SemaDeclCXX.cpp revision c070cc602d6eefea881f71a60de09e05b54c3fdd
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142        }
1143      }
1144
1145      // If no results were found, try to correct typos.
1146      if (R.empty() && BaseType.isNull() &&
1147          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1148          R.isSingleResult()) {
1149        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1150          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1151            // We have found a non-static data member with a similar
1152            // name to what was typed; complain and initialize that
1153            // member.
1154            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1155              << MemberOrBase << true << R.getLookupName()
1156              << FixItHint::CreateReplacement(R.getNameLoc(),
1157                                              R.getLookupName().getAsString());
1158            Diag(Member->getLocation(), diag::note_previous_decl)
1159              << Member->getDeclName();
1160
1161            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1162                                          LParenLoc, RParenLoc);
1163          }
1164        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1165          const CXXBaseSpecifier *DirectBaseSpec;
1166          const CXXBaseSpecifier *VirtualBaseSpec;
1167          if (FindBaseInitializer(*this, ClassDecl,
1168                                  Context.getTypeDeclType(Type),
1169                                  DirectBaseSpec, VirtualBaseSpec)) {
1170            // We have found a direct or virtual base class with a
1171            // similar name to what was typed; complain and initialize
1172            // that base class.
1173            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1174              << MemberOrBase << false << R.getLookupName()
1175              << FixItHint::CreateReplacement(R.getNameLoc(),
1176                                              R.getLookupName().getAsString());
1177
1178            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1179                                                             : VirtualBaseSpec;
1180            Diag(BaseSpec->getSourceRange().getBegin(),
1181                 diag::note_base_class_specified_here)
1182              << BaseSpec->getType()
1183              << BaseSpec->getSourceRange();
1184
1185            TyD = Type;
1186          }
1187        }
1188      }
1189
1190      if (!TyD && BaseType.isNull()) {
1191        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1192          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1193        return true;
1194      }
1195    }
1196
1197    if (BaseType.isNull()) {
1198      BaseType = Context.getTypeDeclType(TyD);
1199      if (SS.isSet()) {
1200        NestedNameSpecifier *Qualifier =
1201          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1202
1203        // FIXME: preserve source range information
1204        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1205      }
1206    }
1207  }
1208
1209  if (!TInfo)
1210    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1211
1212  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1213                              LParenLoc, RParenLoc, ClassDecl);
1214}
1215
1216/// Checks an initializer expression for use of uninitialized fields, such as
1217/// containing the field that is being initialized. Returns true if there is an
1218/// uninitialized field was used an updates the SourceLocation parameter; false
1219/// otherwise.
1220static bool InitExprContainsUninitializedFields(const Stmt *S,
1221                                                const FieldDecl *LhsField,
1222                                                SourceLocation *L) {
1223  if (isa<CallExpr>(S)) {
1224    // Do not descend into function calls or constructors, as the use
1225    // of an uninitialized field may be valid. One would have to inspect
1226    // the contents of the function/ctor to determine if it is safe or not.
1227    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1228    // may be safe, depending on what the function/ctor does.
1229    return false;
1230  }
1231  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1232    const NamedDecl *RhsField = ME->getMemberDecl();
1233    if (RhsField == LhsField) {
1234      // Initializing a field with itself. Throw a warning.
1235      // But wait; there are exceptions!
1236      // Exception #1:  The field may not belong to this record.
1237      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1238      const Expr *base = ME->getBase();
1239      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1240        // Even though the field matches, it does not belong to this record.
1241        return false;
1242      }
1243      // None of the exceptions triggered; return true to indicate an
1244      // uninitialized field was used.
1245      *L = ME->getMemberLoc();
1246      return true;
1247    }
1248  }
1249  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1250       it != e; ++it) {
1251    if (!*it) {
1252      // An expression such as 'member(arg ?: "")' may trigger this.
1253      continue;
1254    }
1255    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1256      return true;
1257  }
1258  return false;
1259}
1260
1261Sema::MemInitResult
1262Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1263                             unsigned NumArgs, SourceLocation IdLoc,
1264                             SourceLocation LParenLoc,
1265                             SourceLocation RParenLoc) {
1266  // Diagnose value-uses of fields to initialize themselves, e.g.
1267  //   foo(foo)
1268  // where foo is not also a parameter to the constructor.
1269  // TODO: implement -Wuninitialized and fold this into that framework.
