SemaDeclCXX.cpp revision b832f6dea893f25b40500a04781286236281cb20
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDecl();
424           Older; Older = Older->getPreviousDecl()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
663  if (MD && MD->isInstance()) {
664    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
665    //  In addition, either its function-body shall be = delete or = default or
666    //  it shall satisfy the following constraints:
667    //  - the class shall not have any virtual base classes;
668    //
669    // We apply this to constexpr member functions too: the class cannot be a
670    // literal type, so the members are not permitted to be constexpr.
671    const CXXRecordDecl *RD = MD->getParent();
672    if (RD->getNumVBases()) {
673      // Note, this is still illegal if the body is = default, since the
674      // implicit body does not satisfy the requirements of a constexpr
675      // constructor. We also reject cases where the body is = delete, as
676      // required by N3308.
677      if (CCK != CCK_Instantiation) {
678        Diag(NewFD->getLocation(),
679             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
680                                    : diag::note_constexpr_tmpl_virtual_base)
681          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
682          << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  }
691
692  if (!isa<CXXConstructorDecl>(NewFD)) {
693    // C++11 [dcl.constexpr]p3:
694    //  The definition of a constexpr function shall satisfy the following
695    //  constraints:
696    // - it shall not be virtual;
697    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
698    if (Method && Method->isVirtual()) {
699      if (CCK != CCK_Instantiation) {
700        Diag(NewFD->getLocation(),
701             CCK == CCK_Declaration ? diag::err_constexpr_virtual
702                                    : diag::note_constexpr_tmpl_virtual);
703
704        // If it's not obvious why this function is virtual, find an overridden
705        // function which uses the 'virtual' keyword.
706        const CXXMethodDecl *WrittenVirtual = Method;
707        while (!WrittenVirtual->isVirtualAsWritten())
708          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
709        if (WrittenVirtual != Method)
710          Diag(WrittenVirtual->getLocation(),
711               diag::note_overridden_virtual_function);
712      }
713      return false;
714    }
715
716    // - its return type shall be a literal type;
717    QualType RT = NewFD->getResultType();
718    if (!RT->isDependentType() &&
719        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
720                           PDiag(diag::err_constexpr_non_literal_return) :
721                           PDiag(),
722                           /*AllowIncompleteType*/ true)) {
723      if (CCK == CCK_NoteNonConstexprInstantiation)
724        Diag(NewFD->getLocation(),
725             diag::note_constexpr_tmpl_non_literal_return) << RT;
726      return false;
727    }
728  }
729
730  // - each of its parameter types shall be a literal type;
731  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
732    return false;
733
734  return true;
735}
736
737/// Check the given declaration statement is legal within a constexpr function
738/// body. C++0x [dcl.constexpr]p3,p4.
739///
740/// \return true if the body is OK, false if we have diagnosed a problem.
741static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
742                                   DeclStmt *DS) {
743  // C++0x [dcl.constexpr]p3 and p4:
744  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
745  //  contain only
746  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
747         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
748    switch ((*DclIt)->getKind()) {
749    case Decl::StaticAssert:
750    case Decl::Using:
751    case Decl::UsingShadow:
752    case Decl::UsingDirective:
753    case Decl::UnresolvedUsingTypename:
754      //   - static_assert-declarations
755      //   - using-declarations,
756      //   - using-directives,
757      continue;
758
759    case Decl::Typedef:
760    case Decl::TypeAlias: {
761      //   - typedef declarations and alias-declarations that do not define
762      //     classes or enumerations,
763      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
764      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
765        // Don't allow variably-modified types in constexpr functions.
766        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
767        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
768          << TL.getSourceRange() << TL.getType()
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773    }
774
775    case Decl::Enum:
776    case Decl::CXXRecord:
777      // As an extension, we allow the declaration (but not the definition) of
778      // classes and enumerations in all declarations, not just in typedef and
779      // alias declarations.
780      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
781        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
782          << isa<CXXConstructorDecl>(Dcl);
783        return false;
784      }
785      continue;
786
787    case Decl::Var:
788      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
789        << isa<CXXConstructorDecl>(Dcl);
790      return false;
791
792    default:
793      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
794        << isa<CXXConstructorDecl>(Dcl);
795      return false;
796    }
797  }
798
799  return true;
800}
801
802/// Check that the given field is initialized within a constexpr constructor.
803///
804/// \param Dcl The constexpr constructor being checked.
805/// \param Field The field being checked. This may be a member of an anonymous
806///        struct or union nested within the class being checked.
807/// \param Inits All declarations, including anonymous struct/union members and
808///        indirect members, for which any initialization was provided.
809/// \param Diagnosed Set to true if an error is produced.
810static void CheckConstexprCtorInitializer(Sema &SemaRef,
811                                          const FunctionDecl *Dcl,
812                                          FieldDecl *Field,
813                                          llvm::SmallSet<Decl*, 16> &Inits,
814                                          bool &Diagnosed) {
815  if (Field->isUnnamedBitfield())
816    return;
817
818  if (!Inits.count(Field)) {
819    if (!Diagnosed) {
820      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
821      Diagnosed = true;
822    }
823    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
824  } else if (Field->isAnonymousStructOrUnion()) {
825    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
826    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
827         I != E; ++I)
828      // If an anonymous union contains an anonymous struct of which any member
829      // is initialized, all members must be initialized.
830      if (!RD->isUnion() || Inits.count(*I))
831        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
832  }
833}
834
835/// Check the body for the given constexpr function declaration only contains
836/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
837///
838/// \return true if the body is OK, false if we have diagnosed a problem.
839bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
840  if (isa<CXXTryStmt>(Body)) {
841    // C++0x [dcl.constexpr]p3:
842    //  The definition of a constexpr function shall satisfy the following
843    //  constraints: [...]
844    // - its function-body shall be = delete, = default, or a
845    //   compound-statement
846    //
847    // C++0x [dcl.constexpr]p4:
848    //  In the definition of a constexpr constructor, [...]
849    // - its function-body shall not be a function-try-block;
850    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
851      << isa<CXXConstructorDecl>(Dcl);
852    return false;
853  }
854
855  // - its function-body shall be [...] a compound-statement that contains only
856  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
857
858  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
859  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
860         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
861    switch ((*BodyIt)->getStmtClass()) {
862    case Stmt::NullStmtClass:
863      //   - null statements,
864      continue;
865
866    case Stmt::DeclStmtClass:
867      //   - static_assert-declarations
868      //   - using-declarations,
869      //   - using-directives,
870      //   - typedef declarations and alias-declarations that do not define
871      //     classes or enumerations,
872      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
873        return false;
874      continue;
875
876    case Stmt::ReturnStmtClass:
877      //   - and exactly one return statement;
878      if (isa<CXXConstructorDecl>(Dcl))
879        break;
880
881      ReturnStmts.push_back((*BodyIt)->getLocStart());
882      // FIXME
883      // - every constructor call and implicit conversion used in initializing
884      //   the return value shall be one of those allowed in a constant
885      //   expression.
886      // Deal with this as part of a general check that the function can produce
887      // a constant expression (for [dcl.constexpr]p5).
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // - every non-static data member and base class sub-object shall be
903    //   initialized;
904    if (RD->isUnion()) {
905      // DR1359: Exactly one member of a union shall be initialized.
906      if (Constructor->getNumCtorInitializers() == 0) {
907        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
908        return false;
909      }
910    } else if (!Constructor->isDependentContext() &&
911               !Constructor->isDelegatingConstructor()) {
912      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
913
914      // Skip detailed checking if we have enough initializers, and we would
915      // allow at most one initializer per member.
916      bool AnyAnonStructUnionMembers = false;
917      unsigned Fields = 0;
918      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
919           E = RD->field_end(); I != E; ++I, ++Fields) {
920        if ((*I)->isAnonymousStructOrUnion()) {
921          AnyAnonStructUnionMembers = true;
922          break;
923        }
924      }
925      if (AnyAnonStructUnionMembers ||
926          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
927        // Check initialization of non-static data members. Base classes are
928        // always initialized so do not need to be checked. Dependent bases
929        // might not have initializers in the member initializer list.
930        llvm::SmallSet<Decl*, 16> Inits;
931        for (CXXConstructorDecl::init_const_iterator
932               I = Constructor->init_begin(), E = Constructor->init_end();
933             I != E; ++I) {
934          if (FieldDecl *FD = (*I)->getMember())
935            Inits.insert(FD);
936          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
937            Inits.insert(ID->chain_begin(), ID->chain_end());
938        }
939
940        bool Diagnosed = false;
941        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
942             E = RD->field_end(); I != E; ++I)
943          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
944        if (Diagnosed)
945          return false;
946      }
947    }
948
949    // FIXME
950    // - every constructor involved in initializing non-static data members
951    //   and base class sub-objects shall be a constexpr constructor;
952    // - every assignment-expression that is an initializer-clause appearing
953    //   directly or indirectly within a brace-or-equal-initializer for
954    //   a non-static data member that is not named by a mem-initializer-id
955    //   shall be a constant expression; and
956    // - every implicit conversion used in converting a constructor argument
957    //   to the corresponding parameter type and converting
958    //   a full-expression to the corresponding member type shall be one of
959    //   those allowed in a constant expression.
960    // Deal with these as part of a general check that the function can produce
961    // a constant expression (for [dcl.constexpr]p5).
962  } else {
963    if (ReturnStmts.empty()) {
964      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
965      return false;
966    }
967    if (ReturnStmts.size() > 1) {
968      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
969      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
970        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
971      return false;
972    }
973  }
974
975  return true;
976}
977
978/// isCurrentClassName - Determine whether the identifier II is the
979/// name of the class type currently being defined. In the case of
980/// nested classes, this will only return true if II is the name of
981/// the innermost class.
982bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
983                              const CXXScopeSpec *SS) {
984  assert(getLangOptions().CPlusPlus && "No class names in C!");
985
986  CXXRecordDecl *CurDecl;
987  if (SS && SS->isSet() && !SS->isInvalid()) {
988    DeclContext *DC = computeDeclContext(*SS, true);
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
990  } else
991    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
992
993  if (CurDecl && CurDecl->getIdentifier())
994    return &II == CurDecl->getIdentifier();
995  else
996    return false;
997}
998
999/// \brief Check the validity of a C++ base class specifier.
1000///
1001/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1002/// and returns NULL otherwise.
1003CXXBaseSpecifier *
1004Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1005                         SourceRange SpecifierRange,
1006                         bool Virtual, AccessSpecifier Access,
1007                         TypeSourceInfo *TInfo,
1008                         SourceLocation EllipsisLoc) {
1009  QualType BaseType = TInfo->getType();
1010
1011  // C++ [class.union]p1:
1012  //   A union shall not have base classes.
1013  if (Class->isUnion()) {
1014    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1015      << SpecifierRange;
1016    return 0;
1017  }
1018
1019  if (EllipsisLoc.isValid() &&
1020      !TInfo->getType()->containsUnexpandedParameterPack()) {
1021    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1022      << TInfo->getTypeLoc().getSourceRange();
1023    EllipsisLoc = SourceLocation();
1024  }
1025
1026  if (BaseType->isDependentType())
1027    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1028                                          Class->getTagKind() == TTK_Class,
1029                                          Access, TInfo, EllipsisLoc);
1030
1031  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1032
1033  // Base specifiers must be record types.
1034  if (!BaseType->isRecordType()) {
1035    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1036    return 0;
1037  }
1038
1039  // C++ [class.union]p1:
1040  //   A union shall not be used as a base class.
1041  if (BaseType->isUnionType()) {
1042    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1043    return 0;
1044  }
1045
1046  // C++ [class.derived]p2:
1047  //   The class-name in a base-specifier shall not be an incompletely
1048  //   defined class.
1049  if (RequireCompleteType(BaseLoc, BaseType,
1050                          PDiag(diag::err_incomplete_base_class)
1051                            << SpecifierRange)) {
1052    Class->setInvalidDecl();
1053    return 0;
1054  }
1055
1056  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1057  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1058  assert(BaseDecl && "Record type has no declaration");
1059  BaseDecl = BaseDecl->getDefinition();
1060  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1061  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1062  assert(CXXBaseDecl && "Base type is not a C++ type");
1063
1064  // C++ [class]p3:
1065  //   If a class is marked final and it appears as a base-type-specifier in
1066  //   base-clause, the program is ill-formed.
1067  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1068    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1069      << CXXBaseDecl->getDeclName();
1070    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1071      << CXXBaseDecl->getDeclName();
1072    return 0;
1073  }
1074
1075  if (BaseDecl->isInvalidDecl())
1076    Class->setInvalidDecl();
1077
1078  // Create the base specifier.
1079  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1080                                        Class->getTagKind() == TTK_Class,
1081                                        Access, TInfo, EllipsisLoc);
1082}
1083
1084/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1085/// one entry in the base class list of a class specifier, for
1086/// example:
1087///    class foo : public bar, virtual private baz {
1088/// 'public bar' and 'virtual private baz' are each base-specifiers.
1089BaseResult
1090Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1091                         bool Virtual, AccessSpecifier Access,
1092                         ParsedType basetype, SourceLocation BaseLoc,
1093                         SourceLocation EllipsisLoc) {
1094  if (!classdecl)
1095    return true;
1096
1097  AdjustDeclIfTemplate(classdecl);
1098  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1099  if (!Class)
1100    return true;
1101
1102  TypeSourceInfo *TInfo = 0;
1103  GetTypeFromParser(basetype, &TInfo);
1104
1105  if (EllipsisLoc.isInvalid() &&
1106      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1107                                      UPPC_BaseType))
1108    return true;
1109
1110  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1111                                                      Virtual, Access, TInfo,
1112                                                      EllipsisLoc))
1113    return BaseSpec;
1114
1115  return true;
1116}
1117
1118/// \brief Performs the actual work of attaching the given base class
1119/// specifiers to a C++ class.
1120bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1121                                unsigned NumBases) {
1122 if (NumBases == 0)
1123    return false;
1124
1125  // Used to keep track of which base types we have already seen, so
1126  // that we can properly diagnose redundant direct base types. Note
1127  // that the key is always the unqualified canonical type of the base
1128  // class.
1129  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1130
1131  // Copy non-redundant base specifiers into permanent storage.
1132  unsigned NumGoodBases = 0;
1133  bool Invalid = false;
1134  for (unsigned idx = 0; idx < NumBases; ++idx) {
1135    QualType NewBaseType
1136      = Context.getCanonicalType(Bases[idx]->getType());
1137    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1138    if (KnownBaseTypes[NewBaseType]) {
1139      // C++ [class.mi]p3:
1140      //   A class shall not be specified as a direct base class of a
1141      //   derived class more than once.
1142      Diag(Bases[idx]->getSourceRange().getBegin(),
1143           diag::err_duplicate_base_class)
1144        << KnownBaseTypes[NewBaseType]->getType()
1145        << Bases[idx]->getSourceRange();
1146
1147      // Delete the duplicate base class specifier; we're going to
1148      // overwrite its pointer later.
1149      Context.Deallocate(Bases[idx]);
1150
1151      Invalid = true;
1152    } else {
1153      // Okay, add this new base class.
1154      KnownBaseTypes[NewBaseType] = Bases[idx];
1155      Bases[NumGoodBases++] = Bases[idx];
1156      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1157        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1158          if (RD->hasAttr<WeakAttr>())
1159            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1160    }
1161  }
1162
1163  // Attach the remaining base class specifiers to the derived class.
1164  Class->setBases(Bases, NumGoodBases);
1165
1166  // Delete the remaining (good) base class specifiers, since their
1167  // data has been copied into the CXXRecordDecl.
1168  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1169    Context.Deallocate(Bases[idx]);
1170
1171  return Invalid;
1172}
1173
1174/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1175/// class, after checking whether there are any duplicate base
1176/// classes.
1177void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1178                               unsigned NumBases) {
1179  if (!ClassDecl || !Bases || !NumBases)
1180    return;
1181
1182  AdjustDeclIfTemplate(ClassDecl);
1183  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1184                       (CXXBaseSpecifier**)(Bases), NumBases);
1185}
1186
1187static CXXRecordDecl *GetClassForType(QualType T) {
1188  if (const RecordType *RT = T->getAs<RecordType>())
1189    return cast<CXXRecordDecl>(RT->getDecl());
1190  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1191    return ICT->getDecl();
1192  else
1193    return 0;
1194}
1195
1196/// \brief Determine whether the type \p Derived is a C++ class that is
1197/// derived from the type \p Base.
1198bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1199  if (!getLangOptions().CPlusPlus)
1200    return false;
1201
1202  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1203  if (!DerivedRD)
1204    return false;
1205
1206  CXXRecordDecl *BaseRD = GetClassForType(Base);
1207  if (!BaseRD)
1208    return false;
1209
1210  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1211  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1212}
1213
1214/// \brief Determine whether the type \p Derived is a C++ class that is
1215/// derived from the type \p Base.
1216bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1217  if (!getLangOptions().CPlusPlus)
1218    return false;
1219
1220  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1221  if (!DerivedRD)
1222    return false;
1223
1224  CXXRecordDecl *BaseRD = GetClassForType(Base);
1225  if (!BaseRD)
1226    return false;
1227
1228  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1229}
1230
1231void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1232                              CXXCastPath &BasePathArray) {
1233  assert(BasePathArray.empty() && "Base path array must be empty!");
1234  assert(Paths.isRecordingPaths() && "Must record paths!");
1235
1236  const CXXBasePath &Path = Paths.front();
1237
1238  // We first go backward and check if we have a virtual base.
1239  // FIXME: It would be better if CXXBasePath had the base specifier for
1240  // the nearest virtual base.
1241  unsigned Start = 0;
1242  for (unsigned I = Path.size(); I != 0; --I) {
1243    if (Path[I - 1].Base->isVirtual()) {
1244      Start = I - 1;
1245      break;
1246    }
1247  }
1248
1249  // Now add all bases.
1250  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1251    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1252}
1253
1254/// \brief Determine whether the given base path includes a virtual
1255/// base class.
1256bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1257  for (CXXCastPath::const_iterator B = BasePath.begin(),
1258                                BEnd = BasePath.end();
1259       B != BEnd; ++B)
1260    if ((*B)->isVirtual())
1261      return true;
1262
1263  return false;
1264}
1265
1266/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1267/// conversion (where Derived and Base are class types) is
1268/// well-formed, meaning that the conversion is unambiguous (and
1269/// that all of the base classes are accessible). Returns true
1270/// and emits a diagnostic if the code is ill-formed, returns false
1271/// otherwise. Loc is the location where this routine should point to
1272/// if there is an error, and Range is the source range to highlight
1273/// if there is an error.
1274bool
1275Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1276                                   unsigned InaccessibleBaseID,
1277                                   unsigned AmbigiousBaseConvID,
1278                                   SourceLocation Loc, SourceRange Range,
1279                                   DeclarationName Name,
1280                                   CXXCastPath *BasePath) {
1281  // First, determine whether the path from Derived to Base is
1282  // ambiguous. This is slightly more expensive than checking whether
1283  // the Derived to Base conversion exists, because here we need to
1284  // explore multiple paths to determine if there is an ambiguity.
1285  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1286                     /*DetectVirtual=*/false);
1287  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1288  assert(DerivationOkay &&
1289         "Can only be used with a derived-to-base conversion");
1290  (void)DerivationOkay;
1291
1292  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1293    if (InaccessibleBaseID) {
1294      // Check that the base class can be accessed.
1295      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1296                                   InaccessibleBaseID)) {
1297        case AR_inaccessible:
1298          return true;
1299        case AR_accessible:
1300        case AR_dependent:
1301        case AR_delayed:
1302          break;
1303      }
1304    }
1305
1306    // Build a base path if necessary.
1307    if (BasePath)
1308      BuildBasePathArray(Paths, *BasePath);
1309    return false;
1310  }
1311
1312  // We know that the derived-to-base conversion is ambiguous, and
1313  // we're going to produce a diagnostic. Perform the derived-to-base
1314  // search just one more time to compute all of the possible paths so
1315  // that we can print them out. This is more expensive than any of
1316  // the previous derived-to-base checks we've done, but at this point
1317  // performance isn't as much of an issue.
1318  Paths.clear();
1319  Paths.setRecordingPaths(true);
1320  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1321  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1322  (void)StillOkay;
1323
1324  // Build up a textual representation of the ambiguous paths, e.g.,
1325  // D -> B -> A, that will be used to illustrate the ambiguous
1326  // conversions in the diagnostic. We only print one of the paths
1327  // to each base class subobject.
1328  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1329
1330  Diag(Loc, AmbigiousBaseConvID)
1331  << Derived << Base << PathDisplayStr << Range << Name;
1332  return true;
1333}
1334
1335bool
1336Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1337                                   SourceLocation Loc, SourceRange Range,
1338                                   CXXCastPath *BasePath,
1339                                   bool IgnoreAccess) {
1340  return CheckDerivedToBaseConversion(Derived, Base,
1341                                      IgnoreAccess ? 0
1342                                       : diag::err_upcast_to_inaccessible_base,
1343                                      diag::err_ambiguous_derived_to_base_conv,
1344                                      Loc, Range, DeclarationName(),
1345                                      BasePath);
1346}
1347
1348
1349/// @brief Builds a string representing ambiguous paths from a
1350/// specific derived class to different subobjects of the same base
1351/// class.
1352///
1353/// This function builds a string that can be used in error messages
1354/// to show the different paths that one can take through the
1355/// inheritance hierarchy to go from the derived class to different
1356/// subobjects of a base class. The result looks something like this:
1357/// @code
1358/// struct D -> struct B -> struct A
1359/// struct D -> struct C -> struct A
1360/// @endcode
1361std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1362  std::string PathDisplayStr;
1363  std::set<unsigned> DisplayedPaths;
1364  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1365       Path != Paths.end(); ++Path) {
1366    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1367      // We haven't displayed a path to this particular base
1368      // class subobject yet.
1369      PathDisplayStr += "\n    ";
1370      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1371      for (CXXBasePath::const_iterator Element = Path->begin();
1372           Element != Path->end(); ++Element)
1373        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1374    }
1375  }
1376
1377  return PathDisplayStr;
1378}
1379
1380//===----------------------------------------------------------------------===//
1381// C++ class member Handling
1382//===----------------------------------------------------------------------===//
1383
1384/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1385bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1386                                SourceLocation ASLoc,
1387                                SourceLocation ColonLoc,
1388                                AttributeList *Attrs) {
1389  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1390  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1391                                                  ASLoc, ColonLoc);
1392  CurContext->addHiddenDecl(ASDecl);
1393  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1394}
1395
1396/// CheckOverrideControl - Check C++0x override control semantics.
1397void Sema::CheckOverrideControl(const Decl *D) {
1398  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1399  if (!MD || !MD->isVirtual())
1400    return;
1401
1402  if (MD->isDependentContext())
1403    return;
1404
1405  // C++0x [class.virtual]p3:
1406  //   If a virtual function is marked with the virt-specifier override and does
1407  //   not override a member function of a base class,
1408  //   the program is ill-formed.
1409  bool HasOverriddenMethods =
1410    MD->begin_overridden_methods() != MD->end_overridden_methods();
1411  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1412    Diag(MD->getLocation(),
1413                 diag::err_function_marked_override_not_overriding)
1414      << MD->getDeclName();
1415    return;
1416  }
1417}
1418
1419/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1420/// function overrides a virtual member function marked 'final', according to
1421/// C++0x [class.virtual]p3.
1422bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1423                                                  const CXXMethodDecl *Old) {
1424  if (!Old->hasAttr<FinalAttr>())
1425    return false;
1426
1427  Diag(New->getLocation(), diag::err_final_function_overridden)
1428    << New->getDeclName();
1429  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1430  return true;
1431}
1432
1433/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1434/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1435/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1436/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1437/// present but parsing it has been deferred.
1438Decl *
1439Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1440                               MultiTemplateParamsArg TemplateParameterLists,
1441                               Expr *BW, const VirtSpecifiers &VS,
1442                               bool HasDeferredInit) {
1443  const DeclSpec &DS = D.getDeclSpec();
1444  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1445  DeclarationName Name = NameInfo.getName();
1446  SourceLocation Loc = NameInfo.getLoc();
1447
1448  // For anonymous bitfields, the location should point to the type.
1449  if (Loc.isInvalid())
1450    Loc = D.getSourceRange().getBegin();
1451
1452  Expr *BitWidth = static_cast<Expr*>(BW);
1453
1454  assert(isa<CXXRecordDecl>(CurContext));
1455  assert(!DS.isFriendSpecified());
1456
1457  bool isFunc = D.isDeclarationOfFunction();
1458
1459  // C++ 9.2p6: A member shall not be declared to have automatic storage
1460  // duration (auto, register) or with the extern storage-class-specifier.
1461  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1462  // data members and cannot be applied to names declared const or static,
1463  // and cannot be applied to reference members.
1464  switch (DS.getStorageClassSpec()) {
1465    case DeclSpec::SCS_unspecified:
1466    case DeclSpec::SCS_typedef:
1467    case DeclSpec::SCS_static:
1468      // FALL THROUGH.
1469      break;
1470    case DeclSpec::SCS_mutable:
1471      if (isFunc) {
1472        if (DS.getStorageClassSpecLoc().isValid())
1473          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1474        else
1475          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1476
1477        // FIXME: It would be nicer if the keyword was ignored only for this
1478        // declarator. Otherwise we could get follow-up errors.
1479        D.getMutableDeclSpec().ClearStorageClassSpecs();
1480      }
1481      break;
1482    default:
1483      if (DS.getStorageClassSpecLoc().isValid())
1484        Diag(DS.getStorageClassSpecLoc(),
1485             diag::err_storageclass_invalid_for_member);
1486      else
1487        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1488      D.getMutableDeclSpec().ClearStorageClassSpecs();
1489  }
1490
1491  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1492                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1493                      !isFunc);
1494
1495  Decl *Member;
1496  if (isInstField) {
1497    CXXScopeSpec &SS = D.getCXXScopeSpec();
1498
1499    // Data members must have identifiers for names.
1500    if (Name.getNameKind() != DeclarationName::Identifier) {
1501      Diag(Loc, diag::err_bad_variable_name)
1502        << Name;
1503      return 0;
1504    }
1505
1506    IdentifierInfo *II = Name.getAsIdentifierInfo();
1507
1508    // Member field could not be with "template" keyword.
1509    // So TemplateParameterLists should be empty in this case.
1510    if (TemplateParameterLists.size()) {
1511      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1512      if (TemplateParams->size()) {
1513        // There is no such thing as a member field template.
1514        Diag(D.getIdentifierLoc(), diag::err_template_member)
1515            << II
1516            << SourceRange(TemplateParams->getTemplateLoc(),
1517                TemplateParams->getRAngleLoc());
1518      } else {
1519        // There is an extraneous 'template<>' for this member.
1520        Diag(TemplateParams->getTemplateLoc(),
1521            diag::err_template_member_noparams)
1522            << II
1523            << SourceRange(TemplateParams->getTemplateLoc(),
1524                TemplateParams->getRAngleLoc());
1525      }
1526      return 0;
1527    }
1528
1529    if (SS.isSet() && !SS.isInvalid()) {
1530      // The user provided a superfluous scope specifier inside a class
1531      // definition:
1532      //
1533      // class X {
1534      //   int X::member;
1535      // };
1536      DeclContext *DC = 0;
1537      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1538        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1539          << Name << FixItHint::CreateRemoval(SS.getRange());
1540      else
1541        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1542          << Name << SS.getRange();
1543
1544      SS.clear();
1545    }
1546
1547    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1548                         HasDeferredInit, AS);
1549    assert(Member && "HandleField never returns null");
1550  } else {
1551    assert(!HasDeferredInit);
1552
1553    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1554    if (!Member) {
1555      return 0;
1556    }
1557
1558    // Non-instance-fields can't have a bitfield.
1559    if (BitWidth) {
1560      if (Member->isInvalidDecl()) {
1561        // don't emit another diagnostic.
1562      } else if (isa<VarDecl>(Member)) {
1563        // C++ 9.6p3: A bit-field shall not be a static member.
1564        // "static member 'A' cannot be a bit-field"
1565        Diag(Loc, diag::err_static_not_bitfield)
1566          << Name << BitWidth->getSourceRange();
1567      } else if (isa<TypedefDecl>(Member)) {
1568        // "typedef member 'x' cannot be a bit-field"
1569        Diag(Loc, diag::err_typedef_not_bitfield)
1570          << Name << BitWidth->getSourceRange();
1571      } else {
1572        // A function typedef ("typedef int f(); f a;").
1573        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1574        Diag(Loc, diag::err_not_integral_type_bitfield)
1575          << Name << cast<ValueDecl>(Member)->getType()
1576          << BitWidth->getSourceRange();
1577      }
1578
1579      BitWidth = 0;
1580      Member->setInvalidDecl();
1581    }
1582
1583    Member->setAccess(AS);
1584
1585    // If we have declared a member function template, set the access of the
1586    // templated declaration as well.
1587    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1588      FunTmpl->getTemplatedDecl()->setAccess(AS);
1589  }
1590
1591  if (VS.isOverrideSpecified()) {
1592    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1593    if (!MD || !MD->isVirtual()) {
1594      Diag(Member->getLocStart(),
1595           diag::override_keyword_only_allowed_on_virtual_member_functions)
1596        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1597    } else
1598      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1599  }
1600  if (VS.isFinalSpecified()) {
1601    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1602    if (!MD || !MD->isVirtual()) {
1603      Diag(Member->getLocStart(),
1604           diag::override_keyword_only_allowed_on_virtual_member_functions)
1605      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1606    } else
1607      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1608  }
1609
1610  if (VS.getLastLocation().isValid()) {
1611    // Update the end location of a method that has a virt-specifiers.
1612    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1613      MD->setRangeEnd(VS.getLastLocation());
1614  }
1615
1616  CheckOverrideControl(Member);
1617
1618  assert((Name || isInstField) && "No identifier for non-field ?");
1619
1620  if (isInstField)
1621    FieldCollector->Add(cast<FieldDecl>(Member));
1622  return Member;
1623}
1624
1625/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1626/// in-class initializer for a non-static C++ class member, and after
1627/// instantiating an in-class initializer in a class template. Such actions
1628/// are deferred until the class is complete.
1629void
1630Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1631                                       Expr *InitExpr) {
1632  FieldDecl *FD = cast<FieldDecl>(D);
1633
1634  if (!InitExpr) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1641    FD->setInvalidDecl();
1642    FD->removeInClassInitializer();
1643    return;
1644  }
1645
1646  ExprResult Init = InitExpr;
1647  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1648    // FIXME: if there is no EqualLoc, this is list-initialization.
1649    Init = PerformCopyInitialization(
1650      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1651    if (Init.isInvalid()) {
1652      FD->setInvalidDecl();
1653      return;
1654    }
1655
1656    CheckImplicitConversions(Init.get(), EqualLoc);
1657  }
1658
1659  // C++0x [class.base.init]p7:
1660  //   The initialization of each base and member constitutes a
1661  //   full-expression.
1662  Init = MaybeCreateExprWithCleanups(Init);
1663  if (Init.isInvalid()) {
1664    FD->setInvalidDecl();
1665    return;
1666  }
1667
1668  InitExpr = Init.release();
1669
1670  FD->setInClassInitializer(InitExpr);
1671}
1672
1673/// \brief Find the direct and/or virtual base specifiers that
1674/// correspond to the given base type, for use in base initialization
1675/// within a constructor.
1676static bool FindBaseInitializer(Sema &SemaRef,
1677                                CXXRecordDecl *ClassDecl,
1678                                QualType BaseType,
1679                                const CXXBaseSpecifier *&DirectBaseSpec,
1680                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1681  // First, check for a direct base class.
1682  DirectBaseSpec = 0;
1683  for (CXXRecordDecl::base_class_const_iterator Base
1684         = ClassDecl->bases_begin();
1685       Base != ClassDecl->bases_end(); ++Base) {
1686    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1687      // We found a direct base of this type. That's what we're
1688      // initializing.
1689      DirectBaseSpec = &*Base;
1690      break;
1691    }
1692  }
1693
1694  // Check for a virtual base class.
1695  // FIXME: We might be able to short-circuit this if we know in advance that
1696  // there are no virtual bases.
1697  VirtualBaseSpec = 0;
1698  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1699    // We haven't found a base yet; search the class hierarchy for a
1700    // virtual base class.
1701    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1702                       /*DetectVirtual=*/false);
1703    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1704                              BaseType, Paths)) {
1705      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1706           Path != Paths.end(); ++Path) {
1707        if (Path->back().Base->isVirtual()) {
1708          VirtualBaseSpec = Path->back().Base;
1709          break;
1710        }
1711      }
1712    }
1713  }
1714
1715  return DirectBaseSpec || VirtualBaseSpec;
1716}
1717
1718/// \brief Handle a C++ member initializer using braced-init-list syntax.
1719MemInitResult
1720Sema::ActOnMemInitializer(Decl *ConstructorD,
1721                          Scope *S,
1722                          CXXScopeSpec &SS,
1723                          IdentifierInfo *MemberOrBase,
1724                          ParsedType TemplateTypeTy,
1725                          SourceLocation IdLoc,
1726                          Expr *InitList,
1727                          SourceLocation EllipsisLoc) {
1728  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1729                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1730}
1731
1732/// \brief Handle a C++ member initializer using parentheses syntax.
1733MemInitResult
1734Sema::ActOnMemInitializer(Decl *ConstructorD,
1735                          Scope *S,
1736                          CXXScopeSpec &SS,
1737                          IdentifierInfo *MemberOrBase,
1738                          ParsedType TemplateTypeTy,
1739                          SourceLocation IdLoc,
1740                          SourceLocation LParenLoc,
1741                          Expr **Args, unsigned NumArgs,
1742                          SourceLocation RParenLoc,
1743                          SourceLocation EllipsisLoc) {
1744  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1745                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1746                                                     RParenLoc),
1747                             EllipsisLoc);
1748}
1749
1750namespace {
1751
1752// Callback to only accept typo corrections that can be a valid C++ member
1753// intializer: either a non-static field member or a base class.
1754class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1755 public:
1756  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1757      : ClassDecl(ClassDecl) {}
1758
1759  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1760    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1761      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1762        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1763      else
1764        return isa<TypeDecl>(ND);
1765    }
1766    return false;
1767  }
1768
1769 private:
1770  CXXRecordDecl *ClassDecl;
1771};
1772
1773}
1774
1775/// \brief Handle a C++ member initializer.
1776MemInitResult
1777Sema::BuildMemInitializer(Decl *ConstructorD,
1778                          Scope *S,
1779                          CXXScopeSpec &SS,
1780                          IdentifierInfo *MemberOrBase,
1781                          ParsedType TemplateTypeTy,
1782                          SourceLocation IdLoc,
1783                          const MultiInitializer &Args,
1784                          SourceLocation EllipsisLoc) {
1785  if (!ConstructorD)
1786    return true;
1787
1788  AdjustDeclIfTemplate(ConstructorD);
1789
1790  CXXConstructorDecl *Constructor
1791    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1792  if (!Constructor) {
1793    // The user wrote a constructor initializer on a function that is
1794    // not a C++ constructor. Ignore the error for now, because we may
1795    // have more member initializers coming; we'll diagnose it just
1796    // once in ActOnMemInitializers.
1797    return true;
1798  }
1799
1800  CXXRecordDecl *ClassDecl = Constructor->getParent();
1801
1802  // C++ [class.base.init]p2:
1803  //   Names in a mem-initializer-id are looked up in the scope of the
1804  //   constructor's class and, if not found in that scope, are looked
1805  //   up in the scope containing the constructor's definition.
1806  //   [Note: if the constructor's class contains a member with the
1807  //   same name as a direct or virtual base class of the class, a
1808  //   mem-initializer-id naming the member or base class and composed
1809  //   of a single identifier refers to the class member. A
1810  //   mem-initializer-id for the hidden base class may be specified
1811  //   using a qualified name. ]
1812  if (!SS.getScopeRep() && !TemplateTypeTy) {
1813    // Look for a member, first.
1814    DeclContext::lookup_result Result
1815      = ClassDecl->lookup(MemberOrBase);
1816    if (Result.first != Result.second) {
1817      ValueDecl *Member;
1818      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1819          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1820        if (EllipsisLoc.isValid())
1821          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1822            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1823
1824        return BuildMemberInitializer(Member, Args, IdLoc);
1825      }
1826    }
1827  }
1828  // It didn't name a member, so see if it names a class.
1829  QualType BaseType;
1830  TypeSourceInfo *TInfo = 0;
1831
1832  if (TemplateTypeTy) {
1833    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1834  } else {
1835    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1836    LookupParsedName(R, S, &SS);
1837
1838    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1839    if (!TyD) {
1840      if (R.isAmbiguous()) return true;
1841
1842      // We don't want access-control diagnostics here.
1843      R.suppressDiagnostics();
1844
1845      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1846        bool NotUnknownSpecialization = false;
1847        DeclContext *DC = computeDeclContext(SS, false);
1848        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1849          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1850
1851        if (!NotUnknownSpecialization) {
1852          // When the scope specifier can refer to a member of an unknown
1853          // specialization, we take it as a type name.
1854          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1855                                       SS.getWithLocInContext(Context),
1856                                       *MemberOrBase, IdLoc);
1857          if (BaseType.isNull())
1858            return true;
1859
1860          R.clear();
1861          R.setLookupName(MemberOrBase);
1862        }
1863      }
1864
1865      // If no results were found, try to correct typos.
1866      TypoCorrection Corr;
1867      MemInitializerValidatorCCC Validator(ClassDecl);
1868      if (R.empty() && BaseType.isNull() &&
1869          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1870                              &Validator, ClassDecl))) {
1871        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1872        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1873        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1874          // We have found a non-static data member with a similar
1875          // name to what was typed; complain and initialize that
1876          // member.
1877          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1878            << MemberOrBase << true << CorrectedQuotedStr
1879            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1880          Diag(Member->getLocation(), diag::note_previous_decl)
1881            << CorrectedQuotedStr;
1882
1883          return BuildMemberInitializer(Member, Args, IdLoc);
1884        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1885          const CXXBaseSpecifier *DirectBaseSpec;
1886          const CXXBaseSpecifier *VirtualBaseSpec;
1887          if (FindBaseInitializer(*this, ClassDecl,
1888                                  Context.getTypeDeclType(Type),
1889                                  DirectBaseSpec, VirtualBaseSpec)) {
1890            // We have found a direct or virtual base class with a
1891            // similar name to what was typed; complain and initialize
1892            // that base class.
1893            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1894              << MemberOrBase << false << CorrectedQuotedStr
1895              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1896
1897            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1898                                                             : VirtualBaseSpec;
1899            Diag(BaseSpec->getSourceRange().getBegin(),
1900                 diag::note_base_class_specified_here)
1901              << BaseSpec->getType()
1902              << BaseSpec->getSourceRange();
1903
1904            TyD = Type;
1905          }
1906        }
1907      }
1908
1909      if (!TyD && BaseType.isNull()) {
1910        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1911          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1912        return true;
1913      }
1914    }
1915
1916    if (BaseType.isNull()) {
1917      BaseType = Context.getTypeDeclType(TyD);
1918      if (SS.isSet()) {
1919        NestedNameSpecifier *Qualifier =
1920          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1921
1922        // FIXME: preserve source range information
1923        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1924      }
1925    }
1926  }
1927
1928  if (!TInfo)
1929    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1930
1931  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1932}
1933
1934/// Checks a member initializer expression for cases where reference (or
1935/// pointer) members are bound to by-value parameters (or their addresses).
1936static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1937                                               Expr *Init,
1938                                               SourceLocation IdLoc) {
1939  QualType MemberTy = Member->getType();
1940
1941  // We only handle pointers and references currently.
1942  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1943  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1944    return;
1945
1946  const bool IsPointer = MemberTy->isPointerType();
1947  if (IsPointer) {
1948    if (const UnaryOperator *Op
1949          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1950      // The only case we're worried about with pointers requires taking the
1951      // address.
1952      if (Op->getOpcode() != UO_AddrOf)
1953        return;
1954
1955      Init = Op->getSubExpr();
1956    } else {
1957      // We only handle address-of expression initializers for pointers.
1958      return;
1959    }
1960  }
1961
1962  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1963    // Taking the address of a temporary will be diagnosed as a hard error.
1964    if (IsPointer)
1965      return;
1966
1967    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1968      << Member << Init->getSourceRange();
1969  } else if (const DeclRefExpr *DRE
1970               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1971    // We only warn when referring to a non-reference parameter declaration.
1972    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1973    if (!Parameter || Parameter->getType()->isReferenceType())
1974      return;
1975
1976    S.Diag(Init->getExprLoc(),
1977           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1978                     : diag::warn_bind_ref_member_to_parameter)
1979      << Member << Parameter << Init->getSourceRange();
1980  } else {
1981    // Other initializers are fine.
