SemaDeclCXX.cpp revision bcfad54a43e5570e09daddd976bd4545933e75b1
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  return Invalid;
262}
263
264/// CheckCXXDefaultArguments - Verify that the default arguments for a
265/// function declaration are well-formed according to C++
266/// [dcl.fct.default].
267void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
268  unsigned NumParams = FD->getNumParams();
269  unsigned p;
270
271  // Find first parameter with a default argument
272  for (p = 0; p < NumParams; ++p) {
273    ParmVarDecl *Param = FD->getParamDecl(p);
274    if (Param->getDefaultArg())
275      break;
276  }
277
278  // C++ [dcl.fct.default]p4:
279  //   In a given function declaration, all parameters
280  //   subsequent to a parameter with a default argument shall
281  //   have default arguments supplied in this or previous
282  //   declarations. A default argument shall not be redefined
283  //   by a later declaration (not even to the same value).
284  unsigned LastMissingDefaultArg = 0;
285  for(; p < NumParams; ++p) {
286    ParmVarDecl *Param = FD->getParamDecl(p);
287    if (!Param->getDefaultArg()) {
288      if (Param->isInvalidDecl())
289        /* We already complained about this parameter. */;
290      else if (Param->getIdentifier())
291        Diag(Param->getLocation(),
292             diag::err_param_default_argument_missing_name)
293          << Param->getIdentifier();
294      else
295        Diag(Param->getLocation(),
296             diag::err_param_default_argument_missing);
297
298      LastMissingDefaultArg = p;
299    }
300  }
301
302  if (LastMissingDefaultArg > 0) {
303    // Some default arguments were missing. Clear out all of the
304    // default arguments up to (and including) the last missing
305    // default argument, so that we leave the function parameters
306    // in a semantically valid state.
307    for (p = 0; p <= LastMissingDefaultArg; ++p) {
308      ParmVarDecl *Param = FD->getParamDecl(p);
309      if (Param->hasDefaultArg()) {
310        if (!Param->hasUnparsedDefaultArg())
311          Param->getDefaultArg()->Destroy(Context);
312        Param->setDefaultArg(0);
313      }
314    }
315  }
316}
317
318/// isCurrentClassName - Determine whether the identifier II is the
319/// name of the class type currently being defined. In the case of
320/// nested classes, this will only return true if II is the name of
321/// the innermost class.
322bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
323                              const CXXScopeSpec *SS) {
324  CXXRecordDecl *CurDecl;
325  if (SS && SS->isSet() && !SS->isInvalid()) {
326    DeclContext *DC = computeDeclContext(*SS);
327    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
328  } else
329    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
330
331  if (CurDecl)
332    return &II == CurDecl->getIdentifier();
333  else
334    return false;
335}
336
337/// \brief Check the validity of a C++ base class specifier.
338///
339/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
340/// and returns NULL otherwise.
341CXXBaseSpecifier *
342Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
343                         SourceRange SpecifierRange,
344                         bool Virtual, AccessSpecifier Access,
345                         QualType BaseType,
346                         SourceLocation BaseLoc) {
347  // C++ [class.union]p1:
348  //   A union shall not have base classes.
349  if (Class->isUnion()) {
350    Diag(Class->getLocation(), diag::err_base_clause_on_union)
351      << SpecifierRange;
352    return 0;
353  }
354
355  if (BaseType->isDependentType())
356    return new CXXBaseSpecifier(SpecifierRange, Virtual,
357                                Class->getTagKind() == RecordDecl::TK_class,
358                                Access, BaseType);
359
360  // Base specifiers must be record types.
361  if (!BaseType->isRecordType()) {
362    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
363    return 0;
364  }
365
366  // C++ [class.union]p1:
367  //   A union shall not be used as a base class.
368  if (BaseType->isUnionType()) {
369    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
370    return 0;
371  }
372
373  // C++ [class.derived]p2:
374  //   The class-name in a base-specifier shall not be an incompletely
375  //   defined class.
376  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
377                          SpecifierRange))
378    return 0;
379
380  // If the base class is polymorphic, the new one is, too.
381  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
382  assert(BaseDecl && "Record type has no declaration");
383  BaseDecl = BaseDecl->getDefinition(Context);
384  assert(BaseDecl && "Base type is not incomplete, but has no definition");
385  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
386    Class->setPolymorphic(true);
387
388  // C++ [dcl.init.aggr]p1:
389  //   An aggregate is [...] a class with [...] no base classes [...].
390  Class->setAggregate(false);
391  Class->setPOD(false);
392
393  if (Virtual) {
394    // C++ [class.ctor]p5:
395    //   A constructor is trivial if its class has no virtual base classes.
396    Class->setHasTrivialConstructor(false);
397  } else {
398    // C++ [class.ctor]p5:
399    //   A constructor is trivial if all the direct base classes of its
400    //   class have trivial constructors.
401    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
402                                    hasTrivialConstructor());
403  }
404
405  // C++ [class.ctor]p3:
406  //   A destructor is trivial if all the direct base classes of its class
407  //   have trivial destructors.
408  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
409                                 hasTrivialDestructor());
410
411  // Create the base specifier.
412  // FIXME: Allocate via ASTContext?
413  return new CXXBaseSpecifier(SpecifierRange, Virtual,
414                              Class->getTagKind() == RecordDecl::TK_class,
415                              Access, BaseType);
416}
417
418/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
419/// one entry in the base class list of a class specifier, for
420/// example:
421///    class foo : public bar, virtual private baz {
422/// 'public bar' and 'virtual private baz' are each base-specifiers.
423Sema::BaseResult
424Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
425                         bool Virtual, AccessSpecifier Access,
426                         TypeTy *basetype, SourceLocation BaseLoc) {
427  if (!classdecl)
428    return true;
429
430  AdjustDeclIfTemplate(classdecl);
431  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
432  QualType BaseType = QualType::getFromOpaquePtr(basetype);
433  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
434                                                      Virtual, Access,
435                                                      BaseType, BaseLoc))
436    return BaseSpec;
437
438  return true;
439}
440
441/// \brief Performs the actual work of attaching the given base class
442/// specifiers to a C++ class.
443bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
444                                unsigned NumBases) {
445 if (NumBases == 0)
446    return false;
447
448  // Used to keep track of which base types we have already seen, so
449  // that we can properly diagnose redundant direct base types. Note
450  // that the key is always the unqualified canonical type of the base
451  // class.
452  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
453
454  // Copy non-redundant base specifiers into permanent storage.
455  unsigned NumGoodBases = 0;
456  bool Invalid = false;
457  for (unsigned idx = 0; idx < NumBases; ++idx) {
458    QualType NewBaseType
459      = Context.getCanonicalType(Bases[idx]->getType());
460    NewBaseType = NewBaseType.getUnqualifiedType();
461
462    if (KnownBaseTypes[NewBaseType]) {
463      // C++ [class.mi]p3:
464      //   A class shall not be specified as a direct base class of a
465      //   derived class more than once.
466      Diag(Bases[idx]->getSourceRange().getBegin(),
467           diag::err_duplicate_base_class)
468        << KnownBaseTypes[NewBaseType]->getType()
469        << Bases[idx]->getSourceRange();
470
471      // Delete the duplicate base class specifier; we're going to
472      // overwrite its pointer later.
473      delete Bases[idx];
474
475      Invalid = true;
476    } else {
477      // Okay, add this new base class.
478      KnownBaseTypes[NewBaseType] = Bases[idx];
479      Bases[NumGoodBases++] = Bases[idx];
480    }
481  }
482
483  // Attach the remaining base class specifiers to the derived class.
484  Class->setBases(Bases, NumGoodBases);
485
486  // Delete the remaining (good) base class specifiers, since their
487  // data has been copied into the CXXRecordDecl.
488  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
489    delete Bases[idx];
490
491  return Invalid;
492}
493
494/// ActOnBaseSpecifiers - Attach the given base specifiers to the
495/// class, after checking whether there are any duplicate base
496/// classes.
497void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
498                               unsigned NumBases) {
499  if (!ClassDecl || !Bases || !NumBases)
500    return;
501
502  AdjustDeclIfTemplate(ClassDecl);
503  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
504                       (CXXBaseSpecifier**)(Bases), NumBases);
505}
506
507//===----------------------------------------------------------------------===//
508// C++ class member Handling
509//===----------------------------------------------------------------------===//
510
511/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
512/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
513/// bitfield width if there is one and 'InitExpr' specifies the initializer if
514/// any.
515Sema::DeclPtrTy
516Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
517                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
518  const DeclSpec &DS = D.getDeclSpec();
519  DeclarationName Name = GetNameForDeclarator(D);
520  Expr *BitWidth = static_cast<Expr*>(BW);
521  Expr *Init = static_cast<Expr*>(InitExpr);
522  SourceLocation Loc = D.getIdentifierLoc();
523
524  bool isFunc = D.isFunctionDeclarator();
525
526  // C++ 9.2p6: A member shall not be declared to have automatic storage
527  // duration (auto, register) or with the extern storage-class-specifier.
528  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
529  // data members and cannot be applied to names declared const or static,
530  // and cannot be applied to reference members.
531  switch (DS.getStorageClassSpec()) {
532    case DeclSpec::SCS_unspecified:
533    case DeclSpec::SCS_typedef:
534    case DeclSpec::SCS_static:
535      // FALL THROUGH.
536      break;
537    case DeclSpec::SCS_mutable:
538      if (isFunc) {
539        if (DS.getStorageClassSpecLoc().isValid())
540          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
541        else
542          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
543
544        // FIXME: It would be nicer if the keyword was ignored only for this
545        // declarator. Otherwise we could get follow-up errors.
546        D.getMutableDeclSpec().ClearStorageClassSpecs();
547      } else {
548        QualType T = GetTypeForDeclarator(D, S);
549        diag::kind err = static_cast<diag::kind>(0);
550        if (T->isReferenceType())
551          err = diag::err_mutable_reference;
552        else if (T.isConstQualified())
553          err = diag::err_mutable_const;
554        if (err != 0) {
555          if (DS.getStorageClassSpecLoc().isValid())
556            Diag(DS.getStorageClassSpecLoc(), err);
557          else
558            Diag(DS.getThreadSpecLoc(), err);
559          // FIXME: It would be nicer if the keyword was ignored only for this
560          // declarator. Otherwise we could get follow-up errors.
561          D.getMutableDeclSpec().ClearStorageClassSpecs();
562        }
563      }
564      break;
565    default:
566      if (DS.getStorageClassSpecLoc().isValid())
567        Diag(DS.getStorageClassSpecLoc(),
568             diag::err_storageclass_invalid_for_member);
569      else
570        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
571      D.getMutableDeclSpec().ClearStorageClassSpecs();
572  }
573
574  if (!isFunc &&
575      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
576      D.getNumTypeObjects() == 0) {
577    // Check also for this case:
578    //
579    // typedef int f();
580    // f a;
581    //
582    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
583    isFunc = TDType->isFunctionType();
584  }
585
586  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
587                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
588                      !isFunc);
589
590  Decl *Member;
591  if (isInstField) {
592    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
593                         AS);
594    assert(Member && "HandleField never returns null");
595  } else {
596    Member = ActOnDeclarator(S, D).getAs<Decl>();
597    if (!Member) {
598      if (BitWidth) DeleteExpr(BitWidth);
599      return DeclPtrTy();
600    }
601
602    // Non-instance-fields can't have a bitfield.
603    if (BitWidth) {
604      if (Member->isInvalidDecl()) {
605        // don't emit another diagnostic.
606      } else if (isa<VarDecl>(Member)) {
607        // C++ 9.6p3: A bit-field shall not be a static member.
608        // "static member 'A' cannot be a bit-field"
609        Diag(Loc, diag::err_static_not_bitfield)
610          << Name << BitWidth->getSourceRange();
611      } else if (isa<TypedefDecl>(Member)) {
612        // "typedef member 'x' cannot be a bit-field"
613        Diag(Loc, diag::err_typedef_not_bitfield)
614          << Name << BitWidth->getSourceRange();
615      } else {
616        // A function typedef ("typedef int f(); f a;").
617        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
618        Diag(Loc, diag::err_not_integral_type_bitfield)
619          << Name << cast<ValueDecl>(Member)->getType()
620          << BitWidth->getSourceRange();
621      }
622
623      DeleteExpr(BitWidth);
624      BitWidth = 0;
625      Member->setInvalidDecl();
626    }
627
628    Member->setAccess(AS);
629  }
630
631  assert((Name || isInstField) && "No identifier for non-field ?");
632
633  if (Init)
634    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
635  if (Deleted) // FIXME: Source location is not very good.
