SemaDeclCXX.cpp revision b5a0187b12524d2c1e6ac96e81715d1e70bbe0ad
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (!Inits.count(Field)) {
814    if (!Diagnosed) {
815      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
816      Diagnosed = true;
817    }
818    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
819  } else if (Field->isAnonymousStructOrUnion()) {
820    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
821    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
822         I != E; ++I)
823      // If an anonymous union contains an anonymous struct of which any member
824      // is initialized, all members must be initialized.
825      if (!RD->isUnion() || Inits.count(*I))
826        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
827  }
828}
829
830/// Check the body for the given constexpr function declaration only contains
831/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
832///
833/// \return true if the body is OK, false if we have diagnosed a problem.
834bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
835  if (isa<CXXTryStmt>(Body)) {
836    // C++0x [dcl.constexpr]p3:
837    //  The definition of a constexpr function shall satisfy the following
838    //  constraints: [...]
839    // - its function-body shall be = delete, = default, or a
840    //   compound-statement
841    //
842    // C++0x [dcl.constexpr]p4:
843    //  In the definition of a constexpr constructor, [...]
844    // - its function-body shall not be a function-try-block;
845    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
846      << isa<CXXConstructorDecl>(Dcl);
847    return false;
848  }
849
850  // - its function-body shall be [...] a compound-statement that contains only
851  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
852
853  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
854  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
855         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
856    switch ((*BodyIt)->getStmtClass()) {
857    case Stmt::NullStmtClass:
858      //   - null statements,
859      continue;
860
861    case Stmt::DeclStmtClass:
862      //   - static_assert-declarations
863      //   - using-declarations,
864      //   - using-directives,
865      //   - typedef declarations and alias-declarations that do not define
866      //     classes or enumerations,
867      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
868        return false;
869      continue;
870
871    case Stmt::ReturnStmtClass:
872      //   - and exactly one return statement;
873      if (isa<CXXConstructorDecl>(Dcl))
874        break;
875
876      ReturnStmts.push_back((*BodyIt)->getLocStart());
877      // FIXME
878      // - every constructor call and implicit conversion used in initializing
879      //   the return value shall be one of those allowed in a constant
880      //   expression.
881      // Deal with this as part of a general check that the function can produce
882      // a constant expression (for [dcl.constexpr]p5).
883      continue;
884
885    default:
886      break;
887    }
888
889    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
890      << isa<CXXConstructorDecl>(Dcl);
891    return false;
892  }
893
894  if (const CXXConstructorDecl *Constructor
895        = dyn_cast<CXXConstructorDecl>(Dcl)) {
896    const CXXRecordDecl *RD = Constructor->getParent();
897    // - every non-static data member and base class sub-object shall be
898    //   initialized;
899    if (RD->isUnion()) {
900      // DR1359: Exactly one member of a union shall be initialized.
901      if (Constructor->getNumCtorInitializers() == 0) {
902        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
903        return false;
904      }
905    } else if (!Constructor->isDelegatingConstructor()) {
906      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
907
908      // Skip detailed checking if we have enough initializers, and we would
909      // allow at most one initializer per member.
910      bool AnyAnonStructUnionMembers = false;
911      unsigned Fields = 0;
912      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
913           E = RD->field_end(); I != E; ++I, ++Fields) {
914        if ((*I)->isAnonymousStructOrUnion()) {
915          AnyAnonStructUnionMembers = true;
916          break;
917        }
918      }
919      if (AnyAnonStructUnionMembers ||
920          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
921        // Check initialization of non-static data members. Base classes are
922        // always initialized so do not need to be checked. Dependent bases
923        // might not have initializers in the member initializer list.
924        llvm::SmallSet<Decl*, 16> Inits;
925        for (CXXConstructorDecl::init_const_iterator
926               I = Constructor->init_begin(), E = Constructor->init_end();
927             I != E; ++I) {
928          if (FieldDecl *FD = (*I)->getMember())
929            Inits.insert(FD);
930          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
931            Inits.insert(ID->chain_begin(), ID->chain_end());
932        }
933
934        bool Diagnosed = false;
935        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936             E = RD->field_end(); I != E; ++I)
937          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
938        if (Diagnosed)
939          return false;
940      }
941    }
942
943    // FIXME
944    // - every constructor involved in initializing non-static data members
945    //   and base class sub-objects shall be a constexpr constructor;
946    // - every assignment-expression that is an initializer-clause appearing
947    //   directly or indirectly within a brace-or-equal-initializer for
948    //   a non-static data member that is not named by a mem-initializer-id
949    //   shall be a constant expression; and
950    // - every implicit conversion used in converting a constructor argument
951    //   to the corresponding parameter type and converting
952    //   a full-expression to the corresponding member type shall be one of
953    //   those allowed in a constant expression.
954    // Deal with these as part of a general check that the function can produce
955    // a constant expression (for [dcl.constexpr]p5).
956  } else {
957    if (ReturnStmts.empty()) {
958      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
959      return false;
960    }
961    if (ReturnStmts.size() > 1) {
962      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
963      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
964        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
965      return false;
966    }
967  }
968
969  return true;
970}
971
972/// isCurrentClassName - Determine whether the identifier II is the
973/// name of the class type currently being defined. In the case of
974/// nested classes, this will only return true if II is the name of
975/// the innermost class.
976bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
977                              const CXXScopeSpec *SS) {
978  assert(getLangOptions().CPlusPlus && "No class names in C!");
979
980  CXXRecordDecl *CurDecl;
981  if (SS && SS->isSet() && !SS->isInvalid()) {
982    DeclContext *DC = computeDeclContext(*SS, true);
983    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
984  } else
985    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
986
987  if (CurDecl && CurDecl->getIdentifier())
988    return &II == CurDecl->getIdentifier();
989  else
990    return false;
991}
992
993/// \brief Check the validity of a C++ base class specifier.
994///
995/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
996/// and returns NULL otherwise.
997CXXBaseSpecifier *
998Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
999                         SourceRange SpecifierRange,
1000                         bool Virtual, AccessSpecifier Access,
1001                         TypeSourceInfo *TInfo,
1002                         SourceLocation EllipsisLoc) {
1003  QualType BaseType = TInfo->getType();
1004
1005  // C++ [class.union]p1:
1006  //   A union shall not have base classes.
1007  if (Class->isUnion()) {
1008    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1009      << SpecifierRange;
1010    return 0;
1011  }
1012
1013  if (EllipsisLoc.isValid() &&
1014      !TInfo->getType()->containsUnexpandedParameterPack()) {
1015    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1016      << TInfo->getTypeLoc().getSourceRange();
1017    EllipsisLoc = SourceLocation();
1018  }
1019
1020  if (BaseType->isDependentType())
1021    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1022                                          Class->getTagKind() == TTK_Class,
1023                                          Access, TInfo, EllipsisLoc);
1024
1025  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1026
1027  // Base specifiers must be record types.
1028  if (!BaseType->isRecordType()) {
1029    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1030    return 0;
1031  }
1032
1033  // C++ [class.union]p1:
1034  //   A union shall not be used as a base class.
1035  if (BaseType->isUnionType()) {
1036    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1037    return 0;
1038  }
1039
1040  // C++ [class.derived]p2:
1041  //   The class-name in a base-specifier shall not be an incompletely
1042  //   defined class.
1043  if (RequireCompleteType(BaseLoc, BaseType,
1044                          PDiag(diag::err_incomplete_base_class)
1045                            << SpecifierRange)) {
1046    Class->setInvalidDecl();
1047    return 0;
1048  }
1049
1050  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1051  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1052  assert(BaseDecl && "Record type has no declaration");
1053  BaseDecl = BaseDecl->getDefinition();
1054  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1055  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1056  assert(CXXBaseDecl && "Base type is not a C++ type");
1057
1058  // C++ [class]p3:
1059  //   If a class is marked final and it appears as a base-type-specifier in
1060  //   base-clause, the program is ill-formed.
1061  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1062    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1063      << CXXBaseDecl->getDeclName();
1064    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1065      << CXXBaseDecl->getDeclName();
1066    return 0;
1067  }
1068
1069  if (BaseDecl->isInvalidDecl())
1070    Class->setInvalidDecl();
1071
1072  // Create the base specifier.
1073  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1074                                        Class->getTagKind() == TTK_Class,
1075                                        Access, TInfo, EllipsisLoc);
1076}
1077
1078/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1079/// one entry in the base class list of a class specifier, for
1080/// example:
1081///    class foo : public bar, virtual private baz {
1082/// 'public bar' and 'virtual private baz' are each base-specifiers.
1083BaseResult
1084Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1085                         bool Virtual, AccessSpecifier Access,
1086                         ParsedType basetype, SourceLocation BaseLoc,
1087                         SourceLocation EllipsisLoc) {
1088  if (!classdecl)
1089    return true;
1090
1091  AdjustDeclIfTemplate(classdecl);
1092  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1093  if (!Class)
1094    return true;
1095
1096  TypeSourceInfo *TInfo = 0;
1097  GetTypeFromParser(basetype, &TInfo);
1098
1099  if (EllipsisLoc.isInvalid() &&
1100      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1101                                      UPPC_BaseType))
1102    return true;
1103
1104  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1105                                                      Virtual, Access, TInfo,
1106                                                      EllipsisLoc))
1107    return BaseSpec;
1108
1109  return true;
1110}
1111
1112/// \brief Performs the actual work of attaching the given base class
1113/// specifiers to a C++ class.
1114bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1115                                unsigned NumBases) {
1116 if (NumBases == 0)
1117    return false;
1118
1119  // Used to keep track of which base types we have already seen, so
1120  // that we can properly diagnose redundant direct base types. Note
1121  // that the key is always the unqualified canonical type of the base
1122  // class.
1123  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1124
1125  // Copy non-redundant base specifiers into permanent storage.
1126  unsigned NumGoodBases = 0;
1127  bool Invalid = false;
1128  for (unsigned idx = 0; idx < NumBases; ++idx) {
1129    QualType NewBaseType
1130      = Context.getCanonicalType(Bases[idx]->getType());
1131    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1132    if (KnownBaseTypes[NewBaseType]) {
1133      // C++ [class.mi]p3:
1134      //   A class shall not be specified as a direct base class of a
1135      //   derived class more than once.
1136      Diag(Bases[idx]->getSourceRange().getBegin(),
1137           diag::err_duplicate_base_class)
1138        << KnownBaseTypes[NewBaseType]->getType()
1139        << Bases[idx]->getSourceRange();
1140
1141      // Delete the duplicate base class specifier; we're going to
1142      // overwrite its pointer later.
1143      Context.Deallocate(Bases[idx]);
1144
1145      Invalid = true;
1146    } else {
1147      // Okay, add this new base class.
1148      KnownBaseTypes[NewBaseType] = Bases[idx];
1149      Bases[NumGoodBases++] = Bases[idx];
1150    }
1151  }
1152
1153  // Attach the remaining base class specifiers to the derived class.
1154  Class->setBases(Bases, NumGoodBases);
1155
1156  // Delete the remaining (good) base class specifiers, since their
1157  // data has been copied into the CXXRecordDecl.
1158  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1159    Context.Deallocate(Bases[idx]);
1160
1161  return Invalid;
1162}
1163
1164/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1165/// class, after checking whether there are any duplicate base
1166/// classes.
1167void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1168                               unsigned NumBases) {
1169  if (!ClassDecl || !Bases || !NumBases)
1170    return;
1171
1172  AdjustDeclIfTemplate(ClassDecl);
1173  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1174                       (CXXBaseSpecifier**)(Bases), NumBases);
1175}
1176
1177static CXXRecordDecl *GetClassForType(QualType T) {
1178  if (const RecordType *RT = T->getAs<RecordType>())
1179    return cast<CXXRecordDecl>(RT->getDecl());
1180  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1181    return ICT->getDecl();
1182  else
1183    return 0;
1184}
1185
1186/// \brief Determine whether the type \p Derived is a C++ class that is
1187/// derived from the type \p Base.
1188bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1189  if (!getLangOptions().CPlusPlus)
1190    return false;
1191
1192  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1193  if (!DerivedRD)
1194    return false;
1195
1196  CXXRecordDecl *BaseRD = GetClassForType(Base);
1197  if (!BaseRD)
1198    return false;
1199
1200  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1201  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1202}
1203
1204/// \brief Determine whether the type \p Derived is a C++ class that is
1205/// derived from the type \p Base.
1206bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1207  if (!getLangOptions().CPlusPlus)
1208    return false;
1209
1210  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1211  if (!DerivedRD)
1212    return false;
1213
1214  CXXRecordDecl *BaseRD = GetClassForType(Base);
1215  if (!BaseRD)
1216    return false;
1217
1218  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1219}
1220
1221void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1222                              CXXCastPath &BasePathArray) {
1223  assert(BasePathArray.empty() && "Base path array must be empty!");
1224  assert(Paths.isRecordingPaths() && "Must record paths!");
1225
1226  const CXXBasePath &Path = Paths.front();
1227
1228  // We first go backward and check if we have a virtual base.
1229  // FIXME: It would be better if CXXBasePath had the base specifier for
1230  // the nearest virtual base.
1231  unsigned Start = 0;
1232  for (unsigned I = Path.size(); I != 0; --I) {
1233    if (Path[I - 1].Base->isVirtual()) {
1234      Start = I - 1;
1235      break;
1236    }
1237  }
1238
1239  // Now add all bases.
1240  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1241    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1242}
1243
1244/// \brief Determine whether the given base path includes a virtual
1245/// base class.
1246bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1247  for (CXXCastPath::const_iterator B = BasePath.begin(),
1248                                BEnd = BasePath.end();
1249       B != BEnd; ++B)
1250    if ((*B)->isVirtual())
1251      return true;
1252
1253  return false;
1254}
1255
1256/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1257/// conversion (where Derived and Base are class types) is
1258/// well-formed, meaning that the conversion is unambiguous (and
1259/// that all of the base classes are accessible). Returns true
1260/// and emits a diagnostic if the code is ill-formed, returns false
1261/// otherwise. Loc is the location where this routine should point to
1262/// if there is an error, and Range is the source range to highlight
1263/// if there is an error.
1264bool
1265Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1266                                   unsigned InaccessibleBaseID,
1267                                   unsigned AmbigiousBaseConvID,
1268                                   SourceLocation Loc, SourceRange Range,
1269                                   DeclarationName Name,
1270                                   CXXCastPath *BasePath) {
1271  // First, determine whether the path from Derived to Base is
1272  // ambiguous. This is slightly more expensive than checking whether
1273  // the Derived to Base conversion exists, because here we need to
1274  // explore multiple paths to determine if there is an ambiguity.
1275  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1276                     /*DetectVirtual=*/false);
1277  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1278  assert(DerivationOkay &&
1279         "Can only be used with a derived-to-base conversion");
1280  (void)DerivationOkay;
1281
1282  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1283    if (InaccessibleBaseID) {
1284      // Check that the base class can be accessed.
1285      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1286                                   InaccessibleBaseID)) {
1287        case AR_inaccessible:
1288          return true;
1289        case AR_accessible:
1290        case AR_dependent:
1291        case AR_delayed:
1292          break;
1293      }
1294    }
1295
1296    // Build a base path if necessary.
1297    if (BasePath)
1298      BuildBasePathArray(Paths, *BasePath);
1299    return false;
1300  }
1301
1302  // We know that the derived-to-base conversion is ambiguous, and
1303  // we're going to produce a diagnostic. Perform the derived-to-base
1304  // search just one more time to compute all of the possible paths so
1305  // that we can print them out. This is more expensive than any of
1306  // the previous derived-to-base checks we've done, but at this point
1307  // performance isn't as much of an issue.
1308  Paths.clear();
1309  Paths.setRecordingPaths(true);
1310  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1311  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1312  (void)StillOkay;
1313
1314  // Build up a textual representation of the ambiguous paths, e.g.,
1315  // D -> B -> A, that will be used to illustrate the ambiguous
1316  // conversions in the diagnostic. We only print one of the paths
1317  // to each base class subobject.
1318  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1319
1320  Diag(Loc, AmbigiousBaseConvID)
1321  << Derived << Base << PathDisplayStr << Range << Name;
1322  return true;
1323}
1324
1325bool
1326Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1327                                   SourceLocation Loc, SourceRange Range,
1328                                   CXXCastPath *BasePath,
1329                                   bool IgnoreAccess) {
1330  return CheckDerivedToBaseConversion(Derived, Base,
1331                                      IgnoreAccess ? 0
1332                                       : diag::err_upcast_to_inaccessible_base,
1333                                      diag::err_ambiguous_derived_to_base_conv,
1334                                      Loc, Range, DeclarationName(),
1335                                      BasePath);
1336}
1337
1338
1339/// @brief Builds a string representing ambiguous paths from a
1340/// specific derived class to different subobjects of the same base
1341/// class.
1342///
1343/// This function builds a string that can be used in error messages
1344/// to show the different paths that one can take through the
1345/// inheritance hierarchy to go from the derived class to different
1346/// subobjects of a base class. The result looks something like this:
1347/// @code
1348/// struct D -> struct B -> struct A
1349/// struct D -> struct C -> struct A
1350/// @endcode
1351std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1352  std::string PathDisplayStr;
1353  std::set<unsigned> DisplayedPaths;
1354  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1355       Path != Paths.end(); ++Path) {
1356    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1357      // We haven't displayed a path to this particular base
1358      // class subobject yet.
1359      PathDisplayStr += "\n    ";
1360      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1361      for (CXXBasePath::const_iterator Element = Path->begin();
1362           Element != Path->end(); ++Element)
1363        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1364    }
1365  }
1366
1367  return PathDisplayStr;
1368}
1369
1370//===----------------------------------------------------------------------===//
1371// C++ class member Handling
1372//===----------------------------------------------------------------------===//
1373
1374/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1375Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1376                                 SourceLocation ASLoc,
1377                                 SourceLocation ColonLoc) {
1378  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1379  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1380                                                  ASLoc, ColonLoc);
1381  CurContext->addHiddenDecl(ASDecl);
1382  return ASDecl;
1383}
1384
1385/// CheckOverrideControl - Check C++0x override control semantics.
1386void Sema::CheckOverrideControl(const Decl *D) {
1387  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1388  if (!MD || !MD->isVirtual())
1389    return;
1390
1391  if (MD->isDependentContext())
1392    return;
1393
1394  // C++0x [class.virtual]p3:
1395  //   If a virtual function is marked with the virt-specifier override and does
1396  //   not override a member function of a base class,
1397  //   the program is ill-formed.
1398  bool HasOverriddenMethods =
1399    MD->begin_overridden_methods() != MD->end_overridden_methods();
1400  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1401    Diag(MD->getLocation(),
1402                 diag::err_function_marked_override_not_overriding)
1403      << MD->getDeclName();
1404    return;
1405  }
1406}
1407
1408/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1409/// function overrides a virtual member function marked 'final', according to
1410/// C++0x [class.virtual]p3.
1411bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1412                                                  const CXXMethodDecl *Old) {
1413  if (!Old->hasAttr<FinalAttr>())
1414    return false;
1415
1416  Diag(New->getLocation(), diag::err_final_function_overridden)
1417    << New->getDeclName();
1418  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1419  return true;
1420}
1421
1422/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1423/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1424/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1425/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1426/// present but parsing it has been deferred.
1427Decl *
1428Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1429                               MultiTemplateParamsArg TemplateParameterLists,
1430                               Expr *BW, const VirtSpecifiers &VS,
1431                               Expr *InitExpr, bool HasDeferredInit,
1432                               bool IsDefinition) {
1433  const DeclSpec &DS = D.getDeclSpec();
1434  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1435  DeclarationName Name = NameInfo.getName();
1436  SourceLocation Loc = NameInfo.getLoc();
1437
1438  // For anonymous bitfields, the location should point to the type.
1439  if (Loc.isInvalid())
1440    Loc = D.getSourceRange().getBegin();
1441
1442  Expr *BitWidth = static_cast<Expr*>(BW);
1443  Expr *Init = static_cast<Expr*>(InitExpr);
1444
1445  assert(isa<CXXRecordDecl>(CurContext));
1446  assert(!DS.isFriendSpecified());
1447  assert(!Init || !HasDeferredInit);
1448
1449  bool isFunc = D.isDeclarationOfFunction();
1450
1451  // C++ 9.2p6: A member shall not be declared to have automatic storage
1452  // duration (auto, register) or with the extern storage-class-specifier.
1453  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1454  // data members and cannot be applied to names declared const or static,
1455  // and cannot be applied to reference members.
1456  switch (DS.getStorageClassSpec()) {
1457    case DeclSpec::SCS_unspecified:
1458    case DeclSpec::SCS_typedef:
1459    case DeclSpec::SCS_static:
1460      // FALL THROUGH.
1461      break;
1462    case DeclSpec::SCS_mutable:
1463      if (isFunc) {
1464        if (DS.getStorageClassSpecLoc().isValid())
1465          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1466        else
1467          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1468
1469        // FIXME: It would be nicer if the keyword was ignored only for this
1470        // declarator. Otherwise we could get follow-up errors.
1471        D.getMutableDeclSpec().ClearStorageClassSpecs();
1472      }
1473      break;
1474    default:
1475      if (DS.getStorageClassSpecLoc().isValid())
1476        Diag(DS.getStorageClassSpecLoc(),
1477             diag::err_storageclass_invalid_for_member);
1478      else
1479        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1480      D.getMutableDeclSpec().ClearStorageClassSpecs();
1481  }
1482
1483  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1484                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1485                      !isFunc);
1486
1487  Decl *Member;
1488  if (isInstField) {
1489    CXXScopeSpec &SS = D.getCXXScopeSpec();
1490
1491    // Data members must have identifiers for names.
1492    if (Name.getNameKind() != DeclarationName::Identifier) {
1493      Diag(Loc, diag::err_bad_variable_name)
1494        << Name;
1495      return 0;
1496    }
1497
1498    IdentifierInfo *II = Name.getAsIdentifierInfo();
1499
1500    // Member field could not be with "template" keyword.
1501    // So TemplateParameterLists should be empty in this case.
1502    if (TemplateParameterLists.size()) {
1503      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1504      if (TemplateParams->size()) {
1505        // There is no such thing as a member field template.
1506        Diag(D.getIdentifierLoc(), diag::err_template_member)
1507            << II
1508            << SourceRange(TemplateParams->getTemplateLoc(),
1509                TemplateParams->getRAngleLoc());
1510      } else {
1511        // There is an extraneous 'template<>' for this member.
1512        Diag(TemplateParams->getTemplateLoc(),
1513            diag::err_template_member_noparams)
1514            << II
1515            << SourceRange(TemplateParams->getTemplateLoc(),
1516                TemplateParams->getRAngleLoc());
1517      }
1518      return 0;
1519    }
1520
1521    if (SS.isSet() && !SS.isInvalid()) {
1522      // The user provided a superfluous scope specifier inside a class
1523      // definition:
1524      //
1525      // class X {
1526      //   int X::member;
1527      // };
1528      DeclContext *DC = 0;
1529      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1530        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1531        << Name << FixItHint::CreateRemoval(SS.getRange());
1532      else
1533        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1534          << Name << SS.getRange();
1535
1536      SS.clear();
1537    }
1538
1539    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1540                         HasDeferredInit, AS);
1541    assert(Member && "HandleField never returns null");
1542  } else {
1543    assert(!HasDeferredInit);
1544
1545    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1546    if (!Member) {
1547      return 0;
1548    }
1549
1550    // Non-instance-fields can't have a bitfield.
1551    if (BitWidth) {
1552      if (Member->isInvalidDecl()) {
1553        // don't emit another diagnostic.
1554      } else if (isa<VarDecl>(Member)) {
1555        // C++ 9.6p3: A bit-field shall not be a static member.
1556        // "static member 'A' cannot be a bit-field"
1557        Diag(Loc, diag::err_static_not_bitfield)
1558          << Name << BitWidth->getSourceRange();
1559      } else if (isa<TypedefDecl>(Member)) {
1560        // "typedef member 'x' cannot be a bit-field"
1561        Diag(Loc, diag::err_typedef_not_bitfield)
1562          << Name << BitWidth->getSourceRange();
1563      } else {
1564        // A function typedef ("typedef int f(); f a;").
1565        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1566        Diag(Loc, diag::err_not_integral_type_bitfield)
1567          << Name << cast<ValueDecl>(Member)->getType()
1568          << BitWidth->getSourceRange();
1569      }
1570
1571      BitWidth = 0;
1572      Member->setInvalidDecl();
1573    }
1574
1575    Member->setAccess(AS);
1576
1577    // If we have declared a member function template, set the access of the
1578    // templated declaration as well.
1579    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1580      FunTmpl->getTemplatedDecl()->setAccess(AS);
1581  }
1582
1583  if (VS.isOverrideSpecified()) {
1584    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1585    if (!MD || !MD->isVirtual()) {
1586      Diag(Member->getLocStart(),
1587           diag::override_keyword_only_allowed_on_virtual_member_functions)
1588        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1589    } else
1590      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1591  }
1592  if (VS.isFinalSpecified()) {
1593    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1594    if (!MD || !MD->isVirtual()) {
1595      Diag(Member->getLocStart(),
1596           diag::override_keyword_only_allowed_on_virtual_member_functions)
1597      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1598    } else
1599      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1600  }
1601
1602  if (VS.getLastLocation().isValid()) {
1603    // Update the end location of a method that has a virt-specifiers.
1604    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1605      MD->setRangeEnd(VS.getLastLocation());
1606  }
1607
1608  CheckOverrideControl(Member);
1609
1610  assert((Name || isInstField) && "No identifier for non-field ?");
1611
1612  if (Init)
1613    AddInitializerToDecl(Member, Init, false,
1614                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1615  else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1616    ActOnUninitializedDecl(Member, DS.getTypeSpecType() == DeclSpec::TST_auto);
1617
1618  FinalizeDeclaration(Member);
1619
1620  if (isInstField)
1621    FieldCollector->Add(cast<FieldDecl>(Member));
1622  return Member;
1623}
1624
1625/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1626/// in-class initializer for a non-static C++ class member, and after
1627/// instantiating an in-class initializer in a class template. Such actions
1628/// are deferred until the class is complete.
1629void
1630Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1631                                       Expr *InitExpr) {
1632  FieldDecl *FD = cast<FieldDecl>(D);
1633
1634  if (!InitExpr) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  ExprResult Init = InitExpr;
1641  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1642    // FIXME: if there is no EqualLoc, this is list-initialization.
1643    Init = PerformCopyInitialization(
1644      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1645    if (Init.isInvalid()) {
1646      FD->setInvalidDecl();
1647      return;
1648    }
1649
1650    CheckImplicitConversions(Init.get(), EqualLoc);
1651  }
1652
1653  // C++0x [class.base.init]p7:
1654  //   The initialization of each base and member constitutes a
1655  //   full-expression.
1656  Init = MaybeCreateExprWithCleanups(Init);
1657  if (Init.isInvalid()) {
1658    FD->setInvalidDecl();
1659    return;
1660  }
1661
1662  InitExpr = Init.release();
1663
1664  FD->setInClassInitializer(InitExpr);
1665}
1666
1667/// \brief Find the direct and/or virtual base specifiers that
1668/// correspond to the given base type, for use in base initialization
1669/// within a constructor.
1670static bool FindBaseInitializer(Sema &SemaRef,
1671                                CXXRecordDecl *ClassDecl,
1672                                QualType BaseType,
1673                                const CXXBaseSpecifier *&DirectBaseSpec,
1674                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1675  // First, check for a direct base class.
1676  DirectBaseSpec = 0;
1677  for (CXXRecordDecl::base_class_const_iterator Base
1678         = ClassDecl->bases_begin();
1679       Base != ClassDecl->bases_end(); ++Base) {
1680    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1681      // We found a direct base of this type. That's what we're
1682      // initializing.
1683      DirectBaseSpec = &*Base;
1684      break;
1685    }
1686  }
1687
1688  // Check for a virtual base class.
1689  // FIXME: We might be able to short-circuit this if we know in advance that
1690  // there are no virtual bases.
1691  VirtualBaseSpec = 0;
1692  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1693    // We haven't found a base yet; search the class hierarchy for a
1694    // virtual base class.
1695    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1696                       /*DetectVirtual=*/false);
1697    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1698                              BaseType, Paths)) {
1699      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1700           Path != Paths.end(); ++Path) {
1701        if (Path->back().Base->isVirtual()) {
1702          VirtualBaseSpec = Path->back().Base;
1703          break;
1704        }
1705      }
1706    }
1707  }
1708
1709  return DirectBaseSpec || VirtualBaseSpec;
1710}
1711
1712/// \brief Handle a C++ member initializer using braced-init-list syntax.
1713MemInitResult
1714Sema::ActOnMemInitializer(Decl *ConstructorD,
1715                          Scope *S,
1716                          CXXScopeSpec &SS,
1717                          IdentifierInfo *MemberOrBase,
1718                          ParsedType TemplateTypeTy,
1719                          SourceLocation IdLoc,
1720                          Expr *InitList,
1721                          SourceLocation EllipsisLoc) {
1722  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1723                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1724}
1725
1726/// \brief Handle a C++ member initializer using parentheses syntax.
1727MemInitResult
1728Sema::ActOnMemInitializer(Decl *ConstructorD,
1729                          Scope *S,
1730                          CXXScopeSpec &SS,
1731                          IdentifierInfo *MemberOrBase,
1732                          ParsedType TemplateTypeTy,
1733                          SourceLocation IdLoc,
1734                          SourceLocation LParenLoc,
1735                          Expr **Args, unsigned NumArgs,
1736                          SourceLocation RParenLoc,
1737                          SourceLocation EllipsisLoc) {
1738  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1739                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1740                                                     RParenLoc),
1741                             EllipsisLoc);
1742}
1743
1744/// \brief Handle a C++ member initializer.
1745MemInitResult
1746Sema::BuildMemInitializer(Decl *ConstructorD,
1747                          Scope *S,
1748                          CXXScopeSpec &SS,
1749                          IdentifierInfo *MemberOrBase,
1750                          ParsedType TemplateTypeTy,
1751                          SourceLocation IdLoc,
1752                          const MultiInitializer &Args,
1753                          SourceLocation EllipsisLoc) {
1754  if (!ConstructorD)
1755    return true;
1756
1757  AdjustDeclIfTemplate(ConstructorD);
1758
1759  CXXConstructorDecl *Constructor
1760    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1761  if (!Constructor) {
1762    // The user wrote a constructor initializer on a function that is
1763    // not a C++ constructor. Ignore the error for now, because we may
1764    // have more member initializers coming; we'll diagnose it just
1765    // once in ActOnMemInitializers.
1766    return true;
1767  }
1768
1769  CXXRecordDecl *ClassDecl = Constructor->getParent();
1770
1771  // C++ [class.base.init]p2:
1772  //   Names in a mem-initializer-id are looked up in the scope of the
1773  //   constructor's class and, if not found in that scope, are looked
1774  //   up in the scope containing the constructor's definition.
1775  //   [Note: if the constructor's class contains a member with the
1776  //   same name as a direct or virtual base class of the class, a
1777  //   mem-initializer-id naming the member or base class and composed
1778  //   of a single identifier refers to the class member. A
1779  //   mem-initializer-id for the hidden base class may be specified
1780  //   using a qualified name. ]
1781  if (!SS.getScopeRep() && !TemplateTypeTy) {
1782    // Look for a member, first.
1783    FieldDecl *Member = 0;
1784    DeclContext::lookup_result Result
1785      = ClassDecl->lookup(MemberOrBase);
1786    if (Result.first != Result.second) {
1787      Member = dyn_cast<FieldDecl>(*Result.first);
1788
1789      if (Member) {
1790        if (EllipsisLoc.isValid())
1791          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1792            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1793
1794        return BuildMemberInitializer(Member, Args, IdLoc);
1795      }
1796
1797      // Handle anonymous union case.
1798      if (IndirectFieldDecl* IndirectField
1799            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1800        if (EllipsisLoc.isValid())
1801          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1802            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1803
1804         return BuildMemberInitializer(IndirectField, Args, IdLoc);
1805      }
1806    }
1807  }
1808  // It didn't name a member, so see if it names a class.
1809  QualType BaseType;
1810  TypeSourceInfo *TInfo = 0;
1811
1812  if (TemplateTypeTy) {
1813    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1814  } else {
1815    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1816    LookupParsedName(R, S, &SS);
1817
1818    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1819    if (!TyD) {
1820      if (R.isAmbiguous()) return true;
1821
1822      // We don't want access-control diagnostics here.
1823      R.suppressDiagnostics();
1824
1825      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1826        bool NotUnknownSpecialization = false;
1827        DeclContext *DC = computeDeclContext(SS, false);
1828        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1829          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1830
1831        if (!NotUnknownSpecialization) {
1832          // When the scope specifier can refer to a member of an unknown
1833          // specialization, we take it as a type name.
1834          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1835                                       SS.getWithLocInContext(Context),
1836                                       *MemberOrBase, IdLoc);
1837          if (BaseType.isNull())
1838            return true;
1839
1840          R.clear();
1841          R.setLookupName(MemberOrBase);
1842        }
1843      }
1844
1845      // If no results were found, try to correct typos.
1846      TypoCorrection Corr;
1847      if (R.empty() && BaseType.isNull() &&
1848          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1849                              ClassDecl, false, CTC_NoKeywords))) {
1850        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1851        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1852        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1853          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1854            // We have found a non-static data member with a similar
1855            // name to what was typed; complain and initialize that
1856            // member.
1857            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1858              << MemberOrBase << true << CorrectedQuotedStr
1859              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1860            Diag(Member->getLocation(), diag::note_previous_decl)
1861              << CorrectedQuotedStr;
1862
1863            return BuildMemberInitializer(Member, Args, IdLoc);
1864          }
1865        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1866          const CXXBaseSpecifier *DirectBaseSpec;
1867          const CXXBaseSpecifier *VirtualBaseSpec;
1868          if (FindBaseInitializer(*this, ClassDecl,
1869                                  Context.getTypeDeclType(Type),
1870                                  DirectBaseSpec, VirtualBaseSpec)) {
1871            // We have found a direct or virtual base class with a
1872            // similar name to what was typed; complain and initialize
1873            // that base class.
1874            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1875              << MemberOrBase << false << CorrectedQuotedStr
1876              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1877
1878            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1879                                                             : VirtualBaseSpec;
1880            Diag(BaseSpec->getSourceRange().getBegin(),
1881                 diag::note_base_class_specified_here)
1882              << BaseSpec->getType()
1883              << BaseSpec->getSourceRange();
1884
1885            TyD = Type;
1886          }
1887        }
1888      }
1889
1890      if (!TyD && BaseType.isNull()) {
1891        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1892          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1893        return true;
1894      }
1895    }
1896
1897    if (BaseType.isNull()) {
1898      BaseType = Context.getTypeDeclType(TyD);
1899      if (SS.isSet()) {
1900        NestedNameSpecifier *Qualifier =
1901          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1902
1903        // FIXME: preserve source range information
1904        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1905      }
1906    }
1907  }
1908
1909  if (!TInfo)
1910    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1911
1912  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1913}
1914
1915/// Checks a member initializer expression for cases where reference (or
1916/// pointer) members are bound to by-value parameters (or their addresses).
1917static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1918                                               Expr *Init,
1919                                               SourceLocation IdLoc) {
1920  QualType MemberTy = Member->getType();
1921
1922  // We only handle pointers and references currently.
1923  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1924  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1925    return;
1926
1927  const bool IsPointer = MemberTy->isPointerType();
1928  if (IsPointer) {
1929    if (const UnaryOperator *Op
1930          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1931      // The only case we're worried about with pointers requires taking the
1932      // address.
1933      if (Op->getOpcode() != UO_AddrOf)
1934        return;
1935
1936      Init = Op->getSubExpr();
1937    } else {
1938      // We only handle address-of expression initializers for pointers.
1939      return;
1940    }
1941  }
1942
1943  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1944    // Taking the address of a temporary will be diagnosed as a hard error.
1945    if (IsPointer)
1946      return;
1947
1948    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1949      << Member << Init->getSourceRange();
1950  } else if (const DeclRefExpr *DRE
1951               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1952    // We only warn when referring to a non-reference parameter declaration.
1953    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1954    if (!Parameter || Parameter->getType()->isReferenceType())
1955      return;
1956
1957    S.Diag(Init->getExprLoc(),
1958           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1959                     : diag::warn_bind_ref_member_to_parameter)
1960      << Member << Parameter << Init->getSourceRange();
1961  } else {
1962    // Other initializers are fine.
1963    return;
1964  }
1965
1966  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1967    << (unsigned)IsPointer;
1968}
1969
1970/// Checks an initializer expression for use of uninitialized fields, such as
1971/// containing the field that is being initialized. Returns true if there is an
1972/// uninitialized field was used an updates the SourceLocation parameter; false
1973/// otherwise.
1974static bool InitExprContainsUninitializedFields(const Stmt *S,
1975                                                const ValueDecl *LhsField,
1976                                                SourceLocation *L) {
1977  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1978
1979  if (isa<CallExpr>(S)) {
1980    // Do not descend into function calls or constructors, as the use
1981    // of an uninitialized field may be valid. One would have to inspect
1982    // the contents of the function/ctor to determine if it is safe or not.
1983    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1984    // may be safe, depending on what the function/ctor does.
1985    return false;
1986  }
1987  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1988    const NamedDecl *RhsField = ME->getMemberDecl();
1989
1990    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1991      // The member expression points to a static data member.
1992      assert(VD->isStaticDataMember() &&
1993             "Member points to non-static data member!");
1994      (void)VD;
1995      return false;
1996    }
1997
1998    if (isa<EnumConstantDecl>(RhsField)) {
1999      // The member expression points to an enum.
2000      return false;
2001    }
2002
2003    if (RhsField == LhsField) {
2004      // Initializing a field with itself. Throw a warning.
2005      // But wait; there are exceptions!
2006      // Exception #1:  The field may not belong to this record.
2007      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2008      const Expr *base = ME->getBase();
2009      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2010        // Even though the field matches, it does not belong to this record.
2011        return false;
2012      }
2013      // None of the exceptions triggered; return true to indicate an
2014      // uninitialized field was used.
2015      *L = ME->getMemberLoc();
2016      return true;
2017    }
2018  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2019    // sizeof/alignof doesn't reference contents, do not warn.
2020    return false;
2021  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2022    // address-of doesn't reference contents (the pointer may be dereferenced
2023    // in the same expression but it would be rare; and weird).
2024    if (UOE->getOpcode() == UO_AddrOf)
2025      return false;
2026  }
2027  for (Stmt::const_child_range it = S->children(); it; ++it) {
2028    if (!*it) {
2029      // An expression such as 'member(arg ?: "")' may trigger this.
2030      continue;
2031    }
2032    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2033      return true;
2034  }
2035  return false;
2036}
2037
2038MemInitResult
2039Sema::BuildMemberInitializer(ValueDecl *Member,
2040                             const MultiInitializer &Args,
2041                             SourceLocation IdLoc) {
2042  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2043  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2044  assert((DirectMember || IndirectMember) &&
2045         "Member must be a FieldDecl or IndirectFieldDecl");
2046
2047  if (Member->isInvalidDecl())
2048    return true;
2049
2050  // Diagnose value-uses of fields to initialize themselves, e.g.
2051  //   foo(foo)
2052  // where foo is not also a parameter to the constructor.
2053  // TODO: implement -Wuninitialized and fold this into that framework.
2054  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2055       I != E; ++I) {
2056    SourceLocation L;
2057    Expr *Arg = *I;
2058    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2059      Arg = DIE->getInit();
2060    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2061      // FIXME: Return true in the case when other fields are used before being
2062      // uninitialized. For example, let this field be the i'th field. When
2063      // initializing the i'th field, throw a warning if any of the >= i'th
2064      // fields are used, as they are not yet initialized.
2065      // Right now we are only handling the case where the i'th field uses
2066      // itself in its initializer.
