointer;
1962}
1963
1964/// Checks an initializer expression for use of uninitialized fields, such as
1965/// containing the field that is being initialized. Returns true if there is an
1966/// uninitialized field was used an updates the SourceLocation parameter; false
1967/// otherwise.
1968static bool InitExprContainsUninitializedFields(const Stmt *S,
1969                                                const ValueDecl *LhsField,
1970                                                SourceLocation *L) {
1971  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1972
1973  if (isa<CallExpr>(S)) {
1974    // Do not descend into function calls or constructors, as the use
1975    // of an uninitialized field may be valid. One would have to inspect
1976    // the contents of the function/ctor to determine if it is safe or not.
1977    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1978    // may be safe, depending on what the function/ctor does.
1979    return false;
1980  }
1981  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1982    const NamedDecl *RhsField = ME->getMemberDecl();
1983
1984    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1985      // The member expression points to a static data member.
1986      assert(VD->isStaticDataMember() &&
1987             "Member points to non-static data member!");
1988      (void)VD;
1989      return false;
1990    }
1991
1992    if (isa<EnumConstantDecl>(RhsField)) {
1993      // The member expression points to an enum.
1994      return false;
1995    }
1996
1997    if (RhsField == LhsField) {
1998      // Initializing a field with itself. Throw a warning.
1999      // But wait; there are exceptions!
2000      // Exception #1:  The field may not belong to this record.
2001      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2002      const Expr *base = ME->getBase();
2003      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2004        // Even though the field matches, it does not belong to this record.
2005        return false;
2006      }
2007      // None of the exceptions triggered; return true to indicate an
2008      // uninitialized field was used.
2009      *L = ME->getMemberLoc();
2010      return true;
2011    }
2012  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2013    // sizeof/alignof doesn't reference contents, do not warn.
2014    return false;
2015  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2016    // address-of doesn't reference contents (the pointer may be dereferenced
2017    // in the same expression but it would be rare; and weird).
2018    if (UOE->getOpcode() == UO_AddrOf)
2019      return false;
2020  }
2021  for (Stmt::const_child_range it = S->children(); it; ++it) {
2022    if (!*it) {
2023      // An expression such as 'member(arg ?: "")' may trigger this.
2024      continue;
2025    }
2026    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2027      return true;
2028  }
2029  return false;
2030}
2031
2032MemInitResult
2033Sema::BuildMemberInitializer(ValueDecl *Member,
2034                             const MultiInitializer &Args,
2035                             SourceLocation IdLoc) {
2036  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2037  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2038  assert((DirectMember || IndirectMember) &&
2039         "Member must be a FieldDecl or IndirectFieldDecl");
2040
2041  if (Member->isInvalidDecl())
2042    return true;
2043
2044  // Diagnose value-uses of fields to initialize themselves, e.g.
2045  //   foo(foo)
2046  // where foo is not also a parameter to the constructor.
2047  // TODO: implement -Wuninitialized and fold this into that framework.
2048  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2049       I != E; ++I) {
2050    SourceLocation L;
2051    Expr *Arg = *I;
2052    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2053      Arg = DIE->getInit();
2054    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2055      // FIXME: Return true in the case when other fields are used before being
2056      // uninitialized. For example, let this field be the i'th field. When
2057      // initializing the i'th field, throw a warning if any of the >= i'th
2058      // fields are used, as they are not yet initialized.
2059      // Right now we are only handling the case where the i'th field uses
2060      // itself in its initializer.
2061      Diag(L, diag::warn_field_is_uninit);
2062    }
2063  }
2064
2065  bool HasDependentArg = Args.isTypeDependent();
2066
2067  Expr *Init;
2068  if (Member->getType()->isDependentType() || HasDependentArg) {
2069    // Can't check initialization for a member of dependent type or when
2070    // any of the arguments are type-dependent expressions.
2071    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2072
2073    DiscardCleanupsInEvaluationContext();
2074  } else {
2075    // Initialize the member.
2076    InitializedEntity MemberEntity =
2077      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2078                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2079    InitializationKind Kind =
2080      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2081                                       Args.getEndLoc());
2082
2083    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2084    if (MemberInit.isInvalid())
2085      return true;
2086
2087    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2088
2089    // C++0x [class.base.init]p7:
2090    //   The initialization of each base and member constitutes a
2091    //   full-expression.
2092    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2093    if (MemberInit.isInvalid())
2094      return true;
2095
2096    // If we are in a dependent context, template instantiation will
2097    // perform this type-checking again. Just save the arguments that we
2098    // received in a ParenListExpr.
2099    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2100    // of the information that we have about the member
2101    // initializer. However, deconstructing the ASTs is a dicey process,
2102    // and this approach is far more likely to get the corner cases right.
2103    if (CurContext->isDependentContext()) {
2104      Init = Args.CreateInitExpr(Context,
2105                                 Member->getType().getNonReferenceType());
2106    } else {
2107      Init = MemberInit.get();
2108      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2109    }
2110  }
2111
2112  if (DirectMember) {
2113    return new (Context) CXXCtorInitializer(Context, DirectMember,
2114                                                    IdLoc, Args.getStartLoc(),
2115                                                    Init, Args.getEndLoc());
2116  } else {
2117    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2118                                                    IdLoc, Args.getStartLoc(),
2119                                                    Init, Args.getEndLoc());
2120  }
2121}
2122
2123MemInitResult
2124Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2125                                 const MultiInitializer &Args,
2126                                 SourceLocation NameLoc,
2127                                 CXXRecordDecl *ClassDecl) {
2128  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2129  if (!LangOpts.CPlusPlus0x)
2130    return Diag(Loc, diag::err_delegation_0x_only)
2131      << TInfo->getTypeLoc().getLocalSourceRange();
2132
2133  // Initialize the object.
2134  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2135                                     QualType(ClassDecl->getTypeForDecl(), 0));
2136  InitializationKind Kind =
2137    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2138                                     Args.getEndLoc());
2139
2140  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2141  if (DelegationInit.isInvalid())
2142    return true;
2143
2144  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
2145  CXXConstructorDecl *Constructor
2146    = ConExpr->getConstructor();
2147  assert(Constructor && "Delegating constructor with no target?");
2148
2149  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2150
2151  // C++0x [class.base.init]p7:
2152  //   The initialization of each base and member constitutes a
2153  //   full-expression.
2154  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2155  if (DelegationInit.isInvalid())
2156    return true;
2157
2158  assert(!CurContext->isDependentContext());
2159  return new (Context) CXXCtorInitializer(Context, Loc, Args.getStartLoc(),
2160                                          Constructor,
2161                                          DelegationInit.takeAs<Expr>(),
2162                                          Args.getEndLoc());
2163}
2164
2165MemInitResult
2166Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2167                           const MultiInitializer &Args,
2168                           CXXRecordDecl *ClassDecl,
2169                           SourceLocation EllipsisLoc) {
2170  bool HasDependentArg = Args.isTypeDependent();
2171
2172  SourceLocation BaseLoc
2173    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2174
2175  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2176    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2177             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2178
2179  // C++ [class.base.init]p2:
2180  //   [...] Unless the mem-initializer-id names a nonstatic data
2181  //   member of the constructor's class or a direct or virtual base
2182  //   of that class, the mem-initializer is ill-formed. A
2183  //   mem-initializer-list can initialize a base class using any
2184  //   name that denotes that base class type.
2185  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2186
2187  if (EllipsisLoc.isValid()) {
2188    // This is a pack expansion.
2189    if (!BaseType->containsUnexpandedParameterPack())  {
2190      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2191        << SourceRange(BaseLoc, Args.getEndLoc());
2192
2193      EllipsisLoc = SourceLocation();
2194    }
2195  } else {
2196    // Check for any unexpanded parameter packs.
2197    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2198      return true;
2199
2200    if (Args.DiagnoseUnexpandedParameterPack(*this))
2201      return true;
2202  }
2203
2204  // Check for direct and virtual base classes.
2205  const CXXBaseSpecifier *DirectBaseSpec = 0;
2206  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2207  if (!Dependent) {
2208    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2209                                       BaseType))
2210      return BuildDelegatingInitializer(BaseTInfo, Args, BaseLoc, ClassDecl);
2211
2212    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2213                        VirtualBaseSpec);
2214
2215    // C++ [base.class.init]p2:
2216    // Unless the mem-initializer-id names a nonstatic data member of the
2217    // constructor's class or a direct or virtual base of that class, the
2218    // mem-initializer is ill-formed.
2219    if (!DirectBaseSpec && !VirtualBaseSpec) {
2220      // If the class has any dependent bases, then it's possible that
2221      // one of those types will resolve to the same type as
2222      // BaseType. Therefore, just treat this as a dependent base
2223      // class initialization.  FIXME: Should we try to check the
2224      // initialization anyway? It seems odd.
2225      if (ClassDecl->hasAnyDependentBases())
2226        Dependent = true;
2227      else
2228        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2229          << BaseType << Context.getTypeDeclType(ClassDecl)
2230          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2231    }
2232  }
2233
2234  if (Dependent) {
2235    // Can't check initialization for a base of dependent type or when
2236    // any of the arguments are type-dependent expressions.
2237    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2238
2239    DiscardCleanupsInEvaluationContext();
2240
2241    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2242                                            /*IsVirtual=*/false,
2243                                            Args.getStartLoc(), BaseInit,
2244                                            Args.getEndLoc(), EllipsisLoc);
2245  }
2246
2247  // C++ [base.class.init]p2:
2248  //   If a mem-initializer-id is ambiguous because it designates both
2249  //   a direct non-virtual base class and an inherited virtual base
2250  //   class, the mem-initializer is ill-formed.
2251  if (DirectBaseSpec && VirtualBaseSpec)
2252    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2253      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2254
2255  CXXBaseSpecifier *BaseSpec
2256    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2257  if (!BaseSpec)
2258    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2259
2260  // Initialize the base.
2261  InitializedEntity BaseEntity =
2262    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2263  InitializationKind Kind =
2264    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2265                                     Args.getEndLoc());
2266
2267  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2268  if (BaseInit.isInvalid())
2269    return true;
2270
2271  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2272
2273  // C++0x [class.base.init]p7:
2274  //   The initialization of each base and member constitutes a
2275  //   full-expression.
2276  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2277  if (BaseInit.isInvalid())
2278    return true;
2279
2280  // If we are in a dependent context, template instantiation will
2281  // perform this type-checking again. Just save the arguments that we
2282  // received in a ParenListExpr.
2283  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2284  // of the information that we have about the base
2285  // initializer. However, deconstructing the ASTs is a dicey process,
2286  // and this approach is far more likely to get the corner cases right.
2287  if (CurContext->isDependentContext())
2288    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2289
2290  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2291                                          BaseSpec->isVirtual(),
2292                                          Args.getStartLoc(),
2293                                          BaseInit.takeAs<Expr>(),
2294                                          Args.getEndLoc(), EllipsisLoc);
2295}
2296
2297// Create a static_cast\<T&&>(expr).
2298static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2299  QualType ExprType = E->getType();
2300  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2301  SourceLocation ExprLoc = E->getLocStart();
2302  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2303      TargetType, ExprLoc);
2304
2305  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2306                                   SourceRange(ExprLoc, ExprLoc),
2307                                   E->getSourceRange()).take();
2308}
2309
2310/// ImplicitInitializerKind - How an implicit base or member initializer should
2311/// initialize its base or member.
2312enum ImplicitInitializerKind {
2313  IIK_Default,
2314  IIK_Copy,
2315  IIK_Move
2316};
2317
2318static bool
2319BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2320                             ImplicitInitializerKind ImplicitInitKind,
2321                             CXXBaseSpecifier *BaseSpec,
2322                             bool IsInheritedVirtualBase,
2323                             CXXCtorInitializer *&CXXBaseInit) {
2324  InitializedEntity InitEntity
2325    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2326                                        IsInheritedVirtualBase);
2327
2328  ExprResult BaseInit;
2329
2330  switch (ImplicitInitKind) {
2331  case IIK_Default: {
2332    InitializationKind InitKind
2333      = InitializationKind::CreateDefault(Constructor->getLocation());
2334    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2335    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2336                               MultiExprArg(SemaRef, 0, 0));
2337    break;
2338  }
2339
2340  case IIK_Move:
2341  case IIK_Copy: {
2342    bool Moving = ImplicitInitKind == IIK_Move;
2343    ParmVarDecl *Param = Constructor->getParamDecl(0);
2344    QualType ParamType = Param->getType().getNonReferenceType();
2345
2346    Expr *CopyCtorArg =
2347      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2348                          Constructor->getLocation(), ParamType,
2349                          VK_LValue, 0);
2350
2351    // Cast to the base class to avoid ambiguities.
2352    QualType ArgTy =
2353      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2354                                       ParamType.getQualifiers());
2355
2356    if (Moving) {
2357      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2358    }
2359
2360    CXXCastPath BasePath;
2361    BasePath.push_back(BaseSpec);
2362    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2363                                            CK_UncheckedDerivedToBase,
2364                                            Moving ? VK_XValue : VK_LValue,
2365                                            &BasePath).take();
2366
2367    InitializationKind InitKind
2368      = InitializationKind::CreateDirect(Constructor->getLocation(),
2369                                         SourceLocation(), SourceLocation());
2370    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2371                                   &CopyCtorArg, 1);
2372    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2373                               MultiExprArg(&CopyCtorArg, 1));
2374    break;
2375  }
2376  }
2377
2378  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2379  if (BaseInit.isInvalid())
2380    return true;
2381
2382  CXXBaseInit =
2383    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2384               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2385                                                        SourceLocation()),
2386                                             BaseSpec->isVirtual(),
2387                                             SourceLocation(),
2388                                             BaseInit.takeAs<Expr>(),
2389                                             SourceLocation(),
2390                                             SourceLocation());
2391
2392  return false;
2393}
2394
2395static bool RefersToRValueRef(Expr *MemRef) {
2396  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2397  return Referenced->getType()->isRValueReferenceType();
2398}
2399
2400static bool
2401BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2402                               ImplicitInitializerKind ImplicitInitKind,
2403                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2404                               CXXCtorInitializer *&CXXMemberInit) {
2405  if (Field->isInvalidDecl())
2406    return true;
2407
2408  SourceLocation Loc = Constructor->getLocation();
2409
2410  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2411    bool Moving = ImplicitInitKind == IIK_Move;
2412    ParmVarDecl *Param = Constructor->getParamDecl(0);
2413    QualType ParamType = Param->getType().getNonReferenceType();
2414
2415    // Suppress copying zero-width bitfields.
2416    if (const Expr *Width = Field->getBitWidth())
2417      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
2418        return false;
2419
2420    Expr *MemberExprBase =
2421      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2422                          Loc, ParamType, VK_LValue, 0);
2423
2424    if (Moving) {
2425      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2426    }
2427
2428    // Build a reference to this field within the parameter.
2429    CXXScopeSpec SS;
2430    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2431                              Sema::LookupMemberName);
2432    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2433                                  : cast<ValueDecl>(Field), AS_public);
2434    MemberLookup.resolveKind();
2435    ExprResult CtorArg
2436      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2437                                         ParamType, Loc,
2438                                         /*IsArrow=*/false,
2439                                         SS,
2440                                         /*FirstQualifierInScope=*/0,
2441                                         MemberLookup,
2442                                         /*TemplateArgs=*/0);
2443    if (CtorArg.isInvalid())
2444      return true;
2445
2446    // C++11 [class.copy]p15:
2447    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2448    //     with static_cast<T&&>(x.m);
2449    if (RefersToRValueRef(CtorArg.get())) {
2450      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2451    }
2452
2453    // When the field we are copying is an array, create index variables for
2454    // each dimension of the array. We use these index variables to subscript
2455    // the source array, and other clients (e.g., CodeGen) will perform the
2456    // necessary iteration with these index variables.
2457    SmallVector<VarDecl *, 4> IndexVariables;
2458    QualType BaseType = Field->getType();
2459    QualType SizeType = SemaRef.Context.getSizeType();
2460    bool InitializingArray = false;
2461    while (const ConstantArrayType *Array
2462                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2463      InitializingArray = true;
2464      // Create the iteration variable for this array index.
2465      IdentifierInfo *IterationVarName = 0;
2466      {
2467        llvm::SmallString<8> Str;
2468        llvm::raw_svector_ostream OS(Str);
2469        OS << "__i" << IndexVariables.size();
2470        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2471      }
2472      VarDecl *IterationVar
2473        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2474                          IterationVarName, SizeType,
2475                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2476                          SC_None, SC_None);
2477      IndexVariables.push_back(IterationVar);
2478
2479      // Create a reference to the iteration variable.
2480      ExprResult IterationVarRef
2481        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2482      assert(!IterationVarRef.isInvalid() &&
2483             "Reference to invented variable cannot fail!");
2484
2485      // Subscript the array with this iteration variable.
2486      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2487                                                        IterationVarRef.take(),
2488                                                        Loc);
2489      if (CtorArg.isInvalid())
2490        return true;
2491
2492      BaseType = Array->getElementType();
2493    }
2494
2495    // The array subscript expression is an lvalue, which is wrong for moving.
2496    if (Moving && InitializingArray)
2497      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2498
2499    // Construct the entity that we will be initializing. For an array, this
2500    // will be first element in the array, which may require several levels
2501    // of array-subscript entities.
2502    SmallVector<InitializedEntity, 4> Entities;
2503    Entities.reserve(1 + IndexVariables.size());
2504    if (Indirect)
2505      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2506    else
2507      Entities.push_back(InitializedEntity::InitializeMember(Field));
2508    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2509      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2510                                                              0,
2511                                                              Entities.back()));
2512
2513    // Direct-initialize to use the copy constructor.
2514    InitializationKind InitKind =
2515      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2516
2517    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2518    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2519                                   &CtorArgE, 1);
2520
2521    ExprResult MemberInit
2522      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2523                        MultiExprArg(&CtorArgE, 1));
2524    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2525    if (MemberInit.isInvalid())
2526      return true;
2527
2528    if (Indirect) {
2529      assert(IndexVariables.size() == 0 &&
2530             "Indirect field improperly initialized");
2531      CXXMemberInit
2532        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2533                                                   Loc, Loc,
2534                                                   MemberInit.takeAs<Expr>(),
2535                                                   Loc);
2536    } else
2537      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2538                                                 Loc, MemberInit.takeAs<Expr>(),
2539                                                 Loc,
2540                                                 IndexVariables.data(),
2541                                                 IndexVariables.size());
2542    return false;
2543  }
2544
2545  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2546
2547  QualType FieldBaseElementType =
2548    SemaRef.Context.getBaseElementType(Field->getType());
2549
2550  if (FieldBaseElementType->isRecordType()) {
2551    InitializedEntity InitEntity
2552      = Indirect? InitializedEntity::InitializeMember(Indirect)
2553                : InitializedEntity::InitializeMember(Field);
2554    InitializationKind InitKind =
2555      InitializationKind::CreateDefault(Loc);
2556
2557    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2558    ExprResult MemberInit =
2559      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2560
2561    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2562    if (MemberInit.isInvalid())
2563      return true;
2564
2565    if (Indirect)
2566      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2567                                                               Indirect, Loc,
2568                                                               Loc,
2569                                                               MemberInit.get(),
2570                                                               Loc);
2571    else
2572      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2573                                                               Field, Loc, Loc,
2574                                                               MemberInit.get(),
2575                                                               Loc);
2576    return false;
2577  }
2578
2579  if (!Field->getParent()->isUnion()) {
2580    if (FieldBaseElementType->isReferenceType()) {
2581      SemaRef.Diag(Constructor->getLocation(),
2582                   diag::err_uninitialized_member_in_ctor)
2583      << (int)Constructor->isImplicit()
2584      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2585      << 0 << Field->getDeclName();
2586      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2587      return true;
2588    }
2589
2590    if (FieldBaseElementType.isConstQualified()) {
2591      SemaRef.Diag(Constructor->getLocation(),
2592                   diag::err_uninitialized_member_in_ctor)
2593      << (int)Constructor->isImplicit()
2594      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2595      << 1 << Field->getDeclName();
2596      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2597      return true;
2598    }
2599  }
2600
2601  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2602      FieldBaseElementType->isObjCRetainableType() &&
2603      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2604      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2605    // Instant objects:
2606    //   Default-initialize Objective-C pointers to NULL.
2607    CXXMemberInit
2608      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2609                                                 Loc, Loc,
2610                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2611                                                 Loc);
2612    return false;
2613  }
2614
2615  // Nothing to initialize.
2616  CXXMemberInit = 0;
2617  return false;
2618}
2619
2620namespace {
2621struct BaseAndFieldInfo {
2622  Sema &S;
2623  CXXConstructorDecl *Ctor;
2624  bool AnyErrorsInInits;
2625  ImplicitInitializerKind IIK;
2626  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2627  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2628
2629  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2630    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2631    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2632    if (Generated && Ctor->isCopyConstructor())
2633      IIK = IIK_Copy;
2634    else if (Generated && Ctor->isMoveConstructor())
2635      IIK = IIK_Move;
2636    else
2637      IIK = IIK_Default;
2638  }
2639};
2640}
2641
2642/// \brief Determine whether the given indirect field declaration is somewhere
2643/// within an anonymous union.
2644static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2645  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2646                                      CEnd = F->chain_end();
2647       C != CEnd; ++C)
2648    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2649      if (Record->isUnion())
2650        return true;
2651
2652  return false;
2653}
2654
2655static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2656                                    FieldDecl *Field,
2657                                    IndirectFieldDecl *Indirect = 0) {
2658
2659  // Overwhelmingly common case: we have a direct initializer for this field.
2660  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2661    Info.AllToInit.push_back(Init);
2662    return false;
2663  }
2664
2665  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2666  // has a brace-or-equal-initializer, the entity is initialized as specified
2667  // in [dcl.init].
2668  if (Field->hasInClassInitializer()) {
2669    CXXCtorInitializer *Init;
2670    if (Indirect)
2671      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2672                                                      SourceLocation(),
2673                                                      SourceLocation(), 0,
2674                                                      SourceLocation());
2675    else
2676      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2677                                                      SourceLocation(),
2678                                                      SourceLocation(), 0,
2679                                                      SourceLocation());
2680    Info.AllToInit.push_back(Init);
2681    return false;
2682  }
2683
2684  // Don't build an implicit initializer for union members if none was
2685  // explicitly specified.
2686  if (Field->getParent()->isUnion() ||
2687      (Indirect && isWithinAnonymousUnion(Indirect)))
2688    return false;
2689
2690  // Don't try to build an implicit initializer if there were semantic
2691  // errors in any of the initializers (and therefore we might be
2692  // missing some that the user actually wrote).
2693  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2694    return false;
2695
2696  CXXCtorInitializer *Init = 0;
2697  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2698                                     Indirect, Init))
2699    return true;
2700
2701  if (Init)
2702    Info.AllToInit.push_back(Init);
2703
2704  return false;
2705}
2706
2707bool
2708Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2709                               CXXCtorInitializer *Initializer) {
2710  assert(Initializer->isDelegatingInitializer());
2711  Constructor->setNumCtorInitializers(1);
2712  CXXCtorInitializer **initializer =
2713    new (Context) CXXCtorInitializer*[1];
2714  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2715  Constructor->setCtorInitializers(initializer);
2716
2717  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2718    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2719    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2720  }
2721
2722  DelegatingCtorDecls.push_back(Constructor);
2723
2724  return false;
2725}
2726
2727bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2728                               CXXCtorInitializer **Initializers,
2729                               unsigned NumInitializers,
2730                               bool AnyErrors) {
2731  if (Constructor->isDependentContext()) {
2732    // Just store the initializers as written, they will be checked during
2733    // instantiation.
2734    if (NumInitializers > 0) {
2735      Constructor->setNumCtorInitializers(NumInitializers);
2736      CXXCtorInitializer **baseOrMemberInitializers =
2737        new (Context) CXXCtorInitializer*[NumInitializers];
2738      memcpy(baseOrMemberInitializers, Initializers,
2739             NumInitializers * sizeof(CXXCtorInitializer*));
2740      Constructor->setCtorInitializers(baseOrMemberInitializers);
2741    }
2742
2743    return false;
2744  }
2745
2746  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2747
2748  // We need to build the initializer AST according to order of construction
2749  // and not what user specified in the Initializers list.
2750  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2751  if (!ClassDecl)
2752    return true;
2753
2754  bool HadError = false;
2755
2756  for (unsigned i = 0; i < NumInitializers; i++) {
2757    CXXCtorInitializer *Member = Initializers[i];
2758
2759    if (Member->isBaseInitializer())
2760      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2761    else
2762      Info.AllBaseFields[Member->getAnyMember()] = Member;
2763  }
2764
2765  // Keep track of the direct virtual bases.
2766  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2767  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2768       E = ClassDecl->bases_end(); I != E; ++I) {
2769    if (I->isVirtual())
2770      DirectVBases.insert(I);
2771  }
2772
2773  // Push virtual bases before others.
2774  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2775       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2776
2777    if (CXXCtorInitializer *Value
2778        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2779      Info.AllToInit.push_back(Value);
2780    } else if (!AnyErrors) {
2781      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2782      CXXCtorInitializer *CXXBaseInit;
2783      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2784                                       VBase, IsInheritedVirtualBase,
2785                                       CXXBaseInit)) {
2786        HadError = true;
2787        continue;
2788      }
2789
2790      Info.AllToInit.push_back(CXXBaseInit);
2791    }
2792  }
2793
2794  // Non-virtual bases.
2795  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2796       E = ClassDecl->bases_end(); Base != E; ++Base) {
2797    // Virtuals are in the virtual base list and already constructed.
2798    if (Base->isVirtual())
2799      continue;
2800
2801    if (CXXCtorInitializer *Value
2802          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2803      Info.AllToInit.push_back(Value);
2804    } else if (!AnyErrors) {
2805      CXXCtorInitializer *CXXBaseInit;
2806      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2807                                       Base, /*IsInheritedVirtualBase=*/false,
2808                                       CXXBaseInit)) {
2809        HadError = true;
2810        continue;
2811      }
2812
2813      Info.AllToInit.push_back(CXXBaseInit);
2814    }
2815  }
2816
2817  // Fields.
2818  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2819                               MemEnd = ClassDecl->decls_end();
2820       Mem != MemEnd; ++Mem) {
2821    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2822      if (F->getType()->isIncompleteArrayType()) {
2823        assert(ClassDecl->hasFlexibleArrayMember() &&
2824               "Incomplete array type is not valid");
2825        continue;
2826      }
2827
2828      // If we're not generating the implicit copy/move constructor, then we'll
2829      // handle anonymous struct/union fields based on their individual
2830      // indirect fields.
2831      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2832        continue;
2833
2834      if (CollectFieldInitializer(*this, Info, F))
2835        HadError = true;
2836      continue;
2837    }
2838
2839    // Beyond this point, we only consider default initialization.
2840    if (Info.IIK != IIK_Default)
2841      continue;
2842
2843    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2844      if (F->getType()->isIncompleteArrayType()) {
2845        assert(ClassDecl->hasFlexibleArrayMember() &&
2846               "Incomplete array type is not valid");
2847        continue;
2848      }
2849
2850      // Initialize each field of an anonymous struct individually.
2851      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2852        HadError = true;
2853
2854      continue;
2855    }
2856  }
2857
2858  NumInitializers = Info.AllToInit.size();
2859  if (NumInitializers > 0) {
2860    Constructor->setNumCtorInitializers(NumInitializers);
2861    CXXCtorInitializer **baseOrMemberInitializers =
2862      new (Context) CXXCtorInitializer*[NumInitializers];
2863    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2864           NumInitializers * sizeof(CXXCtorInitializer*));
2865    Constructor->setCtorInitializers(baseOrMemberInitializers);
2866
2867    // Constructors implicitly reference the base and member
2868    // destructors.
2869    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2870                                           Constructor->getParent());
2871  }
2872
2873  return HadError;
2874}
2875
2876static void *GetKeyForTopLevelField(FieldDecl *Field) {
2877  // For anonymous unions, use the class declaration as the key.
2878  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2879    if (RT->getDecl()->isAnonymousStructOrUnion())
2880      return static_cast<void *>(RT->getDecl());
2881  }
2882  return static_cast<void *>(Field);
2883}
2884
2885static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2886  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2887}
2888
2889static void *GetKeyForMember(ASTContext &Context,
2890                             CXXCtorInitializer *Member) {
2891  if (!Member->isAnyMemberInitializer())
2892    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2893
2894  // For fields injected into the class via declaration of an anonymous union,
2895  // use its anonymous union class declaration as the unique key.
2896  FieldDecl *Field = Member->getAnyMember();
2897
2898  // If the field is a member of an anonymous struct or union, our key
2899  // is the anonymous record decl that's a direct child of the class.
2900  RecordDecl *RD = Field->getParent();
2901  if (RD->isAnonymousStructOrUnion()) {
2902    while (true) {
2903      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2904      if (Parent->isAnonymousStructOrUnion())
2905        RD = Parent;
2906      else
2907        break;
2908    }
2909
2910    return static_cast<void *>(RD);
2911  }
2912
2913  return static_cast<void *>(Field);
2914}
2915
2916static void
2917DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2918                                  const CXXConstructorDecl *Constructor,
2919                                  CXXCtorInitializer **Inits,
2920                                  unsigned NumInits) {
2921  if (Constructor->getDeclContext()->isDependentContext())
2922    return;
2923
2924  // Don't check initializers order unless the warning is enabled at the
2925  // location of at least one initializer.
2926  bool ShouldCheckOrder = false;
2927  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2928    CXXCtorInitializer *Init = Inits[InitIndex];
2929    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2930                                         Init->getSourceLocation())
2931          != DiagnosticsEngine::Ignored) {
2932      ShouldCheckOrder = true;
2933      break;
2934    }
2935  }
2936  if (!ShouldCheckOrder)
2937    return;
2938
2939  // Build the list of bases and members in the order that they'll
2940  // actually be initialized.  The explicit initializers should be in
2941  // this same order but may be missing things.
2942  SmallVector<const void*, 32> IdealInitKeys;
2943
2944  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2945
2946  // 1. Virtual bases.
2947  for (CXXRecordDecl::base_class_const_iterator VBase =
2948       ClassDecl->vbases_begin(),
2949       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2950    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2951
2952  // 2. Non-virtual bases.
2953  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2954       E = ClassDecl->bases_end(); Base != E; ++Base) {
2955    if (Base->isVirtual())
2956      continue;
2957    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2958  }
2959
2960  // 3. Direct fields.
2961  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2962       E = ClassDecl->field_end(); Field != E; ++Field)
2963    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2964
2965  unsigned NumIdealInits = IdealInitKeys.size();
2966  unsigned IdealIndex = 0;
2967
2968  CXXCtorInitializer *PrevInit = 0;
2969  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2970    CXXCtorInitializer *Init = Inits[InitIndex];
2971    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2972
2973    // Scan forward to try to find this initializer in the idealized
2974    // initializers list.
2975    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2976      if (InitKey == IdealInitKeys[IdealIndex])
2977        break;
2978
2979    // If we didn't find this initializer, it must be because we
2980    // scanned past it on a previous iteration.  That can only
2981    // happen if we're out of order;  emit a warning.
2982    if (IdealIndex == NumIdealInits && PrevInit) {
2983      Sema::SemaDiagnosticBuilder D =
2984        SemaRef.Diag(PrevInit->getSourceLocation(),
2985                     diag::warn_initializer_out_of_order);
2986
2987      if (PrevInit->isAnyMemberInitializer())
2988        D << 0 << PrevInit->getAnyMember()->getDeclName();
2989      else
2990        D << 1 << PrevInit->getBaseClassInfo()->getType();
2991
2992      if (Init->isAnyMemberInitializer())
2993        D << 0 << Init->getAnyMember()->getDeclName();
2994      else
2995        D << 1 << Init->getBaseClassInfo()->getType();
2996
2997      // Move back to the initializer's location in the ideal list.
2998      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2999        if (InitKey == IdealInitKeys[IdealIndex])
3000          break;
3001
3002      assert(IdealIndex != NumIdealInits &&
3003             "initializer not found in initializer list");
3004    }
3005
3006    PrevInit = Init;
3007  }
3008}
3009
3010namespace {
3011bool CheckRedundantInit(Sema &S,
3012                        CXXCtorInitializer *Init,
3013                        CXXCtorInitializer *&PrevInit) {
3014  if (!PrevInit) {
3015    PrevInit = Init;
3016    return false;
3017  }
3018
3019  if (FieldDecl *Field = Init->getMember())
3020    S.Diag(Init->getSourceLocation(),
3021           diag::err_multiple_mem_initialization)
3022      << Field->getDeclName()
3023      << Init->getSourceRange();
3024  else {
3025    const Type *BaseClass = Init->getBaseClass();
3026    assert(BaseClass && "neither field nor base");
3027    S.Diag(Init->getSourceLocation(),
3028           diag::err_multiple_base_initialization)
3029      << QualType(BaseClass, 0)
3030      << Init->getSourceRange();
3031  }
3032  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3033    << 0 << PrevInit->getSourceRange();
3034
3035  return true;
3036}
3037
3038typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3039typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3040
3041bool CheckRedundantUnionInit(Sema &S,
3042                             CXXCtorInitializer *Init,
3043                             RedundantUnionMap &Unions) {
3044  FieldDecl *Field = Init->getAnyMember();
3045  RecordDecl *Parent = Field->getParent();
3046  if (!Parent->isAnonymousStructOrUnion())
3047    return false;
3048
3049  NamedDecl *Child = Field;
3050  do {
3051    if (Parent->isUnion()) {
3052      UnionEntry &En = Unions[Parent];
3053      if (En.first && En.first != Child) {
3054        S.Diag(Init->getSourceLocation(),
3055               diag::err_multiple_mem_union_initialization)
3056          << Field->getDeclName()
3057          << Init->getSourceRange();
3058        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3059          << 0 << En.second->getSourceRange();
3060        return true;
3061      } else if (!En.first) {
3062        En.first = Child;
3063        En.second = Init;
3064      }
3065    }
3066
3067    Child = Parent;
3068    Parent = cast<RecordDecl>(Parent->getDeclContext());
3069  } while (Parent->isAnonymousStructOrUnion());
3070
3071  return false;
3072}
3073}
3074
3075/// ActOnMemInitializers - Handle the member initializers for a constructor.
3076void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3077                                SourceLocation ColonLoc,
3078                                CXXCtorInitializer **meminits,
3079                                unsigned NumMemInits,
3080                                bool AnyErrors) {
3081  if (!ConstructorDecl)
3082    return;
3083
3084  AdjustDeclIfTemplate(ConstructorDecl);
3085
3086  CXXConstructorDecl *Constructor
3087    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3088
3089  if (!Constructor) {
3090    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3091    return;
3092  }
3093
3094  CXXCtorInitializer **MemInits =
3095    reinterpret_cast<CXXCtorInitializer **>(meminits);
3096
3097  // Mapping for the duplicate initializers check.
3098  // For member initializers, this is keyed with a FieldDecl*.
3099  // For base initializers, this is keyed with a Type*.
3100  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3101
3102  // Mapping for the inconsistent anonymous-union initializers check.
3103  RedundantUnionMap MemberUnions;
3104
3105  bool HadError = false;
3106  for (unsigned i = 0; i < NumMemInits; i++) {
3107    CXXCtorInitializer *Init = MemInits[i];
3108
3109    // Set the source order index.