1270  for (unsigned i = 0; i < NumArgs; ++i) {
1271    SourceLocation L;
1272    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1273      // FIXME: Return true in the case when other fields are used before being
1274      // uninitialized. For example, let this field be the i'th field. When
1275      // initializing the i'th field, throw a warning if any of the >= i'th
1276      // fields are used, as they are not yet initialized.
1277      // Right now we are only handling the case where the i'th field uses
1278      // itself in its initializer.
1279      Diag(L, diag::warn_field_is_uninit);
1280    }
1281  }
1282
1283  bool HasDependentArg = false;
1284  for (unsigned i = 0; i < NumArgs; i++)
1285    HasDependentArg |= Args[i]->isTypeDependent();
1286
1287  QualType FieldType = Member->getType();
1288  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1289    FieldType = Array->getElementType();
1290  if (FieldType->isDependentType() || HasDependentArg) {
1291    // Can't check initialization for a member of dependent type or when
1292    // any of the arguments are type-dependent expressions.
1293    OwningExprResult Init
1294      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1295                                          RParenLoc));
1296
1297    // Erase any temporaries within this evaluation context; we're not
1298    // going to track them in the AST, since we'll be rebuilding the
1299    // ASTs during template instantiation.
1300    ExprTemporaries.erase(
1301              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1302                          ExprTemporaries.end());
1303
1304    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1305                                                    LParenLoc,
1306                                                    Init.takeAs<Expr>(),
1307                                                    RParenLoc);
1308
1309  }
1310
1311  if (Member->isInvalidDecl())
1312    return true;
1313
1314  // Initialize the member.
1315  InitializedEntity MemberEntity =
1316    InitializedEntity::InitializeMember(Member, 0);
1317  InitializationKind Kind =
1318    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1319
1320  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1321
1322  OwningExprResult MemberInit =
1323    InitSeq.Perform(*this, MemberEntity, Kind,
1324                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1325  if (MemberInit.isInvalid())
1326    return true;
1327
1328  // C++0x [class.base.init]p7:
1329  //   The initialization of each base and member constitutes a
1330  //   full-expression.
1331  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1332  if (MemberInit.isInvalid())
1333    return true;
1334
1335  // If we are in a dependent context, template instantiation will
1336  // perform this type-checking again. Just save the arguments that we
1337  // received in a ParenListExpr.
1338  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1339  // of the information that we have about the member
1340  // initializer. However, deconstructing the ASTs is a dicey process,
1341  // and this approach is far more likely to get the corner cases right.
1342  if (CurContext->isDependentContext()) {
1343    // Bump the reference count of all of the arguments.
1344    for (unsigned I = 0; I != NumArgs; ++I)
1345      Args[I]->Retain();
1346
1347    OwningExprResult Init
1348      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1349                                          RParenLoc));
1350    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1351                                                    LParenLoc,
1352                                                    Init.takeAs<Expr>(),
1353                                                    RParenLoc);
1354  }
1355
1356  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1357                                                  LParenLoc,
1358                                                  MemberInit.takeAs<Expr>(),
1359                                                  RParenLoc);
1360}
1361
1362Sema::MemInitResult
1363Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1364                           Expr **Args, unsigned NumArgs,
1365                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1366                           CXXRecordDecl *ClassDecl) {
1367  bool HasDependentArg = false;
1368  for (unsigned i = 0; i < NumArgs; i++)
1369    HasDependentArg |= Args[i]->isTypeDependent();
1370
1371  SourceLocation BaseLoc
1372    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1373
1374  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1375    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1376             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1377
1378  // C++ [class.base.init]p2:
1379  //   [...] Unless the mem-initializer-id names a nonstatic data
1380  //   member of the constructor’s class or a direct or virtual base
1381  //   of that class, the mem-initializer is ill-formed. A
1382  //   mem-initializer-list can initialize a base class using any
1383  //   name that denotes that base class type.
1384  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1385
1386  // Check for direct and virtual base classes.
1387  const CXXBaseSpecifier *DirectBaseSpec = 0;
1388  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1389  if (!Dependent) {
1390    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1391                        VirtualBaseSpec);
1392
1393    // C++ [base.class.init]p2:
1394    // Unless the mem-initializer-id names a nonstatic data member of the
1395    // constructor's class or a direct or virtual base of that class, the
1396    // mem-initializer is ill-formed.