2067      Diag(L, diag::warn_field_is_uninit);
2068    }
2069  }
2070
2071  bool HasDependentArg = Args.isTypeDependent();
2072
2073  Expr *Init;
2074  if (Member->getType()->isDependentType() || HasDependentArg) {
2075    // Can't check initialization for a member of dependent type or when
2076    // any of the arguments are type-dependent expressions.
2077    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2078
2079    DiscardCleanupsInEvaluationContext();
2080  } else {
2081    // Initialize the member.
2082    InitializedEntity MemberEntity =
2083      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2084                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2085    InitializationKind Kind =
2086      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2087                                       Args.getEndLoc());
2088
2089    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2090    if (MemberInit.isInvalid())
2091      return true;
2092
2093    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2094
2095    // C++0x [class.base.init]p7:
2096    //   The initialization of each base and member constitutes a
2097    //   full-expression.
2098    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2099    if (MemberInit.isInvalid())
2100      return true;
2101
2102    // If we are in a dependent context, template instantiation will
2103    // perform this type-checking again. Just save the arguments that we
2104    // received in a ParenListExpr.
2105    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2106    // of the information that we have about the member
2107    // initializer. However, deconstructing the ASTs is a dicey process,
2108    // and this approach is far more likely to get the corner cases right.
2109    if (CurContext->isDependentContext()) {
2110      Init = Args.CreateInitExpr(Context,
2111                                 Member->getType().getNonReferenceType());
2112    } else {
2113      Init = MemberInit.get();
2114      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2115    }
2116  }
2117
2118  if (DirectMember) {
2119    return new (Context) CXXCtorInitializer(Context, DirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  } else {
2123    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2124                                                    IdLoc, Args.getStartLoc(),
2125                                                    Init, Args.getEndLoc());
2126  }
2127}
2128
2129MemInitResult
2130Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2131                                 const MultiInitializer &Args,
2132                                 SourceLocation NameLoc,
2133                                 CXXRecordDecl *ClassDecl) {
2134  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2135  if (!LangOpts.CPlusPlus0x)
2136    return Diag(Loc, diag::err_delegation_0x_only)
2137      << TInfo->getTypeLoc().getLocalSourceRange();
2138
2139  // Initialize the object.
2140  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2141                                     QualType(ClassDecl->getTypeForDecl(), 0));
2142  InitializationKind Kind =
2143    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2144                                     Args.getEndLoc());
2145
2146  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2147  if (DelegationInit.isInvalid())
2148    return true;
2149
2150  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
2151  CXXConstructorDecl *Constructor
2152    = ConExpr->getConstructor();
2153  assert(Constructor && "Delegating constructor with no target?");
2154
2155  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2156
2157  // C++0x [class.base.init]p7:
2158  //   The initialization of each base and member constitutes a
2159  //   full-expression.
2160  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2161  if (DelegationInit.isInvalid())
2162    return true;
2163
2164  assert(!CurContext->isDependentContext());
2165  return new (Context) CXXCtorInitializer(Context, Loc, Args.getStartLoc(),
2166                                          Constructor,
2167                                          DelegationInit.takeAs<Expr>(),
2168                                          Args.getEndLoc());
2169}
2170
2171MemInitResult
2172Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2173                           const MultiInitializer &Args,
2174                           CXXRecordDecl *ClassDecl,
2175                           SourceLocation EllipsisLoc) {
2176  bool HasDependentArg = Args.isTypeDependent();
2177
2178  SourceLocation BaseLoc
2179    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2180
2181  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2182    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2183             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2184
2185  // C++ [class.base.init]p2:
2186  //   [...] Unless the mem-initializer-id names a nonstatic data
2187  //   member of the constructor's class or a direct or virtual base
2188  //   of that class, the mem-initializer is ill-formed. A
2189  //   mem-initializer-list can initialize a base class using any
2190  //   name that denotes that base class type.
2191  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2192
2193  if (EllipsisLoc.isValid()) {
2194    // This is a pack expansion.
2195    if (!BaseType->containsUnexpandedParameterPack())  {
2196      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2197        << SourceRange(BaseLoc, Args.getEndLoc());
2198
2199      EllipsisLoc = SourceLocation();
2200    }
2201  } else {
2202    // Check for any unexpanded parameter packs.
2203    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2204      return true;
2205
2206    if (Args.DiagnoseUnexpandedParameterPack(*this))
2207      return true;
2208  }
2209
2210  // Check for direct and virtual base classes.
2211  const CXXBaseSpecifier *DirectBaseSpec = 0;
2212  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2213  if (!Dependent) {
2214    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2215                                       BaseType))
2216      return BuildDelegatingInitializer(BaseTInfo, Args, BaseLoc, ClassDecl);
2217
2218    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2219                        VirtualBaseSpec);
2220
2221    // C++ [base.class.init]p2:
2222    // Unless the mem-initializer-id names a nonstatic data member of the
2223    // constructor's class or a direct or virtual base of that class, the
2224    // mem-initializer is ill-formed.
2225    if (!DirectBaseSpec && !VirtualBaseSpec) {
2226      // If the class has any dependent bases, then it's possible that
2227      // one of those types will resolve to the same type as
2228      // BaseType. Therefore, just treat this as a dependent base
2229      // class initialization.  FIXME: Should we try to check the
2230      // initialization anyway? It seems odd.
2231      if (ClassDecl->hasAnyDependentBases())
2232        Dependent = true;
2233      else
2234        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2235          << BaseType << Context.getTypeDeclType(ClassDecl)
2236          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2237    }
2238  }
2239
2240  if (Dependent) {
2241    // Can't check initialization for a base of dependent type or when
2242    // any of the arguments are type-dependent expressions.
2243    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2244
2245    DiscardCleanupsInEvaluationContext();
2246
2247    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2248                                            /*IsVirtual=*/false,
2249                                            Args.getStartLoc(), BaseInit,
2250                                            Args.getEndLoc(), EllipsisLoc);
2251  }
2252
2253  // C++ [base.class.init]p2:
2254  //   If a mem-initializer-id is ambiguous because it designates both
2255  //   a direct non-virtual base class and an inherited virtual base
2256  //   class, the mem-initializer is ill-formed.
2257  if (DirectBaseSpec && VirtualBaseSpec)
2258    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2259      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2260
2261  CXXBaseSpecifier *BaseSpec
2262    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2263  if (!BaseSpec)
2264    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2265
2266  // Initialize the base.
2267  InitializedEntity BaseEntity =
2268    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2269  InitializationKind Kind =
2270    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2271                                     Args.getEndLoc());
2272
2273  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2274  if (BaseInit.isInvalid())
2275    return true;
2276
2277  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2278
2279  // C++0x [class.base.init]p7:
2280  //   The initialization of each base and member constitutes a
2281  //   full-expression.
2282  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2283  if (BaseInit.isInvalid())
2284    return true;
2285
2286  // If we are in a dependent context, template instantiation will
2287  // perform this type-checking again. Just save the arguments that we
2288  // received in a ParenListExpr.
2289  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2290  // of the information that we have about the base
2291  // initializer. However, deconstructing the ASTs is a dicey process,
2292  // and this approach is far more likely to get the corner cases right.
2293  if (CurContext->isDependentContext())
2294    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2295
2296  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2297                                          BaseSpec->isVirtual(),
2298                                          Args.getStartLoc(),
2299                                          BaseInit.takeAs<Expr>(),
2300                                          Args.getEndLoc(), EllipsisLoc);
2301}
2302
2303// Create a static_cast\<T&&>(expr).
2304static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2305  QualType ExprType = E->getType();
2306  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2307  SourceLocation ExprLoc = E->getLocStart();
2308  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2309      TargetType, ExprLoc);
2310
2311  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2312                                   SourceRange(ExprLoc, ExprLoc),
2313                                   E->getSourceRange()).take();
2314}
2315
2316/// ImplicitInitializerKind - How an implicit base or member initializer should
2317/// initialize its base or member.
2318enum ImplicitInitializerKind {
2319  IIK_Default,
2320  IIK_Copy,
2321  IIK_Move
2322};
2323
2324static bool
2325BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2326                             ImplicitInitializerKind ImplicitInitKind,
2327                             CXXBaseSpecifier *BaseSpec,
2328                             bool IsInheritedVirtualBase,
2329                             CXXCtorInitializer *&CXXBaseInit) {
2330  InitializedEntity InitEntity
2331    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2332                                        IsInheritedVirtualBase);
2333
2334  ExprResult BaseInit;
2335
2336  switch (ImplicitInitKind) {
2337  case IIK_Default: {
2338    InitializationKind InitKind
2339      = InitializationKind::CreateDefault(Constructor->getLocation());
2340    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2341    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2342                               MultiExprArg(SemaRef, 0, 0));
2343    break;
2344  }
2345
2346  case IIK_Move:
2347  case IIK_Copy: {
2348    bool Moving = ImplicitInitKind == IIK_Move;
2349    ParmVarDecl *Param = Constructor->getParamDecl(0);
2350    QualType ParamType = Param->getType().getNonReferenceType();
2351
2352    Expr *CopyCtorArg =
2353      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2354                          Constructor->getLocation(), ParamType,
2355                          VK_LValue, 0);
2356
2357    // Cast to the base class to avoid ambiguities.
2358    QualType ArgTy =
2359      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2360                                       ParamType.getQualifiers());
2361
2362    if (Moving) {
2363      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2364    }
2365
2366    CXXCastPath BasePath;
2367    BasePath.push_back(BaseSpec);
2368    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2369                                            CK_UncheckedDerivedToBase,
2370                                            Moving ? VK_XValue : VK_LValue,
2371                                            &BasePath).take();
2372
2373    InitializationKind InitKind
2374      = InitializationKind::CreateDirect(Constructor->getLocation(),
2375                                         SourceLocation(), SourceLocation());
2376    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2377                                   &CopyCtorArg, 1);
2378    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2379                               MultiExprArg(&CopyCtorArg, 1));
2380    break;
2381  }
2382  }
2383
2384  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2385  if (BaseInit.isInvalid())
2386    return true;
2387
2388  CXXBaseInit =
2389    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2390               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2391                                                        SourceLocation()),
2392                                             BaseSpec->isVirtual(),
2393                                             SourceLocation(),
2394                                             BaseInit.takeAs<Expr>(),
2395                                             SourceLocation(),
2396                                             SourceLocation());
2397
2398  return false;
2399}
2400
2401static bool RefersToRValueRef(Expr *MemRef) {
2402  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2403  return Referenced->getType()->isRValueReferenceType();
2404}
2405
2406static bool
2407BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2408                               ImplicitInitializerKind ImplicitInitKind,
2409                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2410                               CXXCtorInitializer *&CXXMemberInit) {
2411  if (Field->isInvalidDecl())
2412    return true;
2413
2414  SourceLocation Loc = Constructor->getLocation();
2415
2416  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2417    bool Moving = ImplicitInitKind == IIK_Move;
2418    ParmVarDecl *Param = Constructor->getParamDecl(0);
2419    QualType ParamType = Param->getType().getNonReferenceType();
2420
2421    // Suppress copying zero-width bitfields.
2422    if (const Expr *Width = Field->getBitWidth())
2423      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
2424        return false;
2425
2426    Expr *MemberExprBase =
2427      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2428                          Loc, ParamType, VK_LValue, 0);
2429
2430    if (Moving) {
2431      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2432    }
2433
2434    // Build a reference to this field within the parameter.
2435    CXXScopeSpec SS;
2436    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2437                              Sema::LookupMemberName);
2438    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2439                                  : cast<ValueDecl>(Field), AS_public);
2440    MemberLookup.resolveKind();
2441    ExprResult CtorArg
2442      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2443                                         ParamType, Loc,
2444                                         /*IsArrow=*/false,
2445                                         SS,
2446                                         /*FirstQualifierInScope=*/0,
2447                                         MemberLookup,
2448                                         /*TemplateArgs=*/0);
2449    if (CtorArg.isInvalid())
2450      return true;
2451
2452    // C++11 [class.copy]p15:
2453    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2454    //     with static_cast<T&&>(x.m);
2455    if (RefersToRValueRef(CtorArg.get())) {
2456      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2457    }
2458
2459    // When the field we are copying is an array, create index variables for
2460    // each dimension of the array. We use these index variables to subscript
2461    // the source array, and other clients (e.g., CodeGen) will perform the
2462    // necessary iteration with these index variables.
2463    SmallVector<VarDecl *, 4> IndexVariables;
2464    QualType BaseType = Field->getType();
2465    QualType SizeType = SemaRef.Context.getSizeType();
2466    bool InitializingArray = false;
2467    while (const ConstantArrayType *Array
2468                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2469      InitializingArray = true;
2470      // Create the iteration variable for this array index.
2471      IdentifierInfo *IterationVarName = 0;
2472      {
2473        llvm::SmallString<8> Str;
2474        llvm::raw_svector_ostream OS(Str);
2475        OS << "__i" << IndexVariables.size();
2476        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2477      }
2478      VarDecl *IterationVar
2479        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2480                          IterationVarName, SizeType,
2481                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2482                          SC_None, SC_None);
2483      IndexVariables.push_back(IterationVar);
2484
2485      // Create a reference to the iteration variable.
2486      ExprResult IterationVarRef
2487        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2488      assert(!IterationVarRef.isInvalid() &&
2489             "Reference to invented variable cannot fail!");
2490
2491      // Subscript the array with this iteration variable.
2492      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2493                                                        IterationVarRef.take(),
2494                                                        Loc);
2495      if (CtorArg.isInvalid())
2496        return true;
2497
2498      BaseType = Array->getElementType();
2499    }
2500
2501    // The array subscript expression is an lvalue, which is wrong for moving.
2502    if (Moving && InitializingArray)
2503      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2504
2505    // Construct the entity that we will be initializing. For an array, this
2506    // will be first element in the array, which may require several levels
2507    // of array-subscript entities.
2508    SmallVector<InitializedEntity, 4> Entities;
2509    Entities.reserve(1 + IndexVariables.size());
2510    if (Indirect)
2511      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2512    else
2513      Entities.push_back(InitializedEntity::InitializeMember(Field));
2514    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2515      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2516                                                              0,
2517                                                              Entities.back()));
2518
2519    // Direct-initialize to use the copy constructor.
2520    InitializationKind InitKind =
2521      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2522
2523    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2524    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2525                                   &CtorArgE, 1);
2526
2527    ExprResult MemberInit
2528      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2529                        MultiExprArg(&CtorArgE, 1));
2530    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2531    if (MemberInit.isInvalid())
2532      return true;
2533
2534    if (Indirect) {
2535      assert(IndexVariables.size() == 0 &&
2536             "Indirect field improperly initialized");
2537      CXXMemberInit
2538        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2539                                                   Loc, Loc,
2540                                                   MemberInit.takeAs<Expr>(),
2541                                                   Loc);
2542    } else
2543      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2544                                                 Loc, MemberInit.takeAs<Expr>(),
2545                                                 Loc,
2546                                                 IndexVariables.data(),
2547                                                 IndexVariables.size());
2548    return false;
2549  }
2550
2551  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2552
2553  QualType FieldBaseElementType =
2554    SemaRef.Context.getBaseElementType(Field->getType());
2555
2556  if (FieldBaseElementType->isRecordType()) {
2557    InitializedEntity InitEntity
2558      = Indirect? InitializedEntity::InitializeMember(Indirect)
2559                : InitializedEntity::InitializeMember(Field);
2560    InitializationKind InitKind =
2561      InitializationKind::CreateDefault(Loc);
2562
2563    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2564    ExprResult MemberInit =
2565      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2566
2567    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2568    if (MemberInit.isInvalid())
2569      return true;
2570
2571    if (Indirect)
2572      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2573                                                               Indirect, Loc,
2574                                                               Loc,
2575                                                               MemberInit.get(),
2576                                                               Loc);
2577    else
2578      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2579                                                               Field, Loc, Loc,
2580                                                               MemberInit.get(),
2581                                                               Loc);
2582    return false;
2583  }
2584
2585  if (!Field->getParent()->isUnion()) {
2586    if (FieldBaseElementType->isReferenceType()) {
2587      SemaRef.Diag(Constructor->getLocation(),
2588                   diag::err_uninitialized_member_in_ctor)
2589      << (int)Constructor->isImplicit()
2590      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2591      << 0 << Field->getDeclName();
2592      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2593      return true;
2594    }
2595
2596    if (FieldBaseElementType.isConstQualified()) {
2597      SemaRef.Diag(Constructor->getLocation(),
2598                   diag::err_uninitialized_member_in_ctor)
2599      << (int)Constructor->isImplicit()
2600      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2601      << 1 << Field->getDeclName();
2602      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2603      return true;
2604    }
2605  }
2606
2607  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2608      FieldBaseElementType->isObjCRetainableType() &&
2609      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2610      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2611    // Instant objects:
2612    //   Default-initialize Objective-C pointers to NULL.
2613    CXXMemberInit
2614      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2615                                                 Loc, Loc,
2616                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2617                                                 Loc);
2618    return false;
2619  }
2620
2621  // Nothing to initialize.
2622  CXXMemberInit = 0;
2623  return false;
2624}
2625
2626namespace {
2627struct BaseAndFieldInfo {
2628  Sema &S;
2629  CXXConstructorDecl *Ctor;
2630  bool AnyErrorsInInits;
2631  ImplicitInitializerKind IIK;
2632  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2633  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2634
2635  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2636    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2637    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2638    if (Generated && Ctor->isCopyConstructor())
2639      IIK = IIK_Copy;
2640    else if (Generated && Ctor->isMoveConstructor())
2641      IIK = IIK_Move;
2642    else
2643      IIK = IIK_Default;
2644  }
2645};
2646}
2647
2648/// \brief Determine whether the given indirect field declaration is somewhere
2649/// within an anonymous union.
2650static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2651  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2652                                      CEnd = F->chain_end();
2653       C != CEnd; ++C)
2654    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2655      if (Record->isUnion())
2656        return true;
2657
2658  return false;
2659}
2660
2661static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2662                                    FieldDecl *Field,
2663                                    IndirectFieldDecl *Indirect = 0) {
2664
2665  // Overwhelmingly common case: we have a direct initializer for this field.
2666  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2667    Info.AllToInit.push_back(Init);
2668    return false;
2669  }
2670
2671  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2672  // has a brace-or-equal-initializer, the entity is initialized as specified
2673  // in [dcl.init].
2674  if (Field->hasInClassInitializer()) {
2675    CXXCtorInitializer *Init;
2676    if (Indirect)
2677      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2678                                                      SourceLocation(),
2679                                                      SourceLocation(), 0,
2680                                                      SourceLocation());
2681    else
2682      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2683                                                      SourceLocation(),
2684                                                      SourceLocation(), 0,
2685                                                      SourceLocation());
2686    Info.AllToInit.push_back(Init);
2687    return false;
2688  }
2689
2690  // Don't build an implicit initializer for union members if none was
2691  // explicitly specified.
2692  if (Field->getParent()->isUnion() ||
2693      (Indirect && isWithinAnonymousUnion(Indirect)))
2694    return false;
2695
2696  // Don't try to build an implicit initializer if there were semantic
2697  // errors in any of the initializers (and therefore we might be
2698  // missing some that the user actually wrote).
2699  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2700    return false;
2701
2702  CXXCtorInitializer *Init = 0;
2703  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2704                                     Indirect, Init))
2705    return true;
2706
2707  if (Init)
2708    Info.AllToInit.push_back(Init);
2709
2710  return false;
2711}
2712
2713bool
2714Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2715                               CXXCtorInitializer *Initializer) {
2716  assert(Initializer->isDelegatingInitializer());
2717  Constructor->setNumCtorInitializers(1);
2718  CXXCtorInitializer **initializer =
2719    new (Context) CXXCtorInitializer*[1];
2720  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2721  Constructor->setCtorInitializers(initializer);
2722
2723  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2724    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2725    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2726  }
2727
2728  DelegatingCtorDecls.push_back(Constructor);
2729
2730  return false;
2731}
2732
2733bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2734                               CXXCtorInitializer **Initializers,
2735                               unsigned NumInitializers,
2736                               bool AnyErrors) {
2737  if (Constructor->isDependentContext()) {
2738    // Just store the initializers as written, they will be checked during
2739    // instantiation.
2740    if (NumInitializers > 0) {
2741      Constructor->setNumCtorInitializers(NumInitializers);
2742      CXXCtorInitializer **baseOrMemberInitializers =
2743        new (Context) CXXCtorInitializer*[NumInitializers];
2744      memcpy(baseOrMemberInitializers, Initializers,
2745             NumInitializers * sizeof(CXXCtorInitializer*));
2746      Constructor->setCtorInitializers(baseOrMemberInitializers);
2747    }
2748
2749    return false;
2750  }
2751
2752  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2753
2754  // We need to build the initializer AST according to order of construction
2755  // and not what user specified in the Initializers list.
2756  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2757  if (!ClassDecl)
2758    return true;
2759
2760  bool HadError = false;
2761
2762  for (unsigned i = 0; i < NumInitializers; i++) {
2763    CXXCtorInitializer *Member = Initializers[i];
2764
2765    if (Member->isBaseInitializer())
2766      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2767    else
2768      Info.AllBaseFields[Member->getAnyMember()] = Member;
2769  }
2770
2771  // Keep track of the direct virtual bases.
2772  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2773  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2774       E = ClassDecl->bases_end(); I != E; ++I) {
2775    if (I->isVirtual())
2776      DirectVBases.insert(I);
2777  }
2778
2779  // Push virtual bases before others.
2780  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2781       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2782
2783    if (CXXCtorInitializer *Value
2784        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2785      Info.AllToInit.push_back(Value);
2786    } else if (!AnyErrors) {
2787      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2788      CXXCtorInitializer *CXXBaseInit;
2789      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2790                                       VBase, IsInheritedVirtualBase,
2791                                       CXXBaseInit)) {
2792        HadError = true;
2793        continue;
2794      }
2795
2796      Info.AllToInit.push_back(CXXBaseInit);
2797    }
2798  }
2799
2800  // Non-virtual bases.
2801  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2802       E = ClassDecl->bases_end(); Base != E; ++Base) {
2803    // Virtuals are in the virtual base list and already constructed.
2804    if (Base->isVirtual())
2805      continue;
2806
2807    if (CXXCtorInitializer *Value
2808          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2809      Info.AllToInit.push_back(Value);
2810    } else if (!AnyErrors) {
2811      CXXCtorInitializer *CXXBaseInit;
2812      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2813                                       Base, /*IsInheritedVirtualBase=*/false,
2814                                       CXXBaseInit)) {
2815        HadError = true;
2816        continue;
2817      }
2818
2819      Info.AllToInit.push_back(CXXBaseInit);
2820    }
2821  }
2822
2823  // Fields.
2824  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2825                               MemEnd = ClassDecl->decls_end();
2826       Mem != MemEnd; ++Mem) {
2827    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2828      if (F->getType()->isIncompleteArrayType()) {
2829        assert(ClassDecl->hasFlexibleArrayMember() &&
2830               "Incomplete array type is not valid");
2831        continue;
2832      }
2833
2834      // If we're not generating the implicit copy/move constructor, then we'll
2835      // handle anonymous struct/union fields based on their individual
2836      // indirect fields.
2837      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2838        continue;
2839
2840      if (CollectFieldInitializer(*this, Info, F))
2841        HadError = true;
2842      continue;
2843    }
2844
2845    // Beyond this point, we only consider default initialization.
2846    if (Info.IIK != IIK_Default)
2847      continue;
2848
2849    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2850      if (F->getType()->isIncompleteArrayType()) {
2851        assert(ClassDecl->hasFlexibleArrayMember() &&
2852               "Incomplete array type is not valid");
2853        continue;
2854      }
2855
2856      // Initialize each field of an anonymous struct individually.
2857      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2858        HadError = true;
2859
2860      continue;
2861    }
2862  }
2863
2864  NumInitializers = Info.AllToInit.size();
2865  if (NumInitializers > 0) {
2866    Constructor->setNumCtorInitializers(NumInitializers);
2867    CXXCtorInitializer **baseOrMemberInitializers =
2868      new (Context) CXXCtorInitializer*[NumInitializers];
2869    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2870           NumInitializers * sizeof(CXXCtorInitializer*));
2871    Constructor->setCtorInitializers(baseOrMemberInitializers);
2872
2873    // Constructors implicitly reference the base and member
2874    // destructors.
2875    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2876                                           Constructor->getParent());
2877  }
2878
2879  return HadError;
2880}
2881
2882static void *GetKeyForTopLevelField(FieldDecl *Field) {
2883  // For anonymous unions, use the class declaration as the key.
2884  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2885    if (RT->getDecl()->isAnonymousStructOrUnion())
2886      return static_cast<void *>(RT->getDecl());
2887  }
2888  return static_cast<void *>(Field);
2889}
2890
2891static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2892  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2893}
2894
2895static void *GetKeyForMember(ASTContext &Context,
2896                             CXXCtorInitializer *Member) {
2897  if (!Member->isAnyMemberInitializer())
2898    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2899
2900  // For fields injected into the class via declaration of an anonymous union,
2901  // use its anonymous union class declaration as the unique key.
2902  FieldDecl *Field = Member->getAnyMember();
2903
2904  // If the field is a member of an anonymous struct or union, our key
2905  // is the anonymous record decl that's a direct child of the class.
2906  RecordDecl *RD = Field->getParent();
2907  if (RD->isAnonymousStructOrUnion()) {
2908    while (true) {
2909      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2910      if (Parent->isAnonymousStructOrUnion())
2911        RD = Parent;
2912      else
2913        break;
2914    }
2915
2916    return static_cast<void *>(RD);
2917  }
2918
2919  return static_cast<void *>(Field);
2920}
2921
2922static void
2923DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2924                                  const CXXConstructorDecl *Constructor,
2925                                  CXXCtorInitializer **Inits,
2926                                  unsigned NumInits) {
2927  if (Constructor->getDeclContext()->isDependentContext())
2928    return;
2929
2930  // Don't check initializers order unless the warning is enabled at the
2931  // location of at least one initializer.
2932  bool ShouldCheckOrder = false;
2933  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2934    CXXCtorInitializer *Init = Inits[InitIndex];
2935    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2936                                         Init->getSourceLocation())
2937          != DiagnosticsEngine::Ignored) {
2938      ShouldCheckOrder = true;
2939      break;
2940    }
2941  }
2942  if (!ShouldCheckOrder)
2943    return;
2944
2945  // Build the list of bases and members in the order that they'll
2946  // actually be initialized.  The explicit initializers should be in
2947  // this same order but may be missing things.
2948  SmallVector<const void*, 32> IdealInitKeys;
2949
2950  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2951
2952  // 1. Virtual bases.
2953  for (CXXRecordDecl::base_class_const_iterator VBase =
2954       ClassDecl->vbases_begin(),
2955       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2956    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2957
2958  // 2. Non-virtual bases.
2959  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2960       E = ClassDecl->bases_end(); Base != E; ++Base) {
2961    if (Base->isVirtual())
2962      continue;
2963    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2964  }
2965
2966  // 3. Direct fields.
2967  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2968       E = ClassDecl->field_end(); Field != E; ++Field)
2969    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2970
2971  unsigned NumIdealInits = IdealInitKeys.size();
2972  unsigned IdealIndex = 0;
2973
2974  CXXCtorInitializer *PrevInit = 0;
2975  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2976    CXXCtorInitializer *Init = Inits[InitIndex];
2977    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2978
2979    // Scan forward to try to find this initializer in the idealized
2980    // initializers list.
2981    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2982      if (InitKey == IdealInitKeys[IdealIndex])
2983        break;
2984
2985    // If we didn't find this initializer, it must be because we
2986    // scanned past it on a previous iteration.  That can only
2987    // happen if we're out of order;  emit a warning.
2988    if (IdealIndex == NumIdealInits && PrevInit) {
2989      Sema::SemaDiagnosticBuilder D =
2990        SemaRef.Diag(PrevInit->getSourceLocation(),
2991                     diag::warn_initializer_out_of_order);
2992
2993      if (PrevInit->isAnyMemberInitializer())
2994        D << 0 << PrevInit->getAnyMember()->getDeclName();
2995      else
2996        D << 1 << PrevInit->getBaseClassInfo()->getType();
2997
2998      if (Init->isAnyMemberInitializer())
2999        D << 0 << Init->getAnyMember()->getDeclName();
3000      else
3001        D << 1 << Init->getBaseClassInfo()->getType();
3002
3003      // Move back to the initializer's location in the ideal list.
3004      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3005        if (InitKey == IdealInitKeys[IdealIndex])
3006          break;
3007
3008      assert(IdealIndex != NumIdealInits &&
3009             "initializer not found in initializer list");
3010    }
3011
3012    PrevInit = Init;
3013  }
3014}
3015
3016namespace {
3017bool CheckRedundantInit(Sema &S,
3018                        CXXCtorInitializer *Init,
3019                        CXXCtorInitializer *&PrevInit) {
3020  if (!PrevInit) {
3021    PrevInit = Init;
3022    return false;
3023  }
3024
3025  if (FieldDecl *Field = Init->getMember())
3026    S.Diag(Init->getSourceLocation(),
3027           diag::err_multiple_mem_initialization)
3028      << Field->getDeclName()
3029      << Init->getSourceRange();
3030  else {
3031    const Type *BaseClass = Init->getBaseClass();
3032    assert(BaseClass && "neither field nor base");
3033    S.Diag(Init->getSourceLocation(),
3034           diag::err_multiple_base_initialization)
3035      << QualType(BaseClass, 0)
3036      << Init->getSourceRange();
3037  }
3038  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3039    << 0 << PrevInit->getSourceRange();
3040
3041  return true;
3042}
3043
3044typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3045typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3046
3047bool CheckRedundantUnionInit(Sema &S,
3048                             CXXCtorInitializer *Init,
3049                             RedundantUnionMap &Unions) {
3050  FieldDecl *Field = Init->getAnyMember();
3051  RecordDecl *Parent = Field->getParent();
3052  if (!Parent->isAnonymousStructOrUnion())
3053    return false;
3054
3055  NamedDecl *Child = Field;
3056  do {
3057    if (Parent->isUnion()) {
3058      UnionEntry &En = Unions[Parent];
3059      if (En.first && En.first != Child) {
3060        S.Diag(Init->getSourceLocation(),
3061               diag::err_multiple_mem_union_initialization)
3062          << Field->getDeclName()
3063          << Init->getSourceRange();
3064        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3065          << 0 << En.second->getSourceRange();
3066        return true;
3067      } else if (!En.first) {
3068        En.first = Child;
3069        En.second = Init;
3070      }
3071    }
3072
3073    Child = Parent;
3074    Parent = cast<RecordDecl>(Parent->getDeclContext());
3075  } while (Parent->isAnonymousStructOrUnion());
3076
3077  return false;
3078}
3079}
3080
3081/// ActOnMemInitializers - Handle the member initializers for a constructor.
3082void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3083                                SourceLocation ColonLoc,
3084                                CXXCtorInitializer **meminits,
3085                                unsigned NumMemInits,
3086                                bool AnyErrors) {
3087  if (!ConstructorDecl)
3088    return;
3089
3090  AdjustDeclIfTemplate(ConstructorDecl);
3091
3092  CXXConstructorDecl *Constructor
3093    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3094
3095  if (!Constructor) {
3096    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3097    return;
3098  }
3099
3100  CXXCtorInitializer **MemInits =
3101    reinterpret_cast<CXXCtorInitializer **>(meminits);
3102
3103  // Mapping for the duplicate initializers check.
3104  // For member initializers, this is keyed with a FieldDecl*.
3105  // For base initializers, this is keyed with a Type*.
3106  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3107
3108  // Mapping for the inconsistent anonymous-union initializers check.
3109  RedundantUnionMap MemberUnions;
3110
3111  bool HadError = false;
3112  for (unsigned i = 0; i < NumMemInits; i++) {
3113    CXXCtorInitializer *Init = MemInits[i];
3114
3115    // Set the source order index.
3116    Init->setSourceOrder(i);
3117
3118    if (Init->isAnyMemberInitializer()) {
3119      FieldDecl *Field = Init->getAnyMember();
3120      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3121          CheckRedundantUnionInit(*this, Init, MemberUnions))
3122        HadError = true;
3123    } else if (Init->isBaseInitializer()) {
3124      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3125      if (CheckRedundantInit(*this, Init, Members[Key]))
3126        HadError = true;
3127    } else {
3128      assert(Init->isDelegatingInitializer());
3129      // This must be the only initializer
3130      if (i != 0 || NumMemInits > 1) {
3131        Diag(MemInits[0]->getSourceLocation(),
3132             diag::err_delegating_initializer_alone)
3133          << MemInits[0]->getSourceRange();
3134        HadError = true;
3135        // We will treat this as being the only initializer.
3136      }
3137      SetDelegatingInitializer(Constructor, MemInits[i]);
3138      // Return immediately as the initializer is set.
3139      return;
3140    }
3141  }
3142
3143  if (HadError)
3144    return;
3145
3146  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3147
3148  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3149}
3150
3151void
3152Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3153                                             CXXRecordDecl *ClassDecl) {
3154  // Ignore dependent contexts. Also ignore unions, since their members never
3155  // have destructors implicitly called.
3156  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3157    return;
3158
3159  // FIXME: all the access-control diagnostics are positioned on the
3160  // field/base declaration.  That's probably good; that said, the
3161  // user might reasonably want to know why the destructor is being
3162  // emitted, and we currently don't say.
3163
3164  // Non-static data members.
3165  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3166       E = ClassDecl->field_end(); I != E; ++I) {
3167    FieldDecl *Field = *I;
3168    if (Field->isInvalidDecl())
3169      continue;
3170    QualType FieldType = Context.getBaseElementType(Field->getType());
3171
3172    const RecordType* RT = FieldType->getAs<RecordType>();
3173    if (!RT)
3174      continue;
3175
3176    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3177    if (FieldClassDecl->isInvalidDecl())
3178      continue;
3179    if (FieldClassDecl->hasTrivialDestructor())
3180      continue;
3181
3182    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3183    assert(Dtor && "No dtor found for FieldClassDecl!");
3184    CheckDestructorAccess(Field->getLocation(), Dtor,
3185                          PDiag(diag::err_access_dtor_field)
3186                            << Field->getDeclName()
3187                            << FieldType);
3188
3189    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3190  }
3191
3192  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3193
3194  // Bases.
3195  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3196       E = ClassDecl->bases_end(); Base != E; ++Base) {
3197    // Bases are always records in a well-formed non-dependent class.
3198    const RecordType *RT = Base->getType()->getAs<RecordType>();
3199
3200    // Remember direct virtual bases.
3201    if (Base->isVirtual())
3202      DirectVirtualBases.insert(RT);
3203
3204    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3205    // If our base class is invalid, we probably can't get its dtor anyway.
3206    if (BaseClassDecl->isInvalidDecl())
3207      continue;
3208    // Ignore trivial destructors.
3209    if (BaseClassDecl->hasTrivialDestructor())
3210      continue;
3211
3212    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3213    assert(Dtor && "No dtor found for BaseClassDecl!");
3214
3215    // FIXME: caret should be on the start of the class name
3216    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3217                          PDiag(diag::err_access_dtor_base)
3218                            << Base->getType()
3219                            << Base->getSourceRange());
3220
3221    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3222  }
3223
3224  // Virtual bases.
3225  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3226       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3227
3228    // Bases are always records in a well-formed non-dependent class.
3229    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3230
3231    // Ignore direct virtual bases.
3232    if (DirectVirtualBases.count(RT))
3233      continue;
3234
3235    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3236    // If our base class is invalid, we probably can't get its dtor anyway.
3237    if (BaseClassDecl->isInvalidDecl())
3238      continue;
3239    // Ignore trivial destructors.
3240    if (BaseClassDecl->hasTrivialDestructor())
3241      continue;
3242
3243    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3244    assert(Dtor && "No dtor found for BaseClassDecl!");
3245    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3246                          PDiag(diag::err_access_dtor_vbase)
3247                            << VBase->getType());
3248
3249    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3250  }
3251}
3252
3253void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3254  if (!CDtorDecl)
3255    return;
3256
3257  if (CXXConstructorDecl *Constructor
3258      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3259    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3260}
3261
3262bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3263                                  unsigned DiagID, AbstractDiagSelID SelID) {
3264  if (SelID == -1)
3265    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3266  else
3267    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3268}
3269
3270bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3271                                  const PartialDiagnostic &PD) {
3272  if (!getLangOptions().CPlusPlus)
3273    return false;
3274
3275  if (const ArrayType *AT = Context.getAsArrayType(T))
3276    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3277
3278  if (const PointerType *PT = T->getAs<PointerType>()) {
3279    // Find the innermost pointer type.
3280    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3281      PT = T;
3282
3283    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3284      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3285  }
3286
3287  const RecordType *RT = T->getAs<RecordType>();
3288  if (!RT)
3289    return false;
3290
3291  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3292
3293  // We can't answer whether something is abstract until it has a
3294  // definition.  If it's currently being defined, we'll walk back
3295  // over all the declarations when we have a full definition.
3296  const CXXRecordDecl *Def = RD->getDefinition();
3297  if (!Def || Def->isBeingDefined())
3298    return false;
3299
3300  if (!RD->isAbstract())
3301    return false;
3302
3303  Diag(Loc, PD) << RD->getDeclName();
3304  DiagnoseAbstractType(RD);
3305
3306  return true;
3307}
3308
3309void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3310  // Check if we've already emitted the list of pure virtual functions
3311  // for this class.
3312  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3313    return;
3314
3315  CXXFinalOverriderMap FinalOverriders;
3316  RD->getFinalOverriders(FinalOverriders);
3317
3318  // Keep a set of seen pure methods so we won't diagnose the same method
3319  // more than once.
3320  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3321
3322  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3323                                   MEnd = FinalOverriders.end();
3324       M != MEnd;
3325       ++M) {
3326    for (OverridingMethods::iterator SO = M->second.begin(),
3327                                  SOEnd = M->second.end();
3328         SO != SOEnd; ++SO) {
3329      // C++ [class.abstract]p4:
3330      //   A class is abstract if it contains or inherits at least one
3331      //   pure virtual function for which the final overrider is pure
3332      //   virtual.
3333
3334      //
3335      if (SO->second.size() != 1)
3336        continue;
3337
3338      if (!SO->second.front().Method->isPure())
3339        continue;
3340
3341      if (!SeenPureMethods.insert(SO->second.front().Method))
3342        continue;
3343
3344      Diag(SO->second.front().Method->getLocation(),
3345           diag::note_pure_virtual_function)
3346        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3347    }
3348  }
3349
3350  if (!PureVirtualClassDiagSet)
3351    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3352  PureVirtualClassDiagSet->insert(RD);
3353}
3354
3355namespace {
3356struct AbstractUsageInfo {
3357  Sema &S;
3358  CXXRecordDecl *Record;
3359  CanQualType AbstractType;
3360  bool Invalid;
3361
3362  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3363    : S(S), Record(Record),
3364      AbstractType(S.Context.getCanonicalType(
3365                   S.Context.getTypeDeclType(Record))),
3366      Invalid(false) {}
3367
3368  void DiagnoseAbstractType() {
3369    if (Invalid) return;
3370    S.DiagnoseAbstractType(Record);
3371    Invalid = true;
3372  }
3373
3374  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3375};
3376
3377struct CheckAbstractUsage {
3378  AbstractUsageInfo &Info;
3379  const NamedDecl *Ctx;
3380
3381  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3382    : Info(Info), Ctx(Ctx) {}
3383
3384  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3385    switch (TL.getTypeLocClass()) {
3386#define ABSTRACT_TYPELOC(CLASS, PARENT)
3387#define TYPELOC(CLASS, PARENT) \
3388    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3389#include "clang/AST/TypeLocNodes.def"
3390    }
3391  }
3392
3393  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3394    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3395    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3396      if (!TL.getArg(I))
3397        continue;
3398
3399      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3400      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3401    }
3402  }
3403
3404  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3405    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3406  }
3407
3408  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3409    // Visit the type parameters from a permissive context.
3410    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3411      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3412      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3413        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3414          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3415      // TODO: other template argument types?
3416    }
3417  }
3418
3419  // Visit pointee types from a permissive context.