1982    return;
1983  }
1984
1985  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1986    << (unsigned)IsPointer;
1987}
1988
1989/// Checks an initializer expression for use of uninitialized fields, such as
1990/// containing the field that is being initialized. Returns true if there is an
1991/// uninitialized field was used an updates the SourceLocation parameter; false
1992/// otherwise.
1993static bool InitExprContainsUninitializedFields(const Stmt *S,
1994                                                const ValueDecl *LhsField,
1995                                                SourceLocation *L) {
1996  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1997
1998  if (isa<CallExpr>(S)) {
1999    // Do not descend into function calls or constructors, as the use
2000    // of an uninitialized field may be valid. One would have to inspect
2001    // the contents of the function/ctor to determine if it is safe or not.
2002    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2003    // may be safe, depending on what the function/ctor does.
2004    return false;
2005  }
2006  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2007    const NamedDecl *RhsField = ME->getMemberDecl();
2008
2009    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2010      // The member expression points to a static data member.
2011      assert(VD->isStaticDataMember() &&
2012             "Member points to non-static data member!");
2013      (void)VD;
2014      return false;
2015    }
2016
2017    if (isa<EnumConstantDecl>(RhsField)) {
2018      // The member expression points to an enum.
2019      return false;
2020    }
2021
2022    if (RhsField == LhsField) {
2023      // Initializing a field with itself. Throw a warning.
2024      // But wait; there are exceptions!
2025      // Exception #1:  The field may not belong to this record.
2026      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2027      const Expr *base = ME->getBase();
2028      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2029        // Even though the field matches, it does not belong to this record.
2030        return false;
2031      }
2032      // None of the exceptions triggered; return true to indicate an
2033      // uninitialized field was used.
2034      *L = ME->getMemberLoc();
2035      return true;
2036    }
2037  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2038    // sizeof/alignof doesn't reference contents, do not warn.
2039    return false;
2040  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2041    // address-of doesn't reference contents (the pointer may be dereferenced
2042    // in the same expression but it would be rare; and weird).
2043    if (UOE->getOpcode() == UO_AddrOf)
2044      return false;
2045  }
2046  for (Stmt::const_child_range it = S->children(); it; ++it) {
2047    if (!*it) {
2048      // An expression such as 'member(arg ?: "")' may trigger this.
2049      continue;
2050    }
2051    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2052      return true;
2053  }
2054  return false;
2055}
2056
2057MemInitResult
2058Sema::BuildMemberInitializer(ValueDecl *Member,
2059                             const MultiInitializer &Args,
2060                             SourceLocation IdLoc) {
2061  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2062  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2063  assert((DirectMember || IndirectMember) &&
2064         "Member must be a FieldDecl or IndirectFieldDecl");
2065
2066  if (Args.DiagnoseUnexpandedParameterPack(*this))
2067    return true;
2068
2069  if (Member->isInvalidDecl())
2070    return true;
2071
2072  // Diagnose value-uses of fields to initialize themselves, e.g.
2073  //   foo(foo)
2074  // where foo is not also a parameter to the constructor.
2075  // TODO: implement -Wuninitialized and fold this into that framework.
2076  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2077       I != E; ++I) {
2078    SourceLocation L;
2079    Expr *Arg = *I;
2080    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2081      Arg = DIE->getInit();
2082    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2083      // FIXME: Return true in the case when other fields are used before being
2084      // uninitialized. For example, let this field be the i'th field. When
2085      // initializing the i'th field, throw a warning if any of the >= i'th
2086      // fields are used, as they are not yet initialized.
2087      // Right now we are only handling the case where the i'th field uses
2088      // itself in its initializer.
2089      Diag(L, diag::warn_field_is_uninit);
2090    }
2091  }
2092
2093  bool HasDependentArg = Args.isTypeDependent();
2094
2095  Expr *Init;
2096  if (Member->getType()->isDependentType() || HasDependentArg) {
2097    // Can't check initialization for a member of dependent type or when
2098    // any of the arguments are type-dependent expressions.
2099    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2100
2101    DiscardCleanupsInEvaluationContext();
2102  } else {
2103    // Initialize the member.
2104    InitializedEntity MemberEntity =
2105      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2106                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2107    InitializationKind Kind =
2108      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2109                                       Args.getEndLoc());
2110
2111    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2112    if (MemberInit.isInvalid())
2113      return true;
2114
2115    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2116
2117    // C++0x [class.base.init]p7:
2118    //   The initialization of each base and member constitutes a
2119    //   full-expression.
2120    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2121    if (MemberInit.isInvalid())
2122      return true;
2123
2124    // If we are in a dependent context, template instantiation will
2125    // perform this type-checking again. Just save the arguments that we
2126    // received in a ParenListExpr.
2127    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2128    // of the information that we have about the member
2129    // initializer. However, deconstructing the ASTs is a dicey process,
2130    // and this approach is far more likely to get the corner cases right.
2131    if (CurContext->isDependentContext()) {
2132      Init = Args.CreateInitExpr(Context,
2133                                 Member->getType().getNonReferenceType());
2134    } else {
2135      Init = MemberInit.get();
2136      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2137    }
2138  }
2139
2140  if (DirectMember) {
2141    return new (Context) CXXCtorInitializer(Context, DirectMember,
2142                                                    IdLoc, Args.getStartLoc(),
2143                                                    Init, Args.getEndLoc());
2144  } else {
2145    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2146                                                    IdLoc, Args.getStartLoc(),
2147                                                    Init, Args.getEndLoc());
2148  }
2149}
2150
2151MemInitResult
2152Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2153                                 const MultiInitializer &Args,
2154                                 CXXRecordDecl *ClassDecl) {
2155  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2156  if (!LangOpts.CPlusPlus0x)
2157    return Diag(NameLoc, diag::err_delegating_ctor)
2158      << TInfo->getTypeLoc().getLocalSourceRange();
2159  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2160
2161  // Initialize the object.
2162  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2163                                     QualType(ClassDecl->getTypeForDecl(), 0));
2164  InitializationKind Kind =
2165    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2166                                     Args.getEndLoc());
2167
2168  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2169  if (DelegationInit.isInvalid())
2170    return true;
2171
2172  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2173         "Delegating constructor with no target?");
2174
2175  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2176
2177  // C++0x [class.base.init]p7:
2178  //   The initialization of each base and member constitutes a
2179  //   full-expression.
2180  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2181  if (DelegationInit.isInvalid())
2182    return true;
2183
2184  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2185                                          DelegationInit.takeAs<Expr>(),
2186                                          Args.getEndLoc());
2187}
2188
2189MemInitResult
2190Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2191                           const MultiInitializer &Args,
2192                           CXXRecordDecl *ClassDecl,
2193                           SourceLocation EllipsisLoc) {
2194  bool HasDependentArg = Args.isTypeDependent();
2195
2196  SourceLocation BaseLoc
2197    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2198
2199  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2200    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2201             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2202
2203  // C++ [class.base.init]p2:
2204  //   [...] Unless the mem-initializer-id names a nonstatic data
2205  //   member of the constructor's class or a direct or virtual base
2206  //   of that class, the mem-initializer is ill-formed. A
2207  //   mem-initializer-list can initialize a base class using any
2208  //   name that denotes that base class type.
2209  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2210
2211  if (EllipsisLoc.isValid()) {
2212    // This is a pack expansion.
2213    if (!BaseType->containsUnexpandedParameterPack())  {
2214      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2215        << SourceRange(BaseLoc, Args.getEndLoc());
2216
2217      EllipsisLoc = SourceLocation();
2218    }
2219  } else {
2220    // Check for any unexpanded parameter packs.
2221    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2222      return true;
2223
2224    if (Args.DiagnoseUnexpandedParameterPack(*this))
2225      return true;
2226  }
2227
2228  // Check for direct and virtual base classes.
2229  const CXXBaseSpecifier *DirectBaseSpec = 0;
2230  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2231  if (!Dependent) {
2232    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2233                                       BaseType))
2234      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2235
2236    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2237                        VirtualBaseSpec);
2238
2239    // C++ [base.class.init]p2:
2240    // Unless the mem-initializer-id names a nonstatic data member of the
2241    // constructor's class or a direct or virtual base of that class, the
2242    // mem-initializer is ill-formed.
2243    if (!DirectBaseSpec && !VirtualBaseSpec) {
2244      // If the class has any dependent bases, then it's possible that
2245      // one of those types will resolve to the same type as
2246      // BaseType. Therefore, just treat this as a dependent base
2247      // class initialization.  FIXME: Should we try to check the
2248      // initialization anyway? It seems odd.
2249      if (ClassDecl->hasAnyDependentBases())
2250        Dependent = true;
2251      else
2252        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2253          << BaseType << Context.getTypeDeclType(ClassDecl)
2254          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2255    }
2256  }
2257
2258  if (Dependent) {
2259    // Can't check initialization for a base of dependent type or when
2260    // any of the arguments are type-dependent expressions.
2261    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2262
2263    DiscardCleanupsInEvaluationContext();
2264
2265    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2266                                            /*IsVirtual=*/false,
2267                                            Args.getStartLoc(), BaseInit,
2268                                            Args.getEndLoc(), EllipsisLoc);
2269  }
2270
2271  // C++ [base.class.init]p2:
2272  //   If a mem-initializer-id is ambiguous because it designates both
2273  //   a direct non-virtual base class and an inherited virtual base
2274  //   class, the mem-initializer is ill-formed.
2275  if (DirectBaseSpec && VirtualBaseSpec)
2276    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2277      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2278
2279  CXXBaseSpecifier *BaseSpec
2280    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2281  if (!BaseSpec)
2282    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2283
2284  // Initialize the base.
2285  InitializedEntity BaseEntity =
2286    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2287  InitializationKind Kind =
2288    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2289                                     Args.getEndLoc());
2290
2291  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2292  if (BaseInit.isInvalid())
2293    return true;
2294
2295  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2296
2297  // C++0x [class.base.init]p7:
2298  //   The initialization of each base and member constitutes a
2299  //   full-expression.
2300  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2301  if (BaseInit.isInvalid())
2302    return true;
2303
2304  // If we are in a dependent context, template instantiation will
2305  // perform this type-checking again. Just save the arguments that we
2306  // received in a ParenListExpr.
2307  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2308  // of the information that we have about the base
2309  // initializer. However, deconstructing the ASTs is a dicey process,
2310  // and this approach is far more likely to get the corner cases right.
2311  if (CurContext->isDependentContext())
2312    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2313
2314  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2315                                          BaseSpec->isVirtual(),
2316                                          Args.getStartLoc(),
2317                                          BaseInit.takeAs<Expr>(),
2318                                          Args.getEndLoc(), EllipsisLoc);
2319}
2320
2321// Create a static_cast\<T&&>(expr).
2322static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2323  QualType ExprType = E->getType();
2324  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2325  SourceLocation ExprLoc = E->getLocStart();
2326  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2327      TargetType, ExprLoc);
2328
2329  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2330                                   SourceRange(ExprLoc, ExprLoc),
2331                                   E->getSourceRange()).take();
2332}
2333
2334/// ImplicitInitializerKind - How an implicit base or member initializer should
2335/// initialize its base or member.
2336enum ImplicitInitializerKind {
2337  IIK_Default,
2338  IIK_Copy,
2339  IIK_Move
2340};
2341
2342static bool
2343BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2344                             ImplicitInitializerKind ImplicitInitKind,
2345                             CXXBaseSpecifier *BaseSpec,
2346                             bool IsInheritedVirtualBase,
2347                             CXXCtorInitializer *&CXXBaseInit) {
2348  InitializedEntity InitEntity
2349    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2350                                        IsInheritedVirtualBase);
2351
2352  ExprResult BaseInit;
2353
2354  switch (ImplicitInitKind) {
2355  case IIK_Default: {
2356    InitializationKind InitKind
2357      = InitializationKind::CreateDefault(Constructor->getLocation());
2358    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2359    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2360                               MultiExprArg(SemaRef, 0, 0));
2361    break;
2362  }
2363
2364  case IIK_Move:
2365  case IIK_Copy: {
2366    bool Moving = ImplicitInitKind == IIK_Move;
2367    ParmVarDecl *Param = Constructor->getParamDecl(0);
2368    QualType ParamType = Param->getType().getNonReferenceType();
2369
2370    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2371
2372    Expr *CopyCtorArg =
2373      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2374                          Constructor->getLocation(), ParamType,
2375                          VK_LValue, 0);
2376
2377    // Cast to the base class to avoid ambiguities.
2378    QualType ArgTy =
2379      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2380                                       ParamType.getQualifiers());
2381
2382    if (Moving) {
2383      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2384    }
2385
2386    CXXCastPath BasePath;
2387    BasePath.push_back(BaseSpec);
2388    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2389                                            CK_UncheckedDerivedToBase,
2390                                            Moving ? VK_XValue : VK_LValue,
2391                                            &BasePath).take();
2392
2393    InitializationKind InitKind
2394      = InitializationKind::CreateDirect(Constructor->getLocation(),
2395                                         SourceLocation(), SourceLocation());
2396    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2397                                   &CopyCtorArg, 1);
2398    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2399                               MultiExprArg(&CopyCtorArg, 1));
2400    break;
2401  }
2402  }
2403
2404  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2405  if (BaseInit.isInvalid())
2406    return true;
2407
2408  CXXBaseInit =
2409    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2410               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2411                                                        SourceLocation()),
2412                                             BaseSpec->isVirtual(),
2413                                             SourceLocation(),
2414                                             BaseInit.takeAs<Expr>(),
2415                                             SourceLocation(),
2416                                             SourceLocation());
2417
2418  return false;
2419}
2420
2421static bool RefersToRValueRef(Expr *MemRef) {
2422  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2423  return Referenced->getType()->isRValueReferenceType();
2424}
2425
2426static bool
2427BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2428                               ImplicitInitializerKind ImplicitInitKind,
2429                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2430                               CXXCtorInitializer *&CXXMemberInit) {
2431  if (Field->isInvalidDecl())
2432    return true;
2433
2434  SourceLocation Loc = Constructor->getLocation();
2435
2436  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2437    bool Moving = ImplicitInitKind == IIK_Move;
2438    ParmVarDecl *Param = Constructor->getParamDecl(0);
2439    QualType ParamType = Param->getType().getNonReferenceType();
2440
2441    SemaRef.MarkDeclarationReferenced(Constructor->getLocation(), Param);
2442
2443    // Suppress copying zero-width bitfields.
2444    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2445      return false;
2446
2447    Expr *MemberExprBase =
2448      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2449                          Loc, ParamType, VK_LValue, 0);
2450
2451    if (Moving) {
2452      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2453    }
2454
2455    // Build a reference to this field within the parameter.
2456    CXXScopeSpec SS;
2457    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2458                              Sema::LookupMemberName);
2459    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2460                                  : cast<ValueDecl>(Field), AS_public);
2461    MemberLookup.resolveKind();
2462    ExprResult CtorArg
2463      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2464                                         ParamType, Loc,
2465                                         /*IsArrow=*/false,
2466                                         SS,
2467                                         /*FirstQualifierInScope=*/0,
2468                                         MemberLookup,
2469                                         /*TemplateArgs=*/0);
2470    if (CtorArg.isInvalid())
2471      return true;
2472
2473    // C++11 [class.copy]p15:
2474    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2475    //     with static_cast<T&&>(x.m);
2476    if (RefersToRValueRef(CtorArg.get())) {
2477      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2478    }
2479
2480    // When the field we are copying is an array, create index variables for
2481    // each dimension of the array. We use these index variables to subscript
2482    // the source array, and other clients (e.g., CodeGen) will perform the
2483    // necessary iteration with these index variables.
2484    SmallVector<VarDecl *, 4> IndexVariables;
2485    QualType BaseType = Field->getType();
2486    QualType SizeType = SemaRef.Context.getSizeType();
2487    bool InitializingArray = false;
2488    while (const ConstantArrayType *Array
2489                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2490      InitializingArray = true;
2491      // Create the iteration variable for this array index.
2492      IdentifierInfo *IterationVarName = 0;
2493      {
2494        llvm::SmallString<8> Str;
2495        llvm::raw_svector_ostream OS(Str);
2496        OS << "__i" << IndexVariables.size();
2497        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2498      }
2499      VarDecl *IterationVar
2500        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2501                          IterationVarName, SizeType,
2502                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2503                          SC_None, SC_None);
2504      IndexVariables.push_back(IterationVar);
2505
2506      // Create a reference to the iteration variable.
2507      ExprResult IterationVarRef
2508        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2509      assert(!IterationVarRef.isInvalid() &&
2510             "Reference to invented variable cannot fail!");
2511      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2512      assert(!IterationVarRef.isInvalid() &&
2513             "Conversion of invented variable cannot fail!");
2514
2515      // Subscript the array with this iteration variable.
2516      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2517                                                        IterationVarRef.take(),
2518                                                        Loc);
2519      if (CtorArg.isInvalid())
2520        return true;
2521
2522      BaseType = Array->getElementType();
2523    }
2524
2525    // The array subscript expression is an lvalue, which is wrong for moving.
2526    if (Moving && InitializingArray)
2527      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2528
2529    // Construct the entity that we will be initializing. For an array, this
2530    // will be first element in the array, which may require several levels
2531    // of array-subscript entities.
2532    SmallVector<InitializedEntity, 4> Entities;
2533    Entities.reserve(1 + IndexVariables.size());
2534    if (Indirect)
2535      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2536    else
2537      Entities.push_back(InitializedEntity::InitializeMember(Field));
2538    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2539      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2540                                                              0,
2541                                                              Entities.back()));
2542
2543    // Direct-initialize to use the copy constructor.
2544    InitializationKind InitKind =
2545      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2546
2547    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2548    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2549                                   &CtorArgE, 1);
2550
2551    ExprResult MemberInit
2552      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2553                        MultiExprArg(&CtorArgE, 1));
2554    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2555    if (MemberInit.isInvalid())
2556      return true;
2557
2558    if (Indirect) {
2559      assert(IndexVariables.size() == 0 &&
2560             "Indirect field improperly initialized");
2561      CXXMemberInit
2562        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2563                                                   Loc, Loc,
2564                                                   MemberInit.takeAs<Expr>(),
2565                                                   Loc);
2566    } else
2567      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2568                                                 Loc, MemberInit.takeAs<Expr>(),
2569                                                 Loc,
2570                                                 IndexVariables.data(),
2571                                                 IndexVariables.size());
2572    return false;
2573  }
2574
2575  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2576
2577  QualType FieldBaseElementType =
2578    SemaRef.Context.getBaseElementType(Field->getType());
2579
2580  if (FieldBaseElementType->isRecordType()) {
2581    InitializedEntity InitEntity
2582      = Indirect? InitializedEntity::InitializeMember(Indirect)
2583                : InitializedEntity::InitializeMember(Field);
2584    InitializationKind InitKind =
2585      InitializationKind::CreateDefault(Loc);
2586
2587    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2588    ExprResult MemberInit =
2589      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2590
2591    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2592    if (MemberInit.isInvalid())
2593      return true;
2594
2595    if (Indirect)
2596      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2597                                                               Indirect, Loc,
2598                                                               Loc,
2599                                                               MemberInit.get(),
2600                                                               Loc);
2601    else
2602      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2603                                                               Field, Loc, Loc,
2604                                                               MemberInit.get(),
2605                                                               Loc);
2606    return false;
2607  }
2608
2609  if (!Field->getParent()->isUnion()) {
2610    if (FieldBaseElementType->isReferenceType()) {
2611      SemaRef.Diag(Constructor->getLocation(),
2612                   diag::err_uninitialized_member_in_ctor)
2613      << (int)Constructor->isImplicit()
2614      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2615      << 0 << Field->getDeclName();
2616      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2617      return true;
2618    }
2619
2620    if (FieldBaseElementType.isConstQualified()) {
2621      SemaRef.Diag(Constructor->getLocation(),
2622                   diag::err_uninitialized_member_in_ctor)
2623      << (int)Constructor->isImplicit()
2624      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2625      << 1 << Field->getDeclName();
2626      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2627      return true;
2628    }
2629  }
2630
2631  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2632      FieldBaseElementType->isObjCRetainableType() &&
2633      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2634      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2635    // Instant objects:
2636    //   Default-initialize Objective-C pointers to NULL.
2637    CXXMemberInit
2638      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2639                                                 Loc, Loc,
2640                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2641                                                 Loc);
2642    return false;
2643  }
2644
2645  // Nothing to initialize.
2646  CXXMemberInit = 0;
2647  return false;
2648}
2649
2650namespace {
2651struct BaseAndFieldInfo {
2652  Sema &S;
2653  CXXConstructorDecl *Ctor;
2654  bool AnyErrorsInInits;
2655  ImplicitInitializerKind IIK;
2656  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2657  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2658
2659  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2660    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2661    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2662    if (Generated && Ctor->isCopyConstructor())
2663      IIK = IIK_Copy;
2664    else if (Generated && Ctor->isMoveConstructor())
2665      IIK = IIK_Move;
2666    else
2667      IIK = IIK_Default;
2668  }
2669
2670  bool isImplicitCopyOrMove() const {
2671    switch (IIK) {
2672    case IIK_Copy:
2673    case IIK_Move:
2674      return true;
2675
2676    case IIK_Default:
2677      return false;
2678    }
2679
2680    llvm_unreachable("Invalid ImplicitInitializerKind!");
2681  }
2682};
2683}
2684
2685/// \brief Determine whether the given indirect field declaration is somewhere
2686/// within an anonymous union.
2687static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2688  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2689                                      CEnd = F->chain_end();
2690       C != CEnd; ++C)
2691    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2692      if (Record->isUnion())
2693        return true;
2694
2695  return false;
2696}
2697
2698/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2699/// array type.
2700static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2701  if (T->isIncompleteArrayType())
2702    return true;
2703
2704  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2705    if (!ArrayT->getSize())
2706      return true;
2707
2708    T = ArrayT->getElementType();
2709  }
2710
2711  return false;
2712}
2713
2714static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2715                                    FieldDecl *Field,
2716                                    IndirectFieldDecl *Indirect = 0) {
2717
2718  // Overwhelmingly common case: we have a direct initializer for this field.
2719  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2720    Info.AllToInit.push_back(Init);
2721    return false;
2722  }
2723
2724  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2725  // has a brace-or-equal-initializer, the entity is initialized as specified
2726  // in [dcl.init].
2727  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2728    CXXCtorInitializer *Init;
2729    if (Indirect)
2730      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2731                                                      SourceLocation(),
2732                                                      SourceLocation(), 0,
2733                                                      SourceLocation());
2734    else
2735      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2736                                                      SourceLocation(),
2737                                                      SourceLocation(), 0,
2738                                                      SourceLocation());
2739    Info.AllToInit.push_back(Init);
2740    return false;
2741  }
2742
2743  // Don't build an implicit initializer for union members if none was
2744  // explicitly specified.
2745  if (Field->getParent()->isUnion() ||
2746      (Indirect && isWithinAnonymousUnion(Indirect)))
2747    return false;
2748
2749  // Don't initialize incomplete or zero-length arrays.
2750  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2751    return false;
2752
2753  // Don't try to build an implicit initializer if there were semantic
2754  // errors in any of the initializers (and therefore we might be
2755  // missing some that the user actually wrote).
2756  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2757    return false;
2758
2759  CXXCtorInitializer *Init = 0;
2760  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2761                                     Indirect, Init))
2762    return true;
2763
2764  if (Init)
2765    Info.AllToInit.push_back(Init);
2766
2767  return false;
2768}
2769
2770bool
2771Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2772                               CXXCtorInitializer *Initializer) {
2773  assert(Initializer->isDelegatingInitializer());
2774  Constructor->setNumCtorInitializers(1);
2775  CXXCtorInitializer **initializer =
2776    new (Context) CXXCtorInitializer*[1];
2777  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2778  Constructor->setCtorInitializers(initializer);
2779
2780  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2781    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2782    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2783  }
2784
2785  DelegatingCtorDecls.push_back(Constructor);
2786
2787  return false;
2788}
2789
2790bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2791                               CXXCtorInitializer **Initializers,
2792                               unsigned NumInitializers,
2793                               bool AnyErrors) {
2794  if (Constructor->isDependentContext()) {
2795    // Just store the initializers as written, they will be checked during
2796    // instantiation.
2797    if (NumInitializers > 0) {
2798      Constructor->setNumCtorInitializers(NumInitializers);
2799      CXXCtorInitializer **baseOrMemberInitializers =
2800        new (Context) CXXCtorInitializer*[NumInitializers];
2801      memcpy(baseOrMemberInitializers, Initializers,
2802             NumInitializers * sizeof(CXXCtorInitializer*));
2803      Constructor->setCtorInitializers(baseOrMemberInitializers);
2804    }
2805
2806    return false;
2807  }
2808
2809  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2810
2811  // We need to build the initializer AST according to order of construction
2812  // and not what user specified in the Initializers list.
2813  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2814  if (!ClassDecl)
2815    return true;
2816
2817  bool HadError = false;
2818
2819  for (unsigned i = 0; i < NumInitializers; i++) {
2820    CXXCtorInitializer *Member = Initializers[i];
2821
2822    if (Member->isBaseInitializer())
2823      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2824    else
2825      Info.AllBaseFields[Member->getAnyMember()] = Member;
2826  }
2827
2828  // Keep track of the direct virtual bases.
2829  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2830  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2831       E = ClassDecl->bases_end(); I != E; ++I) {
2832    if (I->isVirtual())
2833      DirectVBases.insert(I);
2834  }
2835
2836  // Push virtual bases before others.
2837  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2838       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2839
2840    if (CXXCtorInitializer *Value
2841        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2842      Info.AllToInit.push_back(Value);
2843    } else if (!AnyErrors) {
2844      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2845      CXXCtorInitializer *CXXBaseInit;
2846      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2847                                       VBase, IsInheritedVirtualBase,
2848                                       CXXBaseInit)) {
2849        HadError = true;
2850        continue;
2851      }
2852
2853      Info.AllToInit.push_back(CXXBaseInit);
2854    }
2855  }
2856
2857  // Non-virtual bases.
2858  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2859       E = ClassDecl->bases_end(); Base != E; ++Base) {
2860    // Virtuals are in the virtual base list and already constructed.
2861    if (Base->isVirtual())
2862      continue;
2863
2864    if (CXXCtorInitializer *Value
2865          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2866      Info.AllToInit.push_back(Value);
2867    } else if (!AnyErrors) {
2868      CXXCtorInitializer *CXXBaseInit;
2869      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2870                                       Base, /*IsInheritedVirtualBase=*/false,
2871                                       CXXBaseInit)) {
2872        HadError = true;
2873        continue;
2874      }
2875
2876      Info.AllToInit.push_back(CXXBaseInit);
2877    }
2878  }
2879
2880  // Fields.
2881  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2882                               MemEnd = ClassDecl->decls_end();
2883       Mem != MemEnd; ++Mem) {
2884    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2885      // C++ [class.bit]p2:
2886      //   A declaration for a bit-field that omits the identifier declares an
2887      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2888      //   initialized.
2889      if (F->isUnnamedBitfield())
2890        continue;
2891
2892      // If we're not generating the implicit copy/move constructor, then we'll
2893      // handle anonymous struct/union fields based on their individual
2894      // indirect fields.
2895      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2896        continue;
2897
2898      if (CollectFieldInitializer(*this, Info, F))
2899        HadError = true;
2900      continue;
2901    }
2902
2903    // Beyond this point, we only consider default initialization.
2904    if (Info.IIK != IIK_Default)
2905      continue;
2906
2907    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2908      if (F->getType()->isIncompleteArrayType()) {
2909        assert(ClassDecl->hasFlexibleArrayMember() &&
2910               "Incomplete array type is not valid");
2911        continue;
2912      }
2913
2914      // Initialize each field of an anonymous struct individually.
2915      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2916        HadError = true;
2917
2918      continue;
2919    }
2920  }
2921
2922  NumInitializers = Info.AllToInit.size();
2923  if (NumInitializers > 0) {
2924    Constructor->setNumCtorInitializers(NumInitializers);
2925    CXXCtorInitializer **baseOrMemberInitializers =
2926      new (Context) CXXCtorInitializer*[NumInitializers];
2927    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2928           NumInitializers * sizeof(CXXCtorInitializer*));
2929    Constructor->setCtorInitializers(baseOrMemberInitializers);
2930
2931    // Constructors implicitly reference the base and member
2932    // destructors.
2933    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2934                                           Constructor->getParent());
2935  }
2936
2937  return HadError;
2938}
2939
2940static void *GetKeyForTopLevelField(FieldDecl *Field) {
2941  // For anonymous unions, use the class declaration as the key.
2942  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2943    if (RT->getDecl()->isAnonymousStructOrUnion())
2944      return static_cast<void *>(RT->getDecl());
2945  }
2946  return static_cast<void *>(Field);
2947}
2948
2949static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2950  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2951}
2952
2953static void *GetKeyForMember(ASTContext &Context,
2954                             CXXCtorInitializer *Member) {
2955  if (!Member->isAnyMemberInitializer())
2956    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2957
2958  // For fields injected into the class via declaration of an anonymous union,
2959  // use its anonymous union class declaration as the unique key.
2960  FieldDecl *Field = Member->getAnyMember();
2961
2962  // If the field is a member of an anonymous struct or union, our key
2963  // is the anonymous record decl that's a direct child of the class.
2964  RecordDecl *RD = Field->getParent();
2965  if (RD->isAnonymousStructOrUnion()) {
2966    while (true) {
2967      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2968      if (Parent->isAnonymousStructOrUnion())
2969        RD = Parent;
2970      else
2971        break;
2972    }
2973
2974    return static_cast<void *>(RD);
2975  }
2976
2977  return static_cast<void *>(Field);
2978}
2979
2980static void
2981DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2982                                  const CXXConstructorDecl *Constructor,
2983                                  CXXCtorInitializer **Inits,
2984                                  unsigned NumInits) {
2985  if (Constructor->getDeclContext()->isDependentContext())
2986    return;
2987
2988  // Don't check initializers order unless the warning is enabled at the
2989  // location of at least one initializer.
2990  bool ShouldCheckOrder = false;
2991  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2992    CXXCtorInitializer *Init = Inits[InitIndex];
2993    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2994                                         Init->getSourceLocation())
2995          != DiagnosticsEngine::Ignored) {
2996      ShouldCheckOrder = true;
2997      break;
2998    }
2999  }
3000  if (!ShouldCheckOrder)
3001    return;
3002
3003  // Build the list of bases and members in the order that they'll
3004  // actually be initialized.  The explicit initializers should be in
3005  // this same order but may be missing things.
3006  SmallVector<const void*, 32> IdealInitKeys;
3007
3008  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3009
3010  // 1. Virtual bases.
3011  for (CXXRecordDecl::base_class_const_iterator VBase =
3012       ClassDecl->vbases_begin(),
3013       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3014    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3015
3016  // 2. Non-virtual bases.
3017  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3018       E = ClassDecl->bases_end(); Base != E; ++Base) {
3019    if (Base->isVirtual())
3020      continue;
3021    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3022  }
3023
3024  // 3. Direct fields.
3025  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3026       E = ClassDecl->field_end(); Field != E; ++Field) {
3027    if (Field->isUnnamedBitfield())
3028      continue;
3029
3030    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3031  }
3032
3033  unsigned NumIdealInits = IdealInitKeys.size();
3034  unsigned IdealIndex = 0;
3035
3036  CXXCtorInitializer *PrevInit = 0;
3037  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3038    CXXCtorInitializer *Init = Inits[InitIndex];
3039    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3040
3041    // Scan forward to try to find this initializer in the idealized
3042    // initializers list.
3043    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3044      if (InitKey == IdealInitKeys[IdealIndex])
3045        break;
3046
3047    // If we didn't find this initializer, it must be because we
3048    // scanned past it on a previous iteration.  That can only
3049    // happen if we're out of order;  emit a warning.
3050    if (IdealIndex == NumIdealInits && PrevInit) {
3051      Sema::SemaDiagnosticBuilder D =
3052        SemaRef.Diag(PrevInit->getSourceLocation(),
3053                     diag::warn_initializer_out_of_order);
3054
3055      if (PrevInit->isAnyMemberInitializer())
3056        D << 0 << PrevInit->getAnyMember()->getDeclName();
3057      else
3058        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3059
3060      if (Init->isAnyMemberInitializer())
3061        D << 0 << Init->getAnyMember()->getDeclName();
3062      else
3063        D << 1 << Init->getTypeSourceInfo()->getType();
3064
3065      // Move back to the initializer's location in the ideal list.
3066      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3067        if (InitKey == IdealInitKeys[IdealIndex])
3068          break;
3069
3070      assert(IdealIndex != NumIdealInits &&
3071             "initializer not found in initializer list");
3072    }
3073
3074    PrevInit = Init;
3075  }
3076}
3077
3078namespace {
3079bool CheckRedundantInit(Sema &S,
3080                        CXXCtorInitializer *Init,
3081                        CXXCtorInitializer *&PrevInit) {
3082  if (!PrevInit) {
3083    PrevInit = Init;
3084    return false;
3085  }
3086
3087  if (FieldDecl *Field = Init->getMember())
3088    S.Diag(Init->getSourceLocation(),
3089           diag::err_multiple_mem_initialization)
3090      << Field->getDeclName()
3091      << Init->getSourceRange();
3092  else {
3093    const Type *BaseClass = Init->getBaseClass();
3094    assert(BaseClass && "neither field nor base");
3095    S.Diag(Init->getSourceLocation(),
3096           diag::err_multiple_base_initialization)
3097      << QualType(BaseClass, 0)
3098      << Init->getSourceRange();
3099  }
3100  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3101    << 0 << PrevInit->getSourceRange();
3102
3103  return true;
3104}
3105
3106typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3107typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3108
3109bool CheckRedundantUnionInit(Sema &S,
3110                             CXXCtorInitializer *Init,
3111                             RedundantUnionMap &Unions) {
3112  FieldDecl *Field = Init->getAnyMember();
3113  RecordDecl *Parent = Field->getParent();
3114  NamedDecl *Child = Field;
3115
3116  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3117    if (Parent->isUnion()) {
3118      UnionEntry &En = Unions[Parent];
3119      if (En.first && En.first != Child) {
3120        S.Diag(Init->getSourceLocation(),
3121               diag::err_multiple_mem_union_initialization)
3122          << Field->getDeclName()
3123          << Init->getSourceRange();
3124        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3125          << 0 << En.second->getSourceRange();
3126        return true;
3127      }
3128      if (!En.first) {
3129        En.first = Child;
3130        En.second = Init;
3131      }
3132      if (!Parent->isAnonymousStructOrUnion())
3133        return false;
3134    }
3135
3136    Child = Parent;
3137    Parent = cast<RecordDecl>(Parent->getDeclContext());
3138  }
3139
3140  return false;
3141}
3142}
3143
3144/// ActOnMemInitializers - Handle the member initializers for a constructor.
3145void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3146                                SourceLocation ColonLoc,
3147                                CXXCtorInitializer **meminits,
3148                                unsigned NumMemInits,
3149                                bool AnyErrors) {
3150  if (!ConstructorDecl)
3151    return;
3152
3153  AdjustDeclIfTemplate(ConstructorDecl);
3154
3155  CXXConstructorDecl *Constructor
3156    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3157
3158  if (!Constructor) {
3159    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3160    return;
3161  }
3162
3163  CXXCtorInitializer **MemInits =
3164    reinterpret_cast<CXXCtorInitializer **>(meminits);
3165
3166  // Mapping for the duplicate initializers check.
3167  // For member initializers, this is keyed with a FieldDecl*.
3168  // For base initializers, this is keyed with a Type*.
3169  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3170
3171  // Mapping for the inconsistent anonymous-union initializers check.
3172  RedundantUnionMap MemberUnions;
3173
3174  bool HadError = false;
3175  for (unsigned i = 0; i < NumMemInits; i++) {
3176    CXXCtorInitializer *Init = MemInits[i];
3177
3178    // Set the source order index.
3179    Init->setSourceOrder(i);
3180
3181    if (Init->isAnyMemberInitializer()) {
3182      FieldDecl *Field = Init->getAnyMember();
3183      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3184          CheckRedundantUnionInit(*this, Init, MemberUnions))
3185        HadError = true;
3186    } else if (Init->isBaseInitializer()) {
3187      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3188      if (CheckRedundantInit(*this, Init, Members[Key]))
3189        HadError = true;
3190    } else {
3191      assert(Init->isDelegatingInitializer());
3192      // This must be the only initializer
3193      if (i != 0 || NumMemInits > 1) {
3194        Diag(MemInits[0]->getSourceLocation(),
3195             diag::err_delegating_initializer_alone)
3196          << MemInits[0]->getSourceRange();
3197        HadError = true;
3198        // We will treat this as being the only initializer.
3199      }
3200      SetDelegatingInitializer(Constructor, MemInits[i]);
3201      // Return immediately as the initializer is set.
3202      return;
3203    }
3204  }
3205
3206  if (HadError)
3207    return;
3208
3209  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3210
3211  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3212}
3213
3214void
3215Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3216                                             CXXRecordDecl *ClassDecl) {
3217  // Ignore dependent contexts. Also ignore unions, since their members never
3218  // have destructors implicitly called.
3219  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3220    return;
3221
3222  // FIXME: all the access-control diagnostics are positioned on the
3223  // field/base declaration.  That's probably good; that said, the
3224  // user might reasonably want to know why the destructor is being
3225  // emitted, and we currently don't say.
3226
3227  // Non-static data members.
3228  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3229       E = ClassDecl->field_end(); I != E; ++I) {
3230    FieldDecl *Field = *I;
3231    if (Field->isInvalidDecl())
3232      continue;
3233
3234    // Don't destroy incomplete or zero-length arrays.
3235    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3236      continue;
3237
3238    QualType FieldType = Context.getBaseElementType(Field->getType());
3239
3240    const RecordType* RT = FieldType->getAs<RecordType>();
3241    if (!RT)
3242      continue;
3243
3244    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3245    if (FieldClassDecl->isInvalidDecl())
3246      continue;
3247    if (FieldClassDecl->hasTrivialDestructor())
3248      continue;
3249
3250    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3251    assert(Dtor && "No dtor found for FieldClassDecl!");
3252    CheckDestructorAccess(Field->getLocation(), Dtor,
3253                          PDiag(diag::err_access_dtor_field)
3254                            << Field->getDeclName()
3255                            << FieldType);
3256
3257    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3258  }
3259
3260  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3261
3262  // Bases.
3263  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3264       E = ClassDecl->bases_end(); Base != E; ++Base) {
3265    // Bases are always records in a well-formed non-dependent class.
3266    const RecordType *RT = Base->getType()->getAs<RecordType>();
3267
3268    // Remember direct virtual bases.
3269    if (Base->isVirtual())
3270      DirectVirtualBases.insert(RT);
3271
3272    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3273    // If our base class is invalid, we probably can't get its dtor anyway.
3274    if (BaseClassDecl->isInvalidDecl())
3275      continue;
3276    // Ignore trivial destructors.
3277    if (BaseClassDecl->hasTrivialDestructor())
3278      continue;
3279
3280    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3281    assert(Dtor && "No dtor found for BaseClassDecl!");
3282
3283    // FIXME: caret should be on the start of the class name
3284    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3285                          PDiag(diag::err_access_dtor_base)
3286                            << Base->getType()
3287                            << Base->getSourceRange());
3288
3289    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3290  }
3291
3292  // Virtual bases.
3293  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3294       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3295
3296    // Bases are always records in a well-formed non-dependent class.
3297    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3298
3299    // Ignore direct virtual bases.
3300    if (DirectVirtualBases.count(RT))
3301      continue;
3302
3303    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3304    // If our base class is invalid, we probably can't get its dtor anyway.
3305    if (BaseClassDecl->isInvalidDecl())
3306      continue;
3307    // Ignore trivial destructors.
3308    if (BaseClassDecl->hasTrivialDestructor())
3309      continue;
3310
3311    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3312    assert(Dtor && "No dtor found for BaseClassDecl!");
3313    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3314                          PDiag(diag::err_access_dtor_vbase)
3315                            << VBase->getType());
3316
3317    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3318  }
3319}
3320
3321void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3322  if (!CDtorDecl)
3323    return;
3324
3325  if (CXXConstructorDecl *Constructor
3326      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3327    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3328}
3329
3330bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3331                                  unsigned DiagID, AbstractDiagSelID SelID) {
3332  if (SelID == -1)
3333    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3334  else
3335    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3336}
3337
3338bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3339                                  const PartialDiagnostic &PD) {
3340  if (!getLangOptions().CPlusPlus)
3341    return false;
3342
3343  if (const ArrayType *AT = Context.getAsArrayType(T))
3344    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3345
3346  if (const PointerType *PT = T->getAs<PointerType>()) {
3347    // Find the innermost pointer type.