636    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
637
638  if (isInstField) {
639    FieldCollector->Add(cast<FieldDecl>(Member));
640    return DeclPtrTy();
641  }
642  return DeclPtrTy::make(Member);
643}
644
645/// ActOnMemInitializer - Handle a C++ member initializer.
646Sema::MemInitResult
647Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
648                          Scope *S,
649                          const CXXScopeSpec &SS,
650                          IdentifierInfo *MemberOrBase,
651                          SourceLocation IdLoc,
652                          SourceLocation LParenLoc,
653                          ExprTy **Args, unsigned NumArgs,
654                          SourceLocation *CommaLocs,
655                          SourceLocation RParenLoc) {
656  if (!ConstructorD)
657    return true;
658
659  CXXConstructorDecl *Constructor
660    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
661  if (!Constructor) {
662    // The user wrote a constructor initializer on a function that is
663    // not a C++ constructor. Ignore the error for now, because we may
664    // have more member initializers coming; we'll diagnose it just
665    // once in ActOnMemInitializers.
666    return true;
667  }
668
669  CXXRecordDecl *ClassDecl = Constructor->getParent();
670
671  // C++ [class.base.init]p2:
672  //   Names in a mem-initializer-id are looked up in the scope of the
673  //   constructor’s class and, if not found in that scope, are looked
674  //   up in the scope containing the constructor’s
675  //   definition. [Note: if the constructor’s class contains a member
676  //   with the same name as a direct or virtual base class of the
677  //   class, a mem-initializer-id naming the member or base class and
678  //   composed of a single identifier refers to the class member. A
679  //   mem-initializer-id for the hidden base class may be specified
680  //   using a qualified name. ]
681  if (!SS.getScopeRep()) {
682    // Look for a member, first.
683    FieldDecl *Member = 0;
684    DeclContext::lookup_result Result
685      = ClassDecl->lookup(MemberOrBase);
686    if (Result.first != Result.second)
687      Member = dyn_cast<FieldDecl>(*Result.first);
688
689    // FIXME: Handle members of an anonymous union.
690
691    if (Member) {
692      // FIXME: Perform direct initialization of the member.
693      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
694                                            IdLoc);
695    }
696  }
697  // It didn't name a member, so see if it names a class.
698  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, &SS);
699  if (!BaseTy)
700    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
701      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
702
703  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
704  if (!BaseType->isRecordType())
705    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
706      << BaseType << SourceRange(IdLoc, RParenLoc);
707
708  // C++ [class.base.init]p2:
709  //   [...] Unless the mem-initializer-id names a nonstatic data
710  //   member of the constructor’s class or a direct or virtual base
711  //   of that class, the mem-initializer is ill-formed. A
712  //   mem-initializer-list can initialize a base class using any
713  //   name that denotes that base class type.
714
715  // First, check for a direct base class.
716  const CXXBaseSpecifier *DirectBaseSpec = 0;
717  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
718       Base != ClassDecl->bases_end(); ++Base) {
719    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
720        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
721      // We found a direct base of this type. That's what we're
722      // initializing.
723      DirectBaseSpec = &*Base;
724      break;
725    }
726  }
727
728  // Check for a virtual base class.
729  // FIXME: We might be able to short-circuit this if we know in advance that
730  // there are no virtual bases.
731  const CXXBaseSpecifier *VirtualBaseSpec = 0;
732  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
733    // We haven't found a base yet; search the class hierarchy for a
734    // virtual base class.
735    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
736                    /*DetectVirtual=*/false);
737    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
738      for (BasePaths::paths_iterator Path = Paths.begin();
739           Path != Paths.end(); ++Path) {
740        if (Path->back().Base->isVirtual()) {
741          VirtualBaseSpec = Path->back().Base;
742          break;
743        }
744      }
745    }
746  }
747
748  // C++ [base.class.init]p2:
749  //   If a mem-initializer-id is ambiguous because it designates both
750  //   a direct non-virtual base class and an inherited virtual base
751  //   class, the mem-initializer is ill-formed.
752  if (DirectBaseSpec && VirtualBaseSpec)
753    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
754      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
755  // C++ [base.class.init]p2:
756  // Unless the mem-initializer-id names a nonstatic data membeer of the
757  // constructor's class ot a direst or virtual base of that class, the
758  // mem-initializer is ill-formed.
759  if (!DirectBaseSpec && !VirtualBaseSpec)
760    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
761    << BaseType << ClassDecl->getNameAsCString()
762    << SourceRange(IdLoc, RParenLoc);
763
764
765  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
766                                        IdLoc);
767}
768
769void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
770                                SourceLocation ColonLoc,
771                                MemInitTy **MemInits, unsigned NumMemInits) {
772  if (!ConstructorDecl)
773    return;
774
775  CXXConstructorDecl *Constructor
776    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
777
778  if (!Constructor) {
779    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
780    return;
781  }
782  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
783
784  for (unsigned i = 0; i < NumMemInits; i++) {
785    CXXBaseOrMemberInitializer *Member =
786      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
787    void *KeyToMember = Member->getBaseOrMember();
788    // For fields injected into the class via declaration of an anonymous union,
789    // use its anonymous union class declaration as the unique key.
790    if (FieldDecl *Field = Member->getMember())
791      if (Field->getDeclContext()->isRecord() &&
792          cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
793        KeyToMember = static_cast<void *>(Field->getDeclContext());
794    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
795    if (!PrevMember) {
796      PrevMember = Member;
797      continue;
798    }
799    if (FieldDecl *Field = Member->getMember())
800      Diag(Member->getSourceLocation(),
801           diag::error_multiple_mem_initialization)
802      << Field->getNameAsString();
803    else {
804      Type *BaseClass = Member->getBaseClass();
805      assert(BaseClass && "ActOnMemInitializers - neither field or base");
806      Diag(Member->getSourceLocation(),
807           diag::error_multiple_base_initialization)
808        << BaseClass->getDesugaredType(true);
809    }
810    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
811      << 0;
812  }
813}
814
815namespace {
816  /// PureVirtualMethodCollector - traverses a class and its superclasses
817  /// and determines if it has any pure virtual methods.
818  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
819    ASTContext &Context;
820
821  public:
822    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
823
824  private:
825    MethodList Methods;
826
827    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
828
829  public:
830    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
831      : Context(Ctx) {
832
833      MethodList List;
834      Collect(RD, List);
835
836      // Copy the temporary list to methods, and make sure to ignore any
837      // null entries.
838      for (size_t i = 0, e = List.size(); i != e; ++i) {
839        if (List[i])
840          Methods.push_back(List[i]);
841      }
842    }
843
844    bool empty() const { return Methods.empty(); }
845
846    MethodList::const_iterator methods_begin() { return Methods.begin(); }
847    MethodList::const_iterator methods_end() { return Methods.end(); }
848  };
849
850  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
851                                           MethodList& Methods) {
852    // First, collect the pure virtual methods for the base classes.
853    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
854         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
855      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
856        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
857        if (BaseDecl && BaseDecl->isAbstract())
858          Collect(BaseDecl, Methods);
859      }
860    }
861
862    // Next, zero out any pure virtual methods that this class overrides.
863    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
864
865    MethodSetTy OverriddenMethods;
866    size_t MethodsSize = Methods.size();
867
868    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
869         i != e; ++i) {
870      // Traverse the record, looking for methods.
871      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
872        // If the method is pre virtual, add it to the methods vector.
873        if (MD->isPure()) {
874          Methods.push_back(MD);
875          continue;
876        }
877
878        // Otherwise, record all the overridden methods in our set.
879        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
880             E = MD->end_overridden_methods(); I != E; ++I) {
881          // Keep track of the overridden methods.
882          OverriddenMethods.insert(*I);
883        }
884      }
885    }
886
887    // Now go through the methods and zero out all the ones we know are
888    // overridden.
889    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
890      if (OverriddenMethods.count(Methods[i]))
891        Methods[i] = 0;
892    }
893
894  }
895}
896
897bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
898                                  unsigned DiagID, AbstractDiagSelID SelID,
899                                  const CXXRecordDecl *CurrentRD) {
900
901  if (!getLangOptions().CPlusPlus)
902    return false;
903
904  if (const ArrayType *AT = Context.getAsArrayType(T))
905    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
906                                  CurrentRD);
907
908  if (const PointerType *PT = T->getAsPointerType()) {
909    // Find the innermost pointer type.
910    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
911      PT = T;
912
913    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
914      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
915                                    CurrentRD);
916  }
917
918  const RecordType *RT = T->getAsRecordType();
919  if (!RT)
920    return false;
921
922  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
923  if (!RD)
924    return false;
925
926  if (CurrentRD && CurrentRD != RD)
927    return false;
928
929  if (!RD->isAbstract())
930    return false;
931
932  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
933
934  // Check if we've already emitted the list of pure virtual functions for this
935  // class.
936  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
937    return true;
938
939  PureVirtualMethodCollector Collector(Context, RD);
940
941  for (PureVirtualMethodCollector::MethodList::const_iterator I =
942       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
943    const CXXMethodDecl *MD = *I;
944
945    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
946      MD->getDeclName();
947  }
948
949  if (!PureVirtualClassDiagSet)
950    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
951  PureVirtualClassDiagSet->insert(RD);
952
953  return true;
954}
955
956namespace {
957  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
958    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
959    Sema &SemaRef;
960    CXXRecordDecl *AbstractClass;
961
962    bool VisitDeclContext(const DeclContext *DC) {
963      bool Invalid = false;
964
965      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
966           E = DC->decls_end(); I != E; ++I)
967        Invalid |= Visit(*I);
968
969      return Invalid;
970    }
971
972  public:
973    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
974      : SemaRef(SemaRef), AbstractClass(ac) {
975        Visit(SemaRef.Context.getTranslationUnitDecl());
976    }
977
978    bool VisitFunctionDecl(const FunctionDecl *FD) {
979      if (FD->isThisDeclarationADefinition()) {
980        // No need to do the check if we're in a definition, because it requires
981        // that the return/param types are complete.
982        // because that requires
983        return VisitDeclContext(FD);
984      }
985
986      // Check the return type.
987      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
988      bool Invalid =
989        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
990                                       diag::err_abstract_type_in_decl,
991                                       Sema::AbstractReturnType,
992                                       AbstractClass);
993
994      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
995           E = FD->param_end(); I != E; ++I) {
996        const ParmVarDecl *VD = *I;
997        Invalid |=
998          SemaRef.RequireNonAbstractType(VD->getLocation(),
999                                         VD->getOriginalType(),
1000                                         diag::err_abstract_type_in_decl,
1001                                         Sema::AbstractParamType,
1002                                         AbstractClass);
1003      }
1004
1005      return Invalid;
1006    }
1007
1008    bool VisitDecl(const Decl* D) {
1009      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1010        return VisitDeclContext(DC);
1011
1012      return false;
1013    }
1014  };
1015}
1016
1017void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1018                                             DeclPtrTy TagDecl,
1019                                             SourceLocation LBrac,
1020                                             SourceLocation RBrac) {
1021  if (!TagDecl)
1022    return;
1023
1024  AdjustDeclIfTemplate(TagDecl);
1025  ActOnFields(S, RLoc, TagDecl,
1026              (DeclPtrTy*)FieldCollector->getCurFields(),
1027              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1028
1029  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1030  if (!RD->isAbstract()) {
1031    // Collect all the pure virtual methods and see if this is an abstract
1032    // class after all.
1033    PureVirtualMethodCollector Collector(Context, RD);
1034    if (!Collector.empty())
1035      RD->setAbstract(true);
1036  }
1037
1038  if (RD->isAbstract())
1039    AbstractClassUsageDiagnoser(*this, RD);
1040
1041  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1042    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1043         i != e; ++i) {
1044      // All the nonstatic data members must have trivial constructors.
1045      QualType FTy = i->getType();
1046      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1047        FTy = AT->getElementType();
1048
1049      if (const RecordType *RT = FTy->getAsRecordType()) {
1050        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1051
1052        if (!FieldRD->hasTrivialConstructor())
1053          RD->setHasTrivialConstructor(false);
1054        if (!FieldRD->hasTrivialDestructor())
1055          RD->setHasTrivialDestructor(false);
1056
1057        // If RD has neither a trivial constructor nor a trivial destructor
1058        // we don't need to continue checking.