1397    if (!DirectBaseSpec && !VirtualBaseSpec) {
1398      // If the class has any dependent bases, then it's possible that
1399      // one of those types will resolve to the same type as
1400      // BaseType. Therefore, just treat this as a dependent base
1401      // class initialization.  FIXME: Should we try to check the
1402      // initialization anyway? It seems odd.
1403      if (ClassDecl->hasAnyDependentBases())
1404        Dependent = true;
1405      else
1406        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1407          << BaseType << Context.getTypeDeclType(ClassDecl)
1408          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1409    }
1410  }
1411
1412  if (Dependent) {
1413    // Can't check initialization for a base of dependent type or when
1414    // any of the arguments are type-dependent expressions.
1415    OwningExprResult BaseInit
1416      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1417                                          RParenLoc));
1418
1419    // Erase any temporaries within this evaluation context; we're not
1420    // going to track them in the AST, since we'll be rebuilding the
1421    // ASTs during template instantiation.
1422    ExprTemporaries.erase(
1423              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1424                          ExprTemporaries.end());
1425
1426    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1427                                                    /*IsVirtual=*/false,
1428                                                    LParenLoc,
1429                                                    BaseInit.takeAs<Expr>(),
1430                                                    RParenLoc);
1431  }
1432
1433  // C++ [base.class.init]p2:
1434  //   If a mem-initializer-id is ambiguous because it designates both
1435  //   a direct non-virtual base class and an inherited virtual base
1436  //   class, the mem-initializer is ill-formed.
1437  if (DirectBaseSpec && VirtualBaseSpec)
1438    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1439      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1440
1441  CXXBaseSpecifier *BaseSpec
1442    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1443  if (!BaseSpec)
1444    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1445
1446  // Initialize the base.
1447  InitializedEntity BaseEntity =
1448    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1449  InitializationKind Kind =
1450    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1451
1452  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1453
1454  OwningExprResult BaseInit =
1455    InitSeq.Perform(*this, BaseEntity, Kind,
1456                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1457  if (BaseInit.isInvalid())
1458    return true;
1459
1460  // C++0x [class.base.init]p7:
1461  //   The initialization of each base and member constitutes a
1462  //   full-expression.
1463  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1464  if (BaseInit.isInvalid())
1465    return true;
1466
1467  // If we are in a dependent context, template instantiation will
1468  // perform this type-checking again. Just save the arguments that we
1469  // received in a ParenListExpr.
1470  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1471  // of the information that we have about the base
1472  // initializer. However, deconstructing the ASTs is a dicey process,
1473  // and this approach is far more likely to get the corner cases right.
1474  if (CurContext->isDependentContext()) {
1475    // Bump the reference count of all of the arguments.
1476    for (unsigned I = 0; I != NumArgs; ++I)
1477      Args[I]->Retain();
1478
1479    OwningExprResult Init
1480      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1481                                          RParenLoc));
1482    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1483                                                    BaseSpec->isVirtual(),
1484                                                    LParenLoc,
1485                                                    Init.takeAs<Expr>(),
1486                                                    RParenLoc);
1487  }
1488
1489  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1490                                                  BaseSpec->isVirtual(),
1491                                                  LParenLoc,
1492                                                  BaseInit.takeAs<Expr>(),
1493                                                  RParenLoc);
1494}
1495
1496/// ImplicitInitializerKind - How an implicit base or member initializer should
1497/// initialize its base or member.
1498enum ImplicitInitializerKind {
1499  IIK_Default,
1500  IIK_Copy,
1501  IIK_Move
1502};
1503
1504static bool
1505BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1506                             ImplicitInitializerKind ImplicitInitKind,
1507                             CXXBaseSpecifier *BaseSpec,
1508                             bool IsInheritedVirtualBase,
1509                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1510  InitializedEntity InitEntity
1511    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1512                                        IsInheritedVirtualBase);
1513
1514  Sema::OwningExprResult BaseInit(SemaRef);
1515
1516  switch (ImplicitInitKind) {
1517  case IIK_Default: {
1518    InitializationKind InitKind
1519      = InitializationKind::CreateDefault(Constructor->getLocation());
1520    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1521    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1522                               Sema::MultiExprArg(SemaRef, 0, 0));
1523    break;
1524  }
1525
1526  case IIK_Copy: {
1527    ParmVarDecl *Param = Constructor->getParamDecl(0);
1528    QualType ParamType = Param->getType().getNonReferenceType();
1529
1530    Expr *CopyCtorArg =
1531      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1532                          Constructor->getLocation(), ParamType, 0);
1533
1534    // Cast to the base class to avoid ambiguities.