3110    Init->setSourceOrder(i);
3111
3112    if (Init->isAnyMemberInitializer()) {
3113      FieldDecl *Field = Init->getAnyMember();
3114      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3115          CheckRedundantUnionInit(*this, Init, MemberUnions))
3116        HadError = true;
3117    } else if (Init->isBaseInitializer()) {
3118      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3119      if (CheckRedundantInit(*this, Init, Members[Key]))
3120        HadError = true;
3121    } else {
3122      assert(Init->isDelegatingInitializer());
3123      // This must be the only initializer
3124      if (i != 0 || NumMemInits > 1) {
3125        Diag(MemInits[0]->getSourceLocation(),
3126             diag::err_delegating_initializer_alone)
3127          << MemInits[0]->getSourceRange();
3128        HadError = true;
3129        // We will treat this as being the only initializer.
3130      }
3131      SetDelegatingInitializer(Constructor, MemInits[i]);
3132      // Return immediately as the initializer is set.
3133      return;
3134    }
3135  }
3136
3137  if (HadError)
3138    return;
3139
3140  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3141
3142  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3143}
3144
3145void
3146Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3147                                             CXXRecordDecl *ClassDecl) {
3148  // Ignore dependent contexts. Also ignore unions, since their members never
3149  // have destructors implicitly called.
3150  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3151    return;
3152
3153  // FIXME: all the access-control diagnostics are positioned on the
3154  // field/base declaration.  That's probably good; that said, the
3155  // user might reasonably want to know why the destructor is being
3156  // emitted, and we currently don't say.
3157
3158  // Non-static data members.
3159  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3160       E = ClassDecl->field_end(); I != E; ++I) {
3161    FieldDecl *Field = *I;
3162    if (Field->isInvalidDecl())
3163      continue;
3164    QualType FieldType = Context.getBaseElementType(Field->getType());
3165
3166    const RecordType* RT = FieldType->getAs<RecordType>();
3167    if (!RT)
3168      continue;
3169
3170    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3171    if (FieldClassDecl->isInvalidDecl())
3172      continue;
3173    if (FieldClassDecl->hasTrivialDestructor())
3174      continue;
3175
3176    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3177    assert(Dtor && "No dtor found for FieldClassDecl!");
3178    CheckDestructorAccess(Field->getLocation(), Dtor,
3179                          PDiag(diag::err_access_dtor_field)
3180                            << Field->getDeclName()
3181                            << FieldType);
3182
3183    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3184  }
3185
3186  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3187
3188  // Bases.
3189  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3190       E = ClassDecl->bases_end(); Base != E; ++Base) {
3191    // Bases are always records in a well-formed non-dependent class.
3192    const RecordType *RT = Base->getType()->getAs<RecordType>();
3193
3194    // Remember direct virtual bases.
3195    if (Base->isVirtual())
3196      DirectVirtualBases.insert(RT);
3197
3198    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3199    // If our base class is invalid, we probably can't get its dtor anyway.
3200    if (BaseClassDecl->isInvalidDecl())
3201      continue;
3202    // Ignore trivial destructors.
3203    if (BaseClassDecl->hasTrivialDestructor())
3204      continue;
3205
3206    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3207    assert(Dtor && "No dtor found for BaseClassDecl!");
3208
3209    // FIXME: caret should be on the start of the class name
3210    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3211                          PDiag(diag::err_access_dtor_base)
3212                            << Base->getType()
3213                            << Base->getSourceRange());
3214
3215    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3216  }
3217
3218  // Virtual bases.
3219  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3220       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3221
3222    // Bases are always records in a well-formed non-dependent class.
3223    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3224
3225    // Ignore direct virtual bases.
3226    if (DirectVirtualBases.count(RT))
3227      continue;
3228
3229    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3230    // If our base class is invalid, we probably can't get its dtor anyway.
3231    if (BaseClassDecl->isInvalidDecl())
3232      continue;
3233    // Ignore trivial destructors.
3234    if (BaseClassDecl->hasTrivialDestructor())
3235      continue;
3236
3237    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3238    assert(Dtor && "No dtor found for BaseClassDecl!");
3239    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3240                          PDiag(diag::err_access_dtor_vbase)
3241                            << VBase->getType());
3242
3243    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3244  }
3245}
3246
3247void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3248  if (!CDtorDecl)
3249    return;
3250
3251  if (CXXConstructorDecl *Constructor
3252      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3253    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3254}
3255
3256bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3257                                  unsigned DiagID, AbstractDiagSelID SelID) {
3258  if (SelID == -1)
3259    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3260  else
3261    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3262}
3263
3264bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3265                                  const PartialDiagnostic &PD) {
3266  if (!getLangOptions().CPlusPlus)
3267    return false;
3268
3269  if (const ArrayType *AT = Context.getAsArrayType(T))
3270    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3271
3272  if (const PointerType *PT = T->getAs<PointerType>()) {
3273    // Find the innermost pointer type.
3274    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3275      PT = T;
3276
3277    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3278      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3279  }
3280
3281  const RecordType *RT = T->getAs<RecordType>();
3282  if (!RT)
3283    return false;
3284
3285  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3286
3287  // We can't answer whether something is abstract until it has a
3288  // definition.  If it's currently being defined, we'll walk back
3289  // over all the declarations when we have a full definition.
3290  const CXXRecordDecl *Def = RD->getDefinition();
3291  if (!Def || Def->isBeingDefined())
3292    return false;
3293
3294  if (!RD->isAbstract())
3295    return false;
3296
3297  Diag(Loc, PD) << RD->getDeclName();
3298  DiagnoseAbstractType(RD);
3299
3300  return true;
3301}
3302
3303void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3304  // Check if we've already emitted the list of pure virtual functions
3305  // for this class.
3306  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3307    return;
3308
3309  CXXFinalOverriderMap FinalOverriders;
3310  RD->getFinalOverriders(FinalOverriders);
3311
3312  // Keep a set of seen pure methods so we won't diagnose the same method
3313  // more than once.
3314  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3315
3316  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3317                                   MEnd = FinalOverriders.end();
3318       M != MEnd;
3319       ++M) {
3320    for (OverridingMethods::iterator SO = M->second.begin(),
3321                                  SOEnd = M->second.end();
3322         SO != SOEnd; ++SO) {
3323      // C++ [class.abstract]p4:
3324      //   A class is abstract if it contains or inherits at least one
3325      //   pure virtual function for which the final overrider is pure
3326      //   virtual.
3327
3328      //
3329      if (SO->second.size() != 1)
3330        continue;
3331
3332      if (!SO->second.front().Method->isPure())
3333        continue;
3334
3335      if (!SeenPureMethods.insert(SO->second.front().Method))
3336        continue;
3337
3338      Diag(SO->second.front().Method->getLocation(),
3339           diag::note_pure_virtual_function)
3340        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3341    }
3342  }
3343
3344  if (!PureVirtualClassDiagSet)
3345    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3346  PureVirtualClassDiagSet->insert(RD);
3347}
3348
3349namespace {
3350struct AbstractUsageInfo {
3351  Sema &S;
3352  CXXRecordDecl *Record;
3353  CanQualType AbstractType;
3354  bool Invalid;
3355
3356  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3357    : S(S), Record(Record),
3358      AbstractType(S.Context.getCanonicalType(
3359                   S.Context.getTypeDeclType(Record))),
3360      Invalid(false) {}
3361
3362  void DiagnoseAbstractType() {
3363    if (Invalid) return;
3364    S.DiagnoseAbstractType(Record);
3365    Invalid = true;
3366  }
3367
3368  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3369};
3370
3371struct CheckAbstractUsage {
3372  AbstractUsageInfo &Info;
3373  const NamedDecl *Ctx;
3374
3375  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3376    : Info(Info), Ctx(Ctx) {}
3377
3378  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3379    switch (TL.getTypeLocClass()) {
3380#define ABSTRACT_TYPELOC(CLASS, PARENT)
3381#define TYPELOC(CLASS, PARENT) \
3382    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3383#include "clang/AST/TypeLocNodes.def"
3384    }
3385  }
3386
3387  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3388    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3389    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3390      if (!TL.getArg(I))
3391        continue;
3392
3393      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3394      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3395    }
3396  }
3397
3398  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3399    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3400  }
3401
3402  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3403    // Visit the type parameters from a permissive context.
3404    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3405      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3406      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3407        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3408          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3409      // TODO: other template argument types?
3410    }
3411  }
3412
3413  // Visit pointee types from a permissive context.
3414#define CheckPolymorphic(Type) \
3415  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3416    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3417  }
3418  CheckPolymorphic(PointerTypeLoc)
3419  CheckPolymorphic(ReferenceTypeLoc)
3420  CheckPolymorphic(MemberPointerTypeLoc)
3421  CheckPolymorphic(BlockPointerTypeLoc)
3422  CheckPolymorphic(AtomicTypeLoc)
3423
3424  /// Handle all the types we haven't given a more specific
3425  /// implementation for above.
3426  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3427    // Every other kind of type that we haven't called out already
3428    // that has an inner type is either (1) sugar or (2) contains that
3429    // inner type in some way as a subobject.
3430    if (TypeLoc Next = TL.getNextTypeLoc())
3431      return Visit(Next, Sel);
3432
3433    // If there's no inner type and we're in a permissive context,
3434    // don't diagnose.
3435    if (Sel == Sema::AbstractNone) return;
3436
3437    // Check whether the type matches the abstract type.
3438    QualType T = TL.getType();
3439    if (T->isArrayType()) {
3440      Sel = Sema::AbstractArrayType;
3441      T = Info.S.Context.getBaseElementType(T);
3442    }
3443    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3444    if (CT != Info.AbstractType) return;
3445
3446    // It matched; do some magic.
3447    if (Sel == Sema::AbstractArrayType) {
3448      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3449        << T << TL.getSourceRange();
3450    } else {
3451      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3452        << Sel << T << TL.getSourceRange();
3453    }
3454    Info.DiagnoseAbstractType();
3455  }
3456};
3457
3458void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3459                                  Sema::AbstractDiagSelID Sel) {
3460  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3461}
3462
3463}
3464
3465/// Check for invalid uses of an abstract type in a method declaration.
3466static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3467                                    CXXMethodDecl *MD) {
3468  // No need to do the check on definitions, which require that
3469  // the return/param types be complete.
3470  if (MD->doesThisDeclarationHaveABody())
3471    return;
3472
3473  // For safety's sake, just ignore it if we don't have type source
3474  // information.  This should never happen for non-implicit methods,
3475  // but...
3476  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3477    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3478}
3479
3480/// Check for invalid uses of an abstract type within a class definition.
3481static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3482                                    CXXRecordDecl *RD) {
3483  for (CXXRecordDecl::decl_iterator
3484         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3485    Decl *D = *I;
3486    if (D->isImplicit()) continue;
3487
3488    // Methods and method templates.
3489    if (isa<CXXMethodDecl>(D)) {
3490      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3491    } else if (isa<FunctionTemplateDecl>(D)) {
3492      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3493      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3494
3495    // Fields and static variables.
3496    } else if (isa<FieldDecl>(D)) {
3497      FieldDecl *FD = cast<FieldDecl>(D);
3498      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3499        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3500    } else if (isa<VarDecl>(D)) {
3501      VarDecl *VD = cast<VarDecl>(D);
3502      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3503        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3504
3505    // Nested classes and class templates.
3506    } else if (isa<CXXRecordDecl>(D)) {
3507      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3508    } else if (isa<ClassTemplateDecl>(D)) {
3509      CheckAbstractClassUsage(Info,
3510                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3511    }
3512  }
3513}
3514
3515/// \brief Perform semantic checks on a class definition that has been
3516/// completing, introducing implicitly-declared members, checking for
3517/// abstract types, etc.
3518void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3519  if (!Record)
3520    return;
3521
3522  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3523    AbstractUsageInfo Info(*this, Record);
3524    CheckAbstractClassUsage(Info, Record);
3525  }
3526
3527  // If this is not an aggregate type and has no user-declared constructor,
3528  // complain about any non-static data members of reference or const scalar
3529  // type, since they will never get initializers.
3530  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3531      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3532    bool Complained = false;
3533    for (RecordDecl::field_iterator F = Record->field_begin(),
3534                                 FEnd = Record->field_end();
3535         F != FEnd; ++F) {
3536      if (F->hasInClassInitializer())
3537        continue;
3538
3539      if (F->getType()->isReferenceType() ||
3540          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3541        if (!Complained) {
3542          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3543            << Record->getTagKind() << Record;
3544          Complained = true;
3545        }
3546
3547        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3548          << F->getType()->isReferenceType()
3549          << F->getDeclName();
3550      }
3551    }
3552  }
3553
3554  if (Record->isDynamicClass() && !Record->isDependentType())
3555    DynamicClasses.push_back(Record);
3556
3557  if (Record->getIdentifier()) {
3558    // C++ [class.mem]p13:
3559    //   If T is the name of a class, then each of the following shall have a
3560    //   name different from T:
3561    //     - every member of every anonymous union that is a member of class T.
3562    //
3563    // C++ [class.mem]p14:
3564    //   In addition, if class T has a user-declared constructor (12.1), every
3565    //   non-static data member of class T shall have a name different from T.
3566    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3567         R.first != R.second; ++R.first) {
3568      NamedDecl *D = *R.first;
3569      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3570          isa<IndirectFieldDecl>(D)) {
3571        Diag(D->getLocation(), diag::err_member_name_of_class)
3572          << D->getDeclName();
3573        break;
3574      }
3575    }
3576  }
3577
3578  // Warn if the class has virtual methods but non-virtual public destructor.
3579  if (Record->isPolymorphic() && !Record->isDependentType()) {
3580    CXXDestructorDecl *dtor = Record->getDestructor();
3581    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3582      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3583           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3584  }
3585
3586  // See if a method overloads virtual methods in a base
3587  /// class without overriding any.
3588  if (!Record->isDependentType()) {
3589    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3590                                     MEnd = Record->method_end();
3591         M != MEnd; ++M) {
3592      if (!(*M)->isStatic())
3593        DiagnoseHiddenVirtualMethods(Record, *M);
3594    }
3595  }
3596
3597  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3598  // function that is not a constructor declares that member function to be
3599  // const. [...] The class of which that function is a member shall be
3600  // a literal type.
3601  //
3602  // It's fine to diagnose constructors here too: such constructors cannot
3603  // produce a constant expression, so are ill-formed (no diagnostic required).
3604  //
3605  // If the class has virtual bases, any constexpr members will already have
3606  // been diagnosed by the checks performed on the member declaration, so
3607  // suppress this (less useful) diagnostic.
3608  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3609      !Record->isLiteral() && !Record->getNumVBases()) {
3610    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3611                                     MEnd = Record->method_end();
3612         M != MEnd; ++M) {
3613      if ((*M)->isConstexpr()) {
3614        switch (Record->getTemplateSpecializationKind()) {
3615        case TSK_ImplicitInstantiation:
3616        case TSK_ExplicitInstantiationDeclaration:
3617        case TSK_ExplicitInstantiationDefinition:
3618          // If a template instantiates to a non-literal type, but its members
3619          // instantiate to constexpr functions, the template is technically
3620          // ill-formed, but we allow it for sanity. Such members are treated as
3621          // non-constexpr.
3622          (*M)->setConstexpr(false);
3623          continue;
3624
3625        case TSK_Undeclared:
3626        case TSK_ExplicitSpecialization:
3627          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3628                             PDiag(diag::err_constexpr_method_non_literal));
3629          break;
3630        }
3631
3632        // Only produce one error per class.
3633        break;
3634      }
3635    }
3636  }
3637
3638  // Declare inherited constructors. We do this eagerly here because:
3639  // - The standard requires an eager diagnostic for conflicting inherited
3640  //   constructors from different classes.
3641  // - The lazy declaration of the other implicit constructors is so as to not
3642  //   waste space and performance on classes that are not meant to be
3643  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3644  //   have inherited constructors.
3645  DeclareInheritedConstructors(Record);
3646
3647  if (!Record->isDependentType())
3648    CheckExplicitlyDefaultedMethods(Record);
3649}
3650
3651void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3652  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3653                                      ME = Record->method_end();
3654       MI != ME; ++MI) {
3655    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3656      switch (getSpecialMember(*MI)) {
3657      case CXXDefaultConstructor:
3658        CheckExplicitlyDefaultedDefaultConstructor(
3659                                                  cast<CXXConstructorDecl>(*MI));
3660        break;
3661
3662      case CXXDestructor:
3663        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3664        break;
3665
3666      case CXXCopyConstructor:
3667        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3668        break;
3669
3670      case CXXCopyAssignment:
3671        CheckExplicitlyDefaultedCopyAssignment(*MI);
3672        break;
3673
3674      case CXXMoveConstructor:
3675        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3676        break;
3677
3678      case CXXMoveAssignment:
3679        CheckExplicitlyDefaultedMoveAssignment(*MI);
3680        break;
3681
3682      case CXXInvalid:
3683        llvm_unreachable("non-special member explicitly defaulted!");
3684      }
3685    }
3686  }
3687
3688}
3689
3690void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3691  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3692
3693  // Whether this was the first-declared instance of the constructor.
3694  // This affects whether we implicitly add an exception spec (and, eventually,
3695  // constexpr). It is also ill-formed to explicitly default a constructor such
3696  // that it would be deleted. (C++0x [decl.fct.def.default])
3697  bool First = CD == CD->getCanonicalDecl();
3698
3699  bool HadError = false;
3700  if (CD->getNumParams() != 0) {
3701    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3702      << CD->getSourceRange();
3703    HadError = true;
3704  }
3705
3706  ImplicitExceptionSpecification Spec
3707    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3708  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3709  if (EPI.ExceptionSpecType == EST_Delayed) {
3710    // Exception specification depends on some deferred part of the class. We'll
3711    // try again when the class's definition has been fully processed.
3712    return;
3713  }
3714  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3715                          *ExceptionType = Context.getFunctionType(
3716                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3717
3718  if (CtorType->hasExceptionSpec()) {
3719    if (CheckEquivalentExceptionSpec(
3720          PDiag(diag::err_incorrect_defaulted_exception_spec)
3721            << CXXDefaultConstructor,
3722          PDiag(),
3723          ExceptionType, SourceLocation(),
3724          CtorType, CD->getLocation())) {
3725      HadError = true;
3726    }
3727  } else if (First) {
3728    // We set the declaration to have the computed exception spec here.
3729    // We know there are no parameters.
3730    EPI.ExtInfo = CtorType->getExtInfo();
3731    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3732  }
3733
3734  if (HadError) {
3735    CD->setInvalidDecl();
3736    return;
3737  }
3738
3739  if (ShouldDeleteDefaultConstructor(CD)) {
3740    if (First) {
3741      CD->setDeletedAsWritten();
3742    } else {
3743      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3744        << CXXDefaultConstructor;
3745      CD->setInvalidDecl();
3746    }
3747  }
3748}
3749
3750void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3751  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3752
3753  // Whether this was the first-declared instance of the constructor.
3754  bool First = CD == CD->getCanonicalDecl();
3755
3756  bool HadError = false;
3757  if (CD->getNumParams() != 1) {
3758    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3759      << CD->getSourceRange();
3760    HadError = true;
3761  }
3762
3763  ImplicitExceptionSpecification Spec(Context);
3764  bool Const;
3765  llvm::tie(Spec, Const) =
3766    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3767
3768  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3769  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3770                          *ExceptionType = Context.getFunctionType(
3771                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3772
3773  // Check for parameter type matching.
3774  // This is a copy ctor so we know it's a cv-qualified reference to T.
3775  QualType ArgType = CtorType->getArgType(0);
3776  if (ArgType->getPointeeType().isVolatileQualified()) {
3777    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3778    HadError = true;
3779  }
3780  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3781    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3782    HadError = true;
3783  }
3784
3785  if (CtorType->hasExceptionSpec()) {
3786    if (CheckEquivalentExceptionSpec(
3787          PDiag(diag::err_incorrect_defaulted_exception_spec)
3788            << CXXCopyConstructor,
3789          PDiag(),
3790          ExceptionType, SourceLocation(),
3791          CtorType, CD->getLocation())) {
3792      HadError = true;
3793    }
3794  } else if (First) {
3795    // We set the declaration to have the computed exception spec here.
3796    // We duplicate the one parameter type.
3797    EPI.ExtInfo = CtorType->getExtInfo();
3798    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3799  }
3800
3801  if (HadError) {
3802    CD->setInvalidDecl();
3803    return;
3804  }
3805
3806  if (ShouldDeleteCopyConstructor(CD)) {
3807    if (First) {
3808      CD->setDeletedAsWritten();
3809    } else {
3810      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3811        << CXXCopyConstructor;
3812      CD->setInvalidDecl();
3813    }
3814  }
3815}
3816
3817void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3818  assert(MD->isExplicitlyDefaulted());
3819
3820  // Whether this was the first-declared instance of the operator
3821  bool First = MD == MD->getCanonicalDecl();
3822
3823  bool HadError = false;
3824  if (MD->getNumParams() != 1) {
3825    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3826      << MD->getSourceRange();
3827    HadError = true;
3828  }
3829
3830  QualType ReturnType =
3831    MD->getType()->getAs<FunctionType>()->getResultType();
3832  if (!ReturnType->isLValueReferenceType() ||
3833      !Context.hasSameType(
3834        Context.getCanonicalType(ReturnType->getPointeeType()),
3835        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3836    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3837    HadError = true;
3838  }
3839
3840  ImplicitExceptionSpecification Spec(Context);
3841  bool Const;
3842  llvm::tie(Spec, Const) =
3843    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3844
3845  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3846  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3847                          *ExceptionType = Context.getFunctionType(
3848                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3849
3850  QualType ArgType = OperType->getArgType(0);
3851  if (!ArgType->isLValueReferenceType()) {
3852    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3853    HadError = true;
3854  } else {
3855    if (ArgType->getPointeeType().isVolatileQualified()) {
3856      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3857      HadError = true;
3858    }
3859    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3860      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3861      HadError = true;
3862    }
3863  }
3864
3865  if (OperType->getTypeQuals()) {
3866    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3867    HadError = true;
3868  }
3869
3870  if (OperType->hasExceptionSpec()) {
3871    if (CheckEquivalentExceptionSpec(
3872          PDiag(diag::err_incorrect_defaulted_exception_spec)
3873            << CXXCopyAssignment,
3874          PDiag(),
3875          ExceptionType, SourceLocation(),
3876          OperType, MD->getLocation())) {
3877      HadError = true;
3878    }
3879  } else if (First) {
3880    // We set the declaration to have the computed exception spec here.
3881    // We duplicate the one parameter type.
3882    EPI.RefQualifier = OperType->getRefQualifier();
3883    EPI.ExtInfo = OperType->getExtInfo();
3884    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3885  }
3886
3887  if (HadError) {
3888    MD->setInvalidDecl();
3889    return;
3890  }
3891
3892  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3893    if (First) {
3894      MD->setDeletedAsWritten();
3895    } else {
3896      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3897        << CXXCopyAssignment;
3898      MD->setInvalidDecl();
3899    }
3900  }
3901}
3902
3903void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3904  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3905
3906  // Whether this was the first-declared instance of the constructor.
3907  bool First = CD == CD->getCanonicalDecl();
3908
3909  bool HadError = false;
3910  if (CD->getNumParams() != 1) {
3911    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3912      << CD->getSourceRange();
3913    HadError = true;
3914  }
3915
3916  ImplicitExceptionSpecification Spec(
3917      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3918
3919  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3920  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3921                          *ExceptionType = Context.getFunctionType(
3922                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3923
3924  // Check for parameter type matching.
3925  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3926  QualType ArgType = CtorType->getArgType(0);
3927  if (ArgType->getPointeeType().isVolatileQualified()) {
3928    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3929    HadError = true;
3930  }
3931  if (ArgType->getPointeeType().isConstQualified()) {
3932    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3933    HadError = true;
3934  }
3935
3936  if (CtorType->hasExceptionSpec()) {
3937    if (CheckEquivalentExceptionSpec(
3938          PDiag(diag::err_incorrect_defaulted_exception_spec)
3939            << CXXMoveConstructor,
3940          PDiag(),
3941          ExceptionType, SourceLocation(),
3942          CtorType, CD->getLocation())) {
3943      HadError = true;
3944    }
3945  } else if (First) {
3946    // We set the declaration to have the computed exception spec here.
3947    // We duplicate the one parameter type.
3948    EPI.ExtInfo = CtorType->getExtInfo();
3949    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3950  }
3951
3952  if (HadError) {
3953    CD->setInvalidDecl();
3954    return;
3955  }
3956
3957  if (ShouldDeleteMoveConstructor(CD)) {
3958    if (First) {
3959      CD->setDeletedAsWritten();
3960    } else {
3961      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3962        << CXXMoveConstructor;
3963      CD->setInvalidDecl();
3964    }
3965  }
3966}
3967
3968void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3969  assert(MD->isExplicitlyDefaulted());
3970
3971  // Whether this was the first-declared instance of the operator
3972  bool First = MD == MD->getCanonicalDecl();
3973
3974  bool HadError = false;
3975  if (MD->getNumParams() != 1) {
3976    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
3977      << MD->getSourceRange();
3978    HadError = true;
3979  }
3980
3981  QualType ReturnType =
3982    MD->getType()->getAs<FunctionType>()->getResultType();
3983  if (!ReturnType->isLValueReferenceType() ||
3984      !Context.hasSameType(
3985        Context.getCanonicalType(ReturnType->getPointeeType()),
3986        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3987    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
3988    HadError = true;
3989  }
3990
3991  ImplicitExceptionSpecification Spec(
3992      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
3993
3994  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3995  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3996                          *ExceptionType = Context.getFunctionType(
3997                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3998
3999  QualType ArgType = OperType->getArgType(0);
4000  if (!ArgType->isRValueReferenceType()) {
4001    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4002    HadError = true;
4003  } else {
4004    if (ArgType->getPointeeType().isVolatileQualified()) {
4005      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4006      HadError = true;
4007    }
4008    if (ArgType->getPointeeType().isConstQualified()) {
4009      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4010      HadError = true;
4011    }
4012  }
4013
4014  if (OperType->getTypeQuals()) {
4015    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4016    HadError = true;
4017  }
4018
4019  if (OperType->hasExceptionSpec()) {
4020    if (CheckEquivalentExceptionSpec(
4021          PDiag(diag::err_incorrect_defaulted_exception_spec)
4022            << CXXMoveAssignment,
4023          PDiag(),
4024          ExceptionType, SourceLocation(),
4025          OperType, MD->getLocation())) {
4026      HadError = true;
4027    }
4028  } else if (First) {
4029    // We set the declaration to have the computed exception spec here.
4030    // We duplicate the one parameter type.
4031    EPI.RefQualifier = OperType->getRefQualifier();
4032    EPI.ExtInfo = OperType->getExtInfo();
4033    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4034  }
4035
4036  if (HadError) {
4037    MD->setInvalidDecl();
4038    return;
4039  }
4040
4041  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4042    if (First) {
4043      MD->setDeletedAsWritten();
4044    } else {
4045      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4046        << CXXMoveAssignment;
4047      MD->setInvalidDecl();
4048    }
4049  }
4050}
4051
4052void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4053  assert(DD->isExplicitlyDefaulted());
4054
4055  // Whether this was the first-declared instance of the destructor.
4056  bool First = DD == DD->getCanonicalDecl();
4057
4058  ImplicitExceptionSpecification Spec
4059    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4060  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4061  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4062                          *ExceptionType = Context.getFunctionType(
4063                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4064
4065  if (DtorType->hasExceptionSpec()) {
4066    if (CheckEquivalentExceptionSpec(
4067          PDiag(diag::err_incorrect_defaulted_exception_spec)
4068            << CXXDestructor,
4069          PDiag(),
4070          ExceptionType, SourceLocation(),
4071          DtorType, DD->getLocation())) {
4072      DD->setInvalidDecl();
4073      return;
4074    }
4075  } else if (First) {
4076    // We set the declaration to have the computed exception spec here.
4077    // There are no parameters.
4078    EPI.ExtInfo = DtorType->getExtInfo();
4079    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4080  }
4081
4082  if (ShouldDeleteDestructor(DD)) {
4083    if (First) {
4084      DD->setDeletedAsWritten();
4085    } else {
4086      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4087        << CXXDestructor;
4088      DD->setInvalidDecl();
4089    }
4090  }
4091}
4092
4093bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
4094  CXXRecordDecl *RD = CD->getParent();
4095  assert(!RD->isDependentType() && "do deletion after instantiation");
4096  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4097    return false;
4098
4099  SourceLocation Loc = CD->getLocation();
4100
4101  // Do access control from the constructor
4102  ContextRAII CtorContext(*this, CD);
4103
4104  bool Union = RD->isUnion();
4105  bool AllConst = true;
4106
4107  // We do this because we should never actually use an anonymous
4108  // union's constructor.
4109  if (Union && RD->isAnonymousStructOrUnion())
4110    return false;
4111
4112  // FIXME: We should put some diagnostic logic right into this function.
4113
4114  // C++0x [class.ctor]/5
4115  //    A defaulted default constructor for class X is defined as deleted if:
4116
4117  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4118                                          BE = RD->bases_end();
4119       BI != BE; ++BI) {
4120    // We'll handle this one later
4121    if (BI->isVirtual())
4122      continue;
4123
4124    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4125    assert(BaseDecl && "base isn't a CXXRecordDecl");
4126
4127    // -- any [direct base class] has a type with a destructor that is
4128    //    deleted or inaccessible from the defaulted default constructor
4129    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4130    if (BaseDtor->isDeleted())
4131      return true;
4132    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4133        AR_accessible)
4134      return true;
4135
4136    // -- any [direct base class either] has no default constructor or
4137    //    overload resolution as applied to [its] default constructor
4138    //    results in an ambiguity or in a function that is deleted or
4139    //    inaccessible from the defaulted default constructor
4140    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
4141    if (!BaseDefault || BaseDefault->isDeleted())
4142      return true;
4143
4144    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
4145                               PDiag()) != AR_accessible)
4146      return true;
4147  }
4148
4149  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4150                                          BE = RD->vbases_end();
4151       BI != BE; ++BI) {
4152    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4153    assert(BaseDecl && "base isn't a CXXRecordDecl");
4154
4155    // -- any [virtual base class] has a type with a destructor that is
4156    //    delete or inaccessible from the defaulted default constructor
4157    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4158    if (BaseDtor->isDeleted())
4159      return true;
4160    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4161        AR_accessible)
4162      return true;
4163
4164    // -- any [virtual base class either] has no default constructor or
4165    //    overload resolution as applied to [its] default constructor
4166    //    results in an ambiguity or in a function that is deleted or
4167    //    inaccessible from the defaulted default constructor
4168    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
4169    if (!BaseDefault || BaseDefault->isDeleted())
4170      return true;
4171
4172    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
4173                               PDiag()) != AR_accessible)
4174      return true;
4175  }
4176
4177  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4178                                     FE = RD->field_end();
4179       FI != FE; ++FI) {
4180    if (FI->isInvalidDecl())
4181      continue;
4182
4183    QualType FieldType = Context.getBaseElementType(FI->getType());
4184    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4185
4186    // -- any non-static data member with no brace-or-equal-initializer is of
4187    //    reference type
4188    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4189      return true;
4190
4191    // -- X is a union and all its variant members are of const-qualified type
4192    //    (or array thereof)
4193    if (Union && !FieldType.isConstQualified())
4194      AllConst = false;
4195
4196    if (FieldRecord) {
4197      // -- X is a union-like class that has a variant member with a non-trivial
4198      //    default constructor
4199      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
4200        return true;
4201
4202      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4203      if (FieldDtor->isDeleted())
4204        return true;
4205      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4206          AR_accessible)
4207        return true;
4208
4209      // -- any non-variant non-static data member of const-qualified type (or
4210      //    array thereof) with no brace-or-equal-initializer does not have a
4211      //    user-provided default constructor
4212      if (FieldType.isConstQualified() &&
4213          !FI->hasInClassInitializer() &&
4214          !FieldRecord->hasUserProvidedDefaultConstructor())
4215        return true;
4216
4217      if (!Union && FieldRecord->isUnion() &&
4218          FieldRecord->isAnonymousStructOrUnion()) {
4219        // We're okay to reuse AllConst here since we only care about the
4220        // value otherwise if we're in a union.
4221        AllConst = true;
4222
4223        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4224                                           UE = FieldRecord->field_end();
4225             UI != UE; ++UI) {
4226          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4227          CXXRecordDecl *UnionFieldRecord =
4228            UnionFieldType->getAsCXXRecordDecl();
4229
4230          if (!UnionFieldType.isConstQualified())
4231            AllConst = false;
4232
4233          if (UnionFieldRecord &&
4234              !UnionFieldRecord->hasTrivialDefaultConstructor())
4235            return true;
4236        }
4237
4238        if (AllConst)
4239          return true;
4240
4241        // Don't try to initialize the anonymous union
4242        // This is technically non-conformant, but sanity demands it.
4243        continue;
4244      }
4245
4246      // -- any non-static data member with no brace-or-equal-initializer has
4247      //    class type M (or array thereof) and either M has no default
4248      //    constructor or overload resolution as applied to M's default
4249      //    constructor results in an ambiguity or in a function that is deleted
4250      //    or inaccessible from the defaulted default constructor.
4251      if (!FI->hasInClassInitializer()) {
4252        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
4253        if (!FieldDefault || FieldDefault->isDeleted())
4254          return true;
4255        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
4256                                   PDiag()) != AR_accessible)
4257          return true;
4258      }
4259    } else if (!Union && FieldType.isConstQualified() &&
4260               !FI->hasInClassInitializer()) {
4261      // -- any non-variant non-static data member of const-qualified type (or
4262      //    array thereof) with no brace-or-equal-initializer does not have a
4263      //    user-provided default constructor
4264      return true;
4265    }
4266  }
4267
4268  if (Union && AllConst)
4269    return true;
4270
4271  return false;
4272}
4273
4274bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
4275  CXXRecordDecl *RD = CD->getParent();
4276  assert(!RD->isDependentType() && "do deletion after instantiation");
4277  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4278    return false;
4279
4280  SourceLocation Loc = CD->getLocation();
4281
4282  // Do access control from the constructor
4283  ContextRAII CtorContext(*this, CD);
4284
4285  bool Union = RD->isUnion();
4286
4287  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
4288         "copy assignment arg has no pointee type");
4289  unsigned ArgQuals =
4290    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4291      Qualifiers::Const : 0;
4292
4293  // We do this because we should never actually use an anonymous
4294  // union's constructor.
4295  if (Union && RD->isAnonymousStructOrUnion())
4296    return false;
4297
4298  // FIXME: We should put some diagnostic logic right into this function.