1059        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1060          break;
1061      }
1062    }
1063  }
1064
1065  if (!RD->isDependentType())
1066    AddImplicitlyDeclaredMembersToClass(RD);
1067}
1068
1069/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1070/// special functions, such as the default constructor, copy
1071/// constructor, or destructor, to the given C++ class (C++
1072/// [special]p1).  This routine can only be executed just before the
1073/// definition of the class is complete.
1074void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1075  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1076  ClassType = Context.getCanonicalType(ClassType);
1077
1078  // FIXME: Implicit declarations have exception specifications, which are
1079  // the union of the specifications of the implicitly called functions.
1080
1081  if (!ClassDecl->hasUserDeclaredConstructor()) {
1082    // C++ [class.ctor]p5:
1083    //   A default constructor for a class X is a constructor of class X
1084    //   that can be called without an argument. If there is no
1085    //   user-declared constructor for class X, a default constructor is
1086    //   implicitly declared. An implicitly-declared default constructor
1087    //   is an inline public member of its class.
1088    DeclarationName Name
1089      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1090    CXXConstructorDecl *DefaultCon =
1091      CXXConstructorDecl::Create(Context, ClassDecl,
1092                                 ClassDecl->getLocation(), Name,
1093                                 Context.getFunctionType(Context.VoidTy,
1094                                                         0, 0, false, 0),
1095                                 /*isExplicit=*/false,
1096                                 /*isInline=*/true,
1097                                 /*isImplicitlyDeclared=*/true);
1098    DefaultCon->setAccess(AS_public);
1099    DefaultCon->setImplicit();
1100    ClassDecl->addDecl(DefaultCon);
1101  }
1102
1103  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1104    // C++ [class.copy]p4:
1105    //   If the class definition does not explicitly declare a copy
1106    //   constructor, one is declared implicitly.
1107
1108    // C++ [class.copy]p5:
1109    //   The implicitly-declared copy constructor for a class X will
1110    //   have the form
1111    //
1112    //       X::X(const X&)
1113    //
1114    //   if
1115    bool HasConstCopyConstructor = true;
1116
1117    //     -- each direct or virtual base class B of X has a copy
1118    //        constructor whose first parameter is of type const B& or
1119    //        const volatile B&, and
1120    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1121         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1122      const CXXRecordDecl *BaseClassDecl
1123        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1124      HasConstCopyConstructor
1125        = BaseClassDecl->hasConstCopyConstructor(Context);
1126    }
1127
1128    //     -- for all the nonstatic data members of X that are of a
1129    //        class type M (or array thereof), each such class type
1130    //        has a copy constructor whose first parameter is of type
1131    //        const M& or const volatile M&.
1132    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1133         HasConstCopyConstructor && Field != ClassDecl->field_end();
1134         ++Field) {
1135      QualType FieldType = (*Field)->getType();
1136      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1137        FieldType = Array->getElementType();
1138      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1139        const CXXRecordDecl *FieldClassDecl
1140          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1141        HasConstCopyConstructor
1142          = FieldClassDecl->hasConstCopyConstructor(Context);
1143      }
1144    }
1145
1146    //   Otherwise, the implicitly declared copy constructor will have
1147    //   the form
1148    //
1149    //       X::X(X&)
1150    QualType ArgType = ClassType;
1151    if (HasConstCopyConstructor)
1152      ArgType = ArgType.withConst();
1153    ArgType = Context.getLValueReferenceType(ArgType);
1154
1155    //   An implicitly-declared copy constructor is an inline public
1156    //   member of its class.
1157    DeclarationName Name
1158      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1159    CXXConstructorDecl *CopyConstructor
1160      = CXXConstructorDecl::Create(Context, ClassDecl,
1161                                   ClassDecl->getLocation(), Name,
1162                                   Context.getFunctionType(Context.VoidTy,
1163                                                           &ArgType, 1,
1164                                                           false, 0),
1165                                   /*isExplicit=*/false,
1166                                   /*isInline=*/true,
1167                                   /*isImplicitlyDeclared=*/true);
1168    CopyConstructor->setAccess(AS_public);
1169    CopyConstructor->setImplicit();
1170
1171    // Add the parameter to the constructor.
1172    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1173                                                 ClassDecl->getLocation(),
1174                                                 /*IdentifierInfo=*/0,
1175                                                 ArgType, VarDecl::None, 0);
1176    CopyConstructor->setParams(Context, &FromParam, 1);
1177    ClassDecl->addDecl(CopyConstructor);
1178  }
1179
1180  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1181    // Note: The following rules are largely analoguous to the copy
1182    // constructor rules. Note that virtual bases are not taken into account
1183    // for determining the argument type of the operator. Note also that
1184    // operators taking an object instead of a reference are allowed.
1185    //
1186    // C++ [class.copy]p10:
1187    //   If the class definition does not explicitly declare a copy
1188    //   assignment operator, one is declared implicitly.
1189    //   The implicitly-defined copy assignment operator for a class X
1190    //   will have the form
1191    //
1192    //       X& X::operator=(const X&)
1193    //
1194    //   if
1195    bool HasConstCopyAssignment = true;
1196
1197    //       -- each direct base class B of X has a copy assignment operator
1198    //          whose parameter is of type const B&, const volatile B& or B,
1199    //          and
1200    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1201         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1202      const CXXRecordDecl *BaseClassDecl
1203        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1204      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1205    }
1206
1207    //       -- for all the nonstatic data members of X that are of a class
1208    //          type M (or array thereof), each such class type has a copy
1209    //          assignment operator whose parameter is of type const M&,
1210    //          const volatile M& or M.
1211    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1212         HasConstCopyAssignment && Field != ClassDecl->field_end();
1213         ++Field) {
1214      QualType FieldType = (*Field)->getType();
1215      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1216        FieldType = Array->getElementType();
1217      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1218        const CXXRecordDecl *FieldClassDecl
1219          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1220        HasConstCopyAssignment
1221          = FieldClassDecl->hasConstCopyAssignment(Context);
1222      }
1223    }
1224
1225    //   Otherwise, the implicitly declared copy assignment operator will
1226    //   have the form
1227    //
1228    //       X& X::operator=(X&)
1229    QualType ArgType = ClassType;
1230    QualType RetType = Context.getLValueReferenceType(ArgType);
1231    if (HasConstCopyAssignment)
1232      ArgType = ArgType.withConst();
1233    ArgType = Context.getLValueReferenceType(ArgType);
1234
1235    //   An implicitly-declared copy assignment operator is an inline public
1236    //   member of its class.
1237    DeclarationName Name =
1238      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1239    CXXMethodDecl *CopyAssignment =
1240      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1241                            Context.getFunctionType(RetType, &ArgType, 1,
1242                                                    false, 0),
1243                            /*isStatic=*/false, /*isInline=*/true);
1244    CopyAssignment->setAccess(AS_public);
1245    CopyAssignment->setImplicit();
1246
1247    // Add the parameter to the operator.
1248    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1249                                                 ClassDecl->getLocation(),
1250                                                 /*IdentifierInfo=*/0,
1251                                                 ArgType, VarDecl::None, 0);
1252    CopyAssignment->setParams(Context, &FromParam, 1);
1253
1254    // Don't call addedAssignmentOperator. There is no way to distinguish an
1255    // implicit from an explicit assignment operator.
1256    ClassDecl->addDecl(CopyAssignment);
1257  }
1258
1259  if (!ClassDecl->hasUserDeclaredDestructor()) {
1260    // C++ [class.dtor]p2:
1261    //   If a class has no user-declared destructor, a destructor is
1262    //   declared implicitly. An implicitly-declared destructor is an
1263    //   inline public member of its class.
1264    DeclarationName Name
1265      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1266    CXXDestructorDecl *Destructor
1267      = CXXDestructorDecl::Create(Context, ClassDecl,
1268                                  ClassDecl->getLocation(), Name,
1269                                  Context.getFunctionType(Context.VoidTy,
1270                                                          0, 0, false, 0),
1271                                  /*isInline=*/true,
1272                                  /*isImplicitlyDeclared=*/true);
1273    Destructor->setAccess(AS_public);
1274    Destructor->setImplicit();
1275    ClassDecl->addDecl(Destructor);
1276  }
1277}
1278
1279void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1280  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1281  if (!Template)
1282    return;
1283
1284  TemplateParameterList *Params = Template->getTemplateParameters();
1285  for (TemplateParameterList::iterator Param = Params->begin(),
1286                                    ParamEnd = Params->end();
1287       Param != ParamEnd; ++Param) {
1288    NamedDecl *Named = cast<NamedDecl>(*Param);
1289    if (Named->getDeclName()) {
1290      S->AddDecl(DeclPtrTy::make(Named));
1291      IdResolver.AddDecl(Named);
1292    }
1293  }
1294}
1295
1296/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1297/// parsing a top-level (non-nested) C++ class, and we are now
1298/// parsing those parts of the given Method declaration that could
1299/// not be parsed earlier (C++ [class.mem]p2), such as default
1300/// arguments. This action should enter the scope of the given
1301/// Method declaration as if we had just parsed the qualified method
1302/// name. However, it should not bring the parameters into scope;
1303/// that will be performed by ActOnDelayedCXXMethodParameter.
1304void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1305  if (!MethodD)
1306    return;
1307
1308  CXXScopeSpec SS;
1309  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1310  QualType ClassTy
1311    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1312  SS.setScopeRep(
1313    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1314  ActOnCXXEnterDeclaratorScope(S, SS);
1315}
1316
1317/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1318/// C++ method declaration. We're (re-)introducing the given
1319/// function parameter into scope for use in parsing later parts of
1320/// the method declaration. For example, we could see an
1321/// ActOnParamDefaultArgument event for this parameter.
1322void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1323  if (!ParamD)
1324    return;
1325
1326  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1327
1328  // If this parameter has an unparsed default argument, clear it out
1329  // to make way for the parsed default argument.
1330  if (Param->hasUnparsedDefaultArg())
1331    Param->setDefaultArg(0);
1332
1333  S->AddDecl(DeclPtrTy::make(Param));
1334  if (Param->getDeclName())
1335    IdResolver.AddDecl(Param);
1336}
1337
1338/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1339/// processing the delayed method declaration for Method. The method
1340/// declaration is now considered finished. There may be a separate
1341/// ActOnStartOfFunctionDef action later (not necessarily
1342/// immediately!) for this method, if it was also defined inside the
1343/// class body.
1344void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1345  if (!MethodD)
1346    return;
1347
1348  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1349  CXXScopeSpec SS;
1350  QualType ClassTy
1351    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1352  SS.setScopeRep(
1353    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1354  ActOnCXXExitDeclaratorScope(S, SS);
1355
1356  // Now that we have our default arguments, check the constructor
1357  // again. It could produce additional diagnostics or affect whether
1358  // the class has implicitly-declared destructors, among other
1359  // things.
1360  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1361    CheckConstructor(Constructor);
1362
1363  // Check the default arguments, which we may have added.
1364  if (!Method->isInvalidDecl())
1365    CheckCXXDefaultArguments(Method);
1366}
1367
1368/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1369/// the well-formedness of the constructor declarator @p D with type @p
1370/// R. If there are any errors in the declarator, this routine will
1371/// emit diagnostics and set the invalid bit to true.  In any case, the type
1372/// will be updated to reflect a well-formed type for the constructor and
1373/// returned.
1374QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1375                                          FunctionDecl::StorageClass &SC) {
1376  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1377
1378  // C++ [class.ctor]p3:
1379  //   A constructor shall not be virtual (10.3) or static (9.4). A
1380  //   constructor can be invoked for a const, volatile or const
1381  //   volatile object. A constructor shall not be declared const,
1382  //   volatile, or const volatile (9.3.2).