1535    QualType ArgTy =
1536      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1537                                       ParamType.getQualifiers());
1538    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1539                              CastExpr::CK_UncheckedDerivedToBase,
1540                              /*isLvalue=*/true,
1541                              CXXBaseSpecifierArray(BaseSpec));
1542
1543    InitializationKind InitKind
1544      = InitializationKind::CreateDirect(Constructor->getLocation(),
1545                                         SourceLocation(), SourceLocation());
1546    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1547                                   &CopyCtorArg, 1);
1548    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1549                               Sema::MultiExprArg(SemaRef,
1550                                                  (void**)&CopyCtorArg, 1));
1551    break;
1552  }
1553
1554  case IIK_Move:
1555    assert(false && "Unhandled initializer kind!");
1556  }
1557
1558  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1559  if (BaseInit.isInvalid())
1560    return true;
1561
1562  CXXBaseInit =
1563    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1564               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1565                                                        SourceLocation()),
1566                                             BaseSpec->isVirtual(),
1567                                             SourceLocation(),
1568                                             BaseInit.takeAs<Expr>(),
1569                                             SourceLocation());
1570
1571  return false;
1572}
1573
1574static bool
1575BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1576                               ImplicitInitializerKind ImplicitInitKind,
1577                               FieldDecl *Field,
1578                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1579  if (Field->isInvalidDecl())
1580    return true;
1581
1582  if (ImplicitInitKind == IIK_Copy) {
1583    SourceLocation Loc = Constructor->getLocation();
1584    ParmVarDecl *Param = Constructor->getParamDecl(0);
1585    QualType ParamType = Param->getType().getNonReferenceType();
1586
1587    Expr *MemberExprBase =
1588      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1589                          Loc, ParamType, 0);
1590
1591    // Build a reference to this field within the parameter.
1592    CXXScopeSpec SS;
1593    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1594                              Sema::LookupMemberName);
1595    MemberLookup.addDecl(Field, AS_public);
1596    MemberLookup.resolveKind();
1597    Sema::OwningExprResult CopyCtorArg
1598      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1599                                         ParamType, Loc,
1600                                         /*IsArrow=*/false,
1601                                         SS,
1602                                         /*FirstQualifierInScope=*/0,
1603                                         MemberLookup,
1604                                         /*TemplateArgs=*/0);
1605    if (CopyCtorArg.isInvalid())
1606      return true;
1607
1608    // When the field we are copying is an array, create index variables for
1609    // each dimension of the array. We use these index variables to subscript
1610    // the source array, and other clients (e.g., CodeGen) will perform the
1611    // necessary iteration with these index variables.
1612    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1613    QualType BaseType = Field->getType();
1614    QualType SizeType = SemaRef.Context.getSizeType();
1615    while (const ConstantArrayType *Array
1616                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1617      // Create the iteration variable for this array index.
1618      IdentifierInfo *IterationVarName = 0;
1619      {
1620        llvm::SmallString<8> Str;
1621        llvm::raw_svector_ostream OS(Str);
1622        OS << "__i" << IndexVariables.size();
1623        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1624      }
1625      VarDecl *IterationVar
1626        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1627                          IterationVarName, SizeType,
1628                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1629                          VarDecl::None, VarDecl::None);
1630      IndexVariables.push_back(IterationVar);
1631
1632      // Create a reference to the iteration variable.
1633      Sema::OwningExprResult IterationVarRef
1634        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1635      assert(!IterationVarRef.isInvalid() &&
1636             "Reference to invented variable cannot fail!");
1637
1638      // Subscript the array with this iteration variable.
1639      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1640                                                            Loc,
1641                                                          move(IterationVarRef),
1642                                                            Loc);
1643      if (CopyCtorArg.isInvalid())
1644        return true;
1645
1646      BaseType = Array->getElementType();
1647    }
1648
1649    // Construct the entity that we will be initializing. For an array, this
1650    // will be first element in the array, which may require several levels
1651    // of array-subscript entities.
1652    llvm::SmallVector<InitializedEntity, 4> Entities;
1653    Entities.reserve(1 + IndexVariables.size());
1654    Entities.push_back(InitializedEntity::InitializeMember(Field));
1655    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1656      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1657                                                              0,
1658                                                              Entities.back()));
1659
1660    // Direct-initialize to use the copy constructor.