3420#define CheckPolymorphic(Type) \
3421  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3422    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3423  }
3424  CheckPolymorphic(PointerTypeLoc)
3425  CheckPolymorphic(ReferenceTypeLoc)
3426  CheckPolymorphic(MemberPointerTypeLoc)
3427  CheckPolymorphic(BlockPointerTypeLoc)
3428  CheckPolymorphic(AtomicTypeLoc)
3429
3430  /// Handle all the types we haven't given a more specific
3431  /// implementation for above.
3432  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3433    // Every other kind of type that we haven't called out already
3434    // that has an inner type is either (1) sugar or (2) contains that
3435    // inner type in some way as a subobject.
3436    if (TypeLoc Next = TL.getNextTypeLoc())
3437      return Visit(Next, Sel);
3438
3439    // If there's no inner type and we're in a permissive context,
3440    // don't diagnose.
3441    if (Sel == Sema::AbstractNone) return;
3442
3443    // Check whether the type matches the abstract type.
3444    QualType T = TL.getType();
3445    if (T->isArrayType()) {
3446      Sel = Sema::AbstractArrayType;
3447      T = Info.S.Context.getBaseElementType(T);
3448    }
3449    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3450    if (CT != Info.AbstractType) return;
3451
3452    // It matched; do some magic.
3453    if (Sel == Sema::AbstractArrayType) {
3454      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3455        << T << TL.getSourceRange();
3456    } else {
3457      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3458        << Sel << T << TL.getSourceRange();
3459    }
3460    Info.DiagnoseAbstractType();
3461  }
3462};
3463
3464void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3465                                  Sema::AbstractDiagSelID Sel) {
3466  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3467}
3468
3469}
3470
3471/// Check for invalid uses of an abstract type in a method declaration.
3472static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3473                                    CXXMethodDecl *MD) {
3474  // No need to do the check on definitions, which require that
3475  // the return/param types be complete.
3476  if (MD->doesThisDeclarationHaveABody())
3477    return;
3478
3479  // For safety's sake, just ignore it if we don't have type source
3480  // information.  This should never happen for non-implicit methods,
3481  // but...
3482  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3483    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3484}
3485
3486/// Check for invalid uses of an abstract type within a class definition.
3487static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3488                                    CXXRecordDecl *RD) {
3489  for (CXXRecordDecl::decl_iterator
3490         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3491    Decl *D = *I;
3492    if (D->isImplicit()) continue;
3493
3494    // Methods and method templates.
3495    if (isa<CXXMethodDecl>(D)) {
3496      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3497    } else if (isa<FunctionTemplateDecl>(D)) {
3498      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3499      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3500
3501    // Fields and static variables.
3502    } else if (isa<FieldDecl>(D)) {
3503      FieldDecl *FD = cast<FieldDecl>(D);
3504      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3505        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3506    } else if (isa<VarDecl>(D)) {
3507      VarDecl *VD = cast<VarDecl>(D);
3508      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3509        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3510
3511    // Nested classes and class templates.
3512    } else if (isa<CXXRecordDecl>(D)) {
3513      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3514    } else if (isa<ClassTemplateDecl>(D)) {
3515      CheckAbstractClassUsage(Info,
3516                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3517    }
3518  }
3519}
3520
3521/// \brief Perform semantic checks on a class definition that has been
3522/// completing, introducing implicitly-declared members, checking for
3523/// abstract types, etc.
3524void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3525  if (!Record)
3526    return;
3527
3528  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3529    AbstractUsageInfo Info(*this, Record);
3530    CheckAbstractClassUsage(Info, Record);
3531  }
3532
3533  // If this is not an aggregate type and has no user-declared constructor,
3534  // complain about any non-static data members of reference or const scalar
3535  // type, since they will never get initializers.
3536  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3537      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3538    bool Complained = false;
3539    for (RecordDecl::field_iterator F = Record->field_begin(),
3540                                 FEnd = Record->field_end();
3541         F != FEnd; ++F) {
3542      if (F->hasInClassInitializer())
3543        continue;
3544
3545      if (F->getType()->isReferenceType() ||
3546          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3547        if (!Complained) {
3548          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3549            << Record->getTagKind() << Record;
3550          Complained = true;
3551        }
3552
3553        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3554          << F->getType()->isReferenceType()
3555          << F->getDeclName();
3556      }
3557    }
3558  }
3559
3560  if (Record->isDynamicClass() && !Record->isDependentType())
3561    DynamicClasses.push_back(Record);
3562
3563  if (Record->getIdentifier()) {
3564    // C++ [class.mem]p13:
3565    //   If T is the name of a class, then each of the following shall have a
3566    //   name different from T:
3567    //     - every member of every anonymous union that is a member of class T.
3568    //
3569    // C++ [class.mem]p14:
3570    //   In addition, if class T has a user-declared constructor (12.1), every
3571    //   non-static data member of class T shall have a name different from T.
3572    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3573         R.first != R.second; ++R.first) {
3574      NamedDecl *D = *R.first;
3575      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3576          isa<IndirectFieldDecl>(D)) {
3577        Diag(D->getLocation(), diag::err_member_name_of_class)
3578          << D->getDeclName();
3579        break;
3580      }
3581    }
3582  }
3583
3584  // Warn if the class has virtual methods but non-virtual public destructor.
3585  if (Record->isPolymorphic() && !Record->isDependentType()) {
3586    CXXDestructorDecl *dtor = Record->getDestructor();
3587    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3588      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3589           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3590  }
3591
3592  // See if a method overloads virtual methods in a base
3593  /// class without overriding any.
3594  if (!Record->isDependentType()) {
3595    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3596                                     MEnd = Record->method_end();
3597         M != MEnd; ++M) {
3598      if (!(*M)->isStatic())
3599        DiagnoseHiddenVirtualMethods(Record, *M);
3600    }
3601  }
3602
3603  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3604  // function that is not a constructor declares that member function to be
3605  // const. [...] The class of which that function is a member shall be
3606  // a literal type.
3607  //
3608  // It's fine to diagnose constructors here too: such constructors cannot
3609  // produce a constant expression, so are ill-formed (no diagnostic required).
3610  //
3611  // If the class has virtual bases, any constexpr members will already have
3612  // been diagnosed by the checks performed on the member declaration, so
3613  // suppress this (less useful) diagnostic.
3614  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3615      !Record->isLiteral() && !Record->getNumVBases()) {
3616    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3617                                     MEnd = Record->method_end();
3618         M != MEnd; ++M) {
3619      if ((*M)->isConstexpr()) {
3620        switch (Record->getTemplateSpecializationKind()) {
3621        case TSK_ImplicitInstantiation:
3622        case TSK_ExplicitInstantiationDeclaration:
3623        case TSK_ExplicitInstantiationDefinition:
3624          // If a template instantiates to a non-literal type, but its members
3625          // instantiate to constexpr functions, the template is technically
3626          // ill-formed, but we allow it for sanity. Such members are treated as
3627          // non-constexpr.
3628          (*M)->setConstexpr(false);
3629          continue;
3630
3631        case TSK_Undeclared:
3632        case TSK_ExplicitSpecialization:
3633          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3634                             PDiag(diag::err_constexpr_method_non_literal));
3635          break;
3636        }
3637
3638        // Only produce one error per class.
3639        break;
3640      }
3641    }
3642  }
3643
3644  // Declare inherited constructors. We do this eagerly here because:
3645  // - The standard requires an eager diagnostic for conflicting inherited
3646  //   constructors from different classes.
3647  // - The lazy declaration of the other implicit constructors is so as to not
3648  //   waste space and performance on classes that are not meant to be
3649  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3650  //   have inherited constructors.
3651  DeclareInheritedConstructors(Record);
3652
3653  if (!Record->isDependentType())
3654    CheckExplicitlyDefaultedMethods(Record);
3655}
3656
3657void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3658  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3659                                      ME = Record->method_end();
3660       MI != ME; ++MI) {
3661    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3662      switch (getSpecialMember(*MI)) {
3663      case CXXDefaultConstructor:
3664        CheckExplicitlyDefaultedDefaultConstructor(
3665                                                  cast<CXXConstructorDecl>(*MI));
3666        break;
3667
3668      case CXXDestructor:
3669        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3670        break;
3671
3672      case CXXCopyConstructor:
3673        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3674        break;
3675
3676      case CXXCopyAssignment:
3677        CheckExplicitlyDefaultedCopyAssignment(*MI);
3678        break;
3679
3680      case CXXMoveConstructor:
3681        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3682        break;
3683
3684      case CXXMoveAssignment:
3685        CheckExplicitlyDefaultedMoveAssignment(*MI);
3686        break;
3687
3688      case CXXInvalid:
3689        llvm_unreachable("non-special member explicitly defaulted!");
3690      }
3691    }
3692  }
3693
3694}
3695
3696void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3697  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3698
3699  // Whether this was the first-declared instance of the constructor.
3700  // This affects whether we implicitly add an exception spec (and, eventually,
3701  // constexpr). It is also ill-formed to explicitly default a constructor such
3702  // that it would be deleted. (C++0x [decl.fct.def.default])
3703  bool First = CD == CD->getCanonicalDecl();
3704
3705  bool HadError = false;
3706  if (CD->getNumParams() != 0) {
3707    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3708      << CD->getSourceRange();
3709    HadError = true;
3710  }
3711
3712  ImplicitExceptionSpecification Spec
3713    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3714  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3715  if (EPI.ExceptionSpecType == EST_Delayed) {
3716    // Exception specification depends on some deferred part of the class. We'll
3717    // try again when the class's definition has been fully processed.
3718    return;
3719  }
3720  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3721                          *ExceptionType = Context.getFunctionType(
3722                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3723
3724  if (CtorType->hasExceptionSpec()) {
3725    if (CheckEquivalentExceptionSpec(
3726          PDiag(diag::err_incorrect_defaulted_exception_spec)
3727            << CXXDefaultConstructor,
3728          PDiag(),
3729          ExceptionType, SourceLocation(),
3730          CtorType, CD->getLocation())) {
3731      HadError = true;
3732    }
3733  } else if (First) {
3734    // We set the declaration to have the computed exception spec here.
3735    // We know there are no parameters.
3736    EPI.ExtInfo = CtorType->getExtInfo();
3737    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3738  }
3739
3740  if (HadError) {
3741    CD->setInvalidDecl();
3742    return;
3743  }
3744
3745  if (ShouldDeleteDefaultConstructor(CD)) {
3746    if (First) {
3747      CD->setDeletedAsWritten();
3748    } else {
3749      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3750        << CXXDefaultConstructor;
3751      CD->setInvalidDecl();
3752    }
3753  }
3754}
3755
3756void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3757  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3758
3759  // Whether this was the first-declared instance of the constructor.
3760  bool First = CD == CD->getCanonicalDecl();
3761
3762  bool HadError = false;
3763  if (CD->getNumParams() != 1) {
3764    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3765      << CD->getSourceRange();
3766    HadError = true;
3767  }
3768
3769  ImplicitExceptionSpecification Spec(Context);
3770  bool Const;
3771  llvm::tie(Spec, Const) =
3772    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3773
3774  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3775  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3776                          *ExceptionType = Context.getFunctionType(
3777                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3778
3779  // Check for parameter type matching.
3780  // This is a copy ctor so we know it's a cv-qualified reference to T.
3781  QualType ArgType = CtorType->getArgType(0);
3782  if (ArgType->getPointeeType().isVolatileQualified()) {
3783    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3784    HadError = true;
3785  }
3786  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3787    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3788    HadError = true;
3789  }
3790
3791  if (CtorType->hasExceptionSpec()) {
3792    if (CheckEquivalentExceptionSpec(
3793          PDiag(diag::err_incorrect_defaulted_exception_spec)
3794            << CXXCopyConstructor,
3795          PDiag(),
3796          ExceptionType, SourceLocation(),
3797          CtorType, CD->getLocation())) {
3798      HadError = true;
3799    }
3800  } else if (First) {
3801    // We set the declaration to have the computed exception spec here.
3802    // We duplicate the one parameter type.
3803    EPI.ExtInfo = CtorType->getExtInfo();
3804    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3805  }
3806
3807  if (HadError) {
3808    CD->setInvalidDecl();
3809    return;
3810  }
3811
3812  if (ShouldDeleteCopyConstructor(CD)) {
3813    if (First) {
3814      CD->setDeletedAsWritten();
3815    } else {
3816      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3817        << CXXCopyConstructor;
3818      CD->setInvalidDecl();
3819    }
3820  }
3821}
3822
3823void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3824  assert(MD->isExplicitlyDefaulted());
3825
3826  // Whether this was the first-declared instance of the operator
3827  bool First = MD == MD->getCanonicalDecl();
3828
3829  bool HadError = false;
3830  if (MD->getNumParams() != 1) {
3831    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3832      << MD->getSourceRange();
3833    HadError = true;
3834  }
3835
3836  QualType ReturnType =
3837    MD->getType()->getAs<FunctionType>()->getResultType();
3838  if (!ReturnType->isLValueReferenceType() ||
3839      !Context.hasSameType(
3840        Context.getCanonicalType(ReturnType->getPointeeType()),
3841        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3842    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3843    HadError = true;
3844  }
3845
3846  ImplicitExceptionSpecification Spec(Context);
3847  bool Const;
3848  llvm::tie(Spec, Const) =
3849    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3850
3851  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3852  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3853                          *ExceptionType = Context.getFunctionType(
3854                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3855
3856  QualType ArgType = OperType->getArgType(0);
3857  if (!ArgType->isLValueReferenceType()) {
3858    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3859    HadError = true;
3860  } else {
3861    if (ArgType->getPointeeType().isVolatileQualified()) {
3862      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3863      HadError = true;
3864    }
3865    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3866      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3867      HadError = true;
3868    }
3869  }
3870
3871  if (OperType->getTypeQuals()) {
3872    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3873    HadError = true;
3874  }
3875
3876  if (OperType->hasExceptionSpec()) {
3877    if (CheckEquivalentExceptionSpec(
3878          PDiag(diag::err_incorrect_defaulted_exception_spec)
3879            << CXXCopyAssignment,
3880          PDiag(),
3881          ExceptionType, SourceLocation(),
3882          OperType, MD->getLocation())) {
3883      HadError = true;
3884    }
3885  } else if (First) {
3886    // We set the declaration to have the computed exception spec here.
3887    // We duplicate the one parameter type.
3888    EPI.RefQualifier = OperType->getRefQualifier();
3889    EPI.ExtInfo = OperType->getExtInfo();
3890    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3891  }
3892
3893  if (HadError) {
3894    MD->setInvalidDecl();
3895    return;
3896  }
3897
3898  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3899    if (First) {
3900      MD->setDeletedAsWritten();
3901    } else {
3902      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3903        << CXXCopyAssignment;
3904      MD->setInvalidDecl();
3905    }
3906  }
3907}
3908
3909void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3910  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3911
3912  // Whether this was the first-declared instance of the constructor.
3913  bool First = CD == CD->getCanonicalDecl();
3914
3915  bool HadError = false;
3916  if (CD->getNumParams() != 1) {
3917    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3918      << CD->getSourceRange();
3919    HadError = true;
3920  }
3921
3922  ImplicitExceptionSpecification Spec(
3923      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3924
3925  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3926  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3927                          *ExceptionType = Context.getFunctionType(
3928                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3929
3930  // Check for parameter type matching.
3931  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3932  QualType ArgType = CtorType->getArgType(0);
3933  if (ArgType->getPointeeType().isVolatileQualified()) {
3934    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3935    HadError = true;
3936  }
3937  if (ArgType->getPointeeType().isConstQualified()) {
3938    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3939    HadError = true;
3940  }
3941
3942  if (CtorType->hasExceptionSpec()) {
3943    if (CheckEquivalentExceptionSpec(
3944          PDiag(diag::err_incorrect_defaulted_exception_spec)
3945            << CXXMoveConstructor,
3946          PDiag(),
3947          ExceptionType, SourceLocation(),
3948          CtorType, CD->getLocation())) {
3949      HadError = true;
3950    }
3951  } else if (First) {
3952    // We set the declaration to have the computed exception spec here.
3953    // We duplicate the one parameter type.
3954    EPI.ExtInfo = CtorType->getExtInfo();
3955    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3956  }
3957
3958  if (HadError) {
3959    CD->setInvalidDecl();
3960    return;
3961  }
3962
3963  if (ShouldDeleteMoveConstructor(CD)) {
3964    if (First) {
3965      CD->setDeletedAsWritten();
3966    } else {
3967      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3968        << CXXMoveConstructor;
3969      CD->setInvalidDecl();
3970    }
3971  }
3972}
3973
3974void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3975  assert(MD->isExplicitlyDefaulted());
3976
3977  // Whether this was the first-declared instance of the operator
3978  bool First = MD == MD->getCanonicalDecl();
3979
3980  bool HadError = false;
3981  if (MD->getNumParams() != 1) {
3982    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
3983      << MD->getSourceRange();
3984    HadError = true;
3985  }
3986
3987  QualType ReturnType =
3988    MD->getType()->getAs<FunctionType>()->getResultType();
3989  if (!ReturnType->isLValueReferenceType() ||
3990      !Context.hasSameType(
3991        Context.getCanonicalType(ReturnType->getPointeeType()),
3992        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3993    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
3994    HadError = true;
3995  }
3996
3997  ImplicitExceptionSpecification Spec(
3998      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
3999
4000  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4001  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4002                          *ExceptionType = Context.getFunctionType(
4003                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4004
4005  QualType ArgType = OperType->getArgType(0);
4006  if (!ArgType->isRValueReferenceType()) {
4007    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4008    HadError = true;
4009  } else {
4010    if (ArgType->getPointeeType().isVolatileQualified()) {
4011      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4012      HadError = true;
4013    }
4014    if (ArgType->getPointeeType().isConstQualified()) {
4015      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4016      HadError = true;
4017    }
4018  }
4019
4020  if (OperType->getTypeQuals()) {
4021    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4022    HadError = true;
4023  }
4024
4025  if (OperType->hasExceptionSpec()) {
4026    if (CheckEquivalentExceptionSpec(
4027          PDiag(diag::err_incorrect_defaulted_exception_spec)
4028            << CXXMoveAssignment,
4029          PDiag(),
4030          ExceptionType, SourceLocation(),
4031          OperType, MD->getLocation())) {
4032      HadError = true;
4033    }
4034  } else if (First) {
4035    // We set the declaration to have the computed exception spec here.
4036    // We duplicate the one parameter type.
4037    EPI.RefQualifier = OperType->getRefQualifier();
4038    EPI.ExtInfo = OperType->getExtInfo();
4039    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4040  }
4041
4042  if (HadError) {
4043    MD->setInvalidDecl();
4044    return;
4045  }
4046
4047  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4048    if (First) {
4049      MD->setDeletedAsWritten();
4050    } else {
4051      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4052        << CXXMoveAssignment;
4053      MD->setInvalidDecl();
4054    }
4055  }
4056}
4057
4058void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4059  assert(DD->isExplicitlyDefaulted());
4060
4061  // Whether this was the first-declared instance of the destructor.
4062  bool First = DD == DD->getCanonicalDecl();
4063
4064  ImplicitExceptionSpecification Spec
4065    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4066  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4067  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4068                          *ExceptionType = Context.getFunctionType(
4069                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4070
4071  if (DtorType->hasExceptionSpec()) {
4072    if (CheckEquivalentExceptionSpec(
4073          PDiag(diag::err_incorrect_defaulted_exception_spec)
4074            << CXXDestructor,
4075          PDiag(),
4076          ExceptionType, SourceLocation(),
4077          DtorType, DD->getLocation())) {
4078      DD->setInvalidDecl();
4079      return;
4080    }
4081  } else if (First) {
4082    // We set the declaration to have the computed exception spec here.
4083    // There are no parameters.
4084    EPI.ExtInfo = DtorType->getExtInfo();
4085    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4086  }
4087
4088  if (ShouldDeleteDestructor(DD)) {
4089    if (First) {
4090      DD->setDeletedAsWritten();
4091    } else {
4092      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4093        << CXXDestructor;
4094      DD->setInvalidDecl();
4095    }
4096  }
4097}
4098
4099bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
4100  CXXRecordDecl *RD = CD->getParent();
4101  assert(!RD->isDependentType() && "do deletion after instantiation");
4102  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4103    return false;
4104
4105  SourceLocation Loc = CD->getLocation();
4106
4107  // Do access control from the constructor
4108  ContextRAII CtorContext(*this, CD);
4109
4110  bool Union = RD->isUnion();
4111  bool AllConst = true;
4112
4113  // We do this because we should never actually use an anonymous
4114  // union's constructor.
4115  if (Union && RD->isAnonymousStructOrUnion())
4116    return false;
4117
4118  // FIXME: We should put some diagnostic logic right into this function.
4119
4120  // C++0x [class.ctor]/5
4121  //    A defaulted default constructor for class X is defined as deleted if:
4122
4123  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4124                                          BE = RD->bases_end();
4125       BI != BE; ++BI) {
4126    // We'll handle this one later
4127    if (BI->isVirtual())
4128      continue;
4129
4130    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4131    assert(BaseDecl && "base isn't a CXXRecordDecl");
4132
4133    // -- any [direct base class] has a type with a destructor that is
4134    //    deleted or inaccessible from the defaulted default constructor
4135    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4136    if (BaseDtor->isDeleted())
4137      return true;
4138    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4139        AR_accessible)
4140      return true;
4141
4142    // -- any [direct base class either] has no default constructor or
4143    //    overload resolution as applied to [its] default constructor
4144    //    results in an ambiguity or in a function that is deleted or
4145    //    inaccessible from the defaulted default constructor
4146    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
4147    if (!BaseDefault || BaseDefault->isDeleted())
4148      return true;
4149
4150    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
4151                               PDiag()) != AR_accessible)
4152      return true;
4153  }
4154
4155  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4156                                          BE = RD->vbases_end();
4157       BI != BE; ++BI) {
4158    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4159    assert(BaseDecl && "base isn't a CXXRecordDecl");
4160
4161    // -- any [virtual base class] has a type with a destructor that is
4162    //    delete or inaccessible from the defaulted default constructor
4163    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4164    if (BaseDtor->isDeleted())
4165      return true;
4166    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4167        AR_accessible)
4168      return true;
4169
4170    // -- any [virtual base class either] has no default constructor or
4171    //    overload resolution as applied to [its] default constructor
4172    //    results in an ambiguity or in a function that is deleted or
4173    //    inaccessible from the defaulted default constructor
4174    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
4175    if (!BaseDefault || BaseDefault->isDeleted())
4176      return true;
4177
4178    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
4179                               PDiag()) != AR_accessible)
4180      return true;
4181  }
4182
4183  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4184                                     FE = RD->field_end();
4185       FI != FE; ++FI) {
4186    if (FI->isInvalidDecl())
4187      continue;
4188
4189    QualType FieldType = Context.getBaseElementType(FI->getType());
4190    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4191
4192    // -- any non-static data member with no brace-or-equal-initializer is of
4193    //    reference type
4194    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4195      return true;
4196
4197    // -- X is a union and all its variant members are of const-qualified type
4198    //    (or array thereof)
4199    if (Union && !FieldType.isConstQualified())
4200      AllConst = false;
4201
4202    if (FieldRecord) {
4203      // -- X is a union-like class that has a variant member with a non-trivial
4204      //    default constructor
4205      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
4206        return true;
4207
4208      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4209      if (FieldDtor->isDeleted())
4210        return true;
4211      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4212          AR_accessible)
4213        return true;
4214
4215      // -- any non-variant non-static data member of const-qualified type (or
4216      //    array thereof) with no brace-or-equal-initializer does not have a
4217      //    user-provided default constructor
4218      if (FieldType.isConstQualified() &&
4219          !FI->hasInClassInitializer() &&
4220          !FieldRecord->hasUserProvidedDefaultConstructor())
4221        return true;
4222
4223      if (!Union && FieldRecord->isUnion() &&
4224          FieldRecord->isAnonymousStructOrUnion()) {
4225        // We're okay to reuse AllConst here since we only care about the
4226        // value otherwise if we're in a union.
4227        AllConst = true;
4228
4229        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4230                                           UE = FieldRecord->field_end();
4231             UI != UE; ++UI) {
4232          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4233          CXXRecordDecl *UnionFieldRecord =
4234            UnionFieldType->getAsCXXRecordDecl();
4235
4236          if (!UnionFieldType.isConstQualified())
4237            AllConst = false;
4238
4239          if (UnionFieldRecord &&
4240              !UnionFieldRecord->hasTrivialDefaultConstructor())
4241            return true;
4242        }
4243
4244        if (AllConst)
4245          return true;
4246
4247        // Don't try to initialize the anonymous union
4248        // This is technically non-conformant, but sanity demands it.
4249        continue;
4250      }
4251
4252      // -- any non-static data member with no brace-or-equal-initializer has
4253      //    class type M (or array thereof) and either M has no default
4254      //    constructor or overload resolution as applied to M's default
4255      //    constructor results in an ambiguity or in a function that is deleted
4256      //    or inaccessible from the defaulted default constructor.
4257      if (!FI->hasInClassInitializer()) {
4258        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
4259        if (!FieldDefault || FieldDefault->isDeleted())
4260          return true;
4261        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
4262                                   PDiag()) != AR_accessible)
4263          return true;
4264      }
4265    } else if (!Union && FieldType.isConstQualified() &&
4266               !FI->hasInClassInitializer()) {
4267      // -- any non-variant non-static data member of const-qualified type (or
4268      //    array thereof) with no brace-or-equal-initializer does not have a
4269      //    user-provided default constructor
4270      return true;
4271    }
4272  }
4273
4274  if (Union && AllConst)
4275    return true;
4276
4277  return false;
4278}
4279
4280bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
4281  CXXRecordDecl *RD = CD->getParent();
4282  assert(!RD->isDependentType() && "do deletion after instantiation");
4283  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4284    return false;
4285
4286  SourceLocation Loc = CD->getLocation();
4287
4288  // Do access control from the constructor
4289  ContextRAII CtorContext(*this, CD);
4290
4291  bool Union = RD->isUnion();
4292
4293  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
4294         "copy assignment arg has no pointee type");
4295  unsigned ArgQuals =
4296    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4297      Qualifiers::Const : 0;
4298
4299  // We do this because we should never actually use an anonymous
4300  // union's constructor.
4301  if (Union && RD->isAnonymousStructOrUnion())
4302    return false;
4303
4304  // FIXME: We should put some diagnostic logic right into this function.
4305
4306  // C++0x [class.copy]/11
4307  //    A defaulted [copy] constructor for class X is defined as delete if X has:
4308
4309  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4310                                          BE = RD->bases_end();
4311       BI != BE; ++BI) {
4312    // We'll handle this one later
4313    if (BI->isVirtual())
4314      continue;
4315
4316    QualType BaseType = BI->getType();
4317    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4318    assert(BaseDecl && "base isn't a CXXRecordDecl");
4319
4320    // -- any [direct base class] of a type with a destructor that is deleted or
4321    //    inaccessible from the defaulted constructor
4322    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4323    if (BaseDtor->isDeleted())
4324      return true;
4325    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4326        AR_accessible)
4327      return true;
4328
4329    // -- a [direct base class] B that cannot be [copied] because overload
4330    //    resolution, as applied to B's [copy] constructor, results in an
4331    //    ambiguity or a function that is deleted or inaccessible from the
4332    //    defaulted constructor
4333    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
4334    if (!BaseCtor || BaseCtor->isDeleted())
4335      return true;
4336    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4337        AR_accessible)
4338      return true;
4339  }
4340
4341  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4342                                          BE = RD->vbases_end();
4343       BI != BE; ++BI) {
4344    QualType BaseType = BI->getType();
4345    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4346    assert(BaseDecl && "base isn't a CXXRecordDecl");
4347
4348    // -- any [virtual base class] of a type with a destructor that is deleted or
4349    //    inaccessible from the defaulted constructor
4350    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4351    if (BaseDtor->isDeleted())
4352      return true;
4353    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4354        AR_accessible)
4355      return true;
4356
4357    // -- a [virtual base class] B that cannot be [copied] because overload
4358    //    resolution, as applied to B's [copy] constructor, results in an
4359    //    ambiguity or a function that is deleted or inaccessible from the
4360    //    defaulted constructor
4361    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
4362    if (!BaseCtor || BaseCtor->isDeleted())
4363      return true;
4364    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4365        AR_accessible)
4366      return true;
4367  }
4368
4369  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4370                                     FE = RD->field_end();
4371       FI != FE; ++FI) {
4372    QualType FieldType = Context.getBaseElementType(FI->getType());
4373
4374    // -- for a copy constructor, a non-static data member of rvalue reference
4375    //    type
4376    if (FieldType->isRValueReferenceType())
4377      return true;
4378
4379    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4380
4381    if (FieldRecord) {
4382      // This is an anonymous union
4383      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4384        // Anonymous unions inside unions do not variant members create
4385        if (!Union) {
4386          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4387                                             UE = FieldRecord->field_end();
4388               UI != UE; ++UI) {
4389            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4390            CXXRecordDecl *UnionFieldRecord =
4391              UnionFieldType->getAsCXXRecordDecl();
4392
4393            // -- a variant member with a non-trivial [copy] constructor and X
4394            //    is a union-like class
4395            if (UnionFieldRecord &&
4396                !UnionFieldRecord->hasTrivialCopyConstructor())
4397              return true;
4398          }
4399        }
4400
4401        // Don't try to initalize an anonymous union
4402        continue;
4403      } else {
4404         // -- a variant member with a non-trivial [copy] constructor and X is a
4405         //    union-like class
4406        if (Union && !FieldRecord->hasTrivialCopyConstructor())
4407          return true;
4408
4409        // -- any [non-static data member] of a type with a destructor that is
4410        //    deleted or inaccessible from the defaulted constructor
4411        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4412        if (FieldDtor->isDeleted())
4413          return true;
4414        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4415            AR_accessible)
4416          return true;
4417      }
4418
4419    // -- a [non-static data member of class type (or array thereof)] B that
4420    //    cannot be [copied] because overload resolution, as applied to B's
4421    //    [copy] constructor, results in an ambiguity or a function that is
4422    //    deleted or inaccessible from the defaulted constructor
4423      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
4424                                                               ArgQuals);
4425      if (!FieldCtor || FieldCtor->isDeleted())
4426        return true;
4427      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4428                                 PDiag()) != AR_accessible)
4429        return true;
4430    }
4431  }
4432
4433  return false;
4434}
4435
4436bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4437  CXXRecordDecl *RD = MD->getParent();
4438  assert(!RD->isDependentType() && "do deletion after instantiation");
4439  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4440    return false;
4441
4442  SourceLocation Loc = MD->getLocation();
4443
4444  // Do access control from the constructor
4445  ContextRAII MethodContext(*this, MD);
4446
4447  bool Union = RD->isUnion();
4448
4449  unsigned ArgQuals =
4450    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4451      Qualifiers::Const : 0;
4452
4453  // We do this because we should never actually use an anonymous
4454  // union's constructor.
4455  if (Union && RD->isAnonymousStructOrUnion())
4456    return false;
4457
4458  // FIXME: We should put some diagnostic logic right into this function.
4459
4460  // C++0x [class.copy]/20
4461  //    A defaulted [copy] assignment operator for class X is defined as deleted
4462  //    if X has:
4463
4464  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4465                                          BE = RD->bases_end();
4466       BI != BE; ++BI) {
4467    // We'll handle this one later
4468    if (BI->isVirtual())
4469      continue;
4470
4471    QualType BaseType = BI->getType();
4472    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4473    assert(BaseDecl && "base isn't a CXXRecordDecl");
4474
4475    // -- a [direct base class] B that cannot be [copied] because overload
4476    //    resolution, as applied to B's [copy] assignment operator, results in
4477    //    an ambiguity or a function that is deleted or inaccessible from the
4478    //    assignment operator
4479    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4480                                                      0);
4481    if (!CopyOper || CopyOper->isDeleted())
4482      return true;
4483    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4484      return true;
4485  }
4486
4487  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4488                                          BE = RD->vbases_end();
4489       BI != BE; ++BI) {
4490    QualType BaseType = BI->getType();
4491    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4492    assert(BaseDecl && "base isn't a CXXRecordDecl");
4493
4494    // -- a [virtual base class] B that cannot be [copied] because overload
4495    //    resolution, as applied to B's [copy] assignment operator, results in
4496    //    an ambiguity or a function that is deleted or inaccessible from the
4497    //    assignment operator
4498    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4499                                                      0);
4500    if (!CopyOper || CopyOper->isDeleted())
4501      return true;
4502    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4503      return true;
4504  }
4505
4506  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4507                                     FE = RD->field_end();
4508       FI != FE; ++FI) {
4509    QualType FieldType = Context.getBaseElementType(FI->getType());
4510
4511    // -- a non-static data member of reference type
4512    if (FieldType->isReferenceType())
4513      return true;
4514
4515    // -- a non-static data member of const non-class type (or array thereof)
4516    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4517      return true;
4518
4519    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4520
4521    if (FieldRecord) {
4522      // This is an anonymous union
4523      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4524        // Anonymous unions inside unions do not variant members create
4525        if (!Union) {
4526          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4527                                             UE = FieldRecord->field_end();
4528               UI != UE; ++UI) {
4529            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4530            CXXRecordDecl *UnionFieldRecord =
4531              UnionFieldType->getAsCXXRecordDecl();
4532
4533            // -- a variant member with a non-trivial [copy] assignment operator
4534            //    and X is a union-like class
4535            if (UnionFieldRecord &&
4536                !UnionFieldRecord->hasTrivialCopyAssignment())
4537              return true;
4538          }
4539        }
4540
4541        // Don't try to initalize an anonymous union
4542        continue;
4543      // -- a variant member with a non-trivial [copy] assignment operator
4544      //    and X is a union-like class
4545      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4546          return true;
4547      }
4548
4549      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4550                                                        false, 0);
4551      if (!CopyOper || CopyOper->isDeleted())
4552        return true;
4553      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4554        return true;
4555    }
4556  }
4557
4558  return false;
4559}
4560
4561bool Sema::ShouldDeleteMoveConstructor(CXXConstructorDecl *CD) {
4562  CXXRecordDecl *RD = CD->getParent();
4563  assert(!RD->isDependentType() && "do deletion after instantiation");
4564  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4565    return false;
4566
4567  SourceLocation Loc = CD->getLocation();
4568
4569  // Do access control from the constructor
4570  ContextRAII CtorContext(*this, CD);
4571
4572  bool Union = RD->isUnion();
4573
4574  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
4575         "copy assignment arg has no pointee type");
4576
4577  // We do this because we should never actually use an anonymous
4578  // union's constructor.
4579  if (Union && RD->isAnonymousStructOrUnion())
4580    return false;
4581
4582  // C++0x [class.copy]/11
4583  //    A defaulted [move] constructor for class X is defined as deleted
4584  //    if X has:
4585
4586  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4587                                          BE = RD->bases_end();
4588       BI != BE; ++BI) {
4589    // We'll handle this one later
4590    if (BI->isVirtual())
4591      continue;
4592
4593    QualType BaseType = BI->getType();
4594    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4595    assert(BaseDecl && "base isn't a CXXRecordDecl");
4596
4597    // -- any [direct base class] of a type with a destructor that is deleted or
4598    //    inaccessible from the defaulted constructor
4599    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4600    if (BaseDtor->isDeleted())
4601      return true;
4602    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4603        AR_accessible)
4604      return true;
4605
4606    // -- a [direct base class] B that cannot be [moved] because overload
4607    //    resolution, as applied to B's [move] constructor, results in an
4608    //    ambiguity or a function that is deleted or inaccessible from the
4609    //    defaulted constructor
4610    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4611    if (!BaseCtor || BaseCtor->isDeleted())
4612      return true;
4613    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4614        AR_accessible)
4615      return true;
4616
4617    // -- for a move constructor, a [direct base class] with a type that
4618    //    does not have a move constructor and is not trivially copyable.
4619    // If the field isn't a record, it's always trivially copyable.
4620    // A moving constructor could be a copy constructor instead.
4621    if (!BaseCtor->isMoveConstructor() &&
4622        !BaseDecl->isTriviallyCopyable())
4623      return true;
4624  }
4625
4626  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4627                                          BE = RD->vbases_end();
4628       BI != BE; ++BI) {
4629    QualType BaseType = BI->getType();
4630    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4631    assert(BaseDecl && "base isn't a CXXRecordDecl");
4632
4633    // -- any [virtual base class] of a type with a destructor that is deleted
4634    //    or inaccessible from the defaulted constructor
4635    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4636    if (BaseDtor->isDeleted())
4637      return true;
4638    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4639        AR_accessible)
4640      return true;
4641
4642    // -- a [virtual base class] B that cannot be [moved] because overload
4643    //    resolution, as applied to B's [move] constructor, results in an
4644    //    ambiguity or a function that is deleted or inaccessible from the
4645    //    defaulted constructor
4646    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4647    if (!BaseCtor || BaseCtor->isDeleted())
4648      return true;
4649    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4650        AR_accessible)
4651      return true;
4652
4653    // -- for a move constructor, a [virtual base class] with a type that
4654    //    does not have a move constructor and is not trivially copyable.
4655    // If the field isn't a record, it's always trivially copyable.
4656    // A moving constructor could be a copy constructor instead.
4657    if (!BaseCtor->isMoveConstructor() &&
4658        !BaseDecl->isTriviallyCopyable())
4659      return true;
4660  }
4661
4662  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4663                                     FE = RD->field_end();
4664       FI != FE; ++FI) {
4665    QualType FieldType = Context.getBaseElementType(FI->getType());
4666
4667    if (CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl()) {
4668      // This is an anonymous union
4669      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4670        // Anonymous unions inside unions do not variant members create
4671        if (!Union) {
4672          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4673                                             UE = FieldRecord->field_end();
4674               UI != UE; ++UI) {
4675            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4676            CXXRecordDecl *UnionFieldRecord =
4677              UnionFieldType->getAsCXXRecordDecl();
4678
4679            // -- a variant member with a non-trivial [move] constructor and X
4680            //    is a union-like class
4681            if (UnionFieldRecord &&
4682                !UnionFieldRecord->hasTrivialMoveConstructor())
4683              return true;
4684          }
4685        }
4686
4687        // Don't try to initalize an anonymous union
4688        continue;
4689      } else {
4690         // -- a variant member with a non-trivial [move] constructor and X is a
4691         //    union-like class
4692        if (Union && !FieldRecord->hasTrivialMoveConstructor())
4693          return true;
4694
4695        // -- any [non-static data member] of a type with a destructor that is
4696        //    deleted or inaccessible from the defaulted constructor
4697        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4698        if (FieldDtor->isDeleted())
4699          return true;
4700        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4701            AR_accessible)
4702          return true;
4703      }
4704
4705      // -- a [non-static data member of class type (or array thereof)] B that
4706      //    cannot be [moved] because overload resolution, as applied to B's
4707      //    [move] constructor, results in an ambiguity or a function that is
4708      //    deleted or inaccessible from the defaulted constructor
4709      CXXConstructorDecl *FieldCtor = LookupMovingConstructor(FieldRecord);
4710      if (!FieldCtor || FieldCtor->isDeleted())
4711        return true;
4712      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4713                                 PDiag()) != AR_accessible)
4714        return true;
4715
4716      // -- for a move constructor, a [non-static data member] with a type that
4717      //    does not have a move constructor and is not trivially copyable.
4718      // If the field isn't a record, it's always trivially copyable.
4719      // A moving constructor could be a copy constructor instead.
4720      if (!FieldCtor->isMoveConstructor() &&
4721          !FieldRecord->isTriviallyCopyable())
4722        return true;
4723    }
4724  }
4725
4726  return false;
4727}
4728
4729bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4730  CXXRecordDecl *RD = MD->getParent();
4731  assert(!RD->isDependentType() && "do deletion after instantiation");
4732  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4733    return false;
4734
4735  SourceLocation Loc = MD->getLocation();
4736
4737  // Do access control from the constructor
4738  ContextRAII MethodContext(*this, MD);
4739
4740  bool Union = RD->isUnion();
4741
4742  // We do this because we should never actually use an anonymous
4743  // union's constructor.