3348    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3349      PT = T;
3350
3351    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3352      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3353  }
3354
3355  const RecordType *RT = T->getAs<RecordType>();
3356  if (!RT)
3357    return false;
3358
3359  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3360
3361  // We can't answer whether something is abstract until it has a
3362  // definition.  If it's currently being defined, we'll walk back
3363  // over all the declarations when we have a full definition.
3364  const CXXRecordDecl *Def = RD->getDefinition();
3365  if (!Def || Def->isBeingDefined())
3366    return false;
3367
3368  if (!RD->isAbstract())
3369    return false;
3370
3371  Diag(Loc, PD) << RD->getDeclName();
3372  DiagnoseAbstractType(RD);
3373
3374  return true;
3375}
3376
3377void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3378  // Check if we've already emitted the list of pure virtual functions
3379  // for this class.
3380  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3381    return;
3382
3383  CXXFinalOverriderMap FinalOverriders;
3384  RD->getFinalOverriders(FinalOverriders);
3385
3386  // Keep a set of seen pure methods so we won't diagnose the same method
3387  // more than once.
3388  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3389
3390  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3391                                   MEnd = FinalOverriders.end();
3392       M != MEnd;
3393       ++M) {
3394    for (OverridingMethods::iterator SO = M->second.begin(),
3395                                  SOEnd = M->second.end();
3396         SO != SOEnd; ++SO) {
3397      // C++ [class.abstract]p4:
3398      //   A class is abstract if it contains or inherits at least one
3399      //   pure virtual function for which the final overrider is pure
3400      //   virtual.
3401
3402      //
3403      if (SO->second.size() != 1)
3404        continue;
3405
3406      if (!SO->second.front().Method->isPure())
3407        continue;
3408
3409      if (!SeenPureMethods.insert(SO->second.front().Method))
3410        continue;
3411
3412      Diag(SO->second.front().Method->getLocation(),
3413           diag::note_pure_virtual_function)
3414        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3415    }
3416  }
3417
3418  if (!PureVirtualClassDiagSet)
3419    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3420  PureVirtualClassDiagSet->insert(RD);
3421}
3422
3423namespace {
3424struct AbstractUsageInfo {
3425  Sema &S;
3426  CXXRecordDecl *Record;
3427  CanQualType AbstractType;
3428  bool Invalid;
3429
3430  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3431    : S(S), Record(Record),
3432      AbstractType(S.Context.getCanonicalType(
3433                   S.Context.getTypeDeclType(Record))),
3434      Invalid(false) {}
3435
3436  void DiagnoseAbstractType() {
3437    if (Invalid) return;
3438    S.DiagnoseAbstractType(Record);
3439    Invalid = true;
3440  }
3441
3442  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3443};
3444
3445struct CheckAbstractUsage {
3446  AbstractUsageInfo &Info;
3447  const NamedDecl *Ctx;
3448
3449  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3450    : Info(Info), Ctx(Ctx) {}
3451
3452  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3453    switch (TL.getTypeLocClass()) {
3454#define ABSTRACT_TYPELOC(CLASS, PARENT)
3455#define TYPELOC(CLASS, PARENT) \
3456    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3457#include "clang/AST/TypeLocNodes.def"
3458    }
3459  }
3460
3461  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3462    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3463    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3464      if (!TL.getArg(I))
3465        continue;
3466
3467      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3468      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3469    }
3470  }
3471
3472  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3473    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3474  }
3475
3476  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3477    // Visit the type parameters from a permissive context.
3478    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3479      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3480      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3481        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3482          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3483      // TODO: other template argument types?
3484    }
3485  }
3486
3487  // Visit pointee types from a permissive context.
3488#define CheckPolymorphic(Type) \
3489  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3490    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3491  }
3492  CheckPolymorphic(PointerTypeLoc)
3493  CheckPolymorphic(ReferenceTypeLoc)
3494  CheckPolymorphic(MemberPointerTypeLoc)
3495  CheckPolymorphic(BlockPointerTypeLoc)
3496  CheckPolymorphic(AtomicTypeLoc)
3497
3498  /// Handle all the types we haven't given a more specific
3499  /// implementation for above.
3500  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3501    // Every other kind of type that we haven't called out already
3502    // that has an inner type is either (1) sugar or (2) contains that
3503    // inner type in some way as a subobject.
3504    if (TypeLoc Next = TL.getNextTypeLoc())
3505      return Visit(Next, Sel);
3506
3507    // If there's no inner type and we're in a permissive context,
3508    // don't diagnose.
3509    if (Sel == Sema::AbstractNone) return;
3510
3511    // Check whether the type matches the abstract type.
3512    QualType T = TL.getType();
3513    if (T->isArrayType()) {
3514      Sel = Sema::AbstractArrayType;
3515      T = Info.S.Context.getBaseElementType(T);
3516    }
3517    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3518    if (CT != Info.AbstractType) return;
3519
3520    // It matched; do some magic.
3521    if (Sel == Sema::AbstractArrayType) {
3522      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3523        << T << TL.getSourceRange();
3524    } else {
3525      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3526        << Sel << T << TL.getSourceRange();
3527    }
3528    Info.DiagnoseAbstractType();
3529  }
3530};
3531
3532void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3533                                  Sema::AbstractDiagSelID Sel) {
3534  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3535}
3536
3537}
3538
3539/// Check for invalid uses of an abstract type in a method declaration.
3540static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3541                                    CXXMethodDecl *MD) {
3542  // No need to do the check on definitions, which require that
3543  // the return/param types be complete.
3544  if (MD->doesThisDeclarationHaveABody())
3545    return;
3546
3547  // For safety's sake, just ignore it if we don't have type source
3548  // information.  This should never happen for non-implicit methods,
3549  // but...
3550  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3551    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3552}
3553
3554/// Check for invalid uses of an abstract type within a class definition.
3555static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3556                                    CXXRecordDecl *RD) {
3557  for (CXXRecordDecl::decl_iterator
3558         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3559    Decl *D = *I;
3560    if (D->isImplicit()) continue;
3561
3562    // Methods and method templates.
3563    if (isa<CXXMethodDecl>(D)) {
3564      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3565    } else if (isa<FunctionTemplateDecl>(D)) {
3566      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3567      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3568
3569    // Fields and static variables.
3570    } else if (isa<FieldDecl>(D)) {
3571      FieldDecl *FD = cast<FieldDecl>(D);
3572      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3573        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3574    } else if (isa<VarDecl>(D)) {
3575      VarDecl *VD = cast<VarDecl>(D);
3576      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3577        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3578
3579    // Nested classes and class templates.
3580    } else if (isa<CXXRecordDecl>(D)) {
3581      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3582    } else if (isa<ClassTemplateDecl>(D)) {
3583      CheckAbstractClassUsage(Info,
3584                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3585    }
3586  }
3587}
3588
3589/// \brief Perform semantic checks on a class definition that has been
3590/// completing, introducing implicitly-declared members, checking for
3591/// abstract types, etc.
3592void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3593  if (!Record)
3594    return;
3595
3596  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3597    AbstractUsageInfo Info(*this, Record);
3598    CheckAbstractClassUsage(Info, Record);
3599  }
3600
3601  // If this is not an aggregate type and has no user-declared constructor,
3602  // complain about any non-static data members of reference or const scalar
3603  // type, since they will never get initializers.
3604  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3605      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3606    bool Complained = false;
3607    for (RecordDecl::field_iterator F = Record->field_begin(),
3608                                 FEnd = Record->field_end();
3609         F != FEnd; ++F) {
3610      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3611        continue;
3612
3613      if (F->getType()->isReferenceType() ||
3614          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3615        if (!Complained) {
3616          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3617            << Record->getTagKind() << Record;
3618          Complained = true;
3619        }
3620
3621        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3622          << F->getType()->isReferenceType()
3623          << F->getDeclName();
3624      }
3625    }
3626  }
3627
3628  if (Record->isDynamicClass() && !Record->isDependentType())
3629    DynamicClasses.push_back(Record);
3630
3631  if (Record->getIdentifier()) {
3632    // C++ [class.mem]p13:
3633    //   If T is the name of a class, then each of the following shall have a
3634    //   name different from T:
3635    //     - every member of every anonymous union that is a member of class T.
3636    //
3637    // C++ [class.mem]p14:
3638    //   In addition, if class T has a user-declared constructor (12.1), every
3639    //   non-static data member of class T shall have a name different from T.
3640    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3641         R.first != R.second; ++R.first) {
3642      NamedDecl *D = *R.first;
3643      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3644          isa<IndirectFieldDecl>(D)) {
3645        Diag(D->getLocation(), diag::err_member_name_of_class)
3646          << D->getDeclName();
3647        break;
3648      }
3649    }
3650  }
3651
3652  // Warn if the class has virtual methods but non-virtual public destructor.
3653  if (Record->isPolymorphic() && !Record->isDependentType()) {
3654    CXXDestructorDecl *dtor = Record->getDestructor();
3655    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3656      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3657           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3658  }
3659
3660  // See if a method overloads virtual methods in a base
3661  /// class without overriding any.
3662  if (!Record->isDependentType()) {
3663    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3664                                     MEnd = Record->method_end();
3665         M != MEnd; ++M) {
3666      if (!(*M)->isStatic())
3667        DiagnoseHiddenVirtualMethods(Record, *M);
3668    }
3669  }
3670
3671  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3672  // function that is not a constructor declares that member function to be
3673  // const. [...] The class of which that function is a member shall be
3674  // a literal type.
3675  //
3676  // It's fine to diagnose constructors here too: such constructors cannot
3677  // produce a constant expression, so are ill-formed (no diagnostic required).
3678  //
3679  // If the class has virtual bases, any constexpr members will already have
3680  // been diagnosed by the checks performed on the member declaration, so
3681  // suppress this (less useful) diagnostic.
3682  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3683      !Record->isLiteral() && !Record->getNumVBases()) {
3684    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3685                                     MEnd = Record->method_end();
3686         M != MEnd; ++M) {
3687      if (M->isConstexpr() && M->isInstance()) {
3688        switch (Record->getTemplateSpecializationKind()) {
3689        case TSK_ImplicitInstantiation:
3690        case TSK_ExplicitInstantiationDeclaration:
3691        case TSK_ExplicitInstantiationDefinition:
3692          // If a template instantiates to a non-literal type, but its members
3693          // instantiate to constexpr functions, the template is technically
3694          // ill-formed, but we allow it for sanity. Such members are treated as
3695          // non-constexpr.
3696          (*M)->setConstexpr(false);
3697          continue;
3698
3699        case TSK_Undeclared:
3700        case TSK_ExplicitSpecialization:
3701          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3702                             PDiag(diag::err_constexpr_method_non_literal));
3703          break;
3704        }
3705
3706        // Only produce one error per class.
3707        break;
3708      }
3709    }
3710  }
3711
3712  // Declare inherited constructors. We do this eagerly here because:
3713  // - The standard requires an eager diagnostic for conflicting inherited
3714  //   constructors from different classes.
3715  // - The lazy declaration of the other implicit constructors is so as to not
3716  //   waste space and performance on classes that are not meant to be
3717  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3718  //   have inherited constructors.
3719  DeclareInheritedConstructors(Record);
3720
3721  if (!Record->isDependentType())
3722    CheckExplicitlyDefaultedMethods(Record);
3723}
3724
3725void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3726  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3727                                      ME = Record->method_end();
3728       MI != ME; ++MI) {
3729    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3730      switch (getSpecialMember(*MI)) {
3731      case CXXDefaultConstructor:
3732        CheckExplicitlyDefaultedDefaultConstructor(
3733                                                  cast<CXXConstructorDecl>(*MI));
3734        break;
3735
3736      case CXXDestructor:
3737        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3738        break;
3739
3740      case CXXCopyConstructor:
3741        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3742        break;
3743
3744      case CXXCopyAssignment:
3745        CheckExplicitlyDefaultedCopyAssignment(*MI);
3746        break;
3747
3748      case CXXMoveConstructor:
3749        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3750        break;
3751
3752      case CXXMoveAssignment:
3753        CheckExplicitlyDefaultedMoveAssignment(*MI);
3754        break;
3755
3756      case CXXInvalid:
3757        llvm_unreachable("non-special member explicitly defaulted!");
3758      }
3759    }
3760  }
3761
3762}
3763
3764void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3765  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3766
3767  // Whether this was the first-declared instance of the constructor.
3768  // This affects whether we implicitly add an exception spec (and, eventually,
3769  // constexpr). It is also ill-formed to explicitly default a constructor such
3770  // that it would be deleted. (C++0x [decl.fct.def.default])
3771  bool First = CD == CD->getCanonicalDecl();
3772
3773  bool HadError = false;
3774  if (CD->getNumParams() != 0) {
3775    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3776      << CD->getSourceRange();
3777    HadError = true;
3778  }
3779
3780  ImplicitExceptionSpecification Spec
3781    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3782  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3783  if (EPI.ExceptionSpecType == EST_Delayed) {
3784    // Exception specification depends on some deferred part of the class. We'll
3785    // try again when the class's definition has been fully processed.
3786    return;
3787  }
3788  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3789                          *ExceptionType = Context.getFunctionType(
3790                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3791
3792  // C++11 [dcl.fct.def.default]p2:
3793  //   An explicitly-defaulted function may be declared constexpr only if it
3794  //   would have been implicitly declared as constexpr,
3795  if (CD->isConstexpr()) {
3796    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3797      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3798        << CXXDefaultConstructor;
3799      HadError = true;
3800    }
3801  }
3802  //   and may have an explicit exception-specification only if it is compatible
3803  //   with the exception-specification on the implicit declaration.
3804  if (CtorType->hasExceptionSpec()) {
3805    if (CheckEquivalentExceptionSpec(
3806          PDiag(diag::err_incorrect_defaulted_exception_spec)
3807            << CXXDefaultConstructor,
3808          PDiag(),
3809          ExceptionType, SourceLocation(),
3810          CtorType, CD->getLocation())) {
3811      HadError = true;
3812    }
3813  }
3814
3815  //   If a function is explicitly defaulted on its first declaration,
3816  if (First) {
3817    //  -- it is implicitly considered to be constexpr if the implicit
3818    //     definition would be,
3819    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3820
3821    //  -- it is implicitly considered to have the same
3822    //     exception-specification as if it had been implicitly declared
3823    //
3824    // FIXME: a compatible, but different, explicit exception specification
3825    // will be silently overridden. We should issue a warning if this happens.
3826    EPI.ExtInfo = CtorType->getExtInfo();
3827  }
3828
3829  if (HadError) {
3830    CD->setInvalidDecl();
3831    return;
3832  }
3833
3834  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3835    if (First) {
3836      CD->setDeletedAsWritten();
3837    } else {
3838      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3839        << CXXDefaultConstructor;
3840      CD->setInvalidDecl();
3841    }
3842  }
3843}
3844
3845void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3846  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3847
3848  // Whether this was the first-declared instance of the constructor.
3849  bool First = CD == CD->getCanonicalDecl();
3850
3851  bool HadError = false;
3852  if (CD->getNumParams() != 1) {
3853    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3854      << CD->getSourceRange();
3855    HadError = true;
3856  }
3857
3858  ImplicitExceptionSpecification Spec(Context);
3859  bool Const;
3860  llvm::tie(Spec, Const) =
3861    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3862
3863  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3864  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3865                          *ExceptionType = Context.getFunctionType(
3866                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3867
3868  // Check for parameter type matching.
3869  // This is a copy ctor so we know it's a cv-qualified reference to T.
3870  QualType ArgType = CtorType->getArgType(0);
3871  if (ArgType->getPointeeType().isVolatileQualified()) {
3872    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3873    HadError = true;
3874  }
3875  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3876    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3877    HadError = true;
3878  }
3879
3880  // C++11 [dcl.fct.def.default]p2:
3881  //   An explicitly-defaulted function may be declared constexpr only if it
3882  //   would have been implicitly declared as constexpr,
3883  if (CD->isConstexpr()) {
3884    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3885      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3886        << CXXCopyConstructor;
3887      HadError = true;
3888    }
3889  }
3890  //   and may have an explicit exception-specification only if it is compatible
3891  //   with the exception-specification on the implicit declaration.
3892  if (CtorType->hasExceptionSpec()) {
3893    if (CheckEquivalentExceptionSpec(
3894          PDiag(diag::err_incorrect_defaulted_exception_spec)
3895            << CXXCopyConstructor,
3896          PDiag(),
3897          ExceptionType, SourceLocation(),
3898          CtorType, CD->getLocation())) {
3899      HadError = true;
3900    }
3901  }
3902
3903  //   If a function is explicitly defaulted on its first declaration,
3904  if (First) {
3905    //  -- it is implicitly considered to be constexpr if the implicit
3906    //     definition would be,
3907    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3908
3909    //  -- it is implicitly considered to have the same
3910    //     exception-specification as if it had been implicitly declared, and
3911    //
3912    // FIXME: a compatible, but different, explicit exception specification
3913    // will be silently overridden. We should issue a warning if this happens.
3914    EPI.ExtInfo = CtorType->getExtInfo();
3915
3916    //  -- [...] it shall have the same parameter type as if it had been
3917    //     implicitly declared.
3918    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3919  }
3920
3921  if (HadError) {
3922    CD->setInvalidDecl();
3923    return;
3924  }
3925
3926  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3927    if (First) {
3928      CD->setDeletedAsWritten();
3929    } else {
3930      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3931        << CXXCopyConstructor;
3932      CD->setInvalidDecl();
3933    }
3934  }
3935}
3936
3937void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3938  assert(MD->isExplicitlyDefaulted());
3939
3940  // Whether this was the first-declared instance of the operator
3941  bool First = MD == MD->getCanonicalDecl();
3942
3943  bool HadError = false;
3944  if (MD->getNumParams() != 1) {
3945    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3946      << MD->getSourceRange();
3947    HadError = true;
3948  }
3949
3950  QualType ReturnType =
3951    MD->getType()->getAs<FunctionType>()->getResultType();
3952  if (!ReturnType->isLValueReferenceType() ||
3953      !Context.hasSameType(
3954        Context.getCanonicalType(ReturnType->getPointeeType()),
3955        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3956    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3957    HadError = true;
3958  }
3959
3960  ImplicitExceptionSpecification Spec(Context);
3961  bool Const;
3962  llvm::tie(Spec, Const) =
3963    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3964
3965  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3966  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3967                          *ExceptionType = Context.getFunctionType(
3968                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3969
3970  QualType ArgType = OperType->getArgType(0);
3971  if (!ArgType->isLValueReferenceType()) {
3972    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3973    HadError = true;
3974  } else {
3975    if (ArgType->getPointeeType().isVolatileQualified()) {
3976      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3977      HadError = true;
3978    }
3979    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3980      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3981      HadError = true;
3982    }
3983  }
3984
3985  if (OperType->getTypeQuals()) {
3986    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3987    HadError = true;
3988  }
3989
3990  if (OperType->hasExceptionSpec()) {
3991    if (CheckEquivalentExceptionSpec(
3992          PDiag(diag::err_incorrect_defaulted_exception_spec)
3993            << CXXCopyAssignment,
3994          PDiag(),
3995          ExceptionType, SourceLocation(),
3996          OperType, MD->getLocation())) {
3997      HadError = true;
3998    }
3999  }
4000  if (First) {
4001    // We set the declaration to have the computed exception spec here.
4002    // We duplicate the one parameter type.
4003    EPI.RefQualifier = OperType->getRefQualifier();
4004    EPI.ExtInfo = OperType->getExtInfo();
4005    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4006  }
4007
4008  if (HadError) {
4009    MD->setInvalidDecl();
4010    return;
4011  }
4012
4013  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4014    if (First) {
4015      MD->setDeletedAsWritten();
4016    } else {
4017      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4018        << CXXCopyAssignment;
4019      MD->setInvalidDecl();
4020    }
4021  }
4022}
4023
4024void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4025  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4026
4027  // Whether this was the first-declared instance of the constructor.
4028  bool First = CD == CD->getCanonicalDecl();
4029
4030  bool HadError = false;
4031  if (CD->getNumParams() != 1) {
4032    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4033      << CD->getSourceRange();
4034    HadError = true;
4035  }
4036
4037  ImplicitExceptionSpecification Spec(
4038      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4039
4040  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4041  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4042                          *ExceptionType = Context.getFunctionType(
4043                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4044
4045  // Check for parameter type matching.
4046  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4047  QualType ArgType = CtorType->getArgType(0);
4048  if (ArgType->getPointeeType().isVolatileQualified()) {
4049    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4050    HadError = true;
4051  }
4052  if (ArgType->getPointeeType().isConstQualified()) {
4053    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4054    HadError = true;
4055  }
4056
4057  // C++11 [dcl.fct.def.default]p2:
4058  //   An explicitly-defaulted function may be declared constexpr only if it
4059  //   would have been implicitly declared as constexpr,
4060  if (CD->isConstexpr()) {
4061    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4062      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4063        << CXXMoveConstructor;
4064      HadError = true;
4065    }
4066  }
4067  //   and may have an explicit exception-specification only if it is compatible
4068  //   with the exception-specification on the implicit declaration.
4069  if (CtorType->hasExceptionSpec()) {
4070    if (CheckEquivalentExceptionSpec(
4071          PDiag(diag::err_incorrect_defaulted_exception_spec)
4072            << CXXMoveConstructor,
4073          PDiag(),
4074          ExceptionType, SourceLocation(),
4075          CtorType, CD->getLocation())) {
4076      HadError = true;
4077    }
4078  }
4079
4080  //   If a function is explicitly defaulted on its first declaration,
4081  if (First) {
4082    //  -- it is implicitly considered to be constexpr if the implicit
4083    //     definition would be,
4084    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4085
4086    //  -- it is implicitly considered to have the same
4087    //     exception-specification as if it had been implicitly declared, and
4088    //
4089    // FIXME: a compatible, but different, explicit exception specification
4090    // will be silently overridden. We should issue a warning if this happens.
4091    EPI.ExtInfo = CtorType->getExtInfo();
4092
4093    //  -- [...] it shall have the same parameter type as if it had been
4094    //     implicitly declared.
4095    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4096  }
4097
4098  if (HadError) {
4099    CD->setInvalidDecl();
4100    return;
4101  }
4102
4103  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4104    if (First) {
4105      CD->setDeletedAsWritten();
4106    } else {
4107      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4108        << CXXMoveConstructor;
4109      CD->setInvalidDecl();
4110    }
4111  }
4112}
4113
4114void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4115  assert(MD->isExplicitlyDefaulted());
4116
4117  // Whether this was the first-declared instance of the operator
4118  bool First = MD == MD->getCanonicalDecl();
4119
4120  bool HadError = false;
4121  if (MD->getNumParams() != 1) {
4122    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4123      << MD->getSourceRange();
4124    HadError = true;
4125  }
4126
4127  QualType ReturnType =
4128    MD->getType()->getAs<FunctionType>()->getResultType();
4129  if (!ReturnType->isLValueReferenceType() ||
4130      !Context.hasSameType(
4131        Context.getCanonicalType(ReturnType->getPointeeType()),
4132        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4133    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4134    HadError = true;
4135  }
4136
4137  ImplicitExceptionSpecification Spec(
4138      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4139
4140  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4141  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4142                          *ExceptionType = Context.getFunctionType(
4143                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4144
4145  QualType ArgType = OperType->getArgType(0);
4146  if (!ArgType->isRValueReferenceType()) {
4147    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4148    HadError = true;
4149  } else {
4150    if (ArgType->getPointeeType().isVolatileQualified()) {
4151      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4152      HadError = true;
4153    }
4154    if (ArgType->getPointeeType().isConstQualified()) {
4155      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4156      HadError = true;
4157    }
4158  }
4159
4160  if (OperType->getTypeQuals()) {
4161    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4162    HadError = true;
4163  }
4164
4165  if (OperType->hasExceptionSpec()) {
4166    if (CheckEquivalentExceptionSpec(
4167          PDiag(diag::err_incorrect_defaulted_exception_spec)
4168            << CXXMoveAssignment,
4169          PDiag(),
4170          ExceptionType, SourceLocation(),
4171          OperType, MD->getLocation())) {
4172      HadError = true;
4173    }
4174  }
4175  if (First) {
4176    // We set the declaration to have the computed exception spec here.
4177    // We duplicate the one parameter type.
4178    EPI.RefQualifier = OperType->getRefQualifier();
4179    EPI.ExtInfo = OperType->getExtInfo();
4180    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4181  }
4182
4183  if (HadError) {
4184    MD->setInvalidDecl();
4185    return;
4186  }
4187
4188  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4189    if (First) {
4190      MD->setDeletedAsWritten();
4191    } else {
4192      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4193        << CXXMoveAssignment;
4194      MD->setInvalidDecl();
4195    }
4196  }
4197}
4198
4199void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4200  assert(DD->isExplicitlyDefaulted());
4201
4202  // Whether this was the first-declared instance of the destructor.
4203  bool First = DD == DD->getCanonicalDecl();
4204
4205  ImplicitExceptionSpecification Spec
4206    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4207  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4208  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4209                          *ExceptionType = Context.getFunctionType(
4210                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4211
4212  if (DtorType->hasExceptionSpec()) {
4213    if (CheckEquivalentExceptionSpec(
4214          PDiag(diag::err_incorrect_defaulted_exception_spec)
4215            << CXXDestructor,
4216          PDiag(),
4217          ExceptionType, SourceLocation(),
4218          DtorType, DD->getLocation())) {
4219      DD->setInvalidDecl();
4220      return;
4221    }
4222  }
4223  if (First) {
4224    // We set the declaration to have the computed exception spec here.
4225    // There are no parameters.
4226    EPI.ExtInfo = DtorType->getExtInfo();
4227    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4228  }
4229
4230  if (ShouldDeleteDestructor(DD)) {
4231    if (First) {
4232      DD->setDeletedAsWritten();
4233    } else {
4234      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4235        << CXXDestructor;
4236      DD->setInvalidDecl();
4237    }
4238  }
4239}
4240
4241/// This function implements the following C++0x paragraphs:
4242///  - [class.ctor]/5
4243///  - [class.copy]/11
4244bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4245  assert(!MD->isInvalidDecl());
4246  CXXRecordDecl *RD = MD->getParent();
4247  assert(!RD->isDependentType() && "do deletion after instantiation");
4248  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4249    return false;
4250
4251  bool IsUnion = RD->isUnion();
4252  bool IsConstructor = false;
4253  bool IsAssignment = false;
4254  bool IsMove = false;
4255
4256  bool ConstArg = false;
4257
4258  switch (CSM) {
4259  case CXXDefaultConstructor:
4260    IsConstructor = true;
4261    break;
4262  case CXXCopyConstructor:
4263    IsConstructor = true;
4264    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4265    break;
4266  case CXXMoveConstructor:
4267    IsConstructor = true;
4268    IsMove = true;
4269    break;
4270  default:
4271    llvm_unreachable("function only currently implemented for default ctors");
4272  }
4273
4274  SourceLocation Loc = MD->getLocation();
4275
4276  // Do access control from the special member function
4277  ContextRAII MethodContext(*this, MD);
4278
4279  bool AllConst = true;
4280
4281  // We do this because we should never actually use an anonymous
4282  // union's constructor.
4283  if (IsUnion && RD->isAnonymousStructOrUnion())
4284    return false;
4285
4286  // FIXME: We should put some diagnostic logic right into this function.
4287
4288  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4289                                          BE = RD->bases_end();
4290       BI != BE; ++BI) {
4291    // We'll handle this one later
4292    if (BI->isVirtual())
4293      continue;
4294
4295    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4296    assert(BaseDecl && "base isn't a CXXRecordDecl");
4297
4298    // Unless we have an assignment operator, the base's destructor must
4299    // be accessible and not deleted.
4300    if (!IsAssignment) {
4301      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4302      if (BaseDtor->isDeleted())
4303        return true;
4304      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4305          AR_accessible)
4306        return true;
4307    }
4308
4309    // Finding the corresponding member in the base should lead to a
4310    // unique, accessible, non-deleted function. If we are doing
4311    // a destructor, we have already checked this case.
4312    if (CSM != CXXDestructor) {
4313      SpecialMemberOverloadResult *SMOR =
4314        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4315                            false);
4316      if (!SMOR->hasSuccess())
4317        return true;
4318      CXXMethodDecl *BaseMember = SMOR->getMethod();
4319      if (IsConstructor) {
4320        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4321        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4322                                   PDiag()) != AR_accessible)
4323          return true;
4324
4325        // For a move operation, the corresponding operation must actually
4326        // be a move operation (and not a copy selected by overload
4327        // resolution) unless we are working on a trivially copyable class.
4328        if (IsMove && !BaseCtor->isMoveConstructor() &&
4329            !BaseDecl->isTriviallyCopyable())
4330          return true;
4331      }
4332    }
4333  }
4334
4335  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4336                                          BE = RD->vbases_end();
4337       BI != BE; ++BI) {
4338    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4339    assert(BaseDecl && "base isn't a CXXRecordDecl");
4340
4341    // Unless we have an assignment operator, the base's destructor must
4342    // be accessible and not deleted.
4343    if (!IsAssignment) {
4344      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4345      if (BaseDtor->isDeleted())
4346        return true;
4347      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4348          AR_accessible)
4349        return true;
4350    }
4351
4352    // Finding the corresponding member in the base should lead to a
4353    // unique, accessible, non-deleted function.
4354    if (CSM != CXXDestructor) {
4355      SpecialMemberOverloadResult *SMOR =
4356        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4357                            false);
4358      if (!SMOR->hasSuccess())
4359        return true;
4360      CXXMethodDecl *BaseMember = SMOR->getMethod();
4361      if (IsConstructor) {
4362        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4363        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4364                                   PDiag()) != AR_accessible)
4365          return true;
4366
4367        // For a move operation, the corresponding operation must actually
4368        // be a move operation (and not a copy selected by overload
4369        // resolution) unless we are working on a trivially copyable class.
4370        if (IsMove && !BaseCtor->isMoveConstructor() &&
4371            !BaseDecl->isTriviallyCopyable())
4372          return true;
4373      }
4374    }
4375  }
4376
4377  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4378                                     FE = RD->field_end();
4379       FI != FE; ++FI) {
4380    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4381      continue;
4382
4383    QualType FieldType = Context.getBaseElementType(FI->getType());
4384    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4385
4386    // For a default constructor, all references must be initialized in-class
4387    // and, if a union, it must have a non-const member.
4388    if (CSM == CXXDefaultConstructor) {
4389      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4390        return true;
4391
4392      if (IsUnion && !FieldType.isConstQualified())
4393        AllConst = false;
4394    // For a copy constructor, data members must not be of rvalue reference
4395    // type.
4396    } else if (CSM == CXXCopyConstructor) {
4397      if (FieldType->isRValueReferenceType())
4398        return true;
4399    }
4400
4401    if (FieldRecord) {
4402      // For a default constructor, a const member must have a user-provided
4403      // default constructor or else be explicitly initialized.
4404      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4405          !FI->hasInClassInitializer() &&
4406          !FieldRecord->hasUserProvidedDefaultConstructor())
4407        return true;
4408
4409      // Some additional restrictions exist on the variant members.
4410      if (!IsUnion && FieldRecord->isUnion() &&
4411          FieldRecord->isAnonymousStructOrUnion()) {
4412        // We're okay to reuse AllConst here since we only care about the
4413        // value otherwise if we're in a union.
4414        AllConst = true;
4415
4416        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4417                                           UE = FieldRecord->field_end();
4418             UI != UE; ++UI) {
4419          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4420          CXXRecordDecl *UnionFieldRecord =
4421            UnionFieldType->getAsCXXRecordDecl();
4422
4423          if (!UnionFieldType.isConstQualified())
4424            AllConst = false;
4425
4426          if (UnionFieldRecord) {
4427            // FIXME: Checking for accessibility and validity of this
4428            //        destructor is technically going beyond the
4429            //        standard, but this is believed to be a defect.
4430            if (!IsAssignment) {
4431              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4432              if (FieldDtor->isDeleted())
4433                return true;
4434              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4435                  AR_accessible)
4436                return true;
4437              if (!FieldDtor->isTrivial())
4438                return true;
4439            }
4440
4441            if (CSM != CXXDestructor) {
4442              SpecialMemberOverloadResult *SMOR =
4443                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4444                                    false, false, false);
4445              // FIXME: Checking for accessibility and validity of this
4446              //        corresponding member is technically going beyond the
4447              //        standard, but this is believed to be a defect.
4448              if (!SMOR->hasSuccess())
4449                return true;
4450
4451              CXXMethodDecl *FieldMember = SMOR->getMethod();
4452              // A member of a union must have a trivial corresponding
4453              // constructor.
4454              if (!FieldMember->isTrivial())
4455                return true;
4456
4457              if (IsConstructor) {
4458                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4459                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4460                                           PDiag()) != AR_accessible)
4461                return true;
4462              }
4463            }
4464          }
4465        }
4466
4467        // At least one member in each anonymous union must be non-const
4468        if (CSM == CXXDefaultConstructor && AllConst)
4469          return true;
4470
4471        // Don't try to initialize the anonymous union
4472        // This is technically non-conformant, but sanity demands it.
4473        continue;
4474      }
4475
4476      // Unless we're doing assignment, the field's destructor must be
4477      // accessible and not deleted.
4478      if (!IsAssignment) {
4479        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4480        if (FieldDtor->isDeleted())
4481          return true;
4482        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4483            AR_accessible)
4484          return true;
4485      }
4486
4487      // Check that the corresponding member of the field is accessible,
4488      // unique, and non-deleted. We don't do this if it has an explicit
4489      // initialization when default-constructing.
4490      if (CSM != CXXDestructor &&
4491          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4492        SpecialMemberOverloadResult *SMOR =
4493          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4494                              false);
4495        if (!SMOR->hasSuccess())
4496          return true;
4497
4498        CXXMethodDecl *FieldMember = SMOR->getMethod();
4499        if (IsConstructor) {
4500          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4501          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4502                                     PDiag()) != AR_accessible)
4503          return true;
4504
4505          // For a move operation, the corresponding operation must actually
4506          // be a move operation (and not a copy selected by overload
4507          // resolution) unless we are working on a trivially copyable class.
4508          if (IsMove && !FieldCtor->isMoveConstructor() &&
4509              !FieldRecord->isTriviallyCopyable())
4510            return true;
4511        }
4512
4513        // We need the corresponding member of a union to be trivial so that
4514        // we can safely copy them all simultaneously.
4515        // FIXME: Note that performing the check here (where we rely on the lack
4516        // of an in-class initializer) is technically ill-formed. However, this
4517        // seems most obviously to be a bug in the standard.
4518        if (IsUnion && !FieldMember->isTrivial())
4519          return true;
4520      }
4521    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4522               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4523      // We can't initialize a const member of non-class type to any value.
4524      return true;
4525    }
4526  }
4527
4528  // We can't have all const members in a union when default-constructing,
4529  // or else they're all nonsensical garbage values that can't be changed.
4530  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4531    return true;
4532
4533  return false;
4534}
4535
4536bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4537  CXXRecordDecl *RD = MD->getParent();
4538  assert(!RD->isDependentType() && "do deletion after instantiation");
4539  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4540    return false;
4541
4542  SourceLocation Loc = MD->getLocation();
4543
4544  // Do access control from the constructor
4545  ContextRAII MethodContext(*this, MD);
4546
4547  bool Union = RD->isUnion();
4548
4549  unsigned ArgQuals =
4550    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4551      Qualifiers::Const : 0;
4552
4553  // We do this because we should never actually use an anonymous
4554  // union's constructor.
4555  if (Union && RD->isAnonymousStructOrUnion())
4556    return false;
4557
4558  // FIXME: We should put some diagnostic logic right into this function.
4559
4560  // C++0x [class.copy]/20
4561  //    A defaulted [copy] assignment operator for class X is defined as deleted
4562  //    if X has:
4563
4564  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4565                                          BE = RD->bases_end();
4566       BI != BE; ++BI) {
4567    // We'll handle this one later
4568    if (BI->isVirtual())
4569      continue;
4570
4571    QualType BaseType = BI->getType();
4572    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4573    assert(BaseDecl && "base isn't a CXXRecordDecl");
4574
4575    // -- a [direct base class] B that cannot be [copied] because overload
4576    //    resolution, as applied to B's [copy] assignment operator, results in
4577    //    an ambiguity or a function that is deleted or inaccessible from the
4578    //    assignment operator
4579    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4580                                                      0);
4581    if (!CopyOper || CopyOper->isDeleted())
4582      return true;
4583    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4584      return true;
4585  }
4586
4587  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4588                                          BE = RD->vbases_end();
4589       BI != BE; ++BI) {
4590    QualType BaseType = BI->getType();
4591    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4592    assert(BaseDecl && "base isn't a CXXRecordDecl");
4593
4594    // -- a [virtual base class] B that cannot be [copied] because overload
4595    //    resolution, as applied to B's [copy] assignment operator, results in
4596    //    an ambiguity or a function that is deleted or inaccessible from the
4597    //    assignment operator
4598    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4599                                                      0);
4600    if (!CopyOper || CopyOper->isDeleted())
4601      return true;
4602    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4603      return true;
4604  }
4605
4606  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4607                                     FE = RD->field_end();
4608       FI != FE; ++FI) {
4609    if (FI->isUnnamedBitfield())
4610      continue;
4611
4612    QualType FieldType = Context.getBaseElementType(FI->getType());
4613
4614    // -- a non-static data member of reference type
4615    if (FieldType->isReferenceType())
4616      return true;
4617
4618    // -- a non-static data member of const non-class type (or array thereof)
4619    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4620      return true;
4621
4622    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4623
4624    if (FieldRecord) {
4625      // This is an anonymous union
4626      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4627        // Anonymous unions inside unions do not variant members create
4628        if (!Union) {
4629          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4630                                             UE = FieldRecord->field_end();
4631               UI != UE; ++UI) {
4632            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4633            CXXRecordDecl *UnionFieldRecord =
4634              UnionFieldType->getAsCXXRecordDecl();
4635
4636            // -- a variant member with a non-trivial [copy] assignment operator
4637            //    and X is a union-like class
4638            if (UnionFieldRecord &&
4639                !UnionFieldRecord->hasTrivialCopyAssignment())
4640              return true;
4641          }
4642        }
4643
4644        // Don't try to initalize an anonymous union
4645        continue;
4646      // -- a variant member with a non-trivial [copy] assignment operator
4647      //    and X is a union-like class
4648      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4649          return true;
4650      }
4651
4652      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4653                                                        false, 0);
4654      if (!CopyOper || CopyOper->isDeleted())
4655        return true;
4656      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4657        return true;
4658    }
4659  }
4660
4661  return false;
4662}
4663
4664bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4665  CXXRecordDecl *RD = MD->getParent();
4666  assert(!RD->isDependentType() && "do deletion after instantiation");
4667  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4668    return false;
4669
4670  SourceLocation Loc = MD->getLocation();
4671
4672  // Do access control from the constructor
4673  ContextRAII MethodContext(*this, MD);
4674
4675  bool Union = RD->isUnion();
4676
4677  // We do this because we should never actually use an anonymous
4678  // union's constructor.
4679  if (Union && RD->isAnonymousStructOrUnion())
4680    return false;
4681
4682  // C++0x [class.copy]/20
4683  //    A defaulted [move] assignment operator for class X is defined as deleted
4684  //    if X has:
4685
4686  //    -- for the move constructor, [...] any direct or indirect virtual base
4687  //       class.
4688  if (RD->getNumVBases() != 0)
4689    return true;
4690
4691  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4692                                          BE = RD->bases_end();
4693       BI != BE; ++BI) {
4694
4695    QualType BaseType = BI->getType();
4696    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4697    assert(BaseDecl && "base isn't a CXXRecordDecl");
4698
4699    // -- a [direct base class] B that cannot be [moved] because overload
4700    //    resolution, as applied to B's [move] assignment operator, results in
4701    //    an ambiguity or a function that is deleted or inaccessible from the
4702    //    assignment operator
4703    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4704    if (!MoveOper || MoveOper->isDeleted())
4705      return true;
4706    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4707      return true;
4708
4709    // -- for the move assignment operator, a [direct base class] with a type
4710    //    that does not have a move assignment operator and is not trivially
4711    //    copyable.