1661    InitializationKind InitKind =
1662      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1663
1664    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1665    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1666                                   &CopyCtorArgE, 1);
1667
1668    Sema::OwningExprResult MemberInit
1669      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1670                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1671    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1672    if (MemberInit.isInvalid())
1673      return true;
1674
1675    CXXMemberInit
1676      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1677                                           MemberInit.takeAs<Expr>(), Loc,
1678                                           IndexVariables.data(),
1679                                           IndexVariables.size());
1680    return false;
1681  }
1682
1683  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1684
1685  QualType FieldBaseElementType =
1686    SemaRef.Context.getBaseElementType(Field->getType());
1687
1688  if (FieldBaseElementType->isRecordType()) {
1689    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1690    InitializationKind InitKind =
1691      InitializationKind::CreateDefault(Constructor->getLocation());
1692
1693    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1694    Sema::OwningExprResult MemberInit =
1695      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1696                      Sema::MultiExprArg(SemaRef, 0, 0));
1697    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1698    if (MemberInit.isInvalid())
1699      return true;
1700
1701    CXXMemberInit =
1702      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1703                                                       Field, SourceLocation(),
1704                                                       SourceLocation(),
1705                                                      MemberInit.takeAs<Expr>(),
1706                                                       SourceLocation());
1707    return false;
1708  }
1709
1710  if (FieldBaseElementType->isReferenceType()) {
1711    SemaRef.Diag(Constructor->getLocation(),
1712                 diag::err_uninitialized_member_in_ctor)
1713    << (int)Constructor->isImplicit()
1714    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1715    << 0 << Field->getDeclName();
1716    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1717    return true;
1718  }
1719
1720  if (FieldBaseElementType.isConstQualified()) {
1721    SemaRef.Diag(Constructor->getLocation(),
1722                 diag::err_uninitialized_member_in_ctor)
1723    << (int)Constructor->isImplicit()
1724    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1725    << 1 << Field->getDeclName();
1726    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1727    return true;
1728  }
1729
1730  // Nothing to initialize.
1731  CXXMemberInit = 0;
1732  return false;
1733}
1734
1735namespace {
1736struct BaseAndFieldInfo {
1737  Sema &S;
1738  CXXConstructorDecl *Ctor;
1739  bool AnyErrorsInInits;
1740  ImplicitInitializerKind IIK;
1741  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1742  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1743
1744  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1745    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1746    // FIXME: Handle implicit move constructors.
1747    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1748      IIK = IIK_Copy;
1749    else
1750      IIK = IIK_Default;
1751  }
1752};
1753}
1754
1755static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1756                                    FieldDecl *Top, FieldDecl *Field) {
1757
1758  // Overwhelmingly common case:  we have a direct initializer for this field.
1759  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1760    Info.AllToInit.push_back(Init);
1761
1762    if (Field != Top) {
1763      Init->setMember(Top);
1764      Init->setAnonUnionMember(Field);
1765    }
1766    return false;
1767  }
1768
1769  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1770    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1771    assert(FieldClassType && "anonymous struct/union without record type");
1772
1773    // Walk through the members, tying in any initializers for fields
1774    // we find.  The earlier semantic checks should prevent redundant
1775    // initialization of union members, given the requirement that
1776    // union members never have non-trivial default constructors.
1777
1778    // TODO: in C++0x, it might be legal to have union members with
1779    // non-trivial default constructors in unions.  Revise this
1780    // implementation then with the appropriate semantics.
1781    CXXRecordDecl *FieldClassDecl
1782      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1783    for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1784           EA = FieldClassDecl->field_end(); FA != EA; FA++)
1785      if (CollectFieldInitializer(Info, Top, *FA))
1786        return true;
1787  }
1788
1789  // Don't try to build an implicit initializer if there were semantic
1790  // errors in any of the initializers (and therefore we might be
1791  // missing some that the user actually wrote).
1792  if (Info.AnyErrorsInInits)
1793    return false;
1794
1795  CXXBaseOrMemberInitializer *Init = 0;
1796  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1797    return true;
1798
1799  // If the member doesn't need to be initialized, Init will still be null.