1383  if (isVirtual) {
1384    if (!D.isInvalidType())
1385      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1386        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1387        << SourceRange(D.getIdentifierLoc());
1388    D.setInvalidType();
1389  }
1390  if (SC == FunctionDecl::Static) {
1391    if (!D.isInvalidType())
1392      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1393        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1394        << SourceRange(D.getIdentifierLoc());
1395    D.setInvalidType();
1396    SC = FunctionDecl::None;
1397  }
1398
1399  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1400  if (FTI.TypeQuals != 0) {
1401    if (FTI.TypeQuals & QualType::Const)
1402      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1403        << "const" << SourceRange(D.getIdentifierLoc());
1404    if (FTI.TypeQuals & QualType::Volatile)
1405      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1406        << "volatile" << SourceRange(D.getIdentifierLoc());
1407    if (FTI.TypeQuals & QualType::Restrict)
1408      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1409        << "restrict" << SourceRange(D.getIdentifierLoc());
1410  }
1411
1412  // Rebuild the function type "R" without any type qualifiers (in
1413  // case any of the errors above fired) and with "void" as the
1414  // return type, since constructors don't have return types. We
1415  // *always* have to do this, because GetTypeForDeclarator will
1416  // put in a result type of "int" when none was specified.
1417  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1418  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1419                                 Proto->getNumArgs(),
1420                                 Proto->isVariadic(), 0);
1421}
1422
1423/// CheckConstructor - Checks a fully-formed constructor for
1424/// well-formedness, issuing any diagnostics required. Returns true if
1425/// the constructor declarator is invalid.
1426void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1427  CXXRecordDecl *ClassDecl
1428    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1429  if (!ClassDecl)
1430    return Constructor->setInvalidDecl();
1431
1432  // C++ [class.copy]p3:
1433  //   A declaration of a constructor for a class X is ill-formed if
1434  //   its first parameter is of type (optionally cv-qualified) X and
1435  //   either there are no other parameters or else all other
1436  //   parameters have default arguments.
1437  if (!Constructor->isInvalidDecl() &&
1438      ((Constructor->getNumParams() == 1) ||
1439       (Constructor->getNumParams() > 1 &&
1440        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1441    QualType ParamType = Constructor->getParamDecl(0)->getType();
1442    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1443    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1444      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1445      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1446        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1447      Constructor->setInvalidDecl();
1448    }
1449  }
1450
1451  // Notify the class that we've added a constructor.
1452  ClassDecl->addedConstructor(Context, Constructor);
1453}
1454
1455static inline bool
1456FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1457  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1458          FTI.ArgInfo[0].Param &&
1459          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1460}
1461
1462/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1463/// the well-formednes of the destructor declarator @p D with type @p
1464/// R. If there are any errors in the declarator, this routine will
1465/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1466/// will be updated to reflect a well-formed type for the destructor and
1467/// returned.
1468QualType Sema::CheckDestructorDeclarator(Declarator &D,
1469                                         FunctionDecl::StorageClass& SC) {
1470  // C++ [class.dtor]p1:
1471  //   [...] A typedef-name that names a class is a class-name
1472  //   (7.1.3); however, a typedef-name that names a class shall not
1473  //   be used as the identifier in the declarator for a destructor
1474  //   declaration.
1475  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1476  if (isa<TypedefType>(DeclaratorType)) {
1477    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1478      << DeclaratorType;
1479    D.setInvalidType();
1480  }
1481
1482  // C++ [class.dtor]p2:
1483  //   A destructor is used to destroy objects of its class type. A
1484  //   destructor takes no parameters, and no return type can be
1485  //   specified for it (not even void). The address of a destructor
1486  //   shall not be taken. A destructor shall not be static. A
1487  //   destructor can be invoked for a const, volatile or const
1488  //   volatile object. A destructor shall not be declared const,
1489  //   volatile or const volatile (9.3.2).
1490  if (SC == FunctionDecl::Static) {
1491    if (!D.isInvalidType())
1492      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1493        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1494        << SourceRange(D.getIdentifierLoc());
1495    SC = FunctionDecl::None;
1496    D.setInvalidType();
1497  }
1498  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1499    // Destructors don't have return types, but the parser will
1500    // happily parse something like:
1501    //
1502    //   class X {
1503    //     float ~X();
1504    //   };
1505    //
1506    // The return type will be eliminated later.
1507    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1508      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1509      << SourceRange(D.getIdentifierLoc());
1510  }
1511
1512  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1513  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1514    if (FTI.TypeQuals & QualType::Const)
1515      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1516        << "const" << SourceRange(D.getIdentifierLoc());
1517    if (FTI.TypeQuals & QualType::Volatile)
1518      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1519        << "volatile" << SourceRange(D.getIdentifierLoc());
1520    if (FTI.TypeQuals & QualType::Restrict)
1521      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1522        << "restrict" << SourceRange(D.getIdentifierLoc());
1523    D.setInvalidType();
1524  }
1525
1526  // Make sure we don't have any parameters.
1527  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1528    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1529
1530    // Delete the parameters.
1531    FTI.freeArgs();
1532    D.setInvalidType();
1533  }
1534
1535  // Make sure the destructor isn't variadic.
1536  if (FTI.isVariadic) {
1537    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1538    D.setInvalidType();
1539  }
1540
1541  // Rebuild the function type "R" without any type qualifiers or
1542  // parameters (in case any of the errors above fired) and with
1543  // "void" as the return type, since destructors don't have return
1544  // types. We *always* have to do this, because GetTypeForDeclarator
1545  // will put in a result type of "int" when none was specified.
1546  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1547}
1548
1549/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1550/// well-formednes of the conversion function declarator @p D with
1551/// type @p R. If there are any errors in the declarator, this routine
1552/// will emit diagnostics and return true. Otherwise, it will return
1553/// false. Either way, the type @p R will be updated to reflect a
1554/// well-formed type for the conversion operator.
1555void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1556                                     FunctionDecl::StorageClass& SC) {
1557  // C++ [class.conv.fct]p1:
1558  //   Neither parameter types nor return type can be specified. The
1559  //   type of a conversion function (8.3.5) is “function taking no
1560  //   parameter returning conversion-type-id.”
1561  if (SC == FunctionDecl::Static) {
1562    if (!D.isInvalidType())
1563      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1564        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1565        << SourceRange(D.getIdentifierLoc());
1566    D.setInvalidType();
1567    SC = FunctionDecl::None;
1568  }
1569  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1570    // Conversion functions don't have return types, but the parser will
1571    // happily parse something like:
1572    //
1573    //   class X {
1574    //     float operator bool();
1575    //   };
1576    //
1577    // The return type will be changed later anyway.
1578    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1579      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1580      << SourceRange(D.getIdentifierLoc());
1581  }
1582
1583  // Make sure we don't have any parameters.
1584  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1585    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1586
1587    // Delete the parameters.
1588    D.getTypeObject(0).Fun.freeArgs();
1589    D.setInvalidType();
1590  }
1591
1592  // Make sure the conversion function isn't variadic.
1593  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1594    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1595    D.setInvalidType();
1596  }
1597
1598  // C++ [class.conv.fct]p4:
1599  //   The conversion-type-id shall not represent a function type nor
1600  //   an array type.
1601  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1602  if (ConvType->isArrayType()) {
1603    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1604    ConvType = Context.getPointerType(ConvType);
1605    D.setInvalidType();
1606  } else if (ConvType->isFunctionType()) {
1607    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1608    ConvType = Context.getPointerType(ConvType);
1609    D.setInvalidType();
1610  }
1611
1612  // Rebuild the function type "R" without any parameters (in case any
1613  // of the errors above fired) and with the conversion type as the
1614  // return type.
1615  R = Context.getFunctionType(ConvType, 0, 0, false,
1616                              R->getAsFunctionProtoType()->getTypeQuals());
1617
1618  // C++0x explicit conversion operators.
1619  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1620    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1621         diag::warn_explicit_conversion_functions)
1622      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1623}
1624
1625/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1626/// the declaration of the given C++ conversion function. This routine
1627/// is responsible for recording the conversion function in the C++
1628/// class, if possible.
1629Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1630  assert(Conversion && "Expected to receive a conversion function declaration");
1631
1632  // Set the lexical context of this conversion function
1633  Conversion->setLexicalDeclContext(CurContext);
1634
1635  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1636
1637  // Make sure we aren't redeclaring the conversion function.
1638  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1639
1640  // C++ [class.conv.fct]p1:
1641  //   [...] A conversion function is never used to convert a
1642  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1643  //   same object type (or a reference to it), to a (possibly
1644  //   cv-qualified) base class of that type (or a reference to it),
1645  //   or to (possibly cv-qualified) void.
1646  // FIXME: Suppress this warning if the conversion function ends up being a
1647  // virtual function that overrides a virtual function in a base class.
1648  QualType ClassType
1649    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1650  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1651    ConvType = ConvTypeRef->getPointeeType();
1652  if (ConvType->isRecordType()) {
1653    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1654    if (ConvType == ClassType)
1655      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1656        << ClassType;
1657    else if (IsDerivedFrom(ClassType, ConvType))
1658      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1659        <<  ClassType << ConvType;
1660  } else if (ConvType->isVoidType()) {
1661    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1662      << ClassType << ConvType;
1663  }
1664
1665  if (Conversion->getPreviousDeclaration()) {
1666    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1667    for (OverloadedFunctionDecl::function_iterator
1668           Conv = Conversions->function_begin(),
1669           ConvEnd = Conversions->function_end();
1670         Conv != ConvEnd; ++Conv) {
1671      if (*Conv
1672            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1673        *Conv = Conversion;
1674        return DeclPtrTy::make(Conversion);
1675      }
1676    }
1677    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1678  } else
1679    ClassDecl->addConversionFunction(Context, Conversion);
1680
1681  return DeclPtrTy::make(Conversion);
1682}
1683
1684//===----------------------------------------------------------------------===//
1685// Namespace Handling
1686//===----------------------------------------------------------------------===//
1687
1688/// ActOnStartNamespaceDef - This is called at the start of a namespace
1689/// definition.
1690Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1691                                             SourceLocation IdentLoc,
1692                                             IdentifierInfo *II,
1693                                             SourceLocation LBrace) {
1694  NamespaceDecl *Namespc =
1695      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1696  Namespc->setLBracLoc(LBrace);
1697
1698  Scope *DeclRegionScope = NamespcScope->getParent();
1699
1700  if (II) {
1701    // C++ [namespace.def]p2:
1702    // The identifier in an original-namespace-definition shall not have been
1703    // previously defined in the declarative region in which the
1704    // original-namespace-definition appears. The identifier in an
1705    // original-namespace-definition is the name of the namespace. Subsequently
1706    // in that declarative region, it is treated as an original-namespace-name.
1707
1708    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1709                                     true);
1710
1711    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1712      // This is an extended namespace definition.
1713      // Attach this namespace decl to the chain of extended namespace
1714      // definitions.
1715      OrigNS->setNextNamespace(Namespc);
1716      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1717
1718      // Remove the previous declaration from the scope.
1719      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1720        IdResolver.RemoveDecl(OrigNS);
1721        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1722      }
1723    } else if (PrevDecl) {
1724      // This is an invalid name redefinition.
1725      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1726       << Namespc->getDeclName();
1727      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1728      Namespc->setInvalidDecl();
1729      // Continue on to push Namespc as current DeclContext and return it.
1730    }
1731
1732    PushOnScopeChains(Namespc, DeclRegionScope);
1733  } else {
1734    // FIXME: Handle anonymous namespaces
1735  }
1736
1737  // Although we could have an invalid decl (i.e. the namespace name is a
1738  // redefinition), push it as current DeclContext and try to continue parsing.
1739  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1740  // for the namespace has the declarations that showed up in that particular
1741  // namespace definition.
1742  PushDeclContext(NamespcScope, Namespc);
1743  return DeclPtrTy::make(Namespc);
1744}
1745
1746/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1747/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1748void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1749  Decl *Dcl = D.getAs<Decl>();
1750  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1751  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1752  Namespc->setRBracLoc(RBrace);
1753  PopDeclContext();
1754}
1755
1756Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1757                                          SourceLocation UsingLoc,
1758                                          SourceLocation NamespcLoc,
1759                                          const CXXScopeSpec &SS,
1760                                          SourceLocation IdentLoc,
1761                                          IdentifierInfo *NamespcName,
1762                                          AttributeList *AttrList) {
1763  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1764  assert(NamespcName && "Invalid NamespcName.");
1765  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1766  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1767
1768  UsingDirectiveDecl *UDir = 0;
1769
1770  // Lookup namespace name.