4299
4300  // C++0x [class.copy]/11
4301  //    A defaulted [copy] constructor for class X is defined as delete if X has:
4302
4303  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4304                                          BE = RD->bases_end();
4305       BI != BE; ++BI) {
4306    // We'll handle this one later
4307    if (BI->isVirtual())
4308      continue;
4309
4310    QualType BaseType = BI->getType();
4311    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4312    assert(BaseDecl && "base isn't a CXXRecordDecl");
4313
4314    // -- any [direct base class] of a type with a destructor that is deleted or
4315    //    inaccessible from the defaulted constructor
4316    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4317    if (BaseDtor->isDeleted())
4318      return true;
4319    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4320        AR_accessible)
4321      return true;
4322
4323    // -- a [direct base class] B that cannot be [copied] because overload
4324    //    resolution, as applied to B's [copy] constructor, results in an
4325    //    ambiguity or a function that is deleted or inaccessible from the
4326    //    defaulted constructor
4327    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
4328    if (!BaseCtor || BaseCtor->isDeleted())
4329      return true;
4330    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4331        AR_accessible)
4332      return true;
4333  }
4334
4335  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4336                                          BE = RD->vbases_end();
4337       BI != BE; ++BI) {
4338    QualType BaseType = BI->getType();
4339    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4340    assert(BaseDecl && "base isn't a CXXRecordDecl");
4341
4342    // -- any [virtual base class] of a type with a destructor that is deleted or
4343    //    inaccessible from the defaulted constructor
4344    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4345    if (BaseDtor->isDeleted())
4346      return true;
4347    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4348        AR_accessible)
4349      return true;
4350
4351    // -- a [virtual base class] B that cannot be [copied] because overload
4352    //    resolution, as applied to B's [copy] constructor, results in an
4353    //    ambiguity or a function that is deleted or inaccessible from the
4354    //    defaulted constructor
4355    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
4356    if (!BaseCtor || BaseCtor->isDeleted())
4357      return true;
4358    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4359        AR_accessible)
4360      return true;
4361  }
4362
4363  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4364                                     FE = RD->field_end();
4365       FI != FE; ++FI) {
4366    QualType FieldType = Context.getBaseElementType(FI->getType());
4367
4368    // -- for a copy constructor, a non-static data member of rvalue reference
4369    //    type
4370    if (FieldType->isRValueReferenceType())
4371      return true;
4372
4373    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4374
4375    if (FieldRecord) {
4376      // This is an anonymous union
4377      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4378        // Anonymous unions inside unions do not variant members create
4379        if (!Union) {
4380          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4381                                             UE = FieldRecord->field_end();
4382               UI != UE; ++UI) {
4383            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4384            CXXRecordDecl *UnionFieldRecord =
4385              UnionFieldType->getAsCXXRecordDecl();
4386
4387            // -- a variant member with a non-trivial [copy] constructor and X
4388            //    is a union-like class
4389            if (UnionFieldRecord &&
4390                !UnionFieldRecord->hasTrivialCopyConstructor())
4391              return true;
4392          }
4393        }
4394
4395        // Don't try to initalize an anonymous union
4396        continue;
4397      } else {
4398         // -- a variant member with a non-trivial [copy] constructor and X is a
4399         //    union-like class
4400        if (Union && !FieldRecord->hasTrivialCopyConstructor())
4401          return true;
4402
4403        // -- any [non-static data member] of a type with a destructor that is
4404        //    deleted or inaccessible from the defaulted constructor
4405        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4406        if (FieldDtor->isDeleted())
4407          return true;
4408        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4409            AR_accessible)
4410          return true;
4411      }
4412
4413    // -- a [non-static data member of class type (or array thereof)] B that
4414    //    cannot be [copied] because overload resolution, as applied to B's
4415    //    [copy] constructor, results in an ambiguity or a function that is
4416    //    deleted or inaccessible from the defaulted constructor
4417      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
4418                                                               ArgQuals);
4419      if (!FieldCtor || FieldCtor->isDeleted())
4420        return true;
4421      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4422                                 PDiag()) != AR_accessible)
4423        return true;
4424    }
4425  }
4426
4427  return false;
4428}
4429
4430bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4431  CXXRecordDecl *RD = MD->getParent();
4432  assert(!RD->isDependentType() && "do deletion after instantiation");
4433  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4434    return false;
4435
4436  SourceLocation Loc = MD->getLocation();
4437
4438  // Do access control from the constructor
4439  ContextRAII MethodContext(*this, MD);
4440
4441  bool Union = RD->isUnion();
4442
4443  unsigned ArgQuals =
4444    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4445      Qualifiers::Const : 0;
4446
4447  // We do this because we should never actually use an anonymous
4448  // union's constructor.
4449  if (Union && RD->isAnonymousStructOrUnion())
4450    return false;
4451
4452  // FIXME: We should put some diagnostic logic right into this function.
4453
4454  // C++0x [class.copy]/20
4455  //    A defaulted [copy] assignment operator for class X is defined as deleted
4456  //    if X has:
4457
4458  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4459                                          BE = RD->bases_end();
4460       BI != BE; ++BI) {
4461    // We'll handle this one later
4462    if (BI->isVirtual())
4463      continue;
4464
4465    QualType BaseType = BI->getType();
4466    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4467    assert(BaseDecl && "base isn't a CXXRecordDecl");
4468
4469    // -- a [direct base class] B that cannot be [copied] because overload
4470    //    resolution, as applied to B's [copy] assignment operator, results in
4471    //    an ambiguity or a function that is deleted or inaccessible from the
4472    //    assignment operator
4473    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4474                                                      0);
4475    if (!CopyOper || CopyOper->isDeleted())
4476      return true;
4477    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4478      return true;
4479  }
4480
4481  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4482                                          BE = RD->vbases_end();
4483       BI != BE; ++BI) {
4484    QualType BaseType = BI->getType();
4485    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4486    assert(BaseDecl && "base isn't a CXXRecordDecl");
4487
4488    // -- a [virtual base class] B that cannot be [copied] because overload
4489    //    resolution, as applied to B's [copy] assignment operator, results in
4490    //    an ambiguity or a function that is deleted or inaccessible from the
4491    //    assignment operator
4492    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4493                                                      0);
4494    if (!CopyOper || CopyOper->isDeleted())
4495      return true;
4496    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4497      return true;
4498  }
4499
4500  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4501                                     FE = RD->field_end();
4502       FI != FE; ++FI) {
4503    QualType FieldType = Context.getBaseElementType(FI->getType());
4504
4505    // -- a non-static data member of reference type
4506    if (FieldType->isReferenceType())
4507      return true;
4508
4509    // -- a non-static data member of const non-class type (or array thereof)
4510    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4511      return true;
4512
4513    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4514
4515    if (FieldRecord) {
4516      // This is an anonymous union
4517      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4518        // Anonymous unions inside unions do not variant members create
4519        if (!Union) {
4520          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4521                                             UE = FieldRecord->field_end();
4522               UI != UE; ++UI) {
4523            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4524            CXXRecordDecl *UnionFieldRecord =
4525              UnionFieldType->getAsCXXRecordDecl();
4526
4527            // -- a variant member with a non-trivial [copy] assignment operator
4528            //    and X is a union-like class
4529            if (UnionFieldRecord &&
4530                !UnionFieldRecord->hasTrivialCopyAssignment())
4531              return true;
4532          }
4533        }
4534
4535        // Don't try to initalize an anonymous union
4536        continue;
4537      // -- a variant member with a non-trivial [copy] assignment operator
4538      //    and X is a union-like class
4539      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4540          return true;
4541      }
4542
4543      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4544                                                        false, 0);
4545      if (!CopyOper || CopyOper->isDeleted())
4546        return true;
4547      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4548        return true;
4549    }
4550  }
4551
4552  return false;
4553}
4554
4555bool Sema::ShouldDeleteMoveConstructor(CXXConstructorDecl *CD) {
4556  CXXRecordDecl *RD = CD->getParent();
4557  assert(!RD->isDependentType() && "do deletion after instantiation");
4558  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4559    return false;
4560
4561  SourceLocation Loc = CD->getLocation();
4562
4563  // Do access control from the constructor
4564  ContextRAII CtorContext(*this, CD);
4565
4566  bool Union = RD->isUnion();
4567
4568  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
4569         "copy assignment arg has no pointee type");
4570
4571  // We do this because we should never actually use an anonymous
4572  // union's constructor.
4573  if (Union && RD->isAnonymousStructOrUnion())
4574    return false;
4575
4576  // C++0x [class.copy]/11
4577  //    A defaulted [move] constructor for class X is defined as deleted
4578  //    if X has:
4579
4580  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4581                                          BE = RD->bases_end();
4582       BI != BE; ++BI) {
4583    // We'll handle this one later
4584    if (BI->isVirtual())
4585      continue;
4586
4587    QualType BaseType = BI->getType();
4588    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4589    assert(BaseDecl && "base isn't a CXXRecordDecl");
4590
4591    // -- any [direct base class] of a type with a destructor that is deleted or
4592    //    inaccessible from the defaulted constructor
4593    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4594    if (BaseDtor->isDeleted())
4595      return true;
4596    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4597        AR_accessible)
4598      return true;
4599
4600    // -- a [direct base class] B that cannot be [moved] because overload
4601    //    resolution, as applied to B's [move] constructor, results in an
4602    //    ambiguity or a function that is deleted or inaccessible from the
4603    //    defaulted constructor
4604    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4605    if (!BaseCtor || BaseCtor->isDeleted())
4606      return true;
4607    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4608        AR_accessible)
4609      return true;
4610
4611    // -- for a move constructor, a [direct base class] with a type that
4612    //    does not have a move constructor and is not trivially copyable.
4613    // If the field isn't a record, it's always trivially copyable.
4614    // A moving constructor could be a copy constructor instead.
4615    if (!BaseCtor->isMoveConstructor() &&
4616        !BaseDecl->isTriviallyCopyable())
4617      return true;
4618  }
4619
4620  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4621                                          BE = RD->vbases_end();
4622       BI != BE; ++BI) {
4623    QualType BaseType = BI->getType();
4624    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4625    assert(BaseDecl && "base isn't a CXXRecordDecl");
4626
4627    // -- any [virtual base class] of a type with a destructor that is deleted
4628    //    or inaccessible from the defaulted constructor
4629    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4630    if (BaseDtor->isDeleted())
4631      return true;
4632    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4633        AR_accessible)
4634      return true;
4635
4636    // -- a [virtual base class] B that cannot be [moved] because overload
4637    //    resolution, as applied to B's [move] constructor, results in an
4638    //    ambiguity or a function that is deleted or inaccessible from the
4639    //    defaulted constructor
4640    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4641    if (!BaseCtor || BaseCtor->isDeleted())
4642      return true;
4643    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4644        AR_accessible)
4645      return true;
4646
4647    // -- for a move constructor, a [virtual base class] with a type that
4648    //    does not have a move constructor and is not trivially copyable.
4649    // If the field isn't a record, it's always trivially copyable.
4650    // A moving constructor could be a copy constructor instead.
4651    if (!BaseCtor->isMoveConstructor() &&
4652        !BaseDecl->isTriviallyCopyable())
4653      return true;
4654  }
4655
4656  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4657                                     FE = RD->field_end();
4658       FI != FE; ++FI) {
4659    QualType FieldType = Context.getBaseElementType(FI->getType());
4660
4661    if (CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl()) {
4662      // This is an anonymous union
4663      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4664        // Anonymous unions inside unions do not variant members create
4665        if (!Union) {
4666          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4667                                             UE = FieldRecord->field_end();
4668               UI != UE; ++UI) {
4669            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4670            CXXRecordDecl *UnionFieldRecord =
4671              UnionFieldType->getAsCXXRecordDecl();
4672
4673            // -- a variant member with a non-trivial [move] constructor and X
4674            //    is a union-like class
4675            if (UnionFieldRecord &&
4676                !UnionFieldRecord->hasTrivialMoveConstructor())
4677              return true;
4678          }
4679        }
4680
4681        // Don't try to initalize an anonymous union
4682        continue;
4683      } else {
4684         // -- a variant member with a non-trivial [move] constructor and X is a
4685         //    union-like class
4686        if (Union && !FieldRecord->hasTrivialMoveConstructor())
4687          return true;
4688
4689        // -- any [non-static data member] of a type with a destructor that is
4690        //    deleted or inaccessible from the defaulted constructor
4691        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4692        if (FieldDtor->isDeleted())
4693          return true;
4694        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4695            AR_accessible)
4696          return true;
4697      }
4698
4699      // -- a [non-static data member of class type (or array thereof)] B that
4700      //    cannot be [moved] because overload resolution, as applied to B's
4701      //    [move] constructor, results in an ambiguity or a function that is
4702      //    deleted or inaccessible from the defaulted constructor
4703      CXXConstructorDecl *FieldCtor = LookupMovingConstructor(FieldRecord);
4704      if (!FieldCtor || FieldCtor->isDeleted())
4705        return true;
4706      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4707                                 PDiag()) != AR_accessible)
4708        return true;
4709
4710      // -- for a move constructor, a [non-static data member] with a type that
4711      //    does not have a move constructor and is not trivially copyable.
4712      // If the field isn't a record, it's always trivially copyable.
4713      // A moving constructor could be a copy constructor instead.
4714      if (!FieldCtor->isMoveConstructor() &&
4715          !FieldRecord->isTriviallyCopyable())
4716        return true;
4717    }
4718  }
4719
4720  return false;
4721}
4722
4723bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4724  CXXRecordDecl *RD = MD->getParent();
4725  assert(!RD->isDependentType() && "do deletion after instantiation");
4726  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4727    return false;
4728
4729  SourceLocation Loc = MD->getLocation();
4730
4731  // Do access control from the constructor
4732  ContextRAII MethodContext(*this, MD);
4733
4734  bool Union = RD->isUnion();
4735
4736  // We do this because we should never actually use an anonymous
4737  // union's constructor.
4738  if (Union && RD->isAnonymousStructOrUnion())
4739    return false;
4740
4741  // C++0x [class.copy]/20
4742  //    A defaulted [move] assignment operator for class X is defined as deleted
4743  //    if X has:
4744
4745  //    -- for the move constructor, [...] any direct or indirect virtual base
4746  //       class.
4747  if (RD->getNumVBases() != 0)
4748    return true;
4749
4750  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4751                                          BE = RD->bases_end();
4752       BI != BE; ++BI) {
4753
4754    QualType BaseType = BI->getType();
4755    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4756    assert(BaseDecl && "base isn't a CXXRecordDecl");
4757
4758    // -- a [direct base class] B that cannot be [moved] because overload
4759    //    resolution, as applied to B's [move] assignment operator, results in
4760    //    an ambiguity or a function that is deleted or inaccessible from the
4761    //    assignment operator
4762    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4763    if (!MoveOper || MoveOper->isDeleted())
4764      return true;
4765    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4766      return true;
4767
4768    // -- for the move assignment operator, a [direct base class] with a type
4769    //    that does not have a move assignment operator and is not trivially
4770    //    copyable.
4771    if (!MoveOper->isMoveAssignmentOperator() &&
4772        !BaseDecl->isTriviallyCopyable())
4773      return true;
4774  }
4775
4776  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4777                                     FE = RD->field_end();
4778       FI != FE; ++FI) {
4779    QualType FieldType = Context.getBaseElementType(FI->getType());
4780
4781    // -- a non-static data member of reference type
4782    if (FieldType->isReferenceType())
4783      return true;
4784
4785    // -- a non-static data member of const non-class type (or array thereof)
4786    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4787      return true;
4788
4789    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4790
4791    if (FieldRecord) {
4792      // This is an anonymous union
4793      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4794        // Anonymous unions inside unions do not variant members create
4795        if (!Union) {
4796          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4797                                             UE = FieldRecord->field_end();
4798               UI != UE; ++UI) {
4799            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4800            CXXRecordDecl *UnionFieldRecord =
4801              UnionFieldType->getAsCXXRecordDecl();
4802
4803            // -- a variant member with a non-trivial [move] assignment operator
4804            //    and X is a union-like class
4805            if (UnionFieldRecord &&
4806                !UnionFieldRecord->hasTrivialMoveAssignment())
4807              return true;
4808          }
4809        }
4810
4811        // Don't try to initalize an anonymous union
4812        continue;
4813      // -- a variant member with a non-trivial [move] assignment operator
4814      //    and X is a union-like class
4815      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4816          return true;
4817      }
4818
4819      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4820      if (!MoveOper || MoveOper->isDeleted())
4821        return true;
4822      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4823        return true;
4824
4825      // -- for the move assignment operator, a [non-static data member] with a
4826      //    type that does not have a move assignment operator and is not
4827      //    trivially copyable.
4828      if (!MoveOper->isMoveAssignmentOperator() &&
4829          !FieldRecord->isTriviallyCopyable())
4830        return true;
4831    }
4832  }
4833
4834  return false;
4835}
4836
4837bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4838  CXXRecordDecl *RD = DD->getParent();
4839  assert(!RD->isDependentType() && "do deletion after instantiation");
4840  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4841    return false;
4842
4843  SourceLocation Loc = DD->getLocation();
4844
4845  // Do access control from the destructor
4846  ContextRAII CtorContext(*this, DD);
4847
4848  bool Union = RD->isUnion();
4849
4850  // We do this because we should never actually use an anonymous
4851  // union's destructor.
4852  if (Union && RD->isAnonymousStructOrUnion())
4853    return false;
4854
4855  // C++0x [class.dtor]p5
4856  //    A defaulted destructor for a class X is defined as deleted if:
4857  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4858                                          BE = RD->bases_end();
4859       BI != BE; ++BI) {
4860    // We'll handle this one later
4861    if (BI->isVirtual())
4862      continue;
4863
4864    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4865    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4866    assert(BaseDtor && "base has no destructor");
4867
4868    // -- any direct or virtual base class has a deleted destructor or
4869    //    a destructor that is inaccessible from the defaulted destructor
4870    if (BaseDtor->isDeleted())
4871      return true;
4872    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4873        AR_accessible)
4874      return true;
4875  }
4876
4877  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4878                                          BE = RD->vbases_end();
4879       BI != BE; ++BI) {
4880    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4881    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4882    assert(BaseDtor && "base has no destructor");
4883
4884    // -- any direct or virtual base class has a deleted destructor or
4885    //    a destructor that is inaccessible from the defaulted destructor
4886    if (BaseDtor->isDeleted())
4887      return true;
4888    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4889        AR_accessible)
4890      return true;
4891  }
4892
4893  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4894                                     FE = RD->field_end();
4895       FI != FE; ++FI) {
4896    QualType FieldType = Context.getBaseElementType(FI->getType());
4897    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4898    if (FieldRecord) {
4899      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4900         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4901                                            UE = FieldRecord->field_end();
4902              UI != UE; ++UI) {
4903           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4904           CXXRecordDecl *UnionFieldRecord =
4905             UnionFieldType->getAsCXXRecordDecl();
4906
4907           // -- X is a union-like class that has a variant member with a non-
4908           //    trivial destructor.
4909           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4910             return true;
4911         }
4912      // Technically we are supposed to do this next check unconditionally.
4913      // But that makes absolutely no sense.
4914      } else {
4915        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4916
4917        // -- any of the non-static data members has class type M (or array
4918        //    thereof) and M has a deleted destructor or a destructor that is
4919        //    inaccessible from the defaulted destructor
4920        if (FieldDtor->isDeleted())
4921          return true;
4922        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4923          AR_accessible)
4924        return true;
4925
4926        // -- X is a union-like class that has a variant member with a non-
4927        //    trivial destructor.
4928        if (Union && !FieldDtor->isTrivial())
4929          return true;
4930      }
4931    }
4932  }
4933
4934  if (DD->isVirtual()) {
4935    FunctionDecl *OperatorDelete = 0;
4936    DeclarationName Name =
4937      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4938    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4939          false))
4940      return true;
4941  }
4942
4943
4944  return false;
4945}
4946
4947/// \brief Data used with FindHiddenVirtualMethod
4948namespace {
4949  struct FindHiddenVirtualMethodData {
4950    Sema *S;
4951    CXXMethodDecl *Method;
4952    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4953    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4954  };
4955}
4956
4957/// \brief Member lookup function that determines whether a given C++
4958/// method overloads virtual methods in a base class without overriding any,
4959/// to be used with CXXRecordDecl::lookupInBases().
4960static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4961                                    CXXBasePath &Path,
4962                                    void *UserData) {
4963  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4964
4965  FindHiddenVirtualMethodData &Data
4966    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4967
4968  DeclarationName Name = Data.Method->getDeclName();
4969  assert(Name.getNameKind() == DeclarationName::Identifier);
4970
4971  bool foundSameNameMethod = false;
4972  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4973  for (Path.Decls = BaseRecord->lookup(Name);
4974       Path.Decls.first != Path.Decls.second;
4975       ++Path.Decls.first) {
4976    NamedDecl *D = *Path.Decls.first;
4977    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4978      MD = MD->getCanonicalDecl();
4979      foundSameNameMethod = true;
4980      // Interested only in hidden virtual methods.
4981      if (!MD->isVirtual())
4982        continue;
4983      // If the method we are checking overrides a method from its base
4984      // don't warn about the other overloaded methods.
4985      if (!Data.S->IsOverload(Data.Method, MD, false))
4986        return true;
4987      // Collect the overload only if its hidden.
4988      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4989        overloadedMethods.push_back(MD);
4990    }
4991  }
4992
4993  if (foundSameNameMethod)
4994    Data.OverloadedMethods.append(overloadedMethods.begin(),
4995                                   overloadedMethods.end());
4996  return foundSameNameMethod;
4997}
4998
4999/// \brief See if a method overloads virtual methods in a base class without
5000/// overriding any.
5001void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5002  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5003                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5004    return;
5005  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5006    return;
5007
5008  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5009                     /*bool RecordPaths=*/false,
5010                     /*bool DetectVirtual=*/false);
5011  FindHiddenVirtualMethodData Data;
5012  Data.Method = MD;
5013  Data.S = this;
5014
5015  // Keep the base methods that were overriden or introduced in the subclass
5016  // by 'using' in a set. A base method not in this set is hidden.
5017  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5018       res.first != res.second; ++res.first) {
5019    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5020      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5021                                          E = MD->end_overridden_methods();
5022           I != E; ++I)
5023        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5024    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5025      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5026        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5027  }
5028
5029  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5030      !Data.OverloadedMethods.empty()) {
5031    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5032      << MD << (Data.OverloadedMethods.size() > 1);
5033
5034    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5035      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5036      Diag(overloadedMD->getLocation(),
5037           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5038    }
5039  }
5040}
5041
5042void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5043                                             Decl *TagDecl,
5044                                             SourceLocation LBrac,
5045                                             SourceLocation RBrac,
5046                                             AttributeList *AttrList) {
5047  if (!TagDecl)
5048    return;
5049
5050  AdjustDeclIfTemplate(TagDecl);
5051
5052  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5053              // strict aliasing violation!
5054              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5055              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5056
5057  CheckCompletedCXXClass(
5058                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5059}
5060
5061/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5062/// special functions, such as the default constructor, copy
5063/// constructor, or destructor, to the given C++ class (C++
5064/// [special]p1).  This routine can only be executed just before the
5065/// definition of the class is complete.
5066void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5067  if (!ClassDecl->hasUserDeclaredConstructor())
5068    ++ASTContext::NumImplicitDefaultConstructors;
5069
5070  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5071    ++ASTContext::NumImplicitCopyConstructors;
5072
5073  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5074    ++ASTContext::NumImplicitCopyAssignmentOperators;
5075
5076    // If we have a dynamic class, then the copy assignment operator may be
5077    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5078    // it shows up in the right place in the vtable and that we diagnose
5079    // problems with the implicit exception specification.
5080    if (ClassDecl->isDynamicClass())
5081      DeclareImplicitCopyAssignment(ClassDecl);
5082  }
5083
5084  if (!ClassDecl->hasUserDeclaredDestructor()) {
5085    ++ASTContext::NumImplicitDestructors;
5086
5087    // If we have a dynamic class, then the destructor may be virtual, so we
5088    // have to declare the destructor immediately. This ensures that, e.g., it
5089    // shows up in the right place in the vtable and that we diagnose problems
5090    // with the implicit exception specification.
5091    if (ClassDecl->isDynamicClass())
5092      DeclareImplicitDestructor(ClassDecl);
5093  }
5094}
5095
5096void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5097  if (!D)
5098    return;
5099
5100  int NumParamList = D->getNumTemplateParameterLists();
5101  for (int i = 0; i < NumParamList; i++) {
5102    TemplateParameterList* Params = D->getTemplateParameterList(i);
5103    for (TemplateParameterList::iterator Param = Params->begin(),
5104                                      ParamEnd = Params->end();
5105          Param != ParamEnd; ++Param) {
5106      NamedDecl *Named = cast<NamedDecl>(*Param);
5107      if (Named->getDeclName()) {
5108        S->AddDecl(Named);
5109        IdResolver.AddDecl(Named);
5110      }
5111    }
5112  }
5113}
5114
5115void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5116  if (!D)
5117    return;
5118
5119  TemplateParameterList *Params = 0;
5120  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5121    Params = Template->getTemplateParameters();
5122  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5123           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5124    Params = PartialSpec->getTemplateParameters();
5125  else
5126    return;
5127
5128  for (TemplateParameterList::iterator Param = Params->begin(),
5129                                    ParamEnd = Params->end();
5130       Param != ParamEnd; ++Param) {
5131    NamedDecl *Named = cast<NamedDecl>(*Param);
5132    if (Named->getDeclName()) {
5133      S->AddDecl(Named);
5134      IdResolver.AddDecl(Named);
5135    }
5136  }
5137}
5138
5139void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5140  if (!RecordD) return;
5141  AdjustDeclIfTemplate(RecordD);
5142  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5143  PushDeclContext(S, Record);
5144}
5145
5146void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5147  if (!RecordD) return;
5148  PopDeclContext();
5149}
5150
5151/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5152/// parsing a top-level (non-nested) C++ class, and we are now
5153/// parsing those parts of the given Method declaration that could
5154/// not be parsed earlier (C++ [class.mem]p2), such as default
5155/// arguments. This action should enter the scope of the given
5156/// Method declaration as if we had just parsed the qualified method
5157/// name. However, it should not bring the parameters into scope;
5158/// that will be performed by ActOnDelayedCXXMethodParameter.
5159void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5160}
5161
5162/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5163/// C++ method declaration. We're (re-)introducing the given
5164/// function parameter into scope for use in parsing later parts of
5165/// the method declaration. For example, we could see an
5166/// ActOnParamDefaultArgument event for this parameter.
5167void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5168  if (!ParamD)
5169    return;
5170
5171  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5172
5173  // If this parameter has an unparsed default argument, clear it out
5174  // to make way for the parsed default argument.
5175  if (Param->hasUnparsedDefaultArg())
5176    Param->setDefaultArg(0);
5177
5178  S->AddDecl(Param);
5179  if (Param->getDeclName())
5180    IdResolver.AddDecl(Param);
5181}
5182
5183/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5184/// processing the delayed method declaration for Method. The method
5185/// declaration is now considered finished. There may be a separate
5186/// ActOnStartOfFunctionDef action later (not necessarily
5187/// immediately!) for this method, if it was also defined inside the
5188/// class body.
5189void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5190  if (!MethodD)
5191    return;
5192
5193  AdjustDeclIfTemplate(MethodD);
5194
5195  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5196
5197  // Now that we have our default arguments, check the constructor
5198  // again. It could produce additional diagnostics or affect whether
5199  // the class has implicitly-declared destructors, among other
5200  // things.
5201  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5202    CheckConstructor(Constructor);
5203
5204  // Check the default arguments, which we may have added.
5205  if (!Method->isInvalidDecl())
5206    CheckCXXDefaultArguments(Method);
5207}
5208
5209/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5210/// the well-formedness of the constructor declarator @p D with type @p
5211/// R. If there are any errors in the declarator, this routine will
5212/// emit diagnostics and set the invalid bit to true.  In any case, the type
5213/// will be updated to reflect a well-formed type for the constructor and
5214/// returned.
5215QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5216                                          StorageClass &SC) {
5217  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5218
5219  // C++ [class.ctor]p3:
5220  //   A constructor shall not be virtual (10.3) or static (9.4). A
5221  //   constructor can be invoked for a const, volatile or const
5222  //   volatile object. A constructor shall not be declared const,
5223  //   volatile, or const volatile (9.3.2).
5224  if (isVirtual) {
5225    if (!D.isInvalidType())
5226      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5227        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5228        << SourceRange(D.getIdentifierLoc());
5229    D.setInvalidType();
5230  }
5231  if (SC == SC_Static) {
5232    if (!D.isInvalidType())
5233      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5234        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5235        << SourceRange(D.getIdentifierLoc());
5236    D.setInvalidType();
5237    SC = SC_None;
5238  }
5239
5240  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5241  if (FTI.TypeQuals != 0) {
5242    if (FTI.TypeQuals & Qualifiers::Const)
5243      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5244        << "const" << SourceRange(D.getIdentifierLoc());
5245    if (FTI.TypeQuals & Qualifiers::Volatile)
5246      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5247        << "volatile" << SourceRange(D.getIdentifierLoc());
5248    if (FTI.TypeQuals & Qualifiers::Restrict)
5249      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5250        << "restrict" << SourceRange(D.getIdentifierLoc());
5251    D.setInvalidType();
5252  }
5253
5254  // C++0x [class.ctor]p4:
5255  //   A constructor shall not be declared with a ref-qualifier.
5256  if (FTI.hasRefQualifier()) {
5257    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5258      << FTI.RefQualifierIsLValueRef
5259      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5260    D.setInvalidType();
5261  }
5262
5263  // Rebuild the function type "R" without any type qualifiers (in
5264  // case any of the errors above fired) and with "void" as the
5265  // return type, since constructors don't have return types.
5266  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5267  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5268    return R;
5269
5270  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5271  EPI.TypeQuals = 0;
5272  EPI.RefQualifier = RQ_None;
5273
5274  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5275                                 Proto->getNumArgs(), EPI);
5276}
5277
5278/// CheckConstructor - Checks a fully-formed constructor for
5279/// well-formedness, issuing any diagnostics required. Returns true if
5280/// the constructor declarator is invalid.
5281void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5282  CXXRecordDecl *ClassDecl
5283    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5284  if (!ClassDecl)
5285    return Constructor->setInvalidDecl();
5286
5287  // C++ [class.copy]p3:
5288  //   A declaration of a constructor for a class X is ill-formed if
5289  //   its first parameter is of type (optionally cv-qualified) X and
5290  //   either there are no other parameters or else all other
5291  //   parameters have default arguments.
5292  if (!Constructor->isInvalidDecl() &&
5293      ((Constructor->getNumParams() == 1) ||
5294       (Constructor->getNumParams() > 1 &&
5295        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5296      Constructor->getTemplateSpecializationKind()
5297                                              != TSK_ImplicitInstantiation) {
5298    QualType ParamType = Constructor->getParamDecl(0)->getType();
5299    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5300    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5301      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5302      const char *ConstRef
5303        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5304                                                        : " const &";
5305      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5306        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5307
5308      // FIXME: Rather that making the constructor invalid, we should endeavor
5309      // to fix the type.
5310      Constructor->setInvalidDecl();
5311    }
5312  }
5313}
5314
5315/// CheckDestructor - Checks a fully-formed destructor definition for
5316/// well-formedness, issuing any diagnostics required.  Returns true
5317/// on error.
5318bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5319  CXXRecordDecl *RD = Destructor->getParent();
5320
5321  if (Destructor->isVirtual()) {
5322    SourceLocation Loc;
5323
5324    if (!Destructor->isImplicit())
5325      Loc = Destructor->getLocation();
5326    else
5327      Loc = RD->getLocation();
5328
5329    // If we have a virtual destructor, look up the deallocation function
5330    FunctionDecl *OperatorDelete = 0;
5331    DeclarationName Name =
5332    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5333    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5334      return true;
5335
5336    MarkDeclarationReferenced(Loc, OperatorDelete);
5337
5338    Destructor->setOperatorDelete(OperatorDelete);
5339  }
5340
5341  return false;
5342}
5343
5344static inline bool
5345FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5346  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5347          FTI.ArgInfo[0].Param &&
5348          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5349}
5350
5351/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5352/// the well-formednes of the destructor declarator @p D with type @p
5353/// R. If there are any errors in the declarator, this routine will
5354/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5355/// will be updated to reflect a well-formed type for the destructor and
5356/// returned.
5357QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5358                                         StorageClass& SC) {
5359  // C++ [class.dtor]p1:
5360  //   [...] A typedef-name that names a class is a class-name
5361  //   (7.1.3); however, a typedef-name that names a class shall not
5362  //   be used as the identifier in the declarator for a destructor
5363  //   declaration.
5364  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5365  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5366    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5367      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5368  else if (const TemplateSpecializationType *TST =
5369             DeclaratorType->getAs<TemplateSpecializationType>())
5370    if (TST->isTypeAlias())
5371      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5372        << DeclaratorType << 1;
5373
5374  // C++ [class.dtor]p2:
5375  //   A destructor is used to destroy objects of its class type. A
5376  //   destructor takes no parameters, and no return type can be
5377  //   specified for it (not even void). The address of a destructor
5378  //   shall not be taken. A destructor shall not be static. A
5379  //   destructor can be invoked for a const, volatile or const
5380  //   volatile object. A destructor shall not be declared const,
5381  //   volatile or const volatile (9.3.2).
5382  if (SC == SC_Static) {
5383    if (!D.isInvalidType())
5384      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5385        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5386        << SourceRange(D.getIdentifierLoc())
5387        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5388
5389    SC = SC_None;
5390  }
5391  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5392    // Destructors don't have return types, but the parser will
5393    // happily parse something like:
5394    //
5395    //   class X {
5396    //     float ~X();
5397    //   };
5398    //
5399    // The return type will be eliminated later.
5400    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5401      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5402      << SourceRange(D.getIdentifierLoc());
5403  }
5404
5405  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5406  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5407    if (FTI.TypeQuals & Qualifiers::Const)
5408      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5409        << "const" << SourceRange(D.getIdentifierLoc());
5410    if (FTI.TypeQuals & Qualifiers::Volatile)
5411      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5412        << "volatile" << SourceRange(D.getIdentifierLoc());
5413    if (FTI.TypeQuals & Qualifiers::Restrict)
5414      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5415        << "restrict" << SourceRange(D.getIdentifierLoc());
5416    D.setInvalidType();
5417  }
5418
5419  // C++0x [class.dtor]p2:
5420  //   A destructor shall not be declared with a ref-qualifier.
5421  if (FTI.hasRefQualifier()) {
5422    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5423      << FTI.RefQualifierIsLValueRef
5424      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5425    D.setInvalidType();
5426  }
5427
5428  // Make sure we don't have any parameters.
5429  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5430    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5431
5432    // Delete the parameters.
5433    FTI.freeArgs();
5434    D.setInvalidType();
5435  }
5436
5437  // Make sure the destructor isn't variadic.
5438  if (FTI.isVariadic) {
5439    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5440    D.setInvalidType();
5441  }
5442
5443  // Rebuild the function type "R" without any type qualifiers or
5444  // parameters (in case any of the errors above fired) and with
5445  // "void" as the return type, since destructors don't have return
5446  // types.
5447  if (!D.isInvalidType())
5448    return R;
5449
5450  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5451  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5452  EPI.Variadic = false;
5453  EPI.TypeQuals = 0;
5454  EPI.RefQualifier = RQ_None;
5455  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5456}
5457
5458/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5459/// well-formednes of the conversion function declarator @p D with
5460/// type @p R. If there are any errors in the declarator, this routine
5461/// will emit diagnostics and return true. Otherwise, it will return
5462/// false. Either way, the type @p R will be updated to reflect a
5463/// well-formed type for the conversion operator.
5464void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5465                                     StorageClass& SC) {
5466  // C++ [class.conv.fct]p1:
5467  //   Neither parameter types nor return type can be specified. The
5468  //   type of a conversion function (8.3.5) is "function taking no
5469  //   parameter returning conversion-type-id."
5470  if (SC == SC_Static) {
5471    if (!D.isInvalidType())
5472      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5473        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5474        << SourceRange(D.getIdentifierLoc());
5475    D.setInvalidType();
5476    SC = SC_None;
5477  }
5478
5479  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5480
5481  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5482    // Conversion functions don't have return types, but the parser will
5483    // happily parse something like:
5484    //
5485    //   class X {
5486    //     float operator bool();
5487    //   };
5488    //
5489    // The return type will be changed later anyway.