1800  if (!Init) return false;
1801
1802  Info.AllToInit.push_back(Init);
1803  if (Top != Field) {
1804    Init->setMember(Top);
1805    Init->setAnonUnionMember(Field);
1806  }
1807  return false;
1808}
1809
1810bool
1811Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1812                                  CXXBaseOrMemberInitializer **Initializers,
1813                                  unsigned NumInitializers,
1814                                  bool AnyErrors) {
1815  if (Constructor->getDeclContext()->isDependentContext()) {
1816    // Just store the initializers as written, they will be checked during
1817    // instantiation.
1818    if (NumInitializers > 0) {
1819      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1820      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1821        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1822      memcpy(baseOrMemberInitializers, Initializers,
1823             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1824      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1825    }
1826
1827    return false;
1828  }
1829
1830  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1831
1832  // We need to build the initializer AST according to order of construction
1833  // and not what user specified in the Initializers list.
1834  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1835  if (!ClassDecl)
1836    return true;
1837
1838  bool HadError = false;
1839
1840  for (unsigned i = 0; i < NumInitializers; i++) {
1841    CXXBaseOrMemberInitializer *Member = Initializers[i];
1842
1843    if (Member->isBaseInitializer())
1844      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1845    else
1846      Info.AllBaseFields[Member->getMember()] = Member;
1847  }
1848
1849  // Keep track of the direct virtual bases.
1850  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1851  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1852       E = ClassDecl->bases_end(); I != E; ++I) {
1853    if (I->isVirtual())
1854      DirectVBases.insert(I);
1855  }
1856
1857  // Push virtual bases before others.
1858  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1859       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1860
1861    if (CXXBaseOrMemberInitializer *Value
1862        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1863      Info.AllToInit.push_back(Value);
1864    } else if (!AnyErrors) {
1865      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1866      CXXBaseOrMemberInitializer *CXXBaseInit;
1867      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1868                                       VBase, IsInheritedVirtualBase,
1869                                       CXXBaseInit)) {
1870        HadError = true;
1871        continue;
1872      }
1873
1874      Info.AllToInit.push_back(CXXBaseInit);
1875    }
1876  }
1877
1878  // Non-virtual bases.
1879  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1880       E = ClassDecl->bases_end(); Base != E; ++Base) {
1881    // Virtuals are in the virtual base list and already constructed.
1882    if (Base->isVirtual())
1883      continue;
1884
1885    if (CXXBaseOrMemberInitializer *Value
1886          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1887      Info.AllToInit.push_back(Value);
1888    } else if (!AnyErrors) {
1889      CXXBaseOrMemberInitializer *CXXBaseInit;
1890      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1891                                       Base, /*IsInheritedVirtualBase=*/false,
1892                                       CXXBaseInit)) {
1893        HadError = true;
1894        continue;
1895      }
1896
1897      Info.AllToInit.push_back(CXXBaseInit);
1898    }
1899  }
1900
1901  // Fields.
1902  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1903       E = ClassDecl->field_end(); Field != E; ++Field) {
1904    if ((*Field)->getType()->isIncompleteArrayType()) {
1905      assert(ClassDecl->hasFlexibleArrayMember() &&
1906             "Incomplete array type is not valid");
1907      continue;
1908    }
1909    if (CollectFieldInitializer(Info, *Field, *Field))
1910      HadError = true;
1911  }
1912
1913  NumInitializers = Info.AllToInit.size();
1914  if (NumInitializers > 0) {
1915    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1916    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1917      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1918    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1919           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1920    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1921
1922    // Constructors implicitly reference the base and member
1923    // destructors.
1924    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1925                                           Constructor->getParent());
1926  }
1927
1928  return HadError;
1929}
1930
1931static void *GetKeyForTopLevelField(FieldDecl *Field) {
1932  // For anonymous unions, use the class declaration as the key.
1933  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1934    if (RT->getDecl()->isAnonymousStructOrUnion())
1935      return static_cast<void *>(RT->getDecl());
1936  }
1937  return static_cast<void *>(Field);
1938}
1939
1940static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1941  return Context.getCanonicalType(BaseType).getTypePtr();
1942}
1943
1944static void *GetKeyForMember(ASTContext &Context,
1945                             CXXBaseOrMemberInitializer *Member,
1946                             bool MemberMaybeAnon = false) {
1947  if (!Member->isMemberInitializer())
1948    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1949
1950  // For fields injected into the class via declaration of an anonymous union,
1951  // use its anonymous union class declaration as the unique key.