1771  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1772                                    LookupNamespaceName, false);
1773  if (R.isAmbiguous()) {
1774    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1775    return DeclPtrTy();
1776  }
1777  if (NamedDecl *NS = R) {
1778    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1779    // C++ [namespace.udir]p1:
1780    //   A using-directive specifies that the names in the nominated
1781    //   namespace can be used in the scope in which the
1782    //   using-directive appears after the using-directive. During
1783    //   unqualified name lookup (3.4.1), the names appear as if they
1784    //   were declared in the nearest enclosing namespace which
1785    //   contains both the using-directive and the nominated
1786    //   namespace. [Note: in this context, “contains” means “contains
1787    //   directly or indirectly”. ]
1788
1789    // Find enclosing context containing both using-directive and
1790    // nominated namespace.
1791    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1792    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1793      CommonAncestor = CommonAncestor->getParent();
1794
1795    UDir = UsingDirectiveDecl::Create(Context,
1796                                      CurContext, UsingLoc,
1797                                      NamespcLoc,
1798                                      SS.getRange(),
1799                                      (NestedNameSpecifier *)SS.getScopeRep(),
1800                                      IdentLoc,
1801                                      cast<NamespaceDecl>(NS),
1802                                      CommonAncestor);
1803    PushUsingDirective(S, UDir);
1804  } else {
1805    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1806  }
1807
1808  // FIXME: We ignore attributes for now.
1809  delete AttrList;
1810  return DeclPtrTy::make(UDir);
1811}
1812
1813void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1814  // If scope has associated entity, then using directive is at namespace
1815  // or translation unit scope. We add UsingDirectiveDecls, into
1816  // it's lookup structure.
1817  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1818    Ctx->addDecl(UDir);
1819  else
1820    // Otherwise it is block-sope. using-directives will affect lookup
1821    // only to the end of scope.
1822    S->PushUsingDirective(DeclPtrTy::make(UDir));
1823}
1824
1825
1826Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1827                                          SourceLocation UsingLoc,
1828                                          const CXXScopeSpec &SS,
1829                                          SourceLocation IdentLoc,
1830                                          IdentifierInfo *TargetName,
1831                                          OverloadedOperatorKind Op,
1832                                          AttributeList *AttrList,
1833                                          bool IsTypeName) {
1834  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1835  assert((TargetName || Op) && "Invalid TargetName.");
1836  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1837  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1838
1839  UsingDecl *UsingAlias = 0;
1840
1841  DeclarationName Name;
1842  if (TargetName)
1843    Name = TargetName;
1844  else
1845    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1846
1847  // Lookup target name.
1848  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1849
1850  if (NamedDecl *NS = R) {
1851    if (IsTypeName && !isa<TypeDecl>(NS)) {
1852      Diag(IdentLoc, diag::err_using_typename_non_type);
1853    }
1854    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1855        NS->getLocation(), UsingLoc, NS,
1856        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1857        IsTypeName);
1858    PushOnScopeChains(UsingAlias, S);
1859  } else {
1860    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1861  }
1862
1863  // FIXME: We ignore attributes for now.
1864  delete AttrList;
1865  return DeclPtrTy::make(UsingAlias);
1866}
1867
1868/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1869/// is a namespace alias, returns the namespace it points to.
1870static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1871  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1872    return AD->getNamespace();
1873  return dyn_cast_or_null<NamespaceDecl>(D);
1874}
1875
1876Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1877                                             SourceLocation NamespaceLoc,
1878                                             SourceLocation AliasLoc,
1879                                             IdentifierInfo *Alias,
1880                                             const CXXScopeSpec &SS,
1881                                             SourceLocation IdentLoc,
1882                                             IdentifierInfo *Ident) {
1883
1884  // Lookup the namespace name.
1885  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1886
1887  // Check if we have a previous declaration with the same name.
1888  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1889    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1890      // We already have an alias with the same name that points to the same
1891      // namespace, so don't create a new one.
1892      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1893        return DeclPtrTy();
1894    }
1895
1896    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1897      diag::err_redefinition_different_kind;
1898    Diag(AliasLoc, DiagID) << Alias;
1899    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1900    return DeclPtrTy();
1901  }
1902
1903  if (R.isAmbiguous()) {
1904    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1905    return DeclPtrTy();
1906  }
1907
1908  if (!R) {
1909    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1910    return DeclPtrTy();
1911  }
1912
1913  NamespaceAliasDecl *AliasDecl =
1914    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
1915                               Alias, SS.getRange(),
1916                               (NestedNameSpecifier *)SS.getScopeRep(),
1917                               IdentLoc, R);
1918
1919  CurContext->addDecl(AliasDecl);
1920  return DeclPtrTy::make(AliasDecl);
1921}
1922
1923void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
1924                                            CXXConstructorDecl *Constructor) {
1925  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
1926          !Constructor->isUsed()) &&
1927    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
1928
1929  CXXRecordDecl *ClassDecl
1930    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1931  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
1932  // Before the implicitly-declared default constructor for a class is
1933  // implicitly defined, all the implicitly-declared default constructors
1934  // for its base class and its non-static data members shall have been
1935  // implicitly defined.
1936  bool err = false;
1937  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1938       E = ClassDecl->bases_end(); Base != E; ++Base) {
1939    CXXRecordDecl *BaseClassDecl
1940      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1941    if (!BaseClassDecl->hasTrivialConstructor()) {
1942      if (CXXConstructorDecl *BaseCtor =
1943            BaseClassDecl->getDefaultConstructor(Context))
1944        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
1945      else {
1946        Diag(CurrentLocation, diag::err_defining_default_ctor)
1947          << Context.getTagDeclType(ClassDecl) << 1
1948          << Context.getTagDeclType(BaseClassDecl);
1949        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
1950              << Context.getTagDeclType(BaseClassDecl);
1951        err = true;
1952      }
1953    }
1954  }
1955  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1956       E = ClassDecl->field_end(); Field != E; ++Field) {
1957    QualType FieldType = Context.getCanonicalType((*Field)->getType());
1958    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1959      FieldType = Array->getElementType();
1960    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1961      CXXRecordDecl *FieldClassDecl
1962        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1963      if (!FieldClassDecl->hasTrivialConstructor()) {
1964        if (CXXConstructorDecl *FieldCtor =
1965            FieldClassDecl->getDefaultConstructor(Context))
1966          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
1967        else {
1968          Diag(CurrentLocation, diag::err_defining_default_ctor)
1969          << Context.getTagDeclType(ClassDecl) << 0 <<
1970              Context.getTagDeclType(FieldClassDecl);
1971          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
1972          << Context.getTagDeclType(FieldClassDecl);
1973          err = true;
1974        }
1975      }
1976    }
1977    else if (FieldType->isReferenceType()) {
1978      Diag(CurrentLocation, diag::err_unintialized_member)
1979        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
1980      Diag((*Field)->getLocation(), diag::note_declared_at);
1981      err = true;
1982    }
1983    else if (FieldType.isConstQualified()) {
1984      Diag(CurrentLocation, diag::err_unintialized_member)
1985        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
1986       Diag((*Field)->getLocation(), diag::note_declared_at);
1987      err = true;
1988    }
1989  }
1990  if (!err)
1991    Constructor->setUsed();
1992  else
1993    Constructor->setInvalidDecl();
1994}
1995
1996void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
1997                                            CXXDestructorDecl *Destructor) {
1998  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
1999         "DefineImplicitDestructor - call it for implicit default dtor");
2000
2001  CXXRecordDecl *ClassDecl
2002  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2003  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2004  // C++ [class.dtor] p5
2005  // Before the implicitly-declared default destructor for a class is
2006  // implicitly defined, all the implicitly-declared default destructors
2007  // for its base class and its non-static data members shall have been
2008  // implicitly defined.
2009  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2010       E = ClassDecl->bases_end(); Base != E; ++Base) {
2011    CXXRecordDecl *BaseClassDecl
2012      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2013    if (!BaseClassDecl->hasTrivialDestructor()) {
2014      if (CXXDestructorDecl *BaseDtor =
2015          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2016        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2017      else
2018        assert(false &&
2019               "DefineImplicitDestructor - missing dtor in a base class");
2020    }
2021  }
2022
2023  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2024       E = ClassDecl->field_end(); Field != E; ++Field) {
2025    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2026    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2027      FieldType = Array->getElementType();
2028    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2029      CXXRecordDecl *FieldClassDecl
2030        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2031      if (!FieldClassDecl->hasTrivialDestructor()) {
2032        if (CXXDestructorDecl *FieldDtor =
2033            const_cast<CXXDestructorDecl*>(
2034                                        FieldClassDecl->getDestructor(Context)))
2035          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2036        else
2037          assert(false &&
2038          "DefineImplicitDestructor - missing dtor in class of a data member");
2039      }
2040    }
2041  }
2042  Destructor->setUsed();
2043}
2044
2045void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2046                                          CXXMethodDecl *MethodDecl) {
2047  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2048          MethodDecl->getOverloadedOperator() == OO_Equal &&
2049          !MethodDecl->isUsed()) &&
2050         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2051
2052  CXXRecordDecl *ClassDecl
2053    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2054
2055  // C++[class.copy] p12
2056  // Before the implicitly-declared copy assignment operator for a class is
2057  // implicitly defined, all implicitly-declared copy assignment operators
2058  // for its direct base classes and its nonstatic data members shall have
2059  // been implicitly defined.
2060  bool err = false;
2061  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2062       E = ClassDecl->bases_end(); Base != E; ++Base) {
2063    CXXRecordDecl *BaseClassDecl
2064      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2065    if (CXXMethodDecl *BaseAssignOpMethod =
2066          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2067      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2068  }
2069  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2070       E = ClassDecl->field_end(); Field != E; ++Field) {
2071    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2072    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2073      FieldType = Array->getElementType();
2074    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2075      CXXRecordDecl *FieldClassDecl
2076        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2077      if (CXXMethodDecl *FieldAssignOpMethod =
2078          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2079        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2080    }
2081    else if (FieldType->isReferenceType()) {
2082      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2083      << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString();
2084      Diag((*Field)->getLocation(), diag::note_declared_at);
2085      Diag(CurrentLocation, diag::note_first_required_here);
2086      err = true;
2087    }
2088    else if (FieldType.isConstQualified()) {
2089      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2090      << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString();
2091      Diag((*Field)->getLocation(), diag::note_declared_at);
2092      Diag(CurrentLocation, diag::note_first_required_here);
2093      err = true;
2094    }
2095  }
2096  if (!err)
2097    MethodDecl->setUsed();
2098}
2099
2100CXXMethodDecl *
2101Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2102                              CXXRecordDecl *ClassDecl) {
2103  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2104  QualType RHSType(LHSType);
2105  // If class's assignment operator argument is const/volatile qualified,
2106  // look for operator = (const/volatile B&). Otherwise, look for
2107  // operator = (B&).
2108  if (ParmDecl->getType().isConstQualified())
2109    RHSType.addConst();
2110  if (ParmDecl->getType().isVolatileQualified())
2111    RHSType.addVolatile();
2112  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2113                                                          LHSType,
2114                                                          SourceLocation()));
2115  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2116                                                          RHSType,
2117                                                          SourceLocation()));
2118  Expr *Args[2] = { &*LHS, &*RHS };
2119  OverloadCandidateSet CandidateSet;
2120  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2121                              CandidateSet);
2122  OverloadCandidateSet::iterator Best;
2123  if (BestViableFunction(CandidateSet,
2124                         ClassDecl->getLocation(), Best) == OR_Success)
2125    return cast<CXXMethodDecl>(Best->Function);
2126  assert(false &&
2127         "getAssignOperatorMethod - copy assignment operator method not found");
2128  return 0;
2129}
2130
2131void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2132                                   CXXConstructorDecl *CopyConstructor,
2133                                   unsigned TypeQuals) {
2134  assert((CopyConstructor->isImplicit() &&
2135          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2136          !CopyConstructor->isUsed()) &&
2137         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2138
2139  CXXRecordDecl *ClassDecl
2140    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2141  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2142  // C++ [class.copy] p209
2143  // Before the implicitly-declared copy constructor for a class is
2144  // implicitly defined, all the implicitly-declared copy constructors
2145  // for its base class and its non-static data members shall have been
2146  // implicitly defined.
