SemaDeclCXX.cpp revision b8f7de94c3a8fb4556d06a1447880e69bc3a113c
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Sema/DeclSpec.h"
27#include "clang/Sema/ParsedTemplate.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param);
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param);
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(Decl *param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param);
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        Param->setDefaultArg(0);
416      }
417    }
418  }
419}
420
421/// isCurrentClassName - Determine whether the identifier II is the
422/// name of the class type currently being defined. In the case of
423/// nested classes, this will only return true if II is the name of
424/// the innermost class.
425bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
426                              const CXXScopeSpec *SS) {
427  assert(getLangOptions().CPlusPlus && "No class names in C!");
428
429  CXXRecordDecl *CurDecl;
430  if (SS && SS->isSet() && !SS->isInvalid()) {
431    DeclContext *DC = computeDeclContext(*SS, true);
432    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
433  } else
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
435
436  if (CurDecl && CurDecl->getIdentifier())
437    return &II == CurDecl->getIdentifier();
438  else
439    return false;
440}
441
442/// \brief Check the validity of a C++ base class specifier.
443///
444/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
445/// and returns NULL otherwise.
446CXXBaseSpecifier *
447Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
448                         SourceRange SpecifierRange,
449                         bool Virtual, AccessSpecifier Access,
450                         TypeSourceInfo *TInfo) {
451  QualType BaseType = TInfo->getType();
452
453  // C++ [class.union]p1:
454  //   A union shall not have base classes.
455  if (Class->isUnion()) {
456    Diag(Class->getLocation(), diag::err_base_clause_on_union)
457      << SpecifierRange;
458    return 0;
459  }
460
461  if (BaseType->isDependentType())
462    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                                          Class->getTagKind() == TTK_Class,
464                                          Access, TInfo);
465
466  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
467
468  // Base specifiers must be record types.
469  if (!BaseType->isRecordType()) {
470    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
471    return 0;
472  }
473
474  // C++ [class.union]p1:
475  //   A union shall not be used as a base class.
476  if (BaseType->isUnionType()) {
477    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
478    return 0;
479  }
480
481  // C++ [class.derived]p2:
482  //   The class-name in a base-specifier shall not be an incompletely
483  //   defined class.
484  if (RequireCompleteType(BaseLoc, BaseType,
485                          PDiag(diag::err_incomplete_base_class)
486                            << SpecifierRange)) {
487    Class->setInvalidDecl();
488    return 0;
489  }
490
491  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
492  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
493  assert(BaseDecl && "Record type has no declaration");
494  BaseDecl = BaseDecl->getDefinition();
495  assert(BaseDecl && "Base type is not incomplete, but has no definition");
496  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
497  assert(CXXBaseDecl && "Base type is not a C++ type");
498
499  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
500  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
501    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
502    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
503      << BaseType;
504    return 0;
505  }
506
507  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
508
509  if (BaseDecl->isInvalidDecl())
510    Class->setInvalidDecl();
511
512  // Create the base specifier.
513  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
514                                        Class->getTagKind() == TTK_Class,
515                                        Access, TInfo);
516}
517
518void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
519                                          const CXXRecordDecl *BaseClass,
520                                          bool BaseIsVirtual) {
521  // A class with a non-empty base class is not empty.
522  // FIXME: Standard ref?
523  if (!BaseClass->isEmpty())
524    Class->setEmpty(false);
525
526  // C++ [class.virtual]p1:
527  //   A class that [...] inherits a virtual function is called a polymorphic
528  //   class.
529  if (BaseClass->isPolymorphic())
530    Class->setPolymorphic(true);
531
532  // C++ [dcl.init.aggr]p1:
533  //   An aggregate is [...] a class with [...] no base classes [...].
534  Class->setAggregate(false);
535
536  // C++ [class]p4:
537  //   A POD-struct is an aggregate class...
538  Class->setPOD(false);
539
540  if (BaseIsVirtual) {
541    // C++ [class.ctor]p5:
542    //   A constructor is trivial if its class has no virtual base classes.
543    Class->setHasTrivialConstructor(false);
544
545    // C++ [class.copy]p6:
546    //   A copy constructor is trivial if its class has no virtual base classes.
547    Class->setHasTrivialCopyConstructor(false);
548
549    // C++ [class.copy]p11:
550    //   A copy assignment operator is trivial if its class has no virtual
551    //   base classes.
552    Class->setHasTrivialCopyAssignment(false);
553
554    // C++0x [meta.unary.prop] is_empty:
555    //    T is a class type, but not a union type, with ... no virtual base
556    //    classes
557    Class->setEmpty(false);
558  } else {
559    // C++ [class.ctor]p5:
560    //   A constructor is trivial if all the direct base classes of its
561    //   class have trivial constructors.
562    if (!BaseClass->hasTrivialConstructor())
563      Class->setHasTrivialConstructor(false);
564
565    // C++ [class.copy]p6:
566    //   A copy constructor is trivial if all the direct base classes of its
567    //   class have trivial copy constructors.
568    if (!BaseClass->hasTrivialCopyConstructor())
569      Class->setHasTrivialCopyConstructor(false);
570
571    // C++ [class.copy]p11:
572    //   A copy assignment operator is trivial if all the direct base classes
573    //   of its class have trivial copy assignment operators.
574    if (!BaseClass->hasTrivialCopyAssignment())
575      Class->setHasTrivialCopyAssignment(false);
576  }
577
578  // C++ [class.ctor]p3:
579  //   A destructor is trivial if all the direct base classes of its class
580  //   have trivial destructors.
581  if (!BaseClass->hasTrivialDestructor())
582    Class->setHasTrivialDestructor(false);
583}
584
585/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
586/// one entry in the base class list of a class specifier, for
587/// example:
588///    class foo : public bar, virtual private baz {
589/// 'public bar' and 'virtual private baz' are each base-specifiers.
590Sema::BaseResult
591Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
592                         bool Virtual, AccessSpecifier Access,
593                         TypeTy *basetype, SourceLocation BaseLoc) {
594  if (!classdecl)
595    return true;
596
597  AdjustDeclIfTemplate(classdecl);
598  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
599  if (!Class)
600    return true;
601
602  TypeSourceInfo *TInfo = 0;
603  GetTypeFromParser(basetype, &TInfo);
604  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
605                                                      Virtual, Access, TInfo))
606    return BaseSpec;
607
608  return true;
609}
610
611/// \brief Performs the actual work of attaching the given base class
612/// specifiers to a C++ class.
613bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
614                                unsigned NumBases) {
615 if (NumBases == 0)
616    return false;
617
618  // Used to keep track of which base types we have already seen, so
619  // that we can properly diagnose redundant direct base types. Note
620  // that the key is always the unqualified canonical type of the base
621  // class.
622  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
623
624  // Copy non-redundant base specifiers into permanent storage.
625  unsigned NumGoodBases = 0;
626  bool Invalid = false;
627  for (unsigned idx = 0; idx < NumBases; ++idx) {
628    QualType NewBaseType
629      = Context.getCanonicalType(Bases[idx]->getType());
630    NewBaseType = NewBaseType.getLocalUnqualifiedType();
631    if (!Class->hasObjectMember()) {
632      if (const RecordType *FDTTy =
633            NewBaseType.getTypePtr()->getAs<RecordType>())
634        if (FDTTy->getDecl()->hasObjectMember())
635          Class->setHasObjectMember(true);
636    }
637
638    if (KnownBaseTypes[NewBaseType]) {
639      // C++ [class.mi]p3:
640      //   A class shall not be specified as a direct base class of a
641      //   derived class more than once.
642      Diag(Bases[idx]->getSourceRange().getBegin(),
643           diag::err_duplicate_base_class)
644        << KnownBaseTypes[NewBaseType]->getType()
645        << Bases[idx]->getSourceRange();
646
647      // Delete the duplicate base class specifier; we're going to
648      // overwrite its pointer later.
649      Context.Deallocate(Bases[idx]);
650
651      Invalid = true;
652    } else {
653      // Okay, add this new base class.
654      KnownBaseTypes[NewBaseType] = Bases[idx];
655      Bases[NumGoodBases++] = Bases[idx];
656    }
657  }
658
659  // Attach the remaining base class specifiers to the derived class.
660  Class->setBases(Bases, NumGoodBases);
661
662  // Delete the remaining (good) base class specifiers, since their
663  // data has been copied into the CXXRecordDecl.
664  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
665    Context.Deallocate(Bases[idx]);
666
667  return Invalid;
668}
669
670/// ActOnBaseSpecifiers - Attach the given base specifiers to the
671/// class, after checking whether there are any duplicate base
672/// classes.
673void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
674                               unsigned NumBases) {
675  if (!ClassDecl || !Bases || !NumBases)
676    return;
677
678  AdjustDeclIfTemplate(ClassDecl);
679  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
680                       (CXXBaseSpecifier**)(Bases), NumBases);
681}
682
683static CXXRecordDecl *GetClassForType(QualType T) {
684  if (const RecordType *RT = T->getAs<RecordType>())
685    return cast<CXXRecordDecl>(RT->getDecl());
686  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
687    return ICT->getDecl();
688  else
689    return 0;
690}
691
692/// \brief Determine whether the type \p Derived is a C++ class that is
693/// derived from the type \p Base.
694bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
695  if (!getLangOptions().CPlusPlus)
696    return false;
697
698  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
699  if (!DerivedRD)
700    return false;
701
702  CXXRecordDecl *BaseRD = GetClassForType(Base);
703  if (!BaseRD)
704    return false;
705
706  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
707  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
708}
709
710/// \brief Determine whether the type \p Derived is a C++ class that is
711/// derived from the type \p Base.
712bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
713  if (!getLangOptions().CPlusPlus)
714    return false;
715
716  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
717  if (!DerivedRD)
718    return false;
719
720  CXXRecordDecl *BaseRD = GetClassForType(Base);
721  if (!BaseRD)
722    return false;
723
724  return DerivedRD->isDerivedFrom(BaseRD, Paths);
725}
726
727void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
728                              CXXCastPath &BasePathArray) {
729  assert(BasePathArray.empty() && "Base path array must be empty!");
730  assert(Paths.isRecordingPaths() && "Must record paths!");
731
732  const CXXBasePath &Path = Paths.front();
733
734  // We first go backward and check if we have a virtual base.
735  // FIXME: It would be better if CXXBasePath had the base specifier for
736  // the nearest virtual base.
737  unsigned Start = 0;
738  for (unsigned I = Path.size(); I != 0; --I) {
739    if (Path[I - 1].Base->isVirtual()) {
740      Start = I - 1;
741      break;
742    }
743  }
744
745  // Now add all bases.
746  for (unsigned I = Start, E = Path.size(); I != E; ++I)
747    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
748}
749
750/// \brief Determine whether the given base path includes a virtual
751/// base class.
752bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
753  for (CXXCastPath::const_iterator B = BasePath.begin(),
754                                BEnd = BasePath.end();
755       B != BEnd; ++B)
756    if ((*B)->isVirtual())
757      return true;
758
759  return false;
760}
761
762/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
763/// conversion (where Derived and Base are class types) is
764/// well-formed, meaning that the conversion is unambiguous (and
765/// that all of the base classes are accessible). Returns true
766/// and emits a diagnostic if the code is ill-formed, returns false
767/// otherwise. Loc is the location where this routine should point to
768/// if there is an error, and Range is the source range to highlight
769/// if there is an error.
770bool
771Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
772                                   unsigned InaccessibleBaseID,
773                                   unsigned AmbigiousBaseConvID,
774                                   SourceLocation Loc, SourceRange Range,
775                                   DeclarationName Name,
776                                   CXXCastPath *BasePath) {
777  // First, determine whether the path from Derived to Base is
778  // ambiguous. This is slightly more expensive than checking whether
779  // the Derived to Base conversion exists, because here we need to
780  // explore multiple paths to determine if there is an ambiguity.
781  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
782                     /*DetectVirtual=*/false);
783  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
784  assert(DerivationOkay &&
785         "Can only be used with a derived-to-base conversion");
786  (void)DerivationOkay;
787
788  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
789    if (InaccessibleBaseID) {
790      // Check that the base class can be accessed.
791      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
792                                   InaccessibleBaseID)) {
793        case AR_inaccessible:
794          return true;
795        case AR_accessible:
796        case AR_dependent:
797        case AR_delayed:
798          break;
799      }
800    }
801
802    // Build a base path if necessary.
803    if (BasePath)
804      BuildBasePathArray(Paths, *BasePath);
805    return false;
806  }
807
808  // We know that the derived-to-base conversion is ambiguous, and
809  // we're going to produce a diagnostic. Perform the derived-to-base
810  // search just one more time to compute all of the possible paths so
811  // that we can print them out. This is more expensive than any of
812  // the previous derived-to-base checks we've done, but at this point
813  // performance isn't as much of an issue.
814  Paths.clear();
815  Paths.setRecordingPaths(true);
816  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
817  assert(StillOkay && "Can only be used with a derived-to-base conversion");
818  (void)StillOkay;
819
820  // Build up a textual representation of the ambiguous paths, e.g.,
821  // D -> B -> A, that will be used to illustrate the ambiguous
822  // conversions in the diagnostic. We only print one of the paths
823  // to each base class subobject.
824  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
825
826  Diag(Loc, AmbigiousBaseConvID)
827  << Derived << Base << PathDisplayStr << Range << Name;
828  return true;
829}
830
831bool
832Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
833                                   SourceLocation Loc, SourceRange Range,
834                                   CXXCastPath *BasePath,
835                                   bool IgnoreAccess) {
836  return CheckDerivedToBaseConversion(Derived, Base,
837                                      IgnoreAccess ? 0
838                                       : diag::err_upcast_to_inaccessible_base,
839                                      diag::err_ambiguous_derived_to_base_conv,
840                                      Loc, Range, DeclarationName(),
841                                      BasePath);
842}
843
844
845/// @brief Builds a string representing ambiguous paths from a
846/// specific derived class to different subobjects of the same base
847/// class.
848///
849/// This function builds a string that can be used in error messages
850/// to show the different paths that one can take through the
851/// inheritance hierarchy to go from the derived class to different
852/// subobjects of a base class. The result looks something like this:
853/// @code
854/// struct D -> struct B -> struct A
855/// struct D -> struct C -> struct A
856/// @endcode
857std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
858  std::string PathDisplayStr;
859  std::set<unsigned> DisplayedPaths;
860  for (CXXBasePaths::paths_iterator Path = Paths.begin();
861       Path != Paths.end(); ++Path) {
862    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
863      // We haven't displayed a path to this particular base
864      // class subobject yet.
865      PathDisplayStr += "\n    ";
866      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
867      for (CXXBasePath::const_iterator Element = Path->begin();
868           Element != Path->end(); ++Element)
869        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
870    }
871  }
872
873  return PathDisplayStr;
874}
875
876//===----------------------------------------------------------------------===//
877// C++ class member Handling
878//===----------------------------------------------------------------------===//
879
880/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
881Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
882                                 SourceLocation ASLoc,
883                                 SourceLocation ColonLoc) {
884  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
885  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
886                                                  ASLoc, ColonLoc);
887  CurContext->addHiddenDecl(ASDecl);
888  return ASDecl;
889}
890
891/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
892/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
893/// bitfield width if there is one and 'InitExpr' specifies the initializer if
894/// any.
895Decl *
896Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
897                               MultiTemplateParamsArg TemplateParameterLists,
898                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
899                               bool Deleted) {
900  const DeclSpec &DS = D.getDeclSpec();
901  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
902  DeclarationName Name = NameInfo.getName();
903  SourceLocation Loc = NameInfo.getLoc();
904  Expr *BitWidth = static_cast<Expr*>(BW);
905  Expr *Init = static_cast<Expr*>(InitExpr);
906
907  assert(isa<CXXRecordDecl>(CurContext));
908  assert(!DS.isFriendSpecified());
909
910  bool isFunc = false;
911  if (D.isFunctionDeclarator())
912    isFunc = true;
913  else if (D.getNumTypeObjects() == 0 &&
914           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
915    QualType TDType = GetTypeFromParser(DS.getTypeRep());
916    isFunc = TDType->isFunctionType();
917  }
918
919  // C++ 9.2p6: A member shall not be declared to have automatic storage
920  // duration (auto, register) or with the extern storage-class-specifier.
921  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
922  // data members and cannot be applied to names declared const or static,
923  // and cannot be applied to reference members.
924  switch (DS.getStorageClassSpec()) {
925    case DeclSpec::SCS_unspecified:
926    case DeclSpec::SCS_typedef:
927    case DeclSpec::SCS_static:
928      // FALL THROUGH.
929      break;
930    case DeclSpec::SCS_mutable:
931      if (isFunc) {
932        if (DS.getStorageClassSpecLoc().isValid())
933          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
934        else
935          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
936
937        // FIXME: It would be nicer if the keyword was ignored only for this
938        // declarator. Otherwise we could get follow-up errors.
939        D.getMutableDeclSpec().ClearStorageClassSpecs();
940      }
941      break;
942    default:
943      if (DS.getStorageClassSpecLoc().isValid())
944        Diag(DS.getStorageClassSpecLoc(),
945             diag::err_storageclass_invalid_for_member);
946      else
947        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
948      D.getMutableDeclSpec().ClearStorageClassSpecs();
949  }
950
951  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
952                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
953                      !isFunc);
954
955  Decl *Member;
956  if (isInstField) {
957    // FIXME: Check for template parameters!
958    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
959                         AS);
960    assert(Member && "HandleField never returns null");
961  } else {
962    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
963    if (!Member) {
964      if (BitWidth) DeleteExpr(BitWidth);
965      return 0;
966    }
967
968    // Non-instance-fields can't have a bitfield.
969    if (BitWidth) {
970      if (Member->isInvalidDecl()) {
971        // don't emit another diagnostic.
972      } else if (isa<VarDecl>(Member)) {
973        // C++ 9.6p3: A bit-field shall not be a static member.
974        // "static member 'A' cannot be a bit-field"
975        Diag(Loc, diag::err_static_not_bitfield)
976          << Name << BitWidth->getSourceRange();
977      } else if (isa<TypedefDecl>(Member)) {
978        // "typedef member 'x' cannot be a bit-field"
979        Diag(Loc, diag::err_typedef_not_bitfield)
980          << Name << BitWidth->getSourceRange();
981      } else {
982        // A function typedef ("typedef int f(); f a;").
983        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
984        Diag(Loc, diag::err_not_integral_type_bitfield)
985          << Name << cast<ValueDecl>(Member)->getType()
986          << BitWidth->getSourceRange();
987      }
988
989      DeleteExpr(BitWidth);
990      BitWidth = 0;
991      Member->setInvalidDecl();
992    }
993
994    Member->setAccess(AS);
995
996    // If we have declared a member function template, set the access of the
997    // templated declaration as well.
998    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
999      FunTmpl->getTemplatedDecl()->setAccess(AS);
1000  }
1001
1002  assert((Name || isInstField) && "No identifier for non-field ?");
1003
1004  if (Init)
1005    AddInitializerToDecl(Member, ExprArg(*this, Init), false);
1006  if (Deleted) // FIXME: Source location is not very good.
1007    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1008
1009  if (isInstField) {
1010    FieldCollector->Add(cast<FieldDecl>(Member));
1011    return 0;
1012  }
1013  return Member;
1014}
1015
1016/// \brief Find the direct and/or virtual base specifiers that
1017/// correspond to the given base type, for use in base initialization
1018/// within a constructor.
1019static bool FindBaseInitializer(Sema &SemaRef,
1020                                CXXRecordDecl *ClassDecl,
1021                                QualType BaseType,
1022                                const CXXBaseSpecifier *&DirectBaseSpec,
1023                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1024  // First, check for a direct base class.
1025  DirectBaseSpec = 0;
1026  for (CXXRecordDecl::base_class_const_iterator Base
1027         = ClassDecl->bases_begin();
1028       Base != ClassDecl->bases_end(); ++Base) {
1029    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1030      // We found a direct base of this type. That's what we're
1031      // initializing.
1032      DirectBaseSpec = &*Base;
1033      break;
1034    }
1035  }
1036
1037  // Check for a virtual base class.
1038  // FIXME: We might be able to short-circuit this if we know in advance that
1039  // there are no virtual bases.
1040  VirtualBaseSpec = 0;
1041  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1042    // We haven't found a base yet; search the class hierarchy for a
1043    // virtual base class.
1044    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1045                       /*DetectVirtual=*/false);
1046    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1047                              BaseType, Paths)) {
1048      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1049           Path != Paths.end(); ++Path) {
1050        if (Path->back().Base->isVirtual()) {
1051          VirtualBaseSpec = Path->back().Base;
1052          break;
1053        }
1054      }
1055    }
1056  }
1057
1058  return DirectBaseSpec || VirtualBaseSpec;
1059}
1060
1061/// ActOnMemInitializer - Handle a C++ member initializer.
1062Sema::MemInitResult
1063Sema::ActOnMemInitializer(Decl *ConstructorD,
1064                          Scope *S,
1065                          CXXScopeSpec &SS,
1066                          IdentifierInfo *MemberOrBase,
1067                          TypeTy *TemplateTypeTy,
1068                          SourceLocation IdLoc,
1069                          SourceLocation LParenLoc,
1070                          ExprTy **Args, unsigned NumArgs,
1071                          SourceLocation *CommaLocs,
1072                          SourceLocation RParenLoc) {
1073  if (!ConstructorD)
1074    return true;
1075
1076  AdjustDeclIfTemplate(ConstructorD);
1077
1078  CXXConstructorDecl *Constructor
1079    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1080  if (!Constructor) {
1081    // The user wrote a constructor initializer on a function that is
1082    // not a C++ constructor. Ignore the error for now, because we may
1083    // have more member initializers coming; we'll diagnose it just
1084    // once in ActOnMemInitializers.
1085    return true;
1086  }
1087
1088  CXXRecordDecl *ClassDecl = Constructor->getParent();
1089
1090  // C++ [class.base.init]p2:
1091  //   Names in a mem-initializer-id are looked up in the scope of the
1092  //   constructor’s class and, if not found in that scope, are looked
1093  //   up in the scope containing the constructor’s
1094  //   definition. [Note: if the constructor’s class contains a member
1095  //   with the same name as a direct or virtual base class of the
1096  //   class, a mem-initializer-id naming the member or base class and
1097  //   composed of a single identifier refers to the class member. A
1098  //   mem-initializer-id for the hidden base class may be specified
1099  //   using a qualified name. ]
1100  if (!SS.getScopeRep() && !TemplateTypeTy) {
1101    // Look for a member, first.
1102    FieldDecl *Member = 0;
1103    DeclContext::lookup_result Result
1104      = ClassDecl->lookup(MemberOrBase);
1105    if (Result.first != Result.second)
1106      Member = dyn_cast<FieldDecl>(*Result.first);
1107
1108    // FIXME: Handle members of an anonymous union.
1109
1110    if (Member)
1111      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1112                                    LParenLoc, RParenLoc);
1113  }
1114  // It didn't name a member, so see if it names a class.
1115  QualType BaseType;
1116  TypeSourceInfo *TInfo = 0;
1117
1118  if (TemplateTypeTy) {
1119    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1120  } else {
1121    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1122    LookupParsedName(R, S, &SS);
1123
1124    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1125    if (!TyD) {
1126      if (R.isAmbiguous()) return true;
1127
1128      // We don't want access-control diagnostics here.
1129      R.suppressDiagnostics();
1130
1131      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1132        bool NotUnknownSpecialization = false;
1133        DeclContext *DC = computeDeclContext(SS, false);
1134        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1135          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1136
1137        if (!NotUnknownSpecialization) {
1138          // When the scope specifier can refer to a member of an unknown
1139          // specialization, we take it as a type name.
1140          BaseType = CheckTypenameType(ETK_None,
1141                                       (NestedNameSpecifier *)SS.getScopeRep(),
1142                                       *MemberOrBase, SourceLocation(),
1143                                       SS.getRange(), IdLoc);
1144          if (BaseType.isNull())
1145            return true;
1146
1147          R.clear();
1148          R.setLookupName(MemberOrBase);
1149        }
1150      }
1151
1152      // If no results were found, try to correct typos.
1153      if (R.empty() && BaseType.isNull() &&
1154          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1155          R.isSingleResult()) {
1156        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1157          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1158            // We have found a non-static data member with a similar
1159            // name to what was typed; complain and initialize that
1160            // member.
1161            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1162              << MemberOrBase << true << R.getLookupName()
1163              << FixItHint::CreateReplacement(R.getNameLoc(),
1164                                              R.getLookupName().getAsString());
1165            Diag(Member->getLocation(), diag::note_previous_decl)
1166              << Member->getDeclName();
1167
1168            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1169                                          LParenLoc, RParenLoc);
1170          }
1171        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1172          const CXXBaseSpecifier *DirectBaseSpec;
1173          const CXXBaseSpecifier *VirtualBaseSpec;
1174          if (FindBaseInitializer(*this, ClassDecl,
1175                                  Context.getTypeDeclType(Type),
1176                                  DirectBaseSpec, VirtualBaseSpec)) {
1177            // We have found a direct or virtual base class with a
1178            // similar name to what was typed; complain and initialize
1179            // that base class.
1180            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1181              << MemberOrBase << false << R.getLookupName()
1182              << FixItHint::CreateReplacement(R.getNameLoc(),
1183                                              R.getLookupName().getAsString());
1184
1185            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1186                                                             : VirtualBaseSpec;
1187            Diag(BaseSpec->getSourceRange().getBegin(),
1188                 diag::note_base_class_specified_here)
1189              << BaseSpec->getType()
1190              << BaseSpec->getSourceRange();
1191
1192            TyD = Type;
1193          }
1194        }
1195      }
1196
1197      if (!TyD && BaseType.isNull()) {
1198        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1199          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1200        return true;
1201      }
1202    }
1203
1204    if (BaseType.isNull()) {
1205      BaseType = Context.getTypeDeclType(TyD);
1206      if (SS.isSet()) {
1207        NestedNameSpecifier *Qualifier =
1208          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1209
1210        // FIXME: preserve source range information
1211        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1212      }
1213    }
1214  }
1215
1216  if (!TInfo)
1217    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1218
1219  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1220                              LParenLoc, RParenLoc, ClassDecl);
1221}
1222
1223/// Checks an initializer expression for use of uninitialized fields, such as
1224/// containing the field that is being initialized. Returns true if there is an
1225/// uninitialized field was used an updates the SourceLocation parameter; false
1226/// otherwise.