4744  if (Union && RD->isAnonymousStructOrUnion())
4745    return false;
4746
4747  // C++0x [class.copy]/20
4748  //    A defaulted [move] assignment operator for class X is defined as deleted
4749  //    if X has:
4750
4751  //    -- for the move constructor, [...] any direct or indirect virtual base
4752  //       class.
4753  if (RD->getNumVBases() != 0)
4754    return true;
4755
4756  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4757                                          BE = RD->bases_end();
4758       BI != BE; ++BI) {
4759
4760    QualType BaseType = BI->getType();
4761    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4762    assert(BaseDecl && "base isn't a CXXRecordDecl");
4763
4764    // -- a [direct base class] B that cannot be [moved] because overload
4765    //    resolution, as applied to B's [move] assignment operator, results in
4766    //    an ambiguity or a function that is deleted or inaccessible from the
4767    //    assignment operator
4768    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4769    if (!MoveOper || MoveOper->isDeleted())
4770      return true;
4771    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4772      return true;
4773
4774    // -- for the move assignment operator, a [direct base class] with a type
4775    //    that does not have a move assignment operator and is not trivially
4776    //    copyable.
4777    if (!MoveOper->isMoveAssignmentOperator() &&
4778        !BaseDecl->isTriviallyCopyable())
4779      return true;
4780  }
4781
4782  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4783                                     FE = RD->field_end();
4784       FI != FE; ++FI) {
4785    QualType FieldType = Context.getBaseElementType(FI->getType());
4786
4787    // -- a non-static data member of reference type
4788    if (FieldType->isReferenceType())
4789      return true;
4790
4791    // -- a non-static data member of const non-class type (or array thereof)
4792    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4793      return true;
4794
4795    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4796
4797    if (FieldRecord) {
4798      // This is an anonymous union
4799      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4800        // Anonymous unions inside unions do not variant members create
4801        if (!Union) {
4802          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4803                                             UE = FieldRecord->field_end();
4804               UI != UE; ++UI) {
4805            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4806            CXXRecordDecl *UnionFieldRecord =
4807              UnionFieldType->getAsCXXRecordDecl();
4808
4809            // -- a variant member with a non-trivial [move] assignment operator
4810            //    and X is a union-like class
4811            if (UnionFieldRecord &&
4812                !UnionFieldRecord->hasTrivialMoveAssignment())
4813              return true;
4814          }
4815        }
4816
4817        // Don't try to initalize an anonymous union
4818        continue;
4819      // -- a variant member with a non-trivial [move] assignment operator
4820      //    and X is a union-like class
4821      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4822          return true;
4823      }
4824
4825      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4826      if (!MoveOper || MoveOper->isDeleted())
4827        return true;
4828      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4829        return true;
4830
4831      // -- for the move assignment operator, a [non-static data member] with a
4832      //    type that does not have a move assignment operator and is not
4833      //    trivially copyable.
4834      if (!MoveOper->isMoveAssignmentOperator() &&
4835          !FieldRecord->isTriviallyCopyable())
4836        return true;
4837    }
4838  }
4839
4840  return false;
4841}
4842
4843bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4844  CXXRecordDecl *RD = DD->getParent();
4845  assert(!RD->isDependentType() && "do deletion after instantiation");
4846  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4847    return false;
4848
4849  SourceLocation Loc = DD->getLocation();
4850
4851  // Do access control from the destructor
4852  ContextRAII CtorContext(*this, DD);
4853
4854  bool Union = RD->isUnion();
4855
4856  // We do this because we should never actually use an anonymous
4857  // union's destructor.
4858  if (Union && RD->isAnonymousStructOrUnion())
4859    return false;
4860
4861  // C++0x [class.dtor]p5
4862  //    A defaulted destructor for a class X is defined as deleted if:
4863  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4864                                          BE = RD->bases_end();
4865       BI != BE; ++BI) {
4866    // We'll handle this one later
4867    if (BI->isVirtual())
4868      continue;
4869
4870    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4871    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4872    assert(BaseDtor && "base has no destructor");
4873
4874    // -- any direct or virtual base class has a deleted destructor or
4875    //    a destructor that is inaccessible from the defaulted destructor
4876    if (BaseDtor->isDeleted())
4877      return true;
4878    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4879        AR_accessible)
4880      return true;
4881  }
4882
4883  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4884                                          BE = RD->vbases_end();
4885       BI != BE; ++BI) {
4886    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4887    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4888    assert(BaseDtor && "base has no destructor");
4889
4890    // -- any direct or virtual base class has a deleted destructor or
4891    //    a destructor that is inaccessible from the defaulted destructor
4892    if (BaseDtor->isDeleted())
4893      return true;
4894    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4895        AR_accessible)
4896      return true;
4897  }
4898
4899  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4900                                     FE = RD->field_end();
4901       FI != FE; ++FI) {
4902    QualType FieldType = Context.getBaseElementType(FI->getType());
4903    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4904    if (FieldRecord) {
4905      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4906         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4907                                            UE = FieldRecord->field_end();
4908              UI != UE; ++UI) {
4909           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4910           CXXRecordDecl *UnionFieldRecord =
4911             UnionFieldType->getAsCXXRecordDecl();
4912
4913           // -- X is a union-like class that has a variant member with a non-
4914           //    trivial destructor.
4915           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4916             return true;
4917         }
4918      // Technically we are supposed to do this next check unconditionally.
4919      // But that makes absolutely no sense.
4920      } else {
4921        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4922
4923        // -- any of the non-static data members has class type M (or array
4924        //    thereof) and M has a deleted destructor or a destructor that is
4925        //    inaccessible from the defaulted destructor
4926        if (FieldDtor->isDeleted())
4927          return true;
4928        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4929          AR_accessible)
4930        return true;
4931
4932        // -- X is a union-like class that has a variant member with a non-
4933        //    trivial destructor.
4934        if (Union && !FieldDtor->isTrivial())
4935          return true;
4936      }
4937    }
4938  }
4939
4940  if (DD->isVirtual()) {
4941    FunctionDecl *OperatorDelete = 0;
4942    DeclarationName Name =
4943      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4944    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4945          false))
4946      return true;
4947  }
4948
4949
4950  return false;
4951}
4952
4953/// \brief Data used with FindHiddenVirtualMethod
4954namespace {
4955  struct FindHiddenVirtualMethodData {
4956    Sema *S;
4957    CXXMethodDecl *Method;
4958    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4959    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4960  };
4961}
4962
4963/// \brief Member lookup function that determines whether a given C++
4964/// method overloads virtual methods in a base class without overriding any,
4965/// to be used with CXXRecordDecl::lookupInBases().
4966static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4967                                    CXXBasePath &Path,
4968                                    void *UserData) {
4969  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4970
4971  FindHiddenVirtualMethodData &Data
4972    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4973
4974  DeclarationName Name = Data.Method->getDeclName();
4975  assert(Name.getNameKind() == DeclarationName::Identifier);
4976
4977  bool foundSameNameMethod = false;
4978  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4979  for (Path.Decls = BaseRecord->lookup(Name);
4980       Path.Decls.first != Path.Decls.second;
4981       ++Path.Decls.first) {
4982    NamedDecl *D = *Path.Decls.first;
4983    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4984      MD = MD->getCanonicalDecl();
4985      foundSameNameMethod = true;
4986      // Interested only in hidden virtual methods.
4987      if (!MD->isVirtual())
4988        continue;
4989      // If the method we are checking overrides a method from its base
4990      // don't warn about the other overloaded methods.
4991      if (!Data.S->IsOverload(Data.Method, MD, false))
4992        return true;
4993      // Collect the overload only if its hidden.
4994      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4995        overloadedMethods.push_back(MD);
4996    }
4997  }
4998
4999  if (foundSameNameMethod)
5000    Data.OverloadedMethods.append(overloadedMethods.begin(),
5001                                   overloadedMethods.end());
5002  return foundSameNameMethod;
5003}
5004
5005/// \brief See if a method overloads virtual methods in a base class without
5006/// overriding any.
5007void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5008  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5009                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5010    return;
5011  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5012    return;
5013
5014  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5015                     /*bool RecordPaths=*/false,
5016                     /*bool DetectVirtual=*/false);
5017  FindHiddenVirtualMethodData Data;
5018  Data.Method = MD;
5019  Data.S = this;
5020
5021  // Keep the base methods that were overriden or introduced in the subclass
5022  // by 'using' in a set. A base method not in this set is hidden.
5023  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5024       res.first != res.second; ++res.first) {
5025    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5026      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5027                                          E = MD->end_overridden_methods();
5028           I != E; ++I)
5029        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5030    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5031      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5032        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5033  }
5034
5035  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5036      !Data.OverloadedMethods.empty()) {
5037    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5038      << MD << (Data.OverloadedMethods.size() > 1);
5039
5040    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5041      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5042      Diag(overloadedMD->getLocation(),
5043           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5044    }
5045  }
5046}
5047
5048void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5049                                             Decl *TagDecl,
5050                                             SourceLocation LBrac,
5051                                             SourceLocation RBrac,
5052                                             AttributeList *AttrList) {
5053  if (!TagDecl)
5054    return;
5055
5056  AdjustDeclIfTemplate(TagDecl);
5057
5058  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5059              // strict aliasing violation!
5060              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5061              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5062
5063  CheckCompletedCXXClass(
5064                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5065}
5066
5067/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5068/// special functions, such as the default constructor, copy
5069/// constructor, or destructor, to the given C++ class (C++
5070/// [special]p1).  This routine can only be executed just before the
5071/// definition of the class is complete.
5072void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5073  if (!ClassDecl->hasUserDeclaredConstructor())
5074    ++ASTContext::NumImplicitDefaultConstructors;
5075
5076  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5077    ++ASTContext::NumImplicitCopyConstructors;
5078
5079  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5080    ++ASTContext::NumImplicitCopyAssignmentOperators;
5081
5082    // If we have a dynamic class, then the copy assignment operator may be
5083    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5084    // it shows up in the right place in the vtable and that we diagnose
5085    // problems with the implicit exception specification.
5086    if (ClassDecl->isDynamicClass())
5087      DeclareImplicitCopyAssignment(ClassDecl);
5088  }
5089
5090  if (!ClassDecl->hasUserDeclaredDestructor()) {
5091    ++ASTContext::NumImplicitDestructors;
5092
5093    // If we have a dynamic class, then the destructor may be virtual, so we
5094    // have to declare the destructor immediately. This ensures that, e.g., it
5095    // shows up in the right place in the vtable and that we diagnose problems
5096    // with the implicit exception specification.
5097    if (ClassDecl->isDynamicClass())
5098      DeclareImplicitDestructor(ClassDecl);
5099  }
5100}
5101
5102void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5103  if (!D)
5104    return;
5105
5106  int NumParamList = D->getNumTemplateParameterLists();
5107  for (int i = 0; i < NumParamList; i++) {
5108    TemplateParameterList* Params = D->getTemplateParameterList(i);
5109    for (TemplateParameterList::iterator Param = Params->begin(),
5110                                      ParamEnd = Params->end();
5111          Param != ParamEnd; ++Param) {
5112      NamedDecl *Named = cast<NamedDecl>(*Param);
5113      if (Named->getDeclName()) {
5114        S->AddDecl(Named);
5115        IdResolver.AddDecl(Named);
5116      }
5117    }
5118  }
5119}
5120
5121void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5122  if (!D)
5123    return;
5124
5125  TemplateParameterList *Params = 0;
5126  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5127    Params = Template->getTemplateParameters();
5128  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5129           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5130    Params = PartialSpec->getTemplateParameters();
5131  else
5132    return;
5133
5134  for (TemplateParameterList::iterator Param = Params->begin(),
5135                                    ParamEnd = Params->end();
5136       Param != ParamEnd; ++Param) {
5137    NamedDecl *Named = cast<NamedDecl>(*Param);
5138    if (Named->getDeclName()) {
5139      S->AddDecl(Named);
5140      IdResolver.AddDecl(Named);
5141    }
5142  }
5143}
5144
5145void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5146  if (!RecordD) return;
5147  AdjustDeclIfTemplate(RecordD);
5148  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5149  PushDeclContext(S, Record);
5150}
5151
5152void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5153  if (!RecordD) return;
5154  PopDeclContext();
5155}
5156
5157/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5158/// parsing a top-level (non-nested) C++ class, and we are now
5159/// parsing those parts of the given Method declaration that could
5160/// not be parsed earlier (C++ [class.mem]p2), such as default
5161/// arguments. This action should enter the scope of the given
5162/// Method declaration as if we had just parsed the qualified method
5163/// name. However, it should not bring the parameters into scope;
5164/// that will be performed by ActOnDelayedCXXMethodParameter.
5165void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5166}
5167
5168/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5169/// C++ method declaration. We're (re-)introducing the given
5170/// function parameter into scope for use in parsing later parts of
5171/// the method declaration. For example, we could see an
5172/// ActOnParamDefaultArgument event for this parameter.
5173void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5174  if (!ParamD)
5175    return;
5176
5177  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5178
5179  // If this parameter has an unparsed default argument, clear it out
5180  // to make way for the parsed default argument.
5181  if (Param->hasUnparsedDefaultArg())
5182    Param->setDefaultArg(0);
5183
5184  S->AddDecl(Param);
5185  if (Param->getDeclName())
5186    IdResolver.AddDecl(Param);
5187}
5188
5189/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5190/// processing the delayed method declaration for Method. The method
5191/// declaration is now considered finished. There may be a separate
5192/// ActOnStartOfFunctionDef action later (not necessarily
5193/// immediately!) for this method, if it was also defined inside the
5194/// class body.
5195void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5196  if (!MethodD)
5197    return;
5198
5199  AdjustDeclIfTemplate(MethodD);
5200
5201  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5202
5203  // Now that we have our default arguments, check the constructor
5204  // again. It could produce additional diagnostics or affect whether
5205  // the class has implicitly-declared destructors, among other
5206  // things.
5207  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5208    CheckConstructor(Constructor);
5209
5210  // Check the default arguments, which we may have added.
5211  if (!Method->isInvalidDecl())
5212    CheckCXXDefaultArguments(Method);
5213}
5214
5215/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5216/// the well-formedness of the constructor declarator @p D with type @p
5217/// R. If there are any errors in the declarator, this routine will
5218/// emit diagnostics and set the invalid bit to true.  In any case, the type
5219/// will be updated to reflect a well-formed type for the constructor and
5220/// returned.
5221QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5222                                          StorageClass &SC) {
5223  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5224
5225  // C++ [class.ctor]p3:
5226  //   A constructor shall not be virtual (10.3) or static (9.4). A
5227  //   constructor can be invoked for a const, volatile or const
5228  //   volatile object. A constructor shall not be declared const,
5229  //   volatile, or const volatile (9.3.2).
5230  if (isVirtual) {
5231    if (!D.isInvalidType())
5232      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5233        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5234        << SourceRange(D.getIdentifierLoc());
5235    D.setInvalidType();
5236  }
5237  if (SC == SC_Static) {
5238    if (!D.isInvalidType())
5239      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5240        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5241        << SourceRange(D.getIdentifierLoc());
5242    D.setInvalidType();
5243    SC = SC_None;
5244  }
5245
5246  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5247  if (FTI.TypeQuals != 0) {
5248    if (FTI.TypeQuals & Qualifiers::Const)
5249      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5250        << "const" << SourceRange(D.getIdentifierLoc());
5251    if (FTI.TypeQuals & Qualifiers::Volatile)
5252      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5253        << "volatile" << SourceRange(D.getIdentifierLoc());
5254    if (FTI.TypeQuals & Qualifiers::Restrict)
5255      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5256        << "restrict" << SourceRange(D.getIdentifierLoc());
5257    D.setInvalidType();
5258  }
5259
5260  // C++0x [class.ctor]p4:
5261  //   A constructor shall not be declared with a ref-qualifier.
5262  if (FTI.hasRefQualifier()) {
5263    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5264      << FTI.RefQualifierIsLValueRef
5265      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5266    D.setInvalidType();
5267  }
5268
5269  // Rebuild the function type "R" without any type qualifiers (in
5270  // case any of the errors above fired) and with "void" as the
5271  // return type, since constructors don't have return types.
5272  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5273  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5274    return R;
5275
5276  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5277  EPI.TypeQuals = 0;
5278  EPI.RefQualifier = RQ_None;
5279
5280  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5281                                 Proto->getNumArgs(), EPI);
5282}
5283
5284/// CheckConstructor - Checks a fully-formed constructor for
5285/// well-formedness, issuing any diagnostics required. Returns true if
5286/// the constructor declarator is invalid.
5287void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5288  CXXRecordDecl *ClassDecl
5289    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5290  if (!ClassDecl)
5291    return Constructor->setInvalidDecl();
5292
5293  // C++ [class.copy]p3:
5294  //   A declaration of a constructor for a class X is ill-formed if
5295  //   its first parameter is of type (optionally cv-qualified) X and
5296  //   either there are no other parameters or else all other
5297  //   parameters have default arguments.
5298  if (!Constructor->isInvalidDecl() &&
5299      ((Constructor->getNumParams() == 1) ||
5300       (Constructor->getNumParams() > 1 &&
5301        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5302      Constructor->getTemplateSpecializationKind()
5303                                              != TSK_ImplicitInstantiation) {
5304    QualType ParamType = Constructor->getParamDecl(0)->getType();
5305    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5306    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5307      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5308      const char *ConstRef
5309        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5310                                                        : " const &";
5311      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5312        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5313
5314      // FIXME: Rather that making the constructor invalid, we should endeavor
5315      // to fix the type.
5316      Constructor->setInvalidDecl();
5317    }
5318  }
5319}
5320
5321/// CheckDestructor - Checks a fully-formed destructor definition for
5322/// well-formedness, issuing any diagnostics required.  Returns true
5323/// on error.
5324bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5325  CXXRecordDecl *RD = Destructor->getParent();
5326
5327  if (Destructor->isVirtual()) {
5328    SourceLocation Loc;
5329
5330    if (!Destructor->isImplicit())
5331      Loc = Destructor->getLocation();
5332    else
5333      Loc = RD->getLocation();
5334
5335    // If we have a virtual destructor, look up the deallocation function
5336    FunctionDecl *OperatorDelete = 0;
5337    DeclarationName Name =
5338    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5339    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5340      return true;
5341
5342    MarkDeclarationReferenced(Loc, OperatorDelete);
5343
5344    Destructor->setOperatorDelete(OperatorDelete);
5345  }
5346
5347  return false;
5348}
5349
5350static inline bool
5351FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5352  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5353          FTI.ArgInfo[0].Param &&
5354          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5355}
5356
5357/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5358/// the well-formednes of the destructor declarator @p D with type @p
5359/// R. If there are any errors in the declarator, this routine will
5360/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5361/// will be updated to reflect a well-formed type for the destructor and
5362/// returned.
5363QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5364                                         StorageClass& SC) {
5365  // C++ [class.dtor]p1:
5366  //   [...] A typedef-name that names a class is a class-name
5367  //   (7.1.3); however, a typedef-name that names a class shall not
5368  //   be used as the identifier in the declarator for a destructor
5369  //   declaration.
5370  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5371  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5372    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5373      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5374  else if (const TemplateSpecializationType *TST =
5375             DeclaratorType->getAs<TemplateSpecializationType>())
5376    if (TST->isTypeAlias())
5377      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5378        << DeclaratorType << 1;
5379
5380  // C++ [class.dtor]p2:
5381  //   A destructor is used to destroy objects of its class type. A
5382  //   destructor takes no parameters, and no return type can be
5383  //   specified for it (not even void). The address of a destructor
5384  //   shall not be taken. A destructor shall not be static. A
5385  //   destructor can be invoked for a const, volatile or const
5386  //   volatile object. A destructor shall not be declared const,
5387  //   volatile or const volatile (9.3.2).
5388  if (SC == SC_Static) {
5389    if (!D.isInvalidType())
5390      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5391        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5392        << SourceRange(D.getIdentifierLoc())
5393        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5394
5395    SC = SC_None;
5396  }
5397  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5398    // Destructors don't have return types, but the parser will
5399    // happily parse something like:
5400    //
5401    //   class X {
5402    //     float ~X();
5403    //   };
5404    //
5405    // The return type will be eliminated later.
5406    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5407      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5408      << SourceRange(D.getIdentifierLoc());
5409  }
5410
5411  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5412  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5413    if (FTI.TypeQuals & Qualifiers::Const)
5414      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5415        << "const" << SourceRange(D.getIdentifierLoc());
5416    if (FTI.TypeQuals & Qualifiers::Volatile)
5417      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5418        << "volatile" << SourceRange(D.getIdentifierLoc());
5419    if (FTI.TypeQuals & Qualifiers::Restrict)
5420      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5421        << "restrict" << SourceRange(D.getIdentifierLoc());
5422    D.setInvalidType();
5423  }
5424
5425  // C++0x [class.dtor]p2:
5426  //   A destructor shall not be declared with a ref-qualifier.
5427  if (FTI.hasRefQualifier()) {
5428    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5429      << FTI.RefQualifierIsLValueRef
5430      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5431    D.setInvalidType();
5432  }
5433
5434  // Make sure we don't have any parameters.
5435  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5436    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5437
5438    // Delete the parameters.
5439    FTI.freeArgs();
5440    D.setInvalidType();
5441  }
5442
5443  // Make sure the destructor isn't variadic.
5444  if (FTI.isVariadic) {
5445    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5446    D.setInvalidType();
5447  }
5448
5449  // Rebuild the function type "R" without any type qualifiers or
5450  // parameters (in case any of the errors above fired) and with
5451  // "void" as the return type, since destructors don't have return
5452  // types.
5453  if (!D.isInvalidType())
5454    return R;
5455
5456  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5457  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5458  EPI.Variadic = false;
5459  EPI.TypeQuals = 0;
5460  EPI.RefQualifier = RQ_None;
5461  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5462}
5463
5464/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5465/// well-formednes of the conversion function declarator @p D with
5466/// type @p R. If there are any errors in the declarator, this routine
5467/// will emit diagnostics and return true. Otherwise, it will return
5468/// false. Either way, the type @p R will be updated to reflect a
5469/// well-formed type for the conversion operator.
5470void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5471                                     StorageClass& SC) {
5472  // C++ [class.conv.fct]p1:
5473  //   Neither parameter types nor return type can be specified. The
5474  //   type of a conversion function (8.3.5) is "function taking no
5475  //   parameter returning conversion-type-id."
5476  if (SC == SC_Static) {
5477    if (!D.isInvalidType())
5478      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5479        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5480        << SourceRange(D.getIdentifierLoc());
5481    D.setInvalidType();
5482    SC = SC_None;
5483  }
5484
5485  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5486
5487  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5488    // Conversion functions don't have return types, but the parser will
5489    // happily parse something like:
5490    //
5491    //   class X {
5492    //     float operator bool();
5493    //   };
5494    //
5495    // The return type will be changed later anyway.
5496    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5497      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5498      << SourceRange(D.getIdentifierLoc());
5499    D.setInvalidType();
5500  }
5501
5502  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5503
5504  // Make sure we don't have any parameters.
5505  if (Proto->getNumArgs() > 0) {
5506    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5507
5508    // Delete the parameters.
5509    D.getFunctionTypeInfo().freeArgs();
5510    D.setInvalidType();
5511  } else if (Proto->isVariadic()) {
5512    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5513    D.setInvalidType();
5514  }
5515
5516  // Diagnose "&operator bool()" and other such nonsense.  This
5517  // is actually a gcc extension which we don't support.
5518  if (Proto->getResultType() != ConvType) {
5519    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5520      << Proto->getResultType();
5521    D.setInvalidType();
5522    ConvType = Proto->getResultType();
5523  }
5524
5525  // C++ [class.conv.fct]p4:
5526  //   The conversion-type-id shall not represent a function type nor
5527  //   an array type.
5528  if (ConvType->isArrayType()) {
5529    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5530    ConvType = Context.getPointerType(ConvType);
5531    D.setInvalidType();
5532  } else if (ConvType->isFunctionType()) {
5533    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5534    ConvType = Context.getPointerType(ConvType);
5535    D.setInvalidType();
5536  }
5537
5538  // Rebuild the function type "R" without any parameters (in case any
5539  // of the errors above fired) and with the conversion type as the
5540  // return type.
5541  if (D.isInvalidType())
5542    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5543
5544  // C++0x explicit conversion operators.
5545  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
5546    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5547         diag::warn_explicit_conversion_functions)
5548      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5549}
5550
5551/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5552/// the declaration of the given C++ conversion function. This routine
5553/// is responsible for recording the conversion function in the C++
5554/// class, if possible.
5555Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5556  assert(Conversion && "Expected to receive a conversion function declaration");
5557
5558  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5559
5560  // Make sure we aren't redeclaring the conversion function.
5561  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5562
5563  // C++ [class.conv.fct]p1:
5564  //   [...] A conversion function is never used to convert a
5565  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5566  //   same object type (or a reference to it), to a (possibly
5567  //   cv-qualified) base class of that type (or a reference to it),
5568  //   or to (possibly cv-qualified) void.
5569  // FIXME: Suppress this warning if the conversion function ends up being a
5570  // virtual function that overrides a virtual function in a base class.
5571  QualType ClassType
5572    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5573  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5574    ConvType = ConvTypeRef->getPointeeType();
5575  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5576      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5577    /* Suppress diagnostics for instantiations. */;
5578  else if (ConvType->isRecordType()) {
5579    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5580    if (ConvType == ClassType)
5581      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5582        << ClassType;
5583    else if (IsDerivedFrom(ClassType, ConvType))
5584      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5585        <<  ClassType << ConvType;
5586  } else if (ConvType->isVoidType()) {
5587    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5588      << ClassType << ConvType;
5589  }
5590
5591  if (FunctionTemplateDecl *ConversionTemplate
5592                                = Conversion->getDescribedFunctionTemplate())
5593    return ConversionTemplate;
5594
5595  return Conversion;
5596}
5597
5598//===----------------------------------------------------------------------===//
5599// Namespace Handling
5600//===----------------------------------------------------------------------===//
5601
5602
5603
5604/// ActOnStartNamespaceDef - This is called at the start of a namespace
5605/// definition.
5606Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5607                                   SourceLocation InlineLoc,
5608                                   SourceLocation NamespaceLoc,
5609                                   SourceLocation IdentLoc,
5610                                   IdentifierInfo *II,
5611                                   SourceLocation LBrace,
5612                                   AttributeList *AttrList) {
5613  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5614  // For anonymous namespace, take the location of the left brace.
5615  SourceLocation Loc = II ? IdentLoc : LBrace;
5616  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5617                                                 StartLoc, Loc, II);
5618  Namespc->setInline(InlineLoc.isValid());
5619
5620  Scope *DeclRegionScope = NamespcScope->getParent();
5621
5622  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5623
5624  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5625    PushNamespaceVisibilityAttr(Attr);
5626
5627  if (II) {
5628    // C++ [namespace.def]p2:
5629    //   The identifier in an original-namespace-definition shall not
5630    //   have been previously defined in the declarative region in
5631    //   which the original-namespace-definition appears. The
5632    //   identifier in an original-namespace-definition is the name of
5633    //   the namespace. Subsequently in that declarative region, it is
5634    //   treated as an original-namespace-name.
5635    //
5636    // Since namespace names are unique in their scope, and we don't
5637    // look through using directives, just look for any ordinary names.
5638
5639    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5640      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5641      Decl::IDNS_Namespace;
5642    NamedDecl *PrevDecl = 0;
5643    for (DeclContext::lookup_result R
5644            = CurContext->getRedeclContext()->lookup(II);
5645         R.first != R.second; ++R.first) {
5646      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5647        PrevDecl = *R.first;
5648        break;
5649      }
5650    }
5651
5652    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5653      // This is an extended namespace definition.
5654      if (Namespc->isInline() != OrigNS->isInline()) {
5655        // inline-ness must match
5656        if (OrigNS->isInline()) {
5657          // The user probably just forgot the 'inline', so suggest that it
5658          // be added back.
5659          Diag(Namespc->getLocation(),
5660               diag::warn_inline_namespace_reopened_noninline)
5661            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5662        } else {
5663          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5664            << Namespc->isInline();
5665        }
5666        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5667
5668        // Recover by ignoring the new namespace's inline status.
5669        Namespc->setInline(OrigNS->isInline());
5670      }
5671
5672      // Attach this namespace decl to the chain of extended namespace
5673      // definitions.
5674      OrigNS->setNextNamespace(Namespc);
5675      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5676
5677      // Remove the previous declaration from the scope.
5678      if (DeclRegionScope->isDeclScope(OrigNS)) {
5679        IdResolver.RemoveDecl(OrigNS);
5680        DeclRegionScope->RemoveDecl(OrigNS);
5681      }
5682    } else if (PrevDecl) {
5683      // This is an invalid name redefinition.
5684      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5685       << Namespc->getDeclName();
5686      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5687      Namespc->setInvalidDecl();
5688      // Continue on to push Namespc as current DeclContext and return it.
5689    } else if (II->isStr("std") &&
5690               CurContext->getRedeclContext()->isTranslationUnit()) {
5691      // This is the first "real" definition of the namespace "std", so update
5692      // our cache of the "std" namespace to point at this definition.
5693      if (NamespaceDecl *StdNS = getStdNamespace()) {
5694        // We had already defined a dummy namespace "std". Link this new
5695        // namespace definition to the dummy namespace "std".
5696        StdNS->setNextNamespace(Namespc);
5697        StdNS->setLocation(IdentLoc);
5698        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5699      }
5700
5701      // Make our StdNamespace cache point at the first real definition of the
5702      // "std" namespace.
5703      StdNamespace = Namespc;
5704
5705      // Add this instance of "std" to the set of known namespaces
5706      KnownNamespaces[Namespc] = false;
5707    } else if (!Namespc->isInline()) {
5708      // Since this is an "original" namespace, add it to the known set of
5709      // namespaces if it is not an inline namespace.
5710      KnownNamespaces[Namespc] = false;
5711    }
5712
5713    PushOnScopeChains(Namespc, DeclRegionScope);
5714  } else {
5715    // Anonymous namespaces.
5716    assert(Namespc->isAnonymousNamespace());
5717
5718    // Link the anonymous namespace into its parent.
5719    NamespaceDecl *PrevDecl;
5720    DeclContext *Parent = CurContext->getRedeclContext();
5721    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5722      PrevDecl = TU->getAnonymousNamespace();
5723      TU->setAnonymousNamespace(Namespc);
5724    } else {
5725      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5726      PrevDecl = ND->getAnonymousNamespace();
5727      ND->setAnonymousNamespace(Namespc);
5728    }
5729
5730    // Link the anonymous namespace with its previous declaration.
5731    if (PrevDecl) {
5732      assert(PrevDecl->isAnonymousNamespace());
5733      assert(!PrevDecl->getNextNamespace());
5734      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5735      PrevDecl->setNextNamespace(Namespc);
5736
5737      if (Namespc->isInline() != PrevDecl->isInline()) {
5738        // inline-ness must match
5739        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5740          << Namespc->isInline();
5741        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5742        Namespc->setInvalidDecl();
5743        // Recover by ignoring the new namespace's inline status.
5744        Namespc->setInline(PrevDecl->isInline());
5745      }
5746    }
5747
5748    CurContext->addDecl(Namespc);
5749
5750    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5751    //   behaves as if it were replaced by
5752    //     namespace unique { /* empty body */ }
5753    //     using namespace unique;
5754    //     namespace unique { namespace-body }
5755    //   where all occurrences of 'unique' in a translation unit are
5756    //   replaced by the same identifier and this identifier differs
5757    //   from all other identifiers in the entire program.
5758
5759    // We just create the namespace with an empty name and then add an
5760    // implicit using declaration, just like the standard suggests.
5761    //
5762    // CodeGen enforces the "universally unique" aspect by giving all
5763    // declarations semantically contained within an anonymous
5764    // namespace internal linkage.
5765
5766    if (!PrevDecl) {
5767      UsingDirectiveDecl* UD
5768        = UsingDirectiveDecl::Create(Context, CurContext,
5769                                     /* 'using' */ LBrace,
5770                                     /* 'namespace' */ SourceLocation(),
5771                                     /* qualifier */ NestedNameSpecifierLoc(),
5772                                     /* identifier */ SourceLocation(),
5773                                     Namespc,
5774                                     /* Ancestor */ CurContext);
5775      UD->setImplicit();
5776      CurContext->addDecl(UD);
5777    }
5778  }
5779
5780  // Although we could have an invalid decl (i.e. the namespace name is a
5781  // redefinition), push it as current DeclContext and try to continue parsing.
5782  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5783  // for the namespace has the declarations that showed up in that particular
5784  // namespace definition.
5785  PushDeclContext(NamespcScope, Namespc);
5786  return Namespc;
5787}
5788
5789/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5790/// is a namespace alias, returns the namespace it points to.
5791static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5792  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5793    return AD->getNamespace();
5794  return dyn_cast_or_null<NamespaceDecl>(D);
5795}
5796
5797/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5798/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5799void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5800  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5801  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5802  Namespc->setRBraceLoc(RBrace);
5803  PopDeclContext();
5804  if (Namespc->hasAttr<VisibilityAttr>())
5805    PopPragmaVisibility();
5806}
5807
5808CXXRecordDecl *Sema::getStdBadAlloc() const {
5809  return cast_or_null<CXXRecordDecl>(
5810                                  StdBadAlloc.get(Context.getExternalSource()));
5811}
5812
5813NamespaceDecl *Sema::getStdNamespace() const {
5814  return cast_or_null<NamespaceDecl>(
5815                                 StdNamespace.get(Context.getExternalSource()));
5816}
5817
5818/// \brief Retrieve the special "std" namespace, which may require us to
5819/// implicitly define the namespace.
5820NamespaceDecl *Sema::getOrCreateStdNamespace() {
5821  if (!StdNamespace) {
5822    // The "std" namespace has not yet been defined, so build one implicitly.
5823    StdNamespace = NamespaceDecl::Create(Context,
5824                                         Context.getTranslationUnitDecl(),
5825                                         SourceLocation(), SourceLocation(),
5826                                         &PP.getIdentifierTable().get("std"));
5827    getStdNamespace()->setImplicit(true);
5828  }
5829
5830  return getStdNamespace();
5831}
5832
5833/// \brief Determine whether a using statement is in a context where it will be
5834/// apply in all contexts.
5835static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5836  switch (CurContext->getDeclKind()) {
5837    case Decl::TranslationUnit:
5838      return true;
5839    case Decl::LinkageSpec:
5840      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5841    default:
5842      return false;
5843  }
5844}
5845
5846static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5847                                       CXXScopeSpec &SS,
5848                                       SourceLocation IdentLoc,
5849                                       IdentifierInfo *Ident) {
5850  R.clear();
5851  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5852                                               R.getLookupKind(), Sc, &SS, NULL,
5853                                               false, S.CTC_NoKeywords, NULL)) {
5854    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5855        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5856      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5857      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5858      if (DeclContext *DC = S.computeDeclContext(SS, false))
5859        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5860          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5861          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5862      else
5863        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5864          << Ident << CorrectedQuotedStr
5865          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5866
5867      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5868           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5869
5870      Ident = Corrected.getCorrectionAsIdentifierInfo();
5871      R.addDecl(Corrected.getCorrectionDecl());
5872      return true;
5873    }
5874    R.setLookupName(Ident);
5875  }
5876  return false;
5877}
5878
5879Decl *Sema::ActOnUsingDirective(Scope *S,
5880                                          SourceLocation UsingLoc,
5881                                          SourceLocation NamespcLoc,
5882                                          CXXScopeSpec &SS,
5883                                          SourceLocation IdentLoc,
5884                                          IdentifierInfo *NamespcName,
5885                                          AttributeList *AttrList) {
5886  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5887  assert(NamespcName && "Invalid NamespcName.");
5888  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5889
5890  // This can only happen along a recovery path.
5891  while (S->getFlags() & Scope::TemplateParamScope)
5892    S = S->getParent();
5893  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5894
5895  UsingDirectiveDecl *UDir = 0;
5896  NestedNameSpecifier *Qualifier = 0;
5897  if (SS.isSet())
5898    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5899
5900  // Lookup namespace name.
5901  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5902  LookupParsedName(R, S, &SS);
5903  if (R.isAmbiguous())
5904    return 0;
5905
5906  if (R.empty()) {
5907    R.clear();
5908    // Allow "using namespace std;" or "using namespace ::std;" even if
5909    // "std" hasn't been defined yet, for GCC compatibility.
5910    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5911        NamespcName->isStr("std")) {
5912      Diag(IdentLoc, diag::ext_using_undefined_std);
5913      R.addDecl(getOrCreateStdNamespace());
5914      R.resolveKind();
5915    }
5916    // Otherwise, attempt typo correction.
5917    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5918  }
5919
5920  if (!R.empty()) {
5921    NamedDecl *Named = R.getFoundDecl();
5922    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5923        && "expected namespace decl");
5924    // C++ [namespace.udir]p1:
5925    //   A using-directive specifies that the names in the nominated
5926    //   namespace can be used in the scope in which the
5927    //   using-directive appears after the using-directive. During
5928    //   unqualified name lookup (3.4.1), the names appear as if they
5929    //   were declared in the nearest enclosing namespace which
5930    //   contains both the using-directive and the nominated
5931    //   namespace. [Note: in this context, "contains" means "contains
5932    //   directly or indirectly". ]
5933
5934    // Find enclosing context containing both using-directive and
5935    // nominated namespace.
5936    NamespaceDecl *NS = getNamespaceDecl(Named);
5937    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5938    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5939      CommonAncestor = CommonAncestor->getParent();
5940
5941    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5942                                      SS.getWithLocInContext(Context),
5943                                      IdentLoc, Named, CommonAncestor);
5944
5945    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5946        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5947      Diag(IdentLoc, diag::warn_using_directive_in_header);
5948    }
5949
5950    PushUsingDirective(S, UDir);
5951  } else {
5952    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5953  }
5954
5955  // FIXME: We ignore attributes for now.
5956  return UDir;
5957}
5958
5959void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5960  // If scope has associated entity, then using directive is at namespace
5961  // or translation unit scope. We add UsingDirectiveDecls, into
5962  // it's lookup structure.
5963  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5964    Ctx->addDecl(UDir);
5965  else
5966    // Otherwise it is block-sope. using-directives will affect lookup
5967    // only to the end of scope.
5968    S->PushUsingDirective(UDir);
5969}
5970
5971
5972Decl *Sema::ActOnUsingDeclaration(Scope *S,
5973                                  AccessSpecifier AS,
5974                                  bool HasUsingKeyword,
5975                                  SourceLocation UsingLoc,
5976                                  CXXScopeSpec &SS,
5977                                  UnqualifiedId &Name,
5978                                  AttributeList *AttrList,
5979                                  bool IsTypeName,
5980                                  SourceLocation TypenameLoc) {
5981  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5982
5983  switch (Name.getKind()) {
5984  case UnqualifiedId::IK_ImplicitSelfParam:
5985  case UnqualifiedId::IK_Identifier:
5986  case UnqualifiedId::IK_OperatorFunctionId:
5987  case UnqualifiedId::IK_LiteralOperatorId:
5988  case UnqualifiedId::IK_ConversionFunctionId:
5989    break;
5990
5991  case UnqualifiedId::IK_ConstructorName:
5992  case UnqualifiedId::IK_ConstructorTemplateId:
5993    // C++0x inherited constructors.
5994    if (getLangOptions().CPlusPlus0x) break;
5995
5996    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5997      << SS.getRange();
5998    return 0;
5999
6000  case UnqualifiedId::IK_DestructorName:
6001    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6002      << SS.getRange();
6003    return 0;
6004
6005  case UnqualifiedId::IK_TemplateId:
6006    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6007      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6008    return 0;
6009  }
6010
6011  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6012  DeclarationName TargetName = TargetNameInfo.getName();
6013  if (!TargetName)
6014    return 0;
6015
6016  // Warn about using declarations.