2147  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2148       Base != ClassDecl->bases_end(); ++Base) {
2149    CXXRecordDecl *BaseClassDecl
2150      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2151    if (CXXConstructorDecl *BaseCopyCtor =
2152        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2153      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2154  }
2155  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2156                                  FieldEnd = ClassDecl->field_end();
2157       Field != FieldEnd; ++Field) {
2158    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2159    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2160      FieldType = Array->getElementType();
2161    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2162      CXXRecordDecl *FieldClassDecl
2163        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2164      if (CXXConstructorDecl *FieldCopyCtor =
2165          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2166        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2167    }
2168  }
2169  CopyConstructor->setUsed();
2170}
2171
2172void Sema::InitializeVarWithConstructor(VarDecl *VD,
2173                                        CXXConstructorDecl *Constructor,
2174                                        QualType DeclInitType,
2175                                        Expr **Exprs, unsigned NumExprs) {
2176  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2177                                        false, Exprs, NumExprs);
2178  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2179  VD->setInit(Context, Temp);
2180}
2181
2182void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2183{
2184  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2185                                  DeclInitType->getAsRecordType()->getDecl());
2186  if (!ClassDecl->hasTrivialDestructor())
2187    if (CXXDestructorDecl *Destructor =
2188        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2189      MarkDeclarationReferenced(Loc, Destructor);
2190}
2191
2192/// AddCXXDirectInitializerToDecl - This action is called immediately after
2193/// ActOnDeclarator, when a C++ direct initializer is present.
2194/// e.g: "int x(1);"
2195void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2196                                         SourceLocation LParenLoc,
2197                                         MultiExprArg Exprs,
2198                                         SourceLocation *CommaLocs,
2199                                         SourceLocation RParenLoc) {
2200  unsigned NumExprs = Exprs.size();
2201  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2202  Decl *RealDecl = Dcl.getAs<Decl>();
2203
2204  // If there is no declaration, there was an error parsing it.  Just ignore
2205  // the initializer.
2206  if (RealDecl == 0)
2207    return;
2208
2209  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2210  if (!VDecl) {
2211    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2212    RealDecl->setInvalidDecl();
2213    return;
2214  }
2215
2216  // FIXME: Need to handle dependent types and expressions here.
2217
2218  // We will treat direct-initialization as a copy-initialization:
2219  //    int x(1);  -as-> int x = 1;
2220  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2221  //
2222  // Clients that want to distinguish between the two forms, can check for
2223  // direct initializer using VarDecl::hasCXXDirectInitializer().
2224  // A major benefit is that clients that don't particularly care about which
2225  // exactly form was it (like the CodeGen) can handle both cases without
2226  // special case code.
2227
2228  // C++ 8.5p11:
2229  // The form of initialization (using parentheses or '=') is generally
2230  // insignificant, but does matter when the entity being initialized has a
2231  // class type.
2232  QualType DeclInitType = VDecl->getType();
2233  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2234    DeclInitType = Array->getElementType();
2235
2236  // FIXME: This isn't the right place to complete the type.
2237  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2238                          diag::err_typecheck_decl_incomplete_type)) {
2239    VDecl->setInvalidDecl();
2240    return;
2241  }
2242
2243  if (VDecl->getType()->isRecordType()) {
2244    CXXConstructorDecl *Constructor
2245      = PerformInitializationByConstructor(DeclInitType,
2246                                           (Expr **)Exprs.get(), NumExprs,
2247                                           VDecl->getLocation(),
2248                                           SourceRange(VDecl->getLocation(),
2249                                                       RParenLoc),
2250                                           VDecl->getDeclName(),
2251                                           IK_Direct);
2252    if (!Constructor)
2253      RealDecl->setInvalidDecl();
2254    else {
2255      VDecl->setCXXDirectInitializer(true);
2256      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2257                                   (Expr**)Exprs.release(), NumExprs);
2258      // FIXME. Must do all that is needed to destroy the object
2259      // on scope exit. For now, just mark the destructor as used.
2260      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2261    }
2262    return;
2263  }
2264
2265  if (NumExprs > 1) {
2266    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2267      << SourceRange(VDecl->getLocation(), RParenLoc);
2268    RealDecl->setInvalidDecl();
2269    return;
2270  }
2271
2272  // Let clients know that initialization was done with a direct initializer.
2273  VDecl->setCXXDirectInitializer(true);
2274
2275  assert(NumExprs == 1 && "Expected 1 expression");
2276  // Set the init expression, handles conversions.
2277  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2278                       /*DirectInit=*/true);
2279}
2280
2281/// PerformInitializationByConstructor - Perform initialization by
2282/// constructor (C++ [dcl.init]p14), which may occur as part of
2283/// direct-initialization or copy-initialization. We are initializing
2284/// an object of type @p ClassType with the given arguments @p
2285/// Args. @p Loc is the location in the source code where the
2286/// initializer occurs (e.g., a declaration, member initializer,
2287/// functional cast, etc.) while @p Range covers the whole
2288/// initialization. @p InitEntity is the entity being initialized,
2289/// which may by the name of a declaration or a type. @p Kind is the
2290/// kind of initialization we're performing, which affects whether
2291/// explicit constructors will be considered. When successful, returns
2292/// the constructor that will be used to perform the initialization;
2293/// when the initialization fails, emits a diagnostic and returns
2294/// null.
2295CXXConstructorDecl *
2296Sema::PerformInitializationByConstructor(QualType ClassType,
2297                                         Expr **Args, unsigned NumArgs,
2298                                         SourceLocation Loc, SourceRange Range,
2299                                         DeclarationName InitEntity,
2300                                         InitializationKind Kind) {
2301  const RecordType *ClassRec = ClassType->getAsRecordType();
2302  assert(ClassRec && "Can only initialize a class type here");
2303
2304  // C++ [dcl.init]p14:
2305  //
2306  //   If the initialization is direct-initialization, or if it is
2307  //   copy-initialization where the cv-unqualified version of the
2308  //   source type is the same class as, or a derived class of, the
2309  //   class of the destination, constructors are considered. The
2310  //   applicable constructors are enumerated (13.3.1.3), and the
2311  //   best one is chosen through overload resolution (13.3). The
2312  //   constructor so selected is called to initialize the object,
2313  //   with the initializer expression(s) as its argument(s). If no
2314  //   constructor applies, or the overload resolution is ambiguous,
2315  //   the initialization is ill-formed.
2316  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2317  OverloadCandidateSet CandidateSet;
2318
2319  // Add constructors to the overload set.
2320  DeclarationName ConstructorName
2321    = Context.DeclarationNames.getCXXConstructorName(
2322                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2323  DeclContext::lookup_const_iterator Con, ConEnd;
2324  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2325       Con != ConEnd; ++Con) {
2326    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2327    if ((Kind == IK_Direct) ||
2328        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2329        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2330      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2331  }
2332
2333  // FIXME: When we decide not to synthesize the implicitly-declared
2334  // constructors, we'll need to make them appear here.
2335
2336  OverloadCandidateSet::iterator Best;
2337  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2338  case OR_Success:
2339    // We found a constructor. Return it.
2340    return cast<CXXConstructorDecl>(Best->Function);
2341
2342  case OR_No_Viable_Function:
2343    if (InitEntity)
2344      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2345        << InitEntity << Range;
2346    else
2347      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2348        << ClassType << Range;
2349    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2350    return 0;
2351
2352  case OR_Ambiguous:
2353    if (InitEntity)
2354      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2355    else
2356      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2357    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2358    return 0;
2359
2360  case OR_Deleted:
2361    if (InitEntity)
2362      Diag(Loc, diag::err_ovl_deleted_init)
2363        << Best->Function->isDeleted()
2364        << InitEntity << Range;
2365    else
2366      Diag(Loc, diag::err_ovl_deleted_init)
2367        << Best->Function->isDeleted()
2368        << InitEntity << Range;
2369    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2370    return 0;
2371  }
2372
2373  return 0;
2374}
2375
2376/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2377/// determine whether they are reference-related,
2378/// reference-compatible, reference-compatible with added
2379/// qualification, or incompatible, for use in C++ initialization by
2380/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2381/// type, and the first type (T1) is the pointee type of the reference
2382/// type being initialized.
2383Sema::ReferenceCompareResult
2384Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2385                                   bool& DerivedToBase) {
2386  assert(!T1->isReferenceType() &&
2387    "T1 must be the pointee type of the reference type");
2388  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2389
2390  T1 = Context.getCanonicalType(T1);
2391  T2 = Context.getCanonicalType(T2);
2392  QualType UnqualT1 = T1.getUnqualifiedType();
2393  QualType UnqualT2 = T2.getUnqualifiedType();
2394
2395  // C++ [dcl.init.ref]p4:
2396  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2397  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2398  //   T1 is a base class of T2.
2399  if (UnqualT1 == UnqualT2)
2400    DerivedToBase = false;
2401  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2402    DerivedToBase = true;
2403  else
2404    return Ref_Incompatible;
2405
2406  // At this point, we know that T1 and T2 are reference-related (at
2407  // least).
2408
2409  // C++ [dcl.init.ref]p4:
2410  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2411  //   reference-related to T2 and cv1 is the same cv-qualification
2412  //   as, or greater cv-qualification than, cv2. For purposes of
2413  //   overload resolution, cases for which cv1 is greater
2414  //   cv-qualification than cv2 are identified as
2415  //   reference-compatible with added qualification (see 13.3.3.2).
2416  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2417    return Ref_Compatible;
2418  else if (T1.isMoreQualifiedThan(T2))
2419    return Ref_Compatible_With_Added_Qualification;
2420  else
2421    return Ref_Related;
2422}
2423
2424/// CheckReferenceInit - Check the initialization of a reference
2425/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2426/// the initializer (either a simple initializer or an initializer
2427/// list), and DeclType is the type of the declaration. When ICS is
2428/// non-null, this routine will compute the implicit conversion
2429/// sequence according to C++ [over.ics.ref] and will not produce any
2430/// diagnostics; when ICS is null, it will emit diagnostics when any
2431/// errors are found. Either way, a return value of true indicates
2432/// that there was a failure, a return value of false indicates that
2433/// the reference initialization succeeded.
2434///
2435/// When @p SuppressUserConversions, user-defined conversions are
2436/// suppressed.
2437/// When @p AllowExplicit, we also permit explicit user-defined
2438/// conversion functions.
2439/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2440bool
2441Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2442                         ImplicitConversionSequence *ICS,
2443                         bool SuppressUserConversions,
2444                         bool AllowExplicit, bool ForceRValue) {
2445  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2446
2447  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2448  QualType T2 = Init->getType();
2449
2450  // If the initializer is the address of an overloaded function, try
2451  // to resolve the overloaded function. If all goes well, T2 is the
2452  // type of the resulting function.
2453  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2454    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2455                                                          ICS != 0);
2456    if (Fn) {
2457      // Since we're performing this reference-initialization for
2458      // real, update the initializer with the resulting function.
2459      if (!ICS) {
2460        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2461          return true;
2462
2463        FixOverloadedFunctionReference(Init, Fn);
2464      }
2465
2466      T2 = Fn->getType();
2467    }
2468  }
2469
2470  // Compute some basic properties of the types and the initializer.
2471  bool isRValRef = DeclType->isRValueReferenceType();
2472  bool DerivedToBase = false;
2473  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2474                                                  Init->isLvalue(Context);
2475  ReferenceCompareResult RefRelationship
2476    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2477
2478  // Most paths end in a failed conversion.
2479  if (ICS)
2480    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2481
2482  // C++ [dcl.init.ref]p5:
2483  //   A reference to type “cv1 T1” is initialized by an expression
2484  //   of type “cv2 T2” as follows:
2485
2486  //     -- If the initializer expression
2487
2488  // Rvalue references cannot bind to lvalues (N2812).
2489  // There is absolutely no situation where they can. In particular, note that
2490  // this is ill-formed, even if B has a user-defined conversion to A&&:
2491  //   B b;
2492  //   A&& r = b;
2493  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2494    if (!ICS)
2495      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2496        << Init->getSourceRange();
2497    return true;
2498  }
2499
2500  bool BindsDirectly = false;
2501  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2502  //          reference-compatible with “cv2 T2,” or
2503  //
2504  // Note that the bit-field check is skipped if we are just computing
2505  // the implicit conversion sequence (C++ [over.best.ics]p2).
2506  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2507      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2508    BindsDirectly = true;
2509
2510    if (ICS) {
2511      // C++ [over.ics.ref]p1:
2512      //   When a parameter of reference type binds directly (8.5.3)
2513      //   to an argument expression, the implicit conversion sequence
2514      //   is the identity conversion, unless the argument expression
2515      //   has a type that is a derived class of the parameter type,
2516      //   in which case the implicit conversion sequence is a
2517      //   derived-to-base Conversion (13.3.3.1).