4712    if (!MoveOper->isMoveAssignmentOperator() &&
4713        !BaseDecl->isTriviallyCopyable())
4714      return true;
4715  }
4716
4717  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4718                                     FE = RD->field_end();
4719       FI != FE; ++FI) {
4720    if (FI->isUnnamedBitfield())
4721      continue;
4722
4723    QualType FieldType = Context.getBaseElementType(FI->getType());
4724
4725    // -- a non-static data member of reference type
4726    if (FieldType->isReferenceType())
4727      return true;
4728
4729    // -- a non-static data member of const non-class type (or array thereof)
4730    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4731      return true;
4732
4733    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4734
4735    if (FieldRecord) {
4736      // This is an anonymous union
4737      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4738        // Anonymous unions inside unions do not variant members create
4739        if (!Union) {
4740          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4741                                             UE = FieldRecord->field_end();
4742               UI != UE; ++UI) {
4743            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4744            CXXRecordDecl *UnionFieldRecord =
4745              UnionFieldType->getAsCXXRecordDecl();
4746
4747            // -- a variant member with a non-trivial [move] assignment operator
4748            //    and X is a union-like class
4749            if (UnionFieldRecord &&
4750                !UnionFieldRecord->hasTrivialMoveAssignment())
4751              return true;
4752          }
4753        }
4754
4755        // Don't try to initalize an anonymous union
4756        continue;
4757      // -- a variant member with a non-trivial [move] assignment operator
4758      //    and X is a union-like class
4759      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4760          return true;
4761      }
4762
4763      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4764      if (!MoveOper || MoveOper->isDeleted())
4765        return true;
4766      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4767        return true;
4768
4769      // -- for the move assignment operator, a [non-static data member] with a
4770      //    type that does not have a move assignment operator and is not
4771      //    trivially copyable.
4772      if (!MoveOper->isMoveAssignmentOperator() &&
4773          !FieldRecord->isTriviallyCopyable())
4774        return true;
4775    }
4776  }
4777
4778  return false;
4779}
4780
4781bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4782  CXXRecordDecl *RD = DD->getParent();
4783  assert(!RD->isDependentType() && "do deletion after instantiation");
4784  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4785    return false;
4786
4787  SourceLocation Loc = DD->getLocation();
4788
4789  // Do access control from the destructor
4790  ContextRAII CtorContext(*this, DD);
4791
4792  bool Union = RD->isUnion();
4793
4794  // We do this because we should never actually use an anonymous
4795  // union's destructor.
4796  if (Union && RD->isAnonymousStructOrUnion())
4797    return false;
4798
4799  // C++0x [class.dtor]p5
4800  //    A defaulted destructor for a class X is defined as deleted if:
4801  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4802                                          BE = RD->bases_end();
4803       BI != BE; ++BI) {
4804    // We'll handle this one later
4805    if (BI->isVirtual())
4806      continue;
4807
4808    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4809    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4810    assert(BaseDtor && "base has no destructor");
4811
4812    // -- any direct or virtual base class has a deleted destructor or
4813    //    a destructor that is inaccessible from the defaulted destructor
4814    if (BaseDtor->isDeleted())
4815      return true;
4816    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4817        AR_accessible)
4818      return true;
4819  }
4820
4821  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4822                                          BE = RD->vbases_end();
4823       BI != BE; ++BI) {
4824    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4825    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4826    assert(BaseDtor && "base has no destructor");
4827
4828    // -- any direct or virtual base class has a deleted destructor or
4829    //    a destructor that is inaccessible from the defaulted destructor
4830    if (BaseDtor->isDeleted())
4831      return true;
4832    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4833        AR_accessible)
4834      return true;
4835  }
4836
4837  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4838                                     FE = RD->field_end();
4839       FI != FE; ++FI) {
4840    QualType FieldType = Context.getBaseElementType(FI->getType());
4841    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4842    if (FieldRecord) {
4843      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4844         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4845                                            UE = FieldRecord->field_end();
4846              UI != UE; ++UI) {
4847           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4848           CXXRecordDecl *UnionFieldRecord =
4849             UnionFieldType->getAsCXXRecordDecl();
4850
4851           // -- X is a union-like class that has a variant member with a non-
4852           //    trivial destructor.
4853           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4854             return true;
4855         }
4856      // Technically we are supposed to do this next check unconditionally.
4857      // But that makes absolutely no sense.
4858      } else {
4859        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4860
4861        // -- any of the non-static data members has class type M (or array
4862        //    thereof) and M has a deleted destructor or a destructor that is
4863        //    inaccessible from the defaulted destructor
4864        if (FieldDtor->isDeleted())
4865          return true;
4866        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4867          AR_accessible)
4868        return true;
4869
4870        // -- X is a union-like class that has a variant member with a non-
4871        //    trivial destructor.
4872        if (Union && !FieldDtor->isTrivial())
4873          return true;
4874      }
4875    }
4876  }
4877
4878  if (DD->isVirtual()) {
4879    FunctionDecl *OperatorDelete = 0;
4880    DeclarationName Name =
4881      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4882    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4883          false))
4884      return true;
4885  }
4886
4887
4888  return false;
4889}
4890
4891/// \brief Data used with FindHiddenVirtualMethod
4892namespace {
4893  struct FindHiddenVirtualMethodData {
4894    Sema *S;
4895    CXXMethodDecl *Method;
4896    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4897    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4898  };
4899}
4900
4901/// \brief Member lookup function that determines whether a given C++
4902/// method overloads virtual methods in a base class without overriding any,
4903/// to be used with CXXRecordDecl::lookupInBases().
4904static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4905                                    CXXBasePath &Path,
4906                                    void *UserData) {
4907  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4908
4909  FindHiddenVirtualMethodData &Data
4910    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4911
4912  DeclarationName Name = Data.Method->getDeclName();
4913  assert(Name.getNameKind() == DeclarationName::Identifier);
4914
4915  bool foundSameNameMethod = false;
4916  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4917  for (Path.Decls = BaseRecord->lookup(Name);
4918       Path.Decls.first != Path.Decls.second;
4919       ++Path.Decls.first) {
4920    NamedDecl *D = *Path.Decls.first;
4921    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4922      MD = MD->getCanonicalDecl();
4923      foundSameNameMethod = true;
4924      // Interested only in hidden virtual methods.
4925      if (!MD->isVirtual())
4926        continue;
4927      // If the method we are checking overrides a method from its base
4928      // don't warn about the other overloaded methods.
4929      if (!Data.S->IsOverload(Data.Method, MD, false))
4930        return true;
4931      // Collect the overload only if its hidden.
4932      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4933        overloadedMethods.push_back(MD);
4934    }
4935  }
4936
4937  if (foundSameNameMethod)
4938    Data.OverloadedMethods.append(overloadedMethods.begin(),
4939                                   overloadedMethods.end());
4940  return foundSameNameMethod;
4941}
4942
4943/// \brief See if a method overloads virtual methods in a base class without
4944/// overriding any.
4945void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4946  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4947                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4948    return;
4949  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4950    return;
4951
4952  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4953                     /*bool RecordPaths=*/false,
4954                     /*bool DetectVirtual=*/false);
4955  FindHiddenVirtualMethodData Data;
4956  Data.Method = MD;
4957  Data.S = this;
4958
4959  // Keep the base methods that were overriden or introduced in the subclass
4960  // by 'using' in a set. A base method not in this set is hidden.
4961  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4962       res.first != res.second; ++res.first) {
4963    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4964      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4965                                          E = MD->end_overridden_methods();
4966           I != E; ++I)
4967        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4968    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4969      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4970        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4971  }
4972
4973  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4974      !Data.OverloadedMethods.empty()) {
4975    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4976      << MD << (Data.OverloadedMethods.size() > 1);
4977
4978    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4979      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4980      Diag(overloadedMD->getLocation(),
4981           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4982    }
4983  }
4984}
4985
4986void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4987                                             Decl *TagDecl,
4988                                             SourceLocation LBrac,
4989                                             SourceLocation RBrac,
4990                                             AttributeList *AttrList) {
4991  if (!TagDecl)
4992    return;
4993
4994  AdjustDeclIfTemplate(TagDecl);
4995
4996  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4997              // strict aliasing violation!
4998              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4999              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5000
5001  CheckCompletedCXXClass(
5002                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5003}
5004
5005/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5006/// special functions, such as the default constructor, copy
5007/// constructor, or destructor, to the given C++ class (C++
5008/// [special]p1).  This routine can only be executed just before the
5009/// definition of the class is complete.
5010void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5011  if (!ClassDecl->hasUserDeclaredConstructor())
5012    ++ASTContext::NumImplicitDefaultConstructors;
5013
5014  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5015    ++ASTContext::NumImplicitCopyConstructors;
5016
5017  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5018    ++ASTContext::NumImplicitMoveConstructors;
5019
5020  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5021    ++ASTContext::NumImplicitCopyAssignmentOperators;
5022
5023    // If we have a dynamic class, then the copy assignment operator may be
5024    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5025    // it shows up in the right place in the vtable and that we diagnose
5026    // problems with the implicit exception specification.
5027    if (ClassDecl->isDynamicClass())
5028      DeclareImplicitCopyAssignment(ClassDecl);
5029  }
5030
5031  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5032    ++ASTContext::NumImplicitMoveAssignmentOperators;
5033
5034    // Likewise for the move assignment operator.
5035    if (ClassDecl->isDynamicClass())
5036      DeclareImplicitMoveAssignment(ClassDecl);
5037  }
5038
5039  if (!ClassDecl->hasUserDeclaredDestructor()) {
5040    ++ASTContext::NumImplicitDestructors;
5041
5042    // If we have a dynamic class, then the destructor may be virtual, so we
5043    // have to declare the destructor immediately. This ensures that, e.g., it
5044    // shows up in the right place in the vtable and that we diagnose problems
5045    // with the implicit exception specification.
5046    if (ClassDecl->isDynamicClass())
5047      DeclareImplicitDestructor(ClassDecl);
5048  }
5049}
5050
5051void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5052  if (!D)
5053    return;
5054
5055  int NumParamList = D->getNumTemplateParameterLists();
5056  for (int i = 0; i < NumParamList; i++) {
5057    TemplateParameterList* Params = D->getTemplateParameterList(i);
5058    for (TemplateParameterList::iterator Param = Params->begin(),
5059                                      ParamEnd = Params->end();
5060          Param != ParamEnd; ++Param) {
5061      NamedDecl *Named = cast<NamedDecl>(*Param);
5062      if (Named->getDeclName()) {
5063        S->AddDecl(Named);
5064        IdResolver.AddDecl(Named);
5065      }
5066    }
5067  }
5068}
5069
5070void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5071  if (!D)
5072    return;
5073
5074  TemplateParameterList *Params = 0;
5075  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5076    Params = Template->getTemplateParameters();
5077  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5078           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5079    Params = PartialSpec->getTemplateParameters();
5080  else
5081    return;
5082
5083  for (TemplateParameterList::iterator Param = Params->begin(),
5084                                    ParamEnd = Params->end();
5085       Param != ParamEnd; ++Param) {
5086    NamedDecl *Named = cast<NamedDecl>(*Param);
5087    if (Named->getDeclName()) {
5088      S->AddDecl(Named);
5089      IdResolver.AddDecl(Named);
5090    }
5091  }
5092}
5093
5094void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5095  if (!RecordD) return;
5096  AdjustDeclIfTemplate(RecordD);
5097  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5098  PushDeclContext(S, Record);
5099}
5100
5101void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5102  if (!RecordD) return;
5103  PopDeclContext();
5104}
5105
5106/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5107/// parsing a top-level (non-nested) C++ class, and we are now
5108/// parsing those parts of the given Method declaration that could
5109/// not be parsed earlier (C++ [class.mem]p2), such as default
5110/// arguments. This action should enter the scope of the given
5111/// Method declaration as if we had just parsed the qualified method
5112/// name. However, it should not bring the parameters into scope;
5113/// that will be performed by ActOnDelayedCXXMethodParameter.
5114void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5115}
5116
5117/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5118/// C++ method declaration. We're (re-)introducing the given
5119/// function parameter into scope for use in parsing later parts of
5120/// the method declaration. For example, we could see an
5121/// ActOnParamDefaultArgument event for this parameter.
5122void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5123  if (!ParamD)
5124    return;
5125
5126  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5127
5128  // If this parameter has an unparsed default argument, clear it out
5129  // to make way for the parsed default argument.
5130  if (Param->hasUnparsedDefaultArg())
5131    Param->setDefaultArg(0);
5132
5133  S->AddDecl(Param);
5134  if (Param->getDeclName())
5135    IdResolver.AddDecl(Param);
5136}
5137
5138/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5139/// processing the delayed method declaration for Method. The method
5140/// declaration is now considered finished. There may be a separate
5141/// ActOnStartOfFunctionDef action later (not necessarily
5142/// immediately!) for this method, if it was also defined inside the
5143/// class body.
5144void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5145  if (!MethodD)
5146    return;
5147
5148  AdjustDeclIfTemplate(MethodD);
5149
5150  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5151
5152  // Now that we have our default arguments, check the constructor
5153  // again. It could produce additional diagnostics or affect whether
5154  // the class has implicitly-declared destructors, among other
5155  // things.
5156  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5157    CheckConstructor(Constructor);
5158
5159  // Check the default arguments, which we may have added.
5160  if (!Method->isInvalidDecl())
5161    CheckCXXDefaultArguments(Method);
5162}
5163
5164/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5165/// the well-formedness of the constructor declarator @p D with type @p
5166/// R. If there are any errors in the declarator, this routine will
5167/// emit diagnostics and set the invalid bit to true.  In any case, the type
5168/// will be updated to reflect a well-formed type for the constructor and
5169/// returned.
5170QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5171                                          StorageClass &SC) {
5172  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5173
5174  // C++ [class.ctor]p3:
5175  //   A constructor shall not be virtual (10.3) or static (9.4). A
5176  //   constructor can be invoked for a const, volatile or const
5177  //   volatile object. A constructor shall not be declared const,
5178  //   volatile, or const volatile (9.3.2).
5179  if (isVirtual) {
5180    if (!D.isInvalidType())
5181      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5182        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5183        << SourceRange(D.getIdentifierLoc());
5184    D.setInvalidType();
5185  }
5186  if (SC == SC_Static) {
5187    if (!D.isInvalidType())
5188      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5189        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5190        << SourceRange(D.getIdentifierLoc());
5191    D.setInvalidType();
5192    SC = SC_None;
5193  }
5194
5195  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5196  if (FTI.TypeQuals != 0) {
5197    if (FTI.TypeQuals & Qualifiers::Const)
5198      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5199        << "const" << SourceRange(D.getIdentifierLoc());
5200    if (FTI.TypeQuals & Qualifiers::Volatile)
5201      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5202        << "volatile" << SourceRange(D.getIdentifierLoc());
5203    if (FTI.TypeQuals & Qualifiers::Restrict)
5204      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5205        << "restrict" << SourceRange(D.getIdentifierLoc());
5206    D.setInvalidType();
5207  }
5208
5209  // C++0x [class.ctor]p4:
5210  //   A constructor shall not be declared with a ref-qualifier.
5211  if (FTI.hasRefQualifier()) {
5212    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5213      << FTI.RefQualifierIsLValueRef
5214      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5215    D.setInvalidType();
5216  }
5217
5218  // Rebuild the function type "R" without any type qualifiers (in
5219  // case any of the errors above fired) and with "void" as the
5220  // return type, since constructors don't have return types.
5221  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5222  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5223    return R;
5224
5225  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5226  EPI.TypeQuals = 0;
5227  EPI.RefQualifier = RQ_None;
5228
5229  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5230                                 Proto->getNumArgs(), EPI);
5231}
5232
5233/// CheckConstructor - Checks a fully-formed constructor for
5234/// well-formedness, issuing any diagnostics required. Returns true if
5235/// the constructor declarator is invalid.
5236void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5237  CXXRecordDecl *ClassDecl
5238    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5239  if (!ClassDecl)
5240    return Constructor->setInvalidDecl();
5241
5242  // C++ [class.copy]p3:
5243  //   A declaration of a constructor for a class X is ill-formed if
5244  //   its first parameter is of type (optionally cv-qualified) X and
5245  //   either there are no other parameters or else all other
5246  //   parameters have default arguments.
5247  if (!Constructor->isInvalidDecl() &&
5248      ((Constructor->getNumParams() == 1) ||
5249       (Constructor->getNumParams() > 1 &&
5250        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5251      Constructor->getTemplateSpecializationKind()
5252                                              != TSK_ImplicitInstantiation) {
5253    QualType ParamType = Constructor->getParamDecl(0)->getType();
5254    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5255    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5256      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5257      const char *ConstRef
5258        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5259                                                        : " const &";
5260      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5261        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5262
5263      // FIXME: Rather that making the constructor invalid, we should endeavor
5264      // to fix the type.
5265      Constructor->setInvalidDecl();
5266    }
5267  }
5268}
5269
5270/// CheckDestructor - Checks a fully-formed destructor definition for
5271/// well-formedness, issuing any diagnostics required.  Returns true
5272/// on error.
5273bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5274  CXXRecordDecl *RD = Destructor->getParent();
5275
5276  if (Destructor->isVirtual()) {
5277    SourceLocation Loc;
5278
5279    if (!Destructor->isImplicit())
5280      Loc = Destructor->getLocation();
5281    else
5282      Loc = RD->getLocation();
5283
5284    // If we have a virtual destructor, look up the deallocation function
5285    FunctionDecl *OperatorDelete = 0;
5286    DeclarationName Name =
5287    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5288    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5289      return true;
5290
5291    MarkDeclarationReferenced(Loc, OperatorDelete);
5292
5293    Destructor->setOperatorDelete(OperatorDelete);
5294  }
5295
5296  return false;
5297}
5298
5299static inline bool
5300FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5301  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5302          FTI.ArgInfo[0].Param &&
5303          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5304}
5305
5306/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5307/// the well-formednes of the destructor declarator @p D with type @p
5308/// R. If there are any errors in the declarator, this routine will
5309/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5310/// will be updated to reflect a well-formed type for the destructor and
5311/// returned.
5312QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5313                                         StorageClass& SC) {
5314  // C++ [class.dtor]p1:
5315  //   [...] A typedef-name that names a class is a class-name
5316  //   (7.1.3); however, a typedef-name that names a class shall not
5317  //   be used as the identifier in the declarator for a destructor
5318  //   declaration.
5319  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5320  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5321    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5322      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5323  else if (const TemplateSpecializationType *TST =
5324             DeclaratorType->getAs<TemplateSpecializationType>())
5325    if (TST->isTypeAlias())
5326      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5327        << DeclaratorType << 1;
5328
5329  // C++ [class.dtor]p2:
5330  //   A destructor is used to destroy objects of its class type. A
5331  //   destructor takes no parameters, and no return type can be
5332  //   specified for it (not even void). The address of a destructor
5333  //   shall not be taken. A destructor shall not be static. A
5334  //   destructor can be invoked for a const, volatile or const
5335  //   volatile object. A destructor shall not be declared const,
5336  //   volatile or const volatile (9.3.2).
5337  if (SC == SC_Static) {
5338    if (!D.isInvalidType())
5339      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5340        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5341        << SourceRange(D.getIdentifierLoc())
5342        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5343
5344    SC = SC_None;
5345  }
5346  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5347    // Destructors don't have return types, but the parser will
5348    // happily parse something like:
5349    //
5350    //   class X {
5351    //     float ~X();
5352    //   };
5353    //
5354    // The return type will be eliminated later.
5355    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5356      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5357      << SourceRange(D.getIdentifierLoc());
5358  }
5359
5360  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5361  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5362    if (FTI.TypeQuals & Qualifiers::Const)
5363      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5364        << "const" << SourceRange(D.getIdentifierLoc());
5365    if (FTI.TypeQuals & Qualifiers::Volatile)
5366      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5367        << "volatile" << SourceRange(D.getIdentifierLoc());
5368    if (FTI.TypeQuals & Qualifiers::Restrict)
5369      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5370        << "restrict" << SourceRange(D.getIdentifierLoc());
5371    D.setInvalidType();
5372  }
5373
5374  // C++0x [class.dtor]p2:
5375  //   A destructor shall not be declared with a ref-qualifier.
5376  if (FTI.hasRefQualifier()) {
5377    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5378      << FTI.RefQualifierIsLValueRef
5379      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5380    D.setInvalidType();
5381  }
5382
5383  // Make sure we don't have any parameters.
5384  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5385    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5386
5387    // Delete the parameters.
5388    FTI.freeArgs();
5389    D.setInvalidType();
5390  }
5391
5392  // Make sure the destructor isn't variadic.
5393  if (FTI.isVariadic) {
5394    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5395    D.setInvalidType();
5396  }
5397
5398  // Rebuild the function type "R" without any type qualifiers or
5399  // parameters (in case any of the errors above fired) and with
5400  // "void" as the return type, since destructors don't have return
5401  // types.
5402  if (!D.isInvalidType())
5403    return R;
5404
5405  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5406  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5407  EPI.Variadic = false;
5408  EPI.TypeQuals = 0;
5409  EPI.RefQualifier = RQ_None;
5410  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5411}
5412
5413/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5414/// well-formednes of the conversion function declarator @p D with
5415/// type @p R. If there are any errors in the declarator, this routine
5416/// will emit diagnostics and return true. Otherwise, it will return
5417/// false. Either way, the type @p R will be updated to reflect a
5418/// well-formed type for the conversion operator.
5419void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5420                                     StorageClass& SC) {
5421  // C++ [class.conv.fct]p1:
5422  //   Neither parameter types nor return type can be specified. The
5423  //   type of a conversion function (8.3.5) is "function taking no
5424  //   parameter returning conversion-type-id."
5425  if (SC == SC_Static) {
5426    if (!D.isInvalidType())
5427      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5428        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5429        << SourceRange(D.getIdentifierLoc());
5430    D.setInvalidType();
5431    SC = SC_None;
5432  }
5433
5434  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5435
5436  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5437    // Conversion functions don't have return types, but the parser will
5438    // happily parse something like:
5439    //
5440    //   class X {
5441    //     float operator bool();
5442    //   };
5443    //
5444    // The return type will be changed later anyway.
5445    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5446      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5447      << SourceRange(D.getIdentifierLoc());
5448    D.setInvalidType();
5449  }
5450
5451  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5452
5453  // Make sure we don't have any parameters.
5454  if (Proto->getNumArgs() > 0) {
5455    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5456
5457    // Delete the parameters.
5458    D.getFunctionTypeInfo().freeArgs();
5459    D.setInvalidType();
5460  } else if (Proto->isVariadic()) {
5461    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5462    D.setInvalidType();
5463  }
5464
5465  // Diagnose "&operator bool()" and other such nonsense.  This
5466  // is actually a gcc extension which we don't support.
5467  if (Proto->getResultType() != ConvType) {
5468    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5469      << Proto->getResultType();
5470    D.setInvalidType();
5471    ConvType = Proto->getResultType();
5472  }
5473
5474  // C++ [class.conv.fct]p4:
5475  //   The conversion-type-id shall not represent a function type nor
5476  //   an array type.
5477  if (ConvType->isArrayType()) {
5478    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5479    ConvType = Context.getPointerType(ConvType);
5480    D.setInvalidType();
5481  } else if (ConvType->isFunctionType()) {
5482    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5483    ConvType = Context.getPointerType(ConvType);
5484    D.setInvalidType();
5485  }
5486
5487  // Rebuild the function type "R" without any parameters (in case any
5488  // of the errors above fired) and with the conversion type as the
5489  // return type.
5490  if (D.isInvalidType())
5491    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5492
5493  // C++0x explicit conversion operators.
5494  if (D.getDeclSpec().isExplicitSpecified())
5495    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5496         getLangOptions().CPlusPlus0x ?
5497           diag::warn_cxx98_compat_explicit_conversion_functions :
5498           diag::ext_explicit_conversion_functions)
5499      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5500}
5501
5502/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5503/// the declaration of the given C++ conversion function. This routine
5504/// is responsible for recording the conversion function in the C++
5505/// class, if possible.
5506Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5507  assert(Conversion && "Expected to receive a conversion function declaration");
5508
5509  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5510
5511  // Make sure we aren't redeclaring the conversion function.
5512  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5513
5514  // C++ [class.conv.fct]p1:
5515  //   [...] A conversion function is never used to convert a
5516  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5517  //   same object type (or a reference to it), to a (possibly
5518  //   cv-qualified) base class of that type (or a reference to it),
5519  //   or to (possibly cv-qualified) void.
5520  // FIXME: Suppress this warning if the conversion function ends up being a
5521  // virtual function that overrides a virtual function in a base class.
5522  QualType ClassType
5523    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5524  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5525    ConvType = ConvTypeRef->getPointeeType();
5526  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5527      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5528    /* Suppress diagnostics for instantiations. */;
5529  else if (ConvType->isRecordType()) {
5530    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5531    if (ConvType == ClassType)
5532      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5533        << ClassType;
5534    else if (IsDerivedFrom(ClassType, ConvType))
5535      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5536        <<  ClassType << ConvType;
5537  } else if (ConvType->isVoidType()) {
5538    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5539      << ClassType << ConvType;
5540  }
5541
5542  if (FunctionTemplateDecl *ConversionTemplate
5543                                = Conversion->getDescribedFunctionTemplate())
5544    return ConversionTemplate;
5545
5546  return Conversion;
5547}
5548
5549//===----------------------------------------------------------------------===//
5550// Namespace Handling
5551//===----------------------------------------------------------------------===//
5552
5553
5554
5555/// ActOnStartNamespaceDef - This is called at the start of a namespace
5556/// definition.
5557Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5558                                   SourceLocation InlineLoc,
5559                                   SourceLocation NamespaceLoc,
5560                                   SourceLocation IdentLoc,
5561                                   IdentifierInfo *II,
5562                                   SourceLocation LBrace,
5563                                   AttributeList *AttrList) {
5564  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5565  // For anonymous namespace, take the location of the left brace.
5566  SourceLocation Loc = II ? IdentLoc : LBrace;
5567  bool IsInline = InlineLoc.isValid();
5568  bool IsInvalid = false;
5569  bool IsStd = false;
5570  bool AddToKnown = false;
5571  Scope *DeclRegionScope = NamespcScope->getParent();
5572
5573  NamespaceDecl *PrevNS = 0;
5574  if (II) {
5575    // C++ [namespace.def]p2:
5576    //   The identifier in an original-namespace-definition shall not
5577    //   have been previously defined in the declarative region in
5578    //   which the original-namespace-definition appears. The
5579    //   identifier in an original-namespace-definition is the name of
5580    //   the namespace. Subsequently in that declarative region, it is
5581    //   treated as an original-namespace-name.
5582    //
5583    // Since namespace names are unique in their scope, and we don't
5584    // look through using directives, just look for any ordinary names.
5585
5586    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5587    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5588    Decl::IDNS_Namespace;
5589    NamedDecl *PrevDecl = 0;
5590    for (DeclContext::lookup_result R
5591         = CurContext->getRedeclContext()->lookup(II);
5592         R.first != R.second; ++R.first) {
5593      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5594        PrevDecl = *R.first;
5595        break;
5596      }
5597    }
5598
5599    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5600
5601    if (PrevNS) {
5602      // This is an extended namespace definition.
5603      if (IsInline != PrevNS->isInline()) {
5604        // inline-ness must match
5605        if (PrevNS->isInline()) {
5606          // The user probably just forgot the 'inline', so suggest that it
5607          // be added back.
5608          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5609            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5610        } else {
5611          Diag(Loc, diag::err_inline_namespace_mismatch)
5612            << IsInline;
5613        }
5614        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5615
5616        IsInline = PrevNS->isInline();
5617      }
5618    } else if (PrevDecl) {
5619      // This is an invalid name redefinition.
5620      Diag(Loc, diag::err_redefinition_different_kind)
5621        << II;
5622      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5623      IsInvalid = true;
5624      // Continue on to push Namespc as current DeclContext and return it.
5625    } else if (II->isStr("std") &&
5626               CurContext->getRedeclContext()->isTranslationUnit()) {
5627      // This is the first "real" definition of the namespace "std", so update
5628      // our cache of the "std" namespace to point at this definition.
5629      PrevNS = getStdNamespace();
5630      IsStd = true;
5631      AddToKnown = !IsInline;
5632    } else {
5633      // We've seen this namespace for the first time.
5634      AddToKnown = !IsInline;
5635    }
5636  } else {
5637    // Anonymous namespaces.
5638
5639    // Determine whether the parent already has an anonymous namespace.
5640    DeclContext *Parent = CurContext->getRedeclContext();
5641    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5642      PrevNS = TU->getAnonymousNamespace();
5643    } else {
5644      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5645      PrevNS = ND->getAnonymousNamespace();
5646    }
5647
5648    if (PrevNS && IsInline != PrevNS->isInline()) {
5649      // inline-ness must match
5650      Diag(Loc, diag::err_inline_namespace_mismatch)
5651        << IsInline;
5652      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5653
5654      // Recover by ignoring the new namespace's inline status.
5655      IsInline = PrevNS->isInline();
5656    }
5657  }
5658
5659  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5660                                                 StartLoc, Loc, II, PrevNS);
5661  if (IsInvalid)
5662    Namespc->setInvalidDecl();
5663
5664  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5665
5666  // FIXME: Should we be merging attributes?
5667  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5668    PushNamespaceVisibilityAttr(Attr);
5669
5670  if (IsStd)
5671    StdNamespace = Namespc;
5672  if (AddToKnown)
5673    KnownNamespaces[Namespc] = false;
5674
5675  if (II) {
5676    PushOnScopeChains(Namespc, DeclRegionScope);
5677  } else {
5678    // Link the anonymous namespace into its parent.
5679    DeclContext *Parent = CurContext->getRedeclContext();
5680    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5681      TU->setAnonymousNamespace(Namespc);
5682    } else {
5683      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5684    }
5685
5686    CurContext->addDecl(Namespc);
5687
5688    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5689    //   behaves as if it were replaced by
5690    //     namespace unique { /* empty body */ }
5691    //     using namespace unique;
5692    //     namespace unique { namespace-body }
5693    //   where all occurrences of 'unique' in a translation unit are
5694    //   replaced by the same identifier and this identifier differs
5695    //   from all other identifiers in the entire program.
5696
5697    // We just create the namespace with an empty name and then add an
5698    // implicit using declaration, just like the standard suggests.
5699    //
5700    // CodeGen enforces the "universally unique" aspect by giving all
5701    // declarations semantically contained within an anonymous
5702    // namespace internal linkage.
5703
5704    if (!PrevNS) {
5705      UsingDirectiveDecl* UD
5706        = UsingDirectiveDecl::Create(Context, CurContext,
5707                                     /* 'using' */ LBrace,
5708                                     /* 'namespace' */ SourceLocation(),
5709                                     /* qualifier */ NestedNameSpecifierLoc(),
5710                                     /* identifier */ SourceLocation(),
5711                                     Namespc,
5712                                     /* Ancestor */ CurContext);
5713      UD->setImplicit();
5714      CurContext->addDecl(UD);
5715    }
5716  }
5717
5718  // Although we could have an invalid decl (i.e. the namespace name is a
5719  // redefinition), push it as current DeclContext and try to continue parsing.
5720  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5721  // for the namespace has the declarations that showed up in that particular
5722  // namespace definition.
5723  PushDeclContext(NamespcScope, Namespc);
5724  return Namespc;
5725}
5726
5727/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5728/// is a namespace alias, returns the namespace it points to.
5729static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5730  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5731    return AD->getNamespace();
5732  return dyn_cast_or_null<NamespaceDecl>(D);
5733}
5734
5735/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5736/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5737void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5738  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5739  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5740  Namespc->setRBraceLoc(RBrace);
5741  PopDeclContext();
5742  if (Namespc->hasAttr<VisibilityAttr>())
5743    PopPragmaVisibility();
5744}
5745
5746CXXRecordDecl *Sema::getStdBadAlloc() const {
5747  return cast_or_null<CXXRecordDecl>(
5748                                  StdBadAlloc.get(Context.getExternalSource()));
5749}
5750
5751NamespaceDecl *Sema::getStdNamespace() const {
5752  return cast_or_null<NamespaceDecl>(
5753                                 StdNamespace.get(Context.getExternalSource()));
5754}
5755
5756/// \brief Retrieve the special "std" namespace, which may require us to
5757/// implicitly define the namespace.
5758NamespaceDecl *Sema::getOrCreateStdNamespace() {
5759  if (!StdNamespace) {
5760    // The "std" namespace has not yet been defined, so build one implicitly.
5761    StdNamespace = NamespaceDecl::Create(Context,
5762                                         Context.getTranslationUnitDecl(),
5763                                         /*Inline=*/false,
5764                                         SourceLocation(), SourceLocation(),
5765                                         &PP.getIdentifierTable().get("std"),
5766                                         /*PrevDecl=*/0);
5767    getStdNamespace()->setImplicit(true);
5768  }
5769
5770  return getStdNamespace();
5771}
5772
5773bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5774  assert(getLangOptions().CPlusPlus &&
5775         "Looking for std::initializer_list outside of C++.");
5776
5777  // We're looking for implicit instantiations of
5778  // template <typename E> class std::initializer_list.
5779
5780  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5781    return false;
5782
5783  ClassTemplateDecl *Template = 0;
5784  const TemplateArgument *Arguments = 0;
5785
5786  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5787
5788    ClassTemplateSpecializationDecl *Specialization =
5789        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5790    if (!Specialization)
5791      return false;
5792
5793    if (Specialization->getSpecializationKind() != TSK_ImplicitInstantiation)
5794      return false;
5795
5796    Template = Specialization->getSpecializedTemplate();
5797    Arguments = Specialization->getTemplateArgs().data();
5798  } else if (const TemplateSpecializationType *TST =
5799                 Ty->getAs<TemplateSpecializationType>()) {
5800    Template = dyn_cast_or_null<ClassTemplateDecl>(
5801        TST->getTemplateName().getAsTemplateDecl());
5802    Arguments = TST->getArgs();
5803  }
5804  if (!Template)
5805    return false;
5806
5807  if (!StdInitializerList) {
5808    // Haven't recognized std::initializer_list yet, maybe this is it.
5809    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5810    if (TemplateClass->getIdentifier() !=
5811            &PP.getIdentifierTable().get("initializer_list") ||
5812        !getStdNamespace()->InEnclosingNamespaceSetOf(
5813            TemplateClass->getDeclContext()))
5814      return false;
5815    // This is a template called std::initializer_list, but is it the right
5816    // template?
5817    TemplateParameterList *Params = Template->getTemplateParameters();
5818    if (Params->getMinRequiredArguments() != 1)
5819      return false;
5820    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5821      return false;
5822
5823    // It's the right template.
5824    StdInitializerList = Template;
5825  }
5826
5827  if (Template != StdInitializerList)
5828    return false;
5829
5830  // This is an instance of std::initializer_list. Find the argument type.
5831  if (Element)
5832    *Element = Arguments[0].getAsType();
5833  return true;
5834}
5835
5836static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5837  NamespaceDecl *Std = S.getStdNamespace();
5838  if (!Std) {
5839    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5840    return 0;
5841  }
5842
5843  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5844                      Loc, Sema::LookupOrdinaryName);
5845  if (!S.LookupQualifiedName(Result, Std)) {
5846    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5847    return 0;
5848  }
5849  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5850  if (!Template) {
5851    Result.suppressDiagnostics();
5852    // We found something weird. Complain about the first thing we found.
5853    NamedDecl *Found = *Result.begin();
5854    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5855    return 0;
5856  }
5857
5858  // We found some template called std::initializer_list. Now verify that it's
5859  // correct.
5860  TemplateParameterList *Params = Template->getTemplateParameters();
5861  if (Params->getMinRequiredArguments() != 1 ||
5862      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5863    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5864    return 0;
5865  }
5866
5867  return Template;
5868}
5869
5870QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5871  if (!StdInitializerList) {
5872    StdInitializerList = LookupStdInitializerList(*this, Loc);
5873    if (!StdInitializerList)
5874      return QualType();
5875  }
5876
5877  TemplateArgumentListInfo Args(Loc, Loc);
5878  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5879                                       Context.getTrivialTypeSourceInfo(Element,
5880                                                                        Loc)));
5881  return Context.getCanonicalType(
5882      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5883}
5884
5885bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5886  // C++ [dcl.init.list]p2:
5887  //   A constructor is an initializer-list constructor if its first parameter
5888  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5889  //   std::initializer_list<E> for some type E, and either there are no other
5890  //   parameters or else all other parameters have default arguments.
5891  if (Ctor->getNumParams() < 1 ||
5892      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5893    return false;
5894
5895  QualType ArgType = Ctor->getParamDecl(0)->getType();
5896  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5897    ArgType = RT->getPointeeType().getUnqualifiedType();
5898
5899  return isStdInitializerList(ArgType, 0);
5900}
5901
5902/// \brief Determine whether a using statement is in a context where it will be
5903/// apply in all contexts.
5904static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5905  switch (CurContext->getDeclKind()) {
5906    case Decl::TranslationUnit:
5907      return true;
5908    case Decl::LinkageSpec:
5909      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5910    default:
5911      return false;
5912  }
5913}
5914
5915namespace {
5916
5917// Callback to only accept typo corrections that are namespaces.
5918class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5919 public:
5920  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5921    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5922      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5923    }
5924    return false;
5925  }
5926};
5927
5928}
5929
5930static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5931                                       CXXScopeSpec &SS,
5932                                       SourceLocation IdentLoc,
5933                                       IdentifierInfo *Ident) {
5934  NamespaceValidatorCCC Validator;
5935  R.clear();
5936  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5937                                               R.getLookupKind(), Sc, &SS,
5938                                               &Validator)) {
5939    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5940    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5941    if (DeclContext *DC = S.computeDeclContext(SS, false))
5942      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5943        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5944        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5945    else
5946      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5947        << Ident << CorrectedQuotedStr
5948        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5949
5950    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5951         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5952
5953    Ident = Corrected.getCorrectionAsIdentifierInfo();
5954    R.addDecl(Corrected.getCorrectionDecl());
5955    return true;
5956  }
5957  return false;
5958}
5959
5960Decl *Sema::ActOnUsingDirective(Scope *S,
5961                                          SourceLocation UsingLoc,
5962                                          SourceLocation NamespcLoc,
5963                                          CXXScopeSpec &SS,
5964                                          SourceLocation IdentLoc,
5965                                          IdentifierInfo *NamespcName,
5966                                          AttributeList *AttrList) {
5967  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5968  assert(NamespcName && "Invalid NamespcName.");
5969  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5970
5971  // This can only happen along a recovery path.
5972  while (S->getFlags() & Scope::TemplateParamScope)
5973    S = S->getParent();
5974  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5975
5976  UsingDirectiveDecl *UDir = 0;
5977  NestedNameSpecifier *Qualifier = 0;
5978  if (SS.isSet())
5979    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5980
5981  // Lookup namespace name.
5982  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5983  LookupParsedName(R, S, &SS);
5984  if (R.isAmbiguous())
5985    return 0;
5986
5987  if (R.empty()) {
5988    R.clear();
5989    // Allow "using namespace std;" or "using namespace ::std;" even if
5990    // "std" hasn't been defined yet, for GCC compatibility.
5991    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5992        NamespcName->isStr("std")) {
5993      Diag(IdentLoc, diag::ext_using_undefined_std);
5994      R.addDecl(getOrCreateStdNamespace());
5995      R.resolveKind();
5996    }
5997    // Otherwise, attempt typo correction.
5998    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5999  }
6000
6001  if (!R.empty()) {
6002    NamedDecl *Named = R.getFoundDecl();
6003    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6004        && "expected namespace decl");
6005    // C++ [namespace.udir]p1:
6006    //   A using-directive specifies that the names in the nominated
6007    //   namespace can be used in the scope in which the
6008    //   using-directive appears after the using-directive. During
6009    //   unqualified name lookup (3.4.1), the names appear as if they
6010    //   were declared in the nearest enclosing namespace which
6011    //   contains both the using-directive and the nominated
6012    //   namespace. [Note: in this context, "contains" means "contains
6013    //   directly or indirectly". ]
6014
6015    // Find enclosing context containing both using-directive and
6016    // nominated namespace.
6017    NamespaceDecl *NS = getNamespaceDecl(Named);
6018    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6019    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6020      CommonAncestor = CommonAncestor->getParent();
6021
6022    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6023                                      SS.getWithLocInContext(Context),
6024                                      IdentLoc, Named, CommonAncestor);
6025
6026    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6027        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6028      Diag(IdentLoc, diag::warn_using_directive_in_header);
6029    }
6030
6031    PushUsingDirective(S, UDir);
6032  } else {
6033    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6034  }
6035
6036  // FIXME: We ignore attributes for now.
6037  return UDir;
6038}
6039
6040void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6041  // If scope has associated entity, then using directive is at namespace
6042  // or translation unit scope. We add UsingDirectiveDecls, into
6043  // it's lookup structure.
6044  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6045    Ctx->addDecl(UDir);
6046  else
6047    // Otherwise it is block-sope. using-directives will affect lookup
6048    // only to the end of scope.