6017  // TODO: store that the declaration was written without 'using' and
6018  // talk about access decls instead of using decls in the
6019  // diagnostics.
6020  if (!HasUsingKeyword) {
6021    UsingLoc = Name.getSourceRange().getBegin();
6022
6023    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6024      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6025  }
6026
6027  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6028      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6029    return 0;
6030
6031  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6032                                        TargetNameInfo, AttrList,
6033                                        /* IsInstantiation */ false,
6034                                        IsTypeName, TypenameLoc);
6035  if (UD)
6036    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6037
6038  return UD;
6039}
6040
6041/// \brief Determine whether a using declaration considers the given
6042/// declarations as "equivalent", e.g., if they are redeclarations of
6043/// the same entity or are both typedefs of the same type.
6044static bool
6045IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6046                         bool &SuppressRedeclaration) {
6047  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6048    SuppressRedeclaration = false;
6049    return true;
6050  }
6051
6052  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6053    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6054      SuppressRedeclaration = true;
6055      return Context.hasSameType(TD1->getUnderlyingType(),
6056                                 TD2->getUnderlyingType());
6057    }
6058
6059  return false;
6060}
6061
6062
6063/// Determines whether to create a using shadow decl for a particular
6064/// decl, given the set of decls existing prior to this using lookup.
6065bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6066                                const LookupResult &Previous) {
6067  // Diagnose finding a decl which is not from a base class of the
6068  // current class.  We do this now because there are cases where this
6069  // function will silently decide not to build a shadow decl, which
6070  // will pre-empt further diagnostics.
6071  //
6072  // We don't need to do this in C++0x because we do the check once on
6073  // the qualifier.
6074  //
6075  // FIXME: diagnose the following if we care enough:
6076  //   struct A { int foo; };
6077  //   struct B : A { using A::foo; };
6078  //   template <class T> struct C : A {};
6079  //   template <class T> struct D : C<T> { using B::foo; } // <---
6080  // This is invalid (during instantiation) in C++03 because B::foo
6081  // resolves to the using decl in B, which is not a base class of D<T>.
6082  // We can't diagnose it immediately because C<T> is an unknown
6083  // specialization.  The UsingShadowDecl in D<T> then points directly
6084  // to A::foo, which will look well-formed when we instantiate.
6085  // The right solution is to not collapse the shadow-decl chain.
6086  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6087    DeclContext *OrigDC = Orig->getDeclContext();
6088
6089    // Handle enums and anonymous structs.
6090    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6091    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6092    while (OrigRec->isAnonymousStructOrUnion())
6093      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6094
6095    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6096      if (OrigDC == CurContext) {
6097        Diag(Using->getLocation(),
6098             diag::err_using_decl_nested_name_specifier_is_current_class)
6099          << Using->getQualifierLoc().getSourceRange();
6100        Diag(Orig->getLocation(), diag::note_using_decl_target);
6101        return true;
6102      }
6103
6104      Diag(Using->getQualifierLoc().getBeginLoc(),
6105           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6106        << Using->getQualifier()
6107        << cast<CXXRecordDecl>(CurContext)
6108        << Using->getQualifierLoc().getSourceRange();
6109      Diag(Orig->getLocation(), diag::note_using_decl_target);
6110      return true;
6111    }
6112  }
6113
6114  if (Previous.empty()) return false;
6115
6116  NamedDecl *Target = Orig;
6117  if (isa<UsingShadowDecl>(Target))
6118    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6119
6120  // If the target happens to be one of the previous declarations, we
6121  // don't have a conflict.
6122  //
6123  // FIXME: but we might be increasing its access, in which case we
6124  // should redeclare it.
6125  NamedDecl *NonTag = 0, *Tag = 0;
6126  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6127         I != E; ++I) {
6128    NamedDecl *D = (*I)->getUnderlyingDecl();
6129    bool Result;
6130    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6131      return Result;
6132
6133    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6134  }
6135
6136  if (Target->isFunctionOrFunctionTemplate()) {
6137    FunctionDecl *FD;
6138    if (isa<FunctionTemplateDecl>(Target))
6139      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6140    else
6141      FD = cast<FunctionDecl>(Target);
6142
6143    NamedDecl *OldDecl = 0;
6144    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6145    case Ovl_Overload:
6146      return false;
6147
6148    case Ovl_NonFunction:
6149      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6150      break;
6151
6152    // We found a decl with the exact signature.
6153    case Ovl_Match:
6154      // If we're in a record, we want to hide the target, so we
6155      // return true (without a diagnostic) to tell the caller not to
6156      // build a shadow decl.
6157      if (CurContext->isRecord())
6158        return true;
6159
6160      // If we're not in a record, this is an error.
6161      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6162      break;
6163    }
6164
6165    Diag(Target->getLocation(), diag::note_using_decl_target);
6166    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6167    return true;
6168  }
6169
6170  // Target is not a function.
6171
6172  if (isa<TagDecl>(Target)) {
6173    // No conflict between a tag and a non-tag.
6174    if (!Tag) return false;
6175
6176    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6177    Diag(Target->getLocation(), diag::note_using_decl_target);
6178    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6179    return true;
6180  }
6181
6182  // No conflict between a tag and a non-tag.
6183  if (!NonTag) return false;
6184
6185  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6186  Diag(Target->getLocation(), diag::note_using_decl_target);
6187  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6188  return true;
6189}
6190
6191/// Builds a shadow declaration corresponding to a 'using' declaration.
6192UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6193                                            UsingDecl *UD,
6194                                            NamedDecl *Orig) {
6195
6196  // If we resolved to another shadow declaration, just coalesce them.
6197  NamedDecl *Target = Orig;
6198  if (isa<UsingShadowDecl>(Target)) {
6199    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6200    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6201  }
6202
6203  UsingShadowDecl *Shadow
6204    = UsingShadowDecl::Create(Context, CurContext,
6205                              UD->getLocation(), UD, Target);
6206  UD->addShadowDecl(Shadow);
6207
6208  Shadow->setAccess(UD->getAccess());
6209  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6210    Shadow->setInvalidDecl();
6211
6212  if (S)
6213    PushOnScopeChains(Shadow, S);
6214  else
6215    CurContext->addDecl(Shadow);
6216
6217
6218  return Shadow;
6219}
6220
6221/// Hides a using shadow declaration.  This is required by the current
6222/// using-decl implementation when a resolvable using declaration in a
6223/// class is followed by a declaration which would hide or override
6224/// one or more of the using decl's targets; for example:
6225///
6226///   struct Base { void foo(int); };
6227///   struct Derived : Base {
6228///     using Base::foo;
6229///     void foo(int);
6230///   };
6231///
6232/// The governing language is C++03 [namespace.udecl]p12:
6233///
6234///   When a using-declaration brings names from a base class into a
6235///   derived class scope, member functions in the derived class
6236///   override and/or hide member functions with the same name and
6237///   parameter types in a base class (rather than conflicting).
6238///
6239/// There are two ways to implement this:
6240///   (1) optimistically create shadow decls when they're not hidden
6241///       by existing declarations, or
6242///   (2) don't create any shadow decls (or at least don't make them
6243///       visible) until we've fully parsed/instantiated the class.
6244/// The problem with (1) is that we might have to retroactively remove
6245/// a shadow decl, which requires several O(n) operations because the
6246/// decl structures are (very reasonably) not designed for removal.
6247/// (2) avoids this but is very fiddly and phase-dependent.
6248void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6249  if (Shadow->getDeclName().getNameKind() ==
6250        DeclarationName::CXXConversionFunctionName)
6251    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6252
6253  // Remove it from the DeclContext...
6254  Shadow->getDeclContext()->removeDecl(Shadow);
6255
6256  // ...and the scope, if applicable...
6257  if (S) {
6258    S->RemoveDecl(Shadow);
6259    IdResolver.RemoveDecl(Shadow);
6260  }
6261
6262  // ...and the using decl.
6263  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6264
6265  // TODO: complain somehow if Shadow was used.  It shouldn't
6266  // be possible for this to happen, because...?
6267}
6268
6269/// Builds a using declaration.
6270///
6271/// \param IsInstantiation - Whether this call arises from an
6272///   instantiation of an unresolved using declaration.  We treat
6273///   the lookup differently for these declarations.
6274NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6275                                       SourceLocation UsingLoc,
6276                                       CXXScopeSpec &SS,
6277                                       const DeclarationNameInfo &NameInfo,
6278                                       AttributeList *AttrList,
6279                                       bool IsInstantiation,
6280                                       bool IsTypeName,
6281                                       SourceLocation TypenameLoc) {
6282  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6283  SourceLocation IdentLoc = NameInfo.getLoc();
6284  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6285
6286  // FIXME: We ignore attributes for now.
6287
6288  if (SS.isEmpty()) {
6289    Diag(IdentLoc, diag::err_using_requires_qualname);
6290    return 0;
6291  }
6292
6293  // Do the redeclaration lookup in the current scope.
6294  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6295                        ForRedeclaration);
6296  Previous.setHideTags(false);
6297  if (S) {
6298    LookupName(Previous, S);
6299
6300    // It is really dumb that we have to do this.
6301    LookupResult::Filter F = Previous.makeFilter();
6302    while (F.hasNext()) {
6303      NamedDecl *D = F.next();
6304      if (!isDeclInScope(D, CurContext, S))
6305        F.erase();
6306    }
6307    F.done();
6308  } else {
6309    assert(IsInstantiation && "no scope in non-instantiation");
6310    assert(CurContext->isRecord() && "scope not record in instantiation");
6311    LookupQualifiedName(Previous, CurContext);
6312  }
6313
6314  // Check for invalid redeclarations.
6315  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6316    return 0;
6317
6318  // Check for bad qualifiers.
6319  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6320    return 0;
6321
6322  DeclContext *LookupContext = computeDeclContext(SS);
6323  NamedDecl *D;
6324  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6325  if (!LookupContext) {
6326    if (IsTypeName) {
6327      // FIXME: not all declaration name kinds are legal here
6328      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6329                                              UsingLoc, TypenameLoc,
6330                                              QualifierLoc,
6331                                              IdentLoc, NameInfo.getName());
6332    } else {
6333      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6334                                           QualifierLoc, NameInfo);
6335    }
6336  } else {
6337    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6338                          NameInfo, IsTypeName);
6339  }
6340  D->setAccess(AS);
6341  CurContext->addDecl(D);
6342
6343  if (!LookupContext) return D;
6344  UsingDecl *UD = cast<UsingDecl>(D);
6345
6346  if (RequireCompleteDeclContext(SS, LookupContext)) {
6347    UD->setInvalidDecl();
6348    return UD;
6349  }
6350
6351  // Constructor inheriting using decls get special treatment.
6352  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6353    if (CheckInheritedConstructorUsingDecl(UD))
6354      UD->setInvalidDecl();
6355    return UD;
6356  }
6357
6358  // Otherwise, look up the target name.
6359
6360  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6361
6362  // Unlike most lookups, we don't always want to hide tag
6363  // declarations: tag names are visible through the using declaration
6364  // even if hidden by ordinary names, *except* in a dependent context
6365  // where it's important for the sanity of two-phase lookup.
6366  if (!IsInstantiation)
6367    R.setHideTags(false);
6368
6369  LookupQualifiedName(R, LookupContext);
6370
6371  if (R.empty()) {
6372    Diag(IdentLoc, diag::err_no_member)
6373      << NameInfo.getName() << LookupContext << SS.getRange();
6374    UD->setInvalidDecl();
6375    return UD;
6376  }
6377
6378  if (R.isAmbiguous()) {
6379    UD->setInvalidDecl();
6380    return UD;
6381  }
6382
6383  if (IsTypeName) {
6384    // If we asked for a typename and got a non-type decl, error out.
6385    if (!R.getAsSingle<TypeDecl>()) {
6386      Diag(IdentLoc, diag::err_using_typename_non_type);
6387      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6388        Diag((*I)->getUnderlyingDecl()->getLocation(),
6389             diag::note_using_decl_target);
6390      UD->setInvalidDecl();
6391      return UD;
6392    }
6393  } else {
6394    // If we asked for a non-typename and we got a type, error out,
6395    // but only if this is an instantiation of an unresolved using
6396    // decl.  Otherwise just silently find the type name.
6397    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6398      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6399      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6400      UD->setInvalidDecl();
6401      return UD;
6402    }
6403  }
6404
6405  // C++0x N2914 [namespace.udecl]p6:
6406  // A using-declaration shall not name a namespace.
6407  if (R.getAsSingle<NamespaceDecl>()) {
6408    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6409      << SS.getRange();
6410    UD->setInvalidDecl();
6411    return UD;
6412  }
6413
6414  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6415    if (!CheckUsingShadowDecl(UD, *I, Previous))
6416      BuildUsingShadowDecl(S, UD, *I);
6417  }
6418
6419  return UD;
6420}
6421
6422/// Additional checks for a using declaration referring to a constructor name.
6423bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6424  if (UD->isTypeName()) {
6425    // FIXME: Cannot specify typename when specifying constructor
6426    return true;
6427  }
6428
6429  const Type *SourceType = UD->getQualifier()->getAsType();
6430  assert(SourceType &&
6431         "Using decl naming constructor doesn't have type in scope spec.");
6432  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6433
6434  // Check whether the named type is a direct base class.
6435  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6436  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6437  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6438       BaseIt != BaseE; ++BaseIt) {
6439    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6440    if (CanonicalSourceType == BaseType)
6441      break;
6442  }
6443
6444  if (BaseIt == BaseE) {
6445    // Did not find SourceType in the bases.
6446    Diag(UD->getUsingLocation(),
6447         diag::err_using_decl_constructor_not_in_direct_base)
6448      << UD->getNameInfo().getSourceRange()
6449      << QualType(SourceType, 0) << TargetClass;
6450    return true;
6451  }
6452
6453  BaseIt->setInheritConstructors();
6454
6455  return false;
6456}
6457
6458/// Checks that the given using declaration is not an invalid
6459/// redeclaration.  Note that this is checking only for the using decl
6460/// itself, not for any ill-formedness among the UsingShadowDecls.
6461bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6462                                       bool isTypeName,
6463                                       const CXXScopeSpec &SS,
6464                                       SourceLocation NameLoc,
6465                                       const LookupResult &Prev) {
6466  // C++03 [namespace.udecl]p8:
6467  // C++0x [namespace.udecl]p10:
6468  //   A using-declaration is a declaration and can therefore be used
6469  //   repeatedly where (and only where) multiple declarations are
6470  //   allowed.
6471  //
6472  // That's in non-member contexts.
6473  if (!CurContext->getRedeclContext()->isRecord())
6474    return false;
6475
6476  NestedNameSpecifier *Qual
6477    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6478
6479  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6480    NamedDecl *D = *I;
6481
6482    bool DTypename;
6483    NestedNameSpecifier *DQual;
6484    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6485      DTypename = UD->isTypeName();
6486      DQual = UD->getQualifier();
6487    } else if (UnresolvedUsingValueDecl *UD
6488                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6489      DTypename = false;
6490      DQual = UD->getQualifier();
6491    } else if (UnresolvedUsingTypenameDecl *UD
6492                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6493      DTypename = true;
6494      DQual = UD->getQualifier();
6495    } else continue;
6496
6497    // using decls differ if one says 'typename' and the other doesn't.
6498    // FIXME: non-dependent using decls?
6499    if (isTypeName != DTypename) continue;
6500
6501    // using decls differ if they name different scopes (but note that
6502    // template instantiation can cause this check to trigger when it
6503    // didn't before instantiation).
6504    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6505        Context.getCanonicalNestedNameSpecifier(DQual))
6506      continue;
6507
6508    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6509    Diag(D->getLocation(), diag::note_using_decl) << 1;
6510    return true;
6511  }
6512
6513  return false;
6514}
6515
6516
6517/// Checks that the given nested-name qualifier used in a using decl
6518/// in the current context is appropriately related to the current
6519/// scope.  If an error is found, diagnoses it and returns true.
6520bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6521                                   const CXXScopeSpec &SS,
6522                                   SourceLocation NameLoc) {
6523  DeclContext *NamedContext = computeDeclContext(SS);
6524
6525  if (!CurContext->isRecord()) {
6526    // C++03 [namespace.udecl]p3:
6527    // C++0x [namespace.udecl]p8:
6528    //   A using-declaration for a class member shall be a member-declaration.
6529
6530    // If we weren't able to compute a valid scope, it must be a
6531    // dependent class scope.
6532    if (!NamedContext || NamedContext->isRecord()) {
6533      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6534        << SS.getRange();
6535      return true;
6536    }
6537
6538    // Otherwise, everything is known to be fine.
6539    return false;
6540  }
6541
6542  // The current scope is a record.
6543
6544  // If the named context is dependent, we can't decide much.
6545  if (!NamedContext) {
6546    // FIXME: in C++0x, we can diagnose if we can prove that the
6547    // nested-name-specifier does not refer to a base class, which is
6548    // still possible in some cases.
6549
6550    // Otherwise we have to conservatively report that things might be
6551    // okay.
6552    return false;
6553  }
6554
6555  if (!NamedContext->isRecord()) {
6556    // Ideally this would point at the last name in the specifier,
6557    // but we don't have that level of source info.
6558    Diag(SS.getRange().getBegin(),
6559         diag::err_using_decl_nested_name_specifier_is_not_class)
6560      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6561    return true;
6562  }
6563
6564  if (!NamedContext->isDependentContext() &&
6565      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6566    return true;
6567
6568  if (getLangOptions().CPlusPlus0x) {
6569    // C++0x [namespace.udecl]p3:
6570    //   In a using-declaration used as a member-declaration, the
6571    //   nested-name-specifier shall name a base class of the class
6572    //   being defined.
6573
6574    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6575                                 cast<CXXRecordDecl>(NamedContext))) {
6576      if (CurContext == NamedContext) {
6577        Diag(NameLoc,
6578             diag::err_using_decl_nested_name_specifier_is_current_class)
6579          << SS.getRange();
6580        return true;
6581      }
6582
6583      Diag(SS.getRange().getBegin(),
6584           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6585        << (NestedNameSpecifier*) SS.getScopeRep()
6586        << cast<CXXRecordDecl>(CurContext)
6587        << SS.getRange();
6588      return true;
6589    }
6590
6591    return false;
6592  }
6593
6594  // C++03 [namespace.udecl]p4:
6595  //   A using-declaration used as a member-declaration shall refer
6596  //   to a member of a base class of the class being defined [etc.].
6597
6598  // Salient point: SS doesn't have to name a base class as long as
6599  // lookup only finds members from base classes.  Therefore we can
6600  // diagnose here only if we can prove that that can't happen,
6601  // i.e. if the class hierarchies provably don't intersect.
6602
6603  // TODO: it would be nice if "definitely valid" results were cached
6604  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6605  // need to be repeated.
6606
6607  struct UserData {
6608    llvm::DenseSet<const CXXRecordDecl*> Bases;
6609
6610    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6611      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6612      Data->Bases.insert(Base);
6613      return true;
6614    }
6615
6616    bool hasDependentBases(const CXXRecordDecl *Class) {
6617      return !Class->forallBases(collect, this);
6618    }
6619
6620    /// Returns true if the base is dependent or is one of the
6621    /// accumulated base classes.
6622    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6623      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6624      return !Data->Bases.count(Base);
6625    }
6626
6627    bool mightShareBases(const CXXRecordDecl *Class) {
6628      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6629    }
6630  };
6631
6632  UserData Data;
6633
6634  // Returns false if we find a dependent base.
6635  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6636    return false;
6637
6638  // Returns false if the class has a dependent base or if it or one
6639  // of its bases is present in the base set of the current context.
6640  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6641    return false;
6642
6643  Diag(SS.getRange().getBegin(),
6644       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6645    << (NestedNameSpecifier*) SS.getScopeRep()
6646    << cast<CXXRecordDecl>(CurContext)
6647    << SS.getRange();
6648
6649  return true;
6650}
6651
6652Decl *Sema::ActOnAliasDeclaration(Scope *S,
6653                                  AccessSpecifier AS,
6654                                  MultiTemplateParamsArg TemplateParamLists,
6655                                  SourceLocation UsingLoc,
6656                                  UnqualifiedId &Name,
6657                                  TypeResult Type) {
6658  // Skip up to the relevant declaration scope.
6659  while (S->getFlags() & Scope::TemplateParamScope)
6660    S = S->getParent();
6661  assert((S->getFlags() & Scope::DeclScope) &&
6662         "got alias-declaration outside of declaration scope");
6663
6664  if (Type.isInvalid())
6665    return 0;
6666
6667  bool Invalid = false;
6668  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6669  TypeSourceInfo *TInfo = 0;
6670  GetTypeFromParser(Type.get(), &TInfo);
6671
6672  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6673    return 0;
6674
6675  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6676                                      UPPC_DeclarationType)) {
6677    Invalid = true;
6678    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6679                                             TInfo->getTypeLoc().getBeginLoc());
6680  }
6681
6682  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6683  LookupName(Previous, S);
6684
6685  // Warn about shadowing the name of a template parameter.
6686  if (Previous.isSingleResult() &&
6687      Previous.getFoundDecl()->isTemplateParameter()) {
6688    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
6689                                        Previous.getFoundDecl()))
6690      Invalid = true;
6691    Previous.clear();
6692  }
6693
6694  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6695         "name in alias declaration must be an identifier");
6696  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6697                                               Name.StartLocation,
6698                                               Name.Identifier, TInfo);
6699
6700  NewTD->setAccess(AS);
6701
6702  if (Invalid)
6703    NewTD->setInvalidDecl();
6704
6705  CheckTypedefForVariablyModifiedType(S, NewTD);
6706  Invalid |= NewTD->isInvalidDecl();
6707
6708  bool Redeclaration = false;
6709
6710  NamedDecl *NewND;
6711  if (TemplateParamLists.size()) {
6712    TypeAliasTemplateDecl *OldDecl = 0;
6713    TemplateParameterList *OldTemplateParams = 0;
6714
6715    if (TemplateParamLists.size() != 1) {
6716      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6717        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6718         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6719    }
6720    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6721
6722    // Only consider previous declarations in the same scope.
6723    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6724                         /*ExplicitInstantiationOrSpecialization*/false);
6725    if (!Previous.empty()) {
6726      Redeclaration = true;
6727
6728      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6729      if (!OldDecl && !Invalid) {
6730        Diag(UsingLoc, diag::err_redefinition_different_kind)
6731          << Name.Identifier;
6732
6733        NamedDecl *OldD = Previous.getRepresentativeDecl();
6734        if (OldD->getLocation().isValid())
6735          Diag(OldD->getLocation(), diag::note_previous_definition);
6736
6737        Invalid = true;
6738      }
6739
6740      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6741        if (TemplateParameterListsAreEqual(TemplateParams,
6742                                           OldDecl->getTemplateParameters(),
6743                                           /*Complain=*/true,
6744                                           TPL_TemplateMatch))
6745          OldTemplateParams = OldDecl->getTemplateParameters();
6746        else
6747          Invalid = true;
6748
6749        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6750        if (!Invalid &&
6751            !Context.hasSameType(OldTD->getUnderlyingType(),
6752                                 NewTD->getUnderlyingType())) {
6753          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6754          // but we can't reasonably accept it.
6755          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6756            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6757          if (OldTD->getLocation().isValid())
6758            Diag(OldTD->getLocation(), diag::note_previous_definition);
6759          Invalid = true;
6760        }
6761      }
6762    }
6763
6764    // Merge any previous default template arguments into our parameters,
6765    // and check the parameter list.
6766    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6767                                   TPC_TypeAliasTemplate))
6768      return 0;
6769
6770    TypeAliasTemplateDecl *NewDecl =
6771      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6772                                    Name.Identifier, TemplateParams,
6773                                    NewTD);
6774
6775    NewDecl->setAccess(AS);
6776
6777    if (Invalid)
6778      NewDecl->setInvalidDecl();
6779    else if (OldDecl)
6780      NewDecl->setPreviousDeclaration(OldDecl);
6781
6782    NewND = NewDecl;
6783  } else {
6784    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6785    NewND = NewTD;
6786  }
6787
6788  if (!Redeclaration)
6789    PushOnScopeChains(NewND, S);
6790
6791  return NewND;
6792}
6793
6794Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6795                                             SourceLocation NamespaceLoc,
6796                                             SourceLocation AliasLoc,
6797                                             IdentifierInfo *Alias,
6798                                             CXXScopeSpec &SS,
6799                                             SourceLocation IdentLoc,
6800                                             IdentifierInfo *Ident) {
6801
6802  // Lookup the namespace name.
6803  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6804  LookupParsedName(R, S, &SS);
6805
6806  // Check if we have a previous declaration with the same name.
6807  NamedDecl *PrevDecl
6808    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6809                       ForRedeclaration);
6810  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6811    PrevDecl = 0;
6812
6813  if (PrevDecl) {
6814    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6815      // We already have an alias with the same name that points to the same
6816      // namespace, so don't create a new one.
6817      // FIXME: At some point, we'll want to create the (redundant)
6818      // declaration to maintain better source information.
6819      if (!R.isAmbiguous() && !R.empty() &&
6820          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6821        return 0;
6822    }
6823
6824    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6825      diag::err_redefinition_different_kind;
6826    Diag(AliasLoc, DiagID) << Alias;
6827    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6828    return 0;
6829  }
6830
6831  if (R.isAmbiguous())
6832    return 0;
6833
6834  if (R.empty()) {
6835    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6836      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6837      return 0;
6838    }
6839  }
6840
6841  NamespaceAliasDecl *AliasDecl =
6842    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6843                               Alias, SS.getWithLocInContext(Context),
6844                               IdentLoc, R.getFoundDecl());
6845
6846  PushOnScopeChains(AliasDecl, S);
6847  return AliasDecl;
6848}
6849
6850namespace {
6851  /// \brief Scoped object used to handle the state changes required in Sema
6852  /// to implicitly define the body of a C++ member function;
6853  class ImplicitlyDefinedFunctionScope {
6854    Sema &S;
6855    Sema::ContextRAII SavedContext;
6856
6857  public:
6858    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6859      : S(S), SavedContext(S, Method)
6860    {
6861      S.PushFunctionScope();
6862      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6863    }
6864
6865    ~ImplicitlyDefinedFunctionScope() {
6866      S.PopExpressionEvaluationContext();
6867      S.PopFunctionOrBlockScope();
6868    }
6869  };
6870}
6871
6872Sema::ImplicitExceptionSpecification
6873Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6874  // C++ [except.spec]p14:
6875  //   An implicitly declared special member function (Clause 12) shall have an
6876  //   exception-specification. [...]
6877  ImplicitExceptionSpecification ExceptSpec(Context);
6878  if (ClassDecl->isInvalidDecl())
6879    return ExceptSpec;
6880
6881  // Direct base-class constructors.
6882  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6883                                       BEnd = ClassDecl->bases_end();
6884       B != BEnd; ++B) {
6885    if (B->isVirtual()) // Handled below.
6886      continue;
6887
6888    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6889      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6890      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6891      // If this is a deleted function, add it anyway. This might be conformant
6892      // with the standard. This might not. I'm not sure. It might not matter.
6893      if (Constructor)
6894        ExceptSpec.CalledDecl(Constructor);
6895    }
6896  }
6897
6898  // Virtual base-class constructors.
6899  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6900                                       BEnd = ClassDecl->vbases_end();
6901       B != BEnd; ++B) {
6902    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6903      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6904      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6905      // If this is a deleted function, add it anyway. This might be conformant
6906      // with the standard. This might not. I'm not sure. It might not matter.
6907      if (Constructor)
6908        ExceptSpec.CalledDecl(Constructor);
6909    }
6910  }
6911
6912  // Field constructors.
6913  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6914                               FEnd = ClassDecl->field_end();
6915       F != FEnd; ++F) {
6916    if (F->hasInClassInitializer()) {
6917      if (Expr *E = F->getInClassInitializer())
6918        ExceptSpec.CalledExpr(E);
6919      else if (!F->isInvalidDecl())
6920        ExceptSpec.SetDelayed();
6921    } else if (const RecordType *RecordTy
6922              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6923      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6924      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6925      // If this is a deleted function, add it anyway. This might be conformant
6926      // with the standard. This might not. I'm not sure. It might not matter.
6927      // In particular, the problem is that this function never gets called. It
6928      // might just be ill-formed because this function attempts to refer to
6929      // a deleted function here.
6930      if (Constructor)
6931        ExceptSpec.CalledDecl(Constructor);
6932    }
6933  }
6934
6935  return ExceptSpec;
6936}
6937
6938CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6939                                                     CXXRecordDecl *ClassDecl) {
6940  // C++ [class.ctor]p5:
6941  //   A default constructor for a class X is a constructor of class X
6942  //   that can be called without an argument. If there is no
6943  //   user-declared constructor for class X, a default constructor is
6944  //   implicitly declared. An implicitly-declared default constructor
6945  //   is an inline public member of its class.
6946  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6947         "Should not build implicit default constructor!");
6948
6949  ImplicitExceptionSpecification Spec =
6950    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6951  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6952
6953  // Create the actual constructor declaration.
6954  CanQualType ClassType
6955    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6956  SourceLocation ClassLoc = ClassDecl->getLocation();
6957  DeclarationName Name
6958    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6959  DeclarationNameInfo NameInfo(Name, ClassLoc);
6960  CXXConstructorDecl *DefaultCon
6961    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6962                                 Context.getFunctionType(Context.VoidTy,
6963                                                         0, 0, EPI),
6964                                 /*TInfo=*/0,
6965                                 /*isExplicit=*/false,
6966                                 /*isInline=*/true,
6967                                 /*isImplicitlyDeclared=*/true,
6968                                 // FIXME: apply the rules for definitions here
6969                                 /*isConstexpr=*/false);
6970  DefaultCon->setAccess(AS_public);
6971  DefaultCon->setDefaulted();
6972  DefaultCon->setImplicit();
6973  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6974
6975  // Note that we have declared this constructor.
6976  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6977
6978  if (Scope *S = getScopeForContext(ClassDecl))
6979    PushOnScopeChains(DefaultCon, S, false);
6980  ClassDecl->addDecl(DefaultCon);
6981
6982  if (ShouldDeleteDefaultConstructor(DefaultCon))
6983    DefaultCon->setDeletedAsWritten();
6984
6985  return DefaultCon;
6986}
6987
6988void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6989                                            CXXConstructorDecl *Constructor) {
6990  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6991          !Constructor->doesThisDeclarationHaveABody() &&
6992          !Constructor->isDeleted()) &&
6993    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6994
6995  CXXRecordDecl *ClassDecl = Constructor->getParent();
6996  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6997
6998  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6999  DiagnosticErrorTrap Trap(Diags);
7000  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7001      Trap.hasErrorOccurred()) {
7002    Diag(CurrentLocation, diag::note_member_synthesized_at)
7003      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7004    Constructor->setInvalidDecl();
7005    return;
7006  }
7007
7008  SourceLocation Loc = Constructor->getLocation();
7009  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7010
7011  Constructor->setUsed();
7012  MarkVTableUsed(CurrentLocation, ClassDecl);
7013
7014  if (ASTMutationListener *L = getASTMutationListener()) {
7015    L->CompletedImplicitDefinition(Constructor);
7016  }
7017}
7018
7019/// Get any existing defaulted default constructor for the given class. Do not
7020/// implicitly define one if it does not exist.
7021static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7022                                                             CXXRecordDecl *D) {
7023  ASTContext &Context = Self.Context;
7024  QualType ClassType = Context.getTypeDeclType(D);
7025  DeclarationName ConstructorName
7026    = Context.DeclarationNames.getCXXConstructorName(
7027                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7028
7029  DeclContext::lookup_const_iterator Con, ConEnd;
7030  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7031       Con != ConEnd; ++Con) {
7032    // A function template cannot be defaulted.
7033    if (isa<FunctionTemplateDecl>(*Con))
7034      continue;
7035
7036    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7037    if (Constructor->isDefaultConstructor())
7038      return Constructor->isDefaulted() ? Constructor : 0;
7039  }
7040  return 0;
7041}
7042
7043void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7044  if (!D) return;
7045  AdjustDeclIfTemplate(D);
7046
7047  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7048  CXXConstructorDecl *CtorDecl
7049    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7050
7051  if (!CtorDecl) return;
7052
7053  // Compute the exception specification for the default constructor.
7054  const FunctionProtoType *CtorTy =
7055    CtorDecl->getType()->castAs<FunctionProtoType>();
7056  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7057    ImplicitExceptionSpecification Spec =
7058      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7059    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7060    assert(EPI.ExceptionSpecType != EST_Delayed);
7061
7062    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7063  }
7064
7065  // If the default constructor is explicitly defaulted, checking the exception
7066  // specification is deferred until now.
7067  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7068      !ClassDecl->isDependentType())
7069    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7070}
7071
7072void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7073  // We start with an initial pass over the base classes to collect those that
7074  // inherit constructors from. If there are none, we can forgo all further
7075  // processing.
7076  typedef SmallVector<const RecordType *, 4> BasesVector;
7077  BasesVector BasesToInheritFrom;
7078  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7079                                          BaseE = ClassDecl->bases_end();
7080         BaseIt != BaseE; ++BaseIt) {
7081    if (BaseIt->getInheritConstructors()) {
7082      QualType Base = BaseIt->getType();
7083      if (Base->isDependentType()) {
7084        // If we inherit constructors from anything that is dependent, just
7085        // abort processing altogether. We'll get another chance for the
7086        // instantiations.
7087        return;
7088      }
7089      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7090    }
7091  }
7092  if (BasesToInheritFrom.empty())
7093    return;
7094
7095  // Now collect the constructors that we already have in the current class.
7096  // Those take precedence over inherited constructors.
7097  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7098  //   unless there is a user-declared constructor with the same signature in
7099  //   the class where the using-declaration appears.
7100  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7101  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7102                                    CtorE = ClassDecl->ctor_end();
7103       CtorIt != CtorE; ++CtorIt) {
7104    ExistingConstructors.insert(
7105        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7106  }
7107
7108  Scope *S = getScopeForContext(ClassDecl);
7109  DeclarationName CreatedCtorName =
7110      Context.DeclarationNames.getCXXConstructorName(
7111          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7112
7113  // Now comes the true work.
7114  // First, we keep a map from constructor types to the base that introduced
7115  // them. Needed for finding conflicting constructors. We also keep the
7116  // actually inserted declarations in there, for pretty diagnostics.
7117  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7118  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7119  ConstructorToSourceMap InheritedConstructors;
7120  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7121                             BaseE = BasesToInheritFrom.end();
7122       BaseIt != BaseE; ++BaseIt) {
7123    const RecordType *Base = *BaseIt;
7124    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7125    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7126    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7127                                      CtorE = BaseDecl->ctor_end();
7128         CtorIt != CtorE; ++CtorIt) {
7129      // Find the using declaration for inheriting this base's constructors.
7130      DeclarationName Name =
7131          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7132      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7133          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7134      SourceLocation UsingLoc = UD ? UD->getLocation() :
7135                                     ClassDecl->getLocation();
7136
7137      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7138      //   from the class X named in the using-declaration consists of actual
7139      //   constructors and notional constructors that result from the
7140      //   transformation of defaulted parameters as follows:
7141      //   - all non-template default constructors of X, and
7142      //   - for each non-template constructor of X that has at least one
7143      //     parameter with a default argument, the set of constructors that
7144      //     results from omitting any ellipsis parameter specification and
7145      //     successively omitting parameters with a default argument from the
7146      //     end of the parameter-type-list.
7147      CXXConstructorDecl *BaseCtor = *CtorIt;
7148      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7149      const FunctionProtoType *BaseCtorType =
7150          BaseCtor->getType()->getAs<FunctionProtoType>();
7151
7152      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7153                    maxParams = BaseCtor->getNumParams();
7154           params <= maxParams; ++params) {
7155        // Skip default constructors. They're never inherited.
7156        if (params == 0)
7157          continue;
7158        // Skip copy and move constructors for the same reason.
7159        if (CanBeCopyOrMove && params == 1)
7160          continue;
7161
7162        // Build up a function type for this particular constructor.
7163        // FIXME: The working paper does not consider that the exception spec
7164        // for the inheriting constructor might be larger than that of the
7165        // source. This code doesn't yet, either. When it does, this code will
7166        // need to be delayed until after exception specifications and in-class
7167        // member initializers are attached.
7168        const Type *NewCtorType;
7169        if (params == maxParams)
7170          NewCtorType = BaseCtorType;
7171        else {
7172          SmallVector<QualType, 16> Args;
7173          for (unsigned i = 0; i < params; ++i) {
7174            Args.push_back(BaseCtorType->getArgType(i));
7175          }
7176          FunctionProtoType::ExtProtoInfo ExtInfo =
7177              BaseCtorType->getExtProtoInfo();
7178          ExtInfo.Variadic = false;
7179          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7180                                                Args.data(), params, ExtInfo)
7181                       .getTypePtr();
7182        }
7183        const Type *CanonicalNewCtorType =
7184            Context.getCanonicalType(NewCtorType);
7185
7186        // Now that we have the type, first check if the class already has a
7187        // constructor with this signature.
7188        if (ExistingConstructors.count(CanonicalNewCtorType))
7189          continue;
7190
7191        // Then we check if we have already declared an inherited constructor
7192        // with this signature.
7193        std::pair<ConstructorToSourceMap::iterator, bool> result =
7194            InheritedConstructors.insert(std::make_pair(
7195                CanonicalNewCtorType,
7196                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7197        if (!result.second) {
7198          // Already in the map. If it came from a different class, that's an
7199          // error. Not if it's from the same.
7200          CanQualType PreviousBase = result.first->second.first;
7201          if (CanonicalBase != PreviousBase) {
7202            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7203            const CXXConstructorDecl *PrevBaseCtor =
7204                PrevCtor->getInheritedConstructor();
7205            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7206
7207            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7208            Diag(BaseCtor->getLocation(),
7209                 diag::note_using_decl_constructor_conflict_current_ctor);
7210            Diag(PrevBaseCtor->getLocation(),
7211                 diag::note_using_decl_constructor_conflict_previous_ctor);
7212            Diag(PrevCtor->getLocation(),
7213                 diag::note_using_decl_constructor_conflict_previous_using);
7214          }
7215          continue;
7216        }
7217
7218        // OK, we're there, now add the constructor.
7219        // C++0x [class.inhctor]p8: [...] that would be performed by a
7220        //   user-written inline constructor [...]
7221        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7222        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7223            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7224            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7225            /*ImplicitlyDeclared=*/true,
7226            // FIXME: Due to a defect in the standard, we treat inherited
7227            // constructors as constexpr even if that makes them ill-formed.
7228            /*Constexpr=*/BaseCtor->isConstexpr());
7229        NewCtor->setAccess(BaseCtor->getAccess());
7230
7231        // Build up the parameter decls and add them.
7232        SmallVector<ParmVarDecl *, 16> ParamDecls;
7233        for (unsigned i = 0; i < params; ++i) {
7234          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7235                                                   UsingLoc, UsingLoc,
7236                                                   /*IdentifierInfo=*/0,
7237                                                   BaseCtorType->getArgType(i),
7238                                                   /*TInfo=*/0, SC_None,
7239                                                   SC_None, /*DefaultArg=*/0));
7240        }
7241        NewCtor->setParams(ParamDecls);
7242        NewCtor->setInheritedConstructor(BaseCtor);
7243
7244        PushOnScopeChains(NewCtor, S, false);
7245        ClassDecl->addDecl(NewCtor);
7246        result.first->second.second = NewCtor;
7247      }
7248    }
7249  }
7250}
7251
7252Sema::ImplicitExceptionSpecification
7253Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7254  // C++ [except.spec]p14:
7255  //   An implicitly declared special member function (Clause 12) shall have
7256  //   an exception-specification.
7257  ImplicitExceptionSpecification ExceptSpec(Context);
7258  if (ClassDecl->isInvalidDecl())
7259    return ExceptSpec;
7260
7261  // Direct base-class destructors.