5490    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5491      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5492      << SourceRange(D.getIdentifierLoc());
5493    D.setInvalidType();
5494  }
5495
5496  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5497
5498  // Make sure we don't have any parameters.
5499  if (Proto->getNumArgs() > 0) {
5500    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5501
5502    // Delete the parameters.
5503    D.getFunctionTypeInfo().freeArgs();
5504    D.setInvalidType();
5505  } else if (Proto->isVariadic()) {
5506    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5507    D.setInvalidType();
5508  }
5509
5510  // Diagnose "&operator bool()" and other such nonsense.  This
5511  // is actually a gcc extension which we don't support.
5512  if (Proto->getResultType() != ConvType) {
5513    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5514      << Proto->getResultType();
5515    D.setInvalidType();
5516    ConvType = Proto->getResultType();
5517  }
5518
5519  // C++ [class.conv.fct]p4:
5520  //   The conversion-type-id shall not represent a function type nor
5521  //   an array type.
5522  if (ConvType->isArrayType()) {
5523    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5524    ConvType = Context.getPointerType(ConvType);
5525    D.setInvalidType();
5526  } else if (ConvType->isFunctionType()) {
5527    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5528    ConvType = Context.getPointerType(ConvType);
5529    D.setInvalidType();
5530  }
5531
5532  // Rebuild the function type "R" without any parameters (in case any
5533  // of the errors above fired) and with the conversion type as the
5534  // return type.
5535  if (D.isInvalidType())
5536    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5537
5538  // C++0x explicit conversion operators.
5539  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
5540    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5541         diag::warn_explicit_conversion_functions)
5542      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5543}
5544
5545/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5546/// the declaration of the given C++ conversion function. This routine
5547/// is responsible for recording the conversion function in the C++
5548/// class, if possible.
5549Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5550  assert(Conversion && "Expected to receive a conversion function declaration");
5551
5552  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5553
5554  // Make sure we aren't redeclaring the conversion function.
5555  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5556
5557  // C++ [class.conv.fct]p1:
5558  //   [...] A conversion function is never used to convert a
5559  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5560  //   same object type (or a reference to it), to a (possibly
5561  //   cv-qualified) base class of that type (or a reference to it),
5562  //   or to (possibly cv-qualified) void.
5563  // FIXME: Suppress this warning if the conversion function ends up being a
5564  // virtual function that overrides a virtual function in a base class.
5565  QualType ClassType
5566    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5567  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5568    ConvType = ConvTypeRef->getPointeeType();
5569  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5570      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5571    /* Suppress diagnostics for instantiations. */;
5572  else if (ConvType->isRecordType()) {
5573    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5574    if (ConvType == ClassType)
5575      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5576        << ClassType;
5577    else if (IsDerivedFrom(ClassType, ConvType))
5578      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5579        <<  ClassType << ConvType;
5580  } else if (ConvType->isVoidType()) {
5581    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5582      << ClassType << ConvType;
5583  }
5584
5585  if (FunctionTemplateDecl *ConversionTemplate
5586                                = Conversion->getDescribedFunctionTemplate())
5587    return ConversionTemplate;
5588
5589  return Conversion;
5590}
5591
5592//===----------------------------------------------------------------------===//
5593// Namespace Handling
5594//===----------------------------------------------------------------------===//
5595
5596
5597
5598/// ActOnStartNamespaceDef - This is called at the start of a namespace
5599/// definition.
5600Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5601                                   SourceLocation InlineLoc,
5602                                   SourceLocation NamespaceLoc,
5603                                   SourceLocation IdentLoc,
5604                                   IdentifierInfo *II,
5605                                   SourceLocation LBrace,
5606                                   AttributeList *AttrList) {
5607  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5608  // For anonymous namespace, take the location of the left brace.
5609  SourceLocation Loc = II ? IdentLoc : LBrace;
5610  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5611                                                 StartLoc, Loc, II);
5612  Namespc->setInline(InlineLoc.isValid());
5613
5614  Scope *DeclRegionScope = NamespcScope->getParent();
5615
5616  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5617
5618  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5619    PushNamespaceVisibilityAttr(Attr);
5620
5621  if (II) {
5622    // C++ [namespace.def]p2:
5623    //   The identifier in an original-namespace-definition shall not
5624    //   have been previously defined in the declarative region in
5625    //   which the original-namespace-definition appears. The
5626    //   identifier in an original-namespace-definition is the name of
5627    //   the namespace. Subsequently in that declarative region, it is
5628    //   treated as an original-namespace-name.
5629    //
5630    // Since namespace names are unique in their scope, and we don't
5631    // look through using directives, just look for any ordinary names.
5632
5633    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5634      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5635      Decl::IDNS_Namespace;
5636    NamedDecl *PrevDecl = 0;
5637    for (DeclContext::lookup_result R
5638            = CurContext->getRedeclContext()->lookup(II);
5639         R.first != R.second; ++R.first) {
5640      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5641        PrevDecl = *R.first;
5642        break;
5643      }
5644    }
5645
5646    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5647      // This is an extended namespace definition.
5648      if (Namespc->isInline() != OrigNS->isInline()) {
5649        // inline-ness must match
5650        if (OrigNS->isInline()) {
5651          // The user probably just forgot the 'inline', so suggest that it
5652          // be added back.
5653          Diag(Namespc->getLocation(),
5654               diag::warn_inline_namespace_reopened_noninline)
5655            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5656        } else {
5657          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5658            << Namespc->isInline();
5659        }
5660        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5661
5662        // Recover by ignoring the new namespace's inline status.
5663        Namespc->setInline(OrigNS->isInline());
5664      }
5665
5666      // Attach this namespace decl to the chain of extended namespace
5667      // definitions.
5668      OrigNS->setNextNamespace(Namespc);
5669      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5670
5671      // Remove the previous declaration from the scope.
5672      if (DeclRegionScope->isDeclScope(OrigNS)) {
5673        IdResolver.RemoveDecl(OrigNS);
5674        DeclRegionScope->RemoveDecl(OrigNS);
5675      }
5676    } else if (PrevDecl) {
5677      // This is an invalid name redefinition.
5678      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5679       << Namespc->getDeclName();
5680      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5681      Namespc->setInvalidDecl();
5682      // Continue on to push Namespc as current DeclContext and return it.
5683    } else if (II->isStr("std") &&
5684               CurContext->getRedeclContext()->isTranslationUnit()) {
5685      // This is the first "real" definition of the namespace "std", so update
5686      // our cache of the "std" namespace to point at this definition.
5687      if (NamespaceDecl *StdNS = getStdNamespace()) {
5688        // We had already defined a dummy namespace "std". Link this new
5689        // namespace definition to the dummy namespace "std".
5690        StdNS->setNextNamespace(Namespc);
5691        StdNS->setLocation(IdentLoc);
5692        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5693      }
5694
5695      // Make our StdNamespace cache point at the first real definition of the
5696      // "std" namespace.
5697      StdNamespace = Namespc;
5698
5699      // Add this instance of "std" to the set of known namespaces
5700      KnownNamespaces[Namespc] = false;
5701    } else if (!Namespc->isInline()) {
5702      // Since this is an "original" namespace, add it to the known set of
5703      // namespaces if it is not an inline namespace.
5704      KnownNamespaces[Namespc] = false;
5705    }
5706
5707    PushOnScopeChains(Namespc, DeclRegionScope);
5708  } else {
5709    // Anonymous namespaces.
5710    assert(Namespc->isAnonymousNamespace());
5711
5712    // Link the anonymous namespace into its parent.
5713    NamespaceDecl *PrevDecl;
5714    DeclContext *Parent = CurContext->getRedeclContext();
5715    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5716      PrevDecl = TU->getAnonymousNamespace();
5717      TU->setAnonymousNamespace(Namespc);
5718    } else {
5719      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5720      PrevDecl = ND->getAnonymousNamespace();
5721      ND->setAnonymousNamespace(Namespc);
5722    }
5723
5724    // Link the anonymous namespace with its previous declaration.
5725    if (PrevDecl) {
5726      assert(PrevDecl->isAnonymousNamespace());
5727      assert(!PrevDecl->getNextNamespace());
5728      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5729      PrevDecl->setNextNamespace(Namespc);
5730
5731      if (Namespc->isInline() != PrevDecl->isInline()) {
5732        // inline-ness must match
5733        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5734          << Namespc->isInline();
5735        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5736        Namespc->setInvalidDecl();
5737        // Recover by ignoring the new namespace's inline status.
5738        Namespc->setInline(PrevDecl->isInline());
5739      }
5740    }
5741
5742    CurContext->addDecl(Namespc);
5743
5744    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5745    //   behaves as if it were replaced by
5746    //     namespace unique { /* empty body */ }
5747    //     using namespace unique;
5748    //     namespace unique { namespace-body }
5749    //   where all occurrences of 'unique' in a translation unit are
5750    //   replaced by the same identifier and this identifier differs
5751    //   from all other identifiers in the entire program.
5752
5753    // We just create the namespace with an empty name and then add an
5754    // implicit using declaration, just like the standard suggests.
5755    //
5756    // CodeGen enforces the "universally unique" aspect by giving all
5757    // declarations semantically contained within an anonymous
5758    // namespace internal linkage.
5759
5760    if (!PrevDecl) {
5761      UsingDirectiveDecl* UD
5762        = UsingDirectiveDecl::Create(Context, CurContext,
5763                                     /* 'using' */ LBrace,
5764                                     /* 'namespace' */ SourceLocation(),
5765                                     /* qualifier */ NestedNameSpecifierLoc(),
5766                                     /* identifier */ SourceLocation(),
5767                                     Namespc,
5768                                     /* Ancestor */ CurContext);
5769      UD->setImplicit();
5770      CurContext->addDecl(UD);
5771    }
5772  }
5773
5774  // Although we could have an invalid decl (i.e. the namespace name is a
5775  // redefinition), push it as current DeclContext and try to continue parsing.
5776  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5777  // for the namespace has the declarations that showed up in that particular
5778  // namespace definition.
5779  PushDeclContext(NamespcScope, Namespc);
5780  return Namespc;
5781}
5782
5783/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5784/// is a namespace alias, returns the namespace it points to.
5785static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5786  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5787    return AD->getNamespace();
5788  return dyn_cast_or_null<NamespaceDecl>(D);
5789}
5790
5791/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5792/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5793void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5794  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5795  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5796  Namespc->setRBraceLoc(RBrace);
5797  PopDeclContext();
5798  if (Namespc->hasAttr<VisibilityAttr>())
5799    PopPragmaVisibility();
5800}
5801
5802CXXRecordDecl *Sema::getStdBadAlloc() const {
5803  return cast_or_null<CXXRecordDecl>(
5804                                  StdBadAlloc.get(Context.getExternalSource()));
5805}
5806
5807NamespaceDecl *Sema::getStdNamespace() const {
5808  return cast_or_null<NamespaceDecl>(
5809                                 StdNamespace.get(Context.getExternalSource()));
5810}
5811
5812/// \brief Retrieve the special "std" namespace, which may require us to
5813/// implicitly define the namespace.
5814NamespaceDecl *Sema::getOrCreateStdNamespace() {
5815  if (!StdNamespace) {
5816    // The "std" namespace has not yet been defined, so build one implicitly.
5817    StdNamespace = NamespaceDecl::Create(Context,
5818                                         Context.getTranslationUnitDecl(),
5819                                         SourceLocation(), SourceLocation(),
5820                                         &PP.getIdentifierTable().get("std"));
5821    getStdNamespace()->setImplicit(true);
5822  }
5823
5824  return getStdNamespace();
5825}
5826
5827/// \brief Determine whether a using statement is in a context where it will be
5828/// apply in all contexts.
5829static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5830  switch (CurContext->getDeclKind()) {
5831    case Decl::TranslationUnit:
5832      return true;
5833    case Decl::LinkageSpec:
5834      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5835    default:
5836      return false;
5837  }
5838}
5839
5840static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5841                                       CXXScopeSpec &SS,
5842                                       SourceLocation IdentLoc,
5843                                       IdentifierInfo *Ident) {
5844  R.clear();
5845  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5846                                               R.getLookupKind(), Sc, &SS, NULL,
5847                                               false, S.CTC_NoKeywords, NULL)) {
5848    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5849        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5850      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5851      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5852      if (DeclContext *DC = S.computeDeclContext(SS, false))
5853        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5854          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5855          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5856      else
5857        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5858          << Ident << CorrectedQuotedStr
5859          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5860
5861      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5862           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5863
5864      Ident = Corrected.getCorrectionAsIdentifierInfo();
5865      R.addDecl(Corrected.getCorrectionDecl());
5866      return true;
5867    }
5868    R.setLookupName(Ident);
5869  }
5870  return false;
5871}
5872
5873Decl *Sema::ActOnUsingDirective(Scope *S,
5874                                          SourceLocation UsingLoc,
5875                                          SourceLocation NamespcLoc,
5876                                          CXXScopeSpec &SS,
5877                                          SourceLocation IdentLoc,
5878                                          IdentifierInfo *NamespcName,
5879                                          AttributeList *AttrList) {
5880  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5881  assert(NamespcName && "Invalid NamespcName.");
5882  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5883
5884  // This can only happen along a recovery path.
5885  while (S->getFlags() & Scope::TemplateParamScope)
5886    S = S->getParent();
5887  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5888
5889  UsingDirectiveDecl *UDir = 0;
5890  NestedNameSpecifier *Qualifier = 0;
5891  if (SS.isSet())
5892    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5893
5894  // Lookup namespace name.
5895  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5896  LookupParsedName(R, S, &SS);
5897  if (R.isAmbiguous())
5898    return 0;
5899
5900  if (R.empty()) {
5901    R.clear();
5902    // Allow "using namespace std;" or "using namespace ::std;" even if
5903    // "std" hasn't been defined yet, for GCC compatibility.
5904    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5905        NamespcName->isStr("std")) {
5906      Diag(IdentLoc, diag::ext_using_undefined_std);
5907      R.addDecl(getOrCreateStdNamespace());
5908      R.resolveKind();
5909    }
5910    // Otherwise, attempt typo correction.
5911    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5912  }
5913
5914  if (!R.empty()) {
5915    NamedDecl *Named = R.getFoundDecl();
5916    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5917        && "expected namespace decl");
5918    // C++ [namespace.udir]p1:
5919    //   A using-directive specifies that the names in the nominated
5920    //   namespace can be used in the scope in which the
5921    //   using-directive appears after the using-directive. During
5922    //   unqualified name lookup (3.4.1), the names appear as if they
5923    //   were declared in the nearest enclosing namespace which
5924    //   contains both the using-directive and the nominated
5925    //   namespace. [Note: in this context, "contains" means "contains
5926    //   directly or indirectly". ]
5927
5928    // Find enclosing context containing both using-directive and
5929    // nominated namespace.
5930    NamespaceDecl *NS = getNamespaceDecl(Named);
5931    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5932    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5933      CommonAncestor = CommonAncestor->getParent();
5934
5935    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5936                                      SS.getWithLocInContext(Context),
5937                                      IdentLoc, Named, CommonAncestor);
5938
5939    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5940        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5941      Diag(IdentLoc, diag::warn_using_directive_in_header);
5942    }
5943
5944    PushUsingDirective(S, UDir);
5945  } else {
5946    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5947  }
5948
5949  // FIXME: We ignore attributes for now.
5950  return UDir;
5951}
5952
5953void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5954  // If scope has associated entity, then using directive is at namespace
5955  // or translation unit scope. We add UsingDirectiveDecls, into
5956  // it's lookup structure.
5957  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5958    Ctx->addDecl(UDir);
5959  else
5960    // Otherwise it is block-sope. using-directives will affect lookup
5961    // only to the end of scope.
5962    S->PushUsingDirective(UDir);
5963}
5964
5965
5966Decl *Sema::ActOnUsingDeclaration(Scope *S,
5967                                  AccessSpecifier AS,
5968                                  bool HasUsingKeyword,
5969                                  SourceLocation UsingLoc,
5970                                  CXXScopeSpec &SS,
5971                                  UnqualifiedId &Name,
5972                                  AttributeList *AttrList,
5973                                  bool IsTypeName,
5974                                  SourceLocation TypenameLoc) {
5975  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5976
5977  switch (Name.getKind()) {
5978  case UnqualifiedId::IK_ImplicitSelfParam:
5979  case UnqualifiedId::IK_Identifier:
5980  case UnqualifiedId::IK_OperatorFunctionId:
5981  case UnqualifiedId::IK_LiteralOperatorId:
5982  case UnqualifiedId::IK_ConversionFunctionId:
5983    break;
5984
5985  case UnqualifiedId::IK_ConstructorName:
5986  case UnqualifiedId::IK_ConstructorTemplateId:
5987    // C++0x inherited constructors.
5988    if (getLangOptions().CPlusPlus0x) break;
5989
5990    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5991      << SS.getRange();
5992    return 0;
5993
5994  case UnqualifiedId::IK_DestructorName:
5995    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5996      << SS.getRange();
5997    return 0;
5998
5999  case UnqualifiedId::IK_TemplateId:
6000    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6001      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6002    return 0;
6003  }
6004
6005  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6006  DeclarationName TargetName = TargetNameInfo.getName();
6007  if (!TargetName)
6008    return 0;
6009
6010  // Warn about using declarations.
6011  // TODO: store that the declaration was written without 'using' and
6012  // talk about access decls instead of using decls in the
6013  // diagnostics.
6014  if (!HasUsingKeyword) {
6015    UsingLoc = Name.getSourceRange().getBegin();
6016
6017    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6018      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6019  }
6020
6021  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6022      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6023    return 0;
6024
6025  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6026                                        TargetNameInfo, AttrList,
6027                                        /* IsInstantiation */ false,
6028                                        IsTypeName, TypenameLoc);
6029  if (UD)
6030    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6031
6032  return UD;
6033}
6034
6035/// \brief Determine whether a using declaration considers the given
6036/// declarations as "equivalent", e.g., if they are redeclarations of
6037/// the same entity or are both typedefs of the same type.
6038static bool
6039IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6040                         bool &SuppressRedeclaration) {
6041  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6042    SuppressRedeclaration = false;
6043    return true;
6044  }
6045
6046  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6047    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6048      SuppressRedeclaration = true;
6049      return Context.hasSameType(TD1->getUnderlyingType(),
6050                                 TD2->getUnderlyingType());
6051    }
6052
6053  return false;
6054}
6055
6056
6057/// Determines whether to create a using shadow decl for a particular
6058/// decl, given the set of decls existing prior to this using lookup.
6059bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6060                                const LookupResult &Previous) {
6061  // Diagnose finding a decl which is not from a base class of the
6062  // current class.  We do this now because there are cases where this
6063  // function will silently decide not to build a shadow decl, which
6064  // will pre-empt further diagnostics.
6065  //
6066  // We don't need to do this in C++0x because we do the check once on
6067  // the qualifier.
6068  //
6069  // FIXME: diagnose the following if we care enough:
6070  //   struct A { int foo; };
6071  //   struct B : A { using A::foo; };
6072  //   template <class T> struct C : A {};
6073  //   template <class T> struct D : C<T> { using B::foo; } // <---
6074  // This is invalid (during instantiation) in C++03 because B::foo
6075  // resolves to the using decl in B, which is not a base class of D<T>.
6076  // We can't diagnose it immediately because C<T> is an unknown
6077  // specialization.  The UsingShadowDecl in D<T> then points directly
6078  // to A::foo, which will look well-formed when we instantiate.
6079  // The right solution is to not collapse the shadow-decl chain.
6080  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6081    DeclContext *OrigDC = Orig->getDeclContext();
6082
6083    // Handle enums and anonymous structs.
6084    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6085    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6086    while (OrigRec->isAnonymousStructOrUnion())
6087      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6088
6089    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6090      if (OrigDC == CurContext) {
6091        Diag(Using->getLocation(),
6092             diag::err_using_decl_nested_name_specifier_is_current_class)
6093          << Using->getQualifierLoc().getSourceRange();
6094        Diag(Orig->getLocation(), diag::note_using_decl_target);
6095        return true;
6096      }
6097
6098      Diag(Using->getQualifierLoc().getBeginLoc(),
6099           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6100        << Using->getQualifier()
6101        << cast<CXXRecordDecl>(CurContext)
6102        << Using->getQualifierLoc().getSourceRange();
6103      Diag(Orig->getLocation(), diag::note_using_decl_target);
6104      return true;
6105    }
6106  }
6107
6108  if (Previous.empty()) return false;
6109
6110  NamedDecl *Target = Orig;
6111  if (isa<UsingShadowDecl>(Target))
6112    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6113
6114  // If the target happens to be one of the previous declarations, we
6115  // don't have a conflict.
6116  //
6117  // FIXME: but we might be increasing its access, in which case we
6118  // should redeclare it.
6119  NamedDecl *NonTag = 0, *Tag = 0;
6120  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6121         I != E; ++I) {
6122    NamedDecl *D = (*I)->getUnderlyingDecl();
6123    bool Result;
6124    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6125      return Result;
6126
6127    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6128  }
6129
6130  if (Target->isFunctionOrFunctionTemplate()) {
6131    FunctionDecl *FD;
6132    if (isa<FunctionTemplateDecl>(Target))
6133      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6134    else
6135      FD = cast<FunctionDecl>(Target);
6136
6137    NamedDecl *OldDecl = 0;
6138    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6139    case Ovl_Overload:
6140      return false;
6141
6142    case Ovl_NonFunction:
6143      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6144      break;
6145
6146    // We found a decl with the exact signature.
6147    case Ovl_Match:
6148      // If we're in a record, we want to hide the target, so we
6149      // return true (without a diagnostic) to tell the caller not to
6150      // build a shadow decl.
6151      if (CurContext->isRecord())
6152        return true;
6153
6154      // If we're not in a record, this is an error.
6155      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6156      break;
6157    }
6158
6159    Diag(Target->getLocation(), diag::note_using_decl_target);
6160    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6161    return true;
6162  }
6163
6164  // Target is not a function.
6165
6166  if (isa<TagDecl>(Target)) {
6167    // No conflict between a tag and a non-tag.
6168    if (!Tag) return false;
6169
6170    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6171    Diag(Target->getLocation(), diag::note_using_decl_target);
6172    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6173    return true;
6174  }
6175
6176  // No conflict between a tag and a non-tag.
6177  if (!NonTag) return false;
6178
6179  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6180  Diag(Target->getLocation(), diag::note_using_decl_target);
6181  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6182  return true;
6183}
6184
6185/// Builds a shadow declaration corresponding to a 'using' declaration.
6186UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6187                                            UsingDecl *UD,
6188                                            NamedDecl *Orig) {
6189
6190  // If we resolved to another shadow declaration, just coalesce them.
6191  NamedDecl *Target = Orig;
6192  if (isa<UsingShadowDecl>(Target)) {
6193    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6194    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6195  }
6196
6197  UsingShadowDecl *Shadow
6198    = UsingShadowDecl::Create(Context, CurContext,
6199                              UD->getLocation(), UD, Target);
6200  UD->addShadowDecl(Shadow);
6201
6202  Shadow->setAccess(UD->getAccess());
6203  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6204    Shadow->setInvalidDecl();
6205
6206  if (S)
6207    PushOnScopeChains(Shadow, S);
6208  else
6209    CurContext->addDecl(Shadow);
6210
6211
6212  return Shadow;
6213}
6214
6215/// Hides a using shadow declaration.  This is required by the current
6216/// using-decl implementation when a resolvable using declaration in a
6217/// class is followed by a declaration which would hide or override
6218/// one or more of the using decl's targets; for example:
6219///
6220///   struct Base { void foo(int); };
6221///   struct Derived : Base {
6222///     using Base::foo;
6223///     void foo(int);
6224///   };
6225///
6226/// The governing language is C++03 [namespace.udecl]p12:
6227///
6228///   When a using-declaration brings names from a base class into a
6229///   derived class scope, member functions in the derived class
6230///   override and/or hide member functions with the same name and
6231///   parameter types in a base class (rather than conflicting).
6232///
6233/// There are two ways to implement this:
6234///   (1) optimistically create shadow decls when they're not hidden
6235///       by existing declarations, or
6236///   (2) don't create any shadow decls (or at least don't make them
6237///       visible) until we've fully parsed/instantiated the class.
6238/// The problem with (1) is that we might have to retroactively remove
6239/// a shadow decl, which requires several O(n) operations because the
6240/// decl structures are (very reasonably) not designed for removal.
6241/// (2) avoids this but is very fiddly and phase-dependent.
6242void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6243  if (Shadow->getDeclName().getNameKind() ==
6244        DeclarationName::CXXConversionFunctionName)
6245    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6246
6247  // Remove it from the DeclContext...
6248  Shadow->getDeclContext()->removeDecl(Shadow);
6249
6250  // ...and the scope, if applicable...
6251  if (S) {
6252    S->RemoveDecl(Shadow);
6253    IdResolver.RemoveDecl(Shadow);
6254  }
6255
6256  // ...and the using decl.
6257  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6258
6259  // TODO: complain somehow if Shadow was used.  It shouldn't
6260  // be possible for this to happen, because...?
6261}
6262
6263/// Builds a using declaration.
6264///
6265/// \param IsInstantiation - Whether this call arises from an
6266///   instantiation of an unresolved using declaration.  We treat
6267///   the lookup differently for these declarations.
6268NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6269                                       SourceLocation UsingLoc,
6270                                       CXXScopeSpec &SS,
6271                                       const DeclarationNameInfo &NameInfo,
6272                                       AttributeList *AttrList,
6273                                       bool IsInstantiation,
6274                                       bool IsTypeName,
6275                                       SourceLocation TypenameLoc) {
6276  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6277  SourceLocation IdentLoc = NameInfo.getLoc();
6278  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6279
6280  // FIXME: We ignore attributes for now.
6281
6282  if (SS.isEmpty()) {
6283    Diag(IdentLoc, diag::err_using_requires_qualname);
6284    return 0;
6285  }
6286
6287  // Do the redeclaration lookup in the current scope.
6288  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6289                        ForRedeclaration);
6290  Previous.setHideTags(false);
6291  if (S) {
6292    LookupName(Previous, S);
6293
6294    // It is really dumb that we have to do this.
6295    LookupResult::Filter F = Previous.makeFilter();
6296    while (F.hasNext()) {
6297      NamedDecl *D = F.next();
6298      if (!isDeclInScope(D, CurContext, S))
6299        F.erase();
6300    }
6301    F.done();
6302  } else {
6303    assert(IsInstantiation && "no scope in non-instantiation");
6304    assert(CurContext->isRecord() && "scope not record in instantiation");
6305    LookupQualifiedName(Previous, CurContext);
6306  }
6307
6308  // Check for invalid redeclarations.
6309  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6310    return 0;
6311
6312  // Check for bad qualifiers.
6313  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6314    return 0;
6315
6316  DeclContext *LookupContext = computeDeclContext(SS);
6317  NamedDecl *D;
6318  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6319  if (!LookupContext) {
6320    if (IsTypeName) {
6321      // FIXME: not all declaration name kinds are legal here
6322      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6323                                              UsingLoc, TypenameLoc,
6324                                              QualifierLoc,
6325                                              IdentLoc, NameInfo.getName());
6326    } else {
6327      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6328                                           QualifierLoc, NameInfo);
6329    }
6330  } else {
6331    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6332                          NameInfo, IsTypeName);
6333  }
6334  D->setAccess(AS);
6335  CurContext->addDecl(D);
6336
6337  if (!LookupContext) return D;
6338  UsingDecl *UD = cast<UsingDecl>(D);
6339
6340  if (RequireCompleteDeclContext(SS, LookupContext)) {
6341    UD->setInvalidDecl();
6342    return UD;
6343  }
6344
6345  // Constructor inheriting using decls get special treatment.
6346  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6347    if (CheckInheritedConstructorUsingDecl(UD))
6348      UD->setInvalidDecl();
6349    return UD;
6350  }
6351
6352  // Otherwise, look up the target name.
6353
6354  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6355
6356  // Unlike most lookups, we don't always want to hide tag
6357  // declarations: tag names are visible through the using declaration
6358  // even if hidden by ordinary names, *except* in a dependent context
6359  // where it's important for the sanity of two-phase lookup.
6360  if (!IsInstantiation)
6361    R.setHideTags(false);
6362
6363  LookupQualifiedName(R, LookupContext);
6364
6365  if (R.empty()) {
6366    Diag(IdentLoc, diag::err_no_member)
6367      << NameInfo.getName() << LookupContext << SS.getRange();
6368    UD->setInvalidDecl();
6369    return UD;
6370  }
6371
6372  if (R.isAmbiguous()) {
6373    UD->setInvalidDecl();
6374    return UD;
6375  }
6376
6377  if (IsTypeName) {
6378    // If we asked for a typename and got a non-type decl, error out.
6379    if (!R.getAsSingle<TypeDecl>()) {
6380      Diag(IdentLoc, diag::err_using_typename_non_type);
6381      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6382        Diag((*I)->getUnderlyingDecl()->getLocation(),
6383             diag::note_using_decl_target);
6384      UD->setInvalidDecl();
6385      return UD;
6386    }
6387  } else {
6388    // If we asked for a non-typename and we got a type, error out,
6389    // but only if this is an instantiation of an unresolved using
6390    // decl.  Otherwise just silently find the type name.
6391    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6392      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6393      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6394      UD->setInvalidDecl();
6395      return UD;
6396    }
6397  }
6398
6399  // C++0x N2914 [namespace.udecl]p6:
6400  // A using-declaration shall not name a namespace.
6401  if (R.getAsSingle<NamespaceDecl>()) {
6402    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6403      << SS.getRange();
6404    UD->setInvalidDecl();
6405    return UD;
6406  }
6407
6408  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6409    if (!CheckUsingShadowDecl(UD, *I, Previous))
6410      BuildUsingShadowDecl(S, UD, *I);
6411  }
6412
6413  return UD;
6414}
6415
6416/// Additional checks for a using declaration referring to a constructor name.
6417bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6418  if (UD->isTypeName()) {
6419    // FIXME: Cannot specify typename when specifying constructor
6420    return true;
6421  }
6422
6423  const Type *SourceType = UD->getQualifier()->getAsType();
6424  assert(SourceType &&
6425         "Using decl naming constructor doesn't have type in scope spec.");
6426  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6427
6428  // Check whether the named type is a direct base class.
6429  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6430  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6431  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6432       BaseIt != BaseE; ++BaseIt) {
6433    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6434    if (CanonicalSourceType == BaseType)
6435      break;
6436  }
6437
6438  if (BaseIt == BaseE) {
6439    // Did not find SourceType in the bases.
6440    Diag(UD->getUsingLocation(),
6441         diag::err_using_decl_constructor_not_in_direct_base)
6442      << UD->getNameInfo().getSourceRange()
6443      << QualType(SourceType, 0) << TargetClass;
6444    return true;
6445  }
6446
6447  BaseIt->setInheritConstructors();
6448
6449  return false;
6450}
6451
6452/// Checks that the given using declaration is not an invalid
6453/// redeclaration.  Note that this is checking only for the using decl
6454/// itself, not for any ill-formedness among the UsingShadowDecls.
6455bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6456                                       bool isTypeName,
6457                                       const CXXScopeSpec &SS,
6458                                       SourceLocation NameLoc,
6459                                       const LookupResult &Prev) {
6460  // C++03 [namespace.udecl]p8:
6461  // C++0x [namespace.udecl]p10:
6462  //   A using-declaration is a declaration and can therefore be used
6463  //   repeatedly where (and only where) multiple declarations are
6464  //   allowed.
6465  //
6466  // That's in non-member contexts.
6467  if (!CurContext->getRedeclContext()->isRecord())
6468    return false;
6469
6470  NestedNameSpecifier *Qual
6471    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6472
6473  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6474    NamedDecl *D = *I;
6475
6476    bool DTypename;
6477    NestedNameSpecifier *DQual;
6478    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6479      DTypename = UD->isTypeName();
6480      DQual = UD->getQualifier();
6481    } else if (UnresolvedUsingValueDecl *UD
6482                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6483      DTypename = false;
6484      DQual = UD->getQualifier();
6485    } else if (UnresolvedUsingTypenameDecl *UD
6486                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6487      DTypename = true;
6488      DQual = UD->getQualifier();
6489    } else continue;
6490
6491    // using decls differ if one says 'typename' and the other doesn't.
6492    // FIXME: non-dependent using decls?
6493    if (isTypeName != DTypename) continue;
6494
6495    // using decls differ if they name different scopes (but note that
6496    // template instantiation can cause this check to trigger when it
6497    // didn't before instantiation).
6498    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6499        Context.getCanonicalNestedNameSpecifier(DQual))
6500      continue;
6501
6502    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6503    Diag(D->getLocation(), diag::note_using_decl) << 1;
6504    return true;
6505  }
6506
6507  return false;
6508}
6509
6510
6511/// Checks that the given nested-name qualifier used in a using decl
6512/// in the current context is appropriately related to the current
6513/// scope.  If an error is found, diagnoses it and returns true.
6514bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6515                                   const CXXScopeSpec &SS,
6516                                   SourceLocation NameLoc) {
6517  DeclContext *NamedContext = computeDeclContext(SS);
6518
6519  if (!CurContext->isRecord()) {
6520    // C++03 [namespace.udecl]p3:
6521    // C++0x [namespace.udecl]p8:
6522    //   A using-declaration for a class member shall be a member-declaration.
6523
6524    // If we weren't able to compute a valid scope, it must be a
6525    // dependent class scope.
6526    if (!NamedContext || NamedContext->isRecord()) {
6527      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6528        << SS.getRange();
6529      return true;
6530    }
6531
6532    // Otherwise, everything is known to be fine.
6533    return false;
6534  }
6535
6536  // The current scope is a record.
6537
6538  // If the named context is dependent, we can't decide much.
6539  if (!NamedContext) {
6540    // FIXME: in C++0x, we can diagnose if we can prove that the
6541    // nested-name-specifier does not refer to a base class, which is
6542    // still possible in some cases.
6543
6544    // Otherwise we have to conservatively report that things might be
6545    // okay.
6546    return false;
6547  }
6548
6549  if (!NamedContext->isRecord()) {
6550    // Ideally this would point at the last name in the specifier,
6551    // but we don't have that level of source info.
6552    Diag(SS.getRange().getBegin(),
6553         diag::err_using_decl_nested_name_specifier_is_not_class)
6554      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6555    return true;
6556  }
6557
6558  if (!NamedContext->isDependentContext() &&
6559      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6560    return true;
6561
6562  if (getLangOptions().CPlusPlus0x) {
6563    // C++0x [namespace.udecl]p3:
6564    //   In a using-declaration used as a member-declaration, the
6565    //   nested-name-specifier shall name a base class of the class
6566    //   being defined.
6567
6568    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6569                                 cast<CXXRecordDecl>(NamedContext))) {
6570      if (CurContext == NamedContext) {
6571        Diag(NameLoc,
6572             diag::err_using_decl_nested_name_specifier_is_current_class)
6573          << SS.getRange();
6574        return true;
6575      }
6576
6577      Diag(SS.getRange().getBegin(),
6578           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6579        << (NestedNameSpecifier*) SS.getScopeRep()
6580        << cast<CXXRecordDecl>(CurContext)
6581        << SS.getRange();
6582      return true;
6583    }
6584
6585    return false;
6586  }
6587
6588  // C++03 [namespace.udecl]p4:
6589  //   A using-declaration used as a member-declaration shall refer
6590  //   to a member of a base class of the class being defined [etc.].