6049    S->PushUsingDirective(UDir);
6050}
6051
6052
6053Decl *Sema::ActOnUsingDeclaration(Scope *S,
6054                                  AccessSpecifier AS,
6055                                  bool HasUsingKeyword,
6056                                  SourceLocation UsingLoc,
6057                                  CXXScopeSpec &SS,
6058                                  UnqualifiedId &Name,
6059                                  AttributeList *AttrList,
6060                                  bool IsTypeName,
6061                                  SourceLocation TypenameLoc) {
6062  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6063
6064  switch (Name.getKind()) {
6065  case UnqualifiedId::IK_ImplicitSelfParam:
6066  case UnqualifiedId::IK_Identifier:
6067  case UnqualifiedId::IK_OperatorFunctionId:
6068  case UnqualifiedId::IK_LiteralOperatorId:
6069  case UnqualifiedId::IK_ConversionFunctionId:
6070    break;
6071
6072  case UnqualifiedId::IK_ConstructorName:
6073  case UnqualifiedId::IK_ConstructorTemplateId:
6074    // C++0x inherited constructors.
6075    Diag(Name.getSourceRange().getBegin(),
6076         getLangOptions().CPlusPlus0x ?
6077           diag::warn_cxx98_compat_using_decl_constructor :
6078           diag::err_using_decl_constructor)
6079      << SS.getRange();
6080
6081    if (getLangOptions().CPlusPlus0x) break;
6082
6083    return 0;
6084
6085  case UnqualifiedId::IK_DestructorName:
6086    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6087      << SS.getRange();
6088    return 0;
6089
6090  case UnqualifiedId::IK_TemplateId:
6091    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6092      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6093    return 0;
6094  }
6095
6096  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6097  DeclarationName TargetName = TargetNameInfo.getName();
6098  if (!TargetName)
6099    return 0;
6100
6101  // Warn about using declarations.
6102  // TODO: store that the declaration was written without 'using' and
6103  // talk about access decls instead of using decls in the
6104  // diagnostics.
6105  if (!HasUsingKeyword) {
6106    UsingLoc = Name.getSourceRange().getBegin();
6107
6108    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6109      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6110  }
6111
6112  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6113      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6114    return 0;
6115
6116  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6117                                        TargetNameInfo, AttrList,
6118                                        /* IsInstantiation */ false,
6119                                        IsTypeName, TypenameLoc);
6120  if (UD)
6121    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6122
6123  return UD;
6124}
6125
6126/// \brief Determine whether a using declaration considers the given
6127/// declarations as "equivalent", e.g., if they are redeclarations of
6128/// the same entity or are both typedefs of the same type.
6129static bool
6130IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6131                         bool &SuppressRedeclaration) {
6132  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6133    SuppressRedeclaration = false;
6134    return true;
6135  }
6136
6137  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6138    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6139      SuppressRedeclaration = true;
6140      return Context.hasSameType(TD1->getUnderlyingType(),
6141                                 TD2->getUnderlyingType());
6142    }
6143
6144  return false;
6145}
6146
6147
6148/// Determines whether to create a using shadow decl for a particular
6149/// decl, given the set of decls existing prior to this using lookup.
6150bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6151                                const LookupResult &Previous) {
6152  // Diagnose finding a decl which is not from a base class of the
6153  // current class.  We do this now because there are cases where this
6154  // function will silently decide not to build a shadow decl, which
6155  // will pre-empt further diagnostics.
6156  //
6157  // We don't need to do this in C++0x because we do the check once on
6158  // the qualifier.
6159  //
6160  // FIXME: diagnose the following if we care enough:
6161  //   struct A { int foo; };
6162  //   struct B : A { using A::foo; };
6163  //   template <class T> struct C : A {};
6164  //   template <class T> struct D : C<T> { using B::foo; } // <---
6165  // This is invalid (during instantiation) in C++03 because B::foo
6166  // resolves to the using decl in B, which is not a base class of D<T>.
6167  // We can't diagnose it immediately because C<T> is an unknown
6168  // specialization.  The UsingShadowDecl in D<T> then points directly
6169  // to A::foo, which will look well-formed when we instantiate.
6170  // The right solution is to not collapse the shadow-decl chain.
6171  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6172    DeclContext *OrigDC = Orig->getDeclContext();
6173
6174    // Handle enums and anonymous structs.
6175    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6176    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6177    while (OrigRec->isAnonymousStructOrUnion())
6178      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6179
6180    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6181      if (OrigDC == CurContext) {
6182        Diag(Using->getLocation(),
6183             diag::err_using_decl_nested_name_specifier_is_current_class)
6184          << Using->getQualifierLoc().getSourceRange();
6185        Diag(Orig->getLocation(), diag::note_using_decl_target);
6186        return true;
6187      }
6188
6189      Diag(Using->getQualifierLoc().getBeginLoc(),
6190           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6191        << Using->getQualifier()
6192        << cast<CXXRecordDecl>(CurContext)
6193        << Using->getQualifierLoc().getSourceRange();
6194      Diag(Orig->getLocation(), diag::note_using_decl_target);
6195      return true;
6196    }
6197  }
6198
6199  if (Previous.empty()) return false;
6200
6201  NamedDecl *Target = Orig;
6202  if (isa<UsingShadowDecl>(Target))
6203    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6204
6205  // If the target happens to be one of the previous declarations, we
6206  // don't have a conflict.
6207  //
6208  // FIXME: but we might be increasing its access, in which case we
6209  // should redeclare it.
6210  NamedDecl *NonTag = 0, *Tag = 0;
6211  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6212         I != E; ++I) {
6213    NamedDecl *D = (*I)->getUnderlyingDecl();
6214    bool Result;
6215    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6216      return Result;
6217
6218    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6219  }
6220
6221  if (Target->isFunctionOrFunctionTemplate()) {
6222    FunctionDecl *FD;
6223    if (isa<FunctionTemplateDecl>(Target))
6224      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6225    else
6226      FD = cast<FunctionDecl>(Target);
6227
6228    NamedDecl *OldDecl = 0;
6229    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6230    case Ovl_Overload:
6231      return false;
6232
6233    case Ovl_NonFunction:
6234      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6235      break;
6236
6237    // We found a decl with the exact signature.
6238    case Ovl_Match:
6239      // If we're in a record, we want to hide the target, so we
6240      // return true (without a diagnostic) to tell the caller not to
6241      // build a shadow decl.
6242      if (CurContext->isRecord())
6243        return true;
6244
6245      // If we're not in a record, this is an error.
6246      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6247      break;
6248    }
6249
6250    Diag(Target->getLocation(), diag::note_using_decl_target);
6251    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6252    return true;
6253  }
6254
6255  // Target is not a function.
6256
6257  if (isa<TagDecl>(Target)) {
6258    // No conflict between a tag and a non-tag.
6259    if (!Tag) return false;
6260
6261    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6262    Diag(Target->getLocation(), diag::note_using_decl_target);
6263    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6264    return true;
6265  }
6266
6267  // No conflict between a tag and a non-tag.
6268  if (!NonTag) return false;
6269
6270  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6271  Diag(Target->getLocation(), diag::note_using_decl_target);
6272  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6273  return true;
6274}
6275
6276/// Builds a shadow declaration corresponding to a 'using' declaration.
6277UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6278                                            UsingDecl *UD,
6279                                            NamedDecl *Orig) {
6280
6281  // If we resolved to another shadow declaration, just coalesce them.
6282  NamedDecl *Target = Orig;
6283  if (isa<UsingShadowDecl>(Target)) {
6284    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6285    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6286  }
6287
6288  UsingShadowDecl *Shadow
6289    = UsingShadowDecl::Create(Context, CurContext,
6290                              UD->getLocation(), UD, Target);
6291  UD->addShadowDecl(Shadow);
6292
6293  Shadow->setAccess(UD->getAccess());
6294  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6295    Shadow->setInvalidDecl();
6296
6297  if (S)
6298    PushOnScopeChains(Shadow, S);
6299  else
6300    CurContext->addDecl(Shadow);
6301
6302
6303  return Shadow;
6304}
6305
6306/// Hides a using shadow declaration.  This is required by the current
6307/// using-decl implementation when a resolvable using declaration in a
6308/// class is followed by a declaration which would hide or override
6309/// one or more of the using decl's targets; for example:
6310///
6311///   struct Base { void foo(int); };
6312///   struct Derived : Base {
6313///     using Base::foo;
6314///     void foo(int);
6315///   };
6316///
6317/// The governing language is C++03 [namespace.udecl]p12:
6318///
6319///   When a using-declaration brings names from a base class into a
6320///   derived class scope, member functions in the derived class
6321///   override and/or hide member functions with the same name and
6322///   parameter types in a base class (rather than conflicting).
6323///
6324/// There are two ways to implement this:
6325///   (1) optimistically create shadow decls when they're not hidden
6326///       by existing declarations, or
6327///   (2) don't create any shadow decls (or at least don't make them
6328///       visible) until we've fully parsed/instantiated the class.
6329/// The problem with (1) is that we might have to retroactively remove
6330/// a shadow decl, which requires several O(n) operations because the
6331/// decl structures are (very reasonably) not designed for removal.
6332/// (2) avoids this but is very fiddly and phase-dependent.
6333void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6334  if (Shadow->getDeclName().getNameKind() ==
6335        DeclarationName::CXXConversionFunctionName)
6336    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6337
6338  // Remove it from the DeclContext...
6339  Shadow->getDeclContext()->removeDecl(Shadow);
6340
6341  // ...and the scope, if applicable...
6342  if (S) {
6343    S->RemoveDecl(Shadow);
6344    IdResolver.RemoveDecl(Shadow);
6345  }
6346
6347  // ...and the using decl.
6348  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6349
6350  // TODO: complain somehow if Shadow was used.  It shouldn't
6351  // be possible for this to happen, because...?
6352}
6353
6354/// Builds a using declaration.
6355///
6356/// \param IsInstantiation - Whether this call arises from an
6357///   instantiation of an unresolved using declaration.  We treat
6358///   the lookup differently for these declarations.
6359NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6360                                       SourceLocation UsingLoc,
6361                                       CXXScopeSpec &SS,
6362                                       const DeclarationNameInfo &NameInfo,
6363                                       AttributeList *AttrList,
6364                                       bool IsInstantiation,
6365                                       bool IsTypeName,
6366                                       SourceLocation TypenameLoc) {
6367  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6368  SourceLocation IdentLoc = NameInfo.getLoc();
6369  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6370
6371  // FIXME: We ignore attributes for now.
6372
6373  if (SS.isEmpty()) {
6374    Diag(IdentLoc, diag::err_using_requires_qualname);
6375    return 0;
6376  }
6377
6378  // Do the redeclaration lookup in the current scope.
6379  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6380                        ForRedeclaration);
6381  Previous.setHideTags(false);
6382  if (S) {
6383    LookupName(Previous, S);
6384
6385    // It is really dumb that we have to do this.
6386    LookupResult::Filter F = Previous.makeFilter();
6387    while (F.hasNext()) {
6388      NamedDecl *D = F.next();
6389      if (!isDeclInScope(D, CurContext, S))
6390        F.erase();
6391    }
6392    F.done();
6393  } else {
6394    assert(IsInstantiation && "no scope in non-instantiation");
6395    assert(CurContext->isRecord() && "scope not record in instantiation");
6396    LookupQualifiedName(Previous, CurContext);
6397  }
6398
6399  // Check for invalid redeclarations.
6400  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6401    return 0;
6402
6403  // Check for bad qualifiers.
6404  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6405    return 0;
6406
6407  DeclContext *LookupContext = computeDeclContext(SS);
6408  NamedDecl *D;
6409  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6410  if (!LookupContext) {
6411    if (IsTypeName) {
6412      // FIXME: not all declaration name kinds are legal here
6413      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6414                                              UsingLoc, TypenameLoc,
6415                                              QualifierLoc,
6416                                              IdentLoc, NameInfo.getName());
6417    } else {
6418      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6419                                           QualifierLoc, NameInfo);
6420    }
6421  } else {
6422    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6423                          NameInfo, IsTypeName);
6424  }
6425  D->setAccess(AS);
6426  CurContext->addDecl(D);
6427
6428  if (!LookupContext) return D;
6429  UsingDecl *UD = cast<UsingDecl>(D);
6430
6431  if (RequireCompleteDeclContext(SS, LookupContext)) {
6432    UD->setInvalidDecl();
6433    return UD;
6434  }
6435
6436  // Constructor inheriting using decls get special treatment.
6437  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6438    if (CheckInheritedConstructorUsingDecl(UD))
6439      UD->setInvalidDecl();
6440    return UD;
6441  }
6442
6443  // Otherwise, look up the target name.
6444
6445  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6446
6447  // Unlike most lookups, we don't always want to hide tag
6448  // declarations: tag names are visible through the using declaration
6449  // even if hidden by ordinary names, *except* in a dependent context
6450  // where it's important for the sanity of two-phase lookup.
6451  if (!IsInstantiation)
6452    R.setHideTags(false);
6453
6454  LookupQualifiedName(R, LookupContext);
6455
6456  if (R.empty()) {
6457    Diag(IdentLoc, diag::err_no_member)
6458      << NameInfo.getName() << LookupContext << SS.getRange();
6459    UD->setInvalidDecl();
6460    return UD;
6461  }
6462
6463  if (R.isAmbiguous()) {
6464    UD->setInvalidDecl();
6465    return UD;
6466  }
6467
6468  if (IsTypeName) {
6469    // If we asked for a typename and got a non-type decl, error out.
6470    if (!R.getAsSingle<TypeDecl>()) {
6471      Diag(IdentLoc, diag::err_using_typename_non_type);
6472      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6473        Diag((*I)->getUnderlyingDecl()->getLocation(),
6474             diag::note_using_decl_target);
6475      UD->setInvalidDecl();
6476      return UD;
6477    }
6478  } else {
6479    // If we asked for a non-typename and we got a type, error out,
6480    // but only if this is an instantiation of an unresolved using
6481    // decl.  Otherwise just silently find the type name.
6482    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6483      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6484      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6485      UD->setInvalidDecl();
6486      return UD;
6487    }
6488  }
6489
6490  // C++0x N2914 [namespace.udecl]p6:
6491  // A using-declaration shall not name a namespace.
6492  if (R.getAsSingle<NamespaceDecl>()) {
6493    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6494      << SS.getRange();
6495    UD->setInvalidDecl();
6496    return UD;
6497  }
6498
6499  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6500    if (!CheckUsingShadowDecl(UD, *I, Previous))
6501      BuildUsingShadowDecl(S, UD, *I);
6502  }
6503
6504  return UD;
6505}
6506
6507/// Additional checks for a using declaration referring to a constructor name.
6508bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6509  if (UD->isTypeName()) {
6510    // FIXME: Cannot specify typename when specifying constructor
6511    return true;
6512  }
6513
6514  const Type *SourceType = UD->getQualifier()->getAsType();
6515  assert(SourceType &&
6516         "Using decl naming constructor doesn't have type in scope spec.");
6517  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6518
6519  // Check whether the named type is a direct base class.
6520  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6521  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6522  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6523       BaseIt != BaseE; ++BaseIt) {
6524    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6525    if (CanonicalSourceType == BaseType)
6526      break;
6527  }
6528
6529  if (BaseIt == BaseE) {
6530    // Did not find SourceType in the bases.
6531    Diag(UD->getUsingLocation(),
6532         diag::err_using_decl_constructor_not_in_direct_base)
6533      << UD->getNameInfo().getSourceRange()
6534      << QualType(SourceType, 0) << TargetClass;
6535    return true;
6536  }
6537
6538  BaseIt->setInheritConstructors();
6539
6540  return false;
6541}
6542
6543/// Checks that the given using declaration is not an invalid
6544/// redeclaration.  Note that this is checking only for the using decl
6545/// itself, not for any ill-formedness among the UsingShadowDecls.
6546bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6547                                       bool isTypeName,
6548                                       const CXXScopeSpec &SS,
6549                                       SourceLocation NameLoc,
6550                                       const LookupResult &Prev) {
6551  // C++03 [namespace.udecl]p8:
6552  // C++0x [namespace.udecl]p10:
6553  //   A using-declaration is a declaration and can therefore be used
6554  //   repeatedly where (and only where) multiple declarations are
6555  //   allowed.
6556  //
6557  // That's in non-member contexts.
6558  if (!CurContext->getRedeclContext()->isRecord())
6559    return false;
6560
6561  NestedNameSpecifier *Qual
6562    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6563
6564  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6565    NamedDecl *D = *I;
6566
6567    bool DTypename;
6568    NestedNameSpecifier *DQual;
6569    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6570      DTypename = UD->isTypeName();
6571      DQual = UD->getQualifier();
6572    } else if (UnresolvedUsingValueDecl *UD
6573                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6574      DTypename = false;
6575      DQual = UD->getQualifier();
6576    } else if (UnresolvedUsingTypenameDecl *UD
6577                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6578      DTypename = true;
6579      DQual = UD->getQualifier();
6580    } else continue;
6581
6582    // using decls differ if one says 'typename' and the other doesn't.
6583    // FIXME: non-dependent using decls?
6584    if (isTypeName != DTypename) continue;
6585
6586    // using decls differ if they name different scopes (but note that
6587    // template instantiation can cause this check to trigger when it
6588    // didn't before instantiation).
6589    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6590        Context.getCanonicalNestedNameSpecifier(DQual))
6591      continue;
6592
6593    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6594    Diag(D->getLocation(), diag::note_using_decl) << 1;
6595    return true;
6596  }
6597
6598  return false;
6599}
6600
6601
6602/// Checks that the given nested-name qualifier used in a using decl
6603/// in the current context is appropriately related to the current
6604/// scope.  If an error is found, diagnoses it and returns true.
6605bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6606                                   const CXXScopeSpec &SS,
6607                                   SourceLocation NameLoc) {
6608  DeclContext *NamedContext = computeDeclContext(SS);
6609
6610  if (!CurContext->isRecord()) {
6611    // C++03 [namespace.udecl]p3:
6612    // C++0x [namespace.udecl]p8:
6613    //   A using-declaration for a class member shall be a member-declaration.
6614
6615    // If we weren't able to compute a valid scope, it must be a
6616    // dependent class scope.
6617    if (!NamedContext || NamedContext->isRecord()) {
6618      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6619        << SS.getRange();
6620      return true;
6621    }
6622
6623    // Otherwise, everything is known to be fine.
6624    return false;
6625  }
6626
6627  // The current scope is a record.
6628
6629  // If the named context is dependent, we can't decide much.
6630  if (!NamedContext) {
6631    // FIXME: in C++0x, we can diagnose if we can prove that the
6632    // nested-name-specifier does not refer to a base class, which is
6633    // still possible in some cases.
6634
6635    // Otherwise we have to conservatively report that things might be
6636    // okay.
6637    return false;
6638  }
6639
6640  if (!NamedContext->isRecord()) {
6641    // Ideally this would point at the last name in the specifier,
6642    // but we don't have that level of source info.
6643    Diag(SS.getRange().getBegin(),
6644         diag::err_using_decl_nested_name_specifier_is_not_class)
6645      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6646    return true;
6647  }
6648
6649  if (!NamedContext->isDependentContext() &&
6650      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6651    return true;
6652
6653  if (getLangOptions().CPlusPlus0x) {
6654    // C++0x [namespace.udecl]p3:
6655    //   In a using-declaration used as a member-declaration, the
6656    //   nested-name-specifier shall name a base class of the class
6657    //   being defined.
6658
6659    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6660                                 cast<CXXRecordDecl>(NamedContext))) {
6661      if (CurContext == NamedContext) {
6662        Diag(NameLoc,
6663             diag::err_using_decl_nested_name_specifier_is_current_class)
6664          << SS.getRange();
6665        return true;
6666      }
6667
6668      Diag(SS.getRange().getBegin(),
6669           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6670        << (NestedNameSpecifier*) SS.getScopeRep()
6671        << cast<CXXRecordDecl>(CurContext)
6672        << SS.getRange();
6673      return true;
6674    }
6675
6676    return false;
6677  }
6678
6679  // C++03 [namespace.udecl]p4:
6680  //   A using-declaration used as a member-declaration shall refer
6681  //   to a member of a base class of the class being defined [etc.].
6682
6683  // Salient point: SS doesn't have to name a base class as long as
6684  // lookup only finds members from base classes.  Therefore we can
6685  // diagnose here only if we can prove that that can't happen,
6686  // i.e. if the class hierarchies provably don't intersect.
6687
6688  // TODO: it would be nice if "definitely valid" results were cached
6689  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6690  // need to be repeated.
6691
6692  struct UserData {
6693    llvm::DenseSet<const CXXRecordDecl*> Bases;
6694
6695    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6696      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6697      Data->Bases.insert(Base);
6698      return true;
6699    }
6700
6701    bool hasDependentBases(const CXXRecordDecl *Class) {
6702      return !Class->forallBases(collect, this);
6703    }
6704
6705    /// Returns true if the base is dependent or is one of the
6706    /// accumulated base classes.
6707    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6708      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6709      return !Data->Bases.count(Base);
6710    }
6711
6712    bool mightShareBases(const CXXRecordDecl *Class) {
6713      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6714    }
6715  };
6716
6717  UserData Data;
6718
6719  // Returns false if we find a dependent base.
6720  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6721    return false;
6722
6723  // Returns false if the class has a dependent base or if it or one
6724  // of its bases is present in the base set of the current context.
6725  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6726    return false;
6727
6728  Diag(SS.getRange().getBegin(),
6729       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6730    << (NestedNameSpecifier*) SS.getScopeRep()
6731    << cast<CXXRecordDecl>(CurContext)
6732    << SS.getRange();
6733
6734  return true;
6735}
6736
6737Decl *Sema::ActOnAliasDeclaration(Scope *S,
6738                                  AccessSpecifier AS,
6739                                  MultiTemplateParamsArg TemplateParamLists,
6740                                  SourceLocation UsingLoc,
6741                                  UnqualifiedId &Name,
6742                                  TypeResult Type) {
6743  // Skip up to the relevant declaration scope.
6744  while (S->getFlags() & Scope::TemplateParamScope)
6745    S = S->getParent();
6746  assert((S->getFlags() & Scope::DeclScope) &&
6747         "got alias-declaration outside of declaration scope");
6748
6749  if (Type.isInvalid())
6750    return 0;
6751
6752  bool Invalid = false;
6753  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6754  TypeSourceInfo *TInfo = 0;
6755  GetTypeFromParser(Type.get(), &TInfo);
6756
6757  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6758    return 0;
6759
6760  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6761                                      UPPC_DeclarationType)) {
6762    Invalid = true;
6763    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6764                                             TInfo->getTypeLoc().getBeginLoc());
6765  }
6766
6767  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6768  LookupName(Previous, S);
6769
6770  // Warn about shadowing the name of a template parameter.
6771  if (Previous.isSingleResult() &&
6772      Previous.getFoundDecl()->isTemplateParameter()) {
6773    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6774    Previous.clear();
6775  }
6776
6777  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6778         "name in alias declaration must be an identifier");
6779  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6780                                               Name.StartLocation,
6781                                               Name.Identifier, TInfo);
6782
6783  NewTD->setAccess(AS);
6784
6785  if (Invalid)
6786    NewTD->setInvalidDecl();
6787
6788  CheckTypedefForVariablyModifiedType(S, NewTD);
6789  Invalid |= NewTD->isInvalidDecl();
6790
6791  bool Redeclaration = false;
6792
6793  NamedDecl *NewND;
6794  if (TemplateParamLists.size()) {
6795    TypeAliasTemplateDecl *OldDecl = 0;
6796    TemplateParameterList *OldTemplateParams = 0;
6797
6798    if (TemplateParamLists.size() != 1) {
6799      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6800        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6801         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6802    }
6803    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6804
6805    // Only consider previous declarations in the same scope.
6806    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6807                         /*ExplicitInstantiationOrSpecialization*/false);
6808    if (!Previous.empty()) {
6809      Redeclaration = true;
6810
6811      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6812      if (!OldDecl && !Invalid) {
6813        Diag(UsingLoc, diag::err_redefinition_different_kind)
6814          << Name.Identifier;
6815
6816        NamedDecl *OldD = Previous.getRepresentativeDecl();
6817        if (OldD->getLocation().isValid())
6818          Diag(OldD->getLocation(), diag::note_previous_definition);
6819
6820        Invalid = true;
6821      }
6822
6823      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6824        if (TemplateParameterListsAreEqual(TemplateParams,
6825                                           OldDecl->getTemplateParameters(),
6826                                           /*Complain=*/true,
6827                                           TPL_TemplateMatch))
6828          OldTemplateParams = OldDecl->getTemplateParameters();
6829        else
6830          Invalid = true;
6831
6832        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6833        if (!Invalid &&
6834            !Context.hasSameType(OldTD->getUnderlyingType(),
6835                                 NewTD->getUnderlyingType())) {
6836          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6837          // but we can't reasonably accept it.
6838          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6839            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6840          if (OldTD->getLocation().isValid())
6841            Diag(OldTD->getLocation(), diag::note_previous_definition);
6842          Invalid = true;
6843        }
6844      }
6845    }
6846
6847    // Merge any previous default template arguments into our parameters,
6848    // and check the parameter list.
6849    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6850                                   TPC_TypeAliasTemplate))
6851      return 0;
6852
6853    TypeAliasTemplateDecl *NewDecl =
6854      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6855                                    Name.Identifier, TemplateParams,
6856                                    NewTD);
6857
6858    NewDecl->setAccess(AS);
6859
6860    if (Invalid)
6861      NewDecl->setInvalidDecl();
6862    else if (OldDecl)
6863      NewDecl->setPreviousDeclaration(OldDecl);
6864
6865    NewND = NewDecl;
6866  } else {
6867    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6868    NewND = NewTD;
6869  }
6870
6871  if (!Redeclaration)
6872    PushOnScopeChains(NewND, S);
6873
6874  return NewND;
6875}
6876
6877Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6878                                             SourceLocation NamespaceLoc,
6879                                             SourceLocation AliasLoc,
6880                                             IdentifierInfo *Alias,
6881                                             CXXScopeSpec &SS,
6882                                             SourceLocation IdentLoc,
6883                                             IdentifierInfo *Ident) {
6884
6885  // Lookup the namespace name.
6886  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6887  LookupParsedName(R, S, &SS);
6888
6889  // Check if we have a previous declaration with the same name.
6890  NamedDecl *PrevDecl
6891    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6892                       ForRedeclaration);
6893  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6894    PrevDecl = 0;
6895
6896  if (PrevDecl) {
6897    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6898      // We already have an alias with the same name that points to the same
6899      // namespace, so don't create a new one.
6900      // FIXME: At some point, we'll want to create the (redundant)
6901      // declaration to maintain better source information.
6902      if (!R.isAmbiguous() && !R.empty() &&
6903          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6904        return 0;
6905    }
6906
6907    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6908      diag::err_redefinition_different_kind;
6909    Diag(AliasLoc, DiagID) << Alias;
6910    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6911    return 0;
6912  }
6913
6914  if (R.isAmbiguous())
6915    return 0;
6916
6917  if (R.empty()) {
6918    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6919      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6920      return 0;
6921    }
6922  }
6923
6924  NamespaceAliasDecl *AliasDecl =
6925    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6926                               Alias, SS.getWithLocInContext(Context),
6927                               IdentLoc, R.getFoundDecl());
6928
6929  PushOnScopeChains(AliasDecl, S);
6930  return AliasDecl;
6931}
6932
6933namespace {
6934  /// \brief Scoped object used to handle the state changes required in Sema
6935  /// to implicitly define the body of a C++ member function;
6936  class ImplicitlyDefinedFunctionScope {
6937    Sema &S;
6938    Sema::ContextRAII SavedContext;
6939
6940  public:
6941    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6942      : S(S), SavedContext(S, Method)
6943    {
6944      S.PushFunctionScope();
6945      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6946    }
6947
6948    ~ImplicitlyDefinedFunctionScope() {
6949      S.PopExpressionEvaluationContext();
6950      S.PopFunctionScopeInfo();
6951    }
6952  };
6953}
6954
6955Sema::ImplicitExceptionSpecification
6956Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6957  // C++ [except.spec]p14:
6958  //   An implicitly declared special member function (Clause 12) shall have an
6959  //   exception-specification. [...]
6960  ImplicitExceptionSpecification ExceptSpec(Context);
6961  if (ClassDecl->isInvalidDecl())
6962    return ExceptSpec;
6963
6964  // Direct base-class constructors.
6965  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6966                                       BEnd = ClassDecl->bases_end();
6967       B != BEnd; ++B) {
6968    if (B->isVirtual()) // Handled below.
6969      continue;
6970
6971    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6972      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6973      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6974      // If this is a deleted function, add it anyway. This might be conformant
6975      // with the standard. This might not. I'm not sure. It might not matter.
6976      if (Constructor)
6977        ExceptSpec.CalledDecl(Constructor);
6978    }
6979  }
6980
6981  // Virtual base-class constructors.
6982  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6983                                       BEnd = ClassDecl->vbases_end();
6984       B != BEnd; ++B) {
6985    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6986      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6987      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6988      // If this is a deleted function, add it anyway. This might be conformant
6989      // with the standard. This might not. I'm not sure. It might not matter.
6990      if (Constructor)
6991        ExceptSpec.CalledDecl(Constructor);
6992    }
6993  }
6994
6995  // Field constructors.
6996  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6997                               FEnd = ClassDecl->field_end();
6998       F != FEnd; ++F) {
6999    if (F->hasInClassInitializer()) {
7000      if (Expr *E = F->getInClassInitializer())
7001        ExceptSpec.CalledExpr(E);
7002      else if (!F->isInvalidDecl())
7003        ExceptSpec.SetDelayed();
7004    } else if (const RecordType *RecordTy
7005              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7006      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7007      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7008      // If this is a deleted function, add it anyway. This might be conformant
7009      // with the standard. This might not. I'm not sure. It might not matter.
7010      // In particular, the problem is that this function never gets called. It
7011      // might just be ill-formed because this function attempts to refer to
7012      // a deleted function here.
7013      if (Constructor)
7014        ExceptSpec.CalledDecl(Constructor);
7015    }
7016  }
7017
7018  return ExceptSpec;
7019}
7020
7021CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7022                                                     CXXRecordDecl *ClassDecl) {
7023  // C++ [class.ctor]p5:
7024  //   A default constructor for a class X is a constructor of class X
7025  //   that can be called without an argument. If there is no
7026  //   user-declared constructor for class X, a default constructor is
7027  //   implicitly declared. An implicitly-declared default constructor
7028  //   is an inline public member of its class.
7029  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7030         "Should not build implicit default constructor!");
7031
7032  ImplicitExceptionSpecification Spec =
7033    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7034  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7035
7036  // Create the actual constructor declaration.
7037  CanQualType ClassType
7038    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7039  SourceLocation ClassLoc = ClassDecl->getLocation();
7040  DeclarationName Name
7041    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7042  DeclarationNameInfo NameInfo(Name, ClassLoc);
7043  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7044      Context, ClassDecl, ClassLoc, NameInfo,
7045      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7046      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7047      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7048        getLangOptions().CPlusPlus0x);
7049  DefaultCon->setAccess(AS_public);
7050  DefaultCon->setDefaulted();
7051  DefaultCon->setImplicit();
7052  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7053
7054  // Note that we have declared this constructor.
7055  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7056
7057  if (Scope *S = getScopeForContext(ClassDecl))
7058    PushOnScopeChains(DefaultCon, S, false);
7059  ClassDecl->addDecl(DefaultCon);
7060
7061  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7062    DefaultCon->setDeletedAsWritten();
7063
7064  return DefaultCon;
7065}
7066
7067void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7068                                            CXXConstructorDecl *Constructor) {
7069  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7070          !Constructor->doesThisDeclarationHaveABody() &&
7071          !Constructor->isDeleted()) &&
7072    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7073
7074  CXXRecordDecl *ClassDecl = Constructor->getParent();
7075  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7076
7077  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7078  DiagnosticErrorTrap Trap(Diags);
7079  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7080      Trap.hasErrorOccurred()) {
7081    Diag(CurrentLocation, diag::note_member_synthesized_at)
7082      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7083    Constructor->setInvalidDecl();
7084    return;
7085  }
7086
7087  SourceLocation Loc = Constructor->getLocation();
7088  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7089
7090  Constructor->setUsed();
7091  MarkVTableUsed(CurrentLocation, ClassDecl);
7092
7093  if (ASTMutationListener *L = getASTMutationListener()) {
7094    L->CompletedImplicitDefinition(Constructor);
7095  }
7096}
7097
7098/// Get any existing defaulted default constructor for the given class. Do not
7099/// implicitly define one if it does not exist.
7100static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7101                                                             CXXRecordDecl *D) {
7102  ASTContext &Context = Self.Context;
7103  QualType ClassType = Context.getTypeDeclType(D);
7104  DeclarationName ConstructorName
7105    = Context.DeclarationNames.getCXXConstructorName(
7106                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7107
7108  DeclContext::lookup_const_iterator Con, ConEnd;
7109  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7110       Con != ConEnd; ++Con) {
7111    // A function template cannot be defaulted.
7112    if (isa<FunctionTemplateDecl>(*Con))
7113      continue;
7114
7115    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7116    if (Constructor->isDefaultConstructor())
7117      return Constructor->isDefaulted() ? Constructor : 0;
7118  }
7119  return 0;
7120}
7121
7122void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7123  if (!D) return;
7124  AdjustDeclIfTemplate(D);
7125
7126  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7127  CXXConstructorDecl *CtorDecl
7128    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7129
7130  if (!CtorDecl) return;
7131
7132  // Compute the exception specification for the default constructor.
7133  const FunctionProtoType *CtorTy =
7134    CtorDecl->getType()->castAs<FunctionProtoType>();
7135  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7136    ImplicitExceptionSpecification Spec =
7137      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7138    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7139    assert(EPI.ExceptionSpecType != EST_Delayed);
7140
7141    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7142  }
7143
7144  // If the default constructor is explicitly defaulted, checking the exception
7145  // specification is deferred until now.
7146  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7147      !ClassDecl->isDependentType())
7148    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7149}
7150
7151void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7152  // We start with an initial pass over the base classes to collect those that
7153  // inherit constructors from. If there are none, we can forgo all further
7154  // processing.
7155  typedef SmallVector<const RecordType *, 4> BasesVector;
7156  BasesVector BasesToInheritFrom;
7157  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7158                                          BaseE = ClassDecl->bases_end();
7159         BaseIt != BaseE; ++BaseIt) {
7160    if (BaseIt->getInheritConstructors()) {
7161      QualType Base = BaseIt->getType();
7162      if (Base->isDependentType()) {
7163        // If we inherit constructors from anything that is dependent, just
7164        // abort processing altogether. We'll get another chance for the
7165        // instantiations.
7166        return;
7167      }
7168      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7169    }
7170  }
7171  if (BasesToInheritFrom.empty())
7172    return;
7173
7174  // Now collect the constructors that we already have in the current class.
7175  // Those take precedence over inherited constructors.
7176  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7177  //   unless there is a user-declared constructor with the same signature in
7178  //   the class where the using-declaration appears.
7179  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7180  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7181                                    CtorE = ClassDecl->ctor_end();
7182       CtorIt != CtorE; ++CtorIt) {
7183    ExistingConstructors.insert(
7184        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7185  }
7186
7187  Scope *S = getScopeForContext(ClassDecl);
7188  DeclarationName CreatedCtorName =
7189      Context.DeclarationNames.getCXXConstructorName(
7190          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7191
7192  // Now comes the true work.
7193  // First, we keep a map from constructor types to the base that introduced
7194  // them. Needed for finding conflicting constructors. We also keep the
7195  // actually inserted declarations in there, for pretty diagnostics.
7196  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7197  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7198  ConstructorToSourceMap InheritedConstructors;
7199  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7200                             BaseE = BasesToInheritFrom.end();
7201       BaseIt != BaseE; ++BaseIt) {
7202    const RecordType *Base = *BaseIt;
7203    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7204    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7205    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7206                                      CtorE = BaseDecl->ctor_end();
7207         CtorIt != CtorE; ++CtorIt) {
7208      // Find the using declaration for inheriting this base's constructors.
7209      DeclarationName Name =
7210          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7211      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7212          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7213      SourceLocation UsingLoc = UD ? UD->getLocation() :
7214                                     ClassDecl->getLocation();
7215
7216      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7217      //   from the class X named in the using-declaration consists of actual
7218      //   constructors and notional constructors that result from the
7219      //   transformation of defaulted parameters as follows:
7220      //   - all non-template default constructors of X, and
7221      //   - for each non-template constructor of X that has at least one
7222      //     parameter with a default argument, the set of constructors that
7223      //     results from omitting any ellipsis parameter specification and
7224      //     successively omitting parameters with a default argument from the
7225      //     end of the parameter-type-list.
7226      CXXConstructorDecl *BaseCtor = *CtorIt;
7227      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7228      const FunctionProtoType *BaseCtorType =
7229          BaseCtor->getType()->getAs<FunctionProtoType>();
7230
7231      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7232                    maxParams = BaseCtor->getNumParams();
7233           params <= maxParams; ++params) {
7234        // Skip default constructors. They're never inherited.
7235        if (params == 0)
7236          continue;
7237        // Skip copy and move constructors for the same reason.
7238        if (CanBeCopyOrMove && params == 1)
7239          continue;
7240
7241        // Build up a function type for this particular constructor.
7242        // FIXME: The working paper does not consider that the exception spec
7243        // for the inheriting constructor might be larger than that of the
7244        // source. This code doesn't yet, either. When it does, this code will
7245        // need to be delayed until after exception specifications and in-class
7246        // member initializers are attached.
7247        const Type *NewCtorType;
7248        if (params == maxParams)
7249          NewCtorType = BaseCtorType;
7250        else {
7251          SmallVector<QualType, 16> Args;
7252          for (unsigned i = 0; i < params; ++i) {
7253            Args.push_back(BaseCtorType->getArgType(i));
7254          }
7255          FunctionProtoType::ExtProtoInfo ExtInfo =
7256              BaseCtorType->getExtProtoInfo();
7257          ExtInfo.Variadic = false;
7258          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7259                                                Args.data(), params, ExtInfo)
7260                       .getTypePtr();
7261        }
7262        const Type *CanonicalNewCtorType =
7263            Context.getCanonicalType(NewCtorType);
7264
7265        // Now that we have the type, first check if the class already has a
7266        // constructor with this signature.
7267        if (ExistingConstructors.count(CanonicalNewCtorType))
7268          continue;
7269
7270        // Then we check if we have already declared an inherited constructor
7271        // with this signature.
7272        std::pair<ConstructorToSourceMap::iterator, bool> result =
7273            InheritedConstructors.insert(std::make_pair(
7274                CanonicalNewCtorType,
7275                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7276        if (!result.second) {
7277          // Already in the map. If it came from a different class, that's an
7278          // error. Not if it's from the same.
7279          CanQualType PreviousBase = result.first->second.first;
7280          if (CanonicalBase != PreviousBase) {
7281            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7282            const CXXConstructorDecl *PrevBaseCtor =
7283                PrevCtor->getInheritedConstructor();
7284            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7285
7286            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7287            Diag(BaseCtor->getLocation(),
7288                 diag::note_using_decl_constructor_conflict_current_ctor);
7289            Diag(PrevBaseCtor->getLocation(),
7290                 diag::note_using_decl_constructor_conflict_previous_ctor);
7291            Diag(PrevCtor->getLocation(),
7292                 diag::note_using_decl_constructor_conflict_previous_using);
7293          }
7294          continue;
7295        }
7296
7297        // OK, we're there, now add the constructor.
7298        // C++0x [class.inhctor]p8: [...] that would be performed by a
7299        //   user-written inline constructor [...]
7300        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7301        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7302            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7303            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7304            /*ImplicitlyDeclared=*/true,
7305            // FIXME: Due to a defect in the standard, we treat inherited
7306            // constructors as constexpr even if that makes them ill-formed.
7307            /*Constexpr=*/BaseCtor->isConstexpr());
7308        NewCtor->setAccess(BaseCtor->getAccess());
7309
7310        // Build up the parameter decls and add them.
7311        SmallVector<ParmVarDecl *, 16> ParamDecls;
7312        for (unsigned i = 0; i < params; ++i) {
7313          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7314                                                   UsingLoc, UsingLoc,
7315                                                   /*IdentifierInfo=*/0,
7316                                                   BaseCtorType->getArgType(i),
7317                                                   /*TInfo=*/0, SC_None,
7318                                                   SC_None, /*DefaultArg=*/0));
7319        }
7320        NewCtor->setParams(ParamDecls);
7321        NewCtor->setInheritedConstructor(BaseCtor);
7322
7323        PushOnScopeChains(NewCtor, S, false);
7324        ClassDecl->addDecl(NewCtor);
7325        result.first->second.second = NewCtor;
7326      }
7327    }
7328  }
7329}
7330
7331Sema::ImplicitExceptionSpecification
7332Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7333  // C++ [except.spec]p14:
7334  //   An implicitly declared special member function (Clause 12) shall have
7335  //   an exception-specification.
7336  ImplicitExceptionSpecification ExceptSpec(Context);
7337  if (ClassDecl->isInvalidDecl())
7338    return ExceptSpec;
7339
7340  // Direct base-class destructors.