7262  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7263                                       BEnd = ClassDecl->bases_end();
7264       B != BEnd; ++B) {
7265    if (B->isVirtual()) // Handled below.
7266      continue;
7267
7268    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7269      ExceptSpec.CalledDecl(
7270                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7271  }
7272
7273  // Virtual base-class destructors.
7274  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7275                                       BEnd = ClassDecl->vbases_end();
7276       B != BEnd; ++B) {
7277    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7278      ExceptSpec.CalledDecl(
7279                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7280  }
7281
7282  // Field destructors.
7283  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7284                               FEnd = ClassDecl->field_end();
7285       F != FEnd; ++F) {
7286    if (const RecordType *RecordTy
7287        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7288      ExceptSpec.CalledDecl(
7289                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7290  }
7291
7292  return ExceptSpec;
7293}
7294
7295CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7296  // C++ [class.dtor]p2:
7297  //   If a class has no user-declared destructor, a destructor is
7298  //   declared implicitly. An implicitly-declared destructor is an
7299  //   inline public member of its class.
7300
7301  ImplicitExceptionSpecification Spec =
7302      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7303  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7304
7305  // Create the actual destructor declaration.
7306  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7307
7308  CanQualType ClassType
7309    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7310  SourceLocation ClassLoc = ClassDecl->getLocation();
7311  DeclarationName Name
7312    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7313  DeclarationNameInfo NameInfo(Name, ClassLoc);
7314  CXXDestructorDecl *Destructor
7315      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7316                                  /*isInline=*/true,
7317                                  /*isImplicitlyDeclared=*/true);
7318  Destructor->setAccess(AS_public);
7319  Destructor->setDefaulted();
7320  Destructor->setImplicit();
7321  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7322
7323  // Note that we have declared this destructor.
7324  ++ASTContext::NumImplicitDestructorsDeclared;
7325
7326  // Introduce this destructor into its scope.
7327  if (Scope *S = getScopeForContext(ClassDecl))
7328    PushOnScopeChains(Destructor, S, false);
7329  ClassDecl->addDecl(Destructor);
7330
7331  // This could be uniqued if it ever proves significant.
7332  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7333
7334  if (ShouldDeleteDestructor(Destructor))
7335    Destructor->setDeletedAsWritten();
7336
7337  AddOverriddenMethods(ClassDecl, Destructor);
7338
7339  return Destructor;
7340}
7341
7342void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7343                                    CXXDestructorDecl *Destructor) {
7344  assert((Destructor->isDefaulted() &&
7345          !Destructor->doesThisDeclarationHaveABody()) &&
7346         "DefineImplicitDestructor - call it for implicit default dtor");
7347  CXXRecordDecl *ClassDecl = Destructor->getParent();
7348  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7349
7350  if (Destructor->isInvalidDecl())
7351    return;
7352
7353  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7354
7355  DiagnosticErrorTrap Trap(Diags);
7356  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7357                                         Destructor->getParent());
7358
7359  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7360    Diag(CurrentLocation, diag::note_member_synthesized_at)
7361      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7362
7363    Destructor->setInvalidDecl();
7364    return;
7365  }
7366
7367  SourceLocation Loc = Destructor->getLocation();
7368  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7369  Destructor->setImplicitlyDefined(true);
7370  Destructor->setUsed();
7371  MarkVTableUsed(CurrentLocation, ClassDecl);
7372
7373  if (ASTMutationListener *L = getASTMutationListener()) {
7374    L->CompletedImplicitDefinition(Destructor);
7375  }
7376}
7377
7378void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7379                                         CXXDestructorDecl *destructor) {
7380  // C++11 [class.dtor]p3:
7381  //   A declaration of a destructor that does not have an exception-
7382  //   specification is implicitly considered to have the same exception-
7383  //   specification as an implicit declaration.
7384  const FunctionProtoType *dtorType = destructor->getType()->
7385                                        getAs<FunctionProtoType>();
7386  if (dtorType->hasExceptionSpec())
7387    return;
7388
7389  ImplicitExceptionSpecification exceptSpec =
7390      ComputeDefaultedDtorExceptionSpec(classDecl);
7391
7392  // Replace the destructor's type, building off the existing one. Fortunately,
7393  // the only thing of interest in the destructor type is its extended info.
7394  // The return and arguments are fixed.
7395  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7396  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7397  epi.NumExceptions = exceptSpec.size();
7398  epi.Exceptions = exceptSpec.data();
7399  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7400
7401  destructor->setType(ty);
7402
7403  // FIXME: If the destructor has a body that could throw, and the newly created
7404  // spec doesn't allow exceptions, we should emit a warning, because this
7405  // change in behavior can break conforming C++03 programs at runtime.
7406  // However, we don't have a body yet, so it needs to be done somewhere else.
7407}
7408
7409/// \brief Builds a statement that copies/moves the given entity from \p From to
7410/// \c To.
7411///
7412/// This routine is used to copy/move the members of a class with an
7413/// implicitly-declared copy/move assignment operator. When the entities being
7414/// copied are arrays, this routine builds for loops to copy them.
7415///
7416/// \param S The Sema object used for type-checking.
7417///
7418/// \param Loc The location where the implicit copy/move is being generated.
7419///
7420/// \param T The type of the expressions being copied/moved. Both expressions
7421/// must have this type.
7422///
7423/// \param To The expression we are copying/moving to.
7424///
7425/// \param From The expression we are copying/moving from.
7426///
7427/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7428/// Otherwise, it's a non-static member subobject.
7429///
7430/// \param Copying Whether we're copying or moving.
7431///
7432/// \param Depth Internal parameter recording the depth of the recursion.
7433///
7434/// \returns A statement or a loop that copies the expressions.
7435static StmtResult
7436BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7437                      Expr *To, Expr *From,
7438                      bool CopyingBaseSubobject, bool Copying,
7439                      unsigned Depth = 0) {
7440  // C++0x [class.copy]p28:
7441  //   Each subobject is assigned in the manner appropriate to its type:
7442  //
7443  //     - if the subobject is of class type, as if by a call to operator= with
7444  //       the subobject as the object expression and the corresponding
7445  //       subobject of x as a single function argument (as if by explicit
7446  //       qualification; that is, ignoring any possible virtual overriding
7447  //       functions in more derived classes);
7448  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7449    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7450
7451    // Look for operator=.
7452    DeclarationName Name
7453      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7454    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7455    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7456
7457    // Filter out any result that isn't a copy/move-assignment operator.
7458    LookupResult::Filter F = OpLookup.makeFilter();
7459    while (F.hasNext()) {
7460      NamedDecl *D = F.next();
7461      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7462        if (Copying ? Method->isCopyAssignmentOperator() :
7463                      Method->isMoveAssignmentOperator())
7464          continue;
7465
7466      F.erase();
7467    }
7468    F.done();
7469
7470    // Suppress the protected check (C++ [class.protected]) for each of the
7471    // assignment operators we found. This strange dance is required when
7472    // we're assigning via a base classes's copy-assignment operator. To
7473    // ensure that we're getting the right base class subobject (without
7474    // ambiguities), we need to cast "this" to that subobject type; to
7475    // ensure that we don't go through the virtual call mechanism, we need
7476    // to qualify the operator= name with the base class (see below). However,
7477    // this means that if the base class has a protected copy assignment
7478    // operator, the protected member access check will fail. So, we
7479    // rewrite "protected" access to "public" access in this case, since we
7480    // know by construction that we're calling from a derived class.
7481    if (CopyingBaseSubobject) {
7482      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7483           L != LEnd; ++L) {
7484        if (L.getAccess() == AS_protected)
7485          L.setAccess(AS_public);
7486      }
7487    }
7488
7489    // Create the nested-name-specifier that will be used to qualify the
7490    // reference to operator=; this is required to suppress the virtual
7491    // call mechanism.
7492    CXXScopeSpec SS;
7493    SS.MakeTrivial(S.Context,
7494                   NestedNameSpecifier::Create(S.Context, 0, false,
7495                                               T.getTypePtr()),
7496                   Loc);
7497
7498    // Create the reference to operator=.
7499    ExprResult OpEqualRef
7500      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7501                                   /*FirstQualifierInScope=*/0, OpLookup,
7502                                   /*TemplateArgs=*/0,
7503                                   /*SuppressQualifierCheck=*/true);
7504    if (OpEqualRef.isInvalid())
7505      return StmtError();
7506
7507    // Build the call to the assignment operator.
7508
7509    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7510                                                  OpEqualRef.takeAs<Expr>(),
7511                                                  Loc, &From, 1, Loc);
7512    if (Call.isInvalid())
7513      return StmtError();
7514
7515    return S.Owned(Call.takeAs<Stmt>());
7516  }
7517
7518  //     - if the subobject is of scalar type, the built-in assignment
7519  //       operator is used.
7520  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7521  if (!ArrayTy) {
7522    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7523    if (Assignment.isInvalid())
7524      return StmtError();
7525
7526    return S.Owned(Assignment.takeAs<Stmt>());
7527  }
7528
7529  //     - if the subobject is an array, each element is assigned, in the
7530  //       manner appropriate to the element type;
7531
7532  // Construct a loop over the array bounds, e.g.,
7533  //
7534  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7535  //
7536  // that will copy each of the array elements.
7537  QualType SizeType = S.Context.getSizeType();
7538
7539  // Create the iteration variable.
7540  IdentifierInfo *IterationVarName = 0;
7541  {
7542    llvm::SmallString<8> Str;
7543    llvm::raw_svector_ostream OS(Str);
7544    OS << "__i" << Depth;
7545    IterationVarName = &S.Context.Idents.get(OS.str());
7546  }
7547  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7548                                          IterationVarName, SizeType,
7549                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7550                                          SC_None, SC_None);
7551
7552  // Initialize the iteration variable to zero.
7553  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7554  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7555
7556  // Create a reference to the iteration variable; we'll use this several
7557  // times throughout.
7558  Expr *IterationVarRef
7559    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7560  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7561
7562  // Create the DeclStmt that holds the iteration variable.
7563  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7564
7565  // Create the comparison against the array bound.
7566  llvm::APInt Upper
7567    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7568  Expr *Comparison
7569    = new (S.Context) BinaryOperator(IterationVarRef,
7570                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7571                                     BO_NE, S.Context.BoolTy,
7572                                     VK_RValue, OK_Ordinary, Loc);
7573
7574  // Create the pre-increment of the iteration variable.
7575  Expr *Increment
7576    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7577                                    VK_LValue, OK_Ordinary, Loc);
7578
7579  // Subscript the "from" and "to" expressions with the iteration variable.
7580  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7581                                                         IterationVarRef, Loc));
7582  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7583                                                       IterationVarRef, Loc));
7584  if (!Copying) // Cast to rvalue
7585    From = CastForMoving(S, From);
7586
7587  // Build the copy/move for an individual element of the array.
7588  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7589                                          To, From, CopyingBaseSubobject,
7590                                          Copying, Depth + 1);
7591  if (Copy.isInvalid())
7592    return StmtError();
7593
7594  // Construct the loop that copies all elements of this array.
7595  return S.ActOnForStmt(Loc, Loc, InitStmt,
7596                        S.MakeFullExpr(Comparison),
7597                        0, S.MakeFullExpr(Increment),
7598                        Loc, Copy.take());
7599}
7600
7601std::pair<Sema::ImplicitExceptionSpecification, bool>
7602Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7603                                                   CXXRecordDecl *ClassDecl) {
7604  if (ClassDecl->isInvalidDecl())
7605    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7606
7607  // C++ [class.copy]p10:
7608  //   If the class definition does not explicitly declare a copy
7609  //   assignment operator, one is declared implicitly.
7610  //   The implicitly-defined copy assignment operator for a class X
7611  //   will have the form
7612  //
7613  //       X& X::operator=(const X&)
7614  //
7615  //   if
7616  bool HasConstCopyAssignment = true;
7617
7618  //       -- each direct base class B of X has a copy assignment operator
7619  //          whose parameter is of type const B&, const volatile B& or B,
7620  //          and
7621  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7622                                       BaseEnd = ClassDecl->bases_end();
7623       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7624    // We'll handle this below
7625    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7626      continue;
7627
7628    assert(!Base->getType()->isDependentType() &&
7629           "Cannot generate implicit members for class with dependent bases.");
7630    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7631    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7632                            &HasConstCopyAssignment);
7633  }
7634
7635  // In C++0x, the above citation has "or virtual added"
7636  if (LangOpts.CPlusPlus0x) {
7637    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7638                                         BaseEnd = ClassDecl->vbases_end();
7639         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7640      assert(!Base->getType()->isDependentType() &&
7641             "Cannot generate implicit members for class with dependent bases.");
7642      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7643      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7644                              &HasConstCopyAssignment);
7645    }
7646  }
7647
7648  //       -- for all the nonstatic data members of X that are of a class
7649  //          type M (or array thereof), each such class type has a copy
7650  //          assignment operator whose parameter is of type const M&,
7651  //          const volatile M& or M.
7652  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7653                                  FieldEnd = ClassDecl->field_end();
7654       HasConstCopyAssignment && Field != FieldEnd;
7655       ++Field) {
7656    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7657    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7658      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7659                              &HasConstCopyAssignment);
7660    }
7661  }
7662
7663  //   Otherwise, the implicitly declared copy assignment operator will
7664  //   have the form
7665  //
7666  //       X& X::operator=(X&)
7667
7668  // C++ [except.spec]p14:
7669  //   An implicitly declared special member function (Clause 12) shall have an
7670  //   exception-specification. [...]
7671
7672  // It is unspecified whether or not an implicit copy assignment operator
7673  // attempts to deduplicate calls to assignment operators of virtual bases are
7674  // made. As such, this exception specification is effectively unspecified.
7675  // Based on a similar decision made for constness in C++0x, we're erring on
7676  // the side of assuming such calls to be made regardless of whether they
7677  // actually happen.
7678  ImplicitExceptionSpecification ExceptSpec(Context);
7679  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7680  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7681                                       BaseEnd = ClassDecl->bases_end();
7682       Base != BaseEnd; ++Base) {
7683    if (Base->isVirtual())
7684      continue;
7685
7686    CXXRecordDecl *BaseClassDecl
7687      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7688    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7689                                                            ArgQuals, false, 0))
7690      ExceptSpec.CalledDecl(CopyAssign);
7691  }
7692
7693  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7694                                       BaseEnd = ClassDecl->vbases_end();
7695       Base != BaseEnd; ++Base) {
7696    CXXRecordDecl *BaseClassDecl
7697      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7698    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7699                                                            ArgQuals, false, 0))
7700      ExceptSpec.CalledDecl(CopyAssign);
7701  }
7702
7703  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7704                                  FieldEnd = ClassDecl->field_end();
7705       Field != FieldEnd;
7706       ++Field) {
7707    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7708    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7709      if (CXXMethodDecl *CopyAssign =
7710          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7711        ExceptSpec.CalledDecl(CopyAssign);
7712    }
7713  }
7714
7715  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7716}
7717
7718CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7719  // Note: The following rules are largely analoguous to the copy
7720  // constructor rules. Note that virtual bases are not taken into account
7721  // for determining the argument type of the operator. Note also that
7722  // operators taking an object instead of a reference are allowed.
7723
7724  ImplicitExceptionSpecification Spec(Context);
7725  bool Const;
7726  llvm::tie(Spec, Const) =
7727    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7728
7729  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7730  QualType RetType = Context.getLValueReferenceType(ArgType);
7731  if (Const)
7732    ArgType = ArgType.withConst();
7733  ArgType = Context.getLValueReferenceType(ArgType);
7734
7735  //   An implicitly-declared copy assignment operator is an inline public
7736  //   member of its class.
7737  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7738  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7739  SourceLocation ClassLoc = ClassDecl->getLocation();
7740  DeclarationNameInfo NameInfo(Name, ClassLoc);
7741  CXXMethodDecl *CopyAssignment
7742    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7743                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7744                            /*TInfo=*/0, /*isStatic=*/false,
7745                            /*StorageClassAsWritten=*/SC_None,
7746                            /*isInline=*/true, /*isConstexpr=*/false,
7747                            SourceLocation());
7748  CopyAssignment->setAccess(AS_public);
7749  CopyAssignment->setDefaulted();
7750  CopyAssignment->setImplicit();
7751  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7752
7753  // Add the parameter to the operator.
7754  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7755                                               ClassLoc, ClassLoc, /*Id=*/0,
7756                                               ArgType, /*TInfo=*/0,
7757                                               SC_None,
7758                                               SC_None, 0);
7759  CopyAssignment->setParams(FromParam);
7760
7761  // Note that we have added this copy-assignment operator.
7762  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7763
7764  if (Scope *S = getScopeForContext(ClassDecl))
7765    PushOnScopeChains(CopyAssignment, S, false);
7766  ClassDecl->addDecl(CopyAssignment);
7767
7768  // C++0x [class.copy]p18:
7769  //   ... If the class definition declares a move constructor or move
7770  //   assignment operator, the implicitly declared copy assignment operator is
7771  //   defined as deleted; ...
7772  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7773      ClassDecl->hasUserDeclaredMoveAssignment() ||
7774      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7775    CopyAssignment->setDeletedAsWritten();
7776
7777  AddOverriddenMethods(ClassDecl, CopyAssignment);
7778  return CopyAssignment;
7779}
7780
7781void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7782                                        CXXMethodDecl *CopyAssignOperator) {
7783  assert((CopyAssignOperator->isDefaulted() &&
7784          CopyAssignOperator->isOverloadedOperator() &&
7785          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7786          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7787         "DefineImplicitCopyAssignment called for wrong function");
7788
7789  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7790
7791  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7792    CopyAssignOperator->setInvalidDecl();
7793    return;
7794  }
7795
7796  CopyAssignOperator->setUsed();
7797
7798  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7799  DiagnosticErrorTrap Trap(Diags);
7800
7801  // C++0x [class.copy]p30:
7802  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7803  //   for a non-union class X performs memberwise copy assignment of its
7804  //   subobjects. The direct base classes of X are assigned first, in the
7805  //   order of their declaration in the base-specifier-list, and then the
7806  //   immediate non-static data members of X are assigned, in the order in
7807  //   which they were declared in the class definition.
7808
7809  // The statements that form the synthesized function body.
7810  ASTOwningVector<Stmt*> Statements(*this);
7811
7812  // The parameter for the "other" object, which we are copying from.
7813  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7814  Qualifiers OtherQuals = Other->getType().getQualifiers();
7815  QualType OtherRefType = Other->getType();
7816  if (const LValueReferenceType *OtherRef
7817                                = OtherRefType->getAs<LValueReferenceType>()) {
7818    OtherRefType = OtherRef->getPointeeType();
7819    OtherQuals = OtherRefType.getQualifiers();
7820  }
7821
7822  // Our location for everything implicitly-generated.
7823  SourceLocation Loc = CopyAssignOperator->getLocation();
7824
7825  // Construct a reference to the "other" object. We'll be using this
7826  // throughout the generated ASTs.
7827  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7828  assert(OtherRef && "Reference to parameter cannot fail!");
7829
7830  // Construct the "this" pointer. We'll be using this throughout the generated
7831  // ASTs.
7832  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7833  assert(This && "Reference to this cannot fail!");
7834
7835  // Assign base classes.
7836  bool Invalid = false;
7837  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7838       E = ClassDecl->bases_end(); Base != E; ++Base) {
7839    // Form the assignment:
7840    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7841    QualType BaseType = Base->getType().getUnqualifiedType();
7842    if (!BaseType->isRecordType()) {
7843      Invalid = true;
7844      continue;
7845    }
7846
7847    CXXCastPath BasePath;
7848    BasePath.push_back(Base);
7849
7850    // Construct the "from" expression, which is an implicit cast to the
7851    // appropriately-qualified base type.
7852    Expr *From = OtherRef;
7853    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7854                             CK_UncheckedDerivedToBase,
7855                             VK_LValue, &BasePath).take();
7856
7857    // Dereference "this".
7858    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7859
7860    // Implicitly cast "this" to the appropriately-qualified base type.
7861    To = ImpCastExprToType(To.take(),
7862                           Context.getCVRQualifiedType(BaseType,
7863                                     CopyAssignOperator->getTypeQualifiers()),
7864                           CK_UncheckedDerivedToBase,
7865                           VK_LValue, &BasePath);
7866
7867    // Build the copy.
7868    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7869                                            To.get(), From,
7870                                            /*CopyingBaseSubobject=*/true,
7871                                            /*Copying=*/true);
7872    if (Copy.isInvalid()) {
7873      Diag(CurrentLocation, diag::note_member_synthesized_at)
7874        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7875      CopyAssignOperator->setInvalidDecl();
7876      return;
7877    }
7878
7879    // Success! Record the copy.
7880    Statements.push_back(Copy.takeAs<Expr>());
7881  }
7882
7883  // \brief Reference to the __builtin_memcpy function.
7884  Expr *BuiltinMemCpyRef = 0;
7885  // \brief Reference to the __builtin_objc_memmove_collectable function.
7886  Expr *CollectableMemCpyRef = 0;
7887
7888  // Assign non-static members.
7889  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7890                                  FieldEnd = ClassDecl->field_end();
7891       Field != FieldEnd; ++Field) {
7892    // Check for members of reference type; we can't copy those.
7893    if (Field->getType()->isReferenceType()) {
7894      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7895        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7896      Diag(Field->getLocation(), diag::note_declared_at);
7897      Diag(CurrentLocation, diag::note_member_synthesized_at)
7898        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7899      Invalid = true;
7900      continue;
7901    }
7902
7903    // Check for members of const-qualified, non-class type.
7904    QualType BaseType = Context.getBaseElementType(Field->getType());
7905    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7906      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7907        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7908      Diag(Field->getLocation(), diag::note_declared_at);
7909      Diag(CurrentLocation, diag::note_member_synthesized_at)
7910        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7911      Invalid = true;
7912      continue;
7913    }
7914
7915    // Suppress assigning zero-width bitfields.
7916    if (const Expr *Width = Field->getBitWidth())
7917      if (Width->EvaluateAsInt(Context) == 0)
7918        continue;
7919
7920    QualType FieldType = Field->getType().getNonReferenceType();
7921    if (FieldType->isIncompleteArrayType()) {
7922      assert(ClassDecl->hasFlexibleArrayMember() &&
7923             "Incomplete array type is not valid");
7924      continue;
7925    }
7926
7927    // Build references to the field in the object we're copying from and to.
7928    CXXScopeSpec SS; // Intentionally empty
7929    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7930                              LookupMemberName);
7931    MemberLookup.addDecl(*Field);
7932    MemberLookup.resolveKind();
7933    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7934                                               Loc, /*IsArrow=*/false,
7935                                               SS, 0, MemberLookup, 0);
7936    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7937                                             Loc, /*IsArrow=*/true,
7938                                             SS, 0, MemberLookup, 0);
7939    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7940    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7941
7942    // If the field should be copied with __builtin_memcpy rather than via
7943    // explicit assignments, do so. This optimization only applies for arrays
7944    // of scalars and arrays of class type with trivial copy-assignment
7945    // operators.
7946    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7947        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7948      // Compute the size of the memory buffer to be copied.
7949      QualType SizeType = Context.getSizeType();
7950      llvm::APInt Size(Context.getTypeSize(SizeType),
7951                       Context.getTypeSizeInChars(BaseType).getQuantity());
7952      for (const ConstantArrayType *Array
7953              = Context.getAsConstantArrayType(FieldType);
7954           Array;
7955           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7956        llvm::APInt ArraySize
7957          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7958        Size *= ArraySize;
7959      }
7960
7961      // Take the address of the field references for "from" and "to".
7962      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7963      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7964
7965      bool NeedsCollectableMemCpy =
7966          (BaseType->isRecordType() &&
7967           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7968
7969      if (NeedsCollectableMemCpy) {
7970        if (!CollectableMemCpyRef) {
7971          // Create a reference to the __builtin_objc_memmove_collectable function.
7972          LookupResult R(*this,
7973                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7974                         Loc, LookupOrdinaryName);
7975          LookupName(R, TUScope, true);
7976
7977          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7978          if (!CollectableMemCpy) {
7979            // Something went horribly wrong earlier, and we will have
7980            // complained about it.
7981            Invalid = true;
7982            continue;
7983          }
7984
7985          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7986                                                  CollectableMemCpy->getType(),
7987                                                  VK_LValue, Loc, 0).take();
7988          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7989        }
7990      }
7991      // Create a reference to the __builtin_memcpy builtin function.
7992      else if (!BuiltinMemCpyRef) {
7993        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7994                       LookupOrdinaryName);
7995        LookupName(R, TUScope, true);
7996
7997        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7998        if (!BuiltinMemCpy) {
7999          // Something went horribly wrong earlier, and we will have complained
8000          // about it.
8001          Invalid = true;
8002          continue;
8003        }
8004
8005        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8006                                            BuiltinMemCpy->getType(),
8007                                            VK_LValue, Loc, 0).take();
8008        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8009      }
8010
8011      ASTOwningVector<Expr*> CallArgs(*this);
8012      CallArgs.push_back(To.takeAs<Expr>());
8013      CallArgs.push_back(From.takeAs<Expr>());
8014      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8015      ExprResult Call = ExprError();
8016      if (NeedsCollectableMemCpy)
8017        Call = ActOnCallExpr(/*Scope=*/0,
8018                             CollectableMemCpyRef,
8019                             Loc, move_arg(CallArgs),
8020                             Loc);
8021      else
8022        Call = ActOnCallExpr(/*Scope=*/0,
8023                             BuiltinMemCpyRef,
8024                             Loc, move_arg(CallArgs),
8025                             Loc);
8026
8027      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8028      Statements.push_back(Call.takeAs<Expr>());
8029      continue;
8030    }
8031
8032    // Build the copy of this field.
8033    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8034                                            To.get(), From.get(),
8035                                            /*CopyingBaseSubobject=*/false,
8036                                            /*Copying=*/true);
8037    if (Copy.isInvalid()) {
8038      Diag(CurrentLocation, diag::note_member_synthesized_at)
8039        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8040      CopyAssignOperator->setInvalidDecl();
8041      return;
8042    }
8043
8044    // Success! Record the copy.
8045    Statements.push_back(Copy.takeAs<Stmt>());
8046  }
8047
8048  if (!Invalid) {
8049    // Add a "return *this;"
8050    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8051
8052    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8053    if (Return.isInvalid())
8054      Invalid = true;
8055    else {
8056      Statements.push_back(Return.takeAs<Stmt>());
8057
8058      if (Trap.hasErrorOccurred()) {
8059        Diag(CurrentLocation, diag::note_member_synthesized_at)
8060          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8061        Invalid = true;
8062      }
8063    }
8064  }
8065
8066  if (Invalid) {
8067    CopyAssignOperator->setInvalidDecl();
8068    return;
8069  }
8070
8071  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8072                                            /*isStmtExpr=*/false);
8073  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8074  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8075
8076  if (ASTMutationListener *L = getASTMutationListener()) {
8077    L->CompletedImplicitDefinition(CopyAssignOperator);
8078  }
8079}
8080
8081Sema::ImplicitExceptionSpecification
8082Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8083  ImplicitExceptionSpecification ExceptSpec(Context);
8084
8085  if (ClassDecl->isInvalidDecl())
8086    return ExceptSpec;
8087
8088  // C++0x [except.spec]p14:
8089  //   An implicitly declared special member function (Clause 12) shall have an
8090  //   exception-specification. [...]
8091
8092  // It is unspecified whether or not an implicit move assignment operator
8093  // attempts to deduplicate calls to assignment operators of virtual bases are
8094  // made. As such, this exception specification is effectively unspecified.
8095  // Based on a similar decision made for constness in C++0x, we're erring on
8096  // the side of assuming such calls to be made regardless of whether they
8097  // actually happen.
8098  // Note that a move constructor is not implicitly declared when there are
8099  // virtual bases, but it can still be user-declared and explicitly defaulted.
8100  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8101                                       BaseEnd = ClassDecl->bases_end();
8102       Base != BaseEnd; ++Base) {
8103    if (Base->isVirtual())
8104      continue;
8105
8106    CXXRecordDecl *BaseClassDecl
8107      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8108    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8109                                                           false, 0))
8110      ExceptSpec.CalledDecl(MoveAssign);
8111  }
8112
8113  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8114                                       BaseEnd = ClassDecl->vbases_end();
8115       Base != BaseEnd; ++Base) {
8116    CXXRecordDecl *BaseClassDecl
8117      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8118    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8119                                                           false, 0))
8120      ExceptSpec.CalledDecl(MoveAssign);
8121  }
8122
8123  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8124                                  FieldEnd = ClassDecl->field_end();
8125       Field != FieldEnd;
8126       ++Field) {
8127    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8128    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8129      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8130                                                             false, 0))
8131        ExceptSpec.CalledDecl(MoveAssign);
8132    }
8133  }
8134
8135  return ExceptSpec;
8136}
8137
8138CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8139  // Note: The following rules are largely analoguous to the move
8140  // constructor rules.
8141
8142  ImplicitExceptionSpecification Spec(
8143      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8144
8145  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8146  QualType RetType = Context.getLValueReferenceType(ArgType);
8147  ArgType = Context.getRValueReferenceType(ArgType);
8148
8149  //   An implicitly-declared move assignment operator is an inline public
8150  //   member of its class.
8151  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8152  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8153  SourceLocation ClassLoc = ClassDecl->getLocation();
8154  DeclarationNameInfo NameInfo(Name, ClassLoc);
8155  CXXMethodDecl *MoveAssignment
8156    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8157                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8158                            /*TInfo=*/0, /*isStatic=*/false,
8159                            /*StorageClassAsWritten=*/SC_None,
8160                            /*isInline=*/true,
8161                            /*isConstexpr=*/false,
8162                            SourceLocation());
8163  MoveAssignment->setAccess(AS_public);
8164  MoveAssignment->setDefaulted();
8165  MoveAssignment->setImplicit();
8166  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8167
8168  // Add the parameter to the operator.
8169  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8170                                               ClassLoc, ClassLoc, /*Id=*/0,
8171                                               ArgType, /*TInfo=*/0,
8172                                               SC_None,
8173                                               SC_None, 0);
8174  MoveAssignment->setParams(FromParam);
8175
8176  // Note that we have added this copy-assignment operator.
8177  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8178
8179  // C++0x [class.copy]p9:
8180  //   If the definition of a class X does not explicitly declare a move
8181  //   assignment operator, one will be implicitly declared as defaulted if and
8182  //   only if:
8183  //   [...]
8184  //   - the move assignment operator would not be implicitly defined as
8185  //     deleted.
8186  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8187    // Cache this result so that we don't try to generate this over and over
8188    // on every lookup, leaking memory and wasting time.
8189    ClassDecl->setFailedImplicitMoveAssignment();
8190    return 0;
8191  }
8192
8193  if (Scope *S = getScopeForContext(ClassDecl))
8194    PushOnScopeChains(MoveAssignment, S, false);
8195  ClassDecl->addDecl(MoveAssignment);
8196
8197  AddOverriddenMethods(ClassDecl, MoveAssignment);
8198  return MoveAssignment;
8199}
8200
8201void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8202                                        CXXMethodDecl *MoveAssignOperator) {
8203  assert((MoveAssignOperator->isDefaulted() &&
8204          MoveAssignOperator->isOverloadedOperator() &&
8205          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8206          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8207         "DefineImplicitMoveAssignment called for wrong function");
8208
8209  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8210
8211  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8212    MoveAssignOperator->setInvalidDecl();
8213    return;
8214  }
8215
8216  MoveAssignOperator->setUsed();
8217
8218  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8219  DiagnosticErrorTrap Trap(Diags);
8220
8221  // C++0x [class.copy]p28:
8222  //   The implicitly-defined or move assignment operator for a non-union class
8223  //   X performs memberwise move assignment of its subobjects. The direct base
8224  //   classes of X are assigned first, in the order of their declaration in the
8225  //   base-specifier-list, and then the immediate non-static data members of X
8226  //   are assigned, in the order in which they were declared in the class
8227  //   definition.
8228
8229  // The statements that form the synthesized function body.
8230  ASTOwningVector<Stmt*> Statements(*this);
8231
8232  // The parameter for the "other" object, which we are move from.
8233  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8234  QualType OtherRefType = Other->getType()->
8235      getAs<RValueReferenceType>()->getPointeeType();
8236  assert(OtherRefType.getQualifiers() == 0 &&
8237         "Bad argument type of defaulted move assignment");
8238
8239  // Our location for everything implicitly-generated.
8240  SourceLocation Loc = MoveAssignOperator->getLocation();
8241
8242  // Construct a reference to the "other" object. We'll be using this
8243  // throughout the generated ASTs.
8244  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8245  assert(OtherRef && "Reference to parameter cannot fail!");
8246  // Cast to rvalue.
8247  OtherRef = CastForMoving(*this, OtherRef);
8248
8249  // Construct the "this" pointer. We'll be using this throughout the generated
8250  // ASTs.
8251  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8252  assert(This && "Reference to this cannot fail!");
8253
8254  // Assign base classes.
8255  bool Invalid = false;
8256  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8257       E = ClassDecl->bases_end(); Base != E; ++Base) {
8258    // Form the assignment:
8259    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8260    QualType BaseType = Base->getType().getUnqualifiedType();
8261    if (!BaseType->isRecordType()) {
8262      Invalid = true;
8263      continue;
8264    }
8265
8266    CXXCastPath BasePath;
8267    BasePath.push_back(Base);
8268
8269    // Construct the "from" expression, which is an implicit cast to the
8270    // appropriately-qualified base type.
8271    Expr *From = OtherRef;
8272    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8273                             VK_XValue, &BasePath).take();
8274
8275    // Dereference "this".
8276    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8277
8278    // Implicitly cast "this" to the appropriately-qualified base type.
8279    To = ImpCastExprToType(To.take(),
8280                           Context.getCVRQualifiedType(BaseType,
8281                                     MoveAssignOperator->getTypeQualifiers()),
8282                           CK_UncheckedDerivedToBase,
8283                           VK_LValue, &BasePath);
8284
8285    // Build the move.
8286    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8287                                            To.get(), From,
8288                                            /*CopyingBaseSubobject=*/true,
8289                                            /*Copying=*/false);
8290    if (Move.isInvalid()) {
8291      Diag(CurrentLocation, diag::note_member_synthesized_at)
8292        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8293      MoveAssignOperator->setInvalidDecl();
8294      return;
8295    }
8296
8297    // Success! Record the move.
8298    Statements.push_back(Move.takeAs<Expr>());
8299  }
8300
8301  // \brief Reference to the __builtin_memcpy function.
8302  Expr *BuiltinMemCpyRef = 0;
8303  // \brief Reference to the __builtin_objc_memmove_collectable function.
8304  Expr *CollectableMemCpyRef = 0;
8305
8306  // Assign non-static members.
8307  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8308                                  FieldEnd = ClassDecl->field_end();
8309       Field != FieldEnd; ++Field) {
8310    // Check for members of reference type; we can't move those.
8311    if (Field->getType()->isReferenceType()) {
8312      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8313        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8314      Diag(Field->getLocation(), diag::note_declared_at);
8315      Diag(CurrentLocation, diag::note_member_synthesized_at)
8316        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8317      Invalid = true;
8318      continue;
8319    }
8320
8321    // Check for members of const-qualified, non-class type.
8322    QualType BaseType = Context.getBaseElementType(Field->getType());
8323    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8324      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8325        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8326      Diag(Field->getLocation(), diag::note_declared_at);
8327      Diag(CurrentLocation, diag::note_member_synthesized_at)
8328        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8329      Invalid = true;
8330      continue;
8331    }
8332
8333    // Suppress assigning zero-width bitfields.
8334    if (const Expr *Width = Field->getBitWidth())
8335      if (Width->EvaluateAsInt(Context) == 0)
8336        continue;
8337
8338    QualType FieldType = Field->getType().getNonReferenceType();
8339    if (FieldType->isIncompleteArrayType()) {
8340      assert(ClassDecl->hasFlexibleArrayMember() &&
8341             "Incomplete array type is not valid");
8342      continue;
8343    }
8344
8345    // Build references to the field in the object we're copying from and to.
8346    CXXScopeSpec SS; // Intentionally empty
8347    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8348                              LookupMemberName);
8349    MemberLookup.addDecl(*Field);
8350    MemberLookup.resolveKind();
8351    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8352                                               Loc, /*IsArrow=*/false,
8353                                               SS, 0, MemberLookup, 0);
8354    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8355                                             Loc, /*IsArrow=*/true,
8356                                             SS, 0, MemberLookup, 0);
8357    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8358    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8359
8360    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8361        "Member reference with rvalue base must be rvalue except for reference "
8362        "members, which aren't allowed for move assignment.");
8363
8364    // If the field should be copied with __builtin_memcpy rather than via
8365    // explicit assignments, do so. This optimization only applies for arrays
8366    // of scalars and arrays of class type with trivial move-assignment
8367    // operators.
8368    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8369        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8370      // Compute the size of the memory buffer to be copied.
8371      QualType SizeType = Context.getSizeType();
8372      llvm::APInt Size(Context.getTypeSize(SizeType),
8373                       Context.getTypeSizeInChars(BaseType).getQuantity());
8374      for (const ConstantArrayType *Array
8375              = Context.getAsConstantArrayType(FieldType);
8376           Array;
8377           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8378        llvm::APInt ArraySize
8379          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8380        Size *= ArraySize;
8381      }
8382
8383      // Take the address of the field references for "from" and "to". We
8384      // directly construct UnaryOperators here because semantic analysis
8385      // does not permit us to take the address of an xvalue.
8386      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8387                             Context.getPointerType(From.get()->getType()),
8388                             VK_RValue, OK_Ordinary, Loc);
8389      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8390                           Context.getPointerType(To.get()->getType()),
8391                           VK_RValue, OK_Ordinary, Loc);
8392
8393      bool NeedsCollectableMemCpy =
8394          (BaseType->isRecordType() &&
8395           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8396
8397      if (NeedsCollectableMemCpy) {
8398        if (!CollectableMemCpyRef) {
8399          // Create a reference to the __builtin_objc_memmove_collectable function.
8400          LookupResult R(*this,
8401                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8402                         Loc, LookupOrdinaryName);
8403          LookupName(R, TUScope, true);
8404
8405          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8406          if (!CollectableMemCpy) {
8407            // Something went horribly wrong earlier, and we will have
8408            // complained about it.
8409            Invalid = true;
8410            continue;
8411          }
8412
8413          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8414                                                  CollectableMemCpy->getType(),
8415                                                  VK_LValue, Loc, 0).take();
8416          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8417        }
8418      }
8419      // Create a reference to the __builtin_memcpy builtin function.
8420      else if (!BuiltinMemCpyRef) {
8421        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8422                       LookupOrdinaryName);
8423        LookupName(R, TUScope, true);
8424
8425        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8426        if (!BuiltinMemCpy) {
8427          // Something went horribly wrong earlier, and we will have complained
8428          // about it.
8429          Invalid = true;
8430          continue;
8431        }
8432
8433        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8434                                            BuiltinMemCpy->getType(),
8435                                            VK_LValue, Loc, 0).take();
8436        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8437      }
8438
8439      ASTOwningVector<Expr*> CallArgs(*this);
8440      CallArgs.push_back(To.takeAs<Expr>());
8441      CallArgs.push_back(From.takeAs<Expr>());
8442      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8443      ExprResult Call = ExprError();
8444      if (NeedsCollectableMemCpy)
8445        Call = ActOnCallExpr(/*Scope=*/0,
8446                             CollectableMemCpyRef,
8447                             Loc, move_arg(CallArgs),
8448                             Loc);
8449      else
8450        Call = ActOnCallExpr(/*Scope=*/0,
8451                             BuiltinMemCpyRef,
8452                             Loc, move_arg(CallArgs),
8453                             Loc);
8454
8455      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8456      Statements.push_back(Call.takeAs<Expr>());
8457      continue;
8458    }
8459
8460    // Build the move of this field.