2518      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2519      ICS->Standard.First = ICK_Identity;
2520      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2521      ICS->Standard.Third = ICK_Identity;
2522      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2523      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2524      ICS->Standard.ReferenceBinding = true;
2525      ICS->Standard.DirectBinding = true;
2526      ICS->Standard.RRefBinding = false;
2527      ICS->Standard.CopyConstructor = 0;
2528
2529      // Nothing more to do: the inaccessibility/ambiguity check for
2530      // derived-to-base conversions is suppressed when we're
2531      // computing the implicit conversion sequence (C++
2532      // [over.best.ics]p2).
2533      return false;
2534    } else {
2535      // Perform the conversion.
2536      // FIXME: Binding to a subobject of the lvalue is going to require more
2537      // AST annotation than this.
2538      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2539    }
2540  }
2541
2542  //       -- has a class type (i.e., T2 is a class type) and can be
2543  //          implicitly converted to an lvalue of type “cv3 T3,”
2544  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2545  //          92) (this conversion is selected by enumerating the
2546  //          applicable conversion functions (13.3.1.6) and choosing
2547  //          the best one through overload resolution (13.3)),
2548  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2549    // FIXME: Look for conversions in base classes!
2550    CXXRecordDecl *T2RecordDecl
2551      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2552
2553    OverloadCandidateSet CandidateSet;
2554    OverloadedFunctionDecl *Conversions
2555      = T2RecordDecl->getConversionFunctions();
2556    for (OverloadedFunctionDecl::function_iterator Func
2557           = Conversions->function_begin();
2558         Func != Conversions->function_end(); ++Func) {
2559      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2560
2561      // If the conversion function doesn't return a reference type,
2562      // it can't be considered for this conversion.
2563      if (Conv->getConversionType()->isLValueReferenceType() &&
2564          (AllowExplicit || !Conv->isExplicit()))
2565        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2566    }
2567
2568    OverloadCandidateSet::iterator Best;
2569    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2570    case OR_Success:
2571      // This is a direct binding.
2572      BindsDirectly = true;
2573
2574      if (ICS) {
2575        // C++ [over.ics.ref]p1:
2576        //
2577        //   [...] If the parameter binds directly to the result of
2578        //   applying a conversion function to the argument
2579        //   expression, the implicit conversion sequence is a
2580        //   user-defined conversion sequence (13.3.3.1.2), with the
2581        //   second standard conversion sequence either an identity
2582        //   conversion or, if the conversion function returns an
2583        //   entity of a type that is a derived class of the parameter
2584        //   type, a derived-to-base Conversion.
2585        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2586        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2587        ICS->UserDefined.After = Best->FinalConversion;
2588        ICS->UserDefined.ConversionFunction = Best->Function;
2589        assert(ICS->UserDefined.After.ReferenceBinding &&
2590               ICS->UserDefined.After.DirectBinding &&
2591               "Expected a direct reference binding!");
2592        return false;
2593      } else {
2594        // Perform the conversion.
2595        // FIXME: Binding to a subobject of the lvalue is going to require more
2596        // AST annotation than this.
2597        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2598      }
2599      break;
2600
2601    case OR_Ambiguous:
2602      assert(false && "Ambiguous reference binding conversions not implemented.");
2603      return true;
2604
2605    case OR_No_Viable_Function:
2606    case OR_Deleted:
2607      // There was no suitable conversion, or we found a deleted
2608      // conversion; continue with other checks.
2609      break;
2610    }
2611  }
2612
2613  if (BindsDirectly) {
2614    // C++ [dcl.init.ref]p4:
2615    //   [...] In all cases where the reference-related or
2616    //   reference-compatible relationship of two types is used to
2617    //   establish the validity of a reference binding, and T1 is a
2618    //   base class of T2, a program that necessitates such a binding
2619    //   is ill-formed if T1 is an inaccessible (clause 11) or
2620    //   ambiguous (10.2) base class of T2.
2621    //
2622    // Note that we only check this condition when we're allowed to
2623    // complain about errors, because we should not be checking for
2624    // ambiguity (or inaccessibility) unless the reference binding
2625    // actually happens.
2626    if (DerivedToBase)
2627      return CheckDerivedToBaseConversion(T2, T1,
2628                                          Init->getSourceRange().getBegin(),
2629                                          Init->getSourceRange());
2630    else
2631      return false;
2632  }
2633
2634  //     -- Otherwise, the reference shall be to a non-volatile const
2635  //        type (i.e., cv1 shall be const), or the reference shall be an
2636  //        rvalue reference and the initializer expression shall be an rvalue.
2637  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2638    if (!ICS)
2639      Diag(Init->getSourceRange().getBegin(),
2640           diag::err_not_reference_to_const_init)
2641        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2642        << T2 << Init->getSourceRange();
2643    return true;
2644  }
2645
2646  //       -- If the initializer expression is an rvalue, with T2 a
2647  //          class type, and “cv1 T1” is reference-compatible with
2648  //          “cv2 T2,” the reference is bound in one of the
2649  //          following ways (the choice is implementation-defined):
2650  //
2651  //          -- The reference is bound to the object represented by
2652  //             the rvalue (see 3.10) or to a sub-object within that
2653  //             object.
2654  //
2655  //          -- A temporary of type “cv1 T2” [sic] is created, and
2656  //             a constructor is called to copy the entire rvalue
2657  //             object into the temporary. The reference is bound to
2658  //             the temporary or to a sub-object within the
2659  //             temporary.
2660  //
2661  //          The constructor that would be used to make the copy
2662  //          shall be callable whether or not the copy is actually
2663  //          done.
2664  //
2665  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2666  // freedom, so we will always take the first option and never build
2667  // a temporary in this case. FIXME: We will, however, have to check
2668  // for the presence of a copy constructor in C++98/03 mode.
2669  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2670      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2671    if (ICS) {
2672      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2673      ICS->Standard.First = ICK_Identity;
2674      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2675      ICS->Standard.Third = ICK_Identity;
2676      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2677      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2678      ICS->Standard.ReferenceBinding = true;
2679      ICS->Standard.DirectBinding = false;
2680      ICS->Standard.RRefBinding = isRValRef;
2681      ICS->Standard.CopyConstructor = 0;
2682    } else {
2683      // FIXME: Binding to a subobject of the rvalue is going to require more
2684      // AST annotation than this.
2685      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2686    }
2687    return false;
2688  }
2689
2690  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2691  //          initialized from the initializer expression using the
2692  //          rules for a non-reference copy initialization (8.5). The
2693  //          reference is then bound to the temporary. If T1 is
2694  //          reference-related to T2, cv1 must be the same
2695  //          cv-qualification as, or greater cv-qualification than,
2696  //          cv2; otherwise, the program is ill-formed.
2697  if (RefRelationship == Ref_Related) {
2698    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2699    // we would be reference-compatible or reference-compatible with
2700    // added qualification. But that wasn't the case, so the reference
2701    // initialization fails.
2702    if (!ICS)
2703      Diag(Init->getSourceRange().getBegin(),
2704           diag::err_reference_init_drops_quals)
2705        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2706        << T2 << Init->getSourceRange();
2707    return true;
2708  }
2709
2710  // If at least one of the types is a class type, the types are not
2711  // related, and we aren't allowed any user conversions, the
2712  // reference binding fails. This case is important for breaking
2713  // recursion, since TryImplicitConversion below will attempt to
2714  // create a temporary through the use of a copy constructor.
2715  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2716      (T1->isRecordType() || T2->isRecordType())) {
2717    if (!ICS)
2718      Diag(Init->getSourceRange().getBegin(),
2719           diag::err_typecheck_convert_incompatible)
2720        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2721    return true;
2722  }
2723
2724  // Actually try to convert the initializer to T1.
2725  if (ICS) {
2726    // C++ [over.ics.ref]p2:
2727    //
2728    //   When a parameter of reference type is not bound directly to
2729    //   an argument expression, the conversion sequence is the one
2730    //   required to convert the argument expression to the
2731    //   underlying type of the reference according to
2732    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2733    //   to copy-initializing a temporary of the underlying type with
2734    //   the argument expression. Any difference in top-level
2735    //   cv-qualification is subsumed by the initialization itself
2736    //   and does not constitute a conversion.
2737    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2738    // Of course, that's still a reference binding.
2739    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2740      ICS->Standard.ReferenceBinding = true;
2741      ICS->Standard.RRefBinding = isRValRef;
2742    } else if(ICS->ConversionKind ==
2743              ImplicitConversionSequence::UserDefinedConversion) {
2744      ICS->UserDefined.After.ReferenceBinding = true;
2745      ICS->UserDefined.After.RRefBinding = isRValRef;
2746    }
2747    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2748  } else {
2749    return PerformImplicitConversion(Init, T1, "initializing");
2750  }
2751}
2752
2753/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2754/// of this overloaded operator is well-formed. If so, returns false;
2755/// otherwise, emits appropriate diagnostics and returns true.
2756bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2757  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2758         "Expected an overloaded operator declaration");
2759
2760  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2761
2762  // C++ [over.oper]p5:
2763  //   The allocation and deallocation functions, operator new,
2764  //   operator new[], operator delete and operator delete[], are
2765  //   described completely in 3.7.3. The attributes and restrictions
2766  //   found in the rest of this subclause do not apply to them unless
2767  //   explicitly stated in 3.7.3.
2768  // FIXME: Write a separate routine for checking this. For now, just allow it.
2769  if (Op == OO_New || Op == OO_Array_New ||
2770      Op == OO_Delete || Op == OO_Array_Delete)
2771    return false;
2772
2773  // C++ [over.oper]p6:
2774  //   An operator function shall either be a non-static member
2775  //   function or be a non-member function and have at least one
2776  //   parameter whose type is a class, a reference to a class, an
2777  //   enumeration, or a reference to an enumeration.
2778  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2779    if (MethodDecl->isStatic())
2780      return Diag(FnDecl->getLocation(),
2781                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2782  } else {
2783    bool ClassOrEnumParam = false;
2784    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2785                                   ParamEnd = FnDecl->param_end();
2786         Param != ParamEnd; ++Param) {
2787      QualType ParamType = (*Param)->getType().getNonReferenceType();
2788      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2789          ParamType->isEnumeralType()) {
2790        ClassOrEnumParam = true;
2791        break;
2792      }
2793    }
2794
2795    if (!ClassOrEnumParam)
2796      return Diag(FnDecl->getLocation(),
2797                  diag::err_operator_overload_needs_class_or_enum)
2798        << FnDecl->getDeclName();
2799  }
2800
2801  // C++ [over.oper]p8:
2802  //   An operator function cannot have default arguments (8.3.6),
2803  //   except where explicitly stated below.
2804  //
2805  // Only the function-call operator allows default arguments
2806  // (C++ [over.call]p1).
2807  if (Op != OO_Call) {
2808    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2809         Param != FnDecl->param_end(); ++Param) {
2810      if ((*Param)->hasUnparsedDefaultArg())
2811        return Diag((*Param)->getLocation(),
2812                    diag::err_operator_overload_default_arg)
2813          << FnDecl->getDeclName();
2814      else if (Expr *DefArg = (*Param)->getDefaultArg())
2815        return Diag((*Param)->getLocation(),
2816                    diag::err_operator_overload_default_arg)
2817          << FnDecl->getDeclName() << DefArg->getSourceRange();
2818    }
2819  }
2820
2821  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2822    { false, false, false }
2823#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2824    , { Unary, Binary, MemberOnly }
2825#include "clang/Basic/OperatorKinds.def"
2826  };
2827
2828  bool CanBeUnaryOperator = OperatorUses[Op][0];
2829  bool CanBeBinaryOperator = OperatorUses[Op][1];
2830  bool MustBeMemberOperator = OperatorUses[Op][2];
2831
2832  // C++ [over.oper]p8:
2833  //   [...] Operator functions cannot have more or fewer parameters
2834  //   than the number required for the corresponding operator, as
2835  //   described in the rest of this subclause.
2836  unsigned NumParams = FnDecl->getNumParams()
2837                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2838  if (Op != OO_Call &&
2839      ((NumParams == 1 && !CanBeUnaryOperator) ||
2840       (NumParams == 2 && !CanBeBinaryOperator) ||
2841       (NumParams < 1) || (NumParams > 2))) {
2842    // We have the wrong number of parameters.
2843    unsigned ErrorKind;
2844    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2845      ErrorKind = 2;  // 2 -> unary or binary.