1952  FieldDecl *Field = Member->getMember();
1953
1954  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1955  // data member of the class. Data member used in the initializer list is
1956  // in AnonUnionMember field.
1957  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1958    Field = Member->getAnonUnionMember();
1959
1960  // If the field is a member of an anonymous struct or union, our key
1961  // is the anonymous record decl that's a direct child of the class.
1962  RecordDecl *RD = Field->getParent();
1963  if (RD->isAnonymousStructOrUnion()) {
1964    while (true) {
1965      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1966      if (Parent->isAnonymousStructOrUnion())
1967        RD = Parent;
1968      else
1969        break;
1970    }
1971
1972    return static_cast<void *>(RD);
1973  }
1974
1975  return static_cast<void *>(Field);
1976}
1977
1978static void
1979DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1980                                  const CXXConstructorDecl *Constructor,
1981                                  CXXBaseOrMemberInitializer **Inits,
1982                                  unsigned NumInits) {
1983  if (Constructor->getDeclContext()->isDependentContext())
1984    return;
1985
1986  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1987        == Diagnostic::Ignored)
1988    return;
1989
1990  // Build the list of bases and members in the order that they'll
1991  // actually be initialized.  The explicit initializers should be in
1992  // this same order but may be missing things.
1993  llvm::SmallVector<const void*, 32> IdealInitKeys;
1994
1995  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1996
1997  // 1. Virtual bases.
1998  for (CXXRecordDecl::base_class_const_iterator VBase =
1999       ClassDecl->vbases_begin(),
2000       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2001    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2002
2003  // 2. Non-virtual bases.
2004  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2005       E = ClassDecl->bases_end(); Base != E; ++Base) {
2006    if (Base->isVirtual())
2007      continue;
2008    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2009  }
2010
2011  // 3. Direct fields.
2012  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2013       E = ClassDecl->field_end(); Field != E; ++Field)
2014    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2015
2016  unsigned NumIdealInits = IdealInitKeys.size();
2017  unsigned IdealIndex = 0;
2018
2019  CXXBaseOrMemberInitializer *PrevInit = 0;
2020  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2021    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2022    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2023
2024    // Scan forward to try to find this initializer in the idealized
2025    // initializers list.
2026    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2027      if (InitKey == IdealInitKeys[IdealIndex])
2028        break;
2029
2030    // If we didn't find this initializer, it must be because we
2031    // scanned past it on a previous iteration.  That can only
2032    // happen if we're out of order;  emit a warning.
2033    if (IdealIndex == NumIdealInits && PrevInit) {
2034      Sema::SemaDiagnosticBuilder D =
2035        SemaRef.Diag(PrevInit->getSourceLocation(),
2036                     diag::warn_initializer_out_of_order);
2037
2038      if (PrevInit->isMemberInitializer())
2039        D << 0 << PrevInit->getMember()->getDeclName();
2040      else
2041        D << 1 << PrevInit->getBaseClassInfo()->getType();
2042
2043      if (Init->isMemberInitializer())
2044        D << 0 << Init->getMember()->getDeclName();
2045      else
2046        D << 1 << Init->getBaseClassInfo()->getType();
2047
2048      // Move back to the initializer's location in the ideal list.