8461    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8462                                            To.get(), From.get(),
8463                                            /*CopyingBaseSubobject=*/false,
8464                                            /*Copying=*/false);
8465    if (Move.isInvalid()) {
8466      Diag(CurrentLocation, diag::note_member_synthesized_at)
8467        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8468      MoveAssignOperator->setInvalidDecl();
8469      return;
8470    }
8471
8472    // Success! Record the copy.
8473    Statements.push_back(Move.takeAs<Stmt>());
8474  }
8475
8476  if (!Invalid) {
8477    // Add a "return *this;"
8478    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8479
8480    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8481    if (Return.isInvalid())
8482      Invalid = true;
8483    else {
8484      Statements.push_back(Return.takeAs<Stmt>());
8485
8486      if (Trap.hasErrorOccurred()) {
8487        Diag(CurrentLocation, diag::note_member_synthesized_at)
8488          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8489        Invalid = true;
8490      }
8491    }
8492  }
8493
8494  if (Invalid) {
8495    MoveAssignOperator->setInvalidDecl();
8496    return;
8497  }
8498
8499  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8500                                            /*isStmtExpr=*/false);
8501  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8502  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8503
8504  if (ASTMutationListener *L = getASTMutationListener()) {
8505    L->CompletedImplicitDefinition(MoveAssignOperator);
8506  }
8507}
8508
8509std::pair<Sema::ImplicitExceptionSpecification, bool>
8510Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8511  if (ClassDecl->isInvalidDecl())
8512    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8513
8514  // C++ [class.copy]p5:
8515  //   The implicitly-declared copy constructor for a class X will
8516  //   have the form
8517  //
8518  //       X::X(const X&)
8519  //
8520  //   if
8521  // FIXME: It ought to be possible to store this on the record.
8522  bool HasConstCopyConstructor = true;
8523
8524  //     -- each direct or virtual base class B of X has a copy
8525  //        constructor whose first parameter is of type const B& or
8526  //        const volatile B&, and
8527  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8528                                       BaseEnd = ClassDecl->bases_end();
8529       HasConstCopyConstructor && Base != BaseEnd;
8530       ++Base) {
8531    // Virtual bases are handled below.
8532    if (Base->isVirtual())
8533      continue;
8534
8535    CXXRecordDecl *BaseClassDecl
8536      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8537    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8538                             &HasConstCopyConstructor);
8539  }
8540
8541  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8542                                       BaseEnd = ClassDecl->vbases_end();
8543       HasConstCopyConstructor && Base != BaseEnd;
8544       ++Base) {
8545    CXXRecordDecl *BaseClassDecl
8546      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8547    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8548                             &HasConstCopyConstructor);
8549  }
8550
8551  //     -- for all the nonstatic data members of X that are of a
8552  //        class type M (or array thereof), each such class type
8553  //        has a copy constructor whose first parameter is of type
8554  //        const M& or const volatile M&.
8555  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8556                                  FieldEnd = ClassDecl->field_end();
8557       HasConstCopyConstructor && Field != FieldEnd;
8558       ++Field) {
8559    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8560    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8561      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8562                               &HasConstCopyConstructor);
8563    }
8564  }
8565  //   Otherwise, the implicitly declared copy constructor will have
8566  //   the form
8567  //
8568  //       X::X(X&)
8569
8570  // C++ [except.spec]p14:
8571  //   An implicitly declared special member function (Clause 12) shall have an
8572  //   exception-specification. [...]
8573  ImplicitExceptionSpecification ExceptSpec(Context);
8574  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8575  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8576                                       BaseEnd = ClassDecl->bases_end();
8577       Base != BaseEnd;
8578       ++Base) {
8579    // Virtual bases are handled below.
8580    if (Base->isVirtual())
8581      continue;
8582
8583    CXXRecordDecl *BaseClassDecl
8584      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8585    if (CXXConstructorDecl *CopyConstructor =
8586          LookupCopyingConstructor(BaseClassDecl, Quals))
8587      ExceptSpec.CalledDecl(CopyConstructor);
8588  }
8589  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8590                                       BaseEnd = ClassDecl->vbases_end();
8591       Base != BaseEnd;
8592       ++Base) {
8593    CXXRecordDecl *BaseClassDecl
8594      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8595    if (CXXConstructorDecl *CopyConstructor =
8596          LookupCopyingConstructor(BaseClassDecl, Quals))
8597      ExceptSpec.CalledDecl(CopyConstructor);
8598  }
8599  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8600                                  FieldEnd = ClassDecl->field_end();
8601       Field != FieldEnd;
8602       ++Field) {
8603    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8604    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8605      if (CXXConstructorDecl *CopyConstructor =
8606        LookupCopyingConstructor(FieldClassDecl, Quals))
8607      ExceptSpec.CalledDecl(CopyConstructor);
8608    }
8609  }
8610
8611  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8612}
8613
8614CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8615                                                    CXXRecordDecl *ClassDecl) {
8616  // C++ [class.copy]p4:
8617  //   If the class definition does not explicitly declare a copy
8618  //   constructor, one is declared implicitly.
8619
8620  ImplicitExceptionSpecification Spec(Context);
8621  bool Const;
8622  llvm::tie(Spec, Const) =
8623    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8624
8625  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8626  QualType ArgType = ClassType;
8627  if (Const)
8628    ArgType = ArgType.withConst();
8629  ArgType = Context.getLValueReferenceType(ArgType);
8630
8631  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8632
8633  DeclarationName Name
8634    = Context.DeclarationNames.getCXXConstructorName(
8635                                           Context.getCanonicalType(ClassType));
8636  SourceLocation ClassLoc = ClassDecl->getLocation();
8637  DeclarationNameInfo NameInfo(Name, ClassLoc);
8638
8639  //   An implicitly-declared copy constructor is an inline public
8640  //   member of its class.
8641  CXXConstructorDecl *CopyConstructor
8642    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8643                                 Context.getFunctionType(Context.VoidTy,
8644                                                         &ArgType, 1, EPI),
8645                                 /*TInfo=*/0,
8646                                 /*isExplicit=*/false,
8647                                 /*isInline=*/true,
8648                                 /*isImplicitlyDeclared=*/true,
8649                                 // FIXME: apply the rules for definitions here
8650                                 /*isConstexpr=*/false);
8651  CopyConstructor->setAccess(AS_public);
8652  CopyConstructor->setDefaulted();
8653  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8654
8655  // Note that we have declared this constructor.
8656  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8657
8658  // Add the parameter to the constructor.
8659  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8660                                               ClassLoc, ClassLoc,
8661                                               /*IdentifierInfo=*/0,
8662                                               ArgType, /*TInfo=*/0,
8663                                               SC_None,
8664                                               SC_None, 0);
8665  CopyConstructor->setParams(FromParam);
8666
8667  if (Scope *S = getScopeForContext(ClassDecl))
8668    PushOnScopeChains(CopyConstructor, S, false);
8669  ClassDecl->addDecl(CopyConstructor);
8670
8671  // C++0x [class.copy]p7:
8672  //   ... If the class definition declares a move constructor or move
8673  //   assignment operator, the implicitly declared constructor is defined as
8674  //   deleted; ...
8675  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8676      ClassDecl->hasUserDeclaredMoveAssignment() ||
8677      ShouldDeleteCopyConstructor(CopyConstructor))
8678    CopyConstructor->setDeletedAsWritten();
8679
8680  return CopyConstructor;
8681}
8682
8683void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8684                                   CXXConstructorDecl *CopyConstructor) {
8685  assert((CopyConstructor->isDefaulted() &&
8686          CopyConstructor->isCopyConstructor() &&
8687          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8688         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8689
8690  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8691  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8692
8693  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8694  DiagnosticErrorTrap Trap(Diags);
8695
8696  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8697      Trap.hasErrorOccurred()) {
8698    Diag(CurrentLocation, diag::note_member_synthesized_at)
8699      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8700    CopyConstructor->setInvalidDecl();
8701  }  else {
8702    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8703                                               CopyConstructor->getLocation(),
8704                                               MultiStmtArg(*this, 0, 0),
8705                                               /*isStmtExpr=*/false)
8706                                                              .takeAs<Stmt>());
8707    CopyConstructor->setImplicitlyDefined(true);
8708  }
8709
8710  CopyConstructor->setUsed();
8711  if (ASTMutationListener *L = getASTMutationListener()) {
8712    L->CompletedImplicitDefinition(CopyConstructor);
8713  }
8714}
8715
8716Sema::ImplicitExceptionSpecification
8717Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8718  // C++ [except.spec]p14:
8719  //   An implicitly declared special member function (Clause 12) shall have an
8720  //   exception-specification. [...]
8721  ImplicitExceptionSpecification ExceptSpec(Context);
8722  if (ClassDecl->isInvalidDecl())
8723    return ExceptSpec;
8724
8725  // Direct base-class constructors.
8726  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8727                                       BEnd = ClassDecl->bases_end();
8728       B != BEnd; ++B) {
8729    if (B->isVirtual()) // Handled below.
8730      continue;
8731
8732    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8733      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8734      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8735      // If this is a deleted function, add it anyway. This might be conformant
8736      // with the standard. This might not. I'm not sure. It might not matter.
8737      if (Constructor)
8738        ExceptSpec.CalledDecl(Constructor);
8739    }
8740  }
8741
8742  // Virtual base-class constructors.
8743  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8744                                       BEnd = ClassDecl->vbases_end();
8745       B != BEnd; ++B) {
8746    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8747      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8748      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8749      // If this is a deleted function, add it anyway. This might be conformant
8750      // with the standard. This might not. I'm not sure. It might not matter.
8751      if (Constructor)
8752        ExceptSpec.CalledDecl(Constructor);
8753    }
8754  }
8755
8756  // Field constructors.
8757  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8758                               FEnd = ClassDecl->field_end();
8759       F != FEnd; ++F) {
8760    if (F->hasInClassInitializer()) {
8761      if (Expr *E = F->getInClassInitializer())
8762        ExceptSpec.CalledExpr(E);
8763      else if (!F->isInvalidDecl())
8764        ExceptSpec.SetDelayed();
8765    } else if (const RecordType *RecordTy
8766              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8767      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8768      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8769      // If this is a deleted function, add it anyway. This might be conformant
8770      // with the standard. This might not. I'm not sure. It might not matter.
8771      // In particular, the problem is that this function never gets called. It
8772      // might just be ill-formed because this function attempts to refer to
8773      // a deleted function here.
8774      if (Constructor)
8775        ExceptSpec.CalledDecl(Constructor);
8776    }
8777  }
8778
8779  return ExceptSpec;
8780}
8781
8782CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8783                                                    CXXRecordDecl *ClassDecl) {
8784  ImplicitExceptionSpecification Spec(
8785      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8786
8787  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8788  QualType ArgType = Context.getRValueReferenceType(ClassType);
8789
8790  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8791
8792  DeclarationName Name
8793    = Context.DeclarationNames.getCXXConstructorName(
8794                                           Context.getCanonicalType(ClassType));
8795  SourceLocation ClassLoc = ClassDecl->getLocation();
8796  DeclarationNameInfo NameInfo(Name, ClassLoc);
8797
8798  // C++0x [class.copy]p11:
8799  //   An implicitly-declared copy/move constructor is an inline public
8800  //   member of its class.
8801  CXXConstructorDecl *MoveConstructor
8802    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8803                                 Context.getFunctionType(Context.VoidTy,
8804                                                         &ArgType, 1, EPI),
8805                                 /*TInfo=*/0,
8806                                 /*isExplicit=*/false,
8807                                 /*isInline=*/true,
8808                                 /*isImplicitlyDeclared=*/true,
8809                                 // FIXME: apply the rules for definitions here
8810                                 /*isConstexpr=*/false);
8811  MoveConstructor->setAccess(AS_public);
8812  MoveConstructor->setDefaulted();
8813  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8814
8815  // Add the parameter to the constructor.
8816  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8817                                               ClassLoc, ClassLoc,
8818                                               /*IdentifierInfo=*/0,
8819                                               ArgType, /*TInfo=*/0,
8820                                               SC_None,
8821                                               SC_None, 0);
8822  MoveConstructor->setParams(FromParam);
8823
8824  // C++0x [class.copy]p9:
8825  //   If the definition of a class X does not explicitly declare a move
8826  //   constructor, one will be implicitly declared as defaulted if and only if:
8827  //   [...]
8828  //   - the move constructor would not be implicitly defined as deleted.
8829  if (ShouldDeleteMoveConstructor(MoveConstructor)) {
8830    // Cache this result so that we don't try to generate this over and over
8831    // on every lookup, leaking memory and wasting time.
8832    ClassDecl->setFailedImplicitMoveConstructor();
8833    return 0;
8834  }
8835
8836  // Note that we have declared this constructor.
8837  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8838
8839  if (Scope *S = getScopeForContext(ClassDecl))
8840    PushOnScopeChains(MoveConstructor, S, false);
8841  ClassDecl->addDecl(MoveConstructor);
8842
8843  return MoveConstructor;
8844}
8845
8846void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8847                                   CXXConstructorDecl *MoveConstructor) {
8848  assert((MoveConstructor->isDefaulted() &&
8849          MoveConstructor->isMoveConstructor() &&
8850          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8851         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8852
8853  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8854  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8855
8856  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8857  DiagnosticErrorTrap Trap(Diags);
8858
8859  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8860      Trap.hasErrorOccurred()) {
8861    Diag(CurrentLocation, diag::note_member_synthesized_at)
8862      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8863    MoveConstructor->setInvalidDecl();
8864  }  else {
8865    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8866                                               MoveConstructor->getLocation(),
8867                                               MultiStmtArg(*this, 0, 0),
8868                                               /*isStmtExpr=*/false)
8869                                                              .takeAs<Stmt>());
8870    MoveConstructor->setImplicitlyDefined(true);
8871  }
8872
8873  MoveConstructor->setUsed();
8874
8875  if (ASTMutationListener *L = getASTMutationListener()) {
8876    L->CompletedImplicitDefinition(MoveConstructor);
8877  }
8878}
8879
8880ExprResult
8881Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8882                            CXXConstructorDecl *Constructor,
8883                            MultiExprArg ExprArgs,
8884                            bool HadMultipleCandidates,
8885                            bool RequiresZeroInit,
8886                            unsigned ConstructKind,
8887                            SourceRange ParenRange) {
8888  bool Elidable = false;
8889
8890  // C++0x [class.copy]p34:
8891  //   When certain criteria are met, an implementation is allowed to
8892  //   omit the copy/move construction of a class object, even if the
8893  //   copy/move constructor and/or destructor for the object have
8894  //   side effects. [...]
8895  //     - when a temporary class object that has not been bound to a
8896  //       reference (12.2) would be copied/moved to a class object
8897  //       with the same cv-unqualified type, the copy/move operation
8898  //       can be omitted by constructing the temporary object
8899  //       directly into the target of the omitted copy/move
8900  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8901      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8902    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8903    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8904  }
8905
8906  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8907                               Elidable, move(ExprArgs), HadMultipleCandidates,
8908                               RequiresZeroInit, ConstructKind, ParenRange);
8909}
8910
8911/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8912/// including handling of its default argument expressions.
8913ExprResult
8914Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8915                            CXXConstructorDecl *Constructor, bool Elidable,
8916                            MultiExprArg ExprArgs,
8917                            bool HadMultipleCandidates,
8918                            bool RequiresZeroInit,
8919                            unsigned ConstructKind,
8920                            SourceRange ParenRange) {
8921  unsigned NumExprs = ExprArgs.size();
8922  Expr **Exprs = (Expr **)ExprArgs.release();
8923
8924  for (specific_attr_iterator<NonNullAttr>
8925           i = Constructor->specific_attr_begin<NonNullAttr>(),
8926           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8927    const NonNullAttr *NonNull = *i;
8928    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8929  }
8930
8931  MarkDeclarationReferenced(ConstructLoc, Constructor);
8932  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8933                                        Constructor, Elidable, Exprs, NumExprs,
8934                                        HadMultipleCandidates, RequiresZeroInit,
8935              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8936                                        ParenRange));
8937}
8938
8939bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8940                                        CXXConstructorDecl *Constructor,
8941                                        MultiExprArg Exprs,
8942                                        bool HadMultipleCandidates) {
8943  // FIXME: Provide the correct paren SourceRange when available.
8944  ExprResult TempResult =
8945    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8946                          move(Exprs), HadMultipleCandidates, false,
8947                          CXXConstructExpr::CK_Complete, SourceRange());
8948  if (TempResult.isInvalid())
8949    return true;
8950
8951  Expr *Temp = TempResult.takeAs<Expr>();
8952  CheckImplicitConversions(Temp, VD->getLocation());
8953  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8954  Temp = MaybeCreateExprWithCleanups(Temp);
8955  VD->setInit(Temp);
8956
8957  return false;
8958}
8959
8960void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8961  if (VD->isInvalidDecl()) return;
8962
8963  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8964  if (ClassDecl->isInvalidDecl()) return;
8965  if (ClassDecl->hasTrivialDestructor()) return;
8966  if (ClassDecl->isDependentContext()) return;
8967
8968  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8969  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8970  CheckDestructorAccess(VD->getLocation(), Destructor,
8971                        PDiag(diag::err_access_dtor_var)
8972                        << VD->getDeclName()
8973                        << VD->getType());
8974
8975  if (!VD->hasGlobalStorage()) return;
8976
8977  // Emit warning for non-trivial dtor in global scope (a real global,
8978  // class-static, function-static).
8979  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8980
8981  // TODO: this should be re-enabled for static locals by !CXAAtExit
8982  if (!VD->isStaticLocal())
8983    Diag(VD->getLocation(), diag::warn_global_destructor);
8984}
8985
8986/// AddCXXDirectInitializerToDecl - This action is called immediately after
8987/// ActOnDeclarator, when a C++ direct initializer is present.
8988/// e.g: "int x(1);"
8989void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8990                                         SourceLocation LParenLoc,
8991                                         MultiExprArg Exprs,
8992                                         SourceLocation RParenLoc,
8993                                         bool TypeMayContainAuto) {
8994  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
8995
8996  // If there is no declaration, there was an error parsing it.  Just ignore
8997  // the initializer.
8998  if (RealDecl == 0)
8999    return;
9000
9001  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9002  if (!VDecl) {
9003    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9004    RealDecl->setInvalidDecl();
9005    return;
9006  }
9007
9008  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9009  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9010    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
9011    if (Exprs.size() > 1) {
9012      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9013           diag::err_auto_var_init_multiple_expressions)
9014        << VDecl->getDeclName() << VDecl->getType()
9015        << VDecl->getSourceRange();
9016      RealDecl->setInvalidDecl();
9017      return;
9018    }
9019
9020    Expr *Init = Exprs.get()[0];
9021    TypeSourceInfo *DeducedType = 0;
9022    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
9023      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
9024        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
9025        << Init->getSourceRange();
9026    if (!DeducedType) {
9027      RealDecl->setInvalidDecl();
9028      return;
9029    }
9030    VDecl->setTypeSourceInfo(DeducedType);
9031    VDecl->setType(DeducedType->getType());
9032
9033    // In ARC, infer lifetime.
9034    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9035      VDecl->setInvalidDecl();
9036
9037    // If this is a redeclaration, check that the type we just deduced matches
9038    // the previously declared type.
9039    if (VarDecl *Old = VDecl->getPreviousDeclaration())
9040      MergeVarDeclTypes(VDecl, Old);
9041  }
9042
9043  // We will represent direct-initialization similarly to copy-initialization:
9044  //    int x(1);  -as-> int x = 1;
9045  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9046  //
9047  // Clients that want to distinguish between the two forms, can check for
9048  // direct initializer using VarDecl::hasCXXDirectInitializer().
9049  // A major benefit is that clients that don't particularly care about which
9050  // exactly form was it (like the CodeGen) can handle both cases without
9051  // special case code.
9052
9053  // C++ 8.5p11:
9054  // The form of initialization (using parentheses or '=') is generally
9055  // insignificant, but does matter when the entity being initialized has a
9056  // class type.
9057
9058  if (!VDecl->getType()->isDependentType() &&
9059      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9060                          diag::err_typecheck_decl_incomplete_type)) {
9061    VDecl->setInvalidDecl();
9062    return;
9063  }
9064
9065  // The variable can not have an abstract class type.
9066  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9067                             diag::err_abstract_type_in_decl,
9068                             AbstractVariableType))
9069    VDecl->setInvalidDecl();
9070
9071  const VarDecl *Def;
9072  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9073    Diag(VDecl->getLocation(), diag::err_redefinition)
9074    << VDecl->getDeclName();
9075    Diag(Def->getLocation(), diag::note_previous_definition);
9076    VDecl->setInvalidDecl();
9077    return;
9078  }
9079
9080  // C++ [class.static.data]p4
9081  //   If a static data member is of const integral or const
9082  //   enumeration type, its declaration in the class definition can
9083  //   specify a constant-initializer which shall be an integral
9084  //   constant expression (5.19). In that case, the member can appear
9085  //   in integral constant expressions. The member shall still be
9086  //   defined in a namespace scope if it is used in the program and the
9087  //   namespace scope definition shall not contain an initializer.
9088  //
9089  // We already performed a redefinition check above, but for static
9090  // data members we also need to check whether there was an in-class
9091  // declaration with an initializer.
9092  const VarDecl* PrevInit = 0;
9093  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9094    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9095    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9096    return;
9097  }
9098
9099  bool IsDependent = false;
9100  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9101    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9102      VDecl->setInvalidDecl();
9103      return;
9104    }
9105
9106    if (Exprs.get()[I]->isTypeDependent())
9107      IsDependent = true;
9108  }
9109
9110  // If either the declaration has a dependent type or if any of the
9111  // expressions is type-dependent, we represent the initialization
9112  // via a ParenListExpr for later use during template instantiation.
9113  if (VDecl->getType()->isDependentType() || IsDependent) {
9114    // Let clients know that initialization was done with a direct initializer.
9115    VDecl->setCXXDirectInitializer(true);
9116
9117    // Store the initialization expressions as a ParenListExpr.
9118    unsigned NumExprs = Exprs.size();
9119    VDecl->setInit(new (Context) ParenListExpr(
9120        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9121        VDecl->getType().getNonReferenceType()));
9122    return;
9123  }
9124
9125  // Capture the variable that is being initialized and the style of
9126  // initialization.
9127  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9128
9129  // FIXME: Poor source location information.
9130  InitializationKind Kind
9131    = InitializationKind::CreateDirect(VDecl->getLocation(),
9132                                       LParenLoc, RParenLoc);
9133
9134  InitializationSequence InitSeq(*this, Entity, Kind,
9135                                 Exprs.get(), Exprs.size());
9136  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
9137  if (Result.isInvalid()) {
9138    VDecl->setInvalidDecl();
9139    return;
9140  }
9141
9142  Expr *Init = Result.get();
9143  CheckImplicitConversions(Init, LParenLoc);
9144
9145  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
9146      !Init->isValueDependent() &&
9147      !Init->isConstantInitializer(Context,
9148                                   VDecl->getType()->isReferenceType())) {
9149    // FIXME: Improve this diagnostic to explain why the initializer is not
9150    // a constant expression.
9151    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
9152      << VDecl << Init->getSourceRange();
9153  }
9154
9155  Init = MaybeCreateExprWithCleanups(Init);
9156  VDecl->setInit(Init);
9157  VDecl->setCXXDirectInitializer(true);
9158
9159  CheckCompleteVariableDeclaration(VDecl);
9160}
9161
9162/// \brief Given a constructor and the set of arguments provided for the
9163/// constructor, convert the arguments and add any required default arguments
9164/// to form a proper call to this constructor.
9165///
9166/// \returns true if an error occurred, false otherwise.
9167bool
9168Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9169                              MultiExprArg ArgsPtr,
9170                              SourceLocation Loc,
9171                              ASTOwningVector<Expr*> &ConvertedArgs) {
9172  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9173  unsigned NumArgs = ArgsPtr.size();
9174  Expr **Args = (Expr **)ArgsPtr.get();
9175
9176  const FunctionProtoType *Proto
9177    = Constructor->getType()->getAs<FunctionProtoType>();
9178  assert(Proto && "Constructor without a prototype?");
9179  unsigned NumArgsInProto = Proto->getNumArgs();
9180
9181  // If too few arguments are available, we'll fill in the rest with defaults.
9182  if (NumArgs < NumArgsInProto)
9183    ConvertedArgs.reserve(NumArgsInProto);
9184  else
9185    ConvertedArgs.reserve(NumArgs);
9186
9187  VariadicCallType CallType =
9188    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9189  SmallVector<Expr *, 8> AllArgs;
9190  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9191                                        Proto, 0, Args, NumArgs, AllArgs,
9192                                        CallType);
9193  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9194    ConvertedArgs.push_back(AllArgs[i]);
9195  return Invalid;
9196}
9197
9198static inline bool
9199CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9200                                       const FunctionDecl *FnDecl) {
9201  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9202  if (isa<NamespaceDecl>(DC)) {
9203    return SemaRef.Diag(FnDecl->getLocation(),
9204                        diag::err_operator_new_delete_declared_in_namespace)
9205      << FnDecl->getDeclName();
9206  }
9207
9208  if (isa<TranslationUnitDecl>(DC) &&
9209      FnDecl->getStorageClass() == SC_Static) {
9210    return SemaRef.Diag(FnDecl->getLocation(),
9211                        diag::err_operator_new_delete_declared_static)
9212      << FnDecl->getDeclName();
9213  }
9214
9215  return false;
9216}
9217
9218static inline bool
9219CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9220                            CanQualType ExpectedResultType,
9221                            CanQualType ExpectedFirstParamType,
9222                            unsigned DependentParamTypeDiag,
9223                            unsigned InvalidParamTypeDiag) {
9224  QualType ResultType =
9225    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9226
9227  // Check that the result type is not dependent.
9228  if (ResultType->isDependentType())
9229    return SemaRef.Diag(FnDecl->getLocation(),
9230                        diag::err_operator_new_delete_dependent_result_type)
9231    << FnDecl->getDeclName() << ExpectedResultType;
9232
9233  // Check that the result type is what we expect.
9234  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9235    return SemaRef.Diag(FnDecl->getLocation(),
9236                        diag::err_operator_new_delete_invalid_result_type)
9237    << FnDecl->getDeclName() << ExpectedResultType;
9238
9239  // A function template must have at least 2 parameters.
9240  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9241    return SemaRef.Diag(FnDecl->getLocation(),
9242                      diag::err_operator_new_delete_template_too_few_parameters)
9243        << FnDecl->getDeclName();
9244
9245  // The function decl must have at least 1 parameter.
9246  if (FnDecl->getNumParams() == 0)
9247    return SemaRef.Diag(FnDecl->getLocation(),
9248                        diag::err_operator_new_delete_too_few_parameters)
9249      << FnDecl->getDeclName();
9250
9251  // Check the the first parameter type is not dependent.
9252  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9253  if (FirstParamType->isDependentType())
9254    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9255      << FnDecl->getDeclName() << ExpectedFirstParamType;
9256
9257  // Check that the first parameter type is what we expect.
9258  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9259      ExpectedFirstParamType)
9260    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9261    << FnDecl->getDeclName() << ExpectedFirstParamType;
9262
9263  return false;
9264}
9265
9266static bool
9267CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9268  // C++ [basic.stc.dynamic.allocation]p1:
9269  //   A program is ill-formed if an allocation function is declared in a
9270  //   namespace scope other than global scope or declared static in global
9271  //   scope.
9272  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9273    return true;
9274
9275  CanQualType SizeTy =
9276    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9277
9278  // C++ [basic.stc.dynamic.allocation]p1:
9279  //  The return type shall be void*. The first parameter shall have type
9280  //  std::size_t.
9281  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9282                                  SizeTy,
9283                                  diag::err_operator_new_dependent_param_type,
9284                                  diag::err_operator_new_param_type))
9285    return true;
9286
9287  // C++ [basic.stc.dynamic.allocation]p1:
9288  //  The first parameter shall not have an associated default argument.
9289  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9290    return SemaRef.Diag(FnDecl->getLocation(),
9291                        diag::err_operator_new_default_arg)
9292      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9293
9294  return false;
9295}
9296
9297static bool
9298CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9299  // C++ [basic.stc.dynamic.deallocation]p1:
9300  //   A program is ill-formed if deallocation functions are declared in a
9301  //   namespace scope other than global scope or declared static in global
9302  //   scope.
9303  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9304    return true;
9305
9306  // C++ [basic.stc.dynamic.deallocation]p2:
9307  //   Each deallocation function shall return void and its first parameter
9308  //   shall be void*.
9309  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9310                                  SemaRef.Context.VoidPtrTy,
9311                                 diag::err_operator_delete_dependent_param_type,
9312                                 diag::err_operator_delete_param_type))
9313    return true;
9314
9315  return false;
9316}
9317
9318/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9319/// of this overloaded operator is well-formed. If so, returns false;
9320/// otherwise, emits appropriate diagnostics and returns true.
9321bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9322  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9323         "Expected an overloaded operator declaration");
9324
9325  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9326
9327  // C++ [over.oper]p5:
9328  //   The allocation and deallocation functions, operator new,
9329  //   operator new[], operator delete and operator delete[], are
9330  //   described completely in 3.7.3. The attributes and restrictions
9331  //   found in the rest of this subclause do not apply to them unless
9332  //   explicitly stated in 3.7.3.
9333  if (Op == OO_Delete || Op == OO_Array_Delete)
9334    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9335
9336  if (Op == OO_New || Op == OO_Array_New)
9337    return CheckOperatorNewDeclaration(*this, FnDecl);
9338
9339  // C++ [over.oper]p6:
9340  //   An operator function shall either be a non-static member
9341  //   function or be a non-member function and have at least one
9342  //   parameter whose type is a class, a reference to a class, an
9343  //   enumeration, or a reference to an enumeration.
9344  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9345    if (MethodDecl->isStatic())
9346      return Diag(FnDecl->getLocation(),
9347                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9348  } else {
9349    bool ClassOrEnumParam = false;
9350    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9351                                   ParamEnd = FnDecl->param_end();
9352         Param != ParamEnd; ++Param) {
9353      QualType ParamType = (*Param)->getType().getNonReferenceType();
9354      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9355          ParamType->isEnumeralType()) {
9356        ClassOrEnumParam = true;
9357        break;
9358      }
9359    }
9360
9361    if (!ClassOrEnumParam)
9362      return Diag(FnDecl->getLocation(),
9363                  diag::err_operator_overload_needs_class_or_enum)
9364        << FnDecl->getDeclName();
9365  }
9366
9367  // C++ [over.oper]p8:
9368  //   An operator function cannot have default arguments (8.3.6),
9369  //   except where explicitly stated below.
9370  //
9371  // Only the function-call operator allows default arguments
9372  // (C++ [over.call]p1).
9373  if (Op != OO_Call) {
9374    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9375         Param != FnDecl->param_end(); ++Param) {
9376      if ((*Param)->hasDefaultArg())
9377        return Diag((*Param)->getLocation(),
9378                    diag::err_operator_overload_default_arg)
9379          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9380    }
9381  }
9382
9383  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9384    { false, false, false }
9385#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9386    , { Unary, Binary, MemberOnly }
9387#include "clang/Basic/OperatorKinds.def"
9388  };
9389
9390  bool CanBeUnaryOperator = OperatorUses[Op][0];
9391  bool CanBeBinaryOperator = OperatorUses[Op][1];
9392  bool MustBeMemberOperator = OperatorUses[Op][2];
9393
9394  // C++ [over.oper]p8:
9395  //   [...] Operator functions cannot have more or fewer parameters
9396  //   than the number required for the corresponding operator, as
9397  //   described in the rest of this subclause.
9398  unsigned NumParams = FnDecl->getNumParams()
9399                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9400  if (Op != OO_Call &&
9401      ((NumParams == 1 && !CanBeUnaryOperator) ||
9402       (NumParams == 2 && !CanBeBinaryOperator) ||
9403       (NumParams < 1) || (NumParams > 2))) {
9404    // We have the wrong number of parameters.
9405    unsigned ErrorKind;
9406    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9407      ErrorKind = 2;  // 2 -> unary or binary.
9408    } else if (CanBeUnaryOperator) {
9409      ErrorKind = 0;  // 0 -> unary
9410    } else {
9411      assert(CanBeBinaryOperator &&
9412             "All non-call overloaded operators are unary or binary!");
9413      ErrorKind = 1;  // 1 -> binary
9414    }
9415
9416    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9417      << FnDecl->getDeclName() << NumParams << ErrorKind;
9418  }
9419
9420  // Overloaded operators other than operator() cannot be variadic.
9421  if (Op != OO_Call &&
9422      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9423    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9424      << FnDecl->getDeclName();
9425  }
9426
9427  // Some operators must be non-static member functions.
9428  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9429    return Diag(FnDecl->getLocation(),
9430                diag::err_operator_overload_must_be_member)
9431      << FnDecl->getDeclName();
9432  }
9433
9434  // C++ [over.inc]p1:
9435  //   The user-defined function called operator++ implements the
9436  //   prefix and postfix ++ operator. If this function is a member
9437  //   function with no parameters, or a non-member function with one
9438  //   parameter of class or enumeration type, it defines the prefix
9439  //   increment operator ++ for objects of that type. If the function
9440  //   is a member function with one parameter (which shall be of type
9441  //   int) or a non-member function with two parameters (the second
9442  //   of which shall be of type int), it defines the postfix
9443  //   increment operator ++ for objects of that type.
9444  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9445    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9446    bool ParamIsInt = false;
9447    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9448      ParamIsInt = BT->getKind() == BuiltinType::Int;
9449
9450    if (!ParamIsInt)
9451      return Diag(LastParam->getLocation(),
9452                  diag::err_operator_overload_post_incdec_must_be_int)
9453        << LastParam->getType() << (Op == OO_MinusMinus);
9454  }
9455
9456  return false;
9457}
9458
9459/// CheckLiteralOperatorDeclaration - Check whether the declaration
9460/// of this literal operator function is well-formed. If so, returns
9461/// false; otherwise, emits appropriate diagnostics and returns true.
9462bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9463  DeclContext *DC = FnDecl->getDeclContext();
9464  Decl::Kind Kind = DC->getDeclKind();
9465  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9466      Kind != Decl::LinkageSpec) {
9467    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9468      << FnDecl->getDeclName();
9469    return true;
9470  }
9471
9472  bool Valid = false;
9473
9474  // template <char...> type operator "" name() is the only valid template
9475  // signature, and the only valid signature with no parameters.
9476  if (FnDecl->param_size() == 0) {
9477    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9478      // Must have only one template parameter
9479      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9480      if (Params->size() == 1) {
9481        NonTypeTemplateParmDecl *PmDecl =
9482          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9483
9484        // The template parameter must be a char parameter pack.
9485        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9486            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9487          Valid = true;
9488      }
9489    }
9490  } else {
9491    // Check the first parameter
9492    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9493
9494    QualType T = (*Param)->getType();
9495
9496    // unsigned long long int, long double, and any character type are allowed
9497    // as the only parameters.
9498    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9499        Context.hasSameType(T, Context.LongDoubleTy) ||
9500        Context.hasSameType(T, Context.CharTy) ||
9501        Context.hasSameType(T, Context.WCharTy) ||
9502        Context.hasSameType(T, Context.Char16Ty) ||
9503        Context.hasSameType(T, Context.Char32Ty)) {
9504      if (++Param == FnDecl->param_end())
9505        Valid = true;
9506      goto FinishedParams;
9507    }
9508
9509    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9510    const PointerType *PT = T->getAs<PointerType>();
9511    if (!PT)
9512      goto FinishedParams;
9513    T = PT->getPointeeType();
9514    if (!T.isConstQualified())
9515      goto FinishedParams;
9516    T = T.getUnqualifiedType();
9517
9518    // Move on to the second parameter;
9519    ++Param;
9520
9521    // If there is no second parameter, the first must be a const char *
9522    if (Param == FnDecl->param_end()) {
9523      if (Context.hasSameType(T, Context.CharTy))
9524        Valid = true;
9525      goto FinishedParams;
9526    }
9527
9528    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9529    // are allowed as the first parameter to a two-parameter function
9530    if (!(Context.hasSameType(T, Context.CharTy) ||
9531          Context.hasSameType(T, Context.WCharTy) ||
9532          Context.hasSameType(T, Context.Char16Ty) ||
9533          Context.hasSameType(T, Context.Char32Ty)))
9534      goto FinishedParams;
9535
9536    // The second and final parameter must be an std::size_t
9537    T = (*Param)->getType().getUnqualifiedType();
9538    if (Context.hasSameType(T, Context.getSizeType()) &&
9539        ++Param == FnDecl->param_end())
9540      Valid = true;
9541  }
9542
9543  // FIXME: This diagnostic is absolutely terrible.
9544FinishedParams:
9545  if (!Valid) {
9546    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9547      << FnDecl->getDeclName();
9548    return true;
9549  }
9550
9551  StringRef LiteralName
9552    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9553  if (LiteralName[0] != '_') {
9554    // C++0x [usrlit.suffix]p1:
9555    //   Literal suffix identifiers that do not start with an underscore are
9556    //   reserved for future standardization.
9557    bool IsHexFloat = true;
9558    if (LiteralName.size() > 1 &&
9559        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9560      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9561        if (!isdigit(LiteralName[I])) {
9562          IsHexFloat = false;
9563          break;
9564        }
9565      }
9566    }
9567
9568    if (IsHexFloat)
9569      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9570        << LiteralName;
9571    else
9572      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9573  }
9574
9575  return false;
9576}
9577
9578/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9579/// linkage specification, including the language and (if present)
9580/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9581/// the location of the language string literal, which is provided
9582/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9583/// the '{' brace. Otherwise, this linkage specification does not
9584/// have any braces.
9585Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9586                                           SourceLocation LangLoc,
9587                                           StringRef Lang,
9588                                           SourceLocation LBraceLoc) {
9589  LinkageSpecDecl::LanguageIDs Language;
9590  if (Lang == "\"C\"")
9591    Language = LinkageSpecDecl::lang_c;
9592  else if (Lang == "\"C++\"")
9593    Language = LinkageSpecDecl::lang_cxx;
9594  else {
9595    Diag(LangLoc, diag::err_bad_language);
9596    return 0;
9597  }
9598
9599  // FIXME: Add all the various semantics of linkage specifications
9600
9601  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9602                                               ExternLoc, LangLoc, Language);
9603  CurContext->addDecl(D);
9604  PushDeclContext(S, D);
9605  return D;
9606}
9607
9608/// ActOnFinishLinkageSpecification - Complete the definition of
9609/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9610/// valid, it's the position of the closing '}' brace in a linkage
9611/// specification that uses braces.
9612Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9613                                            Decl *LinkageSpec,
9614                                            SourceLocation RBraceLoc) {
9615  if (LinkageSpec) {
9616    if (RBraceLoc.isValid()) {
9617      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9618      LSDecl->setRBraceLoc(RBraceLoc);
9619    }
9620    PopDeclContext();
9621  }
9622  return LinkageSpec;
9623}
9624
9625/// \brief Perform semantic analysis for the variable declaration that
9626/// occurs within a C++ catch clause, returning the newly-created
9627/// variable.
9628VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9629                                         TypeSourceInfo *TInfo,
9630                                         SourceLocation StartLoc,
9631                                         SourceLocation Loc,
9632                                         IdentifierInfo *Name) {
9633  bool Invalid = false;
9634  QualType ExDeclType = TInfo->getType();
9635
9636  // Arrays and functions decay.
9637  if (ExDeclType->isArrayType())
9638    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9639  else if (ExDeclType->isFunctionType())
9640    ExDeclType = Context.getPointerType(ExDeclType);
9641
9642  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9643  // The exception-declaration shall not denote a pointer or reference to an
9644  // incomplete type, other than [cv] void*.
9645  // N2844 forbids rvalue references.
9646  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9647    Diag(Loc, diag::err_catch_rvalue_ref);
9648    Invalid = true;
9649  }
9650
9651  // GCC allows catching pointers and references to incomplete types
9652  // as an extension; so do we, but we warn by default.