1227static bool InitExprContainsUninitializedFields(const Stmt *S,
1228                                                const FieldDecl *LhsField,
1229                                                SourceLocation *L) {
1230  if (isa<CallExpr>(S)) {
1231    // Do not descend into function calls or constructors, as the use
1232    // of an uninitialized field may be valid. One would have to inspect
1233    // the contents of the function/ctor to determine if it is safe or not.
1234    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1235    // may be safe, depending on what the function/ctor does.
1236    return false;
1237  }
1238  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1239    const NamedDecl *RhsField = ME->getMemberDecl();
1240    if (RhsField == LhsField) {
1241      // Initializing a field with itself. Throw a warning.
1242      // But wait; there are exceptions!
1243      // Exception #1:  The field may not belong to this record.
1244      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1245      const Expr *base = ME->getBase();
1246      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1247        // Even though the field matches, it does not belong to this record.
1248        return false;
1249      }
1250      // None of the exceptions triggered; return true to indicate an
1251      // uninitialized field was used.
1252      *L = ME->getMemberLoc();
1253      return true;
1254    }
1255  }
1256  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1257       it != e; ++it) {
1258    if (!*it) {
1259      // An expression such as 'member(arg ?: "")' may trigger this.
1260      continue;
1261    }
1262    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1263      return true;
1264  }
1265  return false;
1266}
1267
1268Sema::MemInitResult
1269Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1270                             unsigned NumArgs, SourceLocation IdLoc,
1271                             SourceLocation LParenLoc,
1272                             SourceLocation RParenLoc) {
1273  // Diagnose value-uses of fields to initialize themselves, e.g.
1274  //   foo(foo)
1275  // where foo is not also a parameter to the constructor.
1276  // TODO: implement -Wuninitialized and fold this into that framework.
1277  for (unsigned i = 0; i < NumArgs; ++i) {
1278    SourceLocation L;
1279    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1280      // FIXME: Return true in the case when other fields are used before being
1281      // uninitialized. For example, let this field be the i'th field. When
1282      // initializing the i'th field, throw a warning if any of the >= i'th
1283      // fields are used, as they are not yet initialized.
1284      // Right now we are only handling the case where the i'th field uses
1285      // itself in its initializer.
1286      Diag(L, diag::warn_field_is_uninit);
1287    }
1288  }
1289
1290  bool HasDependentArg = false;
1291  for (unsigned i = 0; i < NumArgs; i++)
1292    HasDependentArg |= Args[i]->isTypeDependent();
1293
1294  if (Member->getType()->isDependentType() || HasDependentArg) {
1295    // Can't check initialization for a member of dependent type or when
1296    // any of the arguments are type-dependent expressions.
1297    OwningExprResult Init
1298      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1299                                          RParenLoc));
1300
1301    // Erase any temporaries within this evaluation context; we're not
1302    // going to track them in the AST, since we'll be rebuilding the
1303    // ASTs during template instantiation.
1304    ExprTemporaries.erase(
1305              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1306                          ExprTemporaries.end());
1307
1308    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1309                                                    LParenLoc,
1310                                                    Init.takeAs<Expr>(),
1311                                                    RParenLoc);
1312
1313  }
1314
1315  if (Member->isInvalidDecl())
1316    return true;
1317
1318  // Initialize the member.
1319  InitializedEntity MemberEntity =
1320    InitializedEntity::InitializeMember(Member, 0);
1321  InitializationKind Kind =
1322    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1323
1324  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1325
1326  OwningExprResult MemberInit =
1327    InitSeq.Perform(*this, MemberEntity, Kind,
1328                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1329  if (MemberInit.isInvalid())
1330    return true;
1331
1332  // C++0x [class.base.init]p7:
1333  //   The initialization of each base and member constitutes a
1334  //   full-expression.
1335  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1336  if (MemberInit.isInvalid())
1337    return true;
1338
1339  // If we are in a dependent context, template instantiation will
1340  // perform this type-checking again. Just save the arguments that we
1341  // received in a ParenListExpr.
1342  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1343  // of the information that we have about the member
1344  // initializer. However, deconstructing the ASTs is a dicey process,
1345  // and this approach is far more likely to get the corner cases right.
1346  if (CurContext->isDependentContext()) {
1347    // Bump the reference count of all of the arguments.
1348    for (unsigned I = 0; I != NumArgs; ++I)
1349      Args[I]->Retain();
1350
1351    OwningExprResult Init
1352      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1353                                          RParenLoc));
1354    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1355                                                    LParenLoc,
1356                                                    Init.takeAs<Expr>(),
1357                                                    RParenLoc);
1358  }
1359
1360  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1361                                                  LParenLoc,
1362                                                  MemberInit.takeAs<Expr>(),
1363                                                  RParenLoc);
1364}
1365
1366Sema::MemInitResult
1367Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1368                           Expr **Args, unsigned NumArgs,
1369                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1370                           CXXRecordDecl *ClassDecl) {
1371  bool HasDependentArg = false;
1372  for (unsigned i = 0; i < NumArgs; i++)
1373    HasDependentArg |= Args[i]->isTypeDependent();
1374
1375  SourceLocation BaseLoc
1376    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1377
1378  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1379    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1380             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1381
1382  // C++ [class.base.init]p2:
1383  //   [...] Unless the mem-initializer-id names a nonstatic data
1384  //   member of the constructor’s class or a direct or virtual base
1385  //   of that class, the mem-initializer is ill-formed. A
1386  //   mem-initializer-list can initialize a base class using any
1387  //   name that denotes that base class type.
1388  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1389
1390  // Check for direct and virtual base classes.
1391  const CXXBaseSpecifier *DirectBaseSpec = 0;
1392  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1393  if (!Dependent) {
1394    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1395                        VirtualBaseSpec);
1396
1397    // C++ [base.class.init]p2:
1398    // Unless the mem-initializer-id names a nonstatic data member of the
1399    // constructor's class or a direct or virtual base of that class, the
1400    // mem-initializer is ill-formed.
1401    if (!DirectBaseSpec && !VirtualBaseSpec) {
1402      // If the class has any dependent bases, then it's possible that
1403      // one of those types will resolve to the same type as
1404      // BaseType. Therefore, just treat this as a dependent base
1405      // class initialization.  FIXME: Should we try to check the
1406      // initialization anyway? It seems odd.
1407      if (ClassDecl->hasAnyDependentBases())
1408        Dependent = true;
1409      else
1410        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1411          << BaseType << Context.getTypeDeclType(ClassDecl)
1412          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1413    }
1414  }
1415
1416  if (Dependent) {
1417    // Can't check initialization for a base of dependent type or when
1418    // any of the arguments are type-dependent expressions.
1419    OwningExprResult BaseInit
1420      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1421                                          RParenLoc));
1422
1423    // Erase any temporaries within this evaluation context; we're not
1424    // going to track them in the AST, since we'll be rebuilding the
1425    // ASTs during template instantiation.
1426    ExprTemporaries.erase(
1427              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1428                          ExprTemporaries.end());
1429
1430    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1431                                                    /*IsVirtual=*/false,
1432                                                    LParenLoc,
1433                                                    BaseInit.takeAs<Expr>(),
1434                                                    RParenLoc);
1435  }
1436
1437  // C++ [base.class.init]p2:
1438  //   If a mem-initializer-id is ambiguous because it designates both
1439  //   a direct non-virtual base class and an inherited virtual base
1440  //   class, the mem-initializer is ill-formed.
1441  if (DirectBaseSpec && VirtualBaseSpec)
1442    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1443      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1444
1445  CXXBaseSpecifier *BaseSpec
1446    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1447  if (!BaseSpec)
1448    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1449
1450  // Initialize the base.
1451  InitializedEntity BaseEntity =
1452    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1453  InitializationKind Kind =
1454    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1455
1456  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1457
1458  OwningExprResult BaseInit =
1459    InitSeq.Perform(*this, BaseEntity, Kind,
1460                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1461  if (BaseInit.isInvalid())
1462    return true;
1463
1464  // C++0x [class.base.init]p7:
1465  //   The initialization of each base and member constitutes a
1466  //   full-expression.
1467  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1468  if (BaseInit.isInvalid())
1469    return true;
1470
1471  // If we are in a dependent context, template instantiation will
1472  // perform this type-checking again. Just save the arguments that we
1473  // received in a ParenListExpr.
1474  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1475  // of the information that we have about the base
1476  // initializer. However, deconstructing the ASTs is a dicey process,
1477  // and this approach is far more likely to get the corner cases right.
1478  if (CurContext->isDependentContext()) {
1479    // Bump the reference count of all of the arguments.
1480    for (unsigned I = 0; I != NumArgs; ++I)
1481      Args[I]->Retain();
1482
1483    OwningExprResult Init
1484      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1485                                          RParenLoc));
1486    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1487                                                    BaseSpec->isVirtual(),
1488                                                    LParenLoc,
1489                                                    Init.takeAs<Expr>(),
1490                                                    RParenLoc);
1491  }
1492
1493  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1494                                                  BaseSpec->isVirtual(),
1495                                                  LParenLoc,
1496                                                  BaseInit.takeAs<Expr>(),
1497                                                  RParenLoc);
1498}
1499
1500/// ImplicitInitializerKind - How an implicit base or member initializer should
1501/// initialize its base or member.
1502enum ImplicitInitializerKind {
1503  IIK_Default,
1504  IIK_Copy,
1505  IIK_Move
1506};
1507
1508static bool
1509BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1510                             ImplicitInitializerKind ImplicitInitKind,
1511                             CXXBaseSpecifier *BaseSpec,
1512                             bool IsInheritedVirtualBase,
1513                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1514  InitializedEntity InitEntity
1515    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1516                                        IsInheritedVirtualBase);
1517
1518  Sema::OwningExprResult BaseInit(SemaRef);
1519
1520  switch (ImplicitInitKind) {
1521  case IIK_Default: {
1522    InitializationKind InitKind
1523      = InitializationKind::CreateDefault(Constructor->getLocation());
1524    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1525    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1526                               Sema::MultiExprArg(SemaRef, 0, 0));
1527    break;
1528  }
1529
1530  case IIK_Copy: {
1531    ParmVarDecl *Param = Constructor->getParamDecl(0);
1532    QualType ParamType = Param->getType().getNonReferenceType();
1533
1534    Expr *CopyCtorArg =
1535      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1536                          Constructor->getLocation(), ParamType, 0);
1537
1538    // Cast to the base class to avoid ambiguities.
1539    QualType ArgTy =
1540      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1541                                       ParamType.getQualifiers());
1542
1543    CXXCastPath BasePath;
1544    BasePath.push_back(BaseSpec);
1545    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1546                              CastExpr::CK_UncheckedDerivedToBase,
1547                              ImplicitCastExpr::LValue, &BasePath);
1548
1549    InitializationKind InitKind
1550      = InitializationKind::CreateDirect(Constructor->getLocation(),
1551                                         SourceLocation(), SourceLocation());
1552    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1553                                   &CopyCtorArg, 1);
1554    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1555                               Sema::MultiExprArg(SemaRef,
1556                                                  (void**)&CopyCtorArg, 1));
1557    break;
1558  }
1559
1560  case IIK_Move:
1561    assert(false && "Unhandled initializer kind!");
1562  }
1563
1564  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1565  if (BaseInit.isInvalid())
1566    return true;
1567
1568  CXXBaseInit =
1569    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1570               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1571                                                        SourceLocation()),
1572                                             BaseSpec->isVirtual(),
1573                                             SourceLocation(),
1574                                             BaseInit.takeAs<Expr>(),
1575                                             SourceLocation());
1576
1577  return false;
1578}
1579
1580static bool
1581BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1582                               ImplicitInitializerKind ImplicitInitKind,
1583                               FieldDecl *Field,
1584                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1585  if (Field->isInvalidDecl())
1586    return true;
1587
1588  SourceLocation Loc = Constructor->getLocation();
1589
1590  if (ImplicitInitKind == IIK_Copy) {
1591    ParmVarDecl *Param = Constructor->getParamDecl(0);
1592    QualType ParamType = Param->getType().getNonReferenceType();
1593
1594    Expr *MemberExprBase =
1595      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1596                          Loc, ParamType, 0);
1597
1598    // Build a reference to this field within the parameter.
1599    CXXScopeSpec SS;
1600    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1601                              Sema::LookupMemberName);
1602    MemberLookup.addDecl(Field, AS_public);
1603    MemberLookup.resolveKind();
1604    Sema::OwningExprResult CopyCtorArg
1605      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1606                                         ParamType, Loc,
1607                                         /*IsArrow=*/false,
1608                                         SS,
1609                                         /*FirstQualifierInScope=*/0,
1610                                         MemberLookup,
1611                                         /*TemplateArgs=*/0);
1612    if (CopyCtorArg.isInvalid())
1613      return true;
1614
1615    // When the field we are copying is an array, create index variables for
1616    // each dimension of the array. We use these index variables to subscript
1617    // the source array, and other clients (e.g., CodeGen) will perform the
1618    // necessary iteration with these index variables.
1619    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1620    QualType BaseType = Field->getType();
1621    QualType SizeType = SemaRef.Context.getSizeType();
1622    while (const ConstantArrayType *Array
1623                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1624      // Create the iteration variable for this array index.
1625      IdentifierInfo *IterationVarName = 0;
1626      {
1627        llvm::SmallString<8> Str;
1628        llvm::raw_svector_ostream OS(Str);
1629        OS << "__i" << IndexVariables.size();
1630        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1631      }
1632      VarDecl *IterationVar
1633        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1634                          IterationVarName, SizeType,
1635                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1636                          VarDecl::None, VarDecl::None);
1637      IndexVariables.push_back(IterationVar);
1638
1639      // Create a reference to the iteration variable.
1640      Sema::OwningExprResult IterationVarRef
1641        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1642      assert(!IterationVarRef.isInvalid() &&
1643             "Reference to invented variable cannot fail!");
1644
1645      // Subscript the array with this iteration variable.
1646      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1647                                                            Loc,
1648                                                          move(IterationVarRef),
1649                                                            Loc);
1650      if (CopyCtorArg.isInvalid())
1651        return true;
1652
1653      BaseType = Array->getElementType();
1654    }
1655
1656    // Construct the entity that we will be initializing. For an array, this
1657    // will be first element in the array, which may require several levels
1658    // of array-subscript entities.
1659    llvm::SmallVector<InitializedEntity, 4> Entities;
1660    Entities.reserve(1 + IndexVariables.size());
1661    Entities.push_back(InitializedEntity::InitializeMember(Field));
1662    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1663      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1664                                                              0,
1665                                                              Entities.back()));
1666
1667    // Direct-initialize to use the copy constructor.
1668    InitializationKind InitKind =
1669      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1670
1671    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1672    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1673                                   &CopyCtorArgE, 1);
1674
1675    Sema::OwningExprResult MemberInit
1676      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1677                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1678    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1679    if (MemberInit.isInvalid())
1680      return true;
1681
1682    CXXMemberInit
1683      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1684                                           MemberInit.takeAs<Expr>(), Loc,
1685                                           IndexVariables.data(),
1686                                           IndexVariables.size());
1687    return false;
1688  }
1689
1690  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1691
1692  QualType FieldBaseElementType =
1693    SemaRef.Context.getBaseElementType(Field->getType());
1694
1695  if (FieldBaseElementType->isRecordType()) {
1696    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1697    InitializationKind InitKind =
1698      InitializationKind::CreateDefault(Loc);
1699
1700    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1701    Sema::OwningExprResult MemberInit =
1702      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1703                      Sema::MultiExprArg(SemaRef, 0, 0));
1704    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1705    if (MemberInit.isInvalid())
1706      return true;
1707
1708    CXXMemberInit =
1709      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1710                                                       Field, Loc, Loc,
1711                                                      MemberInit.takeAs<Expr>(),
1712                                                       Loc);
1713    return false;
1714  }
1715
1716  if (FieldBaseElementType->isReferenceType()) {
1717    SemaRef.Diag(Constructor->getLocation(),
1718                 diag::err_uninitialized_member_in_ctor)
1719    << (int)Constructor->isImplicit()
1720    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1721    << 0 << Field->getDeclName();
1722    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1723    return true;
1724  }
1725
1726  if (FieldBaseElementType.isConstQualified()) {
1727    SemaRef.Diag(Constructor->getLocation(),
1728                 diag::err_uninitialized_member_in_ctor)
1729    << (int)Constructor->isImplicit()
1730    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1731    << 1 << Field->getDeclName();
1732    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1733    return true;
1734  }
1735
1736  // Nothing to initialize.
1737  CXXMemberInit = 0;
1738  return false;
1739}
1740
1741namespace {
1742struct BaseAndFieldInfo {
1743  Sema &S;
1744  CXXConstructorDecl *Ctor;
1745  bool AnyErrorsInInits;
1746  ImplicitInitializerKind IIK;
1747  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1748  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1749
1750  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1751    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1752    // FIXME: Handle implicit move constructors.
1753    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1754      IIK = IIK_Copy;
1755    else
1756      IIK = IIK_Default;
1757  }
1758};
1759}
1760
1761static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1762                                   FieldDecl *Top, FieldDecl *Field,
1763                                   CXXBaseOrMemberInitializer *Init) {
1764  // If the member doesn't need to be initialized, Init will still be null.
1765  if (!Init)
1766    return;
1767
1768  Info.AllToInit.push_back(Init);
1769  if (Field != Top) {
1770    Init->setMember(Top);
1771    Init->setAnonUnionMember(Field);
1772  }
1773}
1774
1775static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1776                                    FieldDecl *Top, FieldDecl *Field) {
1777
1778  // Overwhelmingly common case: we have a direct initializer for this field.
1779  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1780    RecordFieldInitializer(Info, Top, Field, Init);
1781    return false;
1782  }
1783
1784  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1785    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1786    assert(FieldClassType && "anonymous struct/union without record type");
1787    CXXRecordDecl *FieldClassDecl
1788      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1789
1790    // Even though union members never have non-trivial default
1791    // constructions in C++03, we still build member initializers for aggregate
1792    // record types which can be union members, and C++0x allows non-trivial
1793    // default constructors for union members, so we ensure that only one
1794    // member is initialized for these.
1795    if (FieldClassDecl->isUnion()) {
1796      // First check for an explicit initializer for one field.
1797      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1798           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1799        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1800          RecordFieldInitializer(Info, Top, *FA, Init);
1801
1802          // Once we've initialized a field of an anonymous union, the union
1803          // field in the class is also initialized, so exit immediately.
1804          return false;
1805        } else if ((*FA)->isAnonymousStructOrUnion()) {
1806          if (CollectFieldInitializer(Info, Top, *FA))
1807            return true;
1808        }
1809      }
1810
1811      // Fallthrough and construct a default initializer for the union as
1812      // a whole, which can call its default constructor if such a thing exists
1813      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1814      // behavior going forward with C++0x, when anonymous unions there are
1815      // finalized, we should revisit this.
1816    } else {
1817      // For structs, we simply descend through to initialize all members where
1818      // necessary.
1819      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1820           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1821        if (CollectFieldInitializer(Info, Top, *FA))
1822          return true;
1823      }
1824    }
1825  }
1826
1827  // Don't try to build an implicit initializer if there were semantic
1828  // errors in any of the initializers (and therefore we might be
1829  // missing some that the user actually wrote).
1830  if (Info.AnyErrorsInInits)
1831    return false;
1832
1833  CXXBaseOrMemberInitializer *Init = 0;
1834  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1835    return true;
1836
1837  RecordFieldInitializer(Info, Top, Field, Init);
1838  return false;
1839}
1840
1841bool
1842Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1843                                  CXXBaseOrMemberInitializer **Initializers,
1844                                  unsigned NumInitializers,
1845                                  bool AnyErrors) {
1846  if (Constructor->getDeclContext()->isDependentContext()) {
1847    // Just store the initializers as written, they will be checked during
1848    // instantiation.
1849    if (NumInitializers > 0) {
1850      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1851      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1852        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1853      memcpy(baseOrMemberInitializers, Initializers,
1854             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1855      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1856    }
1857
1858    return false;
1859  }
1860
1861  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1862
1863  // We need to build the initializer AST according to order of construction
1864  // and not what user specified in the Initializers list.
1865  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1866  if (!ClassDecl)
1867    return true;
1868
1869  bool HadError = false;
1870
1871  for (unsigned i = 0; i < NumInitializers; i++) {
1872    CXXBaseOrMemberInitializer *Member = Initializers[i];
1873
1874    if (Member->isBaseInitializer())
1875      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1876    else
1877      Info.AllBaseFields[Member->getMember()] = Member;
1878  }
1879
1880  // Keep track of the direct virtual bases.
1881  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1882  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1883       E = ClassDecl->bases_end(); I != E; ++I) {
1884    if (I->isVirtual())
1885      DirectVBases.insert(I);
1886  }
1887
1888  // Push virtual bases before others.
1889  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1890       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1891
1892    if (CXXBaseOrMemberInitializer *Value
1893        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1894      Info.AllToInit.push_back(Value);
1895    } else if (!AnyErrors) {
1896      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1897      CXXBaseOrMemberInitializer *CXXBaseInit;
1898      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1899                                       VBase, IsInheritedVirtualBase,
1900                                       CXXBaseInit)) {
1901        HadError = true;
1902        continue;
1903      }
1904
1905      Info.AllToInit.push_back(CXXBaseInit);
1906    }
1907  }
1908
1909  // Non-virtual bases.
1910  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1911       E = ClassDecl->bases_end(); Base != E; ++Base) {
1912    // Virtuals are in the virtual base list and already constructed.
1913    if (Base->isVirtual())
1914      continue;
1915
1916    if (CXXBaseOrMemberInitializer *Value
1917          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1918      Info.AllToInit.push_back(Value);
1919    } else if (!AnyErrors) {
1920      CXXBaseOrMemberInitializer *CXXBaseInit;
1921      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1922                                       Base, /*IsInheritedVirtualBase=*/false,
1923                                       CXXBaseInit)) {
1924        HadError = true;
1925        continue;
1926      }
1927
1928      Info.AllToInit.push_back(CXXBaseInit);
1929    }
1930  }
1931
1932  // Fields.
1933  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1934       E = ClassDecl->field_end(); Field != E; ++Field) {
1935    if ((*Field)->getType()->isIncompleteArrayType()) {
1936      assert(ClassDecl->hasFlexibleArrayMember() &&
1937             "Incomplete array type is not valid");
1938      continue;
1939    }
1940    if (CollectFieldInitializer(Info, *Field, *Field))
1941      HadError = true;
1942  }
1943
1944  NumInitializers = Info.AllToInit.size();
1945  if (NumInitializers > 0) {
1946    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1947    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1948      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1949    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1950           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1951    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1952
1953    // Constructors implicitly reference the base and member
1954    // destructors.
1955    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1956                                           Constructor->getParent());
1957  }
1958
1959  return HadError;
1960}
1961
1962static void *GetKeyForTopLevelField(FieldDecl *Field) {
1963  // For anonymous unions, use the class declaration as the key.
1964  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1965    if (RT->getDecl()->isAnonymousStructOrUnion())
1966      return static_cast<void *>(RT->getDecl());
1967  }
1968  return static_cast<void *>(Field);
1969}
1970
1971static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1972  return Context.getCanonicalType(BaseType).getTypePtr();
1973}
1974
1975static void *GetKeyForMember(ASTContext &Context,
1976                             CXXBaseOrMemberInitializer *Member,
1977                             bool MemberMaybeAnon = false) {
1978  if (!Member->isMemberInitializer())
1979    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1980
1981  // For fields injected into the class via declaration of an anonymous union,
1982  // use its anonymous union class declaration as the unique key.
1983  FieldDecl *Field = Member->getMember();
1984
1985  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1986  // data member of the class. Data member used in the initializer list is
1987  // in AnonUnionMember field.
1988  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1989    Field = Member->getAnonUnionMember();
1990
1991  // If the field is a member of an anonymous struct or union, our key
1992  // is the anonymous record decl that's a direct child of the class.
1993  RecordDecl *RD = Field->getParent();
1994  if (RD->isAnonymousStructOrUnion()) {
1995    while (true) {
1996      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1997      if (Parent->isAnonymousStructOrUnion())
1998        RD = Parent;
1999      else
2000        break;
2001    }
2002
2003    return static_cast<void *>(RD);
2004  }
2005
2006  return static_cast<void *>(Field);
2007}
2008
2009static void
2010DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2011                                  const CXXConstructorDecl *Constructor,
2012                                  CXXBaseOrMemberInitializer **Inits,
2013                                  unsigned NumInits) {
2014  if (Constructor->getDeclContext()->isDependentContext())
2015    return;
2016
2017  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2018        == Diagnostic::Ignored)
2019    return;
2020
2021  // Build the list of bases and members in the order that they'll
2022  // actually be initialized.  The explicit initializers should be in
2023  // this same order but may be missing things.
2024  llvm::SmallVector<const void*, 32> IdealInitKeys;
2025
2026  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2027
2028  // 1. Virtual bases.
2029  for (CXXRecordDecl::base_class_const_iterator VBase =
2030       ClassDecl->vbases_begin(),
2031       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2032    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2033
2034  // 2. Non-virtual bases.
2035  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2036       E = ClassDecl->bases_end(); Base != E; ++Base) {
2037    if (Base->isVirtual())
2038      continue;
2039    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2040  }
2041
2042  // 3. Direct fields.
2043  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2044       E = ClassDecl->field_end(); Field != E; ++Field)
2045    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2046
2047  unsigned NumIdealInits = IdealInitKeys.size();
2048  unsigned IdealIndex = 0;
2049
2050  CXXBaseOrMemberInitializer *PrevInit = 0;
2051  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2052    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2053    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2054
2055    // Scan forward to try to find this initializer in the idealized
2056    // initializers list.
2057    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2058      if (InitKey == IdealInitKeys[IdealIndex])
2059        break;
2060
2061    // If we didn't find this initializer, it must be because we
2062    // scanned past it on a previous iteration.  That can only
2063    // happen if we're out of order;  emit a warning.
2064    if (IdealIndex == NumIdealInits && PrevInit) {
2065      Sema::SemaDiagnosticBuilder D =
2066        SemaRef.Diag(PrevInit->getSourceLocation(),
2067                     diag::warn_initializer_out_of_order);
2068
2069      if (PrevInit->isMemberInitializer())
2070        D << 0 << PrevInit->getMember()->getDeclName();
2071      else
2072        D << 1 << PrevInit->getBaseClassInfo()->getType();
2073
2074      if (Init->isMemberInitializer())
2075        D << 0 << Init->getMember()->getDeclName();
2076      else
2077        D << 1 << Init->getBaseClassInfo()->getType();
2078
2079      // Move back to the initializer's location in the ideal list.