6591
6592  // Salient point: SS doesn't have to name a base class as long as
6593  // lookup only finds members from base classes.  Therefore we can
6594  // diagnose here only if we can prove that that can't happen,
6595  // i.e. if the class hierarchies provably don't intersect.
6596
6597  // TODO: it would be nice if "definitely valid" results were cached
6598  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6599  // need to be repeated.
6600
6601  struct UserData {
6602    llvm::DenseSet<const CXXRecordDecl*> Bases;
6603
6604    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6605      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6606      Data->Bases.insert(Base);
6607      return true;
6608    }
6609
6610    bool hasDependentBases(const CXXRecordDecl *Class) {
6611      return !Class->forallBases(collect, this);
6612    }
6613
6614    /// Returns true if the base is dependent or is one of the
6615    /// accumulated base classes.
6616    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6617      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6618      return !Data->Bases.count(Base);
6619    }
6620
6621    bool mightShareBases(const CXXRecordDecl *Class) {
6622      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6623    }
6624  };
6625
6626  UserData Data;
6627
6628  // Returns false if we find a dependent base.
6629  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6630    return false;
6631
6632  // Returns false if the class has a dependent base or if it or one
6633  // of its bases is present in the base set of the current context.
6634  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6635    return false;
6636
6637  Diag(SS.getRange().getBegin(),
6638       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6639    << (NestedNameSpecifier*) SS.getScopeRep()
6640    << cast<CXXRecordDecl>(CurContext)
6641    << SS.getRange();
6642
6643  return true;
6644}
6645
6646Decl *Sema::ActOnAliasDeclaration(Scope *S,
6647                                  AccessSpecifier AS,
6648                                  MultiTemplateParamsArg TemplateParamLists,
6649                                  SourceLocation UsingLoc,
6650                                  UnqualifiedId &Name,
6651                                  TypeResult Type) {
6652  // Skip up to the relevant declaration scope.
6653  while (S->getFlags() & Scope::TemplateParamScope)
6654    S = S->getParent();
6655  assert((S->getFlags() & Scope::DeclScope) &&
6656         "got alias-declaration outside of declaration scope");
6657
6658  if (Type.isInvalid())
6659    return 0;
6660
6661  bool Invalid = false;
6662  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6663  TypeSourceInfo *TInfo = 0;
6664  GetTypeFromParser(Type.get(), &TInfo);
6665
6666  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6667    return 0;
6668
6669  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6670                                      UPPC_DeclarationType)) {
6671    Invalid = true;
6672    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6673                                             TInfo->getTypeLoc().getBeginLoc());
6674  }
6675
6676  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6677  LookupName(Previous, S);
6678
6679  // Warn about shadowing the name of a template parameter.
6680  if (Previous.isSingleResult() &&
6681      Previous.getFoundDecl()->isTemplateParameter()) {
6682    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
6683                                        Previous.getFoundDecl()))
6684      Invalid = true;
6685    Previous.clear();
6686  }
6687
6688  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6689         "name in alias declaration must be an identifier");
6690  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6691                                               Name.StartLocation,
6692                                               Name.Identifier, TInfo);
6693
6694  NewTD->setAccess(AS);
6695
6696  if (Invalid)
6697    NewTD->setInvalidDecl();
6698
6699  CheckTypedefForVariablyModifiedType(S, NewTD);
6700  Invalid |= NewTD->isInvalidDecl();
6701
6702  bool Redeclaration = false;
6703
6704  NamedDecl *NewND;
6705  if (TemplateParamLists.size()) {
6706    TypeAliasTemplateDecl *OldDecl = 0;
6707    TemplateParameterList *OldTemplateParams = 0;
6708
6709    if (TemplateParamLists.size() != 1) {
6710      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6711        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6712         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6713    }
6714    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6715
6716    // Only consider previous declarations in the same scope.
6717    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6718                         /*ExplicitInstantiationOrSpecialization*/false);
6719    if (!Previous.empty()) {
6720      Redeclaration = true;
6721
6722      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6723      if (!OldDecl && !Invalid) {
6724        Diag(UsingLoc, diag::err_redefinition_different_kind)
6725          << Name.Identifier;
6726
6727        NamedDecl *OldD = Previous.getRepresentativeDecl();
6728        if (OldD->getLocation().isValid())
6729          Diag(OldD->getLocation(), diag::note_previous_definition);
6730
6731        Invalid = true;
6732      }
6733
6734      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6735        if (TemplateParameterListsAreEqual(TemplateParams,
6736                                           OldDecl->getTemplateParameters(),
6737                                           /*Complain=*/true,
6738                                           TPL_TemplateMatch))
6739          OldTemplateParams = OldDecl->getTemplateParameters();
6740        else
6741          Invalid = true;
6742
6743        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6744        if (!Invalid &&
6745            !Context.hasSameType(OldTD->getUnderlyingType(),
6746                                 NewTD->getUnderlyingType())) {
6747          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6748          // but we can't reasonably accept it.
6749          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6750            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6751          if (OldTD->getLocation().isValid())
6752            Diag(OldTD->getLocation(), diag::note_previous_definition);
6753          Invalid = true;
6754        }
6755      }
6756    }
6757
6758    // Merge any previous default template arguments into our parameters,
6759    // and check the parameter list.
6760    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6761                                   TPC_TypeAliasTemplate))
6762      return 0;
6763
6764    TypeAliasTemplateDecl *NewDecl =
6765      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6766                                    Name.Identifier, TemplateParams,
6767                                    NewTD);
6768
6769    NewDecl->setAccess(AS);
6770
6771    if (Invalid)
6772      NewDecl->setInvalidDecl();
6773    else if (OldDecl)
6774      NewDecl->setPreviousDeclaration(OldDecl);
6775
6776    NewND = NewDecl;
6777  } else {
6778    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6779    NewND = NewTD;
6780  }
6781
6782  if (!Redeclaration)
6783    PushOnScopeChains(NewND, S);
6784
6785  return NewND;
6786}
6787
6788Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6789                                             SourceLocation NamespaceLoc,
6790                                             SourceLocation AliasLoc,
6791                                             IdentifierInfo *Alias,
6792                                             CXXScopeSpec &SS,
6793                                             SourceLocation IdentLoc,
6794                                             IdentifierInfo *Ident) {
6795
6796  // Lookup the namespace name.
6797  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6798  LookupParsedName(R, S, &SS);
6799
6800  // Check if we have a previous declaration with the same name.
6801  NamedDecl *PrevDecl
6802    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6803                       ForRedeclaration);
6804  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6805    PrevDecl = 0;
6806
6807  if (PrevDecl) {
6808    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6809      // We already have an alias with the same name that points to the same
6810      // namespace, so don't create a new one.
6811      // FIXME: At some point, we'll want to create the (redundant)
6812      // declaration to maintain better source information.
6813      if (!R.isAmbiguous() && !R.empty() &&
6814          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6815        return 0;
6816    }
6817
6818    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6819      diag::err_redefinition_different_kind;
6820    Diag(AliasLoc, DiagID) << Alias;
6821    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6822    return 0;
6823  }
6824
6825  if (R.isAmbiguous())
6826    return 0;
6827
6828  if (R.empty()) {
6829    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6830      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6831      return 0;
6832    }
6833  }
6834
6835  NamespaceAliasDecl *AliasDecl =
6836    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6837                               Alias, SS.getWithLocInContext(Context),
6838                               IdentLoc, R.getFoundDecl());
6839
6840  PushOnScopeChains(AliasDecl, S);
6841  return AliasDecl;
6842}
6843
6844namespace {
6845  /// \brief Scoped object used to handle the state changes required in Sema
6846  /// to implicitly define the body of a C++ member function;
6847  class ImplicitlyDefinedFunctionScope {
6848    Sema &S;
6849    Sema::ContextRAII SavedContext;
6850
6851  public:
6852    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6853      : S(S), SavedContext(S, Method)
6854    {
6855      S.PushFunctionScope();
6856      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6857    }
6858
6859    ~ImplicitlyDefinedFunctionScope() {
6860      S.PopExpressionEvaluationContext();
6861      S.PopFunctionOrBlockScope();
6862    }
6863  };
6864}
6865
6866Sema::ImplicitExceptionSpecification
6867Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6868  // C++ [except.spec]p14:
6869  //   An implicitly declared special member function (Clause 12) shall have an
6870  //   exception-specification. [...]
6871  ImplicitExceptionSpecification ExceptSpec(Context);
6872  if (ClassDecl->isInvalidDecl())
6873    return ExceptSpec;
6874
6875  // Direct base-class constructors.
6876  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6877                                       BEnd = ClassDecl->bases_end();
6878       B != BEnd; ++B) {
6879    if (B->isVirtual()) // Handled below.
6880      continue;
6881
6882    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6883      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6884      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6885      // If this is a deleted function, add it anyway. This might be conformant
6886      // with the standard. This might not. I'm not sure. It might not matter.
6887      if (Constructor)
6888        ExceptSpec.CalledDecl(Constructor);
6889    }
6890  }
6891
6892  // Virtual base-class constructors.
6893  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6894                                       BEnd = ClassDecl->vbases_end();
6895       B != BEnd; ++B) {
6896    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6897      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6898      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6899      // If this is a deleted function, add it anyway. This might be conformant
6900      // with the standard. This might not. I'm not sure. It might not matter.
6901      if (Constructor)
6902        ExceptSpec.CalledDecl(Constructor);
6903    }
6904  }
6905
6906  // Field constructors.
6907  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6908                               FEnd = ClassDecl->field_end();
6909       F != FEnd; ++F) {
6910    if (F->hasInClassInitializer()) {
6911      if (Expr *E = F->getInClassInitializer())
6912        ExceptSpec.CalledExpr(E);
6913      else if (!F->isInvalidDecl())
6914        ExceptSpec.SetDelayed();
6915    } else if (const RecordType *RecordTy
6916              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6917      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6918      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6919      // If this is a deleted function, add it anyway. This might be conformant
6920      // with the standard. This might not. I'm not sure. It might not matter.
6921      // In particular, the problem is that this function never gets called. It
6922      // might just be ill-formed because this function attempts to refer to
6923      // a deleted function here.
6924      if (Constructor)
6925        ExceptSpec.CalledDecl(Constructor);
6926    }
6927  }
6928
6929  return ExceptSpec;
6930}
6931
6932CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6933                                                     CXXRecordDecl *ClassDecl) {
6934  // C++ [class.ctor]p5:
6935  //   A default constructor for a class X is a constructor of class X
6936  //   that can be called without an argument. If there is no
6937  //   user-declared constructor for class X, a default constructor is
6938  //   implicitly declared. An implicitly-declared default constructor
6939  //   is an inline public member of its class.
6940  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6941         "Should not build implicit default constructor!");
6942
6943  ImplicitExceptionSpecification Spec =
6944    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6945  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6946
6947  // Create the actual constructor declaration.
6948  CanQualType ClassType
6949    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6950  SourceLocation ClassLoc = ClassDecl->getLocation();
6951  DeclarationName Name
6952    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6953  DeclarationNameInfo NameInfo(Name, ClassLoc);
6954  CXXConstructorDecl *DefaultCon
6955    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6956                                 Context.getFunctionType(Context.VoidTy,
6957                                                         0, 0, EPI),
6958                                 /*TInfo=*/0,
6959                                 /*isExplicit=*/false,
6960                                 /*isInline=*/true,
6961                                 /*isImplicitlyDeclared=*/true,
6962                                 // FIXME: apply the rules for definitions here
6963                                 /*isConstexpr=*/false);
6964  DefaultCon->setAccess(AS_public);
6965  DefaultCon->setDefaulted();
6966  DefaultCon->setImplicit();
6967  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6968
6969  // Note that we have declared this constructor.
6970  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6971
6972  if (Scope *S = getScopeForContext(ClassDecl))
6973    PushOnScopeChains(DefaultCon, S, false);
6974  ClassDecl->addDecl(DefaultCon);
6975
6976  if (ShouldDeleteDefaultConstructor(DefaultCon))
6977    DefaultCon->setDeletedAsWritten();
6978
6979  return DefaultCon;
6980}
6981
6982void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6983                                            CXXConstructorDecl *Constructor) {
6984  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6985          !Constructor->doesThisDeclarationHaveABody() &&
6986          !Constructor->isDeleted()) &&
6987    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6988
6989  CXXRecordDecl *ClassDecl = Constructor->getParent();
6990  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6991
6992  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6993  DiagnosticErrorTrap Trap(Diags);
6994  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6995      Trap.hasErrorOccurred()) {
6996    Diag(CurrentLocation, diag::note_member_synthesized_at)
6997      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6998    Constructor->setInvalidDecl();
6999    return;
7000  }
7001
7002  SourceLocation Loc = Constructor->getLocation();
7003  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7004
7005  Constructor->setUsed();
7006  MarkVTableUsed(CurrentLocation, ClassDecl);
7007
7008  if (ASTMutationListener *L = getASTMutationListener()) {
7009    L->CompletedImplicitDefinition(Constructor);
7010  }
7011}
7012
7013/// Get any existing defaulted default constructor for the given class. Do not
7014/// implicitly define one if it does not exist.
7015static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7016                                                             CXXRecordDecl *D) {
7017  ASTContext &Context = Self.Context;
7018  QualType ClassType = Context.getTypeDeclType(D);
7019  DeclarationName ConstructorName
7020    = Context.DeclarationNames.getCXXConstructorName(
7021                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7022
7023  DeclContext::lookup_const_iterator Con, ConEnd;
7024  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7025       Con != ConEnd; ++Con) {
7026    // A function template cannot be defaulted.
7027    if (isa<FunctionTemplateDecl>(*Con))
7028      continue;
7029
7030    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7031    if (Constructor->isDefaultConstructor())
7032      return Constructor->isDefaulted() ? Constructor : 0;
7033  }
7034  return 0;
7035}
7036
7037void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7038  if (!D) return;
7039  AdjustDeclIfTemplate(D);
7040
7041  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7042  CXXConstructorDecl *CtorDecl
7043    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7044
7045  if (!CtorDecl) return;
7046
7047  // Compute the exception specification for the default constructor.
7048  const FunctionProtoType *CtorTy =
7049    CtorDecl->getType()->castAs<FunctionProtoType>();
7050  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7051    ImplicitExceptionSpecification Spec =
7052      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7053    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7054    assert(EPI.ExceptionSpecType != EST_Delayed);
7055
7056    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7057  }
7058
7059  // If the default constructor is explicitly defaulted, checking the exception
7060  // specification is deferred until now.
7061  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7062      !ClassDecl->isDependentType())
7063    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7064}
7065
7066void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7067  // We start with an initial pass over the base classes to collect those that
7068  // inherit constructors from. If there are none, we can forgo all further
7069  // processing.
7070  typedef SmallVector<const RecordType *, 4> BasesVector;
7071  BasesVector BasesToInheritFrom;
7072  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7073                                          BaseE = ClassDecl->bases_end();
7074         BaseIt != BaseE; ++BaseIt) {
7075    if (BaseIt->getInheritConstructors()) {
7076      QualType Base = BaseIt->getType();
7077      if (Base->isDependentType()) {
7078        // If we inherit constructors from anything that is dependent, just
7079        // abort processing altogether. We'll get another chance for the
7080        // instantiations.
7081        return;
7082      }
7083      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7084    }
7085  }
7086  if (BasesToInheritFrom.empty())
7087    return;
7088
7089  // Now collect the constructors that we already have in the current class.
7090  // Those take precedence over inherited constructors.
7091  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7092  //   unless there is a user-declared constructor with the same signature in
7093  //   the class where the using-declaration appears.
7094  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7095  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7096                                    CtorE = ClassDecl->ctor_end();
7097       CtorIt != CtorE; ++CtorIt) {
7098    ExistingConstructors.insert(
7099        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7100  }
7101
7102  Scope *S = getScopeForContext(ClassDecl);
7103  DeclarationName CreatedCtorName =
7104      Context.DeclarationNames.getCXXConstructorName(
7105          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7106
7107  // Now comes the true work.
7108  // First, we keep a map from constructor types to the base that introduced
7109  // them. Needed for finding conflicting constructors. We also keep the
7110  // actually inserted declarations in there, for pretty diagnostics.
7111  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7112  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7113  ConstructorToSourceMap InheritedConstructors;
7114  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7115                             BaseE = BasesToInheritFrom.end();
7116       BaseIt != BaseE; ++BaseIt) {
7117    const RecordType *Base = *BaseIt;
7118    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7119    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7120    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7121                                      CtorE = BaseDecl->ctor_end();
7122         CtorIt != CtorE; ++CtorIt) {
7123      // Find the using declaration for inheriting this base's constructors.
7124      DeclarationName Name =
7125          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7126      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7127          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7128      SourceLocation UsingLoc = UD ? UD->getLocation() :
7129                                     ClassDecl->getLocation();
7130
7131      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7132      //   from the class X named in the using-declaration consists of actual
7133      //   constructors and notional constructors that result from the
7134      //   transformation of defaulted parameters as follows:
7135      //   - all non-template default constructors of X, and
7136      //   - for each non-template constructor of X that has at least one
7137      //     parameter with a default argument, the set of constructors that
7138      //     results from omitting any ellipsis parameter specification and
7139      //     successively omitting parameters with a default argument from the
7140      //     end of the parameter-type-list.
7141      CXXConstructorDecl *BaseCtor = *CtorIt;
7142      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7143      const FunctionProtoType *BaseCtorType =
7144          BaseCtor->getType()->getAs<FunctionProtoType>();
7145
7146      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7147                    maxParams = BaseCtor->getNumParams();
7148           params <= maxParams; ++params) {
7149        // Skip default constructors. They're never inherited.
7150        if (params == 0)
7151          continue;
7152        // Skip copy and move constructors for the same reason.
7153        if (CanBeCopyOrMove && params == 1)
7154          continue;
7155
7156        // Build up a function type for this particular constructor.
7157        // FIXME: The working paper does not consider that the exception spec
7158        // for the inheriting constructor might be larger than that of the
7159        // source. This code doesn't yet, either. When it does, this code will
7160        // need to be delayed until after exception specifications and in-class
7161        // member initializers are attached.
7162        const Type *NewCtorType;
7163        if (params == maxParams)
7164          NewCtorType = BaseCtorType;
7165        else {
7166          SmallVector<QualType, 16> Args;
7167          for (unsigned i = 0; i < params; ++i) {
7168            Args.push_back(BaseCtorType->getArgType(i));
7169          }
7170          FunctionProtoType::ExtProtoInfo ExtInfo =
7171              BaseCtorType->getExtProtoInfo();
7172          ExtInfo.Variadic = false;
7173          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7174                                                Args.data(), params, ExtInfo)
7175                       .getTypePtr();
7176        }
7177        const Type *CanonicalNewCtorType =
7178            Context.getCanonicalType(NewCtorType);
7179
7180        // Now that we have the type, first check if the class already has a
7181        // constructor with this signature.
7182        if (ExistingConstructors.count(CanonicalNewCtorType))
7183          continue;
7184
7185        // Then we check if we have already declared an inherited constructor
7186        // with this signature.
7187        std::pair<ConstructorToSourceMap::iterator, bool> result =
7188            InheritedConstructors.insert(std::make_pair(
7189                CanonicalNewCtorType,
7190                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7191        if (!result.second) {
7192          // Already in the map. If it came from a different class, that's an
7193          // error. Not if it's from the same.
7194          CanQualType PreviousBase = result.first->second.first;
7195          if (CanonicalBase != PreviousBase) {
7196            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7197            const CXXConstructorDecl *PrevBaseCtor =
7198                PrevCtor->getInheritedConstructor();
7199            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7200
7201            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7202            Diag(BaseCtor->getLocation(),
7203                 diag::note_using_decl_constructor_conflict_current_ctor);
7204            Diag(PrevBaseCtor->getLocation(),
7205                 diag::note_using_decl_constructor_conflict_previous_ctor);
7206            Diag(PrevCtor->getLocation(),
7207                 diag::note_using_decl_constructor_conflict_previous_using);
7208          }
7209          continue;
7210        }
7211
7212        // OK, we're there, now add the constructor.
7213        // C++0x [class.inhctor]p8: [...] that would be performed by a
7214        //   user-written inline constructor [...]
7215        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7216        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7217            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7218            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7219            /*ImplicitlyDeclared=*/true,
7220            // FIXME: Due to a defect in the standard, we treat inherited
7221            // constructors as constexpr even if that makes them ill-formed.
7222            /*Constexpr=*/BaseCtor->isConstexpr());
7223        NewCtor->setAccess(BaseCtor->getAccess());
7224
7225        // Build up the parameter decls and add them.
7226        SmallVector<ParmVarDecl *, 16> ParamDecls;
7227        for (unsigned i = 0; i < params; ++i) {
7228          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7229                                                   UsingLoc, UsingLoc,
7230                                                   /*IdentifierInfo=*/0,
7231                                                   BaseCtorType->getArgType(i),
7232                                                   /*TInfo=*/0, SC_None,
7233                                                   SC_None, /*DefaultArg=*/0));
7234        }
7235        NewCtor->setParams(ParamDecls);
7236        NewCtor->setInheritedConstructor(BaseCtor);
7237
7238        PushOnScopeChains(NewCtor, S, false);
7239        ClassDecl->addDecl(NewCtor);
7240        result.first->second.second = NewCtor;
7241      }
7242    }
7243  }
7244}
7245
7246Sema::ImplicitExceptionSpecification
7247Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7248  // C++ [except.spec]p14:
7249  //   An implicitly declared special member function (Clause 12) shall have
7250  //   an exception-specification.
7251  ImplicitExceptionSpecification ExceptSpec(Context);
7252  if (ClassDecl->isInvalidDecl())
7253    return ExceptSpec;
7254
7255  // Direct base-class destructors.
7256  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7257                                       BEnd = ClassDecl->bases_end();
7258       B != BEnd; ++B) {
7259    if (B->isVirtual()) // Handled below.
7260      continue;
7261
7262    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7263      ExceptSpec.CalledDecl(
7264                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7265  }
7266
7267  // Virtual base-class destructors.
7268  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7269                                       BEnd = ClassDecl->vbases_end();
7270       B != BEnd; ++B) {
7271    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7272      ExceptSpec.CalledDecl(
7273                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7274  }
7275
7276  // Field destructors.
7277  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7278                               FEnd = ClassDecl->field_end();
7279       F != FEnd; ++F) {
7280    if (const RecordType *RecordTy
7281        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7282      ExceptSpec.CalledDecl(
7283                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7284  }
7285
7286  return ExceptSpec;
7287}
7288
7289CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7290  // C++ [class.dtor]p2:
7291  //   If a class has no user-declared destructor, a destructor is
7292  //   declared implicitly. An implicitly-declared destructor is an
7293  //   inline public member of its class.
7294
7295  ImplicitExceptionSpecification Spec =
7296      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7297  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7298
7299  // Create the actual destructor declaration.
7300  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7301
7302  CanQualType ClassType
7303    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7304  SourceLocation ClassLoc = ClassDecl->getLocation();
7305  DeclarationName Name
7306    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7307  DeclarationNameInfo NameInfo(Name, ClassLoc);
7308  CXXDestructorDecl *Destructor
7309      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7310                                  /*isInline=*/true,
7311                                  /*isImplicitlyDeclared=*/true);
7312  Destructor->setAccess(AS_public);
7313  Destructor->setDefaulted();
7314  Destructor->setImplicit();
7315  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7316
7317  // Note that we have declared this destructor.
7318  ++ASTContext::NumImplicitDestructorsDeclared;
7319
7320  // Introduce this destructor into its scope.
7321  if (Scope *S = getScopeForContext(ClassDecl))
7322    PushOnScopeChains(Destructor, S, false);
7323  ClassDecl->addDecl(Destructor);
7324
7325  // This could be uniqued if it ever proves significant.
7326  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7327
7328  if (ShouldDeleteDestructor(Destructor))
7329    Destructor->setDeletedAsWritten();
7330
7331  AddOverriddenMethods(ClassDecl, Destructor);
7332
7333  return Destructor;
7334}
7335
7336void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7337                                    CXXDestructorDecl *Destructor) {
7338  assert((Destructor->isDefaulted() &&
7339          !Destructor->doesThisDeclarationHaveABody()) &&
7340         "DefineImplicitDestructor - call it for implicit default dtor");
7341  CXXRecordDecl *ClassDecl = Destructor->getParent();
7342  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7343
7344  if (Destructor->isInvalidDecl())
7345    return;
7346
7347  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7348
7349  DiagnosticErrorTrap Trap(Diags);
7350  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7351                                         Destructor->getParent());
7352
7353  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7354    Diag(CurrentLocation, diag::note_member_synthesized_at)
7355      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7356
7357    Destructor->setInvalidDecl();
7358    return;
7359  }
7360
7361  SourceLocation Loc = Destructor->getLocation();
7362  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7363  Destructor->setImplicitlyDefined(true);
7364  Destructor->setUsed();
7365  MarkVTableUsed(CurrentLocation, ClassDecl);
7366
7367  if (ASTMutationListener *L = getASTMutationListener()) {
7368    L->CompletedImplicitDefinition(Destructor);
7369  }
7370}
7371
7372void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7373                                         CXXDestructorDecl *destructor) {
7374  // C++11 [class.dtor]p3:
7375  //   A declaration of a destructor that does not have an exception-
7376  //   specification is implicitly considered to have the same exception-
7377  //   specification as an implicit declaration.
7378  const FunctionProtoType *dtorType = destructor->getType()->
7379                                        getAs<FunctionProtoType>();
7380  if (dtorType->hasExceptionSpec())
7381    return;
7382
7383  ImplicitExceptionSpecification exceptSpec =
7384      ComputeDefaultedDtorExceptionSpec(classDecl);
7385
7386  // Replace the destructor's type, building off the existing one. Fortunately,
7387  // the only thing of interest in the destructor type is its extended info.
7388  // The return and arguments are fixed.
7389  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7390  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7391  epi.NumExceptions = exceptSpec.size();
7392  epi.Exceptions = exceptSpec.data();
7393  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7394
7395  destructor->setType(ty);
7396
7397  // FIXME: If the destructor has a body that could throw, and the newly created
7398  // spec doesn't allow exceptions, we should emit a warning, because this
7399  // change in behavior can break conforming C++03 programs at runtime.
7400  // However, we don't have a body yet, so it needs to be done somewhere else.
7401}
7402
7403/// \brief Builds a statement that copies/moves the given entity from \p From to
7404/// \c To.
7405///
7406/// This routine is used to copy/move the members of a class with an
7407/// implicitly-declared copy/move assignment operator. When the entities being
7408/// copied are arrays, this routine builds for loops to copy them.
7409///
7410/// \param S The Sema object used for type-checking.
7411///
7412/// \param Loc The location where the implicit copy/move is being generated.
7413///
7414/// \param T The type of the expressions being copied/moved. Both expressions
7415/// must have this type.
7416///
7417/// \param To The expression we are copying/moving to.
7418///
7419/// \param From The expression we are copying/moving from.
7420///
7421/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7422/// Otherwise, it's a non-static member subobject.
7423///
7424/// \param Copying Whether we're copying or moving.
7425///
7426/// \param Depth Internal parameter recording the depth of the recursion.
7427///
7428/// \returns A statement or a loop that copies the expressions.
7429static StmtResult
7430BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7431                      Expr *To, Expr *From,
7432                      bool CopyingBaseSubobject, bool Copying,
7433                      unsigned Depth = 0) {
7434  // C++0x [class.copy]p28:
7435  //   Each subobject is assigned in the manner appropriate to its type:
7436  //
7437  //     - if the subobject is of class type, as if by a call to operator= with
7438  //       the subobject as the object expression and the corresponding
7439  //       subobject of x as a single function argument (as if by explicit
7440  //       qualification; that is, ignoring any possible virtual overriding
7441  //       functions in more derived classes);
7442  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7443    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7444
7445    // Look for operator=.
7446    DeclarationName Name
7447      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7448    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7449    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7450
7451    // Filter out any result that isn't a copy/move-assignment operator.
7452    LookupResult::Filter F = OpLookup.makeFilter();
7453    while (F.hasNext()) {
7454      NamedDecl *D = F.next();
7455      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7456        if (Copying ? Method->isCopyAssignmentOperator() :
7457                      Method->isMoveAssignmentOperator())
7458          continue;
7459
7460      F.erase();
7461    }
7462    F.done();
7463
7464    // Suppress the protected check (C++ [class.protected]) for each of the
7465    // assignment operators we found. This strange dance is required when
7466    // we're assigning via a base classes's copy-assignment operator. To
7467    // ensure that we're getting the right base class subobject (without
7468    // ambiguities), we need to cast "this" to that subobject type; to
7469    // ensure that we don't go through the virtual call mechanism, we need
7470    // to qualify the operator= name with the base class (see below). However,
7471    // this means that if the base class has a protected copy assignment
7472    // operator, the protected member access check will fail. So, we
7473    // rewrite "protected" access to "public" access in this case, since we
7474    // know by construction that we're calling from a derived class.
7475    if (CopyingBaseSubobject) {
7476      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7477           L != LEnd; ++L) {
7478        if (L.getAccess() == AS_protected)
7479          L.setAccess(AS_public);
7480      }
7481    }
7482
7483    // Create the nested-name-specifier that will be used to qualify the
7484    // reference to operator=; this is required to suppress the virtual
7485    // call mechanism.
7486    CXXScopeSpec SS;
7487    SS.MakeTrivial(S.Context,
7488                   NestedNameSpecifier::Create(S.Context, 0, false,
7489                                               T.getTypePtr()),
7490                   Loc);
7491
7492    // Create the reference to operator=.
7493    ExprResult OpEqualRef
7494      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7495                                   /*FirstQualifierInScope=*/0, OpLookup,
7496                                   /*TemplateArgs=*/0,
7497                                   /*SuppressQualifierCheck=*/true);
7498    if (OpEqualRef.isInvalid())
7499      return StmtError();
7500
7501    // Build the call to the assignment operator.
7502
7503    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7504                                                  OpEqualRef.takeAs<Expr>(),
7505                                                  Loc, &From, 1, Loc);
7506    if (Call.isInvalid())
7507      return StmtError();
7508
7509    return S.Owned(Call.takeAs<Stmt>());
7510  }
7511
7512  //     - if the subobject is of scalar type, the built-in assignment
7513  //       operator is used.
7514  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7515  if (!ArrayTy) {
7516    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7517    if (Assignment.isInvalid())
7518      return StmtError();
7519
7520    return S.Owned(Assignment.takeAs<Stmt>());
7521  }
7522
7523  //     - if the subobject is an array, each element is assigned, in the
7524  //       manner appropriate to the element type;
7525
7526  // Construct a loop over the array bounds, e.g.,
7527  //
7528  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7529  //
7530  // that will copy each of the array elements.
7531  QualType SizeType = S.Context.getSizeType();
7532
7533  // Create the iteration variable.
7534  IdentifierInfo *IterationVarName = 0;
7535  {
7536    llvm::SmallString<8> Str;
7537    llvm::raw_svector_ostream OS(Str);
7538    OS << "__i" << Depth;
7539    IterationVarName = &S.Context.Idents.get(OS.str());
7540  }
7541  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7542                                          IterationVarName, SizeType,
7543                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7544                                          SC_None, SC_None);
7545
7546  // Initialize the iteration variable to zero.
7547  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7548  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7549
7550  // Create a reference to the iteration variable; we'll use this several
7551  // times throughout.
7552  Expr *IterationVarRef
7553    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7554  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7555
7556  // Create the DeclStmt that holds the iteration variable.
7557  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7558
7559  // Create the comparison against the array bound.
7560  llvm::APInt Upper
7561    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7562  Expr *Comparison
7563    = new (S.Context) BinaryOperator(IterationVarRef,
7564                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7565                                     BO_NE, S.Context.BoolTy,
7566                                     VK_RValue, OK_Ordinary, Loc);
7567
7568  // Create the pre-increment of the iteration variable.
7569  Expr *Increment
7570    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7571                                    VK_LValue, OK_Ordinary, Loc);
7572
7573  // Subscript the "from" and "to" expressions with the iteration variable.
7574  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7575                                                         IterationVarRef, Loc));
7576  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7577                                                       IterationVarRef, Loc));
7578  if (!Copying) // Cast to rvalue
7579    From = CastForMoving(S, From);
7580
7581  // Build the copy/move for an individual element of the array.
7582  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7583                                          To, From, CopyingBaseSubobject,
7584                                          Copying, Depth + 1);
7585  if (Copy.isInvalid())
7586    return StmtError();
7587
7588  // Construct the loop that copies all elements of this array.
7589  return S.ActOnForStmt(Loc, Loc, InitStmt,
7590                        S.MakeFullExpr(Comparison),
7591                        0, S.MakeFullExpr(Increment),
7592                        Loc, Copy.take());
7593}
7594
7595std::pair<Sema::ImplicitExceptionSpecification, bool>
7596Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7597                                                   CXXRecordDecl *ClassDecl) {
7598  if (ClassDecl->isInvalidDecl())
7599    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7600
7601  // C++ [class.copy]p10:
7602  //   If the class definition does not explicitly declare a copy
7603  //   assignment operator, one is declared implicitly.
7604  //   The implicitly-defined copy assignment operator for a class X
7605  //   will have the form
7606  //
7607  //       X& X::operator=(const X&)
7608  //
7609  //   if
7610  bool HasConstCopyAssignment = true;
7611
7612  //       -- each direct base class B of X has a copy assignment operator
7613  //          whose parameter is of type const B&, const volatile B& or B,
7614  //          and
7615  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7616                                       BaseEnd = ClassDecl->bases_end();
7617       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7618    // We'll handle this below
7619    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7620      continue;
7621
7622    assert(!Base->getType()->isDependentType() &&
7623           "Cannot generate implicit members for class with dependent bases.");
7624    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7625    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7626                            &HasConstCopyAssignment);
7627  }
7628
7629  // In C++0x, the above citation has "or virtual added"
7630  if (LangOpts.CPlusPlus0x) {
7631    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7632                                         BaseEnd = ClassDecl->vbases_end();
7633         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7634      assert(!Base->getType()->isDependentType() &&
7635             "Cannot generate implicit members for class with dependent bases.");
7636      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7637      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7638                              &HasConstCopyAssignment);
7639    }
7640  }
7641
7642  //       -- for all the nonstatic data members of X that are of a class
7643  //          type M (or array thereof), each such class type has a copy
7644  //          assignment operator whose parameter is of type const M&,
7645  //          const volatile M& or M.
7646  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7647                                  FieldEnd = ClassDecl->field_end();
7648       HasConstCopyAssignment && Field != FieldEnd;
7649       ++Field) {
7650    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7651    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7652      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7653                              &HasConstCopyAssignment);
7654    }
7655  }
7656
7657  //   Otherwise, the implicitly declared copy assignment operator will
7658  //   have the form
7659  //
7660  //       X& X::operator=(X&)
7661
7662  // C++ [except.spec]p14:
7663  //   An implicitly declared special member function (Clause 12) shall have an
7664  //   exception-specification. [...]
7665
7666  // It is unspecified whether or not an implicit copy assignment operator
7667  // attempts to deduplicate calls to assignment operators of virtual bases are
7668  // made. As such, this exception specification is effectively unspecified.
7669  // Based on a similar decision made for constness in C++0x, we're erring on
7670  // the side of assuming such calls to be made regardless of whether they
7671  // actually happen.