7341  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7342                                       BEnd = ClassDecl->bases_end();
7343       B != BEnd; ++B) {
7344    if (B->isVirtual()) // Handled below.
7345      continue;
7346
7347    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7348      ExceptSpec.CalledDecl(
7349                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7350  }
7351
7352  // Virtual base-class destructors.
7353  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7354                                       BEnd = ClassDecl->vbases_end();
7355       B != BEnd; ++B) {
7356    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7357      ExceptSpec.CalledDecl(
7358                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7359  }
7360
7361  // Field destructors.
7362  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7363                               FEnd = ClassDecl->field_end();
7364       F != FEnd; ++F) {
7365    if (const RecordType *RecordTy
7366        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7367      ExceptSpec.CalledDecl(
7368                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7369  }
7370
7371  return ExceptSpec;
7372}
7373
7374CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7375  // C++ [class.dtor]p2:
7376  //   If a class has no user-declared destructor, a destructor is
7377  //   declared implicitly. An implicitly-declared destructor is an
7378  //   inline public member of its class.
7379
7380  ImplicitExceptionSpecification Spec =
7381      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7382  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7383
7384  // Create the actual destructor declaration.
7385  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7386
7387  CanQualType ClassType
7388    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7389  SourceLocation ClassLoc = ClassDecl->getLocation();
7390  DeclarationName Name
7391    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7392  DeclarationNameInfo NameInfo(Name, ClassLoc);
7393  CXXDestructorDecl *Destructor
7394      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7395                                  /*isInline=*/true,
7396                                  /*isImplicitlyDeclared=*/true);
7397  Destructor->setAccess(AS_public);
7398  Destructor->setDefaulted();
7399  Destructor->setImplicit();
7400  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7401
7402  // Note that we have declared this destructor.
7403  ++ASTContext::NumImplicitDestructorsDeclared;
7404
7405  // Introduce this destructor into its scope.
7406  if (Scope *S = getScopeForContext(ClassDecl))
7407    PushOnScopeChains(Destructor, S, false);
7408  ClassDecl->addDecl(Destructor);
7409
7410  // This could be uniqued if it ever proves significant.
7411  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7412
7413  if (ShouldDeleteDestructor(Destructor))
7414    Destructor->setDeletedAsWritten();
7415
7416  AddOverriddenMethods(ClassDecl, Destructor);
7417
7418  return Destructor;
7419}
7420
7421void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7422                                    CXXDestructorDecl *Destructor) {
7423  assert((Destructor->isDefaulted() &&
7424          !Destructor->doesThisDeclarationHaveABody()) &&
7425         "DefineImplicitDestructor - call it for implicit default dtor");
7426  CXXRecordDecl *ClassDecl = Destructor->getParent();
7427  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7428
7429  if (Destructor->isInvalidDecl())
7430    return;
7431
7432  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7433
7434  DiagnosticErrorTrap Trap(Diags);
7435  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7436                                         Destructor->getParent());
7437
7438  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7439    Diag(CurrentLocation, diag::note_member_synthesized_at)
7440      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7441
7442    Destructor->setInvalidDecl();
7443    return;
7444  }
7445
7446  SourceLocation Loc = Destructor->getLocation();
7447  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7448  Destructor->setImplicitlyDefined(true);
7449  Destructor->setUsed();
7450  MarkVTableUsed(CurrentLocation, ClassDecl);
7451
7452  if (ASTMutationListener *L = getASTMutationListener()) {
7453    L->CompletedImplicitDefinition(Destructor);
7454  }
7455}
7456
7457void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7458                                         CXXDestructorDecl *destructor) {
7459  // C++11 [class.dtor]p3:
7460  //   A declaration of a destructor that does not have an exception-
7461  //   specification is implicitly considered to have the same exception-
7462  //   specification as an implicit declaration.
7463  const FunctionProtoType *dtorType = destructor->getType()->
7464                                        getAs<FunctionProtoType>();
7465  if (dtorType->hasExceptionSpec())
7466    return;
7467
7468  ImplicitExceptionSpecification exceptSpec =
7469      ComputeDefaultedDtorExceptionSpec(classDecl);
7470
7471  // Replace the destructor's type, building off the existing one. Fortunately,
7472  // the only thing of interest in the destructor type is its extended info.
7473  // The return and arguments are fixed.
7474  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7475  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7476  epi.NumExceptions = exceptSpec.size();
7477  epi.Exceptions = exceptSpec.data();
7478  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7479
7480  destructor->setType(ty);
7481
7482  // FIXME: If the destructor has a body that could throw, and the newly created
7483  // spec doesn't allow exceptions, we should emit a warning, because this
7484  // change in behavior can break conforming C++03 programs at runtime.
7485  // However, we don't have a body yet, so it needs to be done somewhere else.
7486}
7487
7488/// \brief Builds a statement that copies/moves the given entity from \p From to
7489/// \c To.
7490///
7491/// This routine is used to copy/move the members of a class with an
7492/// implicitly-declared copy/move assignment operator. When the entities being
7493/// copied are arrays, this routine builds for loops to copy them.
7494///
7495/// \param S The Sema object used for type-checking.
7496///
7497/// \param Loc The location where the implicit copy/move is being generated.
7498///
7499/// \param T The type of the expressions being copied/moved. Both expressions
7500/// must have this type.
7501///
7502/// \param To The expression we are copying/moving to.
7503///
7504/// \param From The expression we are copying/moving from.
7505///
7506/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7507/// Otherwise, it's a non-static member subobject.
7508///
7509/// \param Copying Whether we're copying or moving.
7510///
7511/// \param Depth Internal parameter recording the depth of the recursion.
7512///
7513/// \returns A statement or a loop that copies the expressions.
7514static StmtResult
7515BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7516                      Expr *To, Expr *From,
7517                      bool CopyingBaseSubobject, bool Copying,
7518                      unsigned Depth = 0) {
7519  // C++0x [class.copy]p28:
7520  //   Each subobject is assigned in the manner appropriate to its type:
7521  //
7522  //     - if the subobject is of class type, as if by a call to operator= with
7523  //       the subobject as the object expression and the corresponding
7524  //       subobject of x as a single function argument (as if by explicit
7525  //       qualification; that is, ignoring any possible virtual overriding
7526  //       functions in more derived classes);
7527  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7528    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7529
7530    // Look for operator=.
7531    DeclarationName Name
7532      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7533    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7534    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7535
7536    // Filter out any result that isn't a copy/move-assignment operator.
7537    LookupResult::Filter F = OpLookup.makeFilter();
7538    while (F.hasNext()) {
7539      NamedDecl *D = F.next();
7540      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7541        if (Copying ? Method->isCopyAssignmentOperator() :
7542                      Method->isMoveAssignmentOperator())
7543          continue;
7544
7545      F.erase();
7546    }
7547    F.done();
7548
7549    // Suppress the protected check (C++ [class.protected]) for each of the
7550    // assignment operators we found. This strange dance is required when
7551    // we're assigning via a base classes's copy-assignment operator. To
7552    // ensure that we're getting the right base class subobject (without
7553    // ambiguities), we need to cast "this" to that subobject type; to
7554    // ensure that we don't go through the virtual call mechanism, we need
7555    // to qualify the operator= name with the base class (see below). However,
7556    // this means that if the base class has a protected copy assignment
7557    // operator, the protected member access check will fail. So, we
7558    // rewrite "protected" access to "public" access in this case, since we
7559    // know by construction that we're calling from a derived class.
7560    if (CopyingBaseSubobject) {
7561      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7562           L != LEnd; ++L) {
7563        if (L.getAccess() == AS_protected)
7564          L.setAccess(AS_public);
7565      }
7566    }
7567
7568    // Create the nested-name-specifier that will be used to qualify the
7569    // reference to operator=; this is required to suppress the virtual
7570    // call mechanism.
7571    CXXScopeSpec SS;
7572    SS.MakeTrivial(S.Context,
7573                   NestedNameSpecifier::Create(S.Context, 0, false,
7574                                               T.getTypePtr()),
7575                   Loc);
7576
7577    // Create the reference to operator=.
7578    ExprResult OpEqualRef
7579      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7580                                   /*FirstQualifierInScope=*/0, OpLookup,
7581                                   /*TemplateArgs=*/0,
7582                                   /*SuppressQualifierCheck=*/true);
7583    if (OpEqualRef.isInvalid())
7584      return StmtError();
7585
7586    // Build the call to the assignment operator.
7587
7588    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7589                                                  OpEqualRef.takeAs<Expr>(),
7590                                                  Loc, &From, 1, Loc);
7591    if (Call.isInvalid())
7592      return StmtError();
7593
7594    return S.Owned(Call.takeAs<Stmt>());
7595  }
7596
7597  //     - if the subobject is of scalar type, the built-in assignment
7598  //       operator is used.
7599  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7600  if (!ArrayTy) {
7601    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7602    if (Assignment.isInvalid())
7603      return StmtError();
7604
7605    return S.Owned(Assignment.takeAs<Stmt>());
7606  }
7607
7608  //     - if the subobject is an array, each element is assigned, in the
7609  //       manner appropriate to the element type;
7610
7611  // Construct a loop over the array bounds, e.g.,
7612  //
7613  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7614  //
7615  // that will copy each of the array elements.
7616  QualType SizeType = S.Context.getSizeType();
7617
7618  // Create the iteration variable.
7619  IdentifierInfo *IterationVarName = 0;
7620  {
7621    llvm::SmallString<8> Str;
7622    llvm::raw_svector_ostream OS(Str);
7623    OS << "__i" << Depth;
7624    IterationVarName = &S.Context.Idents.get(OS.str());
7625  }
7626  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7627                                          IterationVarName, SizeType,
7628                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7629                                          SC_None, SC_None);
7630
7631  // Initialize the iteration variable to zero.
7632  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7633  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7634
7635  // Create a reference to the iteration variable; we'll use this several
7636  // times throughout.
7637  Expr *IterationVarRef
7638    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7639  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7640  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7641  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7642
7643  // Create the DeclStmt that holds the iteration variable.
7644  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7645
7646  // Create the comparison against the array bound.
7647  llvm::APInt Upper
7648    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7649  Expr *Comparison
7650    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7651                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7652                                     BO_NE, S.Context.BoolTy,
7653                                     VK_RValue, OK_Ordinary, Loc);
7654
7655  // Create the pre-increment of the iteration variable.
7656  Expr *Increment
7657    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7658                                    VK_LValue, OK_Ordinary, Loc);
7659
7660  // Subscript the "from" and "to" expressions with the iteration variable.
7661  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7662                                                         IterationVarRefRVal,
7663                                                         Loc));
7664  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7665                                                       IterationVarRefRVal,
7666                                                       Loc));
7667  if (!Copying) // Cast to rvalue
7668    From = CastForMoving(S, From);
7669
7670  // Build the copy/move for an individual element of the array.
7671  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7672                                          To, From, CopyingBaseSubobject,
7673                                          Copying, Depth + 1);
7674  if (Copy.isInvalid())
7675    return StmtError();
7676
7677  // Construct the loop that copies all elements of this array.
7678  return S.ActOnForStmt(Loc, Loc, InitStmt,
7679                        S.MakeFullExpr(Comparison),
7680                        0, S.MakeFullExpr(Increment),
7681                        Loc, Copy.take());
7682}
7683
7684std::pair<Sema::ImplicitExceptionSpecification, bool>
7685Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7686                                                   CXXRecordDecl *ClassDecl) {
7687  if (ClassDecl->isInvalidDecl())
7688    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7689
7690  // C++ [class.copy]p10:
7691  //   If the class definition does not explicitly declare a copy
7692  //   assignment operator, one is declared implicitly.
7693  //   The implicitly-defined copy assignment operator for a class X
7694  //   will have the form
7695  //
7696  //       X& X::operator=(const X&)
7697  //
7698  //   if
7699  bool HasConstCopyAssignment = true;
7700
7701  //       -- each direct base class B of X has a copy assignment operator
7702  //          whose parameter is of type const B&, const volatile B& or B,
7703  //          and
7704  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7705                                       BaseEnd = ClassDecl->bases_end();
7706       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7707    // We'll handle this below
7708    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7709      continue;
7710
7711    assert(!Base->getType()->isDependentType() &&
7712           "Cannot generate implicit members for class with dependent bases.");
7713    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7714    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7715                            &HasConstCopyAssignment);
7716  }
7717
7718  // In C++11, the above citation has "or virtual" added
7719  if (LangOpts.CPlusPlus0x) {
7720    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7721                                         BaseEnd = ClassDecl->vbases_end();
7722         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7723      assert(!Base->getType()->isDependentType() &&
7724             "Cannot generate implicit members for class with dependent bases.");
7725      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7726      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7727                              &HasConstCopyAssignment);
7728    }
7729  }
7730
7731  //       -- for all the nonstatic data members of X that are of a class
7732  //          type M (or array thereof), each such class type has a copy
7733  //          assignment operator whose parameter is of type const M&,
7734  //          const volatile M& or M.
7735  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7736                                  FieldEnd = ClassDecl->field_end();
7737       HasConstCopyAssignment && Field != FieldEnd;
7738       ++Field) {
7739    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7740    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7741      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7742                              &HasConstCopyAssignment);
7743    }
7744  }
7745
7746  //   Otherwise, the implicitly declared copy assignment operator will
7747  //   have the form
7748  //
7749  //       X& X::operator=(X&)
7750
7751  // C++ [except.spec]p14:
7752  //   An implicitly declared special member function (Clause 12) shall have an
7753  //   exception-specification. [...]
7754
7755  // It is unspecified whether or not an implicit copy assignment operator
7756  // attempts to deduplicate calls to assignment operators of virtual bases are
7757  // made. As such, this exception specification is effectively unspecified.
7758  // Based on a similar decision made for constness in C++0x, we're erring on
7759  // the side of assuming such calls to be made regardless of whether they
7760  // actually happen.
7761  ImplicitExceptionSpecification ExceptSpec(Context);
7762  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7763  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7764                                       BaseEnd = ClassDecl->bases_end();
7765       Base != BaseEnd; ++Base) {
7766    if (Base->isVirtual())
7767      continue;
7768
7769    CXXRecordDecl *BaseClassDecl
7770      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7771    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7772                                                            ArgQuals, false, 0))
7773      ExceptSpec.CalledDecl(CopyAssign);
7774  }
7775
7776  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7777                                       BaseEnd = ClassDecl->vbases_end();
7778       Base != BaseEnd; ++Base) {
7779    CXXRecordDecl *BaseClassDecl
7780      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7781    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7782                                                            ArgQuals, false, 0))
7783      ExceptSpec.CalledDecl(CopyAssign);
7784  }
7785
7786  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7787                                  FieldEnd = ClassDecl->field_end();
7788       Field != FieldEnd;
7789       ++Field) {
7790    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7791    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7792      if (CXXMethodDecl *CopyAssign =
7793          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7794        ExceptSpec.CalledDecl(CopyAssign);
7795    }
7796  }
7797
7798  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7799}
7800
7801CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7802  // Note: The following rules are largely analoguous to the copy
7803  // constructor rules. Note that virtual bases are not taken into account
7804  // for determining the argument type of the operator. Note also that
7805  // operators taking an object instead of a reference are allowed.
7806
7807  ImplicitExceptionSpecification Spec(Context);
7808  bool Const;
7809  llvm::tie(Spec, Const) =
7810    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7811
7812  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7813  QualType RetType = Context.getLValueReferenceType(ArgType);
7814  if (Const)
7815    ArgType = ArgType.withConst();
7816  ArgType = Context.getLValueReferenceType(ArgType);
7817
7818  //   An implicitly-declared copy assignment operator is an inline public
7819  //   member of its class.
7820  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7821  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7822  SourceLocation ClassLoc = ClassDecl->getLocation();
7823  DeclarationNameInfo NameInfo(Name, ClassLoc);
7824  CXXMethodDecl *CopyAssignment
7825    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7826                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7827                            /*TInfo=*/0, /*isStatic=*/false,
7828                            /*StorageClassAsWritten=*/SC_None,
7829                            /*isInline=*/true, /*isConstexpr=*/false,
7830                            SourceLocation());
7831  CopyAssignment->setAccess(AS_public);
7832  CopyAssignment->setDefaulted();
7833  CopyAssignment->setImplicit();
7834  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7835
7836  // Add the parameter to the operator.
7837  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7838                                               ClassLoc, ClassLoc, /*Id=*/0,
7839                                               ArgType, /*TInfo=*/0,
7840                                               SC_None,
7841                                               SC_None, 0);
7842  CopyAssignment->setParams(FromParam);
7843
7844  // Note that we have added this copy-assignment operator.
7845  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7846
7847  if (Scope *S = getScopeForContext(ClassDecl))
7848    PushOnScopeChains(CopyAssignment, S, false);
7849  ClassDecl->addDecl(CopyAssignment);
7850
7851  // C++0x [class.copy]p19:
7852  //   ....  If the class definition does not explicitly declare a copy
7853  //   assignment operator, there is no user-declared move constructor, and
7854  //   there is no user-declared move assignment operator, a copy assignment
7855  //   operator is implicitly declared as defaulted.
7856  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7857          !getLangOptions().MicrosoftMode) ||
7858      ClassDecl->hasUserDeclaredMoveAssignment() ||
7859      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7860    CopyAssignment->setDeletedAsWritten();
7861
7862  AddOverriddenMethods(ClassDecl, CopyAssignment);
7863  return CopyAssignment;
7864}
7865
7866void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7867                                        CXXMethodDecl *CopyAssignOperator) {
7868  assert((CopyAssignOperator->isDefaulted() &&
7869          CopyAssignOperator->isOverloadedOperator() &&
7870          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7871          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7872         "DefineImplicitCopyAssignment called for wrong function");
7873
7874  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7875
7876  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7877    CopyAssignOperator->setInvalidDecl();
7878    return;
7879  }
7880
7881  CopyAssignOperator->setUsed();
7882
7883  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7884  DiagnosticErrorTrap Trap(Diags);
7885
7886  // C++0x [class.copy]p30:
7887  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7888  //   for a non-union class X performs memberwise copy assignment of its
7889  //   subobjects. The direct base classes of X are assigned first, in the
7890  //   order of their declaration in the base-specifier-list, and then the
7891  //   immediate non-static data members of X are assigned, in the order in
7892  //   which they were declared in the class definition.
7893
7894  // The statements that form the synthesized function body.
7895  ASTOwningVector<Stmt*> Statements(*this);
7896
7897  // The parameter for the "other" object, which we are copying from.
7898  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7899  Qualifiers OtherQuals = Other->getType().getQualifiers();
7900  QualType OtherRefType = Other->getType();
7901  if (const LValueReferenceType *OtherRef
7902                                = OtherRefType->getAs<LValueReferenceType>()) {
7903    OtherRefType = OtherRef->getPointeeType();
7904    OtherQuals = OtherRefType.getQualifiers();
7905  }
7906
7907  // Our location for everything implicitly-generated.
7908  SourceLocation Loc = CopyAssignOperator->getLocation();
7909
7910  // Construct a reference to the "other" object. We'll be using this
7911  // throughout the generated ASTs.
7912  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7913  assert(OtherRef && "Reference to parameter cannot fail!");
7914
7915  // Construct the "this" pointer. We'll be using this throughout the generated
7916  // ASTs.
7917  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7918  assert(This && "Reference to this cannot fail!");
7919
7920  // Assign base classes.
7921  bool Invalid = false;
7922  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7923       E = ClassDecl->bases_end(); Base != E; ++Base) {
7924    // Form the assignment:
7925    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7926    QualType BaseType = Base->getType().getUnqualifiedType();
7927    if (!BaseType->isRecordType()) {
7928      Invalid = true;
7929      continue;
7930    }
7931
7932    CXXCastPath BasePath;
7933    BasePath.push_back(Base);
7934
7935    // Construct the "from" expression, which is an implicit cast to the
7936    // appropriately-qualified base type.
7937    Expr *From = OtherRef;
7938    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7939                             CK_UncheckedDerivedToBase,
7940                             VK_LValue, &BasePath).take();
7941
7942    // Dereference "this".
7943    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7944
7945    // Implicitly cast "this" to the appropriately-qualified base type.
7946    To = ImpCastExprToType(To.take(),
7947                           Context.getCVRQualifiedType(BaseType,
7948                                     CopyAssignOperator->getTypeQualifiers()),
7949                           CK_UncheckedDerivedToBase,
7950                           VK_LValue, &BasePath);
7951
7952    // Build the copy.
7953    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7954                                            To.get(), From,
7955                                            /*CopyingBaseSubobject=*/true,
7956                                            /*Copying=*/true);
7957    if (Copy.isInvalid()) {
7958      Diag(CurrentLocation, diag::note_member_synthesized_at)
7959        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7960      CopyAssignOperator->setInvalidDecl();
7961      return;
7962    }
7963
7964    // Success! Record the copy.
7965    Statements.push_back(Copy.takeAs<Expr>());
7966  }
7967
7968  // \brief Reference to the __builtin_memcpy function.
7969  Expr *BuiltinMemCpyRef = 0;
7970  // \brief Reference to the __builtin_objc_memmove_collectable function.
7971  Expr *CollectableMemCpyRef = 0;
7972
7973  // Assign non-static members.
7974  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7975                                  FieldEnd = ClassDecl->field_end();
7976       Field != FieldEnd; ++Field) {
7977    if (Field->isUnnamedBitfield())
7978      continue;
7979
7980    // Check for members of reference type; we can't copy those.
7981    if (Field->getType()->isReferenceType()) {
7982      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7983        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7984      Diag(Field->getLocation(), diag::note_declared_at);
7985      Diag(CurrentLocation, diag::note_member_synthesized_at)
7986        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7987      Invalid = true;
7988      continue;
7989    }
7990
7991    // Check for members of const-qualified, non-class type.
7992    QualType BaseType = Context.getBaseElementType(Field->getType());
7993    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7994      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7995        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7996      Diag(Field->getLocation(), diag::note_declared_at);
7997      Diag(CurrentLocation, diag::note_member_synthesized_at)
7998        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7999      Invalid = true;
8000      continue;
8001    }
8002
8003    // Suppress assigning zero-width bitfields.
8004    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8005      continue;
8006
8007    QualType FieldType = Field->getType().getNonReferenceType();
8008    if (FieldType->isIncompleteArrayType()) {
8009      assert(ClassDecl->hasFlexibleArrayMember() &&
8010             "Incomplete array type is not valid");
8011      continue;
8012    }
8013
8014    // Build references to the field in the object we're copying from and to.
8015    CXXScopeSpec SS; // Intentionally empty
8016    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8017                              LookupMemberName);
8018    MemberLookup.addDecl(*Field);
8019    MemberLookup.resolveKind();
8020    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8021                                               Loc, /*IsArrow=*/false,
8022                                               SS, 0, MemberLookup, 0);
8023    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8024                                             Loc, /*IsArrow=*/true,
8025                                             SS, 0, MemberLookup, 0);
8026    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8027    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8028
8029    // If the field should be copied with __builtin_memcpy rather than via
8030    // explicit assignments, do so. This optimization only applies for arrays
8031    // of scalars and arrays of class type with trivial copy-assignment
8032    // operators.
8033    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8034        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8035      // Compute the size of the memory buffer to be copied.
8036      QualType SizeType = Context.getSizeType();
8037      llvm::APInt Size(Context.getTypeSize(SizeType),
8038                       Context.getTypeSizeInChars(BaseType).getQuantity());
8039      for (const ConstantArrayType *Array
8040              = Context.getAsConstantArrayType(FieldType);
8041           Array;
8042           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8043        llvm::APInt ArraySize
8044          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8045        Size *= ArraySize;
8046      }
8047
8048      // Take the address of the field references for "from" and "to".
8049      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8050      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8051
8052      bool NeedsCollectableMemCpy =
8053          (BaseType->isRecordType() &&
8054           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8055
8056      if (NeedsCollectableMemCpy) {
8057        if (!CollectableMemCpyRef) {
8058          // Create a reference to the __builtin_objc_memmove_collectable function.
8059          LookupResult R(*this,
8060                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8061                         Loc, LookupOrdinaryName);
8062          LookupName(R, TUScope, true);
8063
8064          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8065          if (!CollectableMemCpy) {
8066            // Something went horribly wrong earlier, and we will have
8067            // complained about it.
8068            Invalid = true;
8069            continue;
8070          }
8071
8072          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8073                                                  CollectableMemCpy->getType(),
8074                                                  VK_LValue, Loc, 0).take();
8075          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8076        }
8077      }
8078      // Create a reference to the __builtin_memcpy builtin function.
8079      else if (!BuiltinMemCpyRef) {
8080        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8081                       LookupOrdinaryName);
8082        LookupName(R, TUScope, true);
8083
8084        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8085        if (!BuiltinMemCpy) {
8086          // Something went horribly wrong earlier, and we will have complained
8087          // about it.
8088          Invalid = true;
8089          continue;
8090        }
8091
8092        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8093                                            BuiltinMemCpy->getType(),
8094                                            VK_LValue, Loc, 0).take();
8095        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8096      }
8097
8098      ASTOwningVector<Expr*> CallArgs(*this);
8099      CallArgs.push_back(To.takeAs<Expr>());
8100      CallArgs.push_back(From.takeAs<Expr>());
8101      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8102      ExprResult Call = ExprError();
8103      if (NeedsCollectableMemCpy)
8104        Call = ActOnCallExpr(/*Scope=*/0,
8105                             CollectableMemCpyRef,
8106                             Loc, move_arg(CallArgs),
8107                             Loc);
8108      else
8109        Call = ActOnCallExpr(/*Scope=*/0,
8110                             BuiltinMemCpyRef,
8111                             Loc, move_arg(CallArgs),
8112                             Loc);
8113
8114      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8115      Statements.push_back(Call.takeAs<Expr>());
8116      continue;
8117    }
8118
8119    // Build the copy of this field.
8120    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8121                                            To.get(), From.get(),
8122                                            /*CopyingBaseSubobject=*/false,
8123                                            /*Copying=*/true);
8124    if (Copy.isInvalid()) {
8125      Diag(CurrentLocation, diag::note_member_synthesized_at)
8126        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8127      CopyAssignOperator->setInvalidDecl();
8128      return;
8129    }
8130
8131    // Success! Record the copy.
8132    Statements.push_back(Copy.takeAs<Stmt>());
8133  }
8134
8135  if (!Invalid) {
8136    // Add a "return *this;"
8137    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8138
8139    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8140    if (Return.isInvalid())
8141      Invalid = true;
8142    else {
8143      Statements.push_back(Return.takeAs<Stmt>());
8144
8145      if (Trap.hasErrorOccurred()) {
8146        Diag(CurrentLocation, diag::note_member_synthesized_at)
8147          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8148        Invalid = true;
8149      }
8150    }
8151  }
8152
8153  if (Invalid) {
8154    CopyAssignOperator->setInvalidDecl();
8155    return;
8156  }
8157
8158  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8159                                            /*isStmtExpr=*/false);
8160  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8161  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8162
8163  if (ASTMutationListener *L = getASTMutationListener()) {
8164    L->CompletedImplicitDefinition(CopyAssignOperator);
8165  }
8166}
8167
8168Sema::ImplicitExceptionSpecification
8169Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8170  ImplicitExceptionSpecification ExceptSpec(Context);
8171
8172  if (ClassDecl->isInvalidDecl())
8173    return ExceptSpec;
8174
8175  // C++0x [except.spec]p14:
8176  //   An implicitly declared special member function (Clause 12) shall have an
8177  //   exception-specification. [...]
8178
8179  // It is unspecified whether or not an implicit move assignment operator
8180  // attempts to deduplicate calls to assignment operators of virtual bases are
8181  // made. As such, this exception specification is effectively unspecified.
8182  // Based on a similar decision made for constness in C++0x, we're erring on
8183  // the side of assuming such calls to be made regardless of whether they
8184  // actually happen.
8185  // Note that a move constructor is not implicitly declared when there are
8186  // virtual bases, but it can still be user-declared and explicitly defaulted.
8187  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8188                                       BaseEnd = ClassDecl->bases_end();
8189       Base != BaseEnd; ++Base) {
8190    if (Base->isVirtual())
8191      continue;
8192
8193    CXXRecordDecl *BaseClassDecl
8194      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8195    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8196                                                           false, 0))
8197      ExceptSpec.CalledDecl(MoveAssign);
8198  }
8199
8200  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8201                                       BaseEnd = ClassDecl->vbases_end();
8202       Base != BaseEnd; ++Base) {
8203    CXXRecordDecl *BaseClassDecl
8204      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8205    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8206                                                           false, 0))
8207      ExceptSpec.CalledDecl(MoveAssign);
8208  }
8209
8210  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8211                                  FieldEnd = ClassDecl->field_end();
8212       Field != FieldEnd;
8213       ++Field) {
8214    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8215    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8216      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8217                                                             false, 0))
8218        ExceptSpec.CalledDecl(MoveAssign);
8219    }
8220  }
8221
8222  return ExceptSpec;
8223}
8224
8225CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8226  // Note: The following rules are largely analoguous to the move
8227  // constructor rules.
8228
8229  ImplicitExceptionSpecification Spec(
8230      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8231
8232  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8233  QualType RetType = Context.getLValueReferenceType(ArgType);
8234  ArgType = Context.getRValueReferenceType(ArgType);
8235
8236  //   An implicitly-declared move assignment operator is an inline public
8237  //   member of its class.
8238  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8239  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8240  SourceLocation ClassLoc = ClassDecl->getLocation();
8241  DeclarationNameInfo NameInfo(Name, ClassLoc);
8242  CXXMethodDecl *MoveAssignment
8243    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8244                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8245                            /*TInfo=*/0, /*isStatic=*/false,
8246                            /*StorageClassAsWritten=*/SC_None,
8247                            /*isInline=*/true,
8248                            /*isConstexpr=*/false,
8249                            SourceLocation());
8250  MoveAssignment->setAccess(AS_public);
8251  MoveAssignment->setDefaulted();
8252  MoveAssignment->setImplicit();
8253  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8254
8255  // Add the parameter to the operator.
8256  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8257                                               ClassLoc, ClassLoc, /*Id=*/0,
8258                                               ArgType, /*TInfo=*/0,
8259                                               SC_None,
8260                                               SC_None, 0);
8261  MoveAssignment->setParams(FromParam);
8262
8263  // Note that we have added this copy-assignment operator.
8264  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8265
8266  // C++0x [class.copy]p9:
8267  //   If the definition of a class X does not explicitly declare a move
8268  //   assignment operator, one will be implicitly declared as defaulted if and
8269  //   only if:
8270  //   [...]
8271  //   - the move assignment operator would not be implicitly defined as
8272  //     deleted.
8273  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8274    // Cache this result so that we don't try to generate this over and over
8275    // on every lookup, leaking memory and wasting time.
8276    ClassDecl->setFailedImplicitMoveAssignment();
8277    return 0;
8278  }
8279
8280  if (Scope *S = getScopeForContext(ClassDecl))
8281    PushOnScopeChains(MoveAssignment, S, false);
8282  ClassDecl->addDecl(MoveAssignment);
8283
8284  AddOverriddenMethods(ClassDecl, MoveAssignment);
8285  return MoveAssignment;
8286}
8287
8288void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8289                                        CXXMethodDecl *MoveAssignOperator) {
8290  assert((MoveAssignOperator->isDefaulted() &&
8291          MoveAssignOperator->isOverloadedOperator() &&
8292          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8293          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8294         "DefineImplicitMoveAssignment called for wrong function");
8295
8296  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8297
8298  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8299    MoveAssignOperator->setInvalidDecl();
8300    return;
8301  }
8302
8303  MoveAssignOperator->setUsed();
8304
8305  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8306  DiagnosticErrorTrap Trap(Diags);
8307
8308  // C++0x [class.copy]p28:
8309  //   The implicitly-defined or move assignment operator for a non-union class
8310  //   X performs memberwise move assignment of its subobjects. The direct base
8311  //   classes of X are assigned first, in the order of their declaration in the
8312  //   base-specifier-list, and then the immediate non-static data members of X
8313  //   are assigned, in the order in which they were declared in the class
8314  //   definition.
8315
8316  // The statements that form the synthesized function body.
8317  ASTOwningVector<Stmt*> Statements(*this);
8318
8319  // The parameter for the "other" object, which we are move from.
8320  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8321  QualType OtherRefType = Other->getType()->
8322      getAs<RValueReferenceType>()->getPointeeType();
8323  assert(OtherRefType.getQualifiers() == 0 &&
8324         "Bad argument type of defaulted move assignment");
8325
8326  // Our location for everything implicitly-generated.
8327  SourceLocation Loc = MoveAssignOperator->getLocation();
8328
8329  // Construct a reference to the "other" object. We'll be using this
8330  // throughout the generated ASTs.
8331  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8332  assert(OtherRef && "Reference to parameter cannot fail!");
8333  // Cast to rvalue.
8334  OtherRef = CastForMoving(*this, OtherRef);
8335
8336  // Construct the "this" pointer. We'll be using this throughout the generated
8337  // ASTs.
8338  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8339  assert(This && "Reference to this cannot fail!");
8340
8341  // Assign base classes.
8342  bool Invalid = false;
8343  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8344       E = ClassDecl->bases_end(); Base != E; ++Base) {
8345    // Form the assignment:
8346    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8347    QualType BaseType = Base->getType().getUnqualifiedType();
8348    if (!BaseType->isRecordType()) {
8349      Invalid = true;
8350      continue;
8351    }
8352
8353    CXXCastPath BasePath;
8354    BasePath.push_back(Base);
8355
8356    // Construct the "from" expression, which is an implicit cast to the
8357    // appropriately-qualified base type.
8358    Expr *From = OtherRef;
8359    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8360                             VK_XValue, &BasePath).take();
8361
8362    // Dereference "this".
8363    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8364
8365    // Implicitly cast "this" to the appropriately-qualified base type.
8366    To = ImpCastExprToType(To.take(),
8367                           Context.getCVRQualifiedType(BaseType,
8368                                     MoveAssignOperator->getTypeQualifiers()),
8369                           CK_UncheckedDerivedToBase,
8370                           VK_LValue, &BasePath);
8371
8372    // Build the move.
8373    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8374                                            To.get(), From,
8375                                            /*CopyingBaseSubobject=*/true,
8376                                            /*Copying=*/false);
8377    if (Move.isInvalid()) {
8378      Diag(CurrentLocation, diag::note_member_synthesized_at)
8379        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8380      MoveAssignOperator->setInvalidDecl();
8381      return;
8382    }
8383
8384    // Success! Record the move.
8385    Statements.push_back(Move.takeAs<Expr>());
8386  }
8387
8388  // \brief Reference to the __builtin_memcpy function.
8389  Expr *BuiltinMemCpyRef = 0;
8390  // \brief Reference to the __builtin_objc_memmove_collectable function.
8391  Expr *CollectableMemCpyRef = 0;
8392
8393  // Assign non-static members.
8394  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8395                                  FieldEnd = ClassDecl->field_end();
8396       Field != FieldEnd; ++Field) {
8397    if (Field->isUnnamedBitfield())
8398      continue;
8399
8400    // Check for members of reference type; we can't move those.
8401    if (Field->getType()->isReferenceType()) {
8402      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8403        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8404      Diag(Field->getLocation(), diag::note_declared_at);
8405      Diag(CurrentLocation, diag::note_member_synthesized_at)
8406        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8407      Invalid = true;
8408      continue;
8409    }
8410
8411    // Check for members of const-qualified, non-class type.
8412    QualType BaseType = Context.getBaseElementType(Field->getType());
8413    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8414      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8415        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8416      Diag(Field->getLocation(), diag::note_declared_at);
8417      Diag(CurrentLocation, diag::note_member_synthesized_at)
8418        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8419      Invalid = true;
8420      continue;
8421    }
8422
8423    // Suppress assigning zero-width bitfields.
8424    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8425      continue;
8426
8427    QualType FieldType = Field->getType().getNonReferenceType();
8428    if (FieldType->isIncompleteArrayType()) {
8429      assert(ClassDecl->hasFlexibleArrayMember() &&
8430             "Incomplete array type is not valid");
8431      continue;
8432    }
8433
8434    // Build references to the field in the object we're copying from and to.
8435    CXXScopeSpec SS; // Intentionally empty
8436    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8437                              LookupMemberName);
8438    MemberLookup.addDecl(*Field);
8439    MemberLookup.resolveKind();
8440    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8441                                               Loc, /*IsArrow=*/false,
8442                                               SS, 0, MemberLookup, 0);
8443    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8444                                             Loc, /*IsArrow=*/true,
8445                                             SS, 0, MemberLookup, 0);
8446    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8447    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8448
8449    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8450        "Member reference with rvalue base must be rvalue except for reference "
8451        "members, which aren't allowed for move assignment.");
8452
8453    // If the field should be copied with __builtin_memcpy rather than via
8454    // explicit assignments, do so. This optimization only applies for arrays
8455    // of scalars and arrays of class type with trivial move-assignment
8456    // operators.
8457    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8458        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8459      // Compute the size of the memory buffer to be copied.
8460      QualType SizeType = Context.getSizeType();
8461      llvm::APInt Size(Context.getTypeSize(SizeType),
8462                       Context.getTypeSizeInChars(BaseType).getQuantity());
8463      for (const ConstantArrayType *Array
8464              = Context.getAsConstantArrayType(FieldType);
8465           Array;
8466           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8467        llvm::APInt ArraySize
8468          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8469        Size *= ArraySize;
8470      }
8471
8472      // Take the address of the field references for "from" and "to". We
8473      // directly construct UnaryOperators here because semantic analysis
8474      // does not permit us to take the address of an xvalue.
8475      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8476                             Context.getPointerType(From.get()->getType()),
8477                             VK_RValue, OK_Ordinary, Loc);
8478      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8479                           Context.getPointerType(To.get()->getType()),
8480                           VK_RValue, OK_Ordinary, Loc);
8481
8482      bool NeedsCollectableMemCpy =
8483          (BaseType->isRecordType() &&
8484           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8485
8486      if (NeedsCollectableMemCpy) {
8487        if (!CollectableMemCpyRef) {
8488          // Create a reference to the __builtin_objc_memmove_collectable function.
8489          LookupResult R(*this,
8490                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8491                         Loc, LookupOrdinaryName);
8492          LookupName(R, TUScope, true);
8493
8494          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8495          if (!CollectableMemCpy) {
8496            // Something went horribly wrong earlier, and we will have
8497            // complained about it.
8498            Invalid = true;
8499            continue;
8500          }
8501
8502          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8503                                                  CollectableMemCpy->getType(),
8504                                                  VK_LValue, Loc, 0).take();
8505          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8506        }
8507      }
8508      // Create a reference to the __builtin_memcpy builtin function.
8509      else if (!BuiltinMemCpyRef) {
8510        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8511                       LookupOrdinaryName);
8512        LookupName(R, TUScope, true);
8513
8514        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8515        if (!BuiltinMemCpy) {
8516          // Something went horribly wrong earlier, and we will have complained
8517          // about it.
8518          Invalid = true;
8519          continue;
8520        }
8521
8522        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8523                                            BuiltinMemCpy->getType(),
8524                                            VK_LValue, Loc, 0).take();
8525        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8526      }
8527
8528      ASTOwningVector<Expr*> CallArgs(*this);
8529      CallArgs.push_back(To.takeAs<Expr>());
8530      CallArgs.push_back(From.takeAs<Expr>());
8531      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8532      ExprResult Call = ExprError();
8533      if (NeedsCollectableMemCpy)
8534        Call = ActOnCallExpr(/*Scope=*/0,
8535                             CollectableMemCpyRef,
8536                             Loc, move_arg(CallArgs),
8537                             Loc);
8538      else
8539        Call = ActOnCallExpr(/*Scope=*/0,
8540                             BuiltinMemCpyRef,
8541                             Loc, move_arg(CallArgs),
8542                             Loc);
8543
8544      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8545      Statements.push_back(Call.takeAs<Expr>());
8546      continue;
8547    }
8548
8549    // Build the move of this field.
8550    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8551                                            To.get(), From.get(),
8552                                            /*CopyingBaseSubobject=*/false,
8553                                            /*Copying=*/false);
8554    if (Move.isInvalid()) {
8555      Diag(CurrentLocation, diag::note_member_synthesized_at)
8556        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8557      MoveAssignOperator->setInvalidDecl();
8558      return;
8559    }
8560
8561    // Success! Record the copy.