2080      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2081        if (InitKey == IdealInitKeys[IdealIndex])
2082          break;
2083
2084      assert(IdealIndex != NumIdealInits &&
2085             "initializer not found in initializer list");
2086    }
2087
2088    PrevInit = Init;
2089  }
2090}
2091
2092namespace {
2093bool CheckRedundantInit(Sema &S,
2094                        CXXBaseOrMemberInitializer *Init,
2095                        CXXBaseOrMemberInitializer *&PrevInit) {
2096  if (!PrevInit) {
2097    PrevInit = Init;
2098    return false;
2099  }
2100
2101  if (FieldDecl *Field = Init->getMember())
2102    S.Diag(Init->getSourceLocation(),
2103           diag::err_multiple_mem_initialization)
2104      << Field->getDeclName()
2105      << Init->getSourceRange();
2106  else {
2107    Type *BaseClass = Init->getBaseClass();
2108    assert(BaseClass && "neither field nor base");
2109    S.Diag(Init->getSourceLocation(),
2110           diag::err_multiple_base_initialization)
2111      << QualType(BaseClass, 0)
2112      << Init->getSourceRange();
2113  }
2114  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2115    << 0 << PrevInit->getSourceRange();
2116
2117  return true;
2118}
2119
2120typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2121typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2122
2123bool CheckRedundantUnionInit(Sema &S,
2124                             CXXBaseOrMemberInitializer *Init,
2125                             RedundantUnionMap &Unions) {
2126  FieldDecl *Field = Init->getMember();
2127  RecordDecl *Parent = Field->getParent();
2128  if (!Parent->isAnonymousStructOrUnion())
2129    return false;
2130
2131  NamedDecl *Child = Field;
2132  do {
2133    if (Parent->isUnion()) {
2134      UnionEntry &En = Unions[Parent];
2135      if (En.first && En.first != Child) {
2136        S.Diag(Init->getSourceLocation(),
2137               diag::err_multiple_mem_union_initialization)
2138          << Field->getDeclName()
2139          << Init->getSourceRange();
2140        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2141          << 0 << En.second->getSourceRange();
2142        return true;
2143      } else if (!En.first) {
2144        En.first = Child;
2145        En.second = Init;
2146      }
2147    }
2148
2149    Child = Parent;
2150    Parent = cast<RecordDecl>(Parent->getDeclContext());
2151  } while (Parent->isAnonymousStructOrUnion());
2152
2153  return false;
2154}
2155}
2156
2157/// ActOnMemInitializers - Handle the member initializers for a constructor.
2158void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2159                                SourceLocation ColonLoc,
2160                                MemInitTy **meminits, unsigned NumMemInits,
2161                                bool AnyErrors) {
2162  if (!ConstructorDecl)
2163    return;
2164
2165  AdjustDeclIfTemplate(ConstructorDecl);
2166
2167  CXXConstructorDecl *Constructor
2168    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2169
2170  if (!Constructor) {
2171    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2172    return;
2173  }
2174
2175  CXXBaseOrMemberInitializer **MemInits =
2176    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2177
2178  // Mapping for the duplicate initializers check.
2179  // For member initializers, this is keyed with a FieldDecl*.
2180  // For base initializers, this is keyed with a Type*.
2181  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2182
2183  // Mapping for the inconsistent anonymous-union initializers check.
2184  RedundantUnionMap MemberUnions;
2185
2186  bool HadError = false;
2187  for (unsigned i = 0; i < NumMemInits; i++) {
2188    CXXBaseOrMemberInitializer *Init = MemInits[i];
2189
2190    // Set the source order index.
2191    Init->setSourceOrder(i);
2192
2193    if (Init->isMemberInitializer()) {
2194      FieldDecl *Field = Init->getMember();
2195      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2196          CheckRedundantUnionInit(*this, Init, MemberUnions))
2197        HadError = true;
2198    } else {
2199      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2200      if (CheckRedundantInit(*this, Init, Members[Key]))
2201        HadError = true;
2202    }
2203  }
2204
2205  if (HadError)
2206    return;
2207
2208  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2209
2210  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2211}
2212
2213void
2214Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2215                                             CXXRecordDecl *ClassDecl) {
2216  // Ignore dependent contexts.
2217  if (ClassDecl->isDependentContext())
2218    return;
2219
2220  // FIXME: all the access-control diagnostics are positioned on the
2221  // field/base declaration.  That's probably good; that said, the
2222  // user might reasonably want to know why the destructor is being
2223  // emitted, and we currently don't say.
2224
2225  // Non-static data members.
2226  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2227       E = ClassDecl->field_end(); I != E; ++I) {
2228    FieldDecl *Field = *I;
2229    if (Field->isInvalidDecl())
2230      continue;
2231    QualType FieldType = Context.getBaseElementType(Field->getType());
2232
2233    const RecordType* RT = FieldType->getAs<RecordType>();
2234    if (!RT)
2235      continue;
2236
2237    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2238    if (FieldClassDecl->hasTrivialDestructor())
2239      continue;
2240
2241    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2242    CheckDestructorAccess(Field->getLocation(), Dtor,
2243                          PDiag(diag::err_access_dtor_field)
2244                            << Field->getDeclName()
2245                            << FieldType);
2246
2247    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2248  }
2249
2250  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2251
2252  // Bases.
2253  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2254       E = ClassDecl->bases_end(); Base != E; ++Base) {
2255    // Bases are always records in a well-formed non-dependent class.
2256    const RecordType *RT = Base->getType()->getAs<RecordType>();
2257
2258    // Remember direct virtual bases.
2259    if (Base->isVirtual())
2260      DirectVirtualBases.insert(RT);
2261
2262    // Ignore trivial destructors.
2263    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2264    if (BaseClassDecl->hasTrivialDestructor())
2265      continue;
2266
2267    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2268
2269    // FIXME: caret should be on the start of the class name
2270    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2271                          PDiag(diag::err_access_dtor_base)
2272                            << Base->getType()
2273                            << Base->getSourceRange());
2274
2275    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2276  }
2277
2278  // Virtual bases.
2279  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2280       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2281
2282    // Bases are always records in a well-formed non-dependent class.
2283    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2284
2285    // Ignore direct virtual bases.
2286    if (DirectVirtualBases.count(RT))
2287      continue;
2288
2289    // Ignore trivial destructors.
2290    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2291    if (BaseClassDecl->hasTrivialDestructor())
2292      continue;
2293
2294    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2295    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2296                          PDiag(diag::err_access_dtor_vbase)
2297                            << VBase->getType());
2298
2299    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2300  }
2301}
2302
2303void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2304  if (!CDtorDecl)
2305    return;
2306
2307  if (CXXConstructorDecl *Constructor
2308      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2309    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2310}
2311
2312bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2313                                  unsigned DiagID, AbstractDiagSelID SelID) {
2314  if (SelID == -1)
2315    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2316  else
2317    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2318}
2319
2320bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2321                                  const PartialDiagnostic &PD) {
2322  if (!getLangOptions().CPlusPlus)
2323    return false;
2324
2325  if (const ArrayType *AT = Context.getAsArrayType(T))
2326    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2327
2328  if (const PointerType *PT = T->getAs<PointerType>()) {
2329    // Find the innermost pointer type.
2330    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2331      PT = T;
2332
2333    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2334      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2335  }
2336
2337  const RecordType *RT = T->getAs<RecordType>();
2338  if (!RT)
2339    return false;
2340
2341  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2342
2343  // We can't answer whether something is abstract until it has a
2344  // definition.  If it's currently being defined, we'll walk back
2345  // over all the declarations when we have a full definition.
2346  const CXXRecordDecl *Def = RD->getDefinition();
2347  if (!Def || Def->isBeingDefined())
2348    return false;
2349
2350  if (!RD->isAbstract())
2351    return false;
2352
2353  Diag(Loc, PD) << RD->getDeclName();
2354  DiagnoseAbstractType(RD);
2355
2356  return true;
2357}
2358
2359void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2360  // Check if we've already emitted the list of pure virtual functions
2361  // for this class.
2362  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2363    return;
2364
2365  CXXFinalOverriderMap FinalOverriders;
2366  RD->getFinalOverriders(FinalOverriders);
2367
2368  // Keep a set of seen pure methods so we won't diagnose the same method
2369  // more than once.
2370  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2371
2372  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2373                                   MEnd = FinalOverriders.end();
2374       M != MEnd;
2375       ++M) {
2376    for (OverridingMethods::iterator SO = M->second.begin(),
2377                                  SOEnd = M->second.end();
2378         SO != SOEnd; ++SO) {
2379      // C++ [class.abstract]p4:
2380      //   A class is abstract if it contains or inherits at least one
2381      //   pure virtual function for which the final overrider is pure
2382      //   virtual.
2383
2384      //
2385      if (SO->second.size() != 1)
2386        continue;
2387
2388      if (!SO->second.front().Method->isPure())
2389        continue;
2390
2391      if (!SeenPureMethods.insert(SO->second.front().Method))
2392        continue;
2393
2394      Diag(SO->second.front().Method->getLocation(),
2395           diag::note_pure_virtual_function)
2396        << SO->second.front().Method->getDeclName();
2397    }
2398  }
2399
2400  if (!PureVirtualClassDiagSet)
2401    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2402  PureVirtualClassDiagSet->insert(RD);
2403}
2404
2405namespace {
2406struct AbstractUsageInfo {
2407  Sema &S;
2408  CXXRecordDecl *Record;
2409  CanQualType AbstractType;
2410  bool Invalid;
2411
2412  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2413    : S(S), Record(Record),
2414      AbstractType(S.Context.getCanonicalType(
2415                   S.Context.getTypeDeclType(Record))),
2416      Invalid(false) {}
2417
2418  void DiagnoseAbstractType() {
2419    if (Invalid) return;
2420    S.DiagnoseAbstractType(Record);
2421    Invalid = true;
2422  }
2423
2424  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2425};
2426
2427struct CheckAbstractUsage {
2428  AbstractUsageInfo &Info;
2429  const NamedDecl *Ctx;
2430
2431  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2432    : Info(Info), Ctx(Ctx) {}
2433
2434  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2435    switch (TL.getTypeLocClass()) {
2436#define ABSTRACT_TYPELOC(CLASS, PARENT)
2437#define TYPELOC(CLASS, PARENT) \
2438    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2439#include "clang/AST/TypeLocNodes.def"
2440    }
2441  }
2442
2443  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2444    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2445    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2446      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2447      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2448    }
2449  }
2450
2451  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2452    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2453  }
2454
2455  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2456    // Visit the type parameters from a permissive context.
2457    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2458      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2459      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2460        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2461          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2462      // TODO: other template argument types?
2463    }
2464  }
2465
2466  // Visit pointee types from a permissive context.
2467#define CheckPolymorphic(Type) \
2468  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2469    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2470  }
2471  CheckPolymorphic(PointerTypeLoc)
2472  CheckPolymorphic(ReferenceTypeLoc)
2473  CheckPolymorphic(MemberPointerTypeLoc)
2474  CheckPolymorphic(BlockPointerTypeLoc)
2475
2476  /// Handle all the types we haven't given a more specific
2477  /// implementation for above.
2478  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2479    // Every other kind of type that we haven't called out already
2480    // that has an inner type is either (1) sugar or (2) contains that
2481    // inner type in some way as a subobject.
2482    if (TypeLoc Next = TL.getNextTypeLoc())
2483      return Visit(Next, Sel);
2484
2485    // If there's no inner type and we're in a permissive context,
2486    // don't diagnose.
2487    if (Sel == Sema::AbstractNone) return;
2488
2489    // Check whether the type matches the abstract type.
2490    QualType T = TL.getType();
2491    if (T->isArrayType()) {
2492      Sel = Sema::AbstractArrayType;
2493      T = Info.S.Context.getBaseElementType(T);
2494    }
2495    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2496    if (CT != Info.AbstractType) return;
2497
2498    // It matched; do some magic.
2499    if (Sel == Sema::AbstractArrayType) {
2500      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2501        << T << TL.getSourceRange();
2502    } else {
2503      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2504        << Sel << T << TL.getSourceRange();
2505    }
2506    Info.DiagnoseAbstractType();
2507  }
2508};
2509
2510void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2511                                  Sema::AbstractDiagSelID Sel) {
2512  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2513}
2514
2515}
2516
2517/// Check for invalid uses of an abstract type in a method declaration.
2518static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2519                                    CXXMethodDecl *MD) {
2520  // No need to do the check on definitions, which require that
2521  // the return/param types be complete.
2522  if (MD->isThisDeclarationADefinition())
2523    return;
2524
2525  // For safety's sake, just ignore it if we don't have type source
2526  // information.  This should never happen for non-implicit methods,
2527  // but...
2528  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2529    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2530}
2531
2532/// Check for invalid uses of an abstract type within a class definition.
2533static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2534                                    CXXRecordDecl *RD) {
2535  for (CXXRecordDecl::decl_iterator
2536         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2537    Decl *D = *I;
2538    if (D->isImplicit()) continue;
2539
2540    // Methods and method templates.
2541    if (isa<CXXMethodDecl>(D)) {
2542      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2543    } else if (isa<FunctionTemplateDecl>(D)) {
2544      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2545      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2546
2547    // Fields and static variables.
2548    } else if (isa<FieldDecl>(D)) {
2549      FieldDecl *FD = cast<FieldDecl>(D);
2550      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2551        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2552    } else if (isa<VarDecl>(D)) {
2553      VarDecl *VD = cast<VarDecl>(D);
2554      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2555        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2556
2557    // Nested classes and class templates.
2558    } else if (isa<CXXRecordDecl>(D)) {
2559      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2560    } else if (isa<ClassTemplateDecl>(D)) {
2561      CheckAbstractClassUsage(Info,
2562                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2563    }
2564  }
2565}
2566
2567/// \brief Perform semantic checks on a class definition that has been
2568/// completing, introducing implicitly-declared members, checking for
2569/// abstract types, etc.
2570void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2571  if (!Record || Record->isInvalidDecl())
2572    return;
2573
2574  if (!Record->isDependentType())
2575    AddImplicitlyDeclaredMembersToClass(Record);
2576
2577  if (Record->isInvalidDecl())
2578    return;
2579
2580  // Set access bits correctly on the directly-declared conversions.
2581  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2582  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2583    Convs->setAccess(I, (*I)->getAccess());
2584
2585  // Determine whether we need to check for final overriders. We do
2586  // this either when there are virtual base classes (in which case we
2587  // may end up finding multiple final overriders for a given virtual
2588  // function) or any of the base classes is abstract (in which case
2589  // we might detect that this class is abstract).
2590  bool CheckFinalOverriders = false;
2591  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2592      !Record->isDependentType()) {
2593    if (Record->getNumVBases())
2594      CheckFinalOverriders = true;
2595    else if (!Record->isAbstract()) {
2596      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2597                                                 BEnd = Record->bases_end();
2598           B != BEnd; ++B) {
2599        CXXRecordDecl *BaseDecl
2600          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2601        if (BaseDecl->isAbstract()) {
2602          CheckFinalOverriders = true;
2603          break;
2604        }
2605      }
2606    }
2607  }
2608
2609  if (CheckFinalOverriders) {
2610    CXXFinalOverriderMap FinalOverriders;
2611    Record->getFinalOverriders(FinalOverriders);
2612
2613    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2614                                     MEnd = FinalOverriders.end();
2615         M != MEnd; ++M) {
2616      for (OverridingMethods::iterator SO = M->second.begin(),
2617                                    SOEnd = M->second.end();
2618           SO != SOEnd; ++SO) {
2619        assert(SO->second.size() > 0 &&
2620               "All virtual functions have overridding virtual functions");
2621        if (SO->second.size() == 1) {
2622          // C++ [class.abstract]p4:
2623          //   A class is abstract if it contains or inherits at least one
2624          //   pure virtual function for which the final overrider is pure
2625          //   virtual.
2626          if (SO->second.front().Method->isPure())
2627            Record->setAbstract(true);
2628          continue;
2629        }
2630
2631        // C++ [class.virtual]p2:
2632        //   In a derived class, if a virtual member function of a base
2633        //   class subobject has more than one final overrider the
2634        //   program is ill-formed.
2635        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2636          << (NamedDecl *)M->first << Record;
2637        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2638        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2639                                                 OMEnd = SO->second.end();
2640             OM != OMEnd; ++OM)
2641          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2642            << (NamedDecl *)M->first << OM->Method->getParent();
2643
2644        Record->setInvalidDecl();
2645      }
2646    }
2647  }
2648
2649  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2650    AbstractUsageInfo Info(*this, Record);
2651    CheckAbstractClassUsage(Info, Record);
2652  }
2653
2654  // If this is not an aggregate type and has no user-declared constructor,
2655  // complain about any non-static data members of reference or const scalar
2656  // type, since they will never get initializers.
2657  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2658      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2659    bool Complained = false;
2660    for (RecordDecl::field_iterator F = Record->field_begin(),
2661                                 FEnd = Record->field_end();
2662         F != FEnd; ++F) {
2663      if (F->getType()->isReferenceType() ||
2664          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2665        if (!Complained) {
2666          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2667            << Record->getTagKind() << Record;
2668          Complained = true;
2669        }
2670
2671        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2672          << F->getType()->isReferenceType()
2673          << F->getDeclName();
2674      }
2675    }
2676  }
2677
2678  if (Record->isDynamicClass())
2679    DynamicClasses.push_back(Record);
2680}
2681
2682void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2683                                             Decl *TagDecl,
2684                                             SourceLocation LBrac,
2685                                             SourceLocation RBrac,
2686                                             AttributeList *AttrList) {
2687  if (!TagDecl)
2688    return;
2689
2690  AdjustDeclIfTemplate(TagDecl);
2691
2692  ActOnFields(S, RLoc, TagDecl,
2693              // strict aliasing violation!
2694              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2695              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2696
2697  CheckCompletedCXXClass(
2698                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2699}
2700
2701namespace {
2702  /// \brief Helper class that collects exception specifications for
2703  /// implicitly-declared special member functions.
2704  class ImplicitExceptionSpecification {
2705    ASTContext &Context;
2706    bool AllowsAllExceptions;
2707    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2708    llvm::SmallVector<QualType, 4> Exceptions;
2709
2710  public:
2711    explicit ImplicitExceptionSpecification(ASTContext &Context)
2712      : Context(Context), AllowsAllExceptions(false) { }
2713
2714    /// \brief Whether the special member function should have any
2715    /// exception specification at all.
2716    bool hasExceptionSpecification() const {
2717      return !AllowsAllExceptions;
2718    }
2719
2720    /// \brief Whether the special member function should have a
2721    /// throw(...) exception specification (a Microsoft extension).
2722    bool hasAnyExceptionSpecification() const {
2723      return false;
2724    }
2725
2726    /// \brief The number of exceptions in the exception specification.
2727    unsigned size() const { return Exceptions.size(); }
2728
2729    /// \brief The set of exceptions in the exception specification.
2730    const QualType *data() const { return Exceptions.data(); }
2731
2732    /// \brief Note that
2733    void CalledDecl(CXXMethodDecl *Method) {
2734      // If we already know that we allow all exceptions, do nothing.
2735      if (AllowsAllExceptions || !Method)
2736        return;
2737
2738      const FunctionProtoType *Proto
2739        = Method->getType()->getAs<FunctionProtoType>();
2740
2741      // If this function can throw any exceptions, make a note of that.
2742      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2743        AllowsAllExceptions = true;
2744        ExceptionsSeen.clear();
2745        Exceptions.clear();
2746        return;
2747      }
2748
2749      // Record the exceptions in this function's exception specification.
2750      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2751                                              EEnd = Proto->exception_end();
2752           E != EEnd; ++E)
2753        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2754          Exceptions.push_back(*E);
2755    }
2756  };
2757}
2758
2759
2760/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2761/// special functions, such as the default constructor, copy
2762/// constructor, or destructor, to the given C++ class (C++
2763/// [special]p1).  This routine can only be executed just before the
2764/// definition of the class is complete.
2765void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2766  if (!ClassDecl->hasUserDeclaredConstructor())
2767    ++ASTContext::NumImplicitDefaultConstructors;
2768
2769  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2770    ++ASTContext::NumImplicitCopyConstructors;
2771
2772  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2773    ++ASTContext::NumImplicitCopyAssignmentOperators;
2774
2775    // If we have a dynamic class, then the copy assignment operator may be
2776    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2777    // it shows up in the right place in the vtable and that we diagnose
2778    // problems with the implicit exception specification.
2779    if (ClassDecl->isDynamicClass())
2780      DeclareImplicitCopyAssignment(ClassDecl);
2781  }
2782
2783  if (!ClassDecl->hasUserDeclaredDestructor()) {
2784    ++ASTContext::NumImplicitDestructors;
2785
2786    // If we have a dynamic class, then the destructor may be virtual, so we
2787    // have to declare the destructor immediately. This ensures that, e.g., it
2788    // shows up in the right place in the vtable and that we diagnose problems
2789    // with the implicit exception specification.
2790    if (ClassDecl->isDynamicClass())
2791      DeclareImplicitDestructor(ClassDecl);
2792  }
2793}
2794
2795void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2796  if (!D)
2797    return;
2798
2799  TemplateParameterList *Params = 0;
2800  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2801    Params = Template->getTemplateParameters();
2802  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2803           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2804    Params = PartialSpec->getTemplateParameters();
2805  else
2806    return;
2807
2808  for (TemplateParameterList::iterator Param = Params->begin(),
2809                                    ParamEnd = Params->end();
2810       Param != ParamEnd; ++Param) {
2811    NamedDecl *Named = cast<NamedDecl>(*Param);
2812    if (Named->getDeclName()) {
2813      S->AddDecl(Named);
2814      IdResolver.AddDecl(Named);
2815    }
2816  }
2817}
2818
2819void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2820  if (!RecordD) return;
2821  AdjustDeclIfTemplate(RecordD);
2822  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2823  PushDeclContext(S, Record);
2824}
2825
2826void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2827  if (!RecordD) return;
2828  PopDeclContext();
2829}
2830
2831/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2832/// parsing a top-level (non-nested) C++ class, and we are now
2833/// parsing those parts of the given Method declaration that could
2834/// not be parsed earlier (C++ [class.mem]p2), such as default
2835/// arguments. This action should enter the scope of the given
2836/// Method declaration as if we had just parsed the qualified method
2837/// name. However, it should not bring the parameters into scope;
2838/// that will be performed by ActOnDelayedCXXMethodParameter.
2839void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2840}
2841
2842/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2843/// C++ method declaration. We're (re-)introducing the given
2844/// function parameter into scope for use in parsing later parts of
2845/// the method declaration. For example, we could see an
2846/// ActOnParamDefaultArgument event for this parameter.
2847void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2848  if (!ParamD)
2849    return;
2850
2851  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2852
2853  // If this parameter has an unparsed default argument, clear it out
2854  // to make way for the parsed default argument.
2855  if (Param->hasUnparsedDefaultArg())
2856    Param->setDefaultArg(0);
2857
2858  S->AddDecl(Param);
2859  if (Param->getDeclName())
2860    IdResolver.AddDecl(Param);
2861}
2862
2863/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2864/// processing the delayed method declaration for Method. The method
2865/// declaration is now considered finished. There may be a separate
2866/// ActOnStartOfFunctionDef action later (not necessarily
2867/// immediately!) for this method, if it was also defined inside the
2868/// class body.
2869void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2870  if (!MethodD)
2871    return;
2872
2873  AdjustDeclIfTemplate(MethodD);
2874
2875  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2876
2877  // Now that we have our default arguments, check the constructor
2878  // again. It could produce additional diagnostics or affect whether
2879  // the class has implicitly-declared destructors, among other
2880  // things.
2881  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2882    CheckConstructor(Constructor);
2883
2884  // Check the default arguments, which we may have added.
2885  if (!Method->isInvalidDecl())
2886    CheckCXXDefaultArguments(Method);
2887}
2888
2889/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2890/// the well-formedness of the constructor declarator @p D with type @p
2891/// R. If there are any errors in the declarator, this routine will
2892/// emit diagnostics and set the invalid bit to true.  In any case, the type
2893/// will be updated to reflect a well-formed type for the constructor and
2894/// returned.
2895QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2896                                          FunctionDecl::StorageClass &SC) {
2897  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2898
2899  // C++ [class.ctor]p3:
2900  //   A constructor shall not be virtual (10.3) or static (9.4). A
2901  //   constructor can be invoked for a const, volatile or const
2902  //   volatile object. A constructor shall not be declared const,
2903  //   volatile, or const volatile (9.3.2).
2904  if (isVirtual) {
2905    if (!D.isInvalidType())
2906      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2907        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2908        << SourceRange(D.getIdentifierLoc());
2909    D.setInvalidType();
2910  }
2911  if (SC == FunctionDecl::Static) {
2912    if (!D.isInvalidType())
2913      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2914        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2915        << SourceRange(D.getIdentifierLoc());
2916    D.setInvalidType();
2917    SC = FunctionDecl::None;
2918  }
2919
2920  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2921  if (FTI.TypeQuals != 0) {
2922    if (FTI.TypeQuals & Qualifiers::Const)
2923      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2924        << "const" << SourceRange(D.getIdentifierLoc());
2925    if (FTI.TypeQuals & Qualifiers::Volatile)
2926      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2927        << "volatile" << SourceRange(D.getIdentifierLoc());
2928    if (FTI.TypeQuals & Qualifiers::Restrict)
2929      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2930        << "restrict" << SourceRange(D.getIdentifierLoc());
2931  }
2932
2933  // Rebuild the function type "R" without any type qualifiers (in
2934  // case any of the errors above fired) and with "void" as the
2935  // return type, since constructors don't have return types.
2936  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2937  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2938                                 Proto->getNumArgs(),
2939                                 Proto->isVariadic(), 0,
2940                                 Proto->hasExceptionSpec(),
2941                                 Proto->hasAnyExceptionSpec(),
2942                                 Proto->getNumExceptions(),
2943                                 Proto->exception_begin(),
2944                                 Proto->getExtInfo());
2945}
2946
2947/// CheckConstructor - Checks a fully-formed constructor for
2948/// well-formedness, issuing any diagnostics required. Returns true if
2949/// the constructor declarator is invalid.