7672  ImplicitExceptionSpecification ExceptSpec(Context);
7673  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7674  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7675                                       BaseEnd = ClassDecl->bases_end();
7676       Base != BaseEnd; ++Base) {
7677    if (Base->isVirtual())
7678      continue;
7679
7680    CXXRecordDecl *BaseClassDecl
7681      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7682    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7683                                                            ArgQuals, false, 0))
7684      ExceptSpec.CalledDecl(CopyAssign);
7685  }
7686
7687  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7688                                       BaseEnd = ClassDecl->vbases_end();
7689       Base != BaseEnd; ++Base) {
7690    CXXRecordDecl *BaseClassDecl
7691      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7692    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7693                                                            ArgQuals, false, 0))
7694      ExceptSpec.CalledDecl(CopyAssign);
7695  }
7696
7697  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7698                                  FieldEnd = ClassDecl->field_end();
7699       Field != FieldEnd;
7700       ++Field) {
7701    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7702    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7703      if (CXXMethodDecl *CopyAssign =
7704          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7705        ExceptSpec.CalledDecl(CopyAssign);
7706    }
7707  }
7708
7709  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7710}
7711
7712CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7713  // Note: The following rules are largely analoguous to the copy
7714  // constructor rules. Note that virtual bases are not taken into account
7715  // for determining the argument type of the operator. Note also that
7716  // operators taking an object instead of a reference are allowed.
7717
7718  ImplicitExceptionSpecification Spec(Context);
7719  bool Const;
7720  llvm::tie(Spec, Const) =
7721    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7722
7723  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7724  QualType RetType = Context.getLValueReferenceType(ArgType);
7725  if (Const)
7726    ArgType = ArgType.withConst();
7727  ArgType = Context.getLValueReferenceType(ArgType);
7728
7729  //   An implicitly-declared copy assignment operator is an inline public
7730  //   member of its class.
7731  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7732  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7733  SourceLocation ClassLoc = ClassDecl->getLocation();
7734  DeclarationNameInfo NameInfo(Name, ClassLoc);
7735  CXXMethodDecl *CopyAssignment
7736    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7737                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7738                            /*TInfo=*/0, /*isStatic=*/false,
7739                            /*StorageClassAsWritten=*/SC_None,
7740                            /*isInline=*/true, /*isConstexpr=*/false,
7741                            SourceLocation());
7742  CopyAssignment->setAccess(AS_public);
7743  CopyAssignment->setDefaulted();
7744  CopyAssignment->setImplicit();
7745  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7746
7747  // Add the parameter to the operator.
7748  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7749                                               ClassLoc, ClassLoc, /*Id=*/0,
7750                                               ArgType, /*TInfo=*/0,
7751                                               SC_None,
7752                                               SC_None, 0);
7753  CopyAssignment->setParams(FromParam);
7754
7755  // Note that we have added this copy-assignment operator.
7756  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7757
7758  if (Scope *S = getScopeForContext(ClassDecl))
7759    PushOnScopeChains(CopyAssignment, S, false);
7760  ClassDecl->addDecl(CopyAssignment);
7761
7762  // C++0x [class.copy]p18:
7763  //   ... If the class definition declares a move constructor or move
7764  //   assignment operator, the implicitly declared copy assignment operator is
7765  //   defined as deleted; ...
7766  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7767      ClassDecl->hasUserDeclaredMoveAssignment() ||
7768      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7769    CopyAssignment->setDeletedAsWritten();
7770
7771  AddOverriddenMethods(ClassDecl, CopyAssignment);
7772  return CopyAssignment;
7773}
7774
7775void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7776                                        CXXMethodDecl *CopyAssignOperator) {
7777  assert((CopyAssignOperator->isDefaulted() &&
7778          CopyAssignOperator->isOverloadedOperator() &&
7779          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7780          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7781         "DefineImplicitCopyAssignment called for wrong function");
7782
7783  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7784
7785  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7786    CopyAssignOperator->setInvalidDecl();
7787    return;
7788  }
7789
7790  CopyAssignOperator->setUsed();
7791
7792  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7793  DiagnosticErrorTrap Trap(Diags);
7794
7795  // C++0x [class.copy]p30:
7796  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7797  //   for a non-union class X performs memberwise copy assignment of its
7798  //   subobjects. The direct base classes of X are assigned first, in the
7799  //   order of their declaration in the base-specifier-list, and then the
7800  //   immediate non-static data members of X are assigned, in the order in
7801  //   which they were declared in the class definition.
7802
7803  // The statements that form the synthesized function body.
7804  ASTOwningVector<Stmt*> Statements(*this);
7805
7806  // The parameter for the "other" object, which we are copying from.
7807  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7808  Qualifiers OtherQuals = Other->getType().getQualifiers();
7809  QualType OtherRefType = Other->getType();
7810  if (const LValueReferenceType *OtherRef
7811                                = OtherRefType->getAs<LValueReferenceType>()) {
7812    OtherRefType = OtherRef->getPointeeType();
7813    OtherQuals = OtherRefType.getQualifiers();
7814  }
7815
7816  // Our location for everything implicitly-generated.
7817  SourceLocation Loc = CopyAssignOperator->getLocation();
7818
7819  // Construct a reference to the "other" object. We'll be using this
7820  // throughout the generated ASTs.
7821  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7822  assert(OtherRef && "Reference to parameter cannot fail!");
7823
7824  // Construct the "this" pointer. We'll be using this throughout the generated
7825  // ASTs.
7826  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7827  assert(This && "Reference to this cannot fail!");
7828
7829  // Assign base classes.
7830  bool Invalid = false;
7831  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7832       E = ClassDecl->bases_end(); Base != E; ++Base) {
7833    // Form the assignment:
7834    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7835    QualType BaseType = Base->getType().getUnqualifiedType();
7836    if (!BaseType->isRecordType()) {
7837      Invalid = true;
7838      continue;
7839    }
7840
7841    CXXCastPath BasePath;
7842    BasePath.push_back(Base);
7843
7844    // Construct the "from" expression, which is an implicit cast to the
7845    // appropriately-qualified base type.
7846    Expr *From = OtherRef;
7847    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7848                             CK_UncheckedDerivedToBase,
7849                             VK_LValue, &BasePath).take();
7850
7851    // Dereference "this".
7852    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7853
7854    // Implicitly cast "this" to the appropriately-qualified base type.
7855    To = ImpCastExprToType(To.take(),
7856                           Context.getCVRQualifiedType(BaseType,
7857                                     CopyAssignOperator->getTypeQualifiers()),
7858                           CK_UncheckedDerivedToBase,
7859                           VK_LValue, &BasePath);
7860
7861    // Build the copy.
7862    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7863                                            To.get(), From,
7864                                            /*CopyingBaseSubobject=*/true,
7865                                            /*Copying=*/true);
7866    if (Copy.isInvalid()) {
7867      Diag(CurrentLocation, diag::note_member_synthesized_at)
7868        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7869      CopyAssignOperator->setInvalidDecl();
7870      return;
7871    }
7872
7873    // Success! Record the copy.
7874    Statements.push_back(Copy.takeAs<Expr>());
7875  }
7876
7877  // \brief Reference to the __builtin_memcpy function.
7878  Expr *BuiltinMemCpyRef = 0;
7879  // \brief Reference to the __builtin_objc_memmove_collectable function.
7880  Expr *CollectableMemCpyRef = 0;
7881
7882  // Assign non-static members.
7883  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7884                                  FieldEnd = ClassDecl->field_end();
7885       Field != FieldEnd; ++Field) {
7886    // Check for members of reference type; we can't copy those.
7887    if (Field->getType()->isReferenceType()) {
7888      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7889        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7890      Diag(Field->getLocation(), diag::note_declared_at);
7891      Diag(CurrentLocation, diag::note_member_synthesized_at)
7892        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7893      Invalid = true;
7894      continue;
7895    }
7896
7897    // Check for members of const-qualified, non-class type.
7898    QualType BaseType = Context.getBaseElementType(Field->getType());
7899    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7900      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7901        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7902      Diag(Field->getLocation(), diag::note_declared_at);
7903      Diag(CurrentLocation, diag::note_member_synthesized_at)
7904        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7905      Invalid = true;
7906      continue;
7907    }
7908
7909    // Suppress assigning zero-width bitfields.
7910    if (const Expr *Width = Field->getBitWidth())
7911      if (Width->EvaluateAsInt(Context) == 0)
7912        continue;
7913
7914    QualType FieldType = Field->getType().getNonReferenceType();
7915    if (FieldType->isIncompleteArrayType()) {
7916      assert(ClassDecl->hasFlexibleArrayMember() &&
7917             "Incomplete array type is not valid");
7918      continue;
7919    }
7920
7921    // Build references to the field in the object we're copying from and to.
7922    CXXScopeSpec SS; // Intentionally empty
7923    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7924                              LookupMemberName);
7925    MemberLookup.addDecl(*Field);
7926    MemberLookup.resolveKind();
7927    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7928                                               Loc, /*IsArrow=*/false,
7929                                               SS, 0, MemberLookup, 0);
7930    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7931                                             Loc, /*IsArrow=*/true,
7932                                             SS, 0, MemberLookup, 0);
7933    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7934    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7935
7936    // If the field should be copied with __builtin_memcpy rather than via
7937    // explicit assignments, do so. This optimization only applies for arrays
7938    // of scalars and arrays of class type with trivial copy-assignment
7939    // operators.
7940    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7941        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7942      // Compute the size of the memory buffer to be copied.
7943      QualType SizeType = Context.getSizeType();
7944      llvm::APInt Size(Context.getTypeSize(SizeType),
7945                       Context.getTypeSizeInChars(BaseType).getQuantity());
7946      for (const ConstantArrayType *Array
7947              = Context.getAsConstantArrayType(FieldType);
7948           Array;
7949           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7950        llvm::APInt ArraySize
7951          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7952        Size *= ArraySize;
7953      }
7954
7955      // Take the address of the field references for "from" and "to".
7956      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7957      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7958
7959      bool NeedsCollectableMemCpy =
7960          (BaseType->isRecordType() &&
7961           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7962
7963      if (NeedsCollectableMemCpy) {
7964        if (!CollectableMemCpyRef) {
7965          // Create a reference to the __builtin_objc_memmove_collectable function.
7966          LookupResult R(*this,
7967                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7968                         Loc, LookupOrdinaryName);
7969          LookupName(R, TUScope, true);
7970
7971          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7972          if (!CollectableMemCpy) {
7973            // Something went horribly wrong earlier, and we will have
7974            // complained about it.
7975            Invalid = true;
7976            continue;
7977          }
7978
7979          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7980                                                  CollectableMemCpy->getType(),
7981                                                  VK_LValue, Loc, 0).take();
7982          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7983        }
7984      }
7985      // Create a reference to the __builtin_memcpy builtin function.
7986      else if (!BuiltinMemCpyRef) {
7987        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7988                       LookupOrdinaryName);
7989        LookupName(R, TUScope, true);
7990
7991        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7992        if (!BuiltinMemCpy) {
7993          // Something went horribly wrong earlier, and we will have complained
7994          // about it.
7995          Invalid = true;
7996          continue;
7997        }
7998
7999        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8000                                            BuiltinMemCpy->getType(),
8001                                            VK_LValue, Loc, 0).take();
8002        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8003      }
8004
8005      ASTOwningVector<Expr*> CallArgs(*this);
8006      CallArgs.push_back(To.takeAs<Expr>());
8007      CallArgs.push_back(From.takeAs<Expr>());
8008      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8009      ExprResult Call = ExprError();
8010      if (NeedsCollectableMemCpy)
8011        Call = ActOnCallExpr(/*Scope=*/0,
8012                             CollectableMemCpyRef,
8013                             Loc, move_arg(CallArgs),
8014                             Loc);
8015      else
8016        Call = ActOnCallExpr(/*Scope=*/0,
8017                             BuiltinMemCpyRef,
8018                             Loc, move_arg(CallArgs),
8019                             Loc);
8020
8021      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8022      Statements.push_back(Call.takeAs<Expr>());
8023      continue;
8024    }
8025
8026    // Build the copy of this field.
8027    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8028                                            To.get(), From.get(),
8029                                            /*CopyingBaseSubobject=*/false,
8030                                            /*Copying=*/true);
8031    if (Copy.isInvalid()) {
8032      Diag(CurrentLocation, diag::note_member_synthesized_at)
8033        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8034      CopyAssignOperator->setInvalidDecl();
8035      return;
8036    }
8037
8038    // Success! Record the copy.
8039    Statements.push_back(Copy.takeAs<Stmt>());
8040  }
8041
8042  if (!Invalid) {
8043    // Add a "return *this;"
8044    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8045
8046    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8047    if (Return.isInvalid())
8048      Invalid = true;
8049    else {
8050      Statements.push_back(Return.takeAs<Stmt>());
8051
8052      if (Trap.hasErrorOccurred()) {
8053        Diag(CurrentLocation, diag::note_member_synthesized_at)
8054          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8055        Invalid = true;
8056      }
8057    }
8058  }
8059
8060  if (Invalid) {
8061    CopyAssignOperator->setInvalidDecl();
8062    return;
8063  }
8064
8065  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8066                                            /*isStmtExpr=*/false);
8067  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8068  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8069
8070  if (ASTMutationListener *L = getASTMutationListener()) {
8071    L->CompletedImplicitDefinition(CopyAssignOperator);
8072  }
8073}
8074
8075Sema::ImplicitExceptionSpecification
8076Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8077  ImplicitExceptionSpecification ExceptSpec(Context);
8078
8079  if (ClassDecl->isInvalidDecl())
8080    return ExceptSpec;
8081
8082  // C++0x [except.spec]p14:
8083  //   An implicitly declared special member function (Clause 12) shall have an
8084  //   exception-specification. [...]
8085
8086  // It is unspecified whether or not an implicit move assignment operator
8087  // attempts to deduplicate calls to assignment operators of virtual bases are
8088  // made. As such, this exception specification is effectively unspecified.
8089  // Based on a similar decision made for constness in C++0x, we're erring on
8090  // the side of assuming such calls to be made regardless of whether they
8091  // actually happen.
8092  // Note that a move constructor is not implicitly declared when there are
8093  // virtual bases, but it can still be user-declared and explicitly defaulted.
8094  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8095                                       BaseEnd = ClassDecl->bases_end();
8096       Base != BaseEnd; ++Base) {
8097    if (Base->isVirtual())
8098      continue;
8099
8100    CXXRecordDecl *BaseClassDecl
8101      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8102    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8103                                                           false, 0))
8104      ExceptSpec.CalledDecl(MoveAssign);
8105  }
8106
8107  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8108                                       BaseEnd = ClassDecl->vbases_end();
8109       Base != BaseEnd; ++Base) {
8110    CXXRecordDecl *BaseClassDecl
8111      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8112    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8113                                                           false, 0))
8114      ExceptSpec.CalledDecl(MoveAssign);
8115  }
8116
8117  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8118                                  FieldEnd = ClassDecl->field_end();
8119       Field != FieldEnd;
8120       ++Field) {
8121    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8122    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8123      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8124                                                             false, 0))
8125        ExceptSpec.CalledDecl(MoveAssign);
8126    }
8127  }
8128
8129  return ExceptSpec;
8130}
8131
8132CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8133  // Note: The following rules are largely analoguous to the move
8134  // constructor rules.
8135
8136  ImplicitExceptionSpecification Spec(
8137      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8138
8139  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8140  QualType RetType = Context.getLValueReferenceType(ArgType);
8141  ArgType = Context.getRValueReferenceType(ArgType);
8142
8143  //   An implicitly-declared move assignment operator is an inline public
8144  //   member of its class.
8145  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8146  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8147  SourceLocation ClassLoc = ClassDecl->getLocation();
8148  DeclarationNameInfo NameInfo(Name, ClassLoc);
8149  CXXMethodDecl *MoveAssignment
8150    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8151                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8152                            /*TInfo=*/0, /*isStatic=*/false,
8153                            /*StorageClassAsWritten=*/SC_None,
8154                            /*isInline=*/true,
8155                            /*isConstexpr=*/false,
8156                            SourceLocation());
8157  MoveAssignment->setAccess(AS_public);
8158  MoveAssignment->setDefaulted();
8159  MoveAssignment->setImplicit();
8160  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8161
8162  // Add the parameter to the operator.
8163  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8164                                               ClassLoc, ClassLoc, /*Id=*/0,
8165                                               ArgType, /*TInfo=*/0,
8166                                               SC_None,
8167                                               SC_None, 0);
8168  MoveAssignment->setParams(FromParam);
8169
8170  // Note that we have added this copy-assignment operator.
8171  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8172
8173  // C++0x [class.copy]p9:
8174  //   If the definition of a class X does not explicitly declare a move
8175  //   assignment operator, one will be implicitly declared as defaulted if and
8176  //   only if:
8177  //   [...]
8178  //   - the move assignment operator would not be implicitly defined as
8179  //     deleted.
8180  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8181    // Cache this result so that we don't try to generate this over and over
8182    // on every lookup, leaking memory and wasting time.
8183    ClassDecl->setFailedImplicitMoveAssignment();
8184    return 0;
8185  }
8186
8187  if (Scope *S = getScopeForContext(ClassDecl))
8188    PushOnScopeChains(MoveAssignment, S, false);
8189  ClassDecl->addDecl(MoveAssignment);
8190
8191  AddOverriddenMethods(ClassDecl, MoveAssignment);
8192  return MoveAssignment;
8193}
8194
8195void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8196                                        CXXMethodDecl *MoveAssignOperator) {
8197  assert((MoveAssignOperator->isDefaulted() &&
8198          MoveAssignOperator->isOverloadedOperator() &&
8199          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8200          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8201         "DefineImplicitMoveAssignment called for wrong function");
8202
8203  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8204
8205  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8206    MoveAssignOperator->setInvalidDecl();
8207    return;
8208  }
8209
8210  MoveAssignOperator->setUsed();
8211
8212  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8213  DiagnosticErrorTrap Trap(Diags);
8214
8215  // C++0x [class.copy]p28:
8216  //   The implicitly-defined or move assignment operator for a non-union class
8217  //   X performs memberwise move assignment of its subobjects. The direct base
8218  //   classes of X are assigned first, in the order of their declaration in the
8219  //   base-specifier-list, and then the immediate non-static data members of X
8220  //   are assigned, in the order in which they were declared in the class
8221  //   definition.
8222
8223  // The statements that form the synthesized function body.
8224  ASTOwningVector<Stmt*> Statements(*this);
8225
8226  // The parameter for the "other" object, which we are move from.
8227  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8228  QualType OtherRefType = Other->getType()->
8229      getAs<RValueReferenceType>()->getPointeeType();
8230  assert(OtherRefType.getQualifiers() == 0 &&
8231         "Bad argument type of defaulted move assignment");
8232
8233  // Our location for everything implicitly-generated.
8234  SourceLocation Loc = MoveAssignOperator->getLocation();
8235
8236  // Construct a reference to the "other" object. We'll be using this
8237  // throughout the generated ASTs.
8238  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8239  assert(OtherRef && "Reference to parameter cannot fail!");
8240  // Cast to rvalue.
8241  OtherRef = CastForMoving(*this, OtherRef);
8242
8243  // Construct the "this" pointer. We'll be using this throughout the generated
8244  // ASTs.
8245  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8246  assert(This && "Reference to this cannot fail!");
8247
8248  // Assign base classes.
8249  bool Invalid = false;
8250  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8251       E = ClassDecl->bases_end(); Base != E; ++Base) {
8252    // Form the assignment:
8253    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8254    QualType BaseType = Base->getType().getUnqualifiedType();
8255    if (!BaseType->isRecordType()) {
8256      Invalid = true;
8257      continue;
8258    }
8259
8260    CXXCastPath BasePath;
8261    BasePath.push_back(Base);
8262
8263    // Construct the "from" expression, which is an implicit cast to the
8264    // appropriately-qualified base type.
8265    Expr *From = OtherRef;
8266    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8267                             VK_XValue, &BasePath).take();
8268
8269    // Dereference "this".
8270    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8271
8272    // Implicitly cast "this" to the appropriately-qualified base type.
8273    To = ImpCastExprToType(To.take(),
8274                           Context.getCVRQualifiedType(BaseType,
8275                                     MoveAssignOperator->getTypeQualifiers()),
8276                           CK_UncheckedDerivedToBase,
8277                           VK_LValue, &BasePath);
8278
8279    // Build the move.
8280    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8281                                            To.get(), From,
8282                                            /*CopyingBaseSubobject=*/true,
8283                                            /*Copying=*/false);
8284    if (Move.isInvalid()) {
8285      Diag(CurrentLocation, diag::note_member_synthesized_at)
8286        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8287      MoveAssignOperator->setInvalidDecl();
8288      return;
8289    }
8290
8291    // Success! Record the move.
8292    Statements.push_back(Move.takeAs<Expr>());
8293  }
8294
8295  // \brief Reference to the __builtin_memcpy function.
8296  Expr *BuiltinMemCpyRef = 0;
8297  // \brief Reference to the __builtin_objc_memmove_collectable function.
8298  Expr *CollectableMemCpyRef = 0;
8299
8300  // Assign non-static members.
8301  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8302                                  FieldEnd = ClassDecl->field_end();
8303       Field != FieldEnd; ++Field) {
8304    // Check for members of reference type; we can't move those.
8305    if (Field->getType()->isReferenceType()) {
8306      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8307        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8308      Diag(Field->getLocation(), diag::note_declared_at);
8309      Diag(CurrentLocation, diag::note_member_synthesized_at)
8310        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8311      Invalid = true;
8312      continue;
8313    }
8314
8315    // Check for members of const-qualified, non-class type.
8316    QualType BaseType = Context.getBaseElementType(Field->getType());
8317    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8318      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8319        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8320      Diag(Field->getLocation(), diag::note_declared_at);
8321      Diag(CurrentLocation, diag::note_member_synthesized_at)
8322        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8323      Invalid = true;
8324      continue;
8325    }
8326
8327    // Suppress assigning zero-width bitfields.
8328    if (const Expr *Width = Field->getBitWidth())
8329      if (Width->EvaluateAsInt(Context) == 0)
8330        continue;
8331
8332    QualType FieldType = Field->getType().getNonReferenceType();
8333    if (FieldType->isIncompleteArrayType()) {
8334      assert(ClassDecl->hasFlexibleArrayMember() &&
8335             "Incomplete array type is not valid");
8336      continue;
8337    }
8338
8339    // Build references to the field in the object we're copying from and to.
8340    CXXScopeSpec SS; // Intentionally empty
8341    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8342                              LookupMemberName);
8343    MemberLookup.addDecl(*Field);
8344    MemberLookup.resolveKind();
8345    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8346                                               Loc, /*IsArrow=*/false,
8347                                               SS, 0, MemberLookup, 0);
8348    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8349                                             Loc, /*IsArrow=*/true,
8350                                             SS, 0, MemberLookup, 0);
8351    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8352    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8353
8354    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8355        "Member reference with rvalue base must be rvalue except for reference "
8356        "members, which aren't allowed for move assignment.");
8357
8358    // If the field should be copied with __builtin_memcpy rather than via
8359    // explicit assignments, do so. This optimization only applies for arrays
8360    // of scalars and arrays of class type with trivial move-assignment
8361    // operators.
8362    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8363        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8364      // Compute the size of the memory buffer to be copied.
8365      QualType SizeType = Context.getSizeType();
8366      llvm::APInt Size(Context.getTypeSize(SizeType),
8367                       Context.getTypeSizeInChars(BaseType).getQuantity());
8368      for (const ConstantArrayType *Array
8369              = Context.getAsConstantArrayType(FieldType);
8370           Array;
8371           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8372        llvm::APInt ArraySize
8373          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8374        Size *= ArraySize;
8375      }
8376
8377      // Take the address of the field references for "from" and "to". We
8378      // directly construct UnaryOperators here because semantic analysis
8379      // does not permit us to take the address of an xvalue.
8380      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8381                             Context.getPointerType(From.get()->getType()),
8382                             VK_RValue, OK_Ordinary, Loc);
8383      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8384                           Context.getPointerType(To.get()->getType()),
8385                           VK_RValue, OK_Ordinary, Loc);
8386
8387      bool NeedsCollectableMemCpy =
8388          (BaseType->isRecordType() &&
8389           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8390
8391      if (NeedsCollectableMemCpy) {
8392        if (!CollectableMemCpyRef) {
8393          // Create a reference to the __builtin_objc_memmove_collectable function.
8394          LookupResult R(*this,
8395                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8396                         Loc, LookupOrdinaryName);
8397          LookupName(R, TUScope, true);
8398
8399          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8400          if (!CollectableMemCpy) {
8401            // Something went horribly wrong earlier, and we will have
8402            // complained about it.
8403            Invalid = true;
8404            continue;
8405          }
8406
8407          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8408                                                  CollectableMemCpy->getType(),
8409                                                  VK_LValue, Loc, 0).take();
8410          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8411        }
8412      }
8413      // Create a reference to the __builtin_memcpy builtin function.
8414      else if (!BuiltinMemCpyRef) {
8415        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8416                       LookupOrdinaryName);
8417        LookupName(R, TUScope, true);
8418
8419        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8420        if (!BuiltinMemCpy) {
8421          // Something went horribly wrong earlier, and we will have complained
8422          // about it.
8423          Invalid = true;
8424          continue;
8425        }
8426
8427        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8428                                            BuiltinMemCpy->getType(),
8429                                            VK_LValue, Loc, 0).take();
8430        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8431      }
8432
8433      ASTOwningVector<Expr*> CallArgs(*this);
8434      CallArgs.push_back(To.takeAs<Expr>());
8435      CallArgs.push_back(From.takeAs<Expr>());
8436      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8437      ExprResult Call = ExprError();
8438      if (NeedsCollectableMemCpy)
8439        Call = ActOnCallExpr(/*Scope=*/0,
8440                             CollectableMemCpyRef,
8441                             Loc, move_arg(CallArgs),
8442                             Loc);
8443      else
8444        Call = ActOnCallExpr(/*Scope=*/0,
8445                             BuiltinMemCpyRef,
8446                             Loc, move_arg(CallArgs),
8447                             Loc);
8448
8449      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8450      Statements.push_back(Call.takeAs<Expr>());
8451      continue;
8452    }
8453
8454    // Build the move of this field.
8455    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8456                                            To.get(), From.get(),
8457                                            /*CopyingBaseSubobject=*/false,
8458                                            /*Copying=*/false);
8459    if (Move.isInvalid()) {
8460      Diag(CurrentLocation, diag::note_member_synthesized_at)
8461        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8462      MoveAssignOperator->setInvalidDecl();
8463      return;
8464    }
8465
8466    // Success! Record the copy.
8467    Statements.push_back(Move.takeAs<Stmt>());
8468  }
8469
8470  if (!Invalid) {
8471    // Add a "return *this;"
8472    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8473
8474    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8475    if (Return.isInvalid())
8476      Invalid = true;
8477    else {
8478      Statements.push_back(Return.takeAs<Stmt>());
8479
8480      if (Trap.hasErrorOccurred()) {
8481        Diag(CurrentLocation, diag::note_member_synthesized_at)
8482          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8483        Invalid = true;
8484      }
8485    }
8486  }
8487
8488  if (Invalid) {
8489    MoveAssignOperator->setInvalidDecl();
8490    return;
8491  }
8492
8493  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8494                                            /*isStmtExpr=*/false);
8495  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8496  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8497
8498  if (ASTMutationListener *L = getASTMutationListener()) {
8499    L->CompletedImplicitDefinition(MoveAssignOperator);
8500  }
8501}
8502
8503std::pair<Sema::ImplicitExceptionSpecification, bool>
8504Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8505  if (ClassDecl->isInvalidDecl())
8506    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8507
8508  // C++ [class.copy]p5:
8509  //   The implicitly-declared copy constructor for a class X will
8510  //   have the form
8511  //
8512  //       X::X(const X&)
8513  //
8514  //   if
8515  // FIXME: It ought to be possible to store this on the record.
8516  bool HasConstCopyConstructor = true;
8517
8518  //     -- each direct or virtual base class B of X has a copy
8519  //        constructor whose first parameter is of type const B& or
8520  //        const volatile B&, and
8521  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8522                                       BaseEnd = ClassDecl->bases_end();
8523       HasConstCopyConstructor && Base != BaseEnd;
8524       ++Base) {
8525    // Virtual bases are handled below.
8526    if (Base->isVirtual())
8527      continue;
8528
8529    CXXRecordDecl *BaseClassDecl
8530      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8531    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8532                             &HasConstCopyConstructor);
8533  }
8534
8535  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8536                                       BaseEnd = ClassDecl->vbases_end();
8537       HasConstCopyConstructor && Base != BaseEnd;
8538       ++Base) {
8539    CXXRecordDecl *BaseClassDecl
8540      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8541    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8542                             &HasConstCopyConstructor);
8543  }
8544
8545  //     -- for all the nonstatic data members of X that are of a
8546  //        class type M (or array thereof), each such class type
8547  //        has a copy constructor whose first parameter is of type
8548  //        const M& or const volatile M&.
8549  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8550                                  FieldEnd = ClassDecl->field_end();
8551       HasConstCopyConstructor && Field != FieldEnd;
8552       ++Field) {
8553    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8554    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8555      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8556                               &HasConstCopyConstructor);
8557    }
8558  }
8559  //   Otherwise, the implicitly declared copy constructor will have
8560  //   the form
8561  //
8562  //       X::X(X&)
8563
8564  // C++ [except.spec]p14:
8565  //   An implicitly declared special member function (Clause 12) shall have an
8566  //   exception-specification. [...]
8567  ImplicitExceptionSpecification ExceptSpec(Context);
8568  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8569  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8570                                       BaseEnd = ClassDecl->bases_end();
8571       Base != BaseEnd;
8572       ++Base) {
8573    // Virtual bases are handled below.
8574    if (Base->isVirtual())
8575      continue;
8576
8577    CXXRecordDecl *BaseClassDecl
8578      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8579    if (CXXConstructorDecl *CopyConstructor =
8580          LookupCopyingConstructor(BaseClassDecl, Quals))
8581      ExceptSpec.CalledDecl(CopyConstructor);
8582  }
8583  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8584                                       BaseEnd = ClassDecl->vbases_end();
8585       Base != BaseEnd;
8586       ++Base) {
8587    CXXRecordDecl *BaseClassDecl
8588      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8589    if (CXXConstructorDecl *CopyConstructor =
8590          LookupCopyingConstructor(BaseClassDecl, Quals))
8591      ExceptSpec.CalledDecl(CopyConstructor);
8592  }
8593  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8594                                  FieldEnd = ClassDecl->field_end();
8595       Field != FieldEnd;
8596       ++Field) {
8597    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8598    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8599      if (CXXConstructorDecl *CopyConstructor =
8600        LookupCopyingConstructor(FieldClassDecl, Quals))
8601      ExceptSpec.CalledDecl(CopyConstructor);
8602    }
8603  }
8604
8605  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8606}
8607
8608CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8609                                                    CXXRecordDecl *ClassDecl) {
8610  // C++ [class.copy]p4:
8611  //   If the class definition does not explicitly declare a copy
8612  //   constructor, one is declared implicitly.
8613
8614  ImplicitExceptionSpecification Spec(Context);
8615  bool Const;
8616  llvm::tie(Spec, Const) =
8617    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8618
8619  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8620  QualType ArgType = ClassType;
8621  if (Const)
8622    ArgType = ArgType.withConst();
8623  ArgType = Context.getLValueReferenceType(ArgType);
8624
8625  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8626
8627  DeclarationName Name
8628    = Context.DeclarationNames.getCXXConstructorName(
8629                                           Context.getCanonicalType(ClassType));
8630  SourceLocation ClassLoc = ClassDecl->getLocation();
8631  DeclarationNameInfo NameInfo(Name, ClassLoc);
8632
8633  //   An implicitly-declared copy constructor is an inline public
8634  //   member of its class.
8635  CXXConstructorDecl *CopyConstructor
8636    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8637                                 Context.getFunctionType(Context.VoidTy,
8638                                                         &ArgType, 1, EPI),
8639                                 /*TInfo=*/0,
8640                                 /*isExplicit=*/false,
8641                                 /*isInline=*/true,
8642                                 /*isImplicitlyDeclared=*/true,
8643                                 // FIXME: apply the rules for definitions here
8644                                 /*isConstexpr=*/false);
8645  CopyConstructor->setAccess(AS_public);
8646  CopyConstructor->setDefaulted();
8647  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8648
8649  // Note that we have declared this constructor.
8650  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8651
8652  // Add the parameter to the constructor.
8653  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8654                                               ClassLoc, ClassLoc,
8655                                               /*IdentifierInfo=*/0,
8656                                               ArgType, /*TInfo=*/0,
8657                                               SC_None,
8658                                               SC_None, 0);
8659  CopyConstructor->setParams(FromParam);
8660
8661  if (Scope *S = getScopeForContext(ClassDecl))
8662    PushOnScopeChains(CopyConstructor, S, false);
8663  ClassDecl->addDecl(CopyConstructor);
8664
8665  // C++0x [class.copy]p7:
8666  //   ... If the class definition declares a move constructor or move
8667  //   assignment operator, the implicitly declared constructor is defined as
8668  //   deleted; ...
8669  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8670      ClassDecl->hasUserDeclaredMoveAssignment() ||
8671      ShouldDeleteCopyConstructor(CopyConstructor))
8672    CopyConstructor->setDeletedAsWritten();
8673
8674  return CopyConstructor;
8675}
8676
8677void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8678                                   CXXConstructorDecl *CopyConstructor) {
8679  assert((CopyConstructor->isDefaulted() &&
8680          CopyConstructor->isCopyConstructor() &&
8681          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8682         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8683
8684  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8685  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8686
8687  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8688  DiagnosticErrorTrap Trap(Diags);
8689
8690  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8691      Trap.hasErrorOccurred()) {
8692    Diag(CurrentLocation, diag::note_member_synthesized_at)
8693      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8694    CopyConstructor->setInvalidDecl();
8695  }  else {
8696    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8697                                               CopyConstructor->getLocation(),
8698                                               MultiStmtArg(*this, 0, 0),
8699                                               /*isStmtExpr=*/false)
8700                                                              .takeAs<Stmt>());
8701    CopyConstructor->setImplicitlyDefined(true);
8702  }
8703
8704  CopyConstructor->setUsed();
8705  if (ASTMutationListener *L = getASTMutationListener()) {
8706    L->CompletedImplicitDefinition(CopyConstructor);
8707  }
8708}
8709
8710Sema::ImplicitExceptionSpecification
8711Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8712  // C++ [except.spec]p14:
8713  //   An implicitly declared special member function (Clause 12) shall have an
8714  //   exception-specification. [...]
8715  ImplicitExceptionSpecification ExceptSpec(Context);
8716  if (ClassDecl->isInvalidDecl())
8717    return ExceptSpec;
8718
8719  // Direct base-class constructors.
8720  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8721                                       BEnd = ClassDecl->bases_end();
8722       B != BEnd; ++B) {
8723    if (B->isVirtual()) // Handled below.
8724      continue;
8725
8726    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8727      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8728      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8729      // If this is a deleted function, add it anyway. This might be conformant
8730      // with the standard. This might not. I'm not sure. It might not matter.
8731      if (Constructor)
8732        ExceptSpec.CalledDecl(Constructor);
8733    }
8734  }
8735
8736  // Virtual base-class constructors.