2846    } else if (CanBeUnaryOperator) {
2847      ErrorKind = 0;  // 0 -> unary
2848    } else {
2849      assert(CanBeBinaryOperator &&
2850             "All non-call overloaded operators are unary or binary!");
2851      ErrorKind = 1;  // 1 -> binary
2852    }
2853
2854    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2855      << FnDecl->getDeclName() << NumParams << ErrorKind;
2856  }
2857
2858  // Overloaded operators other than operator() cannot be variadic.
2859  if (Op != OO_Call &&
2860      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2861    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2862      << FnDecl->getDeclName();
2863  }
2864
2865  // Some operators must be non-static member functions.
2866  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2867    return Diag(FnDecl->getLocation(),
2868                diag::err_operator_overload_must_be_member)
2869      << FnDecl->getDeclName();
2870  }
2871
2872  // C++ [over.inc]p1:
2873  //   The user-defined function called operator++ implements the
2874  //   prefix and postfix ++ operator. If this function is a member
2875  //   function with no parameters, or a non-member function with one
2876  //   parameter of class or enumeration type, it defines the prefix
2877  //   increment operator ++ for objects of that type. If the function
2878  //   is a member function with one parameter (which shall be of type
2879  //   int) or a non-member function with two parameters (the second
2880  //   of which shall be of type int), it defines the postfix
2881  //   increment operator ++ for objects of that type.
2882  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2883    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2884    bool ParamIsInt = false;
2885    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2886      ParamIsInt = BT->getKind() == BuiltinType::Int;
2887
2888    if (!ParamIsInt)
2889      return Diag(LastParam->getLocation(),
2890                  diag::err_operator_overload_post_incdec_must_be_int)
2891        << LastParam->getType() << (Op == OO_MinusMinus);
2892  }
2893
2894  // Notify the class if it got an assignment operator.
2895  if (Op == OO_Equal) {
2896    // Would have returned earlier otherwise.
2897    assert(isa<CXXMethodDecl>(FnDecl) &&
2898      "Overloaded = not member, but not filtered.");
2899    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2900    Method->getParent()->addedAssignmentOperator(Context, Method);
2901  }
2902
2903  return false;
2904}
2905
2906/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2907/// linkage specification, including the language and (if present)
2908/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2909/// the location of the language string literal, which is provided
2910/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2911/// the '{' brace. Otherwise, this linkage specification does not
2912/// have any braces.
2913Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2914                                                     SourceLocation ExternLoc,
2915                                                     SourceLocation LangLoc,
2916                                                     const char *Lang,
2917                                                     unsigned StrSize,
2918                                                     SourceLocation LBraceLoc) {
2919  LinkageSpecDecl::LanguageIDs Language;
2920  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2921    Language = LinkageSpecDecl::lang_c;
2922  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2923    Language = LinkageSpecDecl::lang_cxx;
2924  else {
2925    Diag(LangLoc, diag::err_bad_language);
2926    return DeclPtrTy();
2927  }
2928
2929  // FIXME: Add all the various semantics of linkage specifications
2930
2931  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2932                                               LangLoc, Language,
2933                                               LBraceLoc.isValid());
2934  CurContext->addDecl(D);
2935  PushDeclContext(S, D);
2936  return DeclPtrTy::make(D);
2937}
2938
2939/// ActOnFinishLinkageSpecification - Completely the definition of
2940/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2941/// valid, it's the position of the closing '}' brace in a linkage
2942/// specification that uses braces.
2943Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2944                                                      DeclPtrTy LinkageSpec,
2945                                                      SourceLocation RBraceLoc) {
2946  if (LinkageSpec)
2947    PopDeclContext();
2948  return LinkageSpec;
2949}
2950
2951/// \brief Perform semantic analysis for the variable declaration that
2952/// occurs within a C++ catch clause, returning the newly-created
2953/// variable.
2954VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
2955                                         IdentifierInfo *Name,
2956                                         SourceLocation Loc,
2957                                         SourceRange Range) {
2958  bool Invalid = false;
2959
2960  // Arrays and functions decay.
2961  if (ExDeclType->isArrayType())
2962    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2963  else if (ExDeclType->isFunctionType())
2964    ExDeclType = Context.getPointerType(ExDeclType);
2965
2966  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2967  // The exception-declaration shall not denote a pointer or reference to an
2968  // incomplete type, other than [cv] void*.
2969  // N2844 forbids rvalue references.
2970  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
2971    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
2972    Invalid = true;
2973  }
2974
2975  QualType BaseType = ExDeclType;
2976  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2977  unsigned DK = diag::err_catch_incomplete;
2978  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2979    BaseType = Ptr->getPointeeType();
2980    Mode = 1;
2981    DK = diag::err_catch_incomplete_ptr;
2982  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2983    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2984    BaseType = Ref->getPointeeType();
2985    Mode = 2;
2986    DK = diag::err_catch_incomplete_ref;
2987  }
2988  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2989      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
2990    Invalid = true;
2991
2992  if (!Invalid && !ExDeclType->isDependentType() &&
2993      RequireNonAbstractType(Loc, ExDeclType,
2994                             diag::err_abstract_type_in_decl,
2995                             AbstractVariableType))
2996    Invalid = true;
2997
2998  // FIXME: Need to test for ability to copy-construct and destroy the
2999  // exception variable.
3000
3001  // FIXME: Need to check for abstract classes.
3002
3003  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3004                                    Name, ExDeclType, VarDecl::None,
3005                                    Range.getBegin());
3006
3007  if (Invalid)
3008    ExDecl->setInvalidDecl();
3009
3010  return ExDecl;
3011}
3012
3013/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3014/// handler.
3015Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3016  QualType ExDeclType = GetTypeForDeclarator(D, S);
3017
3018  bool Invalid = D.isInvalidType();
3019  IdentifierInfo *II = D.getIdentifier();
3020  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3021    // The scope should be freshly made just for us. There is just no way
3022    // it contains any previous declaration.
3023    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3024    if (PrevDecl->isTemplateParameter()) {
3025      // Maybe we will complain about the shadowed template parameter.
3026      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3027    }
3028  }
3029
3030  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3031    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3032      << D.getCXXScopeSpec().getRange();
3033    Invalid = true;
3034  }
3035
3036  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3037                                              D.getIdentifier(),
3038                                              D.getIdentifierLoc(),
3039                                            D.getDeclSpec().getSourceRange());
3040
3041  if (Invalid)
3042    ExDecl->setInvalidDecl();
3043
3044  // Add the exception declaration into this scope.
3045  if (II)
3046    PushOnScopeChains(ExDecl, S);
3047  else
3048    CurContext->addDecl(ExDecl);
3049
3050  ProcessDeclAttributes(S, ExDecl, D);
3051  return DeclPtrTy::make(ExDecl);
3052}
3053
3054Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3055                                                   ExprArg assertexpr,
3056                                                   ExprArg assertmessageexpr) {
3057  Expr *AssertExpr = (Expr *)assertexpr.get();
3058  StringLiteral *AssertMessage =
3059    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3060
3061  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3062    llvm::APSInt Value(32);
3063    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3064      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3065        AssertExpr->getSourceRange();
3066      return DeclPtrTy();
3067    }
3068
3069    if (Value == 0) {
3070      std::string str(AssertMessage->getStrData(),
3071                      AssertMessage->getByteLength());
3072      Diag(AssertLoc, diag::err_static_assert_failed)
3073        << str << AssertExpr->getSourceRange();
3074    }
3075  }
3076
3077  assertexpr.release();
3078  assertmessageexpr.release();
3079  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3080                                        AssertExpr, AssertMessage);
3081
3082  CurContext->addDecl(Decl);
3083  return DeclPtrTy::make(Decl);
3084}
3085
3086bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3087  if (!(S->getFlags() & Scope::ClassScope)) {
3088    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3089    return true;
3090  }
3091
3092  return false;
3093}
3094
3095void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3096  Decl *Dcl = dcl.getAs<Decl>();
3097  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3098  if (!Fn) {
3099    Diag(DelLoc, diag::err_deleted_non_function);
3100    return;
3101  }
3102  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3103    Diag(DelLoc, diag::err_deleted_decl_not_first);
3104    Diag(Prev->getLocation(), diag::note_previous_declaration);
3105    // If the declaration wasn't the first, we delete the function anyway for
3106    // recovery.
3107  }
3108  Fn->setDeleted();
3109}
3110
3111static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3112  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3113       ++CI) {
3114    Stmt *SubStmt = *CI;
3115    if (!SubStmt)
3116      continue;
3117    if (isa<ReturnStmt>(SubStmt))
3118      Self.Diag(SubStmt->getSourceRange().getBegin(),
3119           diag::err_return_in_constructor_handler);
3120    if (!isa<Expr>(SubStmt))
3121      SearchForReturnInStmt(Self, SubStmt);
3122  }
3123}
3124
3125void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3126  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3127    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3128    SearchForReturnInStmt(*this, Handler);
3129  }
3130}
3131
3132bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3133                                             const CXXMethodDecl *Old) {
3134  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3135  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3136
3137  QualType CNewTy = Context.getCanonicalType(NewTy);
3138  QualType COldTy = Context.getCanonicalType(OldTy);
3139
3140  if (CNewTy == COldTy &&
3141      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3142    return false;
3143
3144  // Check if the return types are covariant
3145  QualType NewClassTy, OldClassTy;
3146
3147  /// Both types must be pointers or references to classes.
3148  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3149    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3150      NewClassTy = NewPT->getPointeeType();
3151      OldClassTy = OldPT->getPointeeType();
3152    }
3153  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3154    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3155      NewClassTy = NewRT->getPointeeType();
3156      OldClassTy = OldRT->getPointeeType();
3157    }
3158  }
3159
3160  // The return types aren't either both pointers or references to a class type.
3161  if (NewClassTy.isNull()) {
3162    Diag(New->getLocation(),
3163         diag::err_different_return_type_for_overriding_virtual_function)
3164      << New->getDeclName() << NewTy << OldTy;
3165    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3166
3167    return true;
3168  }
3169
3170  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3171    // Check if the new class derives from the old class.
3172    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3173      Diag(New->getLocation(),
3174           diag::err_covariant_return_not_derived)
3175      << New->getDeclName() << NewTy << OldTy;
3176      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3177      return true;
3178    }
3179
3180    // Check if we the conversion from derived to base is valid.
3181    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3182                      diag::err_covariant_return_inaccessible_base,
3183                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3184                      // FIXME: Should this point to the return type?
3185                      New->getLocation(), SourceRange(), New->getDeclName())) {
3186      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3187      return true;
3188    }
3189  }
3190
3191  // The qualifiers of the return types must be the same.
3192  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3193    Diag(New->getLocation(),
3194         diag::err_covariant_return_type_different_qualifications)
3195    << New->getDeclName() << NewTy << OldTy;
3196    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3197    return true;
3198  };
3199
3200
3201  // The new class type must have the same or less qualifiers as the old type.
3202  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3203    Diag(New->getLocation(),
3204         diag::err_covariant_return_type_class_type_more_qualified)
3205    << New->getDeclName() << NewTy << OldTy;
3206    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3207    return true;
3208  };
3209
3210  return false;
3211}
3212
3213/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3214/// initializer for the declaration 'Dcl'.
3215/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3216/// static data member of class X, names should be looked up in the scope of
3217/// class X.
3218void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3219  Decl *D = Dcl.getAs<Decl>();
3220  // If there is no declaration, there was an error parsing it.
3221  if (D == 0)
3222    return;
3223
3224  // Check whether it is a declaration with a nested name specifier like
3225  // int foo::bar;
3226  if (!D->isOutOfLine())
3227    return;
3228
3229  // C++ [basic.lookup.unqual]p13
3230  //
3231  // A name used in the definition of a static data member of class X
3232  // (after the qualified-id of the static member) is looked up as if the name
3233  // was used in a member function of X.
3234
3235  // Change current context into the context of the initializing declaration.
3236  EnterDeclaratorContext(S, D->getDeclContext());
3237}
3238
3239/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3240/// initializer for the declaration 'Dcl'.
3241void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3242  Decl *D = Dcl.getAs<Decl>();
3243  // If there is no declaration, there was an error parsing it.
3244  if (D == 0)
3245    return;
3246
3247  // Check whether it is a declaration with a nested name specifier like
3248  // int foo::bar;
3249  if (!D->isOutOfLine())
3250    return;
3251
3252  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3253  ExitDeclaratorContext(S);
3254}
3255