2950void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2951  CXXRecordDecl *ClassDecl
2952    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2953  if (!ClassDecl)
2954    return Constructor->setInvalidDecl();
2955
2956  // C++ [class.copy]p3:
2957  //   A declaration of a constructor for a class X is ill-formed if
2958  //   its first parameter is of type (optionally cv-qualified) X and
2959  //   either there are no other parameters or else all other
2960  //   parameters have default arguments.
2961  if (!Constructor->isInvalidDecl() &&
2962      ((Constructor->getNumParams() == 1) ||
2963       (Constructor->getNumParams() > 1 &&
2964        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2965      Constructor->getTemplateSpecializationKind()
2966                                              != TSK_ImplicitInstantiation) {
2967    QualType ParamType = Constructor->getParamDecl(0)->getType();
2968    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2969    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2970      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2971      const char *ConstRef
2972        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
2973                                                        : " const &";
2974      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2975        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
2976
2977      // FIXME: Rather that making the constructor invalid, we should endeavor
2978      // to fix the type.
2979      Constructor->setInvalidDecl();
2980    }
2981  }
2982
2983  // Notify the class that we've added a constructor.  In principle we
2984  // don't need to do this for out-of-line declarations; in practice
2985  // we only instantiate the most recent declaration of a method, so
2986  // we have to call this for everything but friends.
2987  if (!Constructor->getFriendObjectKind())
2988    ClassDecl->addedConstructor(Context, Constructor);
2989}
2990
2991/// CheckDestructor - Checks a fully-formed destructor definition for
2992/// well-formedness, issuing any diagnostics required.  Returns true
2993/// on error.
2994bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2995  CXXRecordDecl *RD = Destructor->getParent();
2996
2997  if (Destructor->isVirtual()) {
2998    SourceLocation Loc;
2999
3000    if (!Destructor->isImplicit())
3001      Loc = Destructor->getLocation();
3002    else
3003      Loc = RD->getLocation();
3004
3005    // If we have a virtual destructor, look up the deallocation function
3006    FunctionDecl *OperatorDelete = 0;
3007    DeclarationName Name =
3008    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3009    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3010      return true;
3011
3012    MarkDeclarationReferenced(Loc, OperatorDelete);
3013
3014    Destructor->setOperatorDelete(OperatorDelete);
3015  }
3016
3017  return false;
3018}
3019
3020static inline bool
3021FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3022  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3023          FTI.ArgInfo[0].Param &&
3024          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3025}
3026
3027/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3028/// the well-formednes of the destructor declarator @p D with type @p
3029/// R. If there are any errors in the declarator, this routine will
3030/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3031/// will be updated to reflect a well-formed type for the destructor and
3032/// returned.
3033QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3034                                         FunctionDecl::StorageClass& SC) {
3035  // C++ [class.dtor]p1:
3036  //   [...] A typedef-name that names a class is a class-name
3037  //   (7.1.3); however, a typedef-name that names a class shall not
3038  //   be used as the identifier in the declarator for a destructor
3039  //   declaration.
3040  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3041  if (isa<TypedefType>(DeclaratorType))
3042    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3043      << DeclaratorType;
3044
3045  // C++ [class.dtor]p2:
3046  //   A destructor is used to destroy objects of its class type. A
3047  //   destructor takes no parameters, and no return type can be
3048  //   specified for it (not even void). The address of a destructor
3049  //   shall not be taken. A destructor shall not be static. A
3050  //   destructor can be invoked for a const, volatile or const
3051  //   volatile object. A destructor shall not be declared const,
3052  //   volatile or const volatile (9.3.2).
3053  if (SC == FunctionDecl::Static) {
3054    if (!D.isInvalidType())
3055      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3056        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3057        << SourceRange(D.getIdentifierLoc())
3058        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3059
3060    SC = FunctionDecl::None;
3061  }
3062  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3063    // Destructors don't have return types, but the parser will
3064    // happily parse something like:
3065    //
3066    //   class X {
3067    //     float ~X();
3068    //   };
3069    //
3070    // The return type will be eliminated later.
3071    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3072      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3073      << SourceRange(D.getIdentifierLoc());
3074  }
3075
3076  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3077  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3078    if (FTI.TypeQuals & Qualifiers::Const)
3079      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3080        << "const" << SourceRange(D.getIdentifierLoc());
3081    if (FTI.TypeQuals & Qualifiers::Volatile)
3082      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3083        << "volatile" << SourceRange(D.getIdentifierLoc());
3084    if (FTI.TypeQuals & Qualifiers::Restrict)
3085      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3086        << "restrict" << SourceRange(D.getIdentifierLoc());
3087    D.setInvalidType();
3088  }
3089
3090  // Make sure we don't have any parameters.
3091  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3092    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3093
3094    // Delete the parameters.
3095    FTI.freeArgs();
3096    D.setInvalidType();
3097  }
3098
3099  // Make sure the destructor isn't variadic.
3100  if (FTI.isVariadic) {
3101    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3102    D.setInvalidType();
3103  }
3104
3105  // Rebuild the function type "R" without any type qualifiers or
3106  // parameters (in case any of the errors above fired) and with
3107  // "void" as the return type, since destructors don't have return
3108  // types.
3109  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3110  if (!Proto)
3111    return QualType();
3112
3113  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3114                                 Proto->hasExceptionSpec(),
3115                                 Proto->hasAnyExceptionSpec(),
3116                                 Proto->getNumExceptions(),
3117                                 Proto->exception_begin(),
3118                                 Proto->getExtInfo());
3119}
3120
3121/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3122/// well-formednes of the conversion function declarator @p D with
3123/// type @p R. If there are any errors in the declarator, this routine
3124/// will emit diagnostics and return true. Otherwise, it will return
3125/// false. Either way, the type @p R will be updated to reflect a
3126/// well-formed type for the conversion operator.
3127void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3128                                     FunctionDecl::StorageClass& SC) {
3129  // C++ [class.conv.fct]p1:
3130  //   Neither parameter types nor return type can be specified. The
3131  //   type of a conversion function (8.3.5) is "function taking no
3132  //   parameter returning conversion-type-id."
3133  if (SC == FunctionDecl::Static) {
3134    if (!D.isInvalidType())
3135      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3136        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3137        << SourceRange(D.getIdentifierLoc());
3138    D.setInvalidType();
3139    SC = FunctionDecl::None;
3140  }
3141
3142  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3143
3144  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3145    // Conversion functions don't have return types, but the parser will
3146    // happily parse something like:
3147    //
3148    //   class X {
3149    //     float operator bool();
3150    //   };
3151    //
3152    // The return type will be changed later anyway.
3153    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3154      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3155      << SourceRange(D.getIdentifierLoc());
3156    D.setInvalidType();
3157  }
3158
3159  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3160
3161  // Make sure we don't have any parameters.
3162  if (Proto->getNumArgs() > 0) {
3163    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3164
3165    // Delete the parameters.
3166    D.getTypeObject(0).Fun.freeArgs();
3167    D.setInvalidType();
3168  } else if (Proto->isVariadic()) {
3169    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3170    D.setInvalidType();
3171  }
3172
3173  // Diagnose "&operator bool()" and other such nonsense.  This
3174  // is actually a gcc extension which we don't support.
3175  if (Proto->getResultType() != ConvType) {
3176    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3177      << Proto->getResultType();
3178    D.setInvalidType();
3179    ConvType = Proto->getResultType();
3180  }
3181
3182  // C++ [class.conv.fct]p4:
3183  //   The conversion-type-id shall not represent a function type nor
3184  //   an array type.
3185  if (ConvType->isArrayType()) {
3186    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3187    ConvType = Context.getPointerType(ConvType);
3188    D.setInvalidType();
3189  } else if (ConvType->isFunctionType()) {
3190    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3191    ConvType = Context.getPointerType(ConvType);
3192    D.setInvalidType();
3193  }
3194
3195  // Rebuild the function type "R" without any parameters (in case any
3196  // of the errors above fired) and with the conversion type as the
3197  // return type.
3198  if (D.isInvalidType()) {
3199    R = Context.getFunctionType(ConvType, 0, 0, false,
3200                                Proto->getTypeQuals(),
3201                                Proto->hasExceptionSpec(),
3202                                Proto->hasAnyExceptionSpec(),
3203                                Proto->getNumExceptions(),
3204                                Proto->exception_begin(),
3205                                Proto->getExtInfo());
3206  }
3207
3208  // C++0x explicit conversion operators.
3209  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3210    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3211         diag::warn_explicit_conversion_functions)
3212      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3213}
3214
3215/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3216/// the declaration of the given C++ conversion function. This routine
3217/// is responsible for recording the conversion function in the C++
3218/// class, if possible.
3219Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3220  assert(Conversion && "Expected to receive a conversion function declaration");
3221
3222  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3223
3224  // Make sure we aren't redeclaring the conversion function.
3225  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3226
3227  // C++ [class.conv.fct]p1:
3228  //   [...] A conversion function is never used to convert a
3229  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3230  //   same object type (or a reference to it), to a (possibly
3231  //   cv-qualified) base class of that type (or a reference to it),
3232  //   or to (possibly cv-qualified) void.
3233  // FIXME: Suppress this warning if the conversion function ends up being a
3234  // virtual function that overrides a virtual function in a base class.
3235  QualType ClassType
3236    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3237  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3238    ConvType = ConvTypeRef->getPointeeType();
3239  if (ConvType->isRecordType()) {
3240    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3241    if (ConvType == ClassType)
3242      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3243        << ClassType;
3244    else if (IsDerivedFrom(ClassType, ConvType))
3245      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3246        <<  ClassType << ConvType;
3247  } else if (ConvType->isVoidType()) {
3248    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3249      << ClassType << ConvType;
3250  }
3251
3252  if (Conversion->getPrimaryTemplate()) {
3253    // ignore specializations
3254  } else if (Conversion->getPreviousDeclaration()) {
3255    if (FunctionTemplateDecl *ConversionTemplate
3256                                  = Conversion->getDescribedFunctionTemplate()) {
3257      if (ClassDecl->replaceConversion(
3258                                   ConversionTemplate->getPreviousDeclaration(),
3259                                       ConversionTemplate))
3260        return ConversionTemplate;
3261    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3262                                            Conversion))
3263      return Conversion;
3264    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3265  } else if (FunctionTemplateDecl *ConversionTemplate
3266               = Conversion->getDescribedFunctionTemplate())
3267    ClassDecl->addConversionFunction(ConversionTemplate);
3268  else
3269    ClassDecl->addConversionFunction(Conversion);
3270
3271  return Conversion;
3272}
3273
3274//===----------------------------------------------------------------------===//
3275// Namespace Handling
3276//===----------------------------------------------------------------------===//
3277
3278/// ActOnStartNamespaceDef - This is called at the start of a namespace
3279/// definition.
3280Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3281                                             SourceLocation IdentLoc,
3282                                             IdentifierInfo *II,
3283                                             SourceLocation LBrace,
3284                                             AttributeList *AttrList) {
3285  // anonymous namespace starts at its left brace
3286  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3287    (II ? IdentLoc : LBrace) , II);
3288  Namespc->setLBracLoc(LBrace);
3289
3290  Scope *DeclRegionScope = NamespcScope->getParent();
3291
3292  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3293
3294  if (const VisibilityAttr *attr = Namespc->getAttr<VisibilityAttr>())
3295    PushPragmaVisibility(attr->getVisibility(), attr->getLocation());
3296
3297  if (II) {
3298    // C++ [namespace.def]p2:
3299    // The identifier in an original-namespace-definition shall not have been
3300    // previously defined in the declarative region in which the
3301    // original-namespace-definition appears. The identifier in an
3302    // original-namespace-definition is the name of the namespace. Subsequently
3303    // in that declarative region, it is treated as an original-namespace-name.
3304
3305    NamedDecl *PrevDecl
3306      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3307                         ForRedeclaration);
3308
3309    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3310      // This is an extended namespace definition.
3311      // Attach this namespace decl to the chain of extended namespace
3312      // definitions.
3313      OrigNS->setNextNamespace(Namespc);
3314      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3315
3316      // Remove the previous declaration from the scope.
3317      if (DeclRegionScope->isDeclScope(OrigNS)) {
3318        IdResolver.RemoveDecl(OrigNS);
3319        DeclRegionScope->RemoveDecl(OrigNS);
3320      }
3321    } else if (PrevDecl) {
3322      // This is an invalid name redefinition.
3323      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3324       << Namespc->getDeclName();
3325      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3326      Namespc->setInvalidDecl();
3327      // Continue on to push Namespc as current DeclContext and return it.
3328    } else if (II->isStr("std") &&
3329               CurContext->getLookupContext()->isTranslationUnit()) {
3330      // This is the first "real" definition of the namespace "std", so update
3331      // our cache of the "std" namespace to point at this definition.
3332      if (NamespaceDecl *StdNS = getStdNamespace()) {
3333        // We had already defined a dummy namespace "std". Link this new
3334        // namespace definition to the dummy namespace "std".
3335        StdNS->setNextNamespace(Namespc);
3336        StdNS->setLocation(IdentLoc);
3337        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3338      }
3339
3340      // Make our StdNamespace cache point at the first real definition of the
3341      // "std" namespace.
3342      StdNamespace = Namespc;
3343    }
3344
3345    PushOnScopeChains(Namespc, DeclRegionScope);
3346  } else {
3347    // Anonymous namespaces.
3348    assert(Namespc->isAnonymousNamespace());
3349
3350    // Link the anonymous namespace into its parent.
3351    NamespaceDecl *PrevDecl;
3352    DeclContext *Parent = CurContext->getLookupContext();
3353    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3354      PrevDecl = TU->getAnonymousNamespace();
3355      TU->setAnonymousNamespace(Namespc);
3356    } else {
3357      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3358      PrevDecl = ND->getAnonymousNamespace();
3359      ND->setAnonymousNamespace(Namespc);
3360    }
3361
3362    // Link the anonymous namespace with its previous declaration.
3363    if (PrevDecl) {
3364      assert(PrevDecl->isAnonymousNamespace());
3365      assert(!PrevDecl->getNextNamespace());
3366      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3367      PrevDecl->setNextNamespace(Namespc);
3368    }
3369
3370    CurContext->addDecl(Namespc);
3371
3372    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3373    //   behaves as if it were replaced by
3374    //     namespace unique { /* empty body */ }
3375    //     using namespace unique;
3376    //     namespace unique { namespace-body }
3377    //   where all occurrences of 'unique' in a translation unit are
3378    //   replaced by the same identifier and this identifier differs
3379    //   from all other identifiers in the entire program.
3380
3381    // We just create the namespace with an empty name and then add an
3382    // implicit using declaration, just like the standard suggests.
3383    //
3384    // CodeGen enforces the "universally unique" aspect by giving all
3385    // declarations semantically contained within an anonymous
3386    // namespace internal linkage.
3387
3388    if (!PrevDecl) {
3389      UsingDirectiveDecl* UD
3390        = UsingDirectiveDecl::Create(Context, CurContext,
3391                                     /* 'using' */ LBrace,
3392                                     /* 'namespace' */ SourceLocation(),
3393                                     /* qualifier */ SourceRange(),
3394                                     /* NNS */ NULL,
3395                                     /* identifier */ SourceLocation(),
3396                                     Namespc,
3397                                     /* Ancestor */ CurContext);
3398      UD->setImplicit();
3399      CurContext->addDecl(UD);
3400    }
3401  }
3402
3403  // Although we could have an invalid decl (i.e. the namespace name is a
3404  // redefinition), push it as current DeclContext and try to continue parsing.
3405  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3406  // for the namespace has the declarations that showed up in that particular
3407  // namespace definition.
3408  PushDeclContext(NamespcScope, Namespc);
3409  return Namespc;
3410}
3411
3412/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3413/// is a namespace alias, returns the namespace it points to.
3414static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3415  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3416    return AD->getNamespace();
3417  return dyn_cast_or_null<NamespaceDecl>(D);
3418}
3419
3420/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3421/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3422void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3423  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3424  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3425  Namespc->setRBracLoc(RBrace);
3426  PopDeclContext();
3427  if (Namespc->hasAttr<VisibilityAttr>())
3428    PopPragmaVisibility();
3429}
3430
3431/// \brief Retrieve the special "std" namespace, which may require us to
3432/// implicitly define the namespace.
3433NamespaceDecl *Sema::getOrCreateStdNamespace() {
3434  if (!StdNamespace) {
3435    // The "std" namespace has not yet been defined, so build one implicitly.
3436    StdNamespace = NamespaceDecl::Create(Context,
3437                                         Context.getTranslationUnitDecl(),
3438                                         SourceLocation(),
3439                                         &PP.getIdentifierTable().get("std"));
3440    getStdNamespace()->setImplicit(true);
3441  }
3442
3443  return getStdNamespace();
3444}
3445
3446Decl *Sema::ActOnUsingDirective(Scope *S,
3447                                          SourceLocation UsingLoc,
3448                                          SourceLocation NamespcLoc,
3449                                          CXXScopeSpec &SS,
3450                                          SourceLocation IdentLoc,
3451                                          IdentifierInfo *NamespcName,
3452                                          AttributeList *AttrList) {
3453  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3454  assert(NamespcName && "Invalid NamespcName.");
3455  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3456  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3457
3458  UsingDirectiveDecl *UDir = 0;
3459  NestedNameSpecifier *Qualifier = 0;
3460  if (SS.isSet())
3461    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3462
3463  // Lookup namespace name.
3464  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3465  LookupParsedName(R, S, &SS);
3466  if (R.isAmbiguous())
3467    return 0;
3468
3469  if (R.empty()) {
3470    // Allow "using namespace std;" or "using namespace ::std;" even if
3471    // "std" hasn't been defined yet, for GCC compatibility.
3472    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3473        NamespcName->isStr("std")) {
3474      Diag(IdentLoc, diag::ext_using_undefined_std);
3475      R.addDecl(getOrCreateStdNamespace());
3476      R.resolveKind();
3477    }
3478    // Otherwise, attempt typo correction.
3479    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3480                                                       CTC_NoKeywords, 0)) {
3481      if (R.getAsSingle<NamespaceDecl>() ||
3482          R.getAsSingle<NamespaceAliasDecl>()) {
3483        if (DeclContext *DC = computeDeclContext(SS, false))
3484          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3485            << NamespcName << DC << Corrected << SS.getRange()
3486            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3487        else
3488          Diag(IdentLoc, diag::err_using_directive_suggest)
3489            << NamespcName << Corrected
3490            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3491        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3492          << Corrected;
3493
3494        NamespcName = Corrected.getAsIdentifierInfo();
3495      } else {
3496        R.clear();
3497        R.setLookupName(NamespcName);
3498      }
3499    }
3500  }
3501
3502  if (!R.empty()) {
3503    NamedDecl *Named = R.getFoundDecl();
3504    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3505        && "expected namespace decl");
3506    // C++ [namespace.udir]p1:
3507    //   A using-directive specifies that the names in the nominated
3508    //   namespace can be used in the scope in which the
3509    //   using-directive appears after the using-directive. During
3510    //   unqualified name lookup (3.4.1), the names appear as if they
3511    //   were declared in the nearest enclosing namespace which
3512    //   contains both the using-directive and the nominated
3513    //   namespace. [Note: in this context, "contains" means "contains
3514    //   directly or indirectly". ]
3515
3516    // Find enclosing context containing both using-directive and
3517    // nominated namespace.
3518    NamespaceDecl *NS = getNamespaceDecl(Named);
3519    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3520    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3521      CommonAncestor = CommonAncestor->getParent();
3522
3523    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3524                                      SS.getRange(),
3525                                      (NestedNameSpecifier *)SS.getScopeRep(),
3526                                      IdentLoc, Named, CommonAncestor);
3527    PushUsingDirective(S, UDir);
3528  } else {
3529    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3530  }
3531
3532  // FIXME: We ignore attributes for now.
3533  delete AttrList;
3534  return UDir;
3535}
3536
3537void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3538  // If scope has associated entity, then using directive is at namespace
3539  // or translation unit scope. We add UsingDirectiveDecls, into
3540  // it's lookup structure.
3541  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3542    Ctx->addDecl(UDir);
3543  else
3544    // Otherwise it is block-sope. using-directives will affect lookup
3545    // only to the end of scope.
3546    S->PushUsingDirective(UDir);
3547}
3548
3549
3550Decl *Sema::ActOnUsingDeclaration(Scope *S,
3551                                            AccessSpecifier AS,
3552                                            bool HasUsingKeyword,
3553                                            SourceLocation UsingLoc,
3554                                            CXXScopeSpec &SS,
3555                                            UnqualifiedId &Name,
3556                                            AttributeList *AttrList,
3557                                            bool IsTypeName,
3558                                            SourceLocation TypenameLoc) {
3559  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3560
3561  switch (Name.getKind()) {
3562  case UnqualifiedId::IK_Identifier:
3563  case UnqualifiedId::IK_OperatorFunctionId:
3564  case UnqualifiedId::IK_LiteralOperatorId:
3565  case UnqualifiedId::IK_ConversionFunctionId:
3566    break;
3567
3568  case UnqualifiedId::IK_ConstructorName:
3569  case UnqualifiedId::IK_ConstructorTemplateId:
3570    // C++0x inherited constructors.
3571    if (getLangOptions().CPlusPlus0x) break;
3572
3573    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3574      << SS.getRange();
3575    return 0;
3576
3577  case UnqualifiedId::IK_DestructorName:
3578    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3579      << SS.getRange();
3580    return 0;
3581
3582  case UnqualifiedId::IK_TemplateId:
3583    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3584      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3585    return 0;
3586  }
3587
3588  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3589  DeclarationName TargetName = TargetNameInfo.getName();
3590  if (!TargetName)
3591    return 0;
3592
3593  // Warn about using declarations.
3594  // TODO: store that the declaration was written without 'using' and
3595  // talk about access decls instead of using decls in the
3596  // diagnostics.
3597  if (!HasUsingKeyword) {
3598    UsingLoc = Name.getSourceRange().getBegin();
3599
3600    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3601      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3602  }
3603
3604  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3605                                        TargetNameInfo, AttrList,
3606                                        /* IsInstantiation */ false,
3607                                        IsTypeName, TypenameLoc);
3608  if (UD)
3609    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3610
3611  return UD;
3612}
3613
3614/// \brief Determine whether a using declaration considers the given
3615/// declarations as "equivalent", e.g., if they are redeclarations of
3616/// the same entity or are both typedefs of the same type.
3617static bool
3618IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3619                         bool &SuppressRedeclaration) {
3620  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3621    SuppressRedeclaration = false;
3622    return true;
3623  }
3624
3625  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3626    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3627      SuppressRedeclaration = true;
3628      return Context.hasSameType(TD1->getUnderlyingType(),
3629                                 TD2->getUnderlyingType());
3630    }
3631
3632  return false;
3633}
3634
3635
3636/// Determines whether to create a using shadow decl for a particular
3637/// decl, given the set of decls existing prior to this using lookup.
3638bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3639                                const LookupResult &Previous) {
3640  // Diagnose finding a decl which is not from a base class of the
3641  // current class.  We do this now because there are cases where this
3642  // function will silently decide not to build a shadow decl, which
3643  // will pre-empt further diagnostics.
3644  //
3645  // We don't need to do this in C++0x because we do the check once on
3646  // the qualifier.
3647  //
3648  // FIXME: diagnose the following if we care enough:
3649  //   struct A { int foo; };
3650  //   struct B : A { using A::foo; };
3651  //   template <class T> struct C : A {};
3652  //   template <class T> struct D : C<T> { using B::foo; } // <---
3653  // This is invalid (during instantiation) in C++03 because B::foo
3654  // resolves to the using decl in B, which is not a base class of D<T>.
3655  // We can't diagnose it immediately because C<T> is an unknown
3656  // specialization.  The UsingShadowDecl in D<T> then points directly
3657  // to A::foo, which will look well-formed when we instantiate.
3658  // The right solution is to not collapse the shadow-decl chain.
3659  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3660    DeclContext *OrigDC = Orig->getDeclContext();
3661
3662    // Handle enums and anonymous structs.
3663    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3664    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3665    while (OrigRec->isAnonymousStructOrUnion())
3666      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3667
3668    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3669      if (OrigDC == CurContext) {
3670        Diag(Using->getLocation(),
3671             diag::err_using_decl_nested_name_specifier_is_current_class)
3672          << Using->getNestedNameRange();
3673        Diag(Orig->getLocation(), diag::note_using_decl_target);
3674        return true;
3675      }
3676
3677      Diag(Using->getNestedNameRange().getBegin(),
3678           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3679        << Using->getTargetNestedNameDecl()
3680        << cast<CXXRecordDecl>(CurContext)
3681        << Using->getNestedNameRange();
3682      Diag(Orig->getLocation(), diag::note_using_decl_target);
3683      return true;
3684    }
3685  }
3686
3687  if (Previous.empty()) return false;
3688
3689  NamedDecl *Target = Orig;
3690  if (isa<UsingShadowDecl>(Target))
3691    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3692
3693  // If the target happens to be one of the previous declarations, we
3694  // don't have a conflict.
3695  //
3696  // FIXME: but we might be increasing its access, in which case we
3697  // should redeclare it.
3698  NamedDecl *NonTag = 0, *Tag = 0;
3699  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3700         I != E; ++I) {
3701    NamedDecl *D = (*I)->getUnderlyingDecl();
3702    bool Result;
3703    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3704      return Result;
3705
3706    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3707  }
3708
3709  if (Target->isFunctionOrFunctionTemplate()) {
3710    FunctionDecl *FD;
3711    if (isa<FunctionTemplateDecl>(Target))
3712      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3713    else
3714      FD = cast<FunctionDecl>(Target);
3715
3716    NamedDecl *OldDecl = 0;
3717    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3718    case Ovl_Overload:
3719      return false;
3720
3721    case Ovl_NonFunction:
3722      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3723      break;
3724
3725    // We found a decl with the exact signature.
3726    case Ovl_Match:
3727      // If we're in a record, we want to hide the target, so we
3728      // return true (without a diagnostic) to tell the caller not to
3729      // build a shadow decl.
3730      if (CurContext->isRecord())
3731        return true;
3732
3733      // If we're not in a record, this is an error.
3734      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3735      break;
3736    }
3737
3738    Diag(Target->getLocation(), diag::note_using_decl_target);
3739    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3740    return true;
3741  }
3742
3743  // Target is not a function.