8737  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8738                                       BEnd = ClassDecl->vbases_end();
8739       B != BEnd; ++B) {
8740    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8741      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8742      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8743      // If this is a deleted function, add it anyway. This might be conformant
8744      // with the standard. This might not. I'm not sure. It might not matter.
8745      if (Constructor)
8746        ExceptSpec.CalledDecl(Constructor);
8747    }
8748  }
8749
8750  // Field constructors.
8751  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8752                               FEnd = ClassDecl->field_end();
8753       F != FEnd; ++F) {
8754    if (F->hasInClassInitializer()) {
8755      if (Expr *E = F->getInClassInitializer())
8756        ExceptSpec.CalledExpr(E);
8757      else if (!F->isInvalidDecl())
8758        ExceptSpec.SetDelayed();
8759    } else if (const RecordType *RecordTy
8760              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8761      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8762      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8763      // If this is a deleted function, add it anyway. This might be conformant
8764      // with the standard. This might not. I'm not sure. It might not matter.
8765      // In particular, the problem is that this function never gets called. It
8766      // might just be ill-formed because this function attempts to refer to
8767      // a deleted function here.
8768      if (Constructor)
8769        ExceptSpec.CalledDecl(Constructor);
8770    }
8771  }
8772
8773  return ExceptSpec;
8774}
8775
8776CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8777                                                    CXXRecordDecl *ClassDecl) {
8778  ImplicitExceptionSpecification Spec(
8779      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8780
8781  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8782  QualType ArgType = Context.getRValueReferenceType(ClassType);
8783
8784  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8785
8786  DeclarationName Name
8787    = Context.DeclarationNames.getCXXConstructorName(
8788                                           Context.getCanonicalType(ClassType));
8789  SourceLocation ClassLoc = ClassDecl->getLocation();
8790  DeclarationNameInfo NameInfo(Name, ClassLoc);
8791
8792  // C++0x [class.copy]p11:
8793  //   An implicitly-declared copy/move constructor is an inline public
8794  //   member of its class.
8795  CXXConstructorDecl *MoveConstructor
8796    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8797                                 Context.getFunctionType(Context.VoidTy,
8798                                                         &ArgType, 1, EPI),
8799                                 /*TInfo=*/0,
8800                                 /*isExplicit=*/false,
8801                                 /*isInline=*/true,
8802                                 /*isImplicitlyDeclared=*/true,
8803                                 // FIXME: apply the rules for definitions here
8804                                 /*isConstexpr=*/false);
8805  MoveConstructor->setAccess(AS_public);
8806  MoveConstructor->setDefaulted();
8807  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8808
8809  // Add the parameter to the constructor.
8810  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8811                                               ClassLoc, ClassLoc,
8812                                               /*IdentifierInfo=*/0,
8813                                               ArgType, /*TInfo=*/0,
8814                                               SC_None,
8815                                               SC_None, 0);
8816  MoveConstructor->setParams(FromParam);
8817
8818  // C++0x [class.copy]p9:
8819  //   If the definition of a class X does not explicitly declare a move
8820  //   constructor, one will be implicitly declared as defaulted if and only if:
8821  //   [...]
8822  //   - the move constructor would not be implicitly defined as deleted.
8823  if (ShouldDeleteMoveConstructor(MoveConstructor)) {
8824    // Cache this result so that we don't try to generate this over and over
8825    // on every lookup, leaking memory and wasting time.
8826    ClassDecl->setFailedImplicitMoveConstructor();
8827    return 0;
8828  }
8829
8830  // Note that we have declared this constructor.
8831  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8832
8833  if (Scope *S = getScopeForContext(ClassDecl))
8834    PushOnScopeChains(MoveConstructor, S, false);
8835  ClassDecl->addDecl(MoveConstructor);
8836
8837  return MoveConstructor;
8838}
8839
8840void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8841                                   CXXConstructorDecl *MoveConstructor) {
8842  assert((MoveConstructor->isDefaulted() &&
8843          MoveConstructor->isMoveConstructor() &&
8844          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8845         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8846
8847  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8848  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8849
8850  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8851  DiagnosticErrorTrap Trap(Diags);
8852
8853  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8854      Trap.hasErrorOccurred()) {
8855    Diag(CurrentLocation, diag::note_member_synthesized_at)
8856      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8857    MoveConstructor->setInvalidDecl();
8858  }  else {
8859    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8860                                               MoveConstructor->getLocation(),
8861                                               MultiStmtArg(*this, 0, 0),
8862                                               /*isStmtExpr=*/false)
8863                                                              .takeAs<Stmt>());
8864    MoveConstructor->setImplicitlyDefined(true);
8865  }
8866
8867  MoveConstructor->setUsed();
8868
8869  if (ASTMutationListener *L = getASTMutationListener()) {
8870    L->CompletedImplicitDefinition(MoveConstructor);
8871  }
8872}
8873
8874ExprResult
8875Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8876                            CXXConstructorDecl *Constructor,
8877                            MultiExprArg ExprArgs,
8878                            bool HadMultipleCandidates,
8879                            bool RequiresZeroInit,
8880                            unsigned ConstructKind,
8881                            SourceRange ParenRange) {
8882  bool Elidable = false;
8883
8884  // C++0x [class.copy]p34:
8885  //   When certain criteria are met, an implementation is allowed to
8886  //   omit the copy/move construction of a class object, even if the
8887  //   copy/move constructor and/or destructor for the object have
8888  //   side effects. [...]
8889  //     - when a temporary class object that has not been bound to a
8890  //       reference (12.2) would be copied/moved to a class object
8891  //       with the same cv-unqualified type, the copy/move operation
8892  //       can be omitted by constructing the temporary object
8893  //       directly into the target of the omitted copy/move
8894  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8895      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8896    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8897    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8898  }
8899
8900  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8901                               Elidable, move(ExprArgs), HadMultipleCandidates,
8902                               RequiresZeroInit, ConstructKind, ParenRange);
8903}
8904
8905/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8906/// including handling of its default argument expressions.
8907ExprResult
8908Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8909                            CXXConstructorDecl *Constructor, bool Elidable,
8910                            MultiExprArg ExprArgs,
8911                            bool HadMultipleCandidates,
8912                            bool RequiresZeroInit,
8913                            unsigned ConstructKind,
8914                            SourceRange ParenRange) {
8915  unsigned NumExprs = ExprArgs.size();
8916  Expr **Exprs = (Expr **)ExprArgs.release();
8917
8918  for (specific_attr_iterator<NonNullAttr>
8919           i = Constructor->specific_attr_begin<NonNullAttr>(),
8920           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8921    const NonNullAttr *NonNull = *i;
8922    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8923  }
8924
8925  MarkDeclarationReferenced(ConstructLoc, Constructor);
8926  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8927                                        Constructor, Elidable, Exprs, NumExprs,
8928                                        HadMultipleCandidates, RequiresZeroInit,
8929              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8930                                        ParenRange));
8931}
8932
8933bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8934                                        CXXConstructorDecl *Constructor,
8935                                        MultiExprArg Exprs,
8936                                        bool HadMultipleCandidates) {
8937  // FIXME: Provide the correct paren SourceRange when available.
8938  ExprResult TempResult =
8939    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8940                          move(Exprs), HadMultipleCandidates, false,
8941                          CXXConstructExpr::CK_Complete, SourceRange());
8942  if (TempResult.isInvalid())
8943    return true;
8944
8945  Expr *Temp = TempResult.takeAs<Expr>();
8946  CheckImplicitConversions(Temp, VD->getLocation());
8947  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8948  Temp = MaybeCreateExprWithCleanups(Temp);
8949  VD->setInit(Temp);
8950
8951  return false;
8952}
8953
8954void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8955  if (VD->isInvalidDecl()) return;
8956
8957  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8958  if (ClassDecl->isInvalidDecl()) return;
8959  if (ClassDecl->hasTrivialDestructor()) return;
8960  if (ClassDecl->isDependentContext()) return;
8961
8962  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8963  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8964  CheckDestructorAccess(VD->getLocation(), Destructor,
8965                        PDiag(diag::err_access_dtor_var)
8966                        << VD->getDeclName()
8967                        << VD->getType());
8968
8969  if (!VD->hasGlobalStorage()) return;
8970
8971  // Emit warning for non-trivial dtor in global scope (a real global,
8972  // class-static, function-static).
8973  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8974
8975  // TODO: this should be re-enabled for static locals by !CXAAtExit
8976  if (!VD->isStaticLocal())
8977    Diag(VD->getLocation(), diag::warn_global_destructor);
8978}
8979
8980/// AddCXXDirectInitializerToDecl - This action is called immediately after
8981/// ActOnDeclarator, when a C++ direct initializer is present.
8982/// e.g: "int x(1);"
8983void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8984                                         SourceLocation LParenLoc,
8985                                         MultiExprArg Exprs,
8986                                         SourceLocation RParenLoc,
8987                                         bool TypeMayContainAuto) {
8988  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8989
8990  // If there is no declaration, there was an error parsing it.  Just ignore
8991  // the initializer.
8992  if (RealDecl == 0)
8993    return;
8994
8995  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8996  if (!VDecl) {
8997    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8998    RealDecl->setInvalidDecl();
8999    return;
9000  }
9001
9002  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9003  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9004    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
9005    if (Exprs.size() > 1) {
9006      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9007           diag::err_auto_var_init_multiple_expressions)
9008        << VDecl->getDeclName() << VDecl->getType()
9009        << VDecl->getSourceRange();
9010      RealDecl->setInvalidDecl();
9011      return;
9012    }
9013
9014    Expr *Init = Exprs.get()[0];
9015    TypeSourceInfo *DeducedType = 0;
9016    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
9017      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
9018        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
9019        << Init->getSourceRange();
9020    if (!DeducedType) {
9021      RealDecl->setInvalidDecl();
9022      return;
9023    }
9024    VDecl->setTypeSourceInfo(DeducedType);
9025    VDecl->setType(DeducedType->getType());
9026
9027    // In ARC, infer lifetime.
9028    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9029      VDecl->setInvalidDecl();
9030
9031    // If this is a redeclaration, check that the type we just deduced matches
9032    // the previously declared type.
9033    if (VarDecl *Old = VDecl->getPreviousDeclaration())
9034      MergeVarDeclTypes(VDecl, Old);
9035  }
9036
9037  // We will represent direct-initialization similarly to copy-initialization:
9038  //    int x(1);  -as-> int x = 1;
9039  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9040  //
9041  // Clients that want to distinguish between the two forms, can check for
9042  // direct initializer using VarDecl::hasCXXDirectInitializer().
9043  // A major benefit is that clients that don't particularly care about which
9044  // exactly form was it (like the CodeGen) can handle both cases without
9045  // special case code.
9046
9047  // C++ 8.5p11:
9048  // The form of initialization (using parentheses or '=') is generally
9049  // insignificant, but does matter when the entity being initialized has a
9050  // class type.
9051
9052  if (!VDecl->getType()->isDependentType() &&
9053      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9054                          diag::err_typecheck_decl_incomplete_type)) {
9055    VDecl->setInvalidDecl();
9056    return;
9057  }
9058
9059  // The variable can not have an abstract class type.
9060  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9061                             diag::err_abstract_type_in_decl,
9062                             AbstractVariableType))
9063    VDecl->setInvalidDecl();
9064
9065  const VarDecl *Def;
9066  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9067    Diag(VDecl->getLocation(), diag::err_redefinition)
9068    << VDecl->getDeclName();
9069    Diag(Def->getLocation(), diag::note_previous_definition);
9070    VDecl->setInvalidDecl();
9071    return;
9072  }
9073
9074  // C++ [class.static.data]p4
9075  //   If a static data member is of const integral or const
9076  //   enumeration type, its declaration in the class definition can
9077  //   specify a constant-initializer which shall be an integral
9078  //   constant expression (5.19). In that case, the member can appear
9079  //   in integral constant expressions. The member shall still be
9080  //   defined in a namespace scope if it is used in the program and the
9081  //   namespace scope definition shall not contain an initializer.
9082  //
9083  // We already performed a redefinition check above, but for static
9084  // data members we also need to check whether there was an in-class
9085  // declaration with an initializer.
9086  const VarDecl* PrevInit = 0;
9087  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9088    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9089    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9090    return;
9091  }
9092
9093  bool IsDependent = false;
9094  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9095    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9096      VDecl->setInvalidDecl();
9097      return;
9098    }
9099
9100    if (Exprs.get()[I]->isTypeDependent())
9101      IsDependent = true;
9102  }
9103
9104  // If either the declaration has a dependent type or if any of the
9105  // expressions is type-dependent, we represent the initialization
9106  // via a ParenListExpr for later use during template instantiation.
9107  if (VDecl->getType()->isDependentType() || IsDependent) {
9108    // Let clients know that initialization was done with a direct initializer.
9109    VDecl->setCXXDirectInitializer(true);
9110
9111    // Store the initialization expressions as a ParenListExpr.
9112    unsigned NumExprs = Exprs.size();
9113    VDecl->setInit(new (Context) ParenListExpr(
9114        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9115        VDecl->getType().getNonReferenceType()));
9116    return;
9117  }
9118
9119  // Capture the variable that is being initialized and the style of
9120  // initialization.
9121  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9122
9123  // FIXME: Poor source location information.
9124  InitializationKind Kind
9125    = InitializationKind::CreateDirect(VDecl->getLocation(),
9126                                       LParenLoc, RParenLoc);
9127
9128  InitializationSequence InitSeq(*this, Entity, Kind,
9129                                 Exprs.get(), Exprs.size());
9130  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
9131  if (Result.isInvalid()) {
9132    VDecl->setInvalidDecl();
9133    return;
9134  }
9135
9136  Expr *Init = Result.get();
9137  CheckImplicitConversions(Init, LParenLoc);
9138
9139  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
9140      !Init->isValueDependent() &&
9141      !Init->isConstantInitializer(Context,
9142                                   VDecl->getType()->isReferenceType())) {
9143    // FIXME: Improve this diagnostic to explain why the initializer is not
9144    // a constant expression.
9145    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
9146      << VDecl << Init->getSourceRange();
9147  }
9148
9149  Init = MaybeCreateExprWithCleanups(Init);
9150  VDecl->setInit(Init);
9151  VDecl->setCXXDirectInitializer(true);
9152
9153  CheckCompleteVariableDeclaration(VDecl);
9154}
9155
9156/// \brief Given a constructor and the set of arguments provided for the
9157/// constructor, convert the arguments and add any required default arguments
9158/// to form a proper call to this constructor.
9159///
9160/// \returns true if an error occurred, false otherwise.
9161bool
9162Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9163                              MultiExprArg ArgsPtr,
9164                              SourceLocation Loc,
9165                              ASTOwningVector<Expr*> &ConvertedArgs) {
9166  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9167  unsigned NumArgs = ArgsPtr.size();
9168  Expr **Args = (Expr **)ArgsPtr.get();
9169
9170  const FunctionProtoType *Proto
9171    = Constructor->getType()->getAs<FunctionProtoType>();
9172  assert(Proto && "Constructor without a prototype?");
9173  unsigned NumArgsInProto = Proto->getNumArgs();
9174
9175  // If too few arguments are available, we'll fill in the rest with defaults.
9176  if (NumArgs < NumArgsInProto)
9177    ConvertedArgs.reserve(NumArgsInProto);
9178  else
9179    ConvertedArgs.reserve(NumArgs);
9180
9181  VariadicCallType CallType =
9182    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9183  SmallVector<Expr *, 8> AllArgs;
9184  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9185                                        Proto, 0, Args, NumArgs, AllArgs,
9186                                        CallType);
9187  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9188    ConvertedArgs.push_back(AllArgs[i]);
9189  return Invalid;
9190}
9191
9192static inline bool
9193CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9194                                       const FunctionDecl *FnDecl) {
9195  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9196  if (isa<NamespaceDecl>(DC)) {
9197    return SemaRef.Diag(FnDecl->getLocation(),
9198                        diag::err_operator_new_delete_declared_in_namespace)
9199      << FnDecl->getDeclName();
9200  }
9201
9202  if (isa<TranslationUnitDecl>(DC) &&
9203      FnDecl->getStorageClass() == SC_Static) {
9204    return SemaRef.Diag(FnDecl->getLocation(),
9205                        diag::err_operator_new_delete_declared_static)
9206      << FnDecl->getDeclName();
9207  }
9208
9209  return false;
9210}
9211
9212static inline bool
9213CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9214                            CanQualType ExpectedResultType,
9215                            CanQualType ExpectedFirstParamType,
9216                            unsigned DependentParamTypeDiag,
9217                            unsigned InvalidParamTypeDiag) {
9218  QualType ResultType =
9219    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9220
9221  // Check that the result type is not dependent.
9222  if (ResultType->isDependentType())
9223    return SemaRef.Diag(FnDecl->getLocation(),
9224                        diag::err_operator_new_delete_dependent_result_type)
9225    << FnDecl->getDeclName() << ExpectedResultType;
9226
9227  // Check that the result type is what we expect.
9228  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9229    return SemaRef.Diag(FnDecl->getLocation(),
9230                        diag::err_operator_new_delete_invalid_result_type)
9231    << FnDecl->getDeclName() << ExpectedResultType;
9232
9233  // A function template must have at least 2 parameters.
9234  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9235    return SemaRef.Diag(FnDecl->getLocation(),
9236                      diag::err_operator_new_delete_template_too_few_parameters)
9237        << FnDecl->getDeclName();
9238
9239  // The function decl must have at least 1 parameter.
9240  if (FnDecl->getNumParams() == 0)
9241    return SemaRef.Diag(FnDecl->getLocation(),
9242                        diag::err_operator_new_delete_too_few_parameters)
9243      << FnDecl->getDeclName();
9244
9245  // Check the the first parameter type is not dependent.
9246  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9247  if (FirstParamType->isDependentType())
9248    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9249      << FnDecl->getDeclName() << ExpectedFirstParamType;
9250
9251  // Check that the first parameter type is what we expect.
9252  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9253      ExpectedFirstParamType)
9254    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9255    << FnDecl->getDeclName() << ExpectedFirstParamType;
9256
9257  return false;
9258}
9259
9260static bool
9261CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9262  // C++ [basic.stc.dynamic.allocation]p1:
9263  //   A program is ill-formed if an allocation function is declared in a
9264  //   namespace scope other than global scope or declared static in global
9265  //   scope.
9266  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9267    return true;
9268
9269  CanQualType SizeTy =
9270    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9271
9272  // C++ [basic.stc.dynamic.allocation]p1:
9273  //  The return type shall be void*. The first parameter shall have type
9274  //  std::size_t.
9275  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9276                                  SizeTy,
9277                                  diag::err_operator_new_dependent_param_type,
9278                                  diag::err_operator_new_param_type))
9279    return true;
9280
9281  // C++ [basic.stc.dynamic.allocation]p1:
9282  //  The first parameter shall not have an associated default argument.
9283  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9284    return SemaRef.Diag(FnDecl->getLocation(),
9285                        diag::err_operator_new_default_arg)
9286      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9287
9288  return false;
9289}
9290
9291static bool
9292CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9293  // C++ [basic.stc.dynamic.deallocation]p1:
9294  //   A program is ill-formed if deallocation functions are declared in a
9295  //   namespace scope other than global scope or declared static in global
9296  //   scope.
9297  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9298    return true;
9299
9300  // C++ [basic.stc.dynamic.deallocation]p2:
9301  //   Each deallocation function shall return void and its first parameter
9302  //   shall be void*.
9303  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9304                                  SemaRef.Context.VoidPtrTy,
9305                                 diag::err_operator_delete_dependent_param_type,
9306                                 diag::err_operator_delete_param_type))
9307    return true;
9308
9309  return false;
9310}
9311
9312/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9313/// of this overloaded operator is well-formed. If so, returns false;
9314/// otherwise, emits appropriate diagnostics and returns true.
9315bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9316  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9317         "Expected an overloaded operator declaration");
9318
9319  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9320
9321  // C++ [over.oper]p5:
9322  //   The allocation and deallocation functions, operator new,
9323  //   operator new[], operator delete and operator delete[], are
9324  //   described completely in 3.7.3. The attributes and restrictions
9325  //   found in the rest of this subclause do not apply to them unless
9326  //   explicitly stated in 3.7.3.
9327  if (Op == OO_Delete || Op == OO_Array_Delete)
9328    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9329
9330  if (Op == OO_New || Op == OO_Array_New)
9331    return CheckOperatorNewDeclaration(*this, FnDecl);
9332
9333  // C++ [over.oper]p6:
9334  //   An operator function shall either be a non-static member
9335  //   function or be a non-member function and have at least one
9336  //   parameter whose type is a class, a reference to a class, an
9337  //   enumeration, or a reference to an enumeration.
9338  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9339    if (MethodDecl->isStatic())
9340      return Diag(FnDecl->getLocation(),
9341                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9342  } else {
9343    bool ClassOrEnumParam = false;
9344    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9345                                   ParamEnd = FnDecl->param_end();
9346         Param != ParamEnd; ++Param) {
9347      QualType ParamType = (*Param)->getType().getNonReferenceType();
9348      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9349          ParamType->isEnumeralType()) {
9350        ClassOrEnumParam = true;
9351        break;
9352      }
9353    }
9354
9355    if (!ClassOrEnumParam)
9356      return Diag(FnDecl->getLocation(),
9357                  diag::err_operator_overload_needs_class_or_enum)
9358        << FnDecl->getDeclName();
9359  }
9360
9361  // C++ [over.oper]p8:
9362  //   An operator function cannot have default arguments (8.3.6),
9363  //   except where explicitly stated below.
9364  //
9365  // Only the function-call operator allows default arguments
9366  // (C++ [over.call]p1).
9367  if (Op != OO_Call) {
9368    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9369         Param != FnDecl->param_end(); ++Param) {
9370      if ((*Param)->hasDefaultArg())
9371        return Diag((*Param)->getLocation(),
9372                    diag::err_operator_overload_default_arg)
9373          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9374    }
9375  }
9376
9377  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9378    { false, false, false }
9379#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9380    , { Unary, Binary, MemberOnly }
9381#include "clang/Basic/OperatorKinds.def"
9382  };
9383
9384  bool CanBeUnaryOperator = OperatorUses[Op][0];
9385  bool CanBeBinaryOperator = OperatorUses[Op][1];
9386  bool MustBeMemberOperator = OperatorUses[Op][2];
9387
9388  // C++ [over.oper]p8:
9389  //   [...] Operator functions cannot have more or fewer parameters
9390  //   than the number required for the corresponding operator, as
9391  //   described in the rest of this subclause.
9392  unsigned NumParams = FnDecl->getNumParams()
9393                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9394  if (Op != OO_Call &&
9395      ((NumParams == 1 && !CanBeUnaryOperator) ||
9396       (NumParams == 2 && !CanBeBinaryOperator) ||
9397       (NumParams < 1) || (NumParams > 2))) {
9398    // We have the wrong number of parameters.
9399    unsigned ErrorKind;
9400    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9401      ErrorKind = 2;  // 2 -> unary or binary.
9402    } else if (CanBeUnaryOperator) {
9403      ErrorKind = 0;  // 0 -> unary
9404    } else {
9405      assert(CanBeBinaryOperator &&
9406             "All non-call overloaded operators are unary or binary!");
9407      ErrorKind = 1;  // 1 -> binary
9408    }
9409
9410    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9411      << FnDecl->getDeclName() << NumParams << ErrorKind;
9412  }
9413
9414  // Overloaded operators other than operator() cannot be variadic.
9415  if (Op != OO_Call &&
9416      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9417    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9418      << FnDecl->getDeclName();
9419  }
9420
9421  // Some operators must be non-static member functions.
9422  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9423    return Diag(FnDecl->getLocation(),
9424                diag::err_operator_overload_must_be_member)
9425      << FnDecl->getDeclName();
9426  }
9427
9428  // C++ [over.inc]p1:
9429  //   The user-defined function called operator++ implements the
9430  //   prefix and postfix ++ operator. If this function is a member
9431  //   function with no parameters, or a non-member function with one
9432  //   parameter of class or enumeration type, it defines the prefix
9433  //   increment operator ++ for objects of that type. If the function
9434  //   is a member function with one parameter (which shall be of type
9435  //   int) or a non-member function with two parameters (the second
9436  //   of which shall be of type int), it defines the postfix
9437  //   increment operator ++ for objects of that type.
9438  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9439    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9440    bool ParamIsInt = false;
9441    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9442      ParamIsInt = BT->getKind() == BuiltinType::Int;
9443
9444    if (!ParamIsInt)
9445      return Diag(LastParam->getLocation(),
9446                  diag::err_operator_overload_post_incdec_must_be_int)
9447        << LastParam->getType() << (Op == OO_MinusMinus);
9448  }
9449
9450  return false;
9451}
9452
9453/// CheckLiteralOperatorDeclaration - Check whether the declaration
9454/// of this literal operator function is well-formed. If so, returns
9455/// false; otherwise, emits appropriate diagnostics and returns true.
9456bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9457  DeclContext *DC = FnDecl->getDeclContext();
9458  Decl::Kind Kind = DC->getDeclKind();
9459  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9460      Kind != Decl::LinkageSpec) {
9461    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9462      << FnDecl->getDeclName();
9463    return true;
9464  }
9465
9466  bool Valid = false;
9467
9468  // template <char...> type operator "" name() is the only valid template
9469  // signature, and the only valid signature with no parameters.
9470  if (FnDecl->param_size() == 0) {
9471    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9472      // Must have only one template parameter
9473      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9474      if (Params->size() == 1) {
9475        NonTypeTemplateParmDecl *PmDecl =
9476          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9477
9478        // The template parameter must be a char parameter pack.
9479        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9480            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9481          Valid = true;
9482      }
9483    }
9484  } else {
9485    // Check the first parameter
9486    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9487
9488    QualType T = (*Param)->getType();
9489
9490    // unsigned long long int, long double, and any character type are allowed
9491    // as the only parameters.
9492    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9493        Context.hasSameType(T, Context.LongDoubleTy) ||
9494        Context.hasSameType(T, Context.CharTy) ||
9495        Context.hasSameType(T, Context.WCharTy) ||
9496        Context.hasSameType(T, Context.Char16Ty) ||
9497        Context.hasSameType(T, Context.Char32Ty)) {
9498      if (++Param == FnDecl->param_end())
9499        Valid = true;
9500      goto FinishedParams;
9501    }
9502
9503    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9504    const PointerType *PT = T->getAs<PointerType>();
9505    if (!PT)
9506      goto FinishedParams;
9507    T = PT->getPointeeType();
9508    if (!T.isConstQualified())
9509      goto FinishedParams;
9510    T = T.getUnqualifiedType();
9511
9512    // Move on to the second parameter;
9513    ++Param;
9514
9515    // If there is no second parameter, the first must be a const char *
9516    if (Param == FnDecl->param_end()) {
9517      if (Context.hasSameType(T, Context.CharTy))
9518        Valid = true;
9519      goto FinishedParams;
9520    }
9521
9522    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9523    // are allowed as the first parameter to a two-parameter function
9524    if (!(Context.hasSameType(T, Context.CharTy) ||
9525          Context.hasSameType(T, Context.WCharTy) ||
9526          Context.hasSameType(T, Context.Char16Ty) ||
9527          Context.hasSameType(T, Context.Char32Ty)))
9528      goto FinishedParams;
9529
9530    // The second and final parameter must be an std::size_t
9531    T = (*Param)->getType().getUnqualifiedType();
9532    if (Context.hasSameType(T, Context.getSizeType()) &&
9533        ++Param == FnDecl->param_end())
9534      Valid = true;
9535  }
9536
9537  // FIXME: This diagnostic is absolutely terrible.
9538FinishedParams:
9539  if (!Valid) {
9540    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9541      << FnDecl->getDeclName();
9542    return true;
9543  }
9544
9545  StringRef LiteralName
9546    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9547  if (LiteralName[0] != '_') {
9548    // C++0x [usrlit.suffix]p1:
9549    //   Literal suffix identifiers that do not start with an underscore are
9550    //   reserved for future standardization.
9551    bool IsHexFloat = true;
9552    if (LiteralName.size() > 1 &&
9553        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9554      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9555        if (!isdigit(LiteralName[I])) {
9556          IsHexFloat = false;
9557          break;
9558        }
9559      }
9560    }
9561
9562    if (IsHexFloat)
9563      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9564        << LiteralName;
9565    else
9566      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9567  }
9568
9569  return false;
9570}
9571
9572/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9573/// linkage specification, including the language and (if present)
9574/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9575/// the location of the language string literal, which is provided
9576/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9577/// the '{' brace. Otherwise, this linkage specification does not
9578/// have any braces.
9579Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9580                                           SourceLocation LangLoc,
9581                                           StringRef Lang,
9582                                           SourceLocation LBraceLoc) {
9583  LinkageSpecDecl::LanguageIDs Language;
9584  if (Lang == "\"C\"")
9585    Language = LinkageSpecDecl::lang_c;
9586  else if (Lang == "\"C++\"")
9587    Language = LinkageSpecDecl::lang_cxx;
9588  else {
9589    Diag(LangLoc, diag::err_bad_language);
9590    return 0;
9591  }
9592
9593  // FIXME: Add all the various semantics of linkage specifications
9594
9595  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9596                                               ExternLoc, LangLoc, Language);
9597  CurContext->addDecl(D);
9598  PushDeclContext(S, D);
9599  return D;
9600}
9601
9602/// ActOnFinishLinkageSpecification - Complete the definition of
9603/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9604/// valid, it's the position of the closing '}' brace in a linkage
9605/// specification that uses braces.
9606Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9607                                            Decl *LinkageSpec,
9608                                            SourceLocation RBraceLoc) {
9609  if (LinkageSpec) {
9610    if (RBraceLoc.isValid()) {
9611      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9612      LSDecl->setRBraceLoc(RBraceLoc);
9613    }
9614    PopDeclContext();
9615  }
9616  return LinkageSpec;
9617}
9618
9619/// \brief Perform semantic analysis for the variable declaration that
9620/// occurs within a C++ catch clause, returning the newly-created
9621/// variable.
9622VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9623                                         TypeSourceInfo *TInfo,
9624                                         SourceLocation StartLoc,
9625                                         SourceLocation Loc,
9626                                         IdentifierInfo *Name) {
9627  bool Invalid = false;
9628  QualType ExDeclType = TInfo->getType();
9629
9630  // Arrays and functions decay.
9631  if (ExDeclType->isArrayType())
9632    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9633  else if (ExDeclType->isFunctionType())
9634    ExDeclType = Context.getPointerType(ExDeclType);
9635
9636  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9637  // The exception-declaration shall not denote a pointer or reference to an
9638  // incomplete type, other than [cv] void*.
9639  // N2844 forbids rvalue references.
9640  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9641    Diag(Loc, diag::err_catch_rvalue_ref);
9642    Invalid = true;
9643  }
9644
9645  // GCC allows catching pointers and references to incomplete types
9646  // as an extension; so do we, but we warn by default.
9647
9648  QualType BaseType = ExDeclType;
9649  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9650  unsigned DK = diag::err_catch_incomplete;
9651  bool IncompleteCatchIsInvalid = true;
9652  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9653    BaseType = Ptr->getPointeeType();
9654    Mode = 1;
9655    DK = diag::ext_catch_incomplete_ptr;
9656    IncompleteCatchIsInvalid = false;
9657  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9658    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9659    BaseType = Ref->getPointeeType();
9660    Mode = 2;
9661    DK = diag::ext_catch_incomplete_ref;
9662    IncompleteCatchIsInvalid = false;
9663  }
9664  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9665      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9666      IncompleteCatchIsInvalid)
9667    Invalid = true;
9668
9669  if (!Invalid && !ExDeclType->isDependentType() &&
9670      RequireNonAbstractType(Loc, ExDeclType,
9671                             diag::err_abstract_type_in_decl,
9672                             AbstractVariableType))
9673    Invalid = true;
9674
9675  // Only the non-fragile NeXT runtime currently supports C++ catches
9676  // of ObjC types, and no runtime supports catching ObjC types by value.
9677  if (!Invalid && getLangOptions().ObjC1) {
9678    QualType T = ExDeclType;
9679    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9680      T = RT->getPointeeType();
9681
9682    if (T->isObjCObjectType()) {
9683      Diag(Loc, diag::err_objc_object_catch);
9684      Invalid = true;
9685    } else if (T->isObjCObjectPointerType()) {
9686      if (!getLangOptions().ObjCNonFragileABI)
9687        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9688    }
9689  }
9690
9691  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9692                                    ExDeclType, TInfo, SC_None, SC_None);
9693  ExDecl->setExceptionVariable(true);
9694
9695  if (!Invalid && !ExDeclType->isDependentType()) {
9696    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9697      // C++ [except.handle]p16:
9698      //   The object declared in an exception-declaration or, if the
9699      //   exception-declaration does not specify a name, a temporary (12.2) is
9700      //   copy-initialized (8.5) from the exception object. [...]
9701      //   The object is destroyed when the handler exits, after the destruction
9702      //   of any automatic objects initialized within the handler.
9703      //
9704      // We just pretend to initialize the object with itself, then make sure
9705      // it can be destroyed later.
9706      QualType initType = ExDeclType;
9707
9708      InitializedEntity entity =
9709        InitializedEntity::InitializeVariable(ExDecl);
9710      InitializationKind initKind =
9711        InitializationKind::CreateCopy(Loc, SourceLocation());
9712
9713      Expr *opaqueValue =
9714        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9715      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9716      ExprResult result = sequence.Perform(*this, entity, initKind,
9717                                           MultiExprArg(&opaqueValue, 1));
9718      if (result.isInvalid())
9719        Invalid = true;
9720      else {
9721        // If the constructor used was non-trivial, set this as the
9722        // "initializer".
9723        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9724        if (!construct->getConstructor()->isTrivial()) {
9725          Expr *init = MaybeCreateExprWithCleanups(construct);
9726          ExDecl->setInit(init);
9727        }
9728
9729        // And make sure it's destructable.
9730        FinalizeVarWithDestructor(ExDecl, recordType);
9731      }
9732    }
9733  }
9734
9735  if (Invalid)
9736    ExDecl->setInvalidDecl();
9737
9738  return ExDecl;
9739}
9740
9741/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9742/// handler.
9743Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9744  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9745  bool Invalid = D.isInvalidType();
9746
9747  // Check for unexpanded parameter packs.
9748  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9749                                               UPPC_ExceptionType)) {
9750    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9751                                             D.getIdentifierLoc());
9752    Invalid = true;
9753  }
9754
9755  IdentifierInfo *II = D.getIdentifier();
9756  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9757                                             LookupOrdinaryName,
9758                                             ForRedeclaration)) {
9759    // The scope should be freshly made just for us. There is just no way
9760    // it contains any previous declaration.
9761    assert(!S->isDeclScope(PrevDecl));
9762    if (PrevDecl->isTemplateParameter()) {
9763      // Maybe we will complain about the shadowed template parameter.
9764      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9765    }
9766  }
9767
9768  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9769    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9770      << D.getCXXScopeSpec().getRange();
9771    Invalid = true;
9772  }
9773
9774  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9775                                              D.getSourceRange().getBegin(),
9776                                              D.getIdentifierLoc(),
9777                                              D.getIdentifier());
9778  if (Invalid)
9779    ExDecl->setInvalidDecl();
9780
9781  // Add the exception declaration into this scope.