8562    Statements.push_back(Move.takeAs<Stmt>());
8563  }
8564
8565  if (!Invalid) {
8566    // Add a "return *this;"
8567    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8568
8569    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8570    if (Return.isInvalid())
8571      Invalid = true;
8572    else {
8573      Statements.push_back(Return.takeAs<Stmt>());
8574
8575      if (Trap.hasErrorOccurred()) {
8576        Diag(CurrentLocation, diag::note_member_synthesized_at)
8577          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8578        Invalid = true;
8579      }
8580    }
8581  }
8582
8583  if (Invalid) {
8584    MoveAssignOperator->setInvalidDecl();
8585    return;
8586  }
8587
8588  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8589                                            /*isStmtExpr=*/false);
8590  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8591  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8592
8593  if (ASTMutationListener *L = getASTMutationListener()) {
8594    L->CompletedImplicitDefinition(MoveAssignOperator);
8595  }
8596}
8597
8598std::pair<Sema::ImplicitExceptionSpecification, bool>
8599Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8600  if (ClassDecl->isInvalidDecl())
8601    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8602
8603  // C++ [class.copy]p5:
8604  //   The implicitly-declared copy constructor for a class X will
8605  //   have the form
8606  //
8607  //       X::X(const X&)
8608  //
8609  //   if
8610  // FIXME: It ought to be possible to store this on the record.
8611  bool HasConstCopyConstructor = true;
8612
8613  //     -- each direct or virtual base class B of X has a copy
8614  //        constructor whose first parameter is of type const B& or
8615  //        const volatile B&, and
8616  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8617                                       BaseEnd = ClassDecl->bases_end();
8618       HasConstCopyConstructor && Base != BaseEnd;
8619       ++Base) {
8620    // Virtual bases are handled below.
8621    if (Base->isVirtual())
8622      continue;
8623
8624    CXXRecordDecl *BaseClassDecl
8625      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8626    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8627                             &HasConstCopyConstructor);
8628  }
8629
8630  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8631                                       BaseEnd = ClassDecl->vbases_end();
8632       HasConstCopyConstructor && Base != BaseEnd;
8633       ++Base) {
8634    CXXRecordDecl *BaseClassDecl
8635      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8636    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8637                             &HasConstCopyConstructor);
8638  }
8639
8640  //     -- for all the nonstatic data members of X that are of a
8641  //        class type M (or array thereof), each such class type
8642  //        has a copy constructor whose first parameter is of type
8643  //        const M& or const volatile M&.
8644  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8645                                  FieldEnd = ClassDecl->field_end();
8646       HasConstCopyConstructor && Field != FieldEnd;
8647       ++Field) {
8648    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8649    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8650      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8651                               &HasConstCopyConstructor);
8652    }
8653  }
8654  //   Otherwise, the implicitly declared copy constructor will have
8655  //   the form
8656  //
8657  //       X::X(X&)
8658
8659  // C++ [except.spec]p14:
8660  //   An implicitly declared special member function (Clause 12) shall have an
8661  //   exception-specification. [...]
8662  ImplicitExceptionSpecification ExceptSpec(Context);
8663  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8664  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8665                                       BaseEnd = ClassDecl->bases_end();
8666       Base != BaseEnd;
8667       ++Base) {
8668    // Virtual bases are handled below.
8669    if (Base->isVirtual())
8670      continue;
8671
8672    CXXRecordDecl *BaseClassDecl
8673      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8674    if (CXXConstructorDecl *CopyConstructor =
8675          LookupCopyingConstructor(BaseClassDecl, Quals))
8676      ExceptSpec.CalledDecl(CopyConstructor);
8677  }
8678  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8679                                       BaseEnd = ClassDecl->vbases_end();
8680       Base != BaseEnd;
8681       ++Base) {
8682    CXXRecordDecl *BaseClassDecl
8683      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8684    if (CXXConstructorDecl *CopyConstructor =
8685          LookupCopyingConstructor(BaseClassDecl, Quals))
8686      ExceptSpec.CalledDecl(CopyConstructor);
8687  }
8688  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8689                                  FieldEnd = ClassDecl->field_end();
8690       Field != FieldEnd;
8691       ++Field) {
8692    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8693    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8694      if (CXXConstructorDecl *CopyConstructor =
8695        LookupCopyingConstructor(FieldClassDecl, Quals))
8696      ExceptSpec.CalledDecl(CopyConstructor);
8697    }
8698  }
8699
8700  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8701}
8702
8703CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8704                                                    CXXRecordDecl *ClassDecl) {
8705  // C++ [class.copy]p4:
8706  //   If the class definition does not explicitly declare a copy
8707  //   constructor, one is declared implicitly.
8708
8709  ImplicitExceptionSpecification Spec(Context);
8710  bool Const;
8711  llvm::tie(Spec, Const) =
8712    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8713
8714  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8715  QualType ArgType = ClassType;
8716  if (Const)
8717    ArgType = ArgType.withConst();
8718  ArgType = Context.getLValueReferenceType(ArgType);
8719
8720  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8721
8722  DeclarationName Name
8723    = Context.DeclarationNames.getCXXConstructorName(
8724                                           Context.getCanonicalType(ClassType));
8725  SourceLocation ClassLoc = ClassDecl->getLocation();
8726  DeclarationNameInfo NameInfo(Name, ClassLoc);
8727
8728  //   An implicitly-declared copy constructor is an inline public
8729  //   member of its class.
8730  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8731      Context, ClassDecl, ClassLoc, NameInfo,
8732      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8733      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8734      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8735        getLangOptions().CPlusPlus0x);
8736  CopyConstructor->setAccess(AS_public);
8737  CopyConstructor->setDefaulted();
8738  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8739
8740  // Note that we have declared this constructor.
8741  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8742
8743  // Add the parameter to the constructor.
8744  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8745                                               ClassLoc, ClassLoc,
8746                                               /*IdentifierInfo=*/0,
8747                                               ArgType, /*TInfo=*/0,
8748                                               SC_None,
8749                                               SC_None, 0);
8750  CopyConstructor->setParams(FromParam);
8751
8752  if (Scope *S = getScopeForContext(ClassDecl))
8753    PushOnScopeChains(CopyConstructor, S, false);
8754  ClassDecl->addDecl(CopyConstructor);
8755
8756  // C++11 [class.copy]p8:
8757  //   ... If the class definition does not explicitly declare a copy
8758  //   constructor, there is no user-declared move constructor, and there is no
8759  //   user-declared move assignment operator, a copy constructor is implicitly
8760  //   declared as defaulted.
8761  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8762      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8763          !getLangOptions().MicrosoftMode) ||
8764      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8765    CopyConstructor->setDeletedAsWritten();
8766
8767  return CopyConstructor;
8768}
8769
8770void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8771                                   CXXConstructorDecl *CopyConstructor) {
8772  assert((CopyConstructor->isDefaulted() &&
8773          CopyConstructor->isCopyConstructor() &&
8774          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8775         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8776
8777  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8778  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8779
8780  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8781  DiagnosticErrorTrap Trap(Diags);
8782
8783  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8784      Trap.hasErrorOccurred()) {
8785    Diag(CurrentLocation, diag::note_member_synthesized_at)
8786      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8787    CopyConstructor->setInvalidDecl();
8788  }  else {
8789    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8790                                               CopyConstructor->getLocation(),
8791                                               MultiStmtArg(*this, 0, 0),
8792                                               /*isStmtExpr=*/false)
8793                                                              .takeAs<Stmt>());
8794    CopyConstructor->setImplicitlyDefined(true);
8795  }
8796
8797  CopyConstructor->setUsed();
8798  if (ASTMutationListener *L = getASTMutationListener()) {
8799    L->CompletedImplicitDefinition(CopyConstructor);
8800  }
8801}
8802
8803Sema::ImplicitExceptionSpecification
8804Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8805  // C++ [except.spec]p14:
8806  //   An implicitly declared special member function (Clause 12) shall have an
8807  //   exception-specification. [...]
8808  ImplicitExceptionSpecification ExceptSpec(Context);
8809  if (ClassDecl->isInvalidDecl())
8810    return ExceptSpec;
8811
8812  // Direct base-class constructors.
8813  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8814                                       BEnd = ClassDecl->bases_end();
8815       B != BEnd; ++B) {
8816    if (B->isVirtual()) // Handled below.
8817      continue;
8818
8819    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8820      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8821      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8822      // If this is a deleted function, add it anyway. This might be conformant
8823      // with the standard. This might not. I'm not sure. It might not matter.
8824      if (Constructor)
8825        ExceptSpec.CalledDecl(Constructor);
8826    }
8827  }
8828
8829  // Virtual base-class constructors.
8830  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8831                                       BEnd = ClassDecl->vbases_end();
8832       B != BEnd; ++B) {
8833    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8834      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8835      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8836      // If this is a deleted function, add it anyway. This might be conformant
8837      // with the standard. This might not. I'm not sure. It might not matter.
8838      if (Constructor)
8839        ExceptSpec.CalledDecl(Constructor);
8840    }
8841  }
8842
8843  // Field constructors.
8844  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8845                               FEnd = ClassDecl->field_end();
8846       F != FEnd; ++F) {
8847    if (const RecordType *RecordTy
8848              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8849      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8850      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8851      // If this is a deleted function, add it anyway. This might be conformant
8852      // with the standard. This might not. I'm not sure. It might not matter.
8853      // In particular, the problem is that this function never gets called. It
8854      // might just be ill-formed because this function attempts to refer to
8855      // a deleted function here.
8856      if (Constructor)
8857        ExceptSpec.CalledDecl(Constructor);
8858    }
8859  }
8860
8861  return ExceptSpec;
8862}
8863
8864CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8865                                                    CXXRecordDecl *ClassDecl) {
8866  ImplicitExceptionSpecification Spec(
8867      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8868
8869  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8870  QualType ArgType = Context.getRValueReferenceType(ClassType);
8871
8872  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8873
8874  DeclarationName Name
8875    = Context.DeclarationNames.getCXXConstructorName(
8876                                           Context.getCanonicalType(ClassType));
8877  SourceLocation ClassLoc = ClassDecl->getLocation();
8878  DeclarationNameInfo NameInfo(Name, ClassLoc);
8879
8880  // C++0x [class.copy]p11:
8881  //   An implicitly-declared copy/move constructor is an inline public
8882  //   member of its class.
8883  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8884      Context, ClassDecl, ClassLoc, NameInfo,
8885      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8886      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8887      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8888        getLangOptions().CPlusPlus0x);
8889  MoveConstructor->setAccess(AS_public);
8890  MoveConstructor->setDefaulted();
8891  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8892
8893  // Add the parameter to the constructor.
8894  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8895                                               ClassLoc, ClassLoc,
8896                                               /*IdentifierInfo=*/0,
8897                                               ArgType, /*TInfo=*/0,
8898                                               SC_None,
8899                                               SC_None, 0);
8900  MoveConstructor->setParams(FromParam);
8901
8902  // C++0x [class.copy]p9:
8903  //   If the definition of a class X does not explicitly declare a move
8904  //   constructor, one will be implicitly declared as defaulted if and only if:
8905  //   [...]
8906  //   - the move constructor would not be implicitly defined as deleted.
8907  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8908    // Cache this result so that we don't try to generate this over and over
8909    // on every lookup, leaking memory and wasting time.
8910    ClassDecl->setFailedImplicitMoveConstructor();
8911    return 0;
8912  }
8913
8914  // Note that we have declared this constructor.
8915  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8916
8917  if (Scope *S = getScopeForContext(ClassDecl))
8918    PushOnScopeChains(MoveConstructor, S, false);
8919  ClassDecl->addDecl(MoveConstructor);
8920
8921  return MoveConstructor;
8922}
8923
8924void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8925                                   CXXConstructorDecl *MoveConstructor) {
8926  assert((MoveConstructor->isDefaulted() &&
8927          MoveConstructor->isMoveConstructor() &&
8928          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8929         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8930
8931  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8932  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8933
8934  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8935  DiagnosticErrorTrap Trap(Diags);
8936
8937  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8938      Trap.hasErrorOccurred()) {
8939    Diag(CurrentLocation, diag::note_member_synthesized_at)
8940      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8941    MoveConstructor->setInvalidDecl();
8942  }  else {
8943    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8944                                               MoveConstructor->getLocation(),
8945                                               MultiStmtArg(*this, 0, 0),
8946                                               /*isStmtExpr=*/false)
8947                                                              .takeAs<Stmt>());
8948    MoveConstructor->setImplicitlyDefined(true);
8949  }
8950
8951  MoveConstructor->setUsed();
8952
8953  if (ASTMutationListener *L = getASTMutationListener()) {
8954    L->CompletedImplicitDefinition(MoveConstructor);
8955  }
8956}
8957
8958ExprResult
8959Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8960                            CXXConstructorDecl *Constructor,
8961                            MultiExprArg ExprArgs,
8962                            bool HadMultipleCandidates,
8963                            bool RequiresZeroInit,
8964                            unsigned ConstructKind,
8965                            SourceRange ParenRange) {
8966  bool Elidable = false;
8967
8968  // C++0x [class.copy]p34:
8969  //   When certain criteria are met, an implementation is allowed to
8970  //   omit the copy/move construction of a class object, even if the
8971  //   copy/move constructor and/or destructor for the object have
8972  //   side effects. [...]
8973  //     - when a temporary class object that has not been bound to a
8974  //       reference (12.2) would be copied/moved to a class object
8975  //       with the same cv-unqualified type, the copy/move operation
8976  //       can be omitted by constructing the temporary object
8977  //       directly into the target of the omitted copy/move
8978  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8979      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8980    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8981    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8982  }
8983
8984  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8985                               Elidable, move(ExprArgs), HadMultipleCandidates,
8986                               RequiresZeroInit, ConstructKind, ParenRange);
8987}
8988
8989/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8990/// including handling of its default argument expressions.
8991ExprResult
8992Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8993                            CXXConstructorDecl *Constructor, bool Elidable,
8994                            MultiExprArg ExprArgs,
8995                            bool HadMultipleCandidates,
8996                            bool RequiresZeroInit,
8997                            unsigned ConstructKind,
8998                            SourceRange ParenRange) {
8999  unsigned NumExprs = ExprArgs.size();
9000  Expr **Exprs = (Expr **)ExprArgs.release();
9001
9002  for (specific_attr_iterator<NonNullAttr>
9003           i = Constructor->specific_attr_begin<NonNullAttr>(),
9004           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9005    const NonNullAttr *NonNull = *i;
9006    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9007  }
9008
9009  MarkDeclarationReferenced(ConstructLoc, Constructor);
9010  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9011                                        Constructor, Elidable, Exprs, NumExprs,
9012                                        HadMultipleCandidates, RequiresZeroInit,
9013              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9014                                        ParenRange));
9015}
9016
9017bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9018                                        CXXConstructorDecl *Constructor,
9019                                        MultiExprArg Exprs,
9020                                        bool HadMultipleCandidates) {
9021  // FIXME: Provide the correct paren SourceRange when available.
9022  ExprResult TempResult =
9023    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9024                          move(Exprs), HadMultipleCandidates, false,
9025                          CXXConstructExpr::CK_Complete, SourceRange());
9026  if (TempResult.isInvalid())
9027    return true;
9028
9029  Expr *Temp = TempResult.takeAs<Expr>();
9030  CheckImplicitConversions(Temp, VD->getLocation());
9031  MarkDeclarationReferenced(VD->getLocation(), Constructor);
9032  Temp = MaybeCreateExprWithCleanups(Temp);
9033  VD->setInit(Temp);
9034
9035  return false;
9036}
9037
9038void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9039  if (VD->isInvalidDecl()) return;
9040
9041  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9042  if (ClassDecl->isInvalidDecl()) return;
9043  if (ClassDecl->hasTrivialDestructor()) return;
9044  if (ClassDecl->isDependentContext()) return;
9045
9046  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9047  MarkDeclarationReferenced(VD->getLocation(), Destructor);
9048  CheckDestructorAccess(VD->getLocation(), Destructor,
9049                        PDiag(diag::err_access_dtor_var)
9050                        << VD->getDeclName()
9051                        << VD->getType());
9052
9053  if (!VD->hasGlobalStorage()) return;
9054
9055  // Emit warning for non-trivial dtor in global scope (a real global,
9056  // class-static, function-static).
9057  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9058
9059  // TODO: this should be re-enabled for static locals by !CXAAtExit
9060  if (!VD->isStaticLocal())
9061    Diag(VD->getLocation(), diag::warn_global_destructor);
9062}
9063
9064/// AddCXXDirectInitializerToDecl - This action is called immediately after
9065/// ActOnDeclarator, when a C++ direct initializer is present.
9066/// e.g: "int x(1);"
9067void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9068                                         SourceLocation LParenLoc,
9069                                         MultiExprArg Exprs,
9070                                         SourceLocation RParenLoc,
9071                                         bool TypeMayContainAuto) {
9072  // If there is no declaration, there was an error parsing it.  Just ignore
9073  // the initializer.
9074  if (RealDecl == 0)
9075    return;
9076
9077  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9078  if (!VDecl) {
9079    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9080    RealDecl->setInvalidDecl();
9081    return;
9082  }
9083
9084  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9085  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9086    if (Exprs.size() == 0) {
9087      // It isn't possible to write this directly, but it is possible to
9088      // end up in this situation with "auto x(some_pack...);"
9089      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9090        << VDecl->getDeclName() << VDecl->getType()
9091        << VDecl->getSourceRange();
9092      RealDecl->setInvalidDecl();
9093      return;
9094    }
9095
9096    if (Exprs.size() > 1) {
9097      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9098           diag::err_auto_var_init_multiple_expressions)
9099        << VDecl->getDeclName() << VDecl->getType()
9100        << VDecl->getSourceRange();
9101      RealDecl->setInvalidDecl();
9102      return;
9103    }
9104
9105    Expr *Init = Exprs.get()[0];
9106    TypeSourceInfo *DeducedType = 0;
9107    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9108            DAR_Failed)
9109      DiagnoseAutoDeductionFailure(VDecl, Init);
9110    if (!DeducedType) {
9111      RealDecl->setInvalidDecl();
9112      return;
9113    }
9114    VDecl->setTypeSourceInfo(DeducedType);
9115    VDecl->setType(DeducedType->getType());
9116
9117    // In ARC, infer lifetime.
9118    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9119      VDecl->setInvalidDecl();
9120
9121    // If this is a redeclaration, check that the type we just deduced matches
9122    // the previously declared type.
9123    if (VarDecl *Old = VDecl->getPreviousDecl())
9124      MergeVarDeclTypes(VDecl, Old);
9125  }
9126
9127  // We will represent direct-initialization similarly to copy-initialization:
9128  //    int x(1);  -as-> int x = 1;
9129  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9130  //
9131  // Clients that want to distinguish between the two forms, can check for
9132  // direct initializer using VarDecl::hasCXXDirectInitializer().
9133  // A major benefit is that clients that don't particularly care about which
9134  // exactly form was it (like the CodeGen) can handle both cases without
9135  // special case code.
9136
9137  // C++ 8.5p11:
9138  // The form of initialization (using parentheses or '=') is generally
9139  // insignificant, but does matter when the entity being initialized has a
9140  // class type.
9141
9142  if (!VDecl->getType()->isDependentType() &&
9143      !VDecl->getType()->isIncompleteArrayType() &&
9144      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9145                          diag::err_typecheck_decl_incomplete_type)) {
9146    VDecl->setInvalidDecl();
9147    return;
9148  }
9149
9150  // The variable can not have an abstract class type.
9151  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9152                             diag::err_abstract_type_in_decl,
9153                             AbstractVariableType))
9154    VDecl->setInvalidDecl();
9155
9156  const VarDecl *Def;
9157  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9158    Diag(VDecl->getLocation(), diag::err_redefinition)
9159    << VDecl->getDeclName();
9160    Diag(Def->getLocation(), diag::note_previous_definition);
9161    VDecl->setInvalidDecl();
9162    return;
9163  }
9164
9165  // C++ [class.static.data]p4
9166  //   If a static data member is of const integral or const
9167  //   enumeration type, its declaration in the class definition can
9168  //   specify a constant-initializer which shall be an integral
9169  //   constant expression (5.19). In that case, the member can appear
9170  //   in integral constant expressions. The member shall still be
9171  //   defined in a namespace scope if it is used in the program and the
9172  //   namespace scope definition shall not contain an initializer.
9173  //
9174  // We already performed a redefinition check above, but for static
9175  // data members we also need to check whether there was an in-class
9176  // declaration with an initializer.
9177  const VarDecl* PrevInit = 0;
9178  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9179    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9180    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9181    return;
9182  }
9183
9184  bool IsDependent = false;
9185  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9186    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9187      VDecl->setInvalidDecl();
9188      return;
9189    }
9190
9191    if (Exprs.get()[I]->isTypeDependent())
9192      IsDependent = true;
9193  }
9194
9195  // If either the declaration has a dependent type or if any of the
9196  // expressions is type-dependent, we represent the initialization
9197  // via a ParenListExpr for later use during template instantiation.
9198  if (VDecl->getType()->isDependentType() || IsDependent) {
9199    // Let clients know that initialization was done with a direct initializer.
9200    VDecl->setCXXDirectInitializer(true);
9201
9202    // Store the initialization expressions as a ParenListExpr.
9203    unsigned NumExprs = Exprs.size();
9204    VDecl->setInit(new (Context) ParenListExpr(
9205        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9206        VDecl->getType().getNonReferenceType()));
9207    return;
9208  }
9209
9210  // Capture the variable that is being initialized and the style of
9211  // initialization.
9212  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9213
9214  // FIXME: Poor source location information.
9215  InitializationKind Kind
9216    = InitializationKind::CreateDirect(VDecl->getLocation(),
9217                                       LParenLoc, RParenLoc);
9218
9219  QualType T = VDecl->getType();
9220  InitializationSequence InitSeq(*this, Entity, Kind,
9221                                 Exprs.get(), Exprs.size());
9222  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9223  if (Result.isInvalid()) {
9224    VDecl->setInvalidDecl();
9225    return;
9226  } else if (T != VDecl->getType()) {
9227    VDecl->setType(T);
9228    Result.get()->setType(T);
9229  }
9230
9231
9232  Expr *Init = Result.get();
9233  CheckImplicitConversions(Init, LParenLoc);
9234
9235  Init = MaybeCreateExprWithCleanups(Init);
9236  VDecl->setInit(Init);
9237  VDecl->setCXXDirectInitializer(true);
9238
9239  CheckCompleteVariableDeclaration(VDecl);
9240}
9241
9242/// \brief Given a constructor and the set of arguments provided for the
9243/// constructor, convert the arguments and add any required default arguments
9244/// to form a proper call to this constructor.
9245///
9246/// \returns true if an error occurred, false otherwise.
9247bool
9248Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9249                              MultiExprArg ArgsPtr,
9250                              SourceLocation Loc,
9251                              ASTOwningVector<Expr*> &ConvertedArgs) {
9252  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9253  unsigned NumArgs = ArgsPtr.size();
9254  Expr **Args = (Expr **)ArgsPtr.get();
9255
9256  const FunctionProtoType *Proto
9257    = Constructor->getType()->getAs<FunctionProtoType>();
9258  assert(Proto && "Constructor without a prototype?");
9259  unsigned NumArgsInProto = Proto->getNumArgs();
9260
9261  // If too few arguments are available, we'll fill in the rest with defaults.
9262  if (NumArgs < NumArgsInProto)
9263    ConvertedArgs.reserve(NumArgsInProto);
9264  else
9265    ConvertedArgs.reserve(NumArgs);
9266
9267  VariadicCallType CallType =
9268    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9269  SmallVector<Expr *, 8> AllArgs;
9270  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9271                                        Proto, 0, Args, NumArgs, AllArgs,
9272                                        CallType);
9273  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9274    ConvertedArgs.push_back(AllArgs[i]);
9275  return Invalid;
9276}
9277
9278static inline bool
9279CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9280                                       const FunctionDecl *FnDecl) {
9281  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9282  if (isa<NamespaceDecl>(DC)) {
9283    return SemaRef.Diag(FnDecl->getLocation(),
9284                        diag::err_operator_new_delete_declared_in_namespace)
9285      << FnDecl->getDeclName();
9286  }
9287
9288  if (isa<TranslationUnitDecl>(DC) &&
9289      FnDecl->getStorageClass() == SC_Static) {
9290    return SemaRef.Diag(FnDecl->getLocation(),
9291                        diag::err_operator_new_delete_declared_static)
9292      << FnDecl->getDeclName();
9293  }
9294
9295  return false;
9296}
9297
9298static inline bool
9299CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9300                            CanQualType ExpectedResultType,
9301                            CanQualType ExpectedFirstParamType,
9302                            unsigned DependentParamTypeDiag,
9303                            unsigned InvalidParamTypeDiag) {
9304  QualType ResultType =
9305    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9306
9307  // Check that the result type is not dependent.
9308  if (ResultType->isDependentType())
9309    return SemaRef.Diag(FnDecl->getLocation(),
9310                        diag::err_operator_new_delete_dependent_result_type)
9311    << FnDecl->getDeclName() << ExpectedResultType;
9312
9313  // Check that the result type is what we expect.
9314  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9315    return SemaRef.Diag(FnDecl->getLocation(),
9316                        diag::err_operator_new_delete_invalid_result_type)
9317    << FnDecl->getDeclName() << ExpectedResultType;
9318
9319  // A function template must have at least 2 parameters.
9320  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9321    return SemaRef.Diag(FnDecl->getLocation(),
9322                      diag::err_operator_new_delete_template_too_few_parameters)
9323        << FnDecl->getDeclName();
9324
9325  // The function decl must have at least 1 parameter.
9326  if (FnDecl->getNumParams() == 0)
9327    return SemaRef.Diag(FnDecl->getLocation(),
9328                        diag::err_operator_new_delete_too_few_parameters)
9329      << FnDecl->getDeclName();
9330
9331  // Check the the first parameter type is not dependent.
9332  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9333  if (FirstParamType->isDependentType())
9334    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9335      << FnDecl->getDeclName() << ExpectedFirstParamType;
9336
9337  // Check that the first parameter type is what we expect.
9338  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9339      ExpectedFirstParamType)
9340    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9341    << FnDecl->getDeclName() << ExpectedFirstParamType;
9342
9343  return false;
9344}
9345
9346static bool
9347CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9348  // C++ [basic.stc.dynamic.allocation]p1:
9349  //   A program is ill-formed if an allocation function is declared in a
9350  //   namespace scope other than global scope or declared static in global
9351  //   scope.
9352  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9353    return true;
9354
9355  CanQualType SizeTy =
9356    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9357
9358  // C++ [basic.stc.dynamic.allocation]p1:
9359  //  The return type shall be void*. The first parameter shall have type
9360  //  std::size_t.
9361  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9362                                  SizeTy,
9363                                  diag::err_operator_new_dependent_param_type,
9364                                  diag::err_operator_new_param_type))
9365    return true;
9366
9367  // C++ [basic.stc.dynamic.allocation]p1:
9368  //  The first parameter shall not have an associated default argument.
9369  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9370    return SemaRef.Diag(FnDecl->getLocation(),
9371                        diag::err_operator_new_default_arg)
9372      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9373
9374  return false;
9375}
9376
9377static bool
9378CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9379  // C++ [basic.stc.dynamic.deallocation]p1:
9380  //   A program is ill-formed if deallocation functions are declared in a
9381  //   namespace scope other than global scope or declared static in global
9382  //   scope.
9383  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9384    return true;
9385
9386  // C++ [basic.stc.dynamic.deallocation]p2:
9387  //   Each deallocation function shall return void and its first parameter
9388  //   shall be void*.
9389  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9390                                  SemaRef.Context.VoidPtrTy,
9391                                 diag::err_operator_delete_dependent_param_type,
9392                                 diag::err_operator_delete_param_type))
9393    return true;
9394
9395  return false;
9396}
9397
9398/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9399/// of this overloaded operator is well-formed. If so, returns false;
9400/// otherwise, emits appropriate diagnostics and returns true.
9401bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9402  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9403         "Expected an overloaded operator declaration");
9404
9405  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9406
9407  // C++ [over.oper]p5:
9408  //   The allocation and deallocation functions, operator new,
9409  //   operator new[], operator delete and operator delete[], are
9410  //   described completely in 3.7.3. The attributes and restrictions
9411  //   found in the rest of this subclause do not apply to them unless
9412  //   explicitly stated in 3.7.3.
9413  if (Op == OO_Delete || Op == OO_Array_Delete)
9414    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9415
9416  if (Op == OO_New || Op == OO_Array_New)
9417    return CheckOperatorNewDeclaration(*this, FnDecl);
9418
9419  // C++ [over.oper]p6:
9420  //   An operator function shall either be a non-static member
9421  //   function or be a non-member function and have at least one
9422  //   parameter whose type is a class, a reference to a class, an
9423  //   enumeration, or a reference to an enumeration.
9424  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9425    if (MethodDecl->isStatic())
9426      return Diag(FnDecl->getLocation(),
9427                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9428  } else {
9429    bool ClassOrEnumParam = false;
9430    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9431                                   ParamEnd = FnDecl->param_end();
9432         Param != ParamEnd; ++Param) {
9433      QualType ParamType = (*Param)->getType().getNonReferenceType();
9434      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9435          ParamType->isEnumeralType()) {
9436        ClassOrEnumParam = true;
9437        break;
9438      }
9439    }
9440
9441    if (!ClassOrEnumParam)
9442      return Diag(FnDecl->getLocation(),
9443                  diag::err_operator_overload_needs_class_or_enum)
9444        << FnDecl->getDeclName();
9445  }
9446
9447  // C++ [over.oper]p8:
9448  //   An operator function cannot have default arguments (8.3.6),
9449  //   except where explicitly stated below.
9450  //
9451  // Only the function-call operator allows default arguments
9452  // (C++ [over.call]p1).
9453  if (Op != OO_Call) {
9454    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9455         Param != FnDecl->param_end(); ++Param) {
9456      if ((*Param)->hasDefaultArg())
9457        return Diag((*Param)->getLocation(),
9458                    diag::err_operator_overload_default_arg)
9459          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9460    }
9461  }
9462
9463  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9464    { false, false, false }
9465#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9466    , { Unary, Binary, MemberOnly }
9467#include "clang/Basic/OperatorKinds.def"
9468  };
9469
9470  bool CanBeUnaryOperator = OperatorUses[Op][0];
9471  bool CanBeBinaryOperator = OperatorUses[Op][1];
9472  bool MustBeMemberOperator = OperatorUses[Op][2];
9473
9474  // C++ [over.oper]p8:
9475  //   [...] Operator functions cannot have more or fewer parameters
9476  //   than the number required for the corresponding operator, as
9477  //   described in the rest of this subclause.
9478  unsigned NumParams = FnDecl->getNumParams()
9479                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9480  if (Op != OO_Call &&
9481      ((NumParams == 1 && !CanBeUnaryOperator) ||
9482       (NumParams == 2 && !CanBeBinaryOperator) ||
9483       (NumParams < 1) || (NumParams > 2))) {
9484    // We have the wrong number of parameters.
9485    unsigned ErrorKind;
9486    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9487      ErrorKind = 2;  // 2 -> unary or binary.
9488    } else if (CanBeUnaryOperator) {
9489      ErrorKind = 0;  // 0 -> unary
9490    } else {
9491      assert(CanBeBinaryOperator &&
9492             "All non-call overloaded operators are unary or binary!");
9493      ErrorKind = 1;  // 1 -> binary
9494    }
9495
9496    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9497      << FnDecl->getDeclName() << NumParams << ErrorKind;
9498  }
9499
9500  // Overloaded operators other than operator() cannot be variadic.
9501  if (Op != OO_Call &&
9502      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9503    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9504      << FnDecl->getDeclName();
9505  }
9506
9507  // Some operators must be non-static member functions.
9508  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9509    return Diag(FnDecl->getLocation(),
9510                diag::err_operator_overload_must_be_member)
9511      << FnDecl->getDeclName();
9512  }
9513
9514  // C++ [over.inc]p1:
9515  //   The user-defined function called operator++ implements the
9516  //   prefix and postfix ++ operator. If this function is a member
9517  //   function with no parameters, or a non-member function with one
9518  //   parameter of class or enumeration type, it defines the prefix
9519  //   increment operator ++ for objects of that type. If the function
9520  //   is a member function with one parameter (which shall be of type
9521  //   int) or a non-member function with two parameters (the second
9522  //   of which shall be of type int), it defines the postfix
9523  //   increment operator ++ for objects of that type.
9524  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9525    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9526    bool ParamIsInt = false;
9527    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9528      ParamIsInt = BT->getKind() == BuiltinType::Int;
9529
9530    if (!ParamIsInt)
9531      return Diag(LastParam->getLocation(),
9532                  diag::err_operator_overload_post_incdec_must_be_int)
9533        << LastParam->getType() << (Op == OO_MinusMinus);
9534  }
9535
9536  return false;
9537}
9538
9539/// CheckLiteralOperatorDeclaration - Check whether the declaration
9540/// of this literal operator function is well-formed. If so, returns
9541/// false; otherwise, emits appropriate diagnostics and returns true.
9542bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9543  DeclContext *DC = FnDecl->getDeclContext();
9544  Decl::Kind Kind = DC->getDeclKind();
9545  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9546      Kind != Decl::LinkageSpec) {
9547    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9548      << FnDecl->getDeclName();
9549    return true;
9550  }
9551
9552  bool Valid = false;
9553
9554  // template <char...> type operator "" name() is the only valid template
9555  // signature, and the only valid signature with no parameters.
9556  if (FnDecl->param_size() == 0) {
9557    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9558      // Must have only one template parameter
9559      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9560      if (Params->size() == 1) {
9561        NonTypeTemplateParmDecl *PmDecl =
9562          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9563
9564        // The template parameter must be a char parameter pack.
9565        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9566            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9567          Valid = true;
9568      }
9569    }
9570  } else {
9571    // Check the first parameter
9572    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9573
9574    QualType T = (*Param)->getType();
9575
9576    // unsigned long long int, long double, and any character type are allowed
9577    // as the only parameters.
9578    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9579        Context.hasSameType(T, Context.LongDoubleTy) ||
9580        Context.hasSameType(T, Context.CharTy) ||
9581        Context.hasSameType(T, Context.WCharTy) ||
9582        Context.hasSameType(T, Context.Char16Ty) ||
9583        Context.hasSameType(T, Context.Char32Ty)) {
9584      if (++Param == FnDecl->param_end())
9585        Valid = true;
9586      goto FinishedParams;
9587    }
9588
9589    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9590    const PointerType *PT = T->getAs<PointerType>();
9591    if (!PT)
9592      goto FinishedParams;
9593    T = PT->getPointeeType();
9594    if (!T.isConstQualified())
9595      goto FinishedParams;
9596    T = T.getUnqualifiedType();
9597
9598    // Move on to the second parameter;
9599    ++Param;
9600
9601    // If there is no second parameter, the first must be a const char *
9602    if (Param == FnDecl->param_end()) {
9603      if (Context.hasSameType(T, Context.CharTy))
9604        Valid = true;
9605      goto FinishedParams;
9606    }
9607
9608    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9609    // are allowed as the first parameter to a two-parameter function
9610    if (!(Context.hasSameType(T, Context.CharTy) ||
9611          Context.hasSameType(T, Context.WCharTy) ||
9612          Context.hasSameType(T, Context.Char16Ty) ||
9613          Context.hasSameType(T, Context.Char32Ty)))
9614      goto FinishedParams;
9615
9616    // The second and final parameter must be an std::size_t
9617    T = (*Param)->getType().getUnqualifiedType();
9618    if (Context.hasSameType(T, Context.getSizeType()) &&
9619        ++Param == FnDecl->param_end())
9620      Valid = true;
9621  }
9622
9623  // FIXME: This diagnostic is absolutely terrible.
9624FinishedParams:
9625  if (!Valid) {
9626    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9627      << FnDecl->getDeclName();
9628    return true;
9629  }
9630
9631  StringRef LiteralName
9632    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9633  if (LiteralName[0] != '_') {
9634    // C++0x [usrlit.suffix]p1:
9635    //   Literal suffix identifiers that do not start with an underscore are
9636    //   reserved for future standardization.
9637    bool IsHexFloat = true;
9638    if (LiteralName.size() > 1 &&
9639        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9640      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9641        if (!isdigit(LiteralName[I])) {
9642          IsHexFloat = false;
9643          break;
9644        }
9645      }
9646    }
9647
9648    if (IsHexFloat)
9649      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9650        << LiteralName;
9651    else
9652      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9653  }
9654
9655  return false;
9656}
9657
9658/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9659/// linkage specification, including the language and (if present)
9660/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9661/// the location of the language string literal, which is provided
9662/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9663/// the '{' brace. Otherwise, this linkage specification does not
9664/// have any braces.
9665Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9666                                           SourceLocation LangLoc,
9667                                           StringRef Lang,
9668                                           SourceLocation LBraceLoc) {
9669  LinkageSpecDecl::LanguageIDs Language;
9670  if (Lang == "\"C\"")
9671    Language = LinkageSpecDecl::lang_c;
9672  else if (Lang == "\"C++\"")
9673    Language = LinkageSpecDecl::lang_cxx;
9674  else {
9675    Diag(LangLoc, diag::err_bad_language);
9676    return 0;
9677  }
9678
9679  // FIXME: Add all the various semantics of linkage specifications
9680
9681  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9682                                               ExternLoc, LangLoc, Language);
9683  CurContext->addDecl(D);
9684  PushDeclContext(S, D);
9685  return D;
9686}
9687
9688/// ActOnFinishLinkageSpecification - Complete the definition of
9689/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9690/// valid, it's the position of the closing '}' brace in a linkage
9691/// specification that uses braces.
9692Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9693                                            Decl *LinkageSpec,
9694                                            SourceLocation RBraceLoc) {
9695  if (LinkageSpec) {
9696    if (RBraceLoc.isValid()) {
9697      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9698      LSDecl->setRBraceLoc(RBraceLoc);
9699    }
9700    PopDeclContext();
9701  }
9702  return LinkageSpec;
9703}
9704
9705/// \brief Perform semantic analysis for the variable declaration that
9706/// occurs within a C++ catch clause, returning the newly-created
9707/// variable.
9708VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9709                                         TypeSourceInfo *TInfo,
9710                                         SourceLocation StartLoc,
9711                                         SourceLocation Loc,
9712                                         IdentifierInfo *Name) {
9713  bool Invalid = false;
9714  QualType ExDeclType = TInfo->getType();
9715
9716  // Arrays and functions decay.
9717  if (ExDeclType->isArrayType())
9718    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9719  else if (ExDeclType->isFunctionType())
9720    ExDeclType = Context.getPointerType(ExDeclType);
9721
9722  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9723  // The exception-declaration shall not denote a pointer or reference to an
9724  // incomplete type, other than [cv] void*.
9725  // N2844 forbids rvalue references.
9726  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9727    Diag(Loc, diag::err_catch_rvalue_ref);
9728    Invalid = true;
9729  }
9730
9731  // GCC allows catching pointers and references to incomplete types
9732  // as an extension; so do we, but we warn by default.
9733
9734  QualType BaseType = ExDeclType;
9735  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9736  unsigned DK = diag::err_catch_incomplete;
9737  bool IncompleteCatchIsInvalid = true;
9738  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9739    BaseType = Ptr->getPointeeType();
9740    Mode = 1;
9741    DK = diag::ext_catch_incomplete_ptr;
9742    IncompleteCatchIsInvalid = false;
9743  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9744    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9745    BaseType = Ref->getPointeeType();
9746    Mode = 2;
9747    DK = diag::ext_catch_incomplete_ref;
9748    IncompleteCatchIsInvalid = false;
9749  }
9750  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9751      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9752      IncompleteCatchIsInvalid)
9753    Invalid = true;
9754
9755  if (!Invalid && !ExDeclType->isDependentType() &&
9756      RequireNonAbstractType(Loc, ExDeclType,
9757                             diag::err_abstract_type_in_decl,
9758                             AbstractVariableType))
9759    Invalid = true;
9760
9761  // Only the non-fragile NeXT runtime currently supports C++ catches
9762  // of ObjC types, and no runtime supports catching ObjC types by value.
9763  if (!Invalid && getLangOptions().ObjC1) {
9764    QualType T = ExDeclType;
9765    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9766      T = RT->getPointeeType();
9767
9768    if (T->isObjCObjectType()) {
9769      Diag(Loc, diag::err_objc_object_catch);
9770      Invalid = true;
9771    } else if (T->isObjCObjectPointerType()) {
9772      if (!getLangOptions().ObjCNonFragileABI)
9773        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9774    }
9775  }
9776
9777  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9778                                    ExDeclType, TInfo, SC_None, SC_None);
9779  ExDecl->setExceptionVariable(true);
9780
9781  // In ARC, infer 'retaining' for variables of retainable type.
9782  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9783    Invalid = true;
9784
9785  if (!Invalid && !ExDeclType->isDependentType()) {
9786    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9787      // C++ [except.handle]p16:
9788      //   The object declared in an exception-declaration or, if the
9789      //   exception-declaration does not specify a name, a temporary (12.2) is
9790      //   copy-initialized (8.5) from the exception object. [...]
9791      //   The object is destroyed when the handler exits, after the destruction
9792      //   of any automatic objects initialized within the handler.