3744
3745  if (isa<TagDecl>(Target)) {
3746    // No conflict between a tag and a non-tag.
3747    if (!Tag) return false;
3748
3749    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3750    Diag(Target->getLocation(), diag::note_using_decl_target);
3751    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3752    return true;
3753  }
3754
3755  // No conflict between a tag and a non-tag.
3756  if (!NonTag) return false;
3757
3758  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3759  Diag(Target->getLocation(), diag::note_using_decl_target);
3760  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3761  return true;
3762}
3763
3764/// Builds a shadow declaration corresponding to a 'using' declaration.
3765UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3766                                            UsingDecl *UD,
3767                                            NamedDecl *Orig) {
3768
3769  // If we resolved to another shadow declaration, just coalesce them.
3770  NamedDecl *Target = Orig;
3771  if (isa<UsingShadowDecl>(Target)) {
3772    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3773    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3774  }
3775
3776  UsingShadowDecl *Shadow
3777    = UsingShadowDecl::Create(Context, CurContext,
3778                              UD->getLocation(), UD, Target);
3779  UD->addShadowDecl(Shadow);
3780
3781  if (S)
3782    PushOnScopeChains(Shadow, S);
3783  else
3784    CurContext->addDecl(Shadow);
3785  Shadow->setAccess(UD->getAccess());
3786
3787  // Register it as a conversion if appropriate.
3788  if (Shadow->getDeclName().getNameKind()
3789        == DeclarationName::CXXConversionFunctionName)
3790    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3791
3792  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3793    Shadow->setInvalidDecl();
3794
3795  return Shadow;
3796}
3797
3798/// Hides a using shadow declaration.  This is required by the current
3799/// using-decl implementation when a resolvable using declaration in a
3800/// class is followed by a declaration which would hide or override
3801/// one or more of the using decl's targets; for example:
3802///
3803///   struct Base { void foo(int); };
3804///   struct Derived : Base {
3805///     using Base::foo;
3806///     void foo(int);
3807///   };
3808///
3809/// The governing language is C++03 [namespace.udecl]p12:
3810///
3811///   When a using-declaration brings names from a base class into a
3812///   derived class scope, member functions in the derived class
3813///   override and/or hide member functions with the same name and
3814///   parameter types in a base class (rather than conflicting).
3815///
3816/// There are two ways to implement this:
3817///   (1) optimistically create shadow decls when they're not hidden
3818///       by existing declarations, or
3819///   (2) don't create any shadow decls (or at least don't make them
3820///       visible) until we've fully parsed/instantiated the class.
3821/// The problem with (1) is that we might have to retroactively remove
3822/// a shadow decl, which requires several O(n) operations because the
3823/// decl structures are (very reasonably) not designed for removal.
3824/// (2) avoids this but is very fiddly and phase-dependent.
3825void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3826  if (Shadow->getDeclName().getNameKind() ==
3827        DeclarationName::CXXConversionFunctionName)
3828    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3829
3830  // Remove it from the DeclContext...
3831  Shadow->getDeclContext()->removeDecl(Shadow);
3832
3833  // ...and the scope, if applicable...
3834  if (S) {
3835    S->RemoveDecl(Shadow);
3836    IdResolver.RemoveDecl(Shadow);
3837  }
3838
3839  // ...and the using decl.
3840  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3841
3842  // TODO: complain somehow if Shadow was used.  It shouldn't
3843  // be possible for this to happen, because...?
3844}
3845
3846/// Builds a using declaration.
3847///
3848/// \param IsInstantiation - Whether this call arises from an
3849///   instantiation of an unresolved using declaration.  We treat
3850///   the lookup differently for these declarations.
3851NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3852                                       SourceLocation UsingLoc,
3853                                       CXXScopeSpec &SS,
3854                                       const DeclarationNameInfo &NameInfo,
3855                                       AttributeList *AttrList,
3856                                       bool IsInstantiation,
3857                                       bool IsTypeName,
3858                                       SourceLocation TypenameLoc) {
3859  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3860  SourceLocation IdentLoc = NameInfo.getLoc();
3861  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3862
3863  // FIXME: We ignore attributes for now.
3864  delete AttrList;
3865
3866  if (SS.isEmpty()) {
3867    Diag(IdentLoc, diag::err_using_requires_qualname);
3868    return 0;
3869  }
3870
3871  // Do the redeclaration lookup in the current scope.
3872  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3873                        ForRedeclaration);
3874  Previous.setHideTags(false);
3875  if (S) {
3876    LookupName(Previous, S);
3877
3878    // It is really dumb that we have to do this.
3879    LookupResult::Filter F = Previous.makeFilter();
3880    while (F.hasNext()) {
3881      NamedDecl *D = F.next();
3882      if (!isDeclInScope(D, CurContext, S))
3883        F.erase();
3884    }
3885    F.done();
3886  } else {
3887    assert(IsInstantiation && "no scope in non-instantiation");
3888    assert(CurContext->isRecord() && "scope not record in instantiation");
3889    LookupQualifiedName(Previous, CurContext);
3890  }
3891
3892  NestedNameSpecifier *NNS =
3893    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3894
3895  // Check for invalid redeclarations.
3896  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3897    return 0;
3898
3899  // Check for bad qualifiers.
3900  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3901    return 0;
3902
3903  DeclContext *LookupContext = computeDeclContext(SS);
3904  NamedDecl *D;
3905  if (!LookupContext) {
3906    if (IsTypeName) {
3907      // FIXME: not all declaration name kinds are legal here
3908      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3909                                              UsingLoc, TypenameLoc,
3910                                              SS.getRange(), NNS,
3911                                              IdentLoc, NameInfo.getName());
3912    } else {
3913      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3914                                           UsingLoc, SS.getRange(),
3915                                           NNS, NameInfo);
3916    }
3917  } else {
3918    D = UsingDecl::Create(Context, CurContext,
3919                          SS.getRange(), UsingLoc, NNS, NameInfo,
3920                          IsTypeName);
3921  }
3922  D->setAccess(AS);
3923  CurContext->addDecl(D);
3924
3925  if (!LookupContext) return D;
3926  UsingDecl *UD = cast<UsingDecl>(D);
3927
3928  if (RequireCompleteDeclContext(SS, LookupContext)) {
3929    UD->setInvalidDecl();
3930    return UD;
3931  }
3932
3933  // Look up the target name.
3934
3935  LookupResult R(*this, NameInfo, LookupOrdinaryName);
3936
3937  // Unlike most lookups, we don't always want to hide tag
3938  // declarations: tag names are visible through the using declaration
3939  // even if hidden by ordinary names, *except* in a dependent context
3940  // where it's important for the sanity of two-phase lookup.
3941  if (!IsInstantiation)
3942    R.setHideTags(false);
3943
3944  LookupQualifiedName(R, LookupContext);
3945
3946  if (R.empty()) {
3947    Diag(IdentLoc, diag::err_no_member)
3948      << NameInfo.getName() << LookupContext << SS.getRange();
3949    UD->setInvalidDecl();
3950    return UD;
3951  }
3952
3953  if (R.isAmbiguous()) {
3954    UD->setInvalidDecl();
3955    return UD;
3956  }
3957
3958  if (IsTypeName) {
3959    // If we asked for a typename and got a non-type decl, error out.
3960    if (!R.getAsSingle<TypeDecl>()) {
3961      Diag(IdentLoc, diag::err_using_typename_non_type);
3962      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3963        Diag((*I)->getUnderlyingDecl()->getLocation(),
3964             diag::note_using_decl_target);
3965      UD->setInvalidDecl();
3966      return UD;
3967    }
3968  } else {
3969    // If we asked for a non-typename and we got a type, error out,
3970    // but only if this is an instantiation of an unresolved using
3971    // decl.  Otherwise just silently find the type name.
3972    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3973      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3974      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3975      UD->setInvalidDecl();
3976      return UD;
3977    }
3978  }
3979
3980  // C++0x N2914 [namespace.udecl]p6:
3981  // A using-declaration shall not name a namespace.
3982  if (R.getAsSingle<NamespaceDecl>()) {
3983    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3984      << SS.getRange();
3985    UD->setInvalidDecl();
3986    return UD;
3987  }
3988
3989  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3990    if (!CheckUsingShadowDecl(UD, *I, Previous))
3991      BuildUsingShadowDecl(S, UD, *I);
3992  }
3993
3994  return UD;
3995}
3996
3997/// Checks that the given using declaration is not an invalid
3998/// redeclaration.  Note that this is checking only for the using decl
3999/// itself, not for any ill-formedness among the UsingShadowDecls.
4000bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4001                                       bool isTypeName,
4002                                       const CXXScopeSpec &SS,
4003                                       SourceLocation NameLoc,
4004                                       const LookupResult &Prev) {
4005  // C++03 [namespace.udecl]p8:
4006  // C++0x [namespace.udecl]p10:
4007  //   A using-declaration is a declaration and can therefore be used
4008  //   repeatedly where (and only where) multiple declarations are
4009  //   allowed.
4010  //
4011  // That's in non-member contexts.
4012  if (!CurContext->getLookupContext()->isRecord())
4013    return false;
4014
4015  NestedNameSpecifier *Qual
4016    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4017
4018  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4019    NamedDecl *D = *I;
4020
4021    bool DTypename;
4022    NestedNameSpecifier *DQual;
4023    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4024      DTypename = UD->isTypeName();
4025      DQual = UD->getTargetNestedNameDecl();
4026    } else if (UnresolvedUsingValueDecl *UD
4027                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4028      DTypename = false;
4029      DQual = UD->getTargetNestedNameSpecifier();
4030    } else if (UnresolvedUsingTypenameDecl *UD
4031                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4032      DTypename = true;
4033      DQual = UD->getTargetNestedNameSpecifier();
4034    } else continue;
4035
4036    // using decls differ if one says 'typename' and the other doesn't.
4037    // FIXME: non-dependent using decls?
4038    if (isTypeName != DTypename) continue;
4039
4040    // using decls differ if they name different scopes (but note that
4041    // template instantiation can cause this check to trigger when it
4042    // didn't before instantiation).
4043    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4044        Context.getCanonicalNestedNameSpecifier(DQual))
4045      continue;
4046
4047    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4048    Diag(D->getLocation(), diag::note_using_decl) << 1;
4049    return true;
4050  }
4051
4052  return false;
4053}
4054
4055
4056/// Checks that the given nested-name qualifier used in a using decl
4057/// in the current context is appropriately related to the current
4058/// scope.  If an error is found, diagnoses it and returns true.
4059bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4060                                   const CXXScopeSpec &SS,
4061                                   SourceLocation NameLoc) {
4062  DeclContext *NamedContext = computeDeclContext(SS);
4063
4064  if (!CurContext->isRecord()) {
4065    // C++03 [namespace.udecl]p3:
4066    // C++0x [namespace.udecl]p8:
4067    //   A using-declaration for a class member shall be a member-declaration.
4068
4069    // If we weren't able to compute a valid scope, it must be a
4070    // dependent class scope.
4071    if (!NamedContext || NamedContext->isRecord()) {
4072      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4073        << SS.getRange();
4074      return true;
4075    }
4076
4077    // Otherwise, everything is known to be fine.
4078    return false;
4079  }
4080
4081  // The current scope is a record.
4082
4083  // If the named context is dependent, we can't decide much.
4084  if (!NamedContext) {
4085    // FIXME: in C++0x, we can diagnose if we can prove that the
4086    // nested-name-specifier does not refer to a base class, which is
4087    // still possible in some cases.
4088
4089    // Otherwise we have to conservatively report that things might be
4090    // okay.
4091    return false;
4092  }
4093
4094  if (!NamedContext->isRecord()) {
4095    // Ideally this would point at the last name in the specifier,
4096    // but we don't have that level of source info.
4097    Diag(SS.getRange().getBegin(),
4098         diag::err_using_decl_nested_name_specifier_is_not_class)
4099      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4100    return true;
4101  }
4102
4103  if (getLangOptions().CPlusPlus0x) {
4104    // C++0x [namespace.udecl]p3:
4105    //   In a using-declaration used as a member-declaration, the
4106    //   nested-name-specifier shall name a base class of the class
4107    //   being defined.
4108
4109    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4110                                 cast<CXXRecordDecl>(NamedContext))) {
4111      if (CurContext == NamedContext) {
4112        Diag(NameLoc,
4113             diag::err_using_decl_nested_name_specifier_is_current_class)
4114          << SS.getRange();
4115        return true;
4116      }
4117
4118      Diag(SS.getRange().getBegin(),
4119           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4120        << (NestedNameSpecifier*) SS.getScopeRep()
4121        << cast<CXXRecordDecl>(CurContext)
4122        << SS.getRange();
4123      return true;
4124    }
4125
4126    return false;
4127  }
4128
4129  // C++03 [namespace.udecl]p4:
4130  //   A using-declaration used as a member-declaration shall refer
4131  //   to a member of a base class of the class being defined [etc.].
4132
4133  // Salient point: SS doesn't have to name a base class as long as
4134  // lookup only finds members from base classes.  Therefore we can
4135  // diagnose here only if we can prove that that can't happen,
4136  // i.e. if the class hierarchies provably don't intersect.
4137
4138  // TODO: it would be nice if "definitely valid" results were cached
4139  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4140  // need to be repeated.
4141
4142  struct UserData {
4143    llvm::DenseSet<const CXXRecordDecl*> Bases;
4144
4145    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4146      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4147      Data->Bases.insert(Base);
4148      return true;
4149    }
4150
4151    bool hasDependentBases(const CXXRecordDecl *Class) {
4152      return !Class->forallBases(collect, this);
4153    }
4154
4155    /// Returns true if the base is dependent or is one of the
4156    /// accumulated base classes.
4157    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4158      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4159      return !Data->Bases.count(Base);
4160    }
4161
4162    bool mightShareBases(const CXXRecordDecl *Class) {
4163      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4164    }
4165  };
4166
4167  UserData Data;
4168
4169  // Returns false if we find a dependent base.
4170  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4171    return false;
4172
4173  // Returns false if the class has a dependent base or if it or one
4174  // of its bases is present in the base set of the current context.
4175  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4176    return false;
4177
4178  Diag(SS.getRange().getBegin(),
4179       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4180    << (NestedNameSpecifier*) SS.getScopeRep()
4181    << cast<CXXRecordDecl>(CurContext)
4182    << SS.getRange();
4183
4184  return true;
4185}
4186
4187Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4188                                             SourceLocation NamespaceLoc,
4189                                             SourceLocation AliasLoc,
4190                                             IdentifierInfo *Alias,
4191                                             CXXScopeSpec &SS,
4192                                             SourceLocation IdentLoc,
4193                                             IdentifierInfo *Ident) {
4194
4195  // Lookup the namespace name.
4196  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4197  LookupParsedName(R, S, &SS);
4198
4199  // Check if we have a previous declaration with the same name.
4200  NamedDecl *PrevDecl
4201    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4202                       ForRedeclaration);
4203  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4204    PrevDecl = 0;
4205
4206  if (PrevDecl) {
4207    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4208      // We already have an alias with the same name that points to the same
4209      // namespace, so don't create a new one.
4210      // FIXME: At some point, we'll want to create the (redundant)
4211      // declaration to maintain better source information.
4212      if (!R.isAmbiguous() && !R.empty() &&
4213          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4214        return 0;
4215    }
4216
4217    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4218      diag::err_redefinition_different_kind;
4219    Diag(AliasLoc, DiagID) << Alias;
4220    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4221    return 0;
4222  }
4223
4224  if (R.isAmbiguous())
4225    return 0;
4226
4227  if (R.empty()) {
4228    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4229                                                CTC_NoKeywords, 0)) {
4230      if (R.getAsSingle<NamespaceDecl>() ||
4231          R.getAsSingle<NamespaceAliasDecl>()) {
4232        if (DeclContext *DC = computeDeclContext(SS, false))
4233          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4234            << Ident << DC << Corrected << SS.getRange()
4235            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4236        else
4237          Diag(IdentLoc, diag::err_using_directive_suggest)
4238            << Ident << Corrected
4239            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4240
4241        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4242          << Corrected;
4243
4244        Ident = Corrected.getAsIdentifierInfo();
4245      } else {
4246        R.clear();
4247        R.setLookupName(Ident);
4248      }
4249    }
4250
4251    if (R.empty()) {
4252      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4253      return 0;
4254    }
4255  }
4256
4257  NamespaceAliasDecl *AliasDecl =
4258    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4259                               Alias, SS.getRange(),
4260                               (NestedNameSpecifier *)SS.getScopeRep(),
4261                               IdentLoc, R.getFoundDecl());
4262
4263  PushOnScopeChains(AliasDecl, S);
4264  return AliasDecl;
4265}
4266
4267namespace {
4268  /// \brief Scoped object used to handle the state changes required in Sema
4269  /// to implicitly define the body of a C++ member function;
4270  class ImplicitlyDefinedFunctionScope {
4271    Sema &S;
4272    DeclContext *PreviousContext;
4273
4274  public:
4275    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4276      : S(S), PreviousContext(S.CurContext)
4277    {
4278      S.CurContext = Method;
4279      S.PushFunctionScope();
4280      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4281    }
4282
4283    ~ImplicitlyDefinedFunctionScope() {
4284      S.PopExpressionEvaluationContext();
4285      S.PopFunctionOrBlockScope();
4286      S.CurContext = PreviousContext;
4287    }
4288  };
4289}
4290
4291CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4292                                                     CXXRecordDecl *ClassDecl) {
4293  // C++ [class.ctor]p5:
4294  //   A default constructor for a class X is a constructor of class X
4295  //   that can be called without an argument. If there is no
4296  //   user-declared constructor for class X, a default constructor is
4297  //   implicitly declared. An implicitly-declared default constructor
4298  //   is an inline public member of its class.
4299  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4300         "Should not build implicit default constructor!");
4301
4302  // C++ [except.spec]p14:
4303  //   An implicitly declared special member function (Clause 12) shall have an
4304  //   exception-specification. [...]
4305  ImplicitExceptionSpecification ExceptSpec(Context);
4306
4307  // Direct base-class destructors.
4308  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4309                                       BEnd = ClassDecl->bases_end();
4310       B != BEnd; ++B) {
4311    if (B->isVirtual()) // Handled below.
4312      continue;
4313
4314    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4315      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4316      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4317        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4318      else if (CXXConstructorDecl *Constructor
4319                                       = BaseClassDecl->getDefaultConstructor())
4320        ExceptSpec.CalledDecl(Constructor);
4321    }
4322  }
4323
4324  // Virtual base-class destructors.
4325  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4326                                       BEnd = ClassDecl->vbases_end();
4327       B != BEnd; ++B) {
4328    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4329      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4330      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4331        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4332      else if (CXXConstructorDecl *Constructor
4333                                       = BaseClassDecl->getDefaultConstructor())
4334        ExceptSpec.CalledDecl(Constructor);
4335    }
4336  }
4337
4338  // Field destructors.
4339  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4340                               FEnd = ClassDecl->field_end();
4341       F != FEnd; ++F) {
4342    if (const RecordType *RecordTy
4343              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4344      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4345      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4346        ExceptSpec.CalledDecl(
4347                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4348      else if (CXXConstructorDecl *Constructor
4349                                      = FieldClassDecl->getDefaultConstructor())
4350        ExceptSpec.CalledDecl(Constructor);
4351    }
4352  }
4353
4354
4355  // Create the actual constructor declaration.
4356  CanQualType ClassType
4357    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4358  DeclarationName Name
4359    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4360  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4361  CXXConstructorDecl *DefaultCon
4362    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4363                                 Context.getFunctionType(Context.VoidTy,
4364                                                         0, 0, false, 0,
4365                                       ExceptSpec.hasExceptionSpecification(),
4366                                     ExceptSpec.hasAnyExceptionSpecification(),
4367                                                         ExceptSpec.size(),
4368                                                         ExceptSpec.data(),
4369                                                       FunctionType::ExtInfo()),
4370                                 /*TInfo=*/0,
4371                                 /*isExplicit=*/false,
4372                                 /*isInline=*/true,
4373                                 /*isImplicitlyDeclared=*/true);
4374  DefaultCon->setAccess(AS_public);
4375  DefaultCon->setImplicit();
4376  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4377
4378  // Note that we have declared this constructor.
4379  ClassDecl->setDeclaredDefaultConstructor(true);
4380  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4381
4382  if (Scope *S = getScopeForContext(ClassDecl))
4383    PushOnScopeChains(DefaultCon, S, false);
4384  ClassDecl->addDecl(DefaultCon);
4385
4386  return DefaultCon;
4387}
4388
4389void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4390                                            CXXConstructorDecl *Constructor) {
4391  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4392          !Constructor->isUsed(false)) &&
4393    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4394
4395  CXXRecordDecl *ClassDecl = Constructor->getParent();
4396  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4397
4398  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4399  ErrorTrap Trap(*this);
4400  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4401      Trap.hasErrorOccurred()) {
4402    Diag(CurrentLocation, diag::note_member_synthesized_at)
4403      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4404    Constructor->setInvalidDecl();
4405  } else {
4406    Constructor->setUsed();
4407    MarkVTableUsed(CurrentLocation, ClassDecl);
4408  }
4409}
4410
4411CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4412  // C++ [class.dtor]p2:
4413  //   If a class has no user-declared destructor, a destructor is
4414  //   declared implicitly. An implicitly-declared destructor is an
4415  //   inline public member of its class.
4416
4417  // C++ [except.spec]p14:
4418  //   An implicitly declared special member function (Clause 12) shall have
4419  //   an exception-specification.
4420  ImplicitExceptionSpecification ExceptSpec(Context);
4421
4422  // Direct base-class destructors.
4423  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4424                                       BEnd = ClassDecl->bases_end();
4425       B != BEnd; ++B) {
4426    if (B->isVirtual()) // Handled below.
4427      continue;
4428
4429    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4430      ExceptSpec.CalledDecl(
4431                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4432  }
4433
4434  // Virtual base-class destructors.
4435  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4436                                       BEnd = ClassDecl->vbases_end();
4437       B != BEnd; ++B) {
4438    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4439      ExceptSpec.CalledDecl(
4440                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4441  }
4442
4443  // Field destructors.
4444  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4445                               FEnd = ClassDecl->field_end();
4446       F != FEnd; ++F) {
4447    if (const RecordType *RecordTy
4448        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4449      ExceptSpec.CalledDecl(
4450                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4451  }
4452
4453  // Create the actual destructor declaration.
4454  QualType Ty = Context.getFunctionType(Context.VoidTy,
4455                                        0, 0, false, 0,
4456                                        ExceptSpec.hasExceptionSpecification(),
4457                                    ExceptSpec.hasAnyExceptionSpecification(),
4458                                        ExceptSpec.size(),
4459                                        ExceptSpec.data(),
4460                                        FunctionType::ExtInfo());
4461
4462  CanQualType ClassType
4463    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4464  DeclarationName Name
4465    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4466  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4467  CXXDestructorDecl *Destructor
4468    = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty,
4469                                /*isInline=*/true,
4470                                /*isImplicitlyDeclared=*/true);
4471  Destructor->setAccess(AS_public);
4472  Destructor->setImplicit();
4473  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4474
4475  // Note that we have declared this destructor.
4476  ClassDecl->setDeclaredDestructor(true);
4477  ++ASTContext::NumImplicitDestructorsDeclared;
4478
4479  // Introduce this destructor into its scope.
4480  if (Scope *S = getScopeForContext(ClassDecl))
4481    PushOnScopeChains(Destructor, S, false);
4482  ClassDecl->addDecl(Destructor);
4483
4484  // This could be uniqued if it ever proves significant.
4485  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4486
4487  AddOverriddenMethods(ClassDecl, Destructor);
4488
4489  return Destructor;
4490}
4491
4492void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4493                                    CXXDestructorDecl *Destructor) {
4494  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4495         "DefineImplicitDestructor - call it for implicit default dtor");
4496  CXXRecordDecl *ClassDecl = Destructor->getParent();
4497  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4498
4499  if (Destructor->isInvalidDecl())
4500    return;
4501
4502  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4503
4504  ErrorTrap Trap(*this);
4505  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4506                                         Destructor->getParent());
4507
4508  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4509    Diag(CurrentLocation, diag::note_member_synthesized_at)
4510      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4511
4512    Destructor->setInvalidDecl();
4513    return;
4514  }
4515
4516  Destructor->setUsed();
4517  MarkVTableUsed(CurrentLocation, ClassDecl);
4518}
4519
4520/// \brief Builds a statement that copies the given entity from \p From to
4521/// \c To.
4522///
4523/// This routine is used to copy the members of a class with an
4524/// implicitly-declared copy assignment operator. When the entities being
4525/// copied are arrays, this routine builds for loops to copy them.
4526///
4527/// \param S The Sema object used for type-checking.
4528///
4529/// \param Loc The location where the implicit copy is being generated.
4530///
4531/// \param T The type of the expressions being copied. Both expressions must
4532/// have this type.
4533///
4534/// \param To The expression we are copying to.
4535///
4536/// \param From The expression we are copying from.
4537///
4538/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4539/// Otherwise, it's a non-static member subobject.
4540///
4541/// \param Depth Internal parameter recording the depth of the recursion.
4542///
4543/// \returns A statement or a loop that copies the expressions.
4544static Sema::OwningStmtResult
4545BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4546                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4547                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4548  typedef Sema::OwningStmtResult OwningStmtResult;
4549  typedef Sema::OwningExprResult OwningExprResult;
4550
4551  // C++0x [class.copy]p30:
4552  //   Each subobject is assigned in the manner appropriate to its type:
4553  //
4554  //     - if the subobject is of class type, the copy assignment operator
4555  //       for the class is used (as if by explicit qualification; that is,
4556  //       ignoring any possible virtual overriding functions in more derived
4557  //       classes);
4558  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4559    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4560
4561    // Look for operator=.
4562    DeclarationName Name
4563      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4564    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4565    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4566
4567    // Filter out any result that isn't a copy-assignment operator.
4568    LookupResult::Filter F = OpLookup.makeFilter();
4569    while (F.hasNext()) {
4570      NamedDecl *D = F.next();
4571      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4572        if (Method->isCopyAssignmentOperator())
4573          continue;
4574
4575      F.erase();
4576    }
4577    F.done();
4578
4579    // Suppress the protected check (C++ [class.protected]) for each of the
4580    // assignment operators we found. This strange dance is required when
4581    // we're assigning via a base classes's copy-assignment operator. To
4582    // ensure that we're getting the right base class subobject (without
4583    // ambiguities), we need to cast "this" to that subobject type; to
4584    // ensure that we don't go through the virtual call mechanism, we need
4585    // to qualify the operator= name with the base class (see below). However,
4586    // this means that if the base class has a protected copy assignment
4587    // operator, the protected member access check will fail. So, we
4588    // rewrite "protected" access to "public" access in this case, since we
4589    // know by construction that we're calling from a derived class.