9782  if (II)
9783    PushOnScopeChains(ExDecl, S);
9784  else
9785    CurContext->addDecl(ExDecl);
9786
9787  ProcessDeclAttributes(S, ExDecl, D);
9788  return ExDecl;
9789}
9790
9791Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9792                                         Expr *AssertExpr,
9793                                         Expr *AssertMessageExpr_,
9794                                         SourceLocation RParenLoc) {
9795  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9796
9797  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9798    llvm::APSInt Value(32);
9799    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9800      Diag(StaticAssertLoc,
9801           diag::err_static_assert_expression_is_not_constant) <<
9802        AssertExpr->getSourceRange();
9803      return 0;
9804    }
9805
9806    if (Value == 0) {
9807      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9808        << AssertMessage->getString() << AssertExpr->getSourceRange();
9809    }
9810  }
9811
9812  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9813    return 0;
9814
9815  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9816                                        AssertExpr, AssertMessage, RParenLoc);
9817
9818  CurContext->addDecl(Decl);
9819  return Decl;
9820}
9821
9822/// \brief Perform semantic analysis of the given friend type declaration.
9823///
9824/// \returns A friend declaration that.
9825FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
9826                                      TypeSourceInfo *TSInfo) {
9827  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9828
9829  QualType T = TSInfo->getType();
9830  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9831
9832  if (!getLangOptions().CPlusPlus0x) {
9833    // C++03 [class.friend]p2:
9834    //   An elaborated-type-specifier shall be used in a friend declaration
9835    //   for a class.*
9836    //
9837    //   * The class-key of the elaborated-type-specifier is required.
9838    if (!ActiveTemplateInstantiations.empty()) {
9839      // Do not complain about the form of friend template types during
9840      // template instantiation; we will already have complained when the
9841      // template was declared.
9842    } else if (!T->isElaboratedTypeSpecifier()) {
9843      // If we evaluated the type to a record type, suggest putting
9844      // a tag in front.
9845      if (const RecordType *RT = T->getAs<RecordType>()) {
9846        RecordDecl *RD = RT->getDecl();
9847
9848        std::string InsertionText = std::string(" ") + RD->getKindName();
9849
9850        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
9851          << (unsigned) RD->getTagKind()
9852          << T
9853          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9854                                        InsertionText);
9855      } else {
9856        Diag(FriendLoc, diag::ext_nonclass_type_friend)
9857          << T
9858          << SourceRange(FriendLoc, TypeRange.getEnd());
9859      }
9860    } else if (T->getAs<EnumType>()) {
9861      Diag(FriendLoc, diag::ext_enum_friend)
9862        << T
9863        << SourceRange(FriendLoc, TypeRange.getEnd());
9864    }
9865  }
9866
9867  // C++0x [class.friend]p3:
9868  //   If the type specifier in a friend declaration designates a (possibly
9869  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9870  //   the friend declaration is ignored.
9871
9872  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9873  // in [class.friend]p3 that we do not implement.
9874
9875  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
9876}
9877
9878/// Handle a friend tag declaration where the scope specifier was
9879/// templated.
9880Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9881                                    unsigned TagSpec, SourceLocation TagLoc,
9882                                    CXXScopeSpec &SS,
9883                                    IdentifierInfo *Name, SourceLocation NameLoc,
9884                                    AttributeList *Attr,
9885                                    MultiTemplateParamsArg TempParamLists) {
9886  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9887
9888  bool isExplicitSpecialization = false;
9889  bool Invalid = false;
9890
9891  if (TemplateParameterList *TemplateParams
9892        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9893                                                  TempParamLists.get(),
9894                                                  TempParamLists.size(),
9895                                                  /*friend*/ true,
9896                                                  isExplicitSpecialization,
9897                                                  Invalid)) {
9898    if (TemplateParams->size() > 0) {
9899      // This is a declaration of a class template.
9900      if (Invalid)
9901        return 0;
9902
9903      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9904                                SS, Name, NameLoc, Attr,
9905                                TemplateParams, AS_public,
9906                                /*ModulePrivateLoc=*/SourceLocation(),
9907                                TempParamLists.size() - 1,
9908                   (TemplateParameterList**) TempParamLists.release()).take();
9909    } else {
9910      // The "template<>" header is extraneous.
9911      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9912        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9913      isExplicitSpecialization = true;
9914    }
9915  }
9916
9917  if (Invalid) return 0;
9918
9919  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9920
9921  bool isAllExplicitSpecializations = true;
9922  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9923    if (TempParamLists.get()[I]->size()) {
9924      isAllExplicitSpecializations = false;
9925      break;
9926    }
9927  }
9928
9929  // FIXME: don't ignore attributes.
9930
9931  // If it's explicit specializations all the way down, just forget
9932  // about the template header and build an appropriate non-templated
9933  // friend.  TODO: for source fidelity, remember the headers.
9934  if (isAllExplicitSpecializations) {
9935    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9936    ElaboratedTypeKeyword Keyword
9937      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9938    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9939                                   *Name, NameLoc);
9940    if (T.isNull())
9941      return 0;
9942
9943    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9944    if (isa<DependentNameType>(T)) {
9945      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9946      TL.setKeywordLoc(TagLoc);
9947      TL.setQualifierLoc(QualifierLoc);
9948      TL.setNameLoc(NameLoc);
9949    } else {
9950      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9951      TL.setKeywordLoc(TagLoc);
9952      TL.setQualifierLoc(QualifierLoc);
9953      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9954    }
9955
9956    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9957                                            TSI, FriendLoc);
9958    Friend->setAccess(AS_public);
9959    CurContext->addDecl(Friend);
9960    return Friend;
9961  }
9962
9963  // Handle the case of a templated-scope friend class.  e.g.
9964  //   template <class T> class A<T>::B;
9965  // FIXME: we don't support these right now.
9966  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9967  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9968  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9969  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9970  TL.setKeywordLoc(TagLoc);
9971  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9972  TL.setNameLoc(NameLoc);
9973
9974  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9975                                          TSI, FriendLoc);
9976  Friend->setAccess(AS_public);
9977  Friend->setUnsupportedFriend(true);
9978  CurContext->addDecl(Friend);
9979  return Friend;
9980}
9981
9982
9983/// Handle a friend type declaration.  This works in tandem with
9984/// ActOnTag.
9985///
9986/// Notes on friend class templates:
9987///
9988/// We generally treat friend class declarations as if they were
9989/// declaring a class.  So, for example, the elaborated type specifier
9990/// in a friend declaration is required to obey the restrictions of a
9991/// class-head (i.e. no typedefs in the scope chain), template
9992/// parameters are required to match up with simple template-ids, &c.
9993/// However, unlike when declaring a template specialization, it's
9994/// okay to refer to a template specialization without an empty
9995/// template parameter declaration, e.g.
9996///   friend class A<T>::B<unsigned>;
9997/// We permit this as a special case; if there are any template
9998/// parameters present at all, require proper matching, i.e.
9999///   template <> template <class T> friend class A<int>::B;
10000Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10001                                MultiTemplateParamsArg TempParams) {
10002  SourceLocation Loc = DS.getSourceRange().getBegin();
10003
10004  assert(DS.isFriendSpecified());
10005  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10006
10007  // Try to convert the decl specifier to a type.  This works for
10008  // friend templates because ActOnTag never produces a ClassTemplateDecl
10009  // for a TUK_Friend.
10010  Declarator TheDeclarator(DS, Declarator::MemberContext);
10011  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10012  QualType T = TSI->getType();
10013  if (TheDeclarator.isInvalidType())
10014    return 0;
10015
10016  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10017    return 0;
10018
10019  // This is definitely an error in C++98.  It's probably meant to
10020  // be forbidden in C++0x, too, but the specification is just
10021  // poorly written.
10022  //
10023  // The problem is with declarations like the following:
10024  //   template <T> friend A<T>::foo;
10025  // where deciding whether a class C is a friend or not now hinges
10026  // on whether there exists an instantiation of A that causes
10027  // 'foo' to equal C.  There are restrictions on class-heads
10028  // (which we declare (by fiat) elaborated friend declarations to
10029  // be) that makes this tractable.
10030  //
10031  // FIXME: handle "template <> friend class A<T>;", which
10032  // is possibly well-formed?  Who even knows?
10033  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10034    Diag(Loc, diag::err_tagless_friend_type_template)
10035      << DS.getSourceRange();
10036    return 0;
10037  }
10038
10039  // C++98 [class.friend]p1: A friend of a class is a function
10040  //   or class that is not a member of the class . . .
10041  // This is fixed in DR77, which just barely didn't make the C++03
10042  // deadline.  It's also a very silly restriction that seriously
10043  // affects inner classes and which nobody else seems to implement;
10044  // thus we never diagnose it, not even in -pedantic.
10045  //
10046  // But note that we could warn about it: it's always useless to
10047  // friend one of your own members (it's not, however, worthless to
10048  // friend a member of an arbitrary specialization of your template).
10049
10050  Decl *D;
10051  if (unsigned NumTempParamLists = TempParams.size())
10052    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10053                                   NumTempParamLists,
10054                                   TempParams.release(),
10055                                   TSI,
10056                                   DS.getFriendSpecLoc());
10057  else
10058    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
10059
10060  if (!D)
10061    return 0;
10062
10063  D->setAccess(AS_public);
10064  CurContext->addDecl(D);
10065
10066  return D;
10067}
10068
10069Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
10070                                    MultiTemplateParamsArg TemplateParams) {
10071  const DeclSpec &DS = D.getDeclSpec();
10072
10073  assert(DS.isFriendSpecified());
10074  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10075
10076  SourceLocation Loc = D.getIdentifierLoc();
10077  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10078  QualType T = TInfo->getType();
10079
10080  // C++ [class.friend]p1
10081  //   A friend of a class is a function or class....
10082  // Note that this sees through typedefs, which is intended.
10083  // It *doesn't* see through dependent types, which is correct
10084  // according to [temp.arg.type]p3:
10085  //   If a declaration acquires a function type through a
10086  //   type dependent on a template-parameter and this causes
10087  //   a declaration that does not use the syntactic form of a
10088  //   function declarator to have a function type, the program
10089  //   is ill-formed.
10090  if (!T->isFunctionType()) {
10091    Diag(Loc, diag::err_unexpected_friend);
10092
10093    // It might be worthwhile to try to recover by creating an
10094    // appropriate declaration.
10095    return 0;
10096  }
10097
10098  // C++ [namespace.memdef]p3
10099  //  - If a friend declaration in a non-local class first declares a
10100  //    class or function, the friend class or function is a member
10101  //    of the innermost enclosing namespace.
10102  //  - The name of the friend is not found by simple name lookup
10103  //    until a matching declaration is provided in that namespace
10104  //    scope (either before or after the class declaration granting
10105  //    friendship).
10106  //  - If a friend function is called, its name may be found by the
10107  //    name lookup that considers functions from namespaces and
10108  //    classes associated with the types of the function arguments.
10109  //  - When looking for a prior declaration of a class or a function
10110  //    declared as a friend, scopes outside the innermost enclosing
10111  //    namespace scope are not considered.
10112
10113  CXXScopeSpec &SS = D.getCXXScopeSpec();
10114  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10115  DeclarationName Name = NameInfo.getName();
10116  assert(Name);
10117
10118  // Check for unexpanded parameter packs.
10119  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10120      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10121      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10122    return 0;
10123
10124  // The context we found the declaration in, or in which we should
10125  // create the declaration.
10126  DeclContext *DC;
10127  Scope *DCScope = S;
10128  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10129                        ForRedeclaration);
10130
10131  // FIXME: there are different rules in local classes
10132
10133  // There are four cases here.
10134  //   - There's no scope specifier, in which case we just go to the
10135  //     appropriate scope and look for a function or function template
10136  //     there as appropriate.
10137  // Recover from invalid scope qualifiers as if they just weren't there.
10138  if (SS.isInvalid() || !SS.isSet()) {
10139    // C++0x [namespace.memdef]p3:
10140    //   If the name in a friend declaration is neither qualified nor
10141    //   a template-id and the declaration is a function or an
10142    //   elaborated-type-specifier, the lookup to determine whether
10143    //   the entity has been previously declared shall not consider
10144    //   any scopes outside the innermost enclosing namespace.
10145    // C++0x [class.friend]p11:
10146    //   If a friend declaration appears in a local class and the name
10147    //   specified is an unqualified name, a prior declaration is
10148    //   looked up without considering scopes that are outside the
10149    //   innermost enclosing non-class scope. For a friend function
10150    //   declaration, if there is no prior declaration, the program is
10151    //   ill-formed.
10152    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10153    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10154
10155    // Find the appropriate context according to the above.
10156    DC = CurContext;
10157    while (true) {
10158      // Skip class contexts.  If someone can cite chapter and verse
10159      // for this behavior, that would be nice --- it's what GCC and
10160      // EDG do, and it seems like a reasonable intent, but the spec
10161      // really only says that checks for unqualified existing
10162      // declarations should stop at the nearest enclosing namespace,
10163      // not that they should only consider the nearest enclosing
10164      // namespace.
10165      while (DC->isRecord())
10166        DC = DC->getParent();
10167
10168      LookupQualifiedName(Previous, DC);
10169
10170      // TODO: decide what we think about using declarations.
10171      if (isLocal || !Previous.empty())
10172        break;
10173
10174      if (isTemplateId) {
10175        if (isa<TranslationUnitDecl>(DC)) break;
10176      } else {
10177        if (DC->isFileContext()) break;
10178      }
10179      DC = DC->getParent();
10180    }
10181
10182    // C++ [class.friend]p1: A friend of a class is a function or
10183    //   class that is not a member of the class . . .
10184    // C++0x changes this for both friend types and functions.
10185    // Most C++ 98 compilers do seem to give an error here, so
10186    // we do, too.
10187    if (!Previous.empty() && DC->Equals(CurContext)
10188        && !getLangOptions().CPlusPlus0x)
10189      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
10190
10191    DCScope = getScopeForDeclContext(S, DC);
10192
10193  //   - There's a non-dependent scope specifier, in which case we
10194  //     compute it and do a previous lookup there for a function
10195  //     or function template.
10196  } else if (!SS.getScopeRep()->isDependent()) {
10197    DC = computeDeclContext(SS);
10198    if (!DC) return 0;
10199
10200    if (RequireCompleteDeclContext(SS, DC)) return 0;
10201
10202    LookupQualifiedName(Previous, DC);
10203
10204    // Ignore things found implicitly in the wrong scope.
10205    // TODO: better diagnostics for this case.  Suggesting the right
10206    // qualified scope would be nice...
10207    LookupResult::Filter F = Previous.makeFilter();
10208    while (F.hasNext()) {
10209      NamedDecl *D = F.next();
10210      if (!DC->InEnclosingNamespaceSetOf(
10211              D->getDeclContext()->getRedeclContext()))
10212        F.erase();
10213    }
10214    F.done();
10215
10216    if (Previous.empty()) {
10217      D.setInvalidType();
10218      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
10219      return 0;
10220    }
10221
10222    // C++ [class.friend]p1: A friend of a class is a function or
10223    //   class that is not a member of the class . . .
10224    if (DC->Equals(CurContext))
10225      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
10226
10227  //   - There's a scope specifier that does not match any template
10228  //     parameter lists, in which case we use some arbitrary context,
10229  //     create a method or method template, and wait for instantiation.
10230  //   - There's a scope specifier that does match some template
10231  //     parameter lists, which we don't handle right now.
10232  } else {
10233    DC = CurContext;
10234    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10235  }
10236
10237  if (!DC->isRecord()) {
10238    // This implies that it has to be an operator or function.
10239    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10240        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10241        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10242      Diag(Loc, diag::err_introducing_special_friend) <<
10243        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10244         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10245      return 0;
10246    }
10247  }
10248
10249  bool Redeclaration = false;
10250  bool AddToScope = true;
10251  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
10252                                          move(TemplateParams),
10253                                          IsDefinition,
10254                                          Redeclaration, AddToScope);
10255  if (!ND) return 0;
10256
10257  assert(ND->getDeclContext() == DC);
10258  assert(ND->getLexicalDeclContext() == CurContext);
10259
10260  // Add the function declaration to the appropriate lookup tables,
10261  // adjusting the redeclarations list as necessary.  We don't
10262  // want to do this yet if the friending class is dependent.
10263  //
10264  // Also update the scope-based lookup if the target context's
10265  // lookup context is in lexical scope.
10266  if (!CurContext->isDependentContext()) {
10267    DC = DC->getRedeclContext();
10268    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10269    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10270      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10271  }
10272
10273  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10274                                       D.getIdentifierLoc(), ND,
10275                                       DS.getFriendSpecLoc());
10276  FrD->setAccess(AS_public);
10277  CurContext->addDecl(FrD);
10278
10279  if (ND->isInvalidDecl())
10280    FrD->setInvalidDecl();
10281  else {
10282    FunctionDecl *FD;
10283    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10284      FD = FTD->getTemplatedDecl();
10285    else
10286      FD = cast<FunctionDecl>(ND);
10287
10288    // Mark templated-scope function declarations as unsupported.
10289    if (FD->getNumTemplateParameterLists())
10290      FrD->setUnsupportedFriend(true);
10291  }
10292
10293  return ND;
10294}
10295
10296void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10297  AdjustDeclIfTemplate(Dcl);
10298
10299  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10300  if (!Fn) {
10301    Diag(DelLoc, diag::err_deleted_non_function);
10302    return;
10303  }
10304  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10305    Diag(DelLoc, diag::err_deleted_decl_not_first);
10306    Diag(Prev->getLocation(), diag::note_previous_declaration);
10307    // If the declaration wasn't the first, we delete the function anyway for
10308    // recovery.
10309  }
10310  Fn->setDeletedAsWritten();
10311}
10312
10313void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10314  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10315
10316  if (MD) {
10317    if (MD->getParent()->isDependentType()) {
10318      MD->setDefaulted();
10319      MD->setExplicitlyDefaulted();
10320      return;
10321    }
10322
10323    CXXSpecialMember Member = getSpecialMember(MD);
10324    if (Member == CXXInvalid) {
10325      Diag(DefaultLoc, diag::err_default_special_members);
10326      return;
10327    }
10328
10329    MD->setDefaulted();
10330    MD->setExplicitlyDefaulted();
10331
10332    // If this definition appears within the record, do the checking when
10333    // the record is complete.
10334    const FunctionDecl *Primary = MD;
10335    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10336      // Find the uninstantiated declaration that actually had the '= default'
10337      // on it.
10338      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10339
10340    if (Primary == Primary->getCanonicalDecl())
10341      return;
10342
10343    switch (Member) {
10344    case CXXDefaultConstructor: {
10345      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10346      CheckExplicitlyDefaultedDefaultConstructor(CD);
10347      if (!CD->isInvalidDecl())
10348        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10349      break;
10350    }
10351
10352    case CXXCopyConstructor: {
10353      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10354      CheckExplicitlyDefaultedCopyConstructor(CD);
10355      if (!CD->isInvalidDecl())
10356        DefineImplicitCopyConstructor(DefaultLoc, CD);
10357      break;
10358    }
10359
10360    case CXXCopyAssignment: {
10361      CheckExplicitlyDefaultedCopyAssignment(MD);
10362      if (!MD->isInvalidDecl())
10363        DefineImplicitCopyAssignment(DefaultLoc, MD);
10364      break;
10365    }
10366
10367    case CXXDestructor: {
10368      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10369      CheckExplicitlyDefaultedDestructor(DD);
10370      if (!DD->isInvalidDecl())
10371        DefineImplicitDestructor(DefaultLoc, DD);
10372      break;
10373    }
10374
10375    case CXXMoveConstructor: {
10376      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10377      CheckExplicitlyDefaultedMoveConstructor(CD);
10378      if (!CD->isInvalidDecl())
10379        DefineImplicitMoveConstructor(DefaultLoc, CD);
10380      break;
10381    }
10382
10383    case CXXMoveAssignment: {
10384      CheckExplicitlyDefaultedMoveAssignment(MD);
10385      if (!MD->isInvalidDecl())
10386        DefineImplicitMoveAssignment(DefaultLoc, MD);
10387      break;
10388    }
10389
10390    case CXXInvalid:
10391      llvm_unreachable("Invalid special member.");
10392    }
10393  } else {
10394    Diag(DefaultLoc, diag::err_default_special_members);
10395  }
10396}
10397
10398static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10399  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10400    Stmt *SubStmt = *CI;
10401    if (!SubStmt)
10402      continue;
10403    if (isa<ReturnStmt>(SubStmt))
10404      Self.Diag(SubStmt->getSourceRange().getBegin(),
10405           diag::err_return_in_constructor_handler);
10406    if (!isa<Expr>(SubStmt))
10407      SearchForReturnInStmt(Self, SubStmt);
10408  }
10409}
10410
10411void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10412  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10413    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10414    SearchForReturnInStmt(*this, Handler);
10415  }
10416}
10417
10418bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10419                                             const CXXMethodDecl *Old) {
10420  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10421  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10422
10423  if (Context.hasSameType(NewTy, OldTy) ||
10424      NewTy->isDependentType() || OldTy->isDependentType())
10425    return false;
10426
10427  // Check if the return types are covariant
10428  QualType NewClassTy, OldClassTy;
10429
10430  /// Both types must be pointers or references to classes.
10431  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10432    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10433      NewClassTy = NewPT->getPointeeType();
10434      OldClassTy = OldPT->getPointeeType();
10435    }
10436  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10437    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10438      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10439        NewClassTy = NewRT->getPointeeType();
10440        OldClassTy = OldRT->getPointeeType();
10441      }
10442    }
10443  }
10444
10445  // The return types aren't either both pointers or references to a class type.
10446  if (NewClassTy.isNull()) {
10447    Diag(New->getLocation(),
10448         diag::err_different_return_type_for_overriding_virtual_function)
10449      << New->getDeclName() << NewTy << OldTy;
10450    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10451
10452    return true;
10453  }
10454
10455  // C++ [class.virtual]p6:
10456  //   If the return type of D::f differs from the return type of B::f, the
10457  //   class type in the return type of D::f shall be complete at the point of
10458  //   declaration of D::f or shall be the class type D.
10459  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10460    if (!RT->isBeingDefined() &&
10461        RequireCompleteType(New->getLocation(), NewClassTy,
10462                            PDiag(diag::err_covariant_return_incomplete)
10463                              << New->getDeclName()))
10464    return true;
10465  }
10466
10467  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10468    // Check if the new class derives from the old class.
10469    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10470      Diag(New->getLocation(),
10471           diag::err_covariant_return_not_derived)
10472      << New->getDeclName() << NewTy << OldTy;
10473      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10474      return true;
10475    }
10476
10477    // Check if we the conversion from derived to base is valid.
10478    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10479                    diag::err_covariant_return_inaccessible_base,
10480                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10481                    // FIXME: Should this point to the return type?
10482                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10483      // FIXME: this note won't trigger for delayed access control
10484      // diagnostics, and it's impossible to get an undelayed error
10485      // here from access control during the original parse because
10486      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10487      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10488      return true;
10489    }
10490  }
10491
10492  // The qualifiers of the return types must be the same.
10493  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10494    Diag(New->getLocation(),
10495         diag::err_covariant_return_type_different_qualifications)
10496    << New->getDeclName() << NewTy << OldTy;
10497    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10498    return true;
10499  };
10500
10501
10502  // The new class type must have the same or less qualifiers as the old type.
10503  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10504    Diag(New->getLocation(),
10505         diag::err_covariant_return_type_class_type_more_qualified)
10506    << New->getDeclName() << NewTy << OldTy;
10507    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10508    return true;
10509  };
10510
10511  return false;
10512}
10513
10514/// \brief Mark the given method pure.
10515///
10516/// \param Method the method to be marked pure.
10517///
10518/// \param InitRange the source range that covers the "0" initializer.
10519bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10520  SourceLocation EndLoc = InitRange.getEnd();
10521  if (EndLoc.isValid())
10522    Method->setRangeEnd(EndLoc);
10523
10524  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10525    Method->setPure();
10526    return false;
10527  }
10528
10529  if (!Method->isInvalidDecl())
10530    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10531      << Method->getDeclName() << InitRange;
10532  return true;
10533}
10534
10535/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10536/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10537/// is a fresh scope pushed for just this purpose.
10538///
10539/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10540/// static data member of class X, names should be looked up in the scope of
10541/// class X.
10542void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10543  // If there is no declaration, there was an error parsing it.
10544  if (D == 0 || D->isInvalidDecl()) return;
10545
10546  // We should only get called for declarations with scope specifiers, like:
10547  //   int foo::bar;
10548  assert(D->isOutOfLine());
10549  EnterDeclaratorContext(S, D->getDeclContext());
10550}
10551
10552/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10553/// initializer for the out-of-line declaration 'D'.
10554void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10555  // If there is no declaration, there was an error parsing it.
10556  if (D == 0 || D->isInvalidDecl()) return;
10557
10558  assert(D->isOutOfLine());
10559  ExitDeclaratorContext(S);
10560}
10561
10562/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10563/// C++ if/switch/while/for statement.
10564/// e.g: "if (int x = f()) {...}"
10565DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10566  // C++ 6.4p2:
10567  // The declarator shall not specify a function or an array.
10568  // The type-specifier-seq shall not contain typedef and shall not declare a
10569  // new class or enumeration.
10570  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10571         "Parser allowed 'typedef' as storage class of condition decl.");
10572
10573  Decl *Dcl = ActOnDeclarator(S, D);
10574  if (!Dcl)
10575    return true;
10576
10577  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10578    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10579      << D.getSourceRange();
10580    return true;
10581  }
10582
10583  return Dcl;
10584}
10585
10586void Sema::LoadExternalVTableUses() {
10587  if (!ExternalSource)
10588    return;
10589
10590  SmallVector<ExternalVTableUse, 4> VTables;
10591  ExternalSource->ReadUsedVTables(VTables);
10592  SmallVector<VTableUse, 4> NewUses;
10593  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10594    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10595      = VTablesUsed.find(VTables[I].Record);
10596    // Even if a definition wasn't required before, it may be required now.
10597    if (Pos != VTablesUsed.end()) {
10598      if (!Pos->second && VTables[I].DefinitionRequired)
10599        Pos->second = true;
10600      continue;
10601    }
10602
10603    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10604    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10605  }
10606
10607  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10608}
10609
10610void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10611                          bool DefinitionRequired) {
10612  // Ignore any vtable uses in unevaluated operands or for classes that do
10613  // not have a vtable.
10614  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10615      CurContext->isDependentContext() ||
10616      ExprEvalContexts.back().Context == Unevaluated)
10617    return;
10618
10619  // Try to insert this class into the map.
10620  LoadExternalVTableUses();
10621  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10622  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10623    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10624  if (!Pos.second) {
10625    // If we already had an entry, check to see if we are promoting this vtable
10626    // to required a definition. If so, we need to reappend to the VTableUses
10627    // list, since we may have already processed the first entry.
10628    if (DefinitionRequired && !Pos.first->second) {
10629      Pos.first->second = true;
10630    } else {
10631      // Otherwise, we can early exit.
10632      return;
10633    }
10634  }
10635
10636  // Local classes need to have their virtual members marked
10637  // immediately. For all other classes, we mark their virtual members
10638  // at the end of the translation unit.
10639  if (Class->isLocalClass())
10640    MarkVirtualMembersReferenced(Loc, Class);
10641  else
10642    VTableUses.push_back(std::make_pair(Class, Loc));
10643}
10644
10645bool Sema::DefineUsedVTables() {
10646  LoadExternalVTableUses();
10647  if (VTableUses.empty())
10648    return false;
10649
10650  // Note: The VTableUses vector could grow as a result of marking
10651  // the members of a class as "used", so we check the size each
10652  // time through the loop and prefer indices (with are stable) to
10653  // iterators (which are not).
10654  bool DefinedAnything = false;
10655  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10656    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10657    if (!Class)
10658      continue;
10659
10660    SourceLocation Loc = VTableUses[I].second;
10661
10662    // If this class has a key function, but that key function is
10663    // defined in another translation unit, we don't need to emit the
10664    // vtable even though we're using it.
10665    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10666    if (KeyFunction && !KeyFunction->hasBody()) {
10667      switch (KeyFunction->getTemplateSpecializationKind()) {
10668      case TSK_Undeclared:
10669      case TSK_ExplicitSpecialization:
10670      case TSK_ExplicitInstantiationDeclaration:
10671        // The key function is in another translation unit.
10672        continue;
10673
10674      case TSK_ExplicitInstantiationDefinition:
10675      case TSK_ImplicitInstantiation:
10676        // We will be instantiating the key function.
10677        break;
10678      }
10679    } else if (!KeyFunction) {
10680      // If we have a class with no key function that is the subject
10681      // of an explicit instantiation declaration, suppress the
10682      // vtable; it will live with the explicit instantiation
10683      // definition.
10684      bool IsExplicitInstantiationDeclaration
10685        = Class->getTemplateSpecializationKind()
10686                                      == TSK_ExplicitInstantiationDeclaration;
10687      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10688                                 REnd = Class->redecls_end();
10689           R != REnd; ++R) {
10690        TemplateSpecializationKind TSK
10691          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10692        if (TSK == TSK_ExplicitInstantiationDeclaration)
10693          IsExplicitInstantiationDeclaration = true;
10694        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10695          IsExplicitInstantiationDeclaration = false;
10696          break;
10697        }
10698      }
10699
10700      if (IsExplicitInstantiationDeclaration)
10701        continue;
10702    }
10703
10704    // Mark all of the virtual members of this class as referenced, so
10705    // that we can build a vtable. Then, tell the AST consumer that a
10706    // vtable for this class is required.
10707    DefinedAnything = true;
10708    MarkVirtualMembersReferenced(Loc, Class);
10709    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10710    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10711
10712    // Optionally warn if we're emitting a weak vtable.
10713    if (Class->getLinkage() == ExternalLinkage &&
10714        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10715      const FunctionDecl *KeyFunctionDef = 0;
10716      if (!KeyFunction ||
10717          (KeyFunction->hasBody(KeyFunctionDef) &&
10718           KeyFunctionDef->isInlined()))
10719        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10720    }
10721  }
10722  VTableUses.clear();
10723
10724  return DefinedAnything;
10725}
10726
10727void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10728                                        const CXXRecordDecl *RD) {
10729  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10730       e = RD->method_end(); i != e; ++i) {
10731    CXXMethodDecl *MD = *i;
10732
10733    // C++ [basic.def.odr]p2:
10734    //   [...] A virtual member function is used if it is not pure. [...]
10735    if (MD->isVirtual() && !MD->isPure())
10736      MarkDeclarationReferenced(Loc, MD);
10737  }
10738
10739  // Only classes that have virtual bases need a VTT.
10740  if (RD->getNumVBases() == 0)
10741    return;
10742
10743  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10744           e = RD->bases_end(); i != e; ++i) {
10745    const CXXRecordDecl *Base =
10746        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10747    if (Base->getNumVBases() == 0)
10748      continue;
10749    MarkVirtualMembersReferenced(Loc, Base);
10750  }
10751}
10752
10753/// SetIvarInitializers - This routine builds initialization ASTs for the
10754/// Objective-C implementation whose ivars need be initialized.
10755void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10756  if (!getLangOptions().CPlusPlus)
10757    return;
10758  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10759    SmallVector<ObjCIvarDecl*, 8> ivars;
10760    CollectIvarsToConstructOrDestruct(OID, ivars);
10761    if (ivars.empty())
10762      return;
10763    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10764    for (unsigned i = 0; i < ivars.size(); i++) {
10765      FieldDecl *Field = ivars[i];
10766      if (Field->isInvalidDecl())
10767        continue;
10768
10769      CXXCtorInitializer *Member;
10770      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10771      InitializationKind InitKind =
10772        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10773
10774      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10775      ExprResult MemberInit =
10776        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10777      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10778      // Note, MemberInit could actually come back empty if no initialization
10779      // is required (e.g., because it would call a trivial default constructor)
10780      if (!MemberInit.get() || MemberInit.isInvalid())
10781        continue;
10782
10783      Member =
10784        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10785                                         SourceLocation(),
10786                                         MemberInit.takeAs<Expr>(),
10787                                         SourceLocation());
10788      AllToInit.push_back(Member);
10789
10790      // Be sure that the destructor is accessible and is marked as referenced.
10791      if (const RecordType *RecordTy
10792                  = Context.getBaseElementType(Field->getType())
10793                                                        ->getAs<RecordType>()) {
10794                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10795        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10796          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10797          CheckDestructorAccess(Field->getLocation(), Destructor,
10798                            PDiag(diag::err_access_dtor_ivar)
10799                              << Context.getBaseElementType(Field->getType()));
10800        }
10801      }
10802    }
10803    ObjCImplementation->setIvarInitializers(Context,
10804                                            AllToInit.data(), AllToInit.size());
10805  }
10806}
10807
10808static
10809void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10810                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10811                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10812                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10813                           Sema &S) {
10814  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10815                                                   CE = Current.end();
10816  if (Ctor->isInvalidDecl())
10817    return;
10818
10819  const FunctionDecl *FNTarget = 0;
10820  CXXConstructorDecl *Target;
10821
10822  // We ignore the result here since if we don't have a body, Target will be
10823  // null below.
10824  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10825  Target
10826= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10827
10828  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10829                     // Avoid dereferencing a null pointer here.
10830                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10831
10832  if (!Current.insert(Canonical))
10833    return;
10834
10835  // We know that beyond here, we aren't chaining into a cycle.
10836  if (!Target || !Target->isDelegatingConstructor() ||
10837      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10838    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10839      Valid.insert(*CI);
10840    Current.clear();
10841  // We've hit a cycle.
10842  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10843             Current.count(TCanonical)) {
10844    // If we haven't diagnosed this cycle yet, do so now.
10845    if (!Invalid.count(TCanonical)) {
10846      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10847             diag::warn_delegating_ctor_cycle)
10848        << Ctor;
10849
10850      // Don't add a note for a function delegating directo to itself.
10851      if (TCanonical != Canonical)
10852        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10853
10854      CXXConstructorDecl *C = Target;
10855      while (C->getCanonicalDecl() != Canonical) {
10856        (void)C->getTargetConstructor()->hasBody(FNTarget);
10857        assert(FNTarget && "Ctor cycle through bodiless function");
10858
10859        C
10860       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10861        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10862      }
10863    }
10864
10865    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10866      Invalid.insert(*CI);
10867    Current.clear();
10868  } else {
10869    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10870  }
10871}
10872
10873
10874void Sema::CheckDelegatingCtorCycles() {
10875  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10876
10877  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10878                                                   CE = Current.end();
10879
10880  for (DelegatingCtorDeclsType::iterator
10881         I = DelegatingCtorDecls.begin(ExternalSource),
10882         E = DelegatingCtorDecls.end();
10883       I != E; ++I) {
10884   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10885  }
10886
10887  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10888    (*CI)->setInvalidDecl();
10889}
10890
10891/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10892Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10893  // Implicitly declared functions (e.g. copy constructors) are
10894  // __host__ __device__
10895  if (D->isImplicit())
10896    return CFT_HostDevice;
10897
10898  if (D->hasAttr<CUDAGlobalAttr>())
10899    return CFT_Global;
10900
10901  if (D->hasAttr<CUDADeviceAttr>()) {
10902    if (D->hasAttr<CUDAHostAttr>())
10903      return CFT_HostDevice;
10904    else
10905      return CFT_Device;
10906  }
10907
10908  return CFT_Host;
10909}
10910
10911bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10912                           CUDAFunctionTarget CalleeTarget) {
10913  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10914  // Callable from the device only."
10915  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10916    return true;
10917
10918  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10919  // Callable from the host only."
10920  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10921  // Callable from the host only."
10922  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10923      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10924    return true;
10925
10926  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10927    return true;
10928
10929  return false;
10930}
10931