9793      //
9794      // We just pretend to initialize the object with itself, then make sure
9795      // it can be destroyed later.
9796      QualType initType = ExDeclType;
9797
9798      InitializedEntity entity =
9799        InitializedEntity::InitializeVariable(ExDecl);
9800      InitializationKind initKind =
9801        InitializationKind::CreateCopy(Loc, SourceLocation());
9802
9803      Expr *opaqueValue =
9804        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9805      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9806      ExprResult result = sequence.Perform(*this, entity, initKind,
9807                                           MultiExprArg(&opaqueValue, 1));
9808      if (result.isInvalid())
9809        Invalid = true;
9810      else {
9811        // If the constructor used was non-trivial, set this as the
9812        // "initializer".
9813        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9814        if (!construct->getConstructor()->isTrivial()) {
9815          Expr *init = MaybeCreateExprWithCleanups(construct);
9816          ExDecl->setInit(init);
9817        }
9818
9819        // And make sure it's destructable.
9820        FinalizeVarWithDestructor(ExDecl, recordType);
9821      }
9822    }
9823  }
9824
9825  if (Invalid)
9826    ExDecl->setInvalidDecl();
9827
9828  return ExDecl;
9829}
9830
9831/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9832/// handler.
9833Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9834  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9835  bool Invalid = D.isInvalidType();
9836
9837  // Check for unexpanded parameter packs.
9838  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9839                                               UPPC_ExceptionType)) {
9840    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9841                                             D.getIdentifierLoc());
9842    Invalid = true;
9843  }
9844
9845  IdentifierInfo *II = D.getIdentifier();
9846  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9847                                             LookupOrdinaryName,
9848                                             ForRedeclaration)) {
9849    // The scope should be freshly made just for us. There is just no way
9850    // it contains any previous declaration.
9851    assert(!S->isDeclScope(PrevDecl));
9852    if (PrevDecl->isTemplateParameter()) {
9853      // Maybe we will complain about the shadowed template parameter.
9854      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9855      PrevDecl = 0;
9856    }
9857  }
9858
9859  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9860    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9861      << D.getCXXScopeSpec().getRange();
9862    Invalid = true;
9863  }
9864
9865  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9866                                              D.getSourceRange().getBegin(),
9867                                              D.getIdentifierLoc(),
9868                                              D.getIdentifier());
9869  if (Invalid)
9870    ExDecl->setInvalidDecl();
9871
9872  // Add the exception declaration into this scope.
9873  if (II)
9874    PushOnScopeChains(ExDecl, S);
9875  else
9876    CurContext->addDecl(ExDecl);
9877
9878  ProcessDeclAttributes(S, ExDecl, D);
9879  return ExDecl;
9880}
9881
9882Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9883                                         Expr *AssertExpr,
9884                                         Expr *AssertMessageExpr_,
9885                                         SourceLocation RParenLoc) {
9886  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9887
9888  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9889    llvm::APSInt Cond;
9890    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9891                             diag::err_static_assert_expression_is_not_constant,
9892                                        /*AllowFold=*/false))
9893      return 0;
9894
9895    if (!Cond)
9896      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9897        << AssertMessage->getString() << AssertExpr->getSourceRange();
9898  }
9899
9900  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9901    return 0;
9902
9903  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9904                                        AssertExpr, AssertMessage, RParenLoc);
9905
9906  CurContext->addDecl(Decl);
9907  return Decl;
9908}
9909
9910/// \brief Perform semantic analysis of the given friend type declaration.
9911///
9912/// \returns A friend declaration that.
9913FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9914                                      SourceLocation FriendLoc,
9915                                      TypeSourceInfo *TSInfo) {
9916  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9917
9918  QualType T = TSInfo->getType();
9919  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9920
9921  // C++03 [class.friend]p2:
9922  //   An elaborated-type-specifier shall be used in a friend declaration
9923  //   for a class.*
9924  //
9925  //   * The class-key of the elaborated-type-specifier is required.
9926  if (!ActiveTemplateInstantiations.empty()) {
9927    // Do not complain about the form of friend template types during
9928    // template instantiation; we will already have complained when the
9929    // template was declared.
9930  } else if (!T->isElaboratedTypeSpecifier()) {
9931    // If we evaluated the type to a record type, suggest putting
9932    // a tag in front.
9933    if (const RecordType *RT = T->getAs<RecordType>()) {
9934      RecordDecl *RD = RT->getDecl();
9935
9936      std::string InsertionText = std::string(" ") + RD->getKindName();
9937
9938      Diag(TypeRange.getBegin(),
9939           getLangOptions().CPlusPlus0x ?
9940             diag::warn_cxx98_compat_unelaborated_friend_type :
9941             diag::ext_unelaborated_friend_type)
9942        << (unsigned) RD->getTagKind()
9943        << T
9944        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9945                                      InsertionText);
9946    } else {
9947      Diag(FriendLoc,
9948           getLangOptions().CPlusPlus0x ?
9949             diag::warn_cxx98_compat_nonclass_type_friend :
9950             diag::ext_nonclass_type_friend)
9951        << T
9952        << SourceRange(FriendLoc, TypeRange.getEnd());
9953    }
9954  } else if (T->getAs<EnumType>()) {
9955    Diag(FriendLoc,
9956         getLangOptions().CPlusPlus0x ?
9957           diag::warn_cxx98_compat_enum_friend :
9958           diag::ext_enum_friend)
9959      << T
9960      << SourceRange(FriendLoc, TypeRange.getEnd());
9961  }
9962
9963  // C++0x [class.friend]p3:
9964  //   If the type specifier in a friend declaration designates a (possibly
9965  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9966  //   the friend declaration is ignored.
9967
9968  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9969  // in [class.friend]p3 that we do not implement.
9970
9971  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9972}
9973
9974/// Handle a friend tag declaration where the scope specifier was
9975/// templated.
9976Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9977                                    unsigned TagSpec, SourceLocation TagLoc,
9978                                    CXXScopeSpec &SS,
9979                                    IdentifierInfo *Name, SourceLocation NameLoc,
9980                                    AttributeList *Attr,
9981                                    MultiTemplateParamsArg TempParamLists) {
9982  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9983
9984  bool isExplicitSpecialization = false;
9985  bool Invalid = false;
9986
9987  if (TemplateParameterList *TemplateParams
9988        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9989                                                  TempParamLists.get(),
9990                                                  TempParamLists.size(),
9991                                                  /*friend*/ true,
9992                                                  isExplicitSpecialization,
9993                                                  Invalid)) {
9994    if (TemplateParams->size() > 0) {
9995      // This is a declaration of a class template.
9996      if (Invalid)
9997        return 0;
9998
9999      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10000                                SS, Name, NameLoc, Attr,
10001                                TemplateParams, AS_public,
10002                                /*ModulePrivateLoc=*/SourceLocation(),
10003                                TempParamLists.size() - 1,
10004                   (TemplateParameterList**) TempParamLists.release()).take();
10005    } else {
10006      // The "template<>" header is extraneous.
10007      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10008        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10009      isExplicitSpecialization = true;
10010    }
10011  }
10012
10013  if (Invalid) return 0;
10014
10015  bool isAllExplicitSpecializations = true;
10016  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10017    if (TempParamLists.get()[I]->size()) {
10018      isAllExplicitSpecializations = false;
10019      break;
10020    }
10021  }
10022
10023  // FIXME: don't ignore attributes.
10024
10025  // If it's explicit specializations all the way down, just forget
10026  // about the template header and build an appropriate non-templated
10027  // friend.  TODO: for source fidelity, remember the headers.
10028  if (isAllExplicitSpecializations) {
10029    if (SS.isEmpty()) {
10030      bool Owned = false;
10031      bool IsDependent = false;
10032      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10033                      Attr, AS_public,
10034                      /*ModulePrivateLoc=*/SourceLocation(),
10035                      MultiTemplateParamsArg(), Owned, IsDependent,
10036                      /*ScopedEnumKWLoc=*/SourceLocation(),
10037                      /*ScopedEnumUsesClassTag=*/false,
10038                      /*UnderlyingType=*/TypeResult());
10039    }
10040
10041    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10042    ElaboratedTypeKeyword Keyword
10043      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10044    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10045                                   *Name, NameLoc);
10046    if (T.isNull())
10047      return 0;
10048
10049    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10050    if (isa<DependentNameType>(T)) {
10051      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10052      TL.setKeywordLoc(TagLoc);
10053      TL.setQualifierLoc(QualifierLoc);
10054      TL.setNameLoc(NameLoc);
10055    } else {
10056      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10057      TL.setKeywordLoc(TagLoc);
10058      TL.setQualifierLoc(QualifierLoc);
10059      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10060    }
10061
10062    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10063                                            TSI, FriendLoc);
10064    Friend->setAccess(AS_public);
10065    CurContext->addDecl(Friend);
10066    return Friend;
10067  }
10068
10069  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10070
10071
10072
10073  // Handle the case of a templated-scope friend class.  e.g.
10074  //   template <class T> class A<T>::B;
10075  // FIXME: we don't support these right now.
10076  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10077  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10078  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10079  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10080  TL.setKeywordLoc(TagLoc);
10081  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10082  TL.setNameLoc(NameLoc);
10083
10084  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10085                                          TSI, FriendLoc);
10086  Friend->setAccess(AS_public);
10087  Friend->setUnsupportedFriend(true);
10088  CurContext->addDecl(Friend);
10089  return Friend;
10090}
10091
10092
10093/// Handle a friend type declaration.  This works in tandem with
10094/// ActOnTag.
10095///
10096/// Notes on friend class templates:
10097///
10098/// We generally treat friend class declarations as if they were
10099/// declaring a class.  So, for example, the elaborated type specifier
10100/// in a friend declaration is required to obey the restrictions of a
10101/// class-head (i.e. no typedefs in the scope chain), template
10102/// parameters are required to match up with simple template-ids, &c.
10103/// However, unlike when declaring a template specialization, it's
10104/// okay to refer to a template specialization without an empty
10105/// template parameter declaration, e.g.
10106///   friend class A<T>::B<unsigned>;
10107/// We permit this as a special case; if there are any template
10108/// parameters present at all, require proper matching, i.e.
10109///   template <> template <class T> friend class A<int>::B;
10110Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10111                                MultiTemplateParamsArg TempParams) {
10112  SourceLocation Loc = DS.getSourceRange().getBegin();
10113
10114  assert(DS.isFriendSpecified());
10115  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10116
10117  // Try to convert the decl specifier to a type.  This works for
10118  // friend templates because ActOnTag never produces a ClassTemplateDecl
10119  // for a TUK_Friend.
10120  Declarator TheDeclarator(DS, Declarator::MemberContext);
10121  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10122  QualType T = TSI->getType();
10123  if (TheDeclarator.isInvalidType())
10124    return 0;
10125
10126  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10127    return 0;
10128
10129  // This is definitely an error in C++98.  It's probably meant to
10130  // be forbidden in C++0x, too, but the specification is just
10131  // poorly written.
10132  //
10133  // The problem is with declarations like the following:
10134  //   template <T> friend A<T>::foo;
10135  // where deciding whether a class C is a friend or not now hinges
10136  // on whether there exists an instantiation of A that causes
10137  // 'foo' to equal C.  There are restrictions on class-heads
10138  // (which we declare (by fiat) elaborated friend declarations to
10139  // be) that makes this tractable.
10140  //
10141  // FIXME: handle "template <> friend class A<T>;", which
10142  // is possibly well-formed?  Who even knows?
10143  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10144    Diag(Loc, diag::err_tagless_friend_type_template)
10145      << DS.getSourceRange();
10146    return 0;
10147  }
10148
10149  // C++98 [class.friend]p1: A friend of a class is a function
10150  //   or class that is not a member of the class . . .
10151  // This is fixed in DR77, which just barely didn't make the C++03
10152  // deadline.  It's also a very silly restriction that seriously
10153  // affects inner classes and which nobody else seems to implement;
10154  // thus we never diagnose it, not even in -pedantic.
10155  //
10156  // But note that we could warn about it: it's always useless to
10157  // friend one of your own members (it's not, however, worthless to
10158  // friend a member of an arbitrary specialization of your template).
10159
10160  Decl *D;
10161  if (unsigned NumTempParamLists = TempParams.size())
10162    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10163                                   NumTempParamLists,
10164                                   TempParams.release(),
10165                                   TSI,
10166                                   DS.getFriendSpecLoc());
10167  else
10168    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10169
10170  if (!D)
10171    return 0;
10172
10173  D->setAccess(AS_public);
10174  CurContext->addDecl(D);
10175
10176  return D;
10177}
10178
10179Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10180                                    MultiTemplateParamsArg TemplateParams) {
10181  const DeclSpec &DS = D.getDeclSpec();
10182
10183  assert(DS.isFriendSpecified());
10184  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10185
10186  SourceLocation Loc = D.getIdentifierLoc();
10187  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10188
10189  // C++ [class.friend]p1
10190  //   A friend of a class is a function or class....
10191  // Note that this sees through typedefs, which is intended.
10192  // It *doesn't* see through dependent types, which is correct
10193  // according to [temp.arg.type]p3:
10194  //   If a declaration acquires a function type through a
10195  //   type dependent on a template-parameter and this causes
10196  //   a declaration that does not use the syntactic form of a
10197  //   function declarator to have a function type, the program
10198  //   is ill-formed.
10199  if (!TInfo->getType()->isFunctionType()) {
10200    Diag(Loc, diag::err_unexpected_friend);
10201
10202    // It might be worthwhile to try to recover by creating an
10203    // appropriate declaration.
10204    return 0;
10205  }
10206
10207  // C++ [namespace.memdef]p3
10208  //  - If a friend declaration in a non-local class first declares a
10209  //    class or function, the friend class or function is a member
10210  //    of the innermost enclosing namespace.
10211  //  - The name of the friend is not found by simple name lookup
10212  //    until a matching declaration is provided in that namespace
10213  //    scope (either before or after the class declaration granting
10214  //    friendship).
10215  //  - If a friend function is called, its name may be found by the
10216  //    name lookup that considers functions from namespaces and
10217  //    classes associated with the types of the function arguments.
10218  //  - When looking for a prior declaration of a class or a function
10219  //    declared as a friend, scopes outside the innermost enclosing
10220  //    namespace scope are not considered.
10221
10222  CXXScopeSpec &SS = D.getCXXScopeSpec();
10223  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10224  DeclarationName Name = NameInfo.getName();
10225  assert(Name);
10226
10227  // Check for unexpanded parameter packs.
10228  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10229      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10230      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10231    return 0;
10232
10233  // The context we found the declaration in, or in which we should
10234  // create the declaration.
10235  DeclContext *DC;
10236  Scope *DCScope = S;
10237  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10238                        ForRedeclaration);
10239
10240  // FIXME: there are different rules in local classes
10241
10242  // There are four cases here.
10243  //   - There's no scope specifier, in which case we just go to the
10244  //     appropriate scope and look for a function or function template
10245  //     there as appropriate.
10246  // Recover from invalid scope qualifiers as if they just weren't there.
10247  if (SS.isInvalid() || !SS.isSet()) {
10248    // C++0x [namespace.memdef]p3:
10249    //   If the name in a friend declaration is neither qualified nor
10250    //   a template-id and the declaration is a function or an
10251    //   elaborated-type-specifier, the lookup to determine whether
10252    //   the entity has been previously declared shall not consider
10253    //   any scopes outside the innermost enclosing namespace.
10254    // C++0x [class.friend]p11:
10255    //   If a friend declaration appears in a local class and the name
10256    //   specified is an unqualified name, a prior declaration is
10257    //   looked up without considering scopes that are outside the
10258    //   innermost enclosing non-class scope. For a friend function
10259    //   declaration, if there is no prior declaration, the program is
10260    //   ill-formed.
10261    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10262    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10263
10264    // Find the appropriate context according to the above.
10265    DC = CurContext;
10266    while (true) {
10267      // Skip class contexts.  If someone can cite chapter and verse
10268      // for this behavior, that would be nice --- it's what GCC and
10269      // EDG do, and it seems like a reasonable intent, but the spec
10270      // really only says that checks for unqualified existing
10271      // declarations should stop at the nearest enclosing namespace,
10272      // not that they should only consider the nearest enclosing
10273      // namespace.
10274      while (DC->isRecord())
10275        DC = DC->getParent();
10276
10277      LookupQualifiedName(Previous, DC);
10278
10279      // TODO: decide what we think about using declarations.
10280      if (isLocal || !Previous.empty())
10281        break;
10282
10283      if (isTemplateId) {
10284        if (isa<TranslationUnitDecl>(DC)) break;
10285      } else {
10286        if (DC->isFileContext()) break;
10287      }
10288      DC = DC->getParent();
10289    }
10290
10291    // C++ [class.friend]p1: A friend of a class is a function or
10292    //   class that is not a member of the class . . .
10293    // C++11 changes this for both friend types and functions.
10294    // Most C++ 98 compilers do seem to give an error here, so
10295    // we do, too.
10296    if (!Previous.empty() && DC->Equals(CurContext))
10297      Diag(DS.getFriendSpecLoc(),
10298           getLangOptions().CPlusPlus0x ?
10299             diag::warn_cxx98_compat_friend_is_member :
10300             diag::err_friend_is_member);
10301
10302    DCScope = getScopeForDeclContext(S, DC);
10303
10304    // C++ [class.friend]p6:
10305    //   A function can be defined in a friend declaration of a class if and
10306    //   only if the class is a non-local class (9.8), the function name is
10307    //   unqualified, and the function has namespace scope.
10308    if (isLocal && D.isFunctionDefinition()) {
10309      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10310    }
10311
10312  //   - There's a non-dependent scope specifier, in which case we
10313  //     compute it and do a previous lookup there for a function
10314  //     or function template.
10315  } else if (!SS.getScopeRep()->isDependent()) {
10316    DC = computeDeclContext(SS);
10317    if (!DC) return 0;
10318
10319    if (RequireCompleteDeclContext(SS, DC)) return 0;
10320
10321    LookupQualifiedName(Previous, DC);
10322
10323    // Ignore things found implicitly in the wrong scope.
10324    // TODO: better diagnostics for this case.  Suggesting the right
10325    // qualified scope would be nice...
10326    LookupResult::Filter F = Previous.makeFilter();
10327    while (F.hasNext()) {
10328      NamedDecl *D = F.next();
10329      if (!DC->InEnclosingNamespaceSetOf(
10330              D->getDeclContext()->getRedeclContext()))
10331        F.erase();
10332    }
10333    F.done();
10334
10335    if (Previous.empty()) {
10336      D.setInvalidType();
10337      Diag(Loc, diag::err_qualified_friend_not_found)
10338          << Name << TInfo->getType();
10339      return 0;
10340    }
10341
10342    // C++ [class.friend]p1: A friend of a class is a function or
10343    //   class that is not a member of the class . . .
10344    if (DC->Equals(CurContext))
10345      Diag(DS.getFriendSpecLoc(),
10346           getLangOptions().CPlusPlus0x ?
10347             diag::warn_cxx98_compat_friend_is_member :
10348             diag::err_friend_is_member);
10349
10350    if (D.isFunctionDefinition()) {
10351      // C++ [class.friend]p6:
10352      //   A function can be defined in a friend declaration of a class if and
10353      //   only if the class is a non-local class (9.8), the function name is
10354      //   unqualified, and the function has namespace scope.
10355      SemaDiagnosticBuilder DB
10356        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10357
10358      DB << SS.getScopeRep();
10359      if (DC->isFileContext())
10360        DB << FixItHint::CreateRemoval(SS.getRange());
10361      SS.clear();
10362    }
10363
10364  //   - There's a scope specifier that does not match any template
10365  //     parameter lists, in which case we use some arbitrary context,
10366  //     create a method or method template, and wait for instantiation.
10367  //   - There's a scope specifier that does match some template
10368  //     parameter lists, which we don't handle right now.
10369  } else {
10370    if (D.isFunctionDefinition()) {
10371      // C++ [class.friend]p6:
10372      //   A function can be defined in a friend declaration of a class if and
10373      //   only if the class is a non-local class (9.8), the function name is
10374      //   unqualified, and the function has namespace scope.
10375      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10376        << SS.getScopeRep();
10377    }
10378
10379    DC = CurContext;
10380    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10381  }
10382
10383  if (!DC->isRecord()) {
10384    // This implies that it has to be an operator or function.
10385    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10386        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10387        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10388      Diag(Loc, diag::err_introducing_special_friend) <<
10389        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10390         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10391      return 0;
10392    }
10393  }
10394
10395  // FIXME: This is an egregious hack to cope with cases where the scope stack
10396  // does not contain the declaration context, i.e., in an out-of-line
10397  // definition of a class.
10398  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10399  if (!DCScope) {
10400    FakeDCScope.setEntity(DC);
10401    DCScope = &FakeDCScope;
10402  }
10403
10404  bool AddToScope = true;
10405  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10406                                          move(TemplateParams), AddToScope);
10407  if (!ND) return 0;
10408
10409  assert(ND->getDeclContext() == DC);
10410  assert(ND->getLexicalDeclContext() == CurContext);
10411
10412  // Add the function declaration to the appropriate lookup tables,
10413  // adjusting the redeclarations list as necessary.  We don't
10414  // want to do this yet if the friending class is dependent.
10415  //
10416  // Also update the scope-based lookup if the target context's
10417  // lookup context is in lexical scope.
10418  if (!CurContext->isDependentContext()) {
10419    DC = DC->getRedeclContext();
10420    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10421    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10422      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10423  }
10424
10425  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10426                                       D.getIdentifierLoc(), ND,
10427                                       DS.getFriendSpecLoc());
10428  FrD->setAccess(AS_public);
10429  CurContext->addDecl(FrD);
10430
10431  if (ND->isInvalidDecl())
10432    FrD->setInvalidDecl();
10433  else {
10434    FunctionDecl *FD;
10435    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10436      FD = FTD->getTemplatedDecl();
10437    else
10438      FD = cast<FunctionDecl>(ND);
10439
10440    // Mark templated-scope function declarations as unsupported.
10441    if (FD->getNumTemplateParameterLists())
10442      FrD->setUnsupportedFriend(true);
10443  }
10444
10445  return ND;
10446}
10447
10448void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10449  AdjustDeclIfTemplate(Dcl);
10450
10451  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10452  if (!Fn) {
10453    Diag(DelLoc, diag::err_deleted_non_function);
10454    return;
10455  }
10456  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10457    Diag(DelLoc, diag::err_deleted_decl_not_first);
10458    Diag(Prev->getLocation(), diag::note_previous_declaration);
10459    // If the declaration wasn't the first, we delete the function anyway for
10460    // recovery.
10461  }
10462  Fn->setDeletedAsWritten();
10463}
10464
10465void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10466  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10467
10468  if (MD) {
10469    if (MD->getParent()->isDependentType()) {
10470      MD->setDefaulted();
10471      MD->setExplicitlyDefaulted();
10472      return;
10473    }
10474
10475    CXXSpecialMember Member = getSpecialMember(MD);
10476    if (Member == CXXInvalid) {
10477      Diag(DefaultLoc, diag::err_default_special_members);
10478      return;
10479    }
10480
10481    MD->setDefaulted();
10482    MD->setExplicitlyDefaulted();
10483
10484    // If this definition appears within the record, do the checking when
10485    // the record is complete.
10486    const FunctionDecl *Primary = MD;
10487    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10488      // Find the uninstantiated declaration that actually had the '= default'
10489      // on it.
10490      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10491
10492    if (Primary == Primary->getCanonicalDecl())
10493      return;
10494
10495    switch (Member) {
10496    case CXXDefaultConstructor: {
10497      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10498      CheckExplicitlyDefaultedDefaultConstructor(CD);
10499      if (!CD->isInvalidDecl())
10500        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10501      break;
10502    }
10503
10504    case CXXCopyConstructor: {
10505      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10506      CheckExplicitlyDefaultedCopyConstructor(CD);
10507      if (!CD->isInvalidDecl())
10508        DefineImplicitCopyConstructor(DefaultLoc, CD);
10509      break;
10510    }
10511
10512    case CXXCopyAssignment: {
10513      CheckExplicitlyDefaultedCopyAssignment(MD);
10514      if (!MD->isInvalidDecl())
10515        DefineImplicitCopyAssignment(DefaultLoc, MD);
10516      break;
10517    }
10518
10519    case CXXDestructor: {
10520      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10521      CheckExplicitlyDefaultedDestructor(DD);
10522      if (!DD->isInvalidDecl())
10523        DefineImplicitDestructor(DefaultLoc, DD);
10524      break;
10525    }
10526
10527    case CXXMoveConstructor: {
10528      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10529      CheckExplicitlyDefaultedMoveConstructor(CD);
10530      if (!CD->isInvalidDecl())
10531        DefineImplicitMoveConstructor(DefaultLoc, CD);
10532      break;
10533    }
10534
10535    case CXXMoveAssignment: {
10536      CheckExplicitlyDefaultedMoveAssignment(MD);
10537      if (!MD->isInvalidDecl())
10538        DefineImplicitMoveAssignment(DefaultLoc, MD);
10539      break;
10540    }
10541
10542    case CXXInvalid:
10543      llvm_unreachable("Invalid special member.");
10544    }
10545  } else {
10546    Diag(DefaultLoc, diag::err_default_special_members);
10547  }
10548}
10549
10550static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10551  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10552    Stmt *SubStmt = *CI;
10553    if (!SubStmt)
10554      continue;
10555    if (isa<ReturnStmt>(SubStmt))
10556      Self.Diag(SubStmt->getSourceRange().getBegin(),
10557           diag::err_return_in_constructor_handler);
10558    if (!isa<Expr>(SubStmt))
10559      SearchForReturnInStmt(Self, SubStmt);
10560  }
10561}
10562
10563void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10564  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10565    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10566    SearchForReturnInStmt(*this, Handler);
10567  }
10568}
10569
10570bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10571                                             const CXXMethodDecl *Old) {
10572  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10573  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10574
10575  if (Context.hasSameType(NewTy, OldTy) ||
10576      NewTy->isDependentType() || OldTy->isDependentType())
10577    return false;
10578
10579  // Check if the return types are covariant
10580  QualType NewClassTy, OldClassTy;
10581
10582  /// Both types must be pointers or references to classes.
10583  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10584    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10585      NewClassTy = NewPT->getPointeeType();
10586      OldClassTy = OldPT->getPointeeType();
10587    }
10588  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10589    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10590      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10591        NewClassTy = NewRT->getPointeeType();
10592        OldClassTy = OldRT->getPointeeType();
10593      }
10594    }
10595  }
10596
10597  // The return types aren't either both pointers or references to a class type.
10598  if (NewClassTy.isNull()) {
10599    Diag(New->getLocation(),
10600         diag::err_different_return_type_for_overriding_virtual_function)
10601      << New->getDeclName() << NewTy << OldTy;
10602    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10603
10604    return true;
10605  }
10606
10607  // C++ [class.virtual]p6:
10608  //   If the return type of D::f differs from the return type of B::f, the
10609  //   class type in the return type of D::f shall be complete at the point of
10610  //   declaration of D::f or shall be the class type D.
10611  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10612    if (!RT->isBeingDefined() &&
10613        RequireCompleteType(New->getLocation(), NewClassTy,
10614                            PDiag(diag::err_covariant_return_incomplete)
10615                              << New->getDeclName()))
10616    return true;
10617  }
10618
10619  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10620    // Check if the new class derives from the old class.
10621    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10622      Diag(New->getLocation(),
10623           diag::err_covariant_return_not_derived)
10624      << New->getDeclName() << NewTy << OldTy;
10625      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10626      return true;
10627    }
10628
10629    // Check if we the conversion from derived to base is valid.
10630    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10631                    diag::err_covariant_return_inaccessible_base,
10632                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10633                    // FIXME: Should this point to the return type?
10634                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10635      // FIXME: this note won't trigger for delayed access control
10636      // diagnostics, and it's impossible to get an undelayed error
10637      // here from access control during the original parse because
10638      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10639      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10640      return true;
10641    }
10642  }
10643
10644  // The qualifiers of the return types must be the same.
10645  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10646    Diag(New->getLocation(),
10647         diag::err_covariant_return_type_different_qualifications)
10648    << New->getDeclName() << NewTy << OldTy;
10649    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10650    return true;
10651  };
10652
10653
10654  // The new class type must have the same or less qualifiers as the old type.
10655  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10656    Diag(New->getLocation(),
10657         diag::err_covariant_return_type_class_type_more_qualified)
10658    << New->getDeclName() << NewTy << OldTy;
10659    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10660    return true;
10661  };
10662
10663  return false;
10664}
10665
10666/// \brief Mark the given method pure.
10667///
10668/// \param Method the method to be marked pure.
10669///
10670/// \param InitRange the source range that covers the "0" initializer.
10671bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10672  SourceLocation EndLoc = InitRange.getEnd();
10673  if (EndLoc.isValid())
10674    Method->setRangeEnd(EndLoc);
10675
10676  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10677    Method->setPure();
10678    return false;
10679  }
10680
10681  if (!Method->isInvalidDecl())
10682    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10683      << Method->getDeclName() << InitRange;
10684  return true;
10685}
10686
10687/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10688/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10689/// is a fresh scope pushed for just this purpose.
10690///
10691/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10692/// static data member of class X, names should be looked up in the scope of
10693/// class X.
10694void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10695  // If there is no declaration, there was an error parsing it.
10696  if (D == 0 || D->isInvalidDecl()) return;
10697
10698  // We should only get called for declarations with scope specifiers, like:
10699  //   int foo::bar;
10700  assert(D->isOutOfLine());
10701  EnterDeclaratorContext(S, D->getDeclContext());
10702}
10703
10704/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10705/// initializer for the out-of-line declaration 'D'.
10706void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10707  // If there is no declaration, there was an error parsing it.
10708  if (D == 0 || D->isInvalidDecl()) return;
10709
10710  assert(D->isOutOfLine());
10711  ExitDeclaratorContext(S);
10712}
10713
10714/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10715/// C++ if/switch/while/for statement.
10716/// e.g: "if (int x = f()) {...}"
10717DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10718  // C++ 6.4p2:
10719  // The declarator shall not specify a function or an array.
10720  // The type-specifier-seq shall not contain typedef and shall not declare a
10721  // new class or enumeration.
10722  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10723         "Parser allowed 'typedef' as storage class of condition decl.");
10724
10725  Decl *Dcl = ActOnDeclarator(S, D);
10726  if (!Dcl)
10727    return true;
10728
10729  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10730    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10731      << D.getSourceRange();
10732    return true;
10733  }
10734
10735  return Dcl;
10736}
10737
10738void Sema::LoadExternalVTableUses() {
10739  if (!ExternalSource)
10740    return;
10741
10742  SmallVector<ExternalVTableUse, 4> VTables;
10743  ExternalSource->ReadUsedVTables(VTables);
10744  SmallVector<VTableUse, 4> NewUses;
10745  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10746    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10747      = VTablesUsed.find(VTables[I].Record);
10748    // Even if a definition wasn't required before, it may be required now.
10749    if (Pos != VTablesUsed.end()) {
10750      if (!Pos->second && VTables[I].DefinitionRequired)
10751        Pos->second = true;
10752      continue;
10753    }
10754
10755    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10756    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10757  }
10758
10759  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10760}
10761
10762void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10763                          bool DefinitionRequired) {
10764  // Ignore any vtable uses in unevaluated operands or for classes that do
10765  // not have a vtable.
10766  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10767      CurContext->isDependentContext() ||
10768      ExprEvalContexts.back().Context == Unevaluated)
10769    return;
10770
10771  // Try to insert this class into the map.
10772  LoadExternalVTableUses();
10773  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10774  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10775    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10776  if (!Pos.second) {
10777    // If we already had an entry, check to see if we are promoting this vtable
10778    // to required a definition. If so, we need to reappend to the VTableUses
10779    // list, since we may have already processed the first entry.
10780    if (DefinitionRequired && !Pos.first->second) {
10781      Pos.first->second = true;
10782    } else {
10783      // Otherwise, we can early exit.
10784      return;
10785    }
10786  }
10787
10788  // Local classes need to have their virtual members marked
10789  // immediately. For all other classes, we mark their virtual members
10790  // at the end of the translation unit.
10791  if (Class->isLocalClass())
10792    MarkVirtualMembersReferenced(Loc, Class);
10793  else
10794    VTableUses.push_back(std::make_pair(Class, Loc));
10795}
10796
10797bool Sema::DefineUsedVTables() {
10798  LoadExternalVTableUses();
10799  if (VTableUses.empty())
10800    return false;
10801
10802  // Note: The VTableUses vector could grow as a result of marking
10803  // the members of a class as "used", so we check the size each
10804  // time through the loop and prefer indices (with are stable) to
10805  // iterators (which are not).
10806  bool DefinedAnything = false;
10807  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10808    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10809    if (!Class)
10810      continue;
10811
10812    SourceLocation Loc = VTableUses[I].second;
10813
10814    // If this class has a key function, but that key function is
10815    // defined in another translation unit, we don't need to emit the
10816    // vtable even though we're using it.
10817    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10818    if (KeyFunction && !KeyFunction->hasBody()) {
10819      switch (KeyFunction->getTemplateSpecializationKind()) {
10820      case TSK_Undeclared:
10821      case TSK_ExplicitSpecialization:
10822      case TSK_ExplicitInstantiationDeclaration:
10823        // The key function is in another translation unit.
10824        continue;
10825
10826      case TSK_ExplicitInstantiationDefinition:
10827      case TSK_ImplicitInstantiation:
10828        // We will be instantiating the key function.
10829        break;
10830      }
10831    } else if (!KeyFunction) {
10832      // If we have a class with no key function that is the subject
10833      // of an explicit instantiation declaration, suppress the
10834      // vtable; it will live with the explicit instantiation
10835      // definition.
10836      bool IsExplicitInstantiationDeclaration
10837        = Class->getTemplateSpecializationKind()
10838                                      == TSK_ExplicitInstantiationDeclaration;
10839      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10840                                 REnd = Class->redecls_end();
10841           R != REnd; ++R) {
10842        TemplateSpecializationKind TSK
10843          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10844        if (TSK == TSK_ExplicitInstantiationDeclaration)
10845          IsExplicitInstantiationDeclaration = true;
10846        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10847          IsExplicitInstantiationDeclaration = false;
10848          break;
10849        }
10850      }
10851
10852      if (IsExplicitInstantiationDeclaration)
10853        continue;
10854    }
10855
10856    // Mark all of the virtual members of this class as referenced, so
10857    // that we can build a vtable. Then, tell the AST consumer that a
10858    // vtable for this class is required.
10859    DefinedAnything = true;
10860    MarkVirtualMembersReferenced(Loc, Class);
10861    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10862    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10863
10864    // Optionally warn if we're emitting a weak vtable.
10865    if (Class->getLinkage() == ExternalLinkage &&
10866        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10867      const FunctionDecl *KeyFunctionDef = 0;
10868      if (!KeyFunction ||
10869          (KeyFunction->hasBody(KeyFunctionDef) &&
10870           KeyFunctionDef->isInlined()))
10871        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10872             TSK_ExplicitInstantiationDefinition
10873             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10874          << Class;
10875    }
10876  }
10877  VTableUses.clear();
10878
10879  return DefinedAnything;
10880}
10881
10882void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10883                                        const CXXRecordDecl *RD) {
10884  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10885       e = RD->method_end(); i != e; ++i) {
10886    CXXMethodDecl *MD = *i;
10887
10888    // C++ [basic.def.odr]p2:
10889    //   [...] A virtual member function is used if it is not pure. [...]
10890    if (MD->isVirtual() && !MD->isPure())
10891      MarkDeclarationReferenced(Loc, MD);
10892  }
10893
10894  // Only classes that have virtual bases need a VTT.
10895  if (RD->getNumVBases() == 0)
10896    return;
10897
10898  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10899           e = RD->bases_end(); i != e; ++i) {
10900    const CXXRecordDecl *Base =
10901        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10902    if (Base->getNumVBases() == 0)
10903      continue;
10904    MarkVirtualMembersReferenced(Loc, Base);
10905  }
10906}
10907
10908/// SetIvarInitializers - This routine builds initialization ASTs for the
10909/// Objective-C implementation whose ivars need be initialized.
10910void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10911  if (!getLangOptions().CPlusPlus)
10912    return;
10913  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10914    SmallVector<ObjCIvarDecl*, 8> ivars;
10915    CollectIvarsToConstructOrDestruct(OID, ivars);
10916    if (ivars.empty())
10917      return;
10918    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10919    for (unsigned i = 0; i < ivars.size(); i++) {
10920      FieldDecl *Field = ivars[i];
10921      if (Field->isInvalidDecl())
10922        continue;
10923
10924      CXXCtorInitializer *Member;
10925      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10926      InitializationKind InitKind =
10927        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10928
10929      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10930      ExprResult MemberInit =
10931        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10932      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10933      // Note, MemberInit could actually come back empty if no initialization
10934      // is required (e.g., because it would call a trivial default constructor)
10935      if (!MemberInit.get() || MemberInit.isInvalid())
10936        continue;
10937
10938      Member =
10939        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10940                                         SourceLocation(),
10941                                         MemberInit.takeAs<Expr>(),
10942                                         SourceLocation());
10943      AllToInit.push_back(Member);
10944
10945      // Be sure that the destructor is accessible and is marked as referenced.
10946      if (const RecordType *RecordTy
10947                  = Context.getBaseElementType(Field->getType())
10948                                                        ->getAs<RecordType>()) {
10949                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10950        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10951          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10952          CheckDestructorAccess(Field->getLocation(), Destructor,
10953                            PDiag(diag::err_access_dtor_ivar)
10954                              << Context.getBaseElementType(Field->getType()));
10955        }
10956      }
10957    }
10958    ObjCImplementation->setIvarInitializers(Context,
10959                                            AllToInit.data(), AllToInit.size());
10960  }
10961}
10962
10963static
10964void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10965                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10966                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10967                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10968                           Sema &S) {
10969  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10970                                                   CE = Current.end();
10971  if (Ctor->isInvalidDecl())
10972    return;
10973
10974  const FunctionDecl *FNTarget = 0;
10975  CXXConstructorDecl *Target;
10976
10977  // We ignore the result here since if we don't have a body, Target will be
10978  // null below.
10979  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10980  Target
10981= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10982
10983  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10984                     // Avoid dereferencing a null pointer here.
10985                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10986
10987  if (!Current.insert(Canonical))
10988    return;
10989
10990  // We know that beyond here, we aren't chaining into a cycle.
10991  if (!Target || !Target->isDelegatingConstructor() ||
10992      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10993    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10994      Valid.insert(*CI);
10995    Current.clear();
10996  // We've hit a cycle.
10997  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10998             Current.count(TCanonical)) {
10999    // If we haven't diagnosed this cycle yet, do so now.
11000    if (!Invalid.count(TCanonical)) {
11001      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11002             diag::warn_delegating_ctor_cycle)
11003        << Ctor;
11004
11005      // Don't add a note for a function delegating directo to itself.
11006      if (TCanonical != Canonical)
11007        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11008
11009      CXXConstructorDecl *C = Target;
11010      while (C->getCanonicalDecl() != Canonical) {
11011        (void)C->getTargetConstructor()->hasBody(FNTarget);
11012        assert(FNTarget && "Ctor cycle through bodiless function");
11013
11014        C
11015       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11016        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11017      }
11018    }
11019
11020    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11021      Invalid.insert(*CI);
11022    Current.clear();
11023  } else {
11024    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11025  }
11026}
11027
11028
11029void Sema::CheckDelegatingCtorCycles() {
11030  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11031
11032  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11033                                                   CE = Current.end();
11034
11035  for (DelegatingCtorDeclsType::iterator
11036         I = DelegatingCtorDecls.begin(ExternalSource),
11037         E = DelegatingCtorDecls.end();
11038       I != E; ++I) {
11039   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11040  }
11041
11042  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11043    (*CI)->setInvalidDecl();
11044}
11045
11046/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11047Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11048  // Implicitly declared functions (e.g. copy constructors) are
11049  // __host__ __device__
11050  if (D->isImplicit())
11051    return CFT_HostDevice;
11052
11053  if (D->hasAttr<CUDAGlobalAttr>())
11054    return CFT_Global;
11055
11056  if (D->hasAttr<CUDADeviceAttr>()) {
11057    if (D->hasAttr<CUDAHostAttr>())
11058      return CFT_HostDevice;
11059    else
11060      return CFT_Device;
11061  }
11062
11063  return CFT_Host;
11064}
11065
11066bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11067                           CUDAFunctionTarget CalleeTarget) {
11068  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11069  // Callable from the device only."
11070  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11071    return true;
11072
11073  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11074  // Callable from the host only."
11075  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11076  // Callable from the host only."
11077  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11078      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11079    return true;
11080
11081  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11082    return true;
11083
11084  return false;
11085}
11086