4590    if (CopyingBaseSubobject) {
4591      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4592           L != LEnd; ++L) {
4593        if (L.getAccess() == AS_protected)
4594          L.setAccess(AS_public);
4595      }
4596    }
4597
4598    // Create the nested-name-specifier that will be used to qualify the
4599    // reference to operator=; this is required to suppress the virtual
4600    // call mechanism.
4601    CXXScopeSpec SS;
4602    SS.setRange(Loc);
4603    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4604                                               T.getTypePtr()));
4605
4606    // Create the reference to operator=.
4607    OwningExprResult OpEqualRef
4608      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4609                                   /*FirstQualifierInScope=*/0, OpLookup,
4610                                   /*TemplateArgs=*/0,
4611                                   /*SuppressQualifierCheck=*/true);
4612    if (OpEqualRef.isInvalid())
4613      return S.StmtError();
4614
4615    // Build the call to the assignment operator.
4616    Expr *FromE = From.takeAs<Expr>();
4617    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4618                                                      OpEqualRef.takeAs<Expr>(),
4619                                                        Loc, &FromE, 1, 0, Loc);
4620    if (Call.isInvalid())
4621      return S.StmtError();
4622
4623    return S.Owned(Call.takeAs<Stmt>());
4624  }
4625
4626  //     - if the subobject is of scalar type, the built-in assignment
4627  //       operator is used.
4628  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4629  if (!ArrayTy) {
4630    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4631                                                       BinaryOperator::Assign,
4632                                                       To.takeAs<Expr>(),
4633                                                       From.takeAs<Expr>());
4634    if (Assignment.isInvalid())
4635      return S.StmtError();
4636
4637    return S.Owned(Assignment.takeAs<Stmt>());
4638  }
4639
4640  //     - if the subobject is an array, each element is assigned, in the
4641  //       manner appropriate to the element type;
4642
4643  // Construct a loop over the array bounds, e.g.,
4644  //
4645  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4646  //
4647  // that will copy each of the array elements.
4648  QualType SizeType = S.Context.getSizeType();
4649
4650  // Create the iteration variable.
4651  IdentifierInfo *IterationVarName = 0;
4652  {
4653    llvm::SmallString<8> Str;
4654    llvm::raw_svector_ostream OS(Str);
4655    OS << "__i" << Depth;
4656    IterationVarName = &S.Context.Idents.get(OS.str());
4657  }
4658  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4659                                          IterationVarName, SizeType,
4660                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4661                                          VarDecl::None, VarDecl::None);
4662
4663  // Initialize the iteration variable to zero.
4664  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4665  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4666
4667  // Create a reference to the iteration variable; we'll use this several
4668  // times throughout.
4669  Expr *IterationVarRef
4670    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4671  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4672
4673  // Create the DeclStmt that holds the iteration variable.
4674  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4675
4676  // Create the comparison against the array bound.
4677  llvm::APInt Upper = ArrayTy->getSize();
4678  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4679  OwningExprResult Comparison
4680    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4681                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4682                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4683
4684  // Create the pre-increment of the iteration variable.
4685  OwningExprResult Increment
4686    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4687                                            UnaryOperator::PreInc,
4688                                            SizeType, Loc));
4689
4690  // Subscript the "from" and "to" expressions with the iteration variable.
4691  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4692                                           S.Owned(IterationVarRef->Retain()),
4693                                           Loc);
4694  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4695                                         S.Owned(IterationVarRef->Retain()),
4696                                         Loc);
4697  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4698  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4699
4700  // Build the copy for an individual element of the array.
4701  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4702                                                ArrayTy->getElementType(),
4703                                                move(To), move(From),
4704                                                CopyingBaseSubobject, Depth+1);
4705  if (Copy.isInvalid())
4706    return S.StmtError();
4707
4708  // Construct the loop that copies all elements of this array.
4709  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4710                        S.MakeFullExpr(Comparison),
4711                        0, S.MakeFullExpr(Increment),
4712                        Loc, move(Copy));
4713}
4714
4715/// \brief Determine whether the given class has a copy assignment operator
4716/// that accepts a const-qualified argument.
4717static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4718  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4719
4720  if (!Class->hasDeclaredCopyAssignment())
4721    S.DeclareImplicitCopyAssignment(Class);
4722
4723  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4724  DeclarationName OpName
4725    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4726
4727  DeclContext::lookup_const_iterator Op, OpEnd;
4728  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4729    // C++ [class.copy]p9:
4730    //   A user-declared copy assignment operator is a non-static non-template
4731    //   member function of class X with exactly one parameter of type X, X&,
4732    //   const X&, volatile X& or const volatile X&.
4733    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4734    if (!Method)
4735      continue;
4736
4737    if (Method->isStatic())
4738      continue;
4739    if (Method->getPrimaryTemplate())
4740      continue;
4741    const FunctionProtoType *FnType =
4742    Method->getType()->getAs<FunctionProtoType>();
4743    assert(FnType && "Overloaded operator has no prototype.");
4744    // Don't assert on this; an invalid decl might have been left in the AST.
4745    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4746      continue;
4747    bool AcceptsConst = true;
4748    QualType ArgType = FnType->getArgType(0);
4749    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4750      ArgType = Ref->getPointeeType();
4751      // Is it a non-const lvalue reference?
4752      if (!ArgType.isConstQualified())
4753        AcceptsConst = false;
4754    }
4755    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4756      continue;
4757
4758    // We have a single argument of type cv X or cv X&, i.e. we've found the
4759    // copy assignment operator. Return whether it accepts const arguments.
4760    return AcceptsConst;
4761  }
4762  assert(Class->isInvalidDecl() &&
4763         "No copy assignment operator declared in valid code.");
4764  return false;
4765}
4766
4767CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4768  // Note: The following rules are largely analoguous to the copy
4769  // constructor rules. Note that virtual bases are not taken into account
4770  // for determining the argument type of the operator. Note also that
4771  // operators taking an object instead of a reference are allowed.
4772
4773
4774  // C++ [class.copy]p10:
4775  //   If the class definition does not explicitly declare a copy
4776  //   assignment operator, one is declared implicitly.
4777  //   The implicitly-defined copy assignment operator for a class X
4778  //   will have the form
4779  //
4780  //       X& X::operator=(const X&)
4781  //
4782  //   if
4783  bool HasConstCopyAssignment = true;
4784
4785  //       -- each direct base class B of X has a copy assignment operator
4786  //          whose parameter is of type const B&, const volatile B& or B,
4787  //          and
4788  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4789                                       BaseEnd = ClassDecl->bases_end();
4790       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4791    assert(!Base->getType()->isDependentType() &&
4792           "Cannot generate implicit members for class with dependent bases.");
4793    const CXXRecordDecl *BaseClassDecl
4794      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4795    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4796  }
4797
4798  //       -- for all the nonstatic data members of X that are of a class
4799  //          type M (or array thereof), each such class type has a copy
4800  //          assignment operator whose parameter is of type const M&,
4801  //          const volatile M& or M.
4802  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4803                                  FieldEnd = ClassDecl->field_end();
4804       HasConstCopyAssignment && Field != FieldEnd;
4805       ++Field) {
4806    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4807    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4808      const CXXRecordDecl *FieldClassDecl
4809        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4810      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4811    }
4812  }
4813
4814  //   Otherwise, the implicitly declared copy assignment operator will
4815  //   have the form
4816  //
4817  //       X& X::operator=(X&)
4818  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4819  QualType RetType = Context.getLValueReferenceType(ArgType);
4820  if (HasConstCopyAssignment)
4821    ArgType = ArgType.withConst();
4822  ArgType = Context.getLValueReferenceType(ArgType);
4823
4824  // C++ [except.spec]p14:
4825  //   An implicitly declared special member function (Clause 12) shall have an
4826  //   exception-specification. [...]
4827  ImplicitExceptionSpecification ExceptSpec(Context);
4828  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4829                                       BaseEnd = ClassDecl->bases_end();
4830       Base != BaseEnd; ++Base) {
4831    CXXRecordDecl *BaseClassDecl
4832      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4833
4834    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4835      DeclareImplicitCopyAssignment(BaseClassDecl);
4836
4837    if (CXXMethodDecl *CopyAssign
4838           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4839      ExceptSpec.CalledDecl(CopyAssign);
4840  }
4841  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4842                                  FieldEnd = ClassDecl->field_end();
4843       Field != FieldEnd;
4844       ++Field) {
4845    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4846    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4847      CXXRecordDecl *FieldClassDecl
4848        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4849
4850      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4851        DeclareImplicitCopyAssignment(FieldClassDecl);
4852
4853      if (CXXMethodDecl *CopyAssign
4854            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4855        ExceptSpec.CalledDecl(CopyAssign);
4856    }
4857  }
4858
4859  //   An implicitly-declared copy assignment operator is an inline public
4860  //   member of its class.
4861  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4862  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4863  CXXMethodDecl *CopyAssignment
4864    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4865                            Context.getFunctionType(RetType, &ArgType, 1,
4866                                                    false, 0,
4867                                         ExceptSpec.hasExceptionSpecification(),
4868                                      ExceptSpec.hasAnyExceptionSpecification(),
4869                                                    ExceptSpec.size(),
4870                                                    ExceptSpec.data(),
4871                                                    FunctionType::ExtInfo()),
4872                            /*TInfo=*/0, /*isStatic=*/false,
4873                            /*StorageClassAsWritten=*/FunctionDecl::None,
4874                            /*isInline=*/true);
4875  CopyAssignment->setAccess(AS_public);
4876  CopyAssignment->setImplicit();
4877  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4878  CopyAssignment->setCopyAssignment(true);
4879
4880  // Add the parameter to the operator.
4881  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
4882                                               ClassDecl->getLocation(),
4883                                               /*Id=*/0,
4884                                               ArgType, /*TInfo=*/0,
4885                                               VarDecl::None,
4886                                               VarDecl::None, 0);
4887  CopyAssignment->setParams(&FromParam, 1);
4888
4889  // Note that we have added this copy-assignment operator.
4890  ClassDecl->setDeclaredCopyAssignment(true);
4891  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
4892
4893  if (Scope *S = getScopeForContext(ClassDecl))
4894    PushOnScopeChains(CopyAssignment, S, false);
4895  ClassDecl->addDecl(CopyAssignment);
4896
4897  AddOverriddenMethods(ClassDecl, CopyAssignment);
4898  return CopyAssignment;
4899}
4900
4901void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4902                                        CXXMethodDecl *CopyAssignOperator) {
4903  assert((CopyAssignOperator->isImplicit() &&
4904          CopyAssignOperator->isOverloadedOperator() &&
4905          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4906          !CopyAssignOperator->isUsed(false)) &&
4907         "DefineImplicitCopyAssignment called for wrong function");
4908
4909  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4910
4911  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4912    CopyAssignOperator->setInvalidDecl();
4913    return;
4914  }
4915
4916  CopyAssignOperator->setUsed();
4917
4918  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4919  ErrorTrap Trap(*this);
4920
4921  // C++0x [class.copy]p30:
4922  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4923  //   for a non-union class X performs memberwise copy assignment of its
4924  //   subobjects. The direct base classes of X are assigned first, in the
4925  //   order of their declaration in the base-specifier-list, and then the
4926  //   immediate non-static data members of X are assigned, in the order in
4927  //   which they were declared in the class definition.
4928
4929  // The statements that form the synthesized function body.
4930  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4931
4932  // The parameter for the "other" object, which we are copying from.
4933  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4934  Qualifiers OtherQuals = Other->getType().getQualifiers();
4935  QualType OtherRefType = Other->getType();
4936  if (const LValueReferenceType *OtherRef
4937                                = OtherRefType->getAs<LValueReferenceType>()) {
4938    OtherRefType = OtherRef->getPointeeType();
4939    OtherQuals = OtherRefType.getQualifiers();
4940  }
4941
4942  // Our location for everything implicitly-generated.
4943  SourceLocation Loc = CopyAssignOperator->getLocation();
4944
4945  // Construct a reference to the "other" object. We'll be using this
4946  // throughout the generated ASTs.
4947  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4948  assert(OtherRef && "Reference to parameter cannot fail!");
4949
4950  // Construct the "this" pointer. We'll be using this throughout the generated
4951  // ASTs.
4952  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4953  assert(This && "Reference to this cannot fail!");
4954
4955  // Assign base classes.
4956  bool Invalid = false;
4957  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4958       E = ClassDecl->bases_end(); Base != E; ++Base) {
4959    // Form the assignment:
4960    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4961    QualType BaseType = Base->getType().getUnqualifiedType();
4962    CXXRecordDecl *BaseClassDecl = 0;
4963    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4964      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4965    else {
4966      Invalid = true;
4967      continue;
4968    }
4969
4970    CXXCastPath BasePath;
4971    BasePath.push_back(Base);
4972
4973    // Construct the "from" expression, which is an implicit cast to the
4974    // appropriately-qualified base type.
4975    Expr *From = OtherRef->Retain();
4976    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4977                      CastExpr::CK_UncheckedDerivedToBase,
4978                      ImplicitCastExpr::LValue, &BasePath);
4979
4980    // Dereference "this".
4981    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4982                                               Owned(This->Retain()));
4983
4984    // Implicitly cast "this" to the appropriately-qualified base type.
4985    Expr *ToE = To.takeAs<Expr>();
4986    ImpCastExprToType(ToE,
4987                      Context.getCVRQualifiedType(BaseType,
4988                                      CopyAssignOperator->getTypeQualifiers()),
4989                      CastExpr::CK_UncheckedDerivedToBase,
4990                      ImplicitCastExpr::LValue, &BasePath);
4991    To = Owned(ToE);
4992
4993    // Build the copy.
4994    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4995                                                  move(To), Owned(From),
4996                                                /*CopyingBaseSubobject=*/true);
4997    if (Copy.isInvalid()) {
4998      Diag(CurrentLocation, diag::note_member_synthesized_at)
4999        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5000      CopyAssignOperator->setInvalidDecl();
5001      return;
5002    }
5003
5004    // Success! Record the copy.
5005    Statements.push_back(Copy.takeAs<Expr>());
5006  }
5007
5008  // \brief Reference to the __builtin_memcpy function.
5009  Expr *BuiltinMemCpyRef = 0;
5010  // \brief Reference to the __builtin_objc_memmove_collectable function.
5011  Expr *CollectableMemCpyRef = 0;
5012
5013  // Assign non-static members.
5014  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5015                                  FieldEnd = ClassDecl->field_end();
5016       Field != FieldEnd; ++Field) {
5017    // Check for members of reference type; we can't copy those.
5018    if (Field->getType()->isReferenceType()) {
5019      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5020        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5021      Diag(Field->getLocation(), diag::note_declared_at);
5022      Diag(CurrentLocation, diag::note_member_synthesized_at)
5023        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5024      Invalid = true;
5025      continue;
5026    }
5027
5028    // Check for members of const-qualified, non-class type.
5029    QualType BaseType = Context.getBaseElementType(Field->getType());
5030    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5031      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5032        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5033      Diag(Field->getLocation(), diag::note_declared_at);
5034      Diag(CurrentLocation, diag::note_member_synthesized_at)
5035        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5036      Invalid = true;
5037      continue;
5038    }
5039
5040    QualType FieldType = Field->getType().getNonReferenceType();
5041    if (FieldType->isIncompleteArrayType()) {
5042      assert(ClassDecl->hasFlexibleArrayMember() &&
5043             "Incomplete array type is not valid");
5044      continue;
5045    }
5046
5047    // Build references to the field in the object we're copying from and to.
5048    CXXScopeSpec SS; // Intentionally empty
5049    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5050                              LookupMemberName);
5051    MemberLookup.addDecl(*Field);
5052    MemberLookup.resolveKind();
5053    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
5054                                                     OtherRefType,
5055                                                     Loc, /*IsArrow=*/false,
5056                                                     SS, 0, MemberLookup, 0);
5057    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
5058                                                   This->getType(),
5059                                                   Loc, /*IsArrow=*/true,
5060                                                   SS, 0, MemberLookup, 0);
5061    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5062    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5063
5064    // If the field should be copied with __builtin_memcpy rather than via
5065    // explicit assignments, do so. This optimization only applies for arrays
5066    // of scalars and arrays of class type with trivial copy-assignment
5067    // operators.
5068    if (FieldType->isArrayType() &&
5069        (!BaseType->isRecordType() ||
5070         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5071           ->hasTrivialCopyAssignment())) {
5072      // Compute the size of the memory buffer to be copied.
5073      QualType SizeType = Context.getSizeType();
5074      llvm::APInt Size(Context.getTypeSize(SizeType),
5075                       Context.getTypeSizeInChars(BaseType).getQuantity());
5076      for (const ConstantArrayType *Array
5077              = Context.getAsConstantArrayType(FieldType);
5078           Array;
5079           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5080        llvm::APInt ArraySize = Array->getSize();
5081        ArraySize.zextOrTrunc(Size.getBitWidth());
5082        Size *= ArraySize;
5083      }
5084
5085      // Take the address of the field references for "from" and "to".
5086      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
5087      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
5088
5089      bool NeedsCollectableMemCpy =
5090          (BaseType->isRecordType() &&
5091           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5092
5093      if (NeedsCollectableMemCpy) {
5094        if (!CollectableMemCpyRef) {
5095          // Create a reference to the __builtin_objc_memmove_collectable function.
5096          LookupResult R(*this,
5097                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5098                         Loc, LookupOrdinaryName);
5099          LookupName(R, TUScope, true);
5100
5101          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5102          if (!CollectableMemCpy) {
5103            // Something went horribly wrong earlier, and we will have
5104            // complained about it.
5105            Invalid = true;
5106            continue;
5107          }
5108
5109          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5110                                                  CollectableMemCpy->getType(),
5111                                                  Loc, 0).takeAs<Expr>();
5112          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5113        }
5114      }
5115      // Create a reference to the __builtin_memcpy builtin function.
5116      else if (!BuiltinMemCpyRef) {
5117        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5118                       LookupOrdinaryName);
5119        LookupName(R, TUScope, true);
5120
5121        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5122        if (!BuiltinMemCpy) {
5123          // Something went horribly wrong earlier, and we will have complained
5124          // about it.
5125          Invalid = true;
5126          continue;
5127        }
5128
5129        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5130                                            BuiltinMemCpy->getType(),
5131                                            Loc, 0).takeAs<Expr>();
5132        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5133      }
5134
5135      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
5136      CallArgs.push_back(To.takeAs<Expr>());
5137      CallArgs.push_back(From.takeAs<Expr>());
5138      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
5139      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
5140      Commas.push_back(Loc);
5141      Commas.push_back(Loc);
5142      OwningExprResult Call = ExprError();
5143      if (NeedsCollectableMemCpy)
5144        Call = ActOnCallExpr(/*Scope=*/0,
5145                             Owned(CollectableMemCpyRef->Retain()),
5146                             Loc, move_arg(CallArgs),
5147                             Commas.data(), Loc);
5148      else
5149        Call = ActOnCallExpr(/*Scope=*/0,
5150                             Owned(BuiltinMemCpyRef->Retain()),
5151                             Loc, move_arg(CallArgs),
5152                             Commas.data(), Loc);
5153
5154      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5155      Statements.push_back(Call.takeAs<Expr>());
5156      continue;
5157    }
5158
5159    // Build the copy of this field.
5160    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5161                                                  move(To), move(From),
5162                                              /*CopyingBaseSubobject=*/false);
5163    if (Copy.isInvalid()) {
5164      Diag(CurrentLocation, diag::note_member_synthesized_at)
5165        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5166      CopyAssignOperator->setInvalidDecl();
5167      return;
5168    }
5169
5170    // Success! Record the copy.
5171    Statements.push_back(Copy.takeAs<Stmt>());
5172  }
5173
5174  if (!Invalid) {
5175    // Add a "return *this;"
5176    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
5177                                                    Owned(This->Retain()));
5178
5179    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
5180    if (Return.isInvalid())
5181      Invalid = true;
5182    else {
5183      Statements.push_back(Return.takeAs<Stmt>());
5184
5185      if (Trap.hasErrorOccurred()) {
5186        Diag(CurrentLocation, diag::note_member_synthesized_at)
5187          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5188        Invalid = true;
5189      }
5190    }
5191  }
5192
5193  if (Invalid) {
5194    CopyAssignOperator->setInvalidDecl();
5195    return;
5196  }
5197
5198  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5199                                            /*isStmtExpr=*/false);
5200  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5201  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5202}
5203
5204CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5205                                                    CXXRecordDecl *ClassDecl) {
5206  // C++ [class.copy]p4:
5207  //   If the class definition does not explicitly declare a copy
5208  //   constructor, one is declared implicitly.
5209
5210  // C++ [class.copy]p5:
5211  //   The implicitly-declared copy constructor for a class X will
5212  //   have the form
5213  //
5214  //       X::X(const X&)
5215  //
5216  //   if
5217  bool HasConstCopyConstructor = true;
5218
5219  //     -- each direct or virtual base class B of X has a copy
5220  //        constructor whose first parameter is of type const B& or
5221  //        const volatile B&, and
5222  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5223                                       BaseEnd = ClassDecl->bases_end();
5224       HasConstCopyConstructor && Base != BaseEnd;
5225       ++Base) {
5226    // Virtual bases are handled below.
5227    if (Base->isVirtual())
5228      continue;
5229
5230    CXXRecordDecl *BaseClassDecl
5231      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5232    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5233      DeclareImplicitCopyConstructor(BaseClassDecl);
5234
5235    HasConstCopyConstructor
5236      = BaseClassDecl->hasConstCopyConstructor(Context);
5237  }
5238
5239  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5240                                       BaseEnd = ClassDecl->vbases_end();
5241       HasConstCopyConstructor && Base != BaseEnd;
5242       ++Base) {
5243    CXXRecordDecl *BaseClassDecl
5244      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5245    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5246      DeclareImplicitCopyConstructor(BaseClassDecl);
5247
5248    HasConstCopyConstructor
5249      = BaseClassDecl->hasConstCopyConstructor(Context);
5250  }
5251
5252  //     -- for all the nonstatic data members of X that are of a
5253  //        class type M (or array thereof), each such class type
5254  //        has a copy constructor whose first parameter is of type
5255  //        const M& or const volatile M&.
5256  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5257                                  FieldEnd = ClassDecl->field_end();
5258       HasConstCopyConstructor && Field != FieldEnd;
5259       ++Field) {
5260    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5261    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5262      CXXRecordDecl *FieldClassDecl
5263        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5264      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5265        DeclareImplicitCopyConstructor(FieldClassDecl);
5266
5267      HasConstCopyConstructor
5268        = FieldClassDecl->hasConstCopyConstructor(Context);
5269    }
5270  }
5271
5272  //   Otherwise, the implicitly declared copy constructor will have
5273  //   the form
5274  //
5275  //       X::X(X&)
5276  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5277  QualType ArgType = ClassType;
5278  if (HasConstCopyConstructor)
5279    ArgType = ArgType.withConst();
5280  ArgType = Context.getLValueReferenceType(ArgType);
5281
5282  // C++ [except.spec]p14:
5283  //   An implicitly declared special member function (Clause 12) shall have an
5284  //   exception-specification. [...]
5285  ImplicitExceptionSpecification ExceptSpec(Context);
5286  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5287  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5288                                       BaseEnd = ClassDecl->bases_end();
5289       Base != BaseEnd;
5290       ++Base) {
5291    // Virtual bases are handled below.
5292    if (Base->isVirtual())
5293      continue;
5294
5295    CXXRecordDecl *BaseClassDecl
5296      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5297    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5298      DeclareImplicitCopyConstructor(BaseClassDecl);
5299
5300    if (CXXConstructorDecl *CopyConstructor
5301                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5302      ExceptSpec.CalledDecl(CopyConstructor);
5303  }
5304  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5305                                       BaseEnd = ClassDecl->vbases_end();
5306       Base != BaseEnd;
5307       ++Base) {
5308    CXXRecordDecl *BaseClassDecl
5309      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5310    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5311      DeclareImplicitCopyConstructor(BaseClassDecl);
5312
5313    if (CXXConstructorDecl *CopyConstructor
5314                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5315      ExceptSpec.CalledDecl(CopyConstructor);
5316  }
5317  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5318                                  FieldEnd = ClassDecl->field_end();
5319       Field != FieldEnd;
5320       ++Field) {
5321    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5322    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5323      CXXRecordDecl *FieldClassDecl
5324        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5325      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5326        DeclareImplicitCopyConstructor(FieldClassDecl);
5327
5328      if (CXXConstructorDecl *CopyConstructor
5329                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5330        ExceptSpec.CalledDecl(CopyConstructor);
5331    }
5332  }
5333
5334  //   An implicitly-declared copy constructor is an inline public
5335  //   member of its class.
5336  DeclarationName Name
5337    = Context.DeclarationNames.getCXXConstructorName(
5338                                           Context.getCanonicalType(ClassType));
5339  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5340  CXXConstructorDecl *CopyConstructor
5341    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5342                                 Context.getFunctionType(Context.VoidTy,
5343                                                         &ArgType, 1,
5344                                                         false, 0,
5345                                         ExceptSpec.hasExceptionSpecification(),
5346                                      ExceptSpec.hasAnyExceptionSpecification(),
5347                                                         ExceptSpec.size(),
5348                                                         ExceptSpec.data(),
5349                                                       FunctionType::ExtInfo()),
5350                                 /*TInfo=*/0,
5351                                 /*isExplicit=*/false,
5352                                 /*isInline=*/true,
5353                                 /*isImplicitlyDeclared=*/true);
5354  CopyConstructor->setAccess(AS_public);
5355  CopyConstructor->setImplicit();
5356  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5357
5358  // Note that we have declared this constructor.
5359  ClassDecl->setDeclaredCopyConstructor(true);
5360  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5361
5362  // Add the parameter to the constructor.