9653
9654  QualType BaseType = ExDeclType;
9655  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9656  unsigned DK = diag::err_catch_incomplete;
9657  bool IncompleteCatchIsInvalid = true;
9658  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9659    BaseType = Ptr->getPointeeType();
9660    Mode = 1;
9661    DK = diag::ext_catch_incomplete_ptr;
9662    IncompleteCatchIsInvalid = false;
9663  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9664    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9665    BaseType = Ref->getPointeeType();
9666    Mode = 2;
9667    DK = diag::ext_catch_incomplete_ref;
9668    IncompleteCatchIsInvalid = false;
9669  }
9670  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9671      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9672      IncompleteCatchIsInvalid)
9673    Invalid = true;
9674
9675  if (!Invalid && !ExDeclType->isDependentType() &&
9676      RequireNonAbstractType(Loc, ExDeclType,
9677                             diag::err_abstract_type_in_decl,
9678                             AbstractVariableType))
9679    Invalid = true;
9680
9681  // Only the non-fragile NeXT runtime currently supports C++ catches
9682  // of ObjC types, and no runtime supports catching ObjC types by value.
9683  if (!Invalid && getLangOptions().ObjC1) {
9684    QualType T = ExDeclType;
9685    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9686      T = RT->getPointeeType();
9687
9688    if (T->isObjCObjectType()) {
9689      Diag(Loc, diag::err_objc_object_catch);
9690      Invalid = true;
9691    } else if (T->isObjCObjectPointerType()) {
9692      if (!getLangOptions().ObjCNonFragileABI)
9693        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9694    }
9695  }
9696
9697  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9698                                    ExDeclType, TInfo, SC_None, SC_None);
9699  ExDecl->setExceptionVariable(true);
9700
9701  if (!Invalid && !ExDeclType->isDependentType()) {
9702    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9703      // C++ [except.handle]p16:
9704      //   The object declared in an exception-declaration or, if the
9705      //   exception-declaration does not specify a name, a temporary (12.2) is
9706      //   copy-initialized (8.5) from the exception object. [...]
9707      //   The object is destroyed when the handler exits, after the destruction
9708      //   of any automatic objects initialized within the handler.
9709      //
9710      // We just pretend to initialize the object with itself, then make sure
9711      // it can be destroyed later.
9712      QualType initType = ExDeclType;
9713
9714      InitializedEntity entity =
9715        InitializedEntity::InitializeVariable(ExDecl);
9716      InitializationKind initKind =
9717        InitializationKind::CreateCopy(Loc, SourceLocation());
9718
9719      Expr *opaqueValue =
9720        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9721      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9722      ExprResult result = sequence.Perform(*this, entity, initKind,
9723                                           MultiExprArg(&opaqueValue, 1));
9724      if (result.isInvalid())
9725        Invalid = true;
9726      else {
9727        // If the constructor used was non-trivial, set this as the
9728        // "initializer".
9729        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9730        if (!construct->getConstructor()->isTrivial()) {
9731          Expr *init = MaybeCreateExprWithCleanups(construct);
9732          ExDecl->setInit(init);
9733        }
9734
9735        // And make sure it's destructable.
9736        FinalizeVarWithDestructor(ExDecl, recordType);
9737      }
9738    }
9739  }
9740
9741  if (Invalid)
9742    ExDecl->setInvalidDecl();
9743
9744  return ExDecl;
9745}
9746
9747/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9748/// handler.
9749Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9750  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9751  bool Invalid = D.isInvalidType();
9752
9753  // Check for unexpanded parameter packs.
9754  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9755                                               UPPC_ExceptionType)) {
9756    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9757                                             D.getIdentifierLoc());
9758    Invalid = true;
9759  }
9760
9761  IdentifierInfo *II = D.getIdentifier();
9762  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9763                                             LookupOrdinaryName,
9764                                             ForRedeclaration)) {
9765    // The scope should be freshly made just for us. There is just no way
9766    // it contains any previous declaration.
9767    assert(!S->isDeclScope(PrevDecl));
9768    if (PrevDecl->isTemplateParameter()) {
9769      // Maybe we will complain about the shadowed template parameter.
9770      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9771    }
9772  }
9773
9774  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9775    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9776      << D.getCXXScopeSpec().getRange();
9777    Invalid = true;
9778  }
9779
9780  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9781                                              D.getSourceRange().getBegin(),
9782                                              D.getIdentifierLoc(),
9783                                              D.getIdentifier());
9784  if (Invalid)
9785    ExDecl->setInvalidDecl();
9786
9787  // Add the exception declaration into this scope.
9788  if (II)
9789    PushOnScopeChains(ExDecl, S);
9790  else
9791    CurContext->addDecl(ExDecl);
9792
9793  ProcessDeclAttributes(S, ExDecl, D);
9794  return ExDecl;
9795}
9796
9797Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9798                                         Expr *AssertExpr,
9799                                         Expr *AssertMessageExpr_,
9800                                         SourceLocation RParenLoc) {
9801  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9802
9803  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9804    llvm::APSInt Value(32);
9805    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9806      Diag(StaticAssertLoc,
9807           diag::err_static_assert_expression_is_not_constant) <<
9808        AssertExpr->getSourceRange();
9809      return 0;
9810    }
9811
9812    if (Value == 0) {
9813      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9814        << AssertMessage->getString() << AssertExpr->getSourceRange();
9815    }
9816  }
9817
9818  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9819    return 0;
9820
9821  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9822                                        AssertExpr, AssertMessage, RParenLoc);
9823
9824  CurContext->addDecl(Decl);
9825  return Decl;
9826}
9827
9828/// \brief Perform semantic analysis of the given friend type declaration.
9829///
9830/// \returns A friend declaration that.
9831FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
9832                                      TypeSourceInfo *TSInfo) {
9833  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9834
9835  QualType T = TSInfo->getType();
9836  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9837
9838  if (!getLangOptions().CPlusPlus0x) {
9839    // C++03 [class.friend]p2:
9840    //   An elaborated-type-specifier shall be used in a friend declaration
9841    //   for a class.*
9842    //
9843    //   * The class-key of the elaborated-type-specifier is required.
9844    if (!ActiveTemplateInstantiations.empty()) {
9845      // Do not complain about the form of friend template types during
9846      // template instantiation; we will already have complained when the
9847      // template was declared.
9848    } else if (!T->isElaboratedTypeSpecifier()) {
9849      // If we evaluated the type to a record type, suggest putting
9850      // a tag in front.
9851      if (const RecordType *RT = T->getAs<RecordType>()) {
9852        RecordDecl *RD = RT->getDecl();
9853
9854        std::string InsertionText = std::string(" ") + RD->getKindName();
9855
9856        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
9857          << (unsigned) RD->getTagKind()
9858          << T
9859          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9860                                        InsertionText);
9861      } else {
9862        Diag(FriendLoc, diag::ext_nonclass_type_friend)
9863          << T
9864          << SourceRange(FriendLoc, TypeRange.getEnd());
9865      }
9866    } else if (T->getAs<EnumType>()) {
9867      Diag(FriendLoc, diag::ext_enum_friend)
9868        << T
9869        << SourceRange(FriendLoc, TypeRange.getEnd());
9870    }
9871  }
9872
9873  // C++0x [class.friend]p3:
9874  //   If the type specifier in a friend declaration designates a (possibly
9875  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9876  //   the friend declaration is ignored.
9877
9878  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9879  // in [class.friend]p3 that we do not implement.
9880
9881  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
9882}
9883
9884/// Handle a friend tag declaration where the scope specifier was
9885/// templated.
9886Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9887                                    unsigned TagSpec, SourceLocation TagLoc,
9888                                    CXXScopeSpec &SS,
9889                                    IdentifierInfo *Name, SourceLocation NameLoc,
9890                                    AttributeList *Attr,
9891                                    MultiTemplateParamsArg TempParamLists) {
9892  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9893
9894  bool isExplicitSpecialization = false;
9895  bool Invalid = false;
9896
9897  if (TemplateParameterList *TemplateParams
9898        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9899                                                  TempParamLists.get(),
9900                                                  TempParamLists.size(),
9901                                                  /*friend*/ true,
9902                                                  isExplicitSpecialization,
9903                                                  Invalid)) {
9904    if (TemplateParams->size() > 0) {
9905      // This is a declaration of a class template.
9906      if (Invalid)
9907        return 0;
9908
9909      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9910                                SS, Name, NameLoc, Attr,
9911                                TemplateParams, AS_public,
9912                                /*ModulePrivateLoc=*/SourceLocation(),
9913                                TempParamLists.size() - 1,
9914                   (TemplateParameterList**) TempParamLists.release()).take();
9915    } else {
9916      // The "template<>" header is extraneous.
9917      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9918        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9919      isExplicitSpecialization = true;
9920    }
9921  }
9922
9923  if (Invalid) return 0;
9924
9925  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9926
9927  bool isAllExplicitSpecializations = true;
9928  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9929    if (TempParamLists.get()[I]->size()) {
9930      isAllExplicitSpecializations = false;
9931      break;
9932    }
9933  }
9934
9935  // FIXME: don't ignore attributes.
9936
9937  // If it's explicit specializations all the way down, just forget
9938  // about the template header and build an appropriate non-templated
9939  // friend.  TODO: for source fidelity, remember the headers.
9940  if (isAllExplicitSpecializations) {
9941    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9942    ElaboratedTypeKeyword Keyword
9943      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9944    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9945                                   *Name, NameLoc);
9946    if (T.isNull())
9947      return 0;
9948
9949    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9950    if (isa<DependentNameType>(T)) {
9951      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9952      TL.setKeywordLoc(TagLoc);
9953      TL.setQualifierLoc(QualifierLoc);
9954      TL.setNameLoc(NameLoc);
9955    } else {
9956      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9957      TL.setKeywordLoc(TagLoc);
9958      TL.setQualifierLoc(QualifierLoc);
9959      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9960    }
9961
9962    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9963                                            TSI, FriendLoc);
9964    Friend->setAccess(AS_public);
9965    CurContext->addDecl(Friend);
9966    return Friend;
9967  }
9968
9969  // Handle the case of a templated-scope friend class.  e.g.
9970  //   template <class T> class A<T>::B;
9971  // FIXME: we don't support these right now.
9972  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9973  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9974  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9975  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9976  TL.setKeywordLoc(TagLoc);
9977  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9978  TL.setNameLoc(NameLoc);
9979
9980  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9981                                          TSI, FriendLoc);
9982  Friend->setAccess(AS_public);
9983  Friend->setUnsupportedFriend(true);
9984  CurContext->addDecl(Friend);
9985  return Friend;
9986}
9987
9988
9989/// Handle a friend type declaration.  This works in tandem with
9990/// ActOnTag.
9991///
9992/// Notes on friend class templates:
9993///
9994/// We generally treat friend class declarations as if they were
9995/// declaring a class.  So, for example, the elaborated type specifier
9996/// in a friend declaration is required to obey the restrictions of a
9997/// class-head (i.e. no typedefs in the scope chain), template
9998/// parameters are required to match up with simple template-ids, &c.
9999/// However, unlike when declaring a template specialization, it's
10000/// okay to refer to a template specialization without an empty
10001/// template parameter declaration, e.g.
10002///   friend class A<T>::B<unsigned>;
10003/// We permit this as a special case; if there are any template
10004/// parameters present at all, require proper matching, i.e.
10005///   template <> template <class T> friend class A<int>::B;
10006Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10007                                MultiTemplateParamsArg TempParams) {
10008  SourceLocation Loc = DS.getSourceRange().getBegin();
10009
10010  assert(DS.isFriendSpecified());
10011  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10012
10013  // Try to convert the decl specifier to a type.  This works for
10014  // friend templates because ActOnTag never produces a ClassTemplateDecl
10015  // for a TUK_Friend.
10016  Declarator TheDeclarator(DS, Declarator::MemberContext);
10017  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10018  QualType T = TSI->getType();
10019  if (TheDeclarator.isInvalidType())
10020    return 0;
10021
10022  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10023    return 0;
10024
10025  // This is definitely an error in C++98.  It's probably meant to
10026  // be forbidden in C++0x, too, but the specification is just
10027  // poorly written.
10028  //
10029  // The problem is with declarations like the following:
10030  //   template <T> friend A<T>::foo;
10031  // where deciding whether a class C is a friend or not now hinges
10032  // on whether there exists an instantiation of A that causes
10033  // 'foo' to equal C.  There are restrictions on class-heads
10034  // (which we declare (by fiat) elaborated friend declarations to
10035  // be) that makes this tractable.
10036  //
10037  // FIXME: handle "template <> friend class A<T>;", which
10038  // is possibly well-formed?  Who even knows?
10039  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10040    Diag(Loc, diag::err_tagless_friend_type_template)
10041      << DS.getSourceRange();
10042    return 0;
10043  }
10044
10045  // C++98 [class.friend]p1: A friend of a class is a function
10046  //   or class that is not a member of the class . . .
10047  // This is fixed in DR77, which just barely didn't make the C++03
10048  // deadline.  It's also a very silly restriction that seriously
10049  // affects inner classes and which nobody else seems to implement;
10050  // thus we never diagnose it, not even in -pedantic.
10051  //
10052  // But note that we could warn about it: it's always useless to
10053  // friend one of your own members (it's not, however, worthless to
10054  // friend a member of an arbitrary specialization of your template).
10055
10056  Decl *D;
10057  if (unsigned NumTempParamLists = TempParams.size())
10058    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10059                                   NumTempParamLists,
10060                                   TempParams.release(),
10061                                   TSI,
10062                                   DS.getFriendSpecLoc());
10063  else
10064    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
10065
10066  if (!D)
10067    return 0;
10068
10069  D->setAccess(AS_public);
10070  CurContext->addDecl(D);
10071
10072  return D;
10073}
10074
10075Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
10076                                    MultiTemplateParamsArg TemplateParams) {
10077  const DeclSpec &DS = D.getDeclSpec();
10078
10079  assert(DS.isFriendSpecified());
10080  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10081
10082  SourceLocation Loc = D.getIdentifierLoc();
10083  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10084  QualType T = TInfo->getType();
10085
10086  // C++ [class.friend]p1
10087  //   A friend of a class is a function or class....
10088  // Note that this sees through typedefs, which is intended.
10089  // It *doesn't* see through dependent types, which is correct
10090  // according to [temp.arg.type]p3:
10091  //   If a declaration acquires a function type through a
10092  //   type dependent on a template-parameter and this causes
10093  //   a declaration that does not use the syntactic form of a
10094  //   function declarator to have a function type, the program
10095  //   is ill-formed.
10096  if (!T->isFunctionType()) {
10097    Diag(Loc, diag::err_unexpected_friend);
10098
10099    // It might be worthwhile to try to recover by creating an
10100    // appropriate declaration.
10101    return 0;
10102  }
10103
10104  // C++ [namespace.memdef]p3
10105  //  - If a friend declaration in a non-local class first declares a
10106  //    class or function, the friend class or function is a member
10107  //    of the innermost enclosing namespace.
10108  //  - The name of the friend is not found by simple name lookup
10109  //    until a matching declaration is provided in that namespace
10110  //    scope (either before or after the class declaration granting
10111  //    friendship).
10112  //  - If a friend function is called, its name may be found by the
10113  //    name lookup that considers functions from namespaces and
10114  //    classes associated with the types of the function arguments.
10115  //  - When looking for a prior declaration of a class or a function
10116  //    declared as a friend, scopes outside the innermost enclosing
10117  //    namespace scope are not considered.
10118
10119  CXXScopeSpec &SS = D.getCXXScopeSpec();
10120  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10121  DeclarationName Name = NameInfo.getName();
10122  assert(Name);
10123
10124  // Check for unexpanded parameter packs.
10125  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10126      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10127      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10128    return 0;
10129
10130  // The context we found the declaration in, or in which we should
10131  // create the declaration.
10132  DeclContext *DC;
10133  Scope *DCScope = S;
10134  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10135                        ForRedeclaration);
10136
10137  // FIXME: there are different rules in local classes
10138
10139  // There are four cases here.
10140  //   - There's no scope specifier, in which case we just go to the
10141  //     appropriate scope and look for a function or function template
10142  //     there as appropriate.
10143  // Recover from invalid scope qualifiers as if they just weren't there.
10144  if (SS.isInvalid() || !SS.isSet()) {
10145    // C++0x [namespace.memdef]p3:
10146    //   If the name in a friend declaration is neither qualified nor
10147    //   a template-id and the declaration is a function or an
10148    //   elaborated-type-specifier, the lookup to determine whether
10149    //   the entity has been previously declared shall not consider
10150    //   any scopes outside the innermost enclosing namespace.
10151    // C++0x [class.friend]p11:
10152    //   If a friend declaration appears in a local class and the name
10153    //   specified is an unqualified name, a prior declaration is
10154    //   looked up without considering scopes that are outside the
10155    //   innermost enclosing non-class scope. For a friend function
10156    //   declaration, if there is no prior declaration, the program is
10157    //   ill-formed.
10158    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10159    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10160
10161    // Find the appropriate context according to the above.
10162    DC = CurContext;
10163    while (true) {
10164      // Skip class contexts.  If someone can cite chapter and verse
10165      // for this behavior, that would be nice --- it's what GCC and
10166      // EDG do, and it seems like a reasonable intent, but the spec
10167      // really only says that checks for unqualified existing
10168      // declarations should stop at the nearest enclosing namespace,
10169      // not that they should only consider the nearest enclosing
10170      // namespace.
10171      while (DC->isRecord())
10172        DC = DC->getParent();
10173
10174      LookupQualifiedName(Previous, DC);
10175
10176      // TODO: decide what we think about using declarations.
10177      if (isLocal || !Previous.empty())
10178        break;
10179
10180      if (isTemplateId) {
10181        if (isa<TranslationUnitDecl>(DC)) break;
10182      } else {
10183        if (DC->isFileContext()) break;
10184      }
10185      DC = DC->getParent();
10186    }
10187
10188    // C++ [class.friend]p1: A friend of a class is a function or
10189    //   class that is not a member of the class . . .
10190    // C++0x changes this for both friend types and functions.
10191    // Most C++ 98 compilers do seem to give an error here, so
10192    // we do, too.
10193    if (!Previous.empty() && DC->Equals(CurContext)
10194        && !getLangOptions().CPlusPlus0x)
10195      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
10196
10197    DCScope = getScopeForDeclContext(S, DC);
10198
10199  //   - There's a non-dependent scope specifier, in which case we
10200  //     compute it and do a previous lookup there for a function
10201  //     or function template.
10202  } else if (!SS.getScopeRep()->isDependent()) {
10203    DC = computeDeclContext(SS);
10204    if (!DC) return 0;
10205
10206    if (RequireCompleteDeclContext(SS, DC)) return 0;
10207
10208    LookupQualifiedName(Previous, DC);
10209
10210    // Ignore things found implicitly in the wrong scope.
10211    // TODO: better diagnostics for this case.  Suggesting the right
10212    // qualified scope would be nice...
10213    LookupResult::Filter F = Previous.makeFilter();
10214    while (F.hasNext()) {
10215      NamedDecl *D = F.next();
10216      if (!DC->InEnclosingNamespaceSetOf(
10217              D->getDeclContext()->getRedeclContext()))
10218        F.erase();
10219    }
10220    F.done();
10221
10222    if (Previous.empty()) {
10223      D.setInvalidType();
10224      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
10225      return 0;
10226    }
10227
10228    // C++ [class.friend]p1: A friend of a class is a function or
10229    //   class that is not a member of the class . . .
10230    if (DC->Equals(CurContext))
10231      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
10232
10233  //   - There's a scope specifier that does not match any template
10234  //     parameter lists, in which case we use some arbitrary context,
10235  //     create a method or method template, and wait for instantiation.
10236  //   - There's a scope specifier that does match some template
10237  //     parameter lists, which we don't handle right now.
10238  } else {
10239    DC = CurContext;
10240    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10241  }
10242
10243  if (!DC->isRecord()) {
10244    // This implies that it has to be an operator or function.
10245    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10246        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10247        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10248      Diag(Loc, diag::err_introducing_special_friend) <<
10249        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10250         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10251      return 0;
10252    }
10253  }
10254
10255  bool Redeclaration = false;
10256  bool AddToScope = true;
10257  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
10258                                          move(TemplateParams),
10259                                          IsDefinition,
10260                                          Redeclaration, AddToScope);
10261  if (!ND) return 0;
10262
10263  assert(ND->getDeclContext() == DC);
10264  assert(ND->getLexicalDeclContext() == CurContext);
10265
10266  // Add the function declaration to the appropriate lookup tables,
10267  // adjusting the redeclarations list as necessary.  We don't
10268  // want to do this yet if the friending class is dependent.
10269  //
10270  // Also update the scope-based lookup if the target context's
10271  // lookup context is in lexical scope.
10272  if (!CurContext->isDependentContext()) {
10273    DC = DC->getRedeclContext();
10274    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10275    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10276      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10277  }
10278
10279  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10280                                       D.getIdentifierLoc(), ND,
10281                                       DS.getFriendSpecLoc());
10282  FrD->setAccess(AS_public);
10283  CurContext->addDecl(FrD);
10284
10285  if (ND->isInvalidDecl())
10286    FrD->setInvalidDecl();
10287  else {
10288    FunctionDecl *FD;
10289    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10290      FD = FTD->getTemplatedDecl();
10291    else
10292      FD = cast<FunctionDecl>(ND);
10293
10294    // Mark templated-scope function declarations as unsupported.
10295    if (FD->getNumTemplateParameterLists())
10296      FrD->setUnsupportedFriend(true);
10297  }
10298
10299  return ND;
10300}
10301
10302void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10303  AdjustDeclIfTemplate(Dcl);
10304
10305  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10306  if (!Fn) {
10307    Diag(DelLoc, diag::err_deleted_non_function);
10308    return;
10309  }
10310  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10311    Diag(DelLoc, diag::err_deleted_decl_not_first);
10312    Diag(Prev->getLocation(), diag::note_previous_declaration);
10313    // If the declaration wasn't the first, we delete the function anyway for
10314    // recovery.
10315  }
10316  Fn->setDeletedAsWritten();
10317}
10318
10319void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10320  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10321
10322  if (MD) {
10323    if (MD->getParent()->isDependentType()) {
10324      MD->setDefaulted();
10325      MD->setExplicitlyDefaulted();
10326      return;
10327    }
10328
10329    CXXSpecialMember Member = getSpecialMember(MD);
10330    if (Member == CXXInvalid) {
10331      Diag(DefaultLoc, diag::err_default_special_members);
10332      return;
10333    }
10334
10335    MD->setDefaulted();
10336    MD->setExplicitlyDefaulted();
10337
10338    // If this definition appears within the record, do the checking when
10339    // the record is complete.
10340    const FunctionDecl *Primary = MD;
10341    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10342      // Find the uninstantiated declaration that actually had the '= default'
10343      // on it.
10344      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10345
10346    if (Primary == Primary->getCanonicalDecl())
10347      return;
10348
10349    switch (Member) {
10350    case CXXDefaultConstructor: {
10351      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10352      CheckExplicitlyDefaultedDefaultConstructor(CD);
10353      if (!CD->isInvalidDecl())
10354        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10355      break;
10356    }
10357
10358    case CXXCopyConstructor: {
10359      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10360      CheckExplicitlyDefaultedCopyConstructor(CD);
10361      if (!CD->isInvalidDecl())
10362        DefineImplicitCopyConstructor(DefaultLoc, CD);
10363      break;
10364    }
10365
10366    case CXXCopyAssignment: {
10367      CheckExplicitlyDefaultedCopyAssignment(MD);
10368      if (!MD->isInvalidDecl())
10369        DefineImplicitCopyAssignment(DefaultLoc, MD);
10370      break;
10371    }
10372
10373    case CXXDestructor: {
10374      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10375      CheckExplicitlyDefaultedDestructor(DD);
10376      if (!DD->isInvalidDecl())
10377        DefineImplicitDestructor(DefaultLoc, DD);
10378      break;
10379    }
10380
10381    case CXXMoveConstructor: {
10382      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10383      CheckExplicitlyDefaultedMoveConstructor(CD);
10384      if (!CD->isInvalidDecl())
10385        DefineImplicitMoveConstructor(DefaultLoc, CD);
10386      break;
10387    }
10388
10389    case CXXMoveAssignment: {
10390      CheckExplicitlyDefaultedMoveAssignment(MD);
10391      if (!MD->isInvalidDecl())
10392        DefineImplicitMoveAssignment(DefaultLoc, MD);
10393      break;
10394    }
10395
10396    case CXXInvalid:
10397      llvm_unreachable("Invalid special member.");
10398    }
10399  } else {
10400    Diag(DefaultLoc, diag::err_default_special_members);
10401  }
10402}
10403
10404static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10405  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10406    Stmt *SubStmt = *CI;
10407    if (!SubStmt)
10408      continue;
10409    if (isa<ReturnStmt>(SubStmt))
10410      Self.Diag(SubStmt->getSourceRange().getBegin(),
10411           diag::err_return_in_constructor_handler);
10412    if (!isa<Expr>(SubStmt))
10413      SearchForReturnInStmt(Self, SubStmt);
10414  }
10415}
10416
10417void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10418  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10419    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10420    SearchForReturnInStmt(*this, Handler);
10421  }
10422}
10423
10424bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10425                                             const CXXMethodDecl *Old) {
10426  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10427  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10428
10429  if (Context.hasSameType(NewTy, OldTy) ||
10430      NewTy->isDependentType() || OldTy->isDependentType())
10431    return false;
10432
10433  // Check if the return types are covariant
10434  QualType NewClassTy, OldClassTy;
10435
10436  /// Both types must be pointers or references to classes.
10437  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10438    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10439      NewClassTy = NewPT->getPointeeType();
10440      OldClassTy = OldPT->getPointeeType();
10441    }
10442  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10443    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10444      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10445        NewClassTy = NewRT->getPointeeType();
10446        OldClassTy = OldRT->getPointeeType();
10447      }
10448    }
10449  }
10450
10451  // The return types aren't either both pointers or references to a class type.
10452  if (NewClassTy.isNull()) {
10453    Diag(New->getLocation(),
10454         diag::err_different_return_type_for_overriding_virtual_function)
10455      << New->getDeclName() << NewTy << OldTy;
10456    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10457
10458    return true;
10459  }
10460
10461  // C++ [class.virtual]p6:
10462  //   If the return type of D::f differs from the return type of B::f, the
10463  //   class type in the return type of D::f shall be complete at the point of
10464  //   declaration of D::f or shall be the class type D.
10465  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10466    if (!RT->isBeingDefined() &&
10467        RequireCompleteType(New->getLocation(), NewClassTy,
10468                            PDiag(diag::err_covariant_return_incomplete)
10469                              << New->getDeclName()))
10470    return true;
10471  }
10472
10473  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10474    // Check if the new class derives from the old class.
10475    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10476      Diag(New->getLocation(),
10477           diag::err_covariant_return_not_derived)
10478      << New->getDeclName() << NewTy << OldTy;
10479      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10480      return true;
10481    }
10482
10483    // Check if we the conversion from derived to base is valid.
10484    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10485                    diag::err_covariant_return_inaccessible_base,
10486                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10487                    // FIXME: Should this point to the return type?
10488                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10489      // FIXME: this note won't trigger for delayed access control
10490      // diagnostics, and it's impossible to get an undelayed error
10491      // here from access control during the original parse because
10492      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10493      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10494      return true;
10495    }
10496  }
10497
10498  // The qualifiers of the return types must be the same.
10499  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10500    Diag(New->getLocation(),
10501         diag::err_covariant_return_type_different_qualifications)
10502    << New->getDeclName() << NewTy << OldTy;
10503    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10504    return true;
10505  };
10506
10507
10508  // The new class type must have the same or less qualifiers as the old type.
10509  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10510    Diag(New->getLocation(),
10511         diag::err_covariant_return_type_class_type_more_qualified)
10512    << New->getDeclName() << NewTy << OldTy;
10513    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10514    return true;
10515  };
10516
10517  return false;
10518}
10519
10520/// \brief Mark the given method pure.
10521///
10522/// \param Method the method to be marked pure.
10523///
10524/// \param InitRange the source range that covers the "0" initializer.
10525bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10526  SourceLocation EndLoc = InitRange.getEnd();
10527  if (EndLoc.isValid())
10528    Method->setRangeEnd(EndLoc);
10529
10530  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10531    Method->setPure();
10532    return false;
10533  }
10534
10535  if (!Method->isInvalidDecl())
10536    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10537      << Method->getDeclName() << InitRange;
10538  return true;
10539}
10540
10541/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10542/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10543/// is a fresh scope pushed for just this purpose.
10544///
10545/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10546/// static data member of class X, names should be looked up in the scope of
10547/// class X.
10548void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10549  // If there is no declaration, there was an error parsing it.
10550  if (D == 0 || D->isInvalidDecl()) return;
10551
10552  // We should only get called for declarations with scope specifiers, like:
10553  //   int foo::bar;
10554  assert(D->isOutOfLine());
10555  EnterDeclaratorContext(S, D->getDeclContext());
10556}
10557
10558/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10559/// initializer for the out-of-line declaration 'D'.
10560void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10561  // If there is no declaration, there was an error parsing it.
10562  if (D == 0 || D->isInvalidDecl()) return;
10563
10564  assert(D->isOutOfLine());
10565  ExitDeclaratorContext(S);
10566}
10567
10568/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10569/// C++ if/switch/while/for statement.
10570/// e.g: "if (int x = f()) {...}"
10571DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10572  // C++ 6.4p2:
10573  // The declarator shall not specify a function or an array.
10574  // The type-specifier-seq shall not contain typedef and shall not declare a
10575  // new class or enumeration.
10576  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10577         "Parser allowed 'typedef' as storage class of condition decl.");
10578
10579  Decl *Dcl = ActOnDeclarator(S, D);
10580  if (!Dcl)
10581    return true;
10582
10583  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10584    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10585      << D.getSourceRange();
10586    return true;
10587  }
10588
10589  return Dcl;
10590}
10591
10592void Sema::LoadExternalVTableUses() {
10593  if (!ExternalSource)
10594    return;
10595
10596  SmallVector<ExternalVTableUse, 4> VTables;
10597  ExternalSource->ReadUsedVTables(VTables);
10598  SmallVector<VTableUse, 4> NewUses;
10599  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10600    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10601      = VTablesUsed.find(VTables[I].Record);
10602    // Even if a definition wasn't required before, it may be required now.
10603    if (Pos != VTablesUsed.end()) {
10604      if (!Pos->second && VTables[I].DefinitionRequired)
10605        Pos->second = true;
10606      continue;
10607    }
10608
10609    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10610    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10611  }
10612
10613  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10614}
10615
10616void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10617                          bool DefinitionRequired) {
10618  // Ignore any vtable uses in unevaluated operands or for classes that do
10619  // not have a vtable.
10620  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10621      CurContext->isDependentContext() ||
10622      ExprEvalContexts.back().Context == Unevaluated)
10623    return;
10624
10625  // Try to insert this class into the map.
10626  LoadExternalVTableUses();
10627  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10628  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10629    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10630  if (!Pos.second) {
10631    // If we already had an entry, check to see if we are promoting this vtable
10632    // to required a definition. If so, we need to reappend to the VTableUses
10633    // list, since we may have already processed the first entry.
10634    if (DefinitionRequired && !Pos.first->second) {
10635      Pos.first->second = true;
10636    } else {
10637      // Otherwise, we can early exit.
10638      return;
10639    }
10640  }
10641
10642  // Local classes need to have their virtual members marked
10643  // immediately. For all other classes, we mark their virtual members
10644  // at the end of the translation unit.
10645  if (Class->isLocalClass())
10646    MarkVirtualMembersReferenced(Loc, Class);
10647  else
10648    VTableUses.push_back(std::make_pair(Class, Loc));
10649}
10650
10651bool Sema::DefineUsedVTables() {
10652  LoadExternalVTableUses();
10653  if (VTableUses.empty())
10654    return false;
10655
10656  // Note: The VTableUses vector could grow as a result of marking
10657  // the members of a class as "used", so we check the size each
10658  // time through the loop and prefer indices (with are stable) to
10659  // iterators (which are not).
10660  bool DefinedAnything = false;
10661  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10662    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10663    if (!Class)
10664      continue;
10665
10666    SourceLocation Loc = VTableUses[I].second;
10667
10668    // If this class has a key function, but that key function is
10669    // defined in another translation unit, we don't need to emit the
10670    // vtable even though we're using it.
10671    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10672    if (KeyFunction && !KeyFunction->hasBody()) {
10673      switch (KeyFunction->getTemplateSpecializationKind()) {
10674      case TSK_Undeclared:
10675      case TSK_ExplicitSpecialization:
10676      case TSK_ExplicitInstantiationDeclaration:
10677        // The key function is in another translation unit.
10678        continue;
10679
10680      case TSK_ExplicitInstantiationDefinition:
10681      case TSK_ImplicitInstantiation:
10682        // We will be instantiating the key function.
10683        break;
10684      }
10685    } else if (!KeyFunction) {
10686      // If we have a class with no key function that is the subject
10687      // of an explicit instantiation declaration, suppress the
10688      // vtable; it will live with the explicit instantiation
10689      // definition.
10690      bool IsExplicitInstantiationDeclaration
10691        = Class->getTemplateSpecializationKind()
10692                                      == TSK_ExplicitInstantiationDeclaration;
10693      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10694                                 REnd = Class->redecls_end();
10695           R != REnd; ++R) {
10696        TemplateSpecializationKind TSK
10697          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10698        if (TSK == TSK_ExplicitInstantiationDeclaration)
10699          IsExplicitInstantiationDeclaration = true;
10700        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10701          IsExplicitInstantiationDeclaration = false;
10702          break;
10703        }
10704      }
10705
10706      if (IsExplicitInstantiationDeclaration)
10707        continue;
10708    }
10709
10710    // Mark all of the virtual members of this class as referenced, so
10711    // that we can build a vtable. Then, tell the AST consumer that a
10712    // vtable for this class is required.
10713    DefinedAnything = true;
10714    MarkVirtualMembersReferenced(Loc, Class);
10715    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10716    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10717
10718    // Optionally warn if we're emitting a weak vtable.
10719    if (Class->getLinkage() == ExternalLinkage &&
10720        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10721      const FunctionDecl *KeyFunctionDef = 0;
10722      if (!KeyFunction ||
10723          (KeyFunction->hasBody(KeyFunctionDef) &&
10724           KeyFunctionDef->isInlined()))
10725        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10726    }
10727  }
10728  VTableUses.clear();
10729
10730  return DefinedAnything;
10731}
10732
10733void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10734                                        const CXXRecordDecl *RD) {
10735  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10736       e = RD->method_end(); i != e; ++i) {
10737    CXXMethodDecl *MD = *i;
10738
10739    // C++ [basic.def.odr]p2:
10740    //   [...] A virtual member function is used if it is not pure. [...]
10741    if (MD->isVirtual() && !MD->isPure())
10742      MarkDeclarationReferenced(Loc, MD);
10743  }
10744
10745  // Only classes that have virtual bases need a VTT.
10746  if (RD->getNumVBases() == 0)
10747    return;
10748
10749  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10750           e = RD->bases_end(); i != e; ++i) {
10751    const CXXRecordDecl *Base =
10752        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10753    if (Base->getNumVBases() == 0)
10754      continue;
10755    MarkVirtualMembersReferenced(Loc, Base);
10756  }
10757}
10758
10759/// SetIvarInitializers - This routine builds initialization ASTs for the
10760/// Objective-C implementation whose ivars need be initialized.
10761void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10762  if (!getLangOptions().CPlusPlus)
10763    return;
10764  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10765    SmallVector<ObjCIvarDecl*, 8> ivars;
10766    CollectIvarsToConstructOrDestruct(OID, ivars);
10767    if (ivars.empty())
10768      return;
10769    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10770    for (unsigned i = 0; i < ivars.size(); i++) {
10771      FieldDecl *Field = ivars[i];
10772      if (Field->isInvalidDecl())
10773        continue;
10774
10775      CXXCtorInitializer *Member;
10776      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10777      InitializationKind InitKind =
10778        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10779
10780      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10781      ExprResult MemberInit =
10782        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10783      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10784      // Note, MemberInit could actually come back empty if no initialization
10785      // is required (e.g., because it would call a trivial default constructor)
10786      if (!MemberInit.get() || MemberInit.isInvalid())
10787        continue;
10788
10789      Member =
10790        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10791                                         SourceLocation(),
10792                                         MemberInit.takeAs<Expr>(),
10793                                         SourceLocation());
10794      AllToInit.push_back(Member);
10795
10796      // Be sure that the destructor is accessible and is marked as referenced.
10797      if (const RecordType *RecordTy
10798                  = Context.getBaseElementType(Field->getType())
10799                                                        ->getAs<RecordType>()) {
10800                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10801        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10802          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10803          CheckDestructorAccess(Field->getLocation(), Destructor,
10804                            PDiag(diag::err_access_dtor_ivar)
10805                              << Context.getBaseElementType(Field->getType()));
10806        }
10807      }
10808    }
10809    ObjCImplementation->setIvarInitializers(Context,
10810                                            AllToInit.data(), AllToInit.size());
10811  }
10812}
10813
10814static
10815void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10816                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10817                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10818                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10819                           Sema &S) {
10820  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10821                                                   CE = Current.end();
10822  if (Ctor->isInvalidDecl())
10823    return;
10824
10825  const FunctionDecl *FNTarget = 0;
10826  CXXConstructorDecl *Target;
10827
10828  // We ignore the result here since if we don't have a body, Target will be
10829  // null below.
10830  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10831  Target
10832= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10833
10834  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10835                     // Avoid dereferencing a null pointer here.
10836                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10837
10838  if (!Current.insert(Canonical))
10839    return;
10840
10841  // We know that beyond here, we aren't chaining into a cycle.
10842  if (!Target || !Target->isDelegatingConstructor() ||
10843      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10844    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10845      Valid.insert(*CI);
10846    Current.clear();
10847  // We've hit a cycle.
10848  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10849             Current.count(TCanonical)) {
10850    // If we haven't diagnosed this cycle yet, do so now.
10851    if (!Invalid.count(TCanonical)) {
10852      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10853             diag::warn_delegating_ctor_cycle)
10854        << Ctor;
10855
10856      // Don't add a note for a function delegating directo to itself.
10857      if (TCanonical != Canonical)
10858        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10859
10860      CXXConstructorDecl *C = Target;
10861      while (C->getCanonicalDecl() != Canonical) {
10862        (void)C->getTargetConstructor()->hasBody(FNTarget);
10863        assert(FNTarget && "Ctor cycle through bodiless function");
10864
10865        C
10866       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10867        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10868      }
10869    }
10870
10871    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10872      Invalid.insert(*CI);
10873    Current.clear();
10874  } else {
10875    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10876  }
10877}
10878
10879
10880void Sema::CheckDelegatingCtorCycles() {
10881  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10882
10883  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10884                                                   CE = Current.end();
10885
10886  for (DelegatingCtorDeclsType::iterator
10887         I = DelegatingCtorDecls.begin(ExternalSource),
10888         E = DelegatingCtorDecls.end();
10889       I != E; ++I) {
10890   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10891  }
10892
10893  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10894    (*CI)->setInvalidDecl();
10895}
10896
10897/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10898Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10899  // Implicitly declared functions (e.g. copy constructors) are
10900  // __host__ __device__
10901  if (D->isImplicit())
10902    return CFT_HostDevice;
10903
10904  if (D->hasAttr<CUDAGlobalAttr>())
10905    return CFT_Global;
10906
10907  if (D->hasAttr<CUDADeviceAttr>()) {
10908    if (D->hasAttr<CUDAHostAttr>())
10909      return CFT_HostDevice;
10910    else
10911      return CFT_Device;
10912  }
10913
10914  return CFT_Host;
10915}
10916
10917bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10918                           CUDAFunctionTarget CalleeTarget) {
10919  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10920  // Callable from the device only."
10921  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10922    return true;
10923
10924  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10925  // Callable from the host only."
10926  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10927  // Callable from the host only."
10928  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10929      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10930    return true;
10931
10932  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10933    return true;
10934
10935  return false;
10936}
10937