5363  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5364                                               ClassDecl->getLocation(),
5365                                               /*IdentifierInfo=*/0,
5366                                               ArgType, /*TInfo=*/0,
5367                                               VarDecl::None,
5368                                               VarDecl::None, 0);
5369  CopyConstructor->setParams(&FromParam, 1);
5370  if (Scope *S = getScopeForContext(ClassDecl))
5371    PushOnScopeChains(CopyConstructor, S, false);
5372  ClassDecl->addDecl(CopyConstructor);
5373
5374  return CopyConstructor;
5375}
5376
5377void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5378                                   CXXConstructorDecl *CopyConstructor,
5379                                   unsigned TypeQuals) {
5380  assert((CopyConstructor->isImplicit() &&
5381          CopyConstructor->isCopyConstructor(TypeQuals) &&
5382          !CopyConstructor->isUsed(false)) &&
5383         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5384
5385  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5386  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5387
5388  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5389  ErrorTrap Trap(*this);
5390
5391  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5392      Trap.hasErrorOccurred()) {
5393    Diag(CurrentLocation, diag::note_member_synthesized_at)
5394      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5395    CopyConstructor->setInvalidDecl();
5396  }  else {
5397    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5398                                               CopyConstructor->getLocation(),
5399                                               MultiStmtArg(*this, 0, 0),
5400                                               /*isStmtExpr=*/false)
5401                                                              .takeAs<Stmt>());
5402  }
5403
5404  CopyConstructor->setUsed();
5405}
5406
5407Sema::OwningExprResult
5408Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5409                            CXXConstructorDecl *Constructor,
5410                            MultiExprArg ExprArgs,
5411                            bool RequiresZeroInit,
5412                            CXXConstructExpr::ConstructionKind ConstructKind) {
5413  bool Elidable = false;
5414
5415  // C++0x [class.copy]p34:
5416  //   When certain criteria are met, an implementation is allowed to
5417  //   omit the copy/move construction of a class object, even if the
5418  //   copy/move constructor and/or destructor for the object have
5419  //   side effects. [...]
5420  //     - when a temporary class object that has not been bound to a
5421  //       reference (12.2) would be copied/moved to a class object
5422  //       with the same cv-unqualified type, the copy/move operation
5423  //       can be omitted by constructing the temporary object
5424  //       directly into the target of the omitted copy/move
5425  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5426    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5427    Elidable = SubExpr->isTemporaryObject() &&
5428      ConstructKind == CXXConstructExpr::CK_Complete &&
5429      Context.hasSameUnqualifiedType(SubExpr->getType(),
5430                           Context.getTypeDeclType(Constructor->getParent()));
5431  }
5432
5433  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5434                               Elidable, move(ExprArgs), RequiresZeroInit,
5435                               ConstructKind);
5436}
5437
5438/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5439/// including handling of its default argument expressions.
5440Sema::OwningExprResult
5441Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5442                            CXXConstructorDecl *Constructor, bool Elidable,
5443                            MultiExprArg ExprArgs,
5444                            bool RequiresZeroInit,
5445                            CXXConstructExpr::ConstructionKind ConstructKind) {
5446  unsigned NumExprs = ExprArgs.size();
5447  Expr **Exprs = (Expr **)ExprArgs.release();
5448
5449  MarkDeclarationReferenced(ConstructLoc, Constructor);
5450  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5451                                        Constructor, Elidable, Exprs, NumExprs,
5452                                        RequiresZeroInit, ConstructKind));
5453}
5454
5455bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5456                                        CXXConstructorDecl *Constructor,
5457                                        MultiExprArg Exprs) {
5458  OwningExprResult TempResult =
5459    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5460                          move(Exprs));
5461  if (TempResult.isInvalid())
5462    return true;
5463
5464  Expr *Temp = TempResult.takeAs<Expr>();
5465  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5466  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
5467  VD->setInit(Temp);
5468
5469  return false;
5470}
5471
5472void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5473  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5474  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5475      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5476    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5477    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5478    CheckDestructorAccess(VD->getLocation(), Destructor,
5479                          PDiag(diag::err_access_dtor_var)
5480                            << VD->getDeclName()
5481                            << VD->getType());
5482
5483    if (!VD->isInvalidDecl() && VD->hasGlobalStorage())
5484      Diag(VD->getLocation(), diag::warn_global_destructor);
5485  }
5486}
5487
5488/// AddCXXDirectInitializerToDecl - This action is called immediately after
5489/// ActOnDeclarator, when a C++ direct initializer is present.
5490/// e.g: "int x(1);"
5491void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5492                                         SourceLocation LParenLoc,
5493                                         MultiExprArg Exprs,
5494                                         SourceLocation *CommaLocs,
5495                                         SourceLocation RParenLoc) {
5496  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5497
5498  // If there is no declaration, there was an error parsing it.  Just ignore
5499  // the initializer.
5500  if (RealDecl == 0)
5501    return;
5502
5503  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5504  if (!VDecl) {
5505    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5506    RealDecl->setInvalidDecl();
5507    return;
5508  }
5509
5510  // We will represent direct-initialization similarly to copy-initialization:
5511  //    int x(1);  -as-> int x = 1;
5512  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5513  //
5514  // Clients that want to distinguish between the two forms, can check for
5515  // direct initializer using VarDecl::hasCXXDirectInitializer().
5516  // A major benefit is that clients that don't particularly care about which
5517  // exactly form was it (like the CodeGen) can handle both cases without
5518  // special case code.
5519
5520  // C++ 8.5p11:
5521  // The form of initialization (using parentheses or '=') is generally
5522  // insignificant, but does matter when the entity being initialized has a
5523  // class type.
5524
5525  if (!VDecl->getType()->isDependentType() &&
5526      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5527                          diag::err_typecheck_decl_incomplete_type)) {
5528    VDecl->setInvalidDecl();
5529    return;
5530  }
5531
5532  // The variable can not have an abstract class type.
5533  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5534                             diag::err_abstract_type_in_decl,
5535                             AbstractVariableType))
5536    VDecl->setInvalidDecl();
5537
5538  const VarDecl *Def;
5539  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5540    Diag(VDecl->getLocation(), diag::err_redefinition)
5541    << VDecl->getDeclName();
5542    Diag(Def->getLocation(), diag::note_previous_definition);
5543    VDecl->setInvalidDecl();
5544    return;
5545  }
5546
5547  // If either the declaration has a dependent type or if any of the
5548  // expressions is type-dependent, we represent the initialization
5549  // via a ParenListExpr for later use during template instantiation.
5550  if (VDecl->getType()->isDependentType() ||
5551      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5552    // Let clients know that initialization was done with a direct initializer.
5553    VDecl->setCXXDirectInitializer(true);
5554
5555    // Store the initialization expressions as a ParenListExpr.
5556    unsigned NumExprs = Exprs.size();
5557    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5558                                               (Expr **)Exprs.release(),
5559                                               NumExprs, RParenLoc));
5560    return;
5561  }
5562
5563  // Capture the variable that is being initialized and the style of
5564  // initialization.
5565  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5566
5567  // FIXME: Poor source location information.
5568  InitializationKind Kind
5569    = InitializationKind::CreateDirect(VDecl->getLocation(),
5570                                       LParenLoc, RParenLoc);
5571
5572  InitializationSequence InitSeq(*this, Entity, Kind,
5573                                 (Expr**)Exprs.get(), Exprs.size());
5574  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5575  if (Result.isInvalid()) {
5576    VDecl->setInvalidDecl();
5577    return;
5578  }
5579
5580  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5581  VDecl->setInit(Result.takeAs<Expr>());
5582  VDecl->setCXXDirectInitializer(true);
5583
5584    if (!VDecl->isInvalidDecl() &&
5585        !VDecl->getDeclContext()->isDependentContext() &&
5586        VDecl->hasGlobalStorage() &&
5587        !VDecl->getInit()->isConstantInitializer(Context,
5588                                        VDecl->getType()->isReferenceType()))
5589      Diag(VDecl->getLocation(), diag::warn_global_constructor)
5590        << VDecl->getInit()->getSourceRange();
5591
5592  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5593    FinalizeVarWithDestructor(VDecl, Record);
5594}
5595
5596/// \brief Given a constructor and the set of arguments provided for the
5597/// constructor, convert the arguments and add any required default arguments
5598/// to form a proper call to this constructor.
5599///
5600/// \returns true if an error occurred, false otherwise.
5601bool
5602Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5603                              MultiExprArg ArgsPtr,
5604                              SourceLocation Loc,
5605                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5606  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5607  unsigned NumArgs = ArgsPtr.size();
5608  Expr **Args = (Expr **)ArgsPtr.get();
5609
5610  const FunctionProtoType *Proto
5611    = Constructor->getType()->getAs<FunctionProtoType>();
5612  assert(Proto && "Constructor without a prototype?");
5613  unsigned NumArgsInProto = Proto->getNumArgs();
5614
5615  // If too few arguments are available, we'll fill in the rest with defaults.
5616  if (NumArgs < NumArgsInProto)
5617    ConvertedArgs.reserve(NumArgsInProto);
5618  else
5619    ConvertedArgs.reserve(NumArgs);
5620
5621  VariadicCallType CallType =
5622    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5623  llvm::SmallVector<Expr *, 8> AllArgs;
5624  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5625                                        Proto, 0, Args, NumArgs, AllArgs,
5626                                        CallType);
5627  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5628    ConvertedArgs.push_back(AllArgs[i]);
5629  return Invalid;
5630}
5631
5632static inline bool
5633CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5634                                       const FunctionDecl *FnDecl) {
5635  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5636  if (isa<NamespaceDecl>(DC)) {
5637    return SemaRef.Diag(FnDecl->getLocation(),
5638                        diag::err_operator_new_delete_declared_in_namespace)
5639      << FnDecl->getDeclName();
5640  }
5641
5642  if (isa<TranslationUnitDecl>(DC) &&
5643      FnDecl->getStorageClass() == FunctionDecl::Static) {
5644    return SemaRef.Diag(FnDecl->getLocation(),
5645                        diag::err_operator_new_delete_declared_static)
5646      << FnDecl->getDeclName();
5647  }
5648
5649  return false;
5650}
5651
5652static inline bool
5653CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5654                            CanQualType ExpectedResultType,
5655                            CanQualType ExpectedFirstParamType,
5656                            unsigned DependentParamTypeDiag,
5657                            unsigned InvalidParamTypeDiag) {
5658  QualType ResultType =
5659    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5660
5661  // Check that the result type is not dependent.
5662  if (ResultType->isDependentType())
5663    return SemaRef.Diag(FnDecl->getLocation(),
5664                        diag::err_operator_new_delete_dependent_result_type)
5665    << FnDecl->getDeclName() << ExpectedResultType;
5666
5667  // Check that the result type is what we expect.
5668  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5669    return SemaRef.Diag(FnDecl->getLocation(),
5670                        diag::err_operator_new_delete_invalid_result_type)
5671    << FnDecl->getDeclName() << ExpectedResultType;
5672
5673  // A function template must have at least 2 parameters.
5674  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5675    return SemaRef.Diag(FnDecl->getLocation(),
5676                      diag::err_operator_new_delete_template_too_few_parameters)
5677        << FnDecl->getDeclName();
5678
5679  // The function decl must have at least 1 parameter.
5680  if (FnDecl->getNumParams() == 0)
5681    return SemaRef.Diag(FnDecl->getLocation(),
5682                        diag::err_operator_new_delete_too_few_parameters)
5683      << FnDecl->getDeclName();
5684
5685  // Check the the first parameter type is not dependent.
5686  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5687  if (FirstParamType->isDependentType())
5688    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5689      << FnDecl->getDeclName() << ExpectedFirstParamType;
5690
5691  // Check that the first parameter type is what we expect.
5692  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5693      ExpectedFirstParamType)
5694    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5695    << FnDecl->getDeclName() << ExpectedFirstParamType;
5696
5697  return false;
5698}
5699
5700static bool
5701CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5702  // C++ [basic.stc.dynamic.allocation]p1:
5703  //   A program is ill-formed if an allocation function is declared in a
5704  //   namespace scope other than global scope or declared static in global
5705  //   scope.
5706  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5707    return true;
5708
5709  CanQualType SizeTy =
5710    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5711
5712  // C++ [basic.stc.dynamic.allocation]p1:
5713  //  The return type shall be void*. The first parameter shall have type
5714  //  std::size_t.
5715  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5716                                  SizeTy,
5717                                  diag::err_operator_new_dependent_param_type,
5718                                  diag::err_operator_new_param_type))
5719    return true;
5720
5721  // C++ [basic.stc.dynamic.allocation]p1:
5722  //  The first parameter shall not have an associated default argument.
5723  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5724    return SemaRef.Diag(FnDecl->getLocation(),
5725                        diag::err_operator_new_default_arg)
5726      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5727
5728  return false;
5729}
5730
5731static bool
5732CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5733  // C++ [basic.stc.dynamic.deallocation]p1:
5734  //   A program is ill-formed if deallocation functions are declared in a
5735  //   namespace scope other than global scope or declared static in global
5736  //   scope.
5737  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5738    return true;
5739
5740  // C++ [basic.stc.dynamic.deallocation]p2:
5741  //   Each deallocation function shall return void and its first parameter
5742  //   shall be void*.
5743  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5744                                  SemaRef.Context.VoidPtrTy,
5745                                 diag::err_operator_delete_dependent_param_type,
5746                                 diag::err_operator_delete_param_type))
5747    return true;
5748
5749  return false;
5750}
5751
5752/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5753/// of this overloaded operator is well-formed. If so, returns false;
5754/// otherwise, emits appropriate diagnostics and returns true.
5755bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5756  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5757         "Expected an overloaded operator declaration");
5758
5759  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5760
5761  // C++ [over.oper]p5:
5762  //   The allocation and deallocation functions, operator new,
5763  //   operator new[], operator delete and operator delete[], are
5764  //   described completely in 3.7.3. The attributes and restrictions
5765  //   found in the rest of this subclause do not apply to them unless
5766  //   explicitly stated in 3.7.3.
5767  if (Op == OO_Delete || Op == OO_Array_Delete)
5768    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5769
5770  if (Op == OO_New || Op == OO_Array_New)
5771    return CheckOperatorNewDeclaration(*this, FnDecl);
5772
5773  // C++ [over.oper]p6:
5774  //   An operator function shall either be a non-static member
5775  //   function or be a non-member function and have at least one
5776  //   parameter whose type is a class, a reference to a class, an
5777  //   enumeration, or a reference to an enumeration.
5778  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5779    if (MethodDecl->isStatic())
5780      return Diag(FnDecl->getLocation(),
5781                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5782  } else {
5783    bool ClassOrEnumParam = false;
5784    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5785                                   ParamEnd = FnDecl->param_end();
5786         Param != ParamEnd; ++Param) {
5787      QualType ParamType = (*Param)->getType().getNonReferenceType();
5788      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5789          ParamType->isEnumeralType()) {
5790        ClassOrEnumParam = true;
5791        break;
5792      }
5793    }
5794
5795    if (!ClassOrEnumParam)
5796      return Diag(FnDecl->getLocation(),
5797                  diag::err_operator_overload_needs_class_or_enum)
5798        << FnDecl->getDeclName();
5799  }
5800
5801  // C++ [over.oper]p8:
5802  //   An operator function cannot have default arguments (8.3.6),
5803  //   except where explicitly stated below.
5804  //
5805  // Only the function-call operator allows default arguments
5806  // (C++ [over.call]p1).
5807  if (Op != OO_Call) {
5808    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5809         Param != FnDecl->param_end(); ++Param) {
5810      if ((*Param)->hasDefaultArg())
5811        return Diag((*Param)->getLocation(),
5812                    diag::err_operator_overload_default_arg)
5813          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5814    }
5815  }
5816
5817  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5818    { false, false, false }
5819#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5820    , { Unary, Binary, MemberOnly }
5821#include "clang/Basic/OperatorKinds.def"
5822  };
5823
5824  bool CanBeUnaryOperator = OperatorUses[Op][0];
5825  bool CanBeBinaryOperator = OperatorUses[Op][1];
5826  bool MustBeMemberOperator = OperatorUses[Op][2];
5827
5828  // C++ [over.oper]p8:
5829  //   [...] Operator functions cannot have more or fewer parameters
5830  //   than the number required for the corresponding operator, as
5831  //   described in the rest of this subclause.
5832  unsigned NumParams = FnDecl->getNumParams()
5833                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5834  if (Op != OO_Call &&
5835      ((NumParams == 1 && !CanBeUnaryOperator) ||
5836       (NumParams == 2 && !CanBeBinaryOperator) ||
5837       (NumParams < 1) || (NumParams > 2))) {
5838    // We have the wrong number of parameters.
5839    unsigned ErrorKind;
5840    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5841      ErrorKind = 2;  // 2 -> unary or binary.
5842    } else if (CanBeUnaryOperator) {
5843      ErrorKind = 0;  // 0 -> unary
5844    } else {
5845      assert(CanBeBinaryOperator &&
5846             "All non-call overloaded operators are unary or binary!");
5847      ErrorKind = 1;  // 1 -> binary
5848    }
5849
5850    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5851      << FnDecl->getDeclName() << NumParams << ErrorKind;
5852  }
5853
5854  // Overloaded operators other than operator() cannot be variadic.
5855  if (Op != OO_Call &&
5856      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5857    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5858      << FnDecl->getDeclName();
5859  }
5860
5861  // Some operators must be non-static member functions.
5862  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5863    return Diag(FnDecl->getLocation(),
5864                diag::err_operator_overload_must_be_member)
5865      << FnDecl->getDeclName();
5866  }
5867
5868  // C++ [over.inc]p1:
5869  //   The user-defined function called operator++ implements the
5870  //   prefix and postfix ++ operator. If this function is a member
5871  //   function with no parameters, or a non-member function with one
5872  //   parameter of class or enumeration type, it defines the prefix
5873  //   increment operator ++ for objects of that type. If the function
5874  //   is a member function with one parameter (which shall be of type
5875  //   int) or a non-member function with two parameters (the second
5876  //   of which shall be of type int), it defines the postfix
5877  //   increment operator ++ for objects of that type.
5878  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5879    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5880    bool ParamIsInt = false;
5881    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5882      ParamIsInt = BT->getKind() == BuiltinType::Int;
5883
5884    if (!ParamIsInt)
5885      return Diag(LastParam->getLocation(),
5886                  diag::err_operator_overload_post_incdec_must_be_int)
5887        << LastParam->getType() << (Op == OO_MinusMinus);
5888  }
5889
5890  // Notify the class if it got an assignment operator.
5891  if (Op == OO_Equal) {
5892    // Would have returned earlier otherwise.
5893    assert(isa<CXXMethodDecl>(FnDecl) &&
5894      "Overloaded = not member, but not filtered.");
5895    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5896    Method->getParent()->addedAssignmentOperator(Context, Method);
5897  }
5898
5899  return false;
5900}
5901
5902/// CheckLiteralOperatorDeclaration - Check whether the declaration
5903/// of this literal operator function is well-formed. If so, returns
5904/// false; otherwise, emits appropriate diagnostics and returns true.
5905bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5906  DeclContext *DC = FnDecl->getDeclContext();
5907  Decl::Kind Kind = DC->getDeclKind();
5908  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5909      Kind != Decl::LinkageSpec) {
5910    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5911      << FnDecl->getDeclName();
5912    return true;
5913  }
5914
5915  bool Valid = false;
5916
5917  // template <char...> type operator "" name() is the only valid template
5918  // signature, and the only valid signature with no parameters.
5919  if (FnDecl->param_size() == 0) {
5920    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5921      // Must have only one template parameter
5922      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5923      if (Params->size() == 1) {
5924        NonTypeTemplateParmDecl *PmDecl =
5925          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5926
5927        // The template parameter must be a char parameter pack.
5928        // FIXME: This test will always fail because non-type parameter packs
5929        //   have not been implemented.
5930        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5931            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5932          Valid = true;
5933      }
5934    }
5935  } else {
5936    // Check the first parameter
5937    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5938
5939    QualType T = (*Param)->getType();
5940
5941    // unsigned long long int, long double, and any character type are allowed
5942    // as the only parameters.
5943    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5944        Context.hasSameType(T, Context.LongDoubleTy) ||
5945        Context.hasSameType(T, Context.CharTy) ||
5946        Context.hasSameType(T, Context.WCharTy) ||
5947        Context.hasSameType(T, Context.Char16Ty) ||
5948        Context.hasSameType(T, Context.Char32Ty)) {
5949      if (++Param == FnDecl->param_end())
5950        Valid = true;
5951      goto FinishedParams;
5952    }
5953
5954    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5955    const PointerType *PT = T->getAs<PointerType>();
5956    if (!PT)
5957      goto FinishedParams;
5958    T = PT->getPointeeType();
5959    if (!T.isConstQualified())
5960      goto FinishedParams;
5961    T = T.getUnqualifiedType();
5962
5963    // Move on to the second parameter;
5964    ++Param;
5965
5966    // If there is no second parameter, the first must be a const char *
5967    if (Param == FnDecl->param_end()) {
5968      if (Context.hasSameType(T, Context.CharTy))
5969        Valid = true;
5970      goto FinishedParams;
5971    }
5972
5973    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5974    // are allowed as the first parameter to a two-parameter function
5975    if (!(Context.hasSameType(T, Context.CharTy) ||
5976          Context.hasSameType(T, Context.WCharTy) ||
5977          Context.hasSameType(T, Context.Char16Ty) ||
5978          Context.hasSameType(T, Context.Char32Ty)))
5979      goto FinishedParams;
5980
5981    // The second and final parameter must be an std::size_t
5982    T = (*Param)->getType().getUnqualifiedType();
5983    if (Context.hasSameType(T, Context.getSizeType()) &&
5984        ++Param == FnDecl->param_end())
5985      Valid = true;
5986  }
5987
5988  // FIXME: This diagnostic is absolutely terrible.
5989FinishedParams:
5990  if (!Valid) {
5991    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5992      << FnDecl->getDeclName();
5993    return true;
5994  }
5995
5996  return false;
5997}
5998
5999/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6000/// linkage specification, including the language and (if present)
6001/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6002/// the location of the language string literal, which is provided
6003/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6004/// the '{' brace. Otherwise, this linkage specification does not
6005/// have any braces.
6006Decl *Sema::ActOnStartLinkageSpecification(Scope *S,
6007                                                     SourceLocation ExternLoc,
6008                                                     SourceLocation LangLoc,
6009                                                     llvm::StringRef Lang,
6010                                                     SourceLocation LBraceLoc) {
6011  LinkageSpecDecl::LanguageIDs Language;
6012  if (Lang == "\"C\"")
6013    Language = LinkageSpecDecl::lang_c;
6014  else if (Lang == "\"C++\"")
6015    Language = LinkageSpecDecl::lang_cxx;
6016  else {
6017    Diag(LangLoc, diag::err_bad_language);
6018    return 0;
6019  }
6020
6021  // FIXME: Add all the various semantics of linkage specifications
6022
6023  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6024                                               LangLoc, Language,
6025                                               LBraceLoc.isValid());
6026  CurContext->addDecl(D);
6027  PushDeclContext(S, D);
6028  return D;
6029}
6030
6031/// ActOnFinishLinkageSpecification - Complete the definition of
6032/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6033/// valid, it's the position of the closing '}' brace in a linkage
6034/// specification that uses braces.
6035Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6036                                                      Decl *LinkageSpec,
6037                                                      SourceLocation RBraceLoc) {
6038  if (LinkageSpec)
6039    PopDeclContext();
6040  return LinkageSpec;
6041}
6042
6043/// \brief Perform semantic analysis for the variable declaration that
6044/// occurs within a C++ catch clause, returning the newly-created
6045/// variable.
6046VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
6047                                         TypeSourceInfo *TInfo,
6048                                         IdentifierInfo *Name,
6049                                         SourceLocation Loc,
6050                                         SourceRange Range) {
6051  bool Invalid = false;
6052
6053  // Arrays and functions decay.
6054  if (ExDeclType->isArrayType())
6055    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6056  else if (ExDeclType->isFunctionType())
6057    ExDeclType = Context.getPointerType(ExDeclType);
6058
6059  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6060  // The exception-declaration shall not denote a pointer or reference to an
6061  // incomplete type, other than [cv] void*.
6062  // N2844 forbids rvalue references.
6063  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6064    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
6065    Invalid = true;
6066  }
6067
6068  // GCC allows catching pointers and references to incomplete types
6069  // as an extension; so do we, but we warn by default.
6070
6071  QualType BaseType = ExDeclType;
6072  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6073  unsigned DK = diag::err_catch_incomplete;
6074  bool IncompleteCatchIsInvalid = true;
6075  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6076    BaseType = Ptr->getPointeeType();
6077    Mode = 1;
6078    DK = diag::ext_catch_incomplete_ptr;
6079    IncompleteCatchIsInvalid = false;
6080  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6081    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6082    BaseType = Ref->getPointeeType();
6083    Mode = 2;
6084    DK = diag::ext_catch_incomplete_ref;
6085    IncompleteCatchIsInvalid = false;
6086  }
6087  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6088      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6089      IncompleteCatchIsInvalid)
6090    Invalid = true;
6091
6092  if (!Invalid && !ExDeclType->isDependentType() &&
6093      RequireNonAbstractType(Loc, ExDeclType,
6094                             diag::err_abstract_type_in_decl,
6095                             AbstractVariableType))
6096    Invalid = true;
6097
6098  // Only the non-fragile NeXT runtime currently supports C++ catches
6099  // of ObjC types, and no runtime supports catching ObjC types by value.
6100  if (!Invalid && getLangOptions().ObjC1) {
6101    QualType T = ExDeclType;
6102    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6103      T = RT->getPointeeType();
6104
6105    if (T->isObjCObjectType()) {
6106      Diag(Loc, diag::err_objc_object_catch);
6107      Invalid = true;
6108    } else if (T->isObjCObjectPointerType()) {
6109      if (!getLangOptions().NeXTRuntime) {
6110        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6111        Invalid = true;
6112      } else if (!getLangOptions().ObjCNonFragileABI) {
6113        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6114        Invalid = true;
6115      }
6116    }
6117  }
6118
6119  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6120                                    Name, ExDeclType, TInfo, VarDecl::None,
6121                                    VarDecl::None);
6122  ExDecl->setExceptionVariable(true);
6123
6124  if (!Invalid) {
6125    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6126      // C++ [except.handle]p16:
6127      //   The object declared in an exception-declaration or, if the
6128      //   exception-declaration does not specify a name, a temporary (12.2) is
6129      //   copy-initialized (8.5) from the exception object. [...]
6130      //   The object is destroyed when the handler exits, after the destruction
6131      //   of any automatic objects initialized within the handler.
6132      //
6133      // We just pretend to initialize the object with itself, then make sure
6134      // it can be destroyed later.
6135      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6136      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6137                                            Loc, ExDeclType, 0);
6138      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6139                                                               SourceLocation());
6140      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6141      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6142                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
6143      if (Result.isInvalid())
6144        Invalid = true;
6145      else
6146        FinalizeVarWithDestructor(ExDecl, RecordTy);
6147    }
6148  }
6149
6150  if (Invalid)
6151    ExDecl->setInvalidDecl();
6152
6153  return ExDecl;
6154}
6155
6156/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6157/// handler.
6158Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6159  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6160  QualType ExDeclType = TInfo->getType();
6161
6162  bool Invalid = D.isInvalidType();
6163  IdentifierInfo *II = D.getIdentifier();
6164  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6165                                             LookupOrdinaryName,
6166                                             ForRedeclaration)) {
6167    // The scope should be freshly made just for us. There is just no way
6168    // it contains any previous declaration.
6169    assert(!S->isDeclScope(PrevDecl));
6170    if (PrevDecl->isTemplateParameter()) {
6171      // Maybe we will complain about the shadowed template parameter.
6172      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6173    }
6174  }
6175
6176  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6177    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6178      << D.getCXXScopeSpec().getRange();
6179    Invalid = true;
6180  }
6181
6182  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
6183                                              D.getIdentifier(),
6184                                              D.getIdentifierLoc(),
6185                                            D.getDeclSpec().getSourceRange());
6186
6187  if (Invalid)
6188    ExDecl->setInvalidDecl();
6189
6190  // Add the exception declaration into this scope.
6191  if (II)
6192    PushOnScopeChains(ExDecl, S);
6193  else
6194    CurContext->addDecl(ExDecl);
6195
6196  ProcessDeclAttributes(S, ExDecl, D);
6197  return ExDecl;
6198}
6199
6200Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6201                                                   ExprArg assertexpr,
6202                                                   ExprArg assertmessageexpr) {
6203  Expr *AssertExpr = (Expr *)assertexpr.get();
6204  StringLiteral *AssertMessage =
6205    cast<StringLiteral>((Expr *)assertmessageexpr.get());
6206
6207  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6208    llvm::APSInt Value(32);
6209    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6210      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6211        AssertExpr->getSourceRange();
6212      return 0;
6213    }
6214
6215    if (Value == 0) {
6216      Diag(AssertLoc, diag::err_static_assert_failed)
6217        << AssertMessage->getString() << AssertExpr->getSourceRange();
6218    }
6219  }
6220
6221  assertexpr.release();
6222  assertmessageexpr.release();
6223  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6224                                        AssertExpr, AssertMessage);
6225
6226  CurContext->addDecl(Decl);
6227  return Decl;
6228}
6229
6230/// \brief Perform semantic analysis of the given friend type declaration.
6231///
6232/// \returns A friend declaration that.
6233FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6234                                      TypeSourceInfo *TSInfo) {
6235  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6236
6237  QualType T = TSInfo->getType();
6238  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6239
6240  if (!getLangOptions().CPlusPlus0x) {
6241    // C++03 [class.friend]p2:
6242    //   An elaborated-type-specifier shall be used in a friend declaration
6243    //   for a class.*
6244    //
6245    //   * The class-key of the elaborated-type-specifier is required.
6246    if (!ActiveTemplateInstantiations.empty()) {
6247      // Do not complain about the form of friend template types during
6248      // template instantiation; we will already have complained when the
6249      // template was declared.
6250    } else if (!T->isElaboratedTypeSpecifier()) {
6251      // If we evaluated the type to a record type, suggest putting
6252      // a tag in front.
6253      if (const RecordType *RT = T->getAs<RecordType>()) {
6254        RecordDecl *RD = RT->getDecl();
6255
6256        std::string InsertionText = std::string(" ") + RD->getKindName();
6257
6258        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6259          << (unsigned) RD->getTagKind()
6260          << T
6261          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6262                                        InsertionText);
6263      } else {
6264        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6265          << T
6266          << SourceRange(FriendLoc, TypeRange.getEnd());
6267      }
6268    } else if (T->getAs<EnumType>()) {
6269      Diag(FriendLoc, diag::ext_enum_friend)
6270        << T
6271        << SourceRange(FriendLoc, TypeRange.getEnd());
6272    }
6273  }
6274
6275  // C++0x [class.friend]p3:
6276  //   If the type specifier in a friend declaration designates a (possibly
6277  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6278  //   the friend declaration is ignored.
6279
6280  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6281  // in [class.friend]p3 that we do not implement.
6282
6283  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6284}
6285
6286/// Handle a friend type declaration.  This works in tandem with
6287/// ActOnTag.
6288///
6289/// Notes on friend class templates:
6290///
6291/// We generally treat friend class declarations as if they were
6292/// declaring a class.  So, for example, the elaborated type specifier
6293/// in a friend declaration is required to obey the restrictions of a
6294/// class-head (i.e. no typedefs in the scope chain), template
6295/// parameters are required to match up with simple template-ids, &c.
6296/// However, unlike when declaring a template specialization, it's
6297/// okay to refer to a template specialization without an empty
6298/// template parameter declaration, e.g.
6299///   friend class A<T>::B<unsigned>;
6300/// We permit this as a special case; if there are any template
6301/// parameters present at all, require proper matching, i.e.
6302///   template <> template <class T> friend class A<int>::B;
6303Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6304                                          MultiTemplateParamsArg TempParams) {
6305  SourceLocation Loc = DS.getSourceRange().getBegin();
6306
6307  assert(DS.isFriendSpecified());
6308  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6309
6310  // Try to convert the decl specifier to a type.  This works for
6311  // friend templates because ActOnTag never produces a ClassTemplateDecl
6312  // for a TUK_Friend.
6313  Declarator TheDeclarator(DS, Declarator::MemberContext);
6314  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6315  QualType T = TSI->getType();
6316  if (TheDeclarator.isInvalidType())
6317    return 0;
6318
6319  // This is definitely an error in C++98.  It's probably meant to
6320  // be forbidden in C++0x, too, but the specification is just
6321  // poorly written.
6322  //
6323  // The problem is with declarations like the following:
6324  //   template <T> friend A<T>::foo;
6325  // where deciding whether a class C is a friend or not now hinges
6326  // on whether there exists an instantiation of A that causes
6327  // 'foo' to equal C.  There are restrictions on class-heads
6328  // (which we declare (by fiat) elaborated friend declarations to
6329  // be) that makes this tractable.
6330  //
6331  // FIXME: handle "template <> friend class A<T>;", which
6332  // is possibly well-formed?  Who even knows?
6333  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6334    Diag(Loc, diag::err_tagless_friend_type_template)
6335      << DS.getSourceRange();
6336    return 0;
6337  }
6338
6339  // C++98 [class.friend]p1: A friend of a class is a function
6340  //   or class that is not a member of the class . . .
6341  // This is fixed in DR77, which just barely didn't make the C++03
6342  // deadline.  It's also a very silly restriction that seriously
6343  // affects inner classes and which nobody else seems to implement;
6344  // thus we never diagnose it, not even in -pedantic.
6345  //
6346  // But note that we could warn about it: it's always useless to
6347  // friend one of your own members (it's not, however, worthless to
6348  // friend a member of an arbitrary specialization of your template).
6349
6350  Decl *D;
6351  if (unsigned NumTempParamLists = TempParams.size())
6352    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6353                                   NumTempParamLists,
6354                                 (TemplateParameterList**) TempParams.release(),
6355                                   TSI,
6356                                   DS.getFriendSpecLoc());
6357  else
6358    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6359
6360  if (!D)
6361    return 0;
6362
6363  D->setAccess(AS_public);
6364  CurContext->addDecl(D);
6365
6366  return D;
6367}
6368
6369Decl *Sema::ActOnFriendFunctionDecl(Scope *S,
6370                                         Declarator &D,
6371                                         bool IsDefinition,
6372                              MultiTemplateParamsArg TemplateParams) {
6373  const DeclSpec &DS = D.getDeclSpec();
6374
6375  assert(DS.isFriendSpecified());
6376  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6377
6378  SourceLocation Loc = D.getIdentifierLoc();
6379  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6380  QualType T = TInfo->getType();
6381
6382  // C++ [class.friend]p1
6383  //   A friend of a class is a function or class....
6384  // Note that this sees through typedefs, which is intended.
6385  // It *doesn't* see through dependent types, which is correct
6386  // according to [temp.arg.type]p3:
6387  //   If a declaration acquires a function type through a
6388  //   type dependent on a template-parameter and this causes
6389  //   a declaration that does not use the syntactic form of a
6390  //   function declarator to have a function type, the program
6391  //   is ill-formed.
6392  if (!T->isFunctionType()) {
6393    Diag(Loc, diag::err_unexpected_friend);
6394
6395    // It might be worthwhile to try to recover by creating an
6396    // appropriate declaration.
6397    return 0;
6398  }
6399
6400  // C++ [namespace.memdef]p3
6401  //  - If a friend declaration in a non-local class first declares a
6402  //    class or function, the friend class or function is a member
6403  //    of the innermost enclosing namespace.
6404  //  - The name of the friend is not found by simple name lookup
6405  //    until a matching declaration is provided in that namespace
6406  //    scope (either before or after the class declaration granting
6407  //    friendship).
6408  //  - If a friend function is called, its name may be found by the
6409  //    name lookup that considers functions from namespaces and
6410  //    classes associated with the types of the function arguments.
6411  //  - When looking for a prior declaration of a class or a function
6412  //    declared as a friend, scopes outside the innermost enclosing
6413  //    namespace scope are not considered.
6414
6415  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
6416  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6417  DeclarationName Name = NameInfo.getName();
6418  assert(Name);
6419
6420  // The context we found the declaration in, or in which we should
6421  // create the declaration.
6422  DeclContext *DC;
6423
6424  // FIXME: handle local classes
6425
6426  // Recover from invalid scope qualifiers as if they just weren't there.
6427  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6428                        ForRedeclaration);
6429  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
6430    DC = computeDeclContext(ScopeQual);
6431
6432    // FIXME: handle dependent contexts
6433    if (!DC) return 0;
6434    if (RequireCompleteDeclContext(ScopeQual, DC)) return 0;
6435
6436    LookupQualifiedName(Previous, DC);
6437
6438    // Ignore things found implicitly in the wrong scope.
6439    // TODO: better diagnostics for this case.  Suggesting the right
6440    // qualified scope would be nice...
6441    LookupResult::Filter F = Previous.makeFilter();
6442    while (F.hasNext()) {
6443      NamedDecl *D = F.next();
6444      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
6445        F.erase();
6446    }
6447    F.done();
6448
6449    if (Previous.empty()) {
6450      D.setInvalidType();
6451      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6452      return 0;
6453    }
6454
6455    // C++ [class.friend]p1: A friend of a class is a function or
6456    //   class that is not a member of the class . . .
6457    if (DC->Equals(CurContext))
6458      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6459
6460  // Otherwise walk out to the nearest namespace scope looking for matches.
6461  } else {
6462    // TODO: handle local class contexts.
6463
6464    DC = CurContext;
6465    while (true) {
6466      // Skip class contexts.  If someone can cite chapter and verse
6467      // for this behavior, that would be nice --- it's what GCC and
6468      // EDG do, and it seems like a reasonable intent, but the spec
6469      // really only says that checks for unqualified existing
6470      // declarations should stop at the nearest enclosing namespace,
6471      // not that they should only consider the nearest enclosing
6472      // namespace.
6473      while (DC->isRecord())
6474        DC = DC->getParent();
6475
6476      LookupQualifiedName(Previous, DC);
6477
6478      // TODO: decide what we think about using declarations.
6479      if (!Previous.empty())
6480        break;
6481
6482      if (DC->isFileContext()) break;
6483      DC = DC->getParent();
6484    }
6485
6486    // C++ [class.friend]p1: A friend of a class is a function or
6487    //   class that is not a member of the class . . .
6488    // C++0x changes this for both friend types and functions.
6489    // Most C++ 98 compilers do seem to give an error here, so
6490    // we do, too.
6491    if (!Previous.empty() && DC->Equals(CurContext)
6492        && !getLangOptions().CPlusPlus0x)
6493      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6494  }
6495
6496  if (DC->isFileContext()) {
6497    // This implies that it has to be an operator or function.
6498    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6499        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6500        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6501      Diag(Loc, diag::err_introducing_special_friend) <<
6502        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6503         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6504      return 0;
6505    }
6506  }
6507
6508  bool Redeclaration = false;
6509  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
6510                                          move(TemplateParams),
6511                                          IsDefinition,
6512                                          Redeclaration);
6513  if (!ND) return 0;
6514
6515  assert(ND->getDeclContext() == DC);
6516  assert(ND->getLexicalDeclContext() == CurContext);
6517
6518  // Add the function declaration to the appropriate lookup tables,
6519  // adjusting the redeclarations list as necessary.  We don't
6520  // want to do this yet if the friending class is dependent.
6521  //
6522  // Also update the scope-based lookup if the target context's
6523  // lookup context is in lexical scope.
6524  if (!CurContext->isDependentContext()) {
6525    DC = DC->getLookupContext();
6526    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6527    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6528      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6529  }
6530
6531  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6532                                       D.getIdentifierLoc(), ND,
6533                                       DS.getFriendSpecLoc());
6534  FrD->setAccess(AS_public);
6535  CurContext->addDecl(FrD);
6536
6537  return ND;
6538}
6539
6540void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6541  AdjustDeclIfTemplate(Dcl);
6542
6543  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6544  if (!Fn) {
6545    Diag(DelLoc, diag::err_deleted_non_function);
6546    return;
6547  }
6548  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6549    Diag(DelLoc, diag::err_deleted_decl_not_first);
6550    Diag(Prev->getLocation(), diag::note_previous_declaration);
6551    // If the declaration wasn't the first, we delete the function anyway for
6552    // recovery.
6553  }
6554  Fn->setDeleted();
6555}
6556
6557static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6558  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6559       ++CI) {
6560    Stmt *SubStmt = *CI;
6561    if (!SubStmt)
6562      continue;
6563    if (isa<ReturnStmt>(SubStmt))
6564      Self.Diag(SubStmt->getSourceRange().getBegin(),
6565           diag::err_return_in_constructor_handler);
6566    if (!isa<Expr>(SubStmt))
6567      SearchForReturnInStmt(Self, SubStmt);
6568  }
6569}
6570
6571void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6572  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6573    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6574    SearchForReturnInStmt(*this, Handler);
6575  }
6576}
6577
6578bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6579                                             const CXXMethodDecl *Old) {
6580  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6581  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6582
6583  if (Context.hasSameType(NewTy, OldTy) ||
6584      NewTy->isDependentType() || OldTy->isDependentType())
6585    return false;
6586
6587  // Check if the return types are covariant
6588  QualType NewClassTy, OldClassTy;
6589
6590  /// Both types must be pointers or references to classes.
6591  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6592    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6593      NewClassTy = NewPT->getPointeeType();
6594      OldClassTy = OldPT->getPointeeType();
6595    }
6596  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6597    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6598      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6599        NewClassTy = NewRT->getPointeeType();
6600        OldClassTy = OldRT->getPointeeType();
6601      }
6602    }
6603  }
6604
6605  // The return types aren't either both pointers or references to a class type.
6606  if (NewClassTy.isNull()) {
6607    Diag(New->getLocation(),
6608         diag::err_different_return_type_for_overriding_virtual_function)
6609      << New->getDeclName() << NewTy << OldTy;
6610    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6611
6612    return true;
6613  }
6614
6615  // C++ [class.virtual]p6:
6616  //   If the return type of D::f differs from the return type of B::f, the
6617  //   class type in the return type of D::f shall be complete at the point of
6618  //   declaration of D::f or shall be the class type D.
6619  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6620    if (!RT->isBeingDefined() &&
6621        RequireCompleteType(New->getLocation(), NewClassTy,
6622                            PDiag(diag::err_covariant_return_incomplete)
6623                              << New->getDeclName()))
6624    return true;
6625  }
6626
6627  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6628    // Check if the new class derives from the old class.
6629    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6630      Diag(New->getLocation(),
6631           diag::err_covariant_return_not_derived)
6632      << New->getDeclName() << NewTy << OldTy;
6633      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6634      return true;
6635    }
6636
6637    // Check if we the conversion from derived to base is valid.
6638    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6639                    diag::err_covariant_return_inaccessible_base,
6640                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6641                    // FIXME: Should this point to the return type?
6642                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6643      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6644      return true;
6645    }
6646  }
6647
6648  // The qualifiers of the return types must be the same.
6649  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6650    Diag(New->getLocation(),
6651         diag::err_covariant_return_type_different_qualifications)
6652    << New->getDeclName() << NewTy << OldTy;
6653    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6654    return true;
6655  };
6656
6657
6658  // The new class type must have the same or less qualifiers as the old type.
6659  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6660    Diag(New->getLocation(),
6661         diag::err_covariant_return_type_class_type_more_qualified)
6662    << New->getDeclName() << NewTy << OldTy;
6663    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6664    return true;
6665  };
6666
6667  return false;
6668}
6669
6670bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6671                                             const CXXMethodDecl *Old)
6672{
6673  if (Old->hasAttr<FinalAttr>()) {
6674    Diag(New->getLocation(), diag::err_final_function_overridden)
6675      << New->getDeclName();
6676    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6677    return true;
6678  }
6679
6680  return false;
6681}
6682
6683/// \brief Mark the given method pure.
6684///
6685/// \param Method the method to be marked pure.
6686///
6687/// \param InitRange the source range that covers the "0" initializer.
6688bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6689  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6690    Method->setPure();
6691
6692    // A class is abstract if at least one function is pure virtual.
6693    Method->getParent()->setAbstract(true);
6694    return false;
6695  }
6696
6697  if (!Method->isInvalidDecl())
6698    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6699      << Method->getDeclName() << InitRange;
6700  return true;
6701}
6702
6703/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6704/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6705/// is a fresh scope pushed for just this purpose.
6706///
6707/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6708/// static data member of class X, names should be looked up in the scope of
6709/// class X.
6710void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6711  // If there is no declaration, there was an error parsing it.
6712  if (D == 0) return;
6713
6714  // We should only get called for declarations with scope specifiers, like:
6715  //   int foo::bar;
6716  assert(D->isOutOfLine());
6717  EnterDeclaratorContext(S, D->getDeclContext());
6718}
6719
6720/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6721/// initializer for the out-of-line declaration 'D'.
6722void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6723  // If there is no declaration, there was an error parsing it.
6724  if (D == 0) return;
6725
6726  assert(D->isOutOfLine());
6727  ExitDeclaratorContext(S);
6728}
6729
6730/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6731/// C++ if/switch/while/for statement.
6732/// e.g: "if (int x = f()) {...}"
6733DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6734  // C++ 6.4p2:
6735  // The declarator shall not specify a function or an array.
6736  // The type-specifier-seq shall not contain typedef and shall not declare a
6737  // new class or enumeration.
6738  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6739         "Parser allowed 'typedef' as storage class of condition decl.");
6740
6741  TagDecl *OwnedTag = 0;
6742  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6743  QualType Ty = TInfo->getType();
6744
6745  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6746                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6747                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6748    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6749      << D.getSourceRange();
6750    return DeclResult();
6751  } else if (OwnedTag && OwnedTag->isDefinition()) {
6752    // The type-specifier-seq shall not declare a new class or enumeration.
6753    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6754  }
6755
6756  Decl *Dcl = ActOnDeclarator(S, D);
6757  if (!Dcl)
6758    return DeclResult();
6759
6760  return Dcl;
6761}
6762
6763void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6764                          bool DefinitionRequired) {
6765  // Ignore any vtable uses in unevaluated operands or for classes that do
6766  // not have a vtable.
6767  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6768      CurContext->isDependentContext() ||
6769      ExprEvalContexts.back().Context == Unevaluated)
6770    return;
6771
6772  // Try to insert this class into the map.
6773  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6774  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6775    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6776  if (!Pos.second) {
6777    // If we already had an entry, check to see if we are promoting this vtable
6778    // to required a definition. If so, we need to reappend to the VTableUses
6779    // list, since we may have already processed the first entry.
6780    if (DefinitionRequired && !Pos.first->second) {
6781      Pos.first->second = true;
6782    } else {
6783      // Otherwise, we can early exit.
6784      return;
6785    }
6786  }
6787
6788  // Local classes need to have their virtual members marked
6789  // immediately. For all other classes, we mark their virtual members
6790  // at the end of the translation unit.
6791  if (Class->isLocalClass())
6792    MarkVirtualMembersReferenced(Loc, Class);
6793  else
6794    VTableUses.push_back(std::make_pair(Class, Loc));
6795}
6796
6797bool Sema::DefineUsedVTables() {
6798  // If any dynamic classes have their key function defined within
6799  // this translation unit, then those vtables are considered "used" and must
6800  // be emitted.
6801  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6802    if (const CXXMethodDecl *KeyFunction
6803                             = Context.getKeyFunction(DynamicClasses[I])) {
6804      const FunctionDecl *Definition = 0;
6805      if (KeyFunction->hasBody(Definition))
6806        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6807    }
6808  }
6809
6810  if (VTableUses.empty())
6811    return false;
6812
6813  // Note: The VTableUses vector could grow as a result of marking
6814  // the members of a class as "used", so we check the size each
6815  // time through the loop and prefer indices (with are stable) to
6816  // iterators (which are not).
6817  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6818    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6819    if (!Class)
6820      continue;
6821
6822    SourceLocation Loc = VTableUses[I].second;
6823
6824    // If this class has a key function, but that key function is
6825    // defined in another translation unit, we don't need to emit the
6826    // vtable even though we're using it.
6827    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6828    if (KeyFunction && !KeyFunction->hasBody()) {
6829      switch (KeyFunction->getTemplateSpecializationKind()) {
6830      case TSK_Undeclared:
6831      case TSK_ExplicitSpecialization:
6832      case TSK_ExplicitInstantiationDeclaration:
6833        // The key function is in another translation unit.
6834        continue;
6835
6836      case TSK_ExplicitInstantiationDefinition:
6837      case TSK_ImplicitInstantiation:
6838        // We will be instantiating the key function.
6839        break;
6840      }
6841    } else if (!KeyFunction) {
6842      // If we have a class with no key function that is the subject
6843      // of an explicit instantiation declaration, suppress the
6844      // vtable; it will live with the explicit instantiation
6845      // definition.
6846      bool IsExplicitInstantiationDeclaration
6847        = Class->getTemplateSpecializationKind()
6848                                      == TSK_ExplicitInstantiationDeclaration;
6849      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6850                                 REnd = Class->redecls_end();
6851           R != REnd; ++R) {
6852        TemplateSpecializationKind TSK
6853          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6854        if (TSK == TSK_ExplicitInstantiationDeclaration)
6855          IsExplicitInstantiationDeclaration = true;
6856        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6857          IsExplicitInstantiationDeclaration = false;
6858          break;
6859        }
6860      }
6861
6862      if (IsExplicitInstantiationDeclaration)
6863        continue;
6864    }
6865
6866    // Mark all of the virtual members of this class as referenced, so
6867    // that we can build a vtable. Then, tell the AST consumer that a
6868    // vtable for this class is required.
6869    MarkVirtualMembersReferenced(Loc, Class);
6870    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6871    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6872
6873    // Optionally warn if we're emitting a weak vtable.
6874    if (Class->getLinkage() == ExternalLinkage &&
6875        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6876      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
6877        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6878    }
6879  }
6880  VTableUses.clear();
6881
6882  return true;
6883}
6884
6885void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6886                                        const CXXRecordDecl *RD) {
6887  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6888       e = RD->method_end(); i != e; ++i) {
6889    CXXMethodDecl *MD = *i;
6890
6891    // C++ [basic.def.odr]p2:
6892    //   [...] A virtual member function is used if it is not pure. [...]
6893    if (MD->isVirtual() && !MD->isPure())
6894      MarkDeclarationReferenced(Loc, MD);
6895  }
6896
6897  // Only classes that have virtual bases need a VTT.
6898  if (RD->getNumVBases() == 0)
6899    return;
6900
6901  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6902           e = RD->bases_end(); i != e; ++i) {
6903    const CXXRecordDecl *Base =
6904        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6905    if (Base->getNumVBases() == 0)
6906      continue;
6907    MarkVirtualMembersReferenced(Loc, Base);
6908  }
6909}
6910
6911/// SetIvarInitializers - This routine builds initialization ASTs for the
6912/// Objective-C implementation whose ivars need be initialized.
6913void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6914  if (!getLangOptions().CPlusPlus)
6915    return;
6916  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6917    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6918    CollectIvarsToConstructOrDestruct(OID, ivars);
6919    if (ivars.empty())
6920      return;
6921    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6922    for (unsigned i = 0; i < ivars.size(); i++) {
6923      FieldDecl *Field = ivars[i];
6924      if (Field->isInvalidDecl())
6925        continue;
6926
6927      CXXBaseOrMemberInitializer *Member;
6928      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6929      InitializationKind InitKind =
6930        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6931
6932      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6933      Sema::OwningExprResult MemberInit =
6934        InitSeq.Perform(*this, InitEntity, InitKind,
6935                        Sema::MultiExprArg(*this, 0, 0));
6936      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6937      // Note, MemberInit could actually come back empty if no initialization
6938      // is required (e.g., because it would call a trivial default constructor)
6939      if (!MemberInit.get() || MemberInit.isInvalid())
6940        continue;
6941
6942      Member =
6943        new (Context) CXXBaseOrMemberInitializer(Context,
6944                                                 Field, SourceLocation(),
6945                                                 SourceLocation(),
6946                                                 MemberInit.takeAs<Expr>(),
6947                                                 SourceLocation());
6948      AllToInit.push_back(Member);
6949
6950      // Be sure that the destructor is accessible and is marked as referenced.
6951      if (const RecordType *RecordTy
6952                  = Context.getBaseElementType(Field->getType())
6953                                                        ->getAs<RecordType>()) {
6954                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6955        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
6956          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6957          CheckDestructorAccess(Field->getLocation(), Destructor,
6958                            PDiag(diag::err_access_dtor_ivar)
6959                              << Context.getBaseElementType(Field->getType()));
6960        }
6961      }
6962    }
6963    ObjCImplementation->setIvarInitializers(Context,
6964                                            AllToInit.data(), AllToInit.size());
6965  }
6966}
6967