2049      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2050        if (InitKey == IdealInitKeys[IdealIndex])
2051          break;
2052
2053      assert(IdealIndex != NumIdealInits &&
2054             "initializer not found in initializer list");
2055    }
2056
2057    PrevInit = Init;
2058  }
2059}
2060
2061namespace {
2062bool CheckRedundantInit(Sema &S,
2063                        CXXBaseOrMemberInitializer *Init,
2064                        CXXBaseOrMemberInitializer *&PrevInit) {
2065  if (!PrevInit) {
2066    PrevInit = Init;
2067    return false;
2068  }
2069
2070  if (FieldDecl *Field = Init->getMember())
2071    S.Diag(Init->getSourceLocation(),
2072           diag::err_multiple_mem_initialization)
2073      << Field->getDeclName()
2074      << Init->getSourceRange();
2075  else {
2076    Type *BaseClass = Init->getBaseClass();
2077    assert(BaseClass && "neither field nor base");
2078    S.Diag(Init->getSourceLocation(),
2079           diag::err_multiple_base_initialization)
2080      << QualType(BaseClass, 0)
2081      << Init->getSourceRange();
2082  }
2083  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2084    << 0 << PrevInit->getSourceRange();
2085
2086  return true;
2087}
2088
2089typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2090typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2091
2092bool CheckRedundantUnionInit(Sema &S,
2093                             CXXBaseOrMemberInitializer *Init,
2094                             RedundantUnionMap &Unions) {
2095  FieldDecl *Field = Init->getMember();
2096  RecordDecl *Parent = Field->getParent();
2097  if (!Parent->isAnonymousStructOrUnion())
2098    return false;
2099
2100  NamedDecl *Child = Field;
2101  do {
2102    if (Parent->isUnion()) {
2103      UnionEntry &En = Unions[Parent];
2104      if (En.first && En.first != Child) {
2105        S.Diag(Init->getSourceLocation(),
2106               diag::err_multiple_mem_union_initialization)
2107          << Field->getDeclName()
2108          << Init->getSourceRange();
2109        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2110          << 0 << En.second->getSourceRange();
2111        return true;
2112      } else if (!En.first) {
2113        En.first = Child;
2114        En.second = Init;
2115      }
2116    }
2117
2118    Child = Parent;
2119    Parent = cast<RecordDecl>(Parent->getDeclContext());
2120  } while (Parent->isAnonymousStructOrUnion());
2121
2122  return false;
2123}
2124}
2125
2126/// ActOnMemInitializers - Handle the member initializers for a constructor.
2127void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2128                                SourceLocation ColonLoc,
2129                                MemInitTy **meminits, unsigned NumMemInits,
2130                                bool AnyErrors) {
2131  if (!ConstructorDecl)
2132    return;
2133
2134  AdjustDeclIfTemplate(ConstructorDecl);
2135
2136  CXXConstructorDecl *Constructor
2137    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2138
2139  if (!Constructor) {
2140    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2141    return;
2142  }
2143
2144  CXXBaseOrMemberInitializer **MemInits =
2145    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2146
2147  // Mapping for the duplicate initializers check.
2148  // For member initializers, this is keyed with a FieldDecl*.
2149  // For base initializers, this is keyed with a Type*.
2150  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2151
2152  // Mapping for the inconsistent anonymous-union initializers check.
2153  RedundantUnionMap MemberUnions;
2154
2155  bool HadError = false;
2156  for (unsigned i = 0; i < NumMemInits; i++) {
2157    CXXBaseOrMemberInitializer *Init = MemInits[i];
2158
2159    // Set the source order index.
2160    Init->setSourceOrder(i);
2161
2162    if (Init->isMemberInitializer()) {
2163      FieldDecl *Field = Init->getMember();
2164      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2165          CheckRedundantUnionInit(*this, Init, MemberUnions))
2166        HadError = true;
2167    } else {
2168      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2169      if (CheckRedundantInit(*this, Init, Members[Key]))
2170        HadError = true;
2171    }
2172  }
2173
2174  if (HadError)
2175    return;
2176
2177  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2178
2179  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2180}
2181
2182void
2183Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2184                                             CXXRecordDecl *ClassDecl) {
2185  // Ignore dependent contexts.
2186  if (ClassDecl->isDependentContext())
2187    return;
2188
2189  // FIXME: all the access-control diagnostics are positioned on the
2190  // field/base declaration.  That's probably good; that said, the
2191  // user might reasonably want to know why the destructor is being
2192  // emitted, and we currently don't say.
2193
2194  // Non-static data members.
2195  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2196       E = ClassDecl->field_end(); I != E; ++I) {
2197    FieldDecl *Field = *I;
2198    if (Field->isInvalidDecl())
2199      continue;
2200    QualType FieldType = Context.getBaseElementType(Field->getType());
2201
2202    const RecordType* RT = FieldType->getAs<RecordType>();
2203    if (!RT)
2204      continue;
2205
2206    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2207    if (FieldClassDecl->hasTrivialDestructor())
2208      continue;
2209
2210    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2211    CheckDestructorAccess(Field->getLocation(), Dtor,
2212                          PDiag(diag::err_access_dtor_field)
2213                            << Field->getDeclName()
2214                            << FieldType);
2215
2216    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2217  }
2218
2219  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2220
2221  // Bases.
2222  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2223       E = ClassDecl->bases_end(); Base != E; ++Base) {
2224    // Bases are always records in a well-formed non-dependent class.
2225    const RecordType *RT = Base->getType()->getAs<RecordType>();
2226
2227    // Remember direct virtual bases.
2228    if (Base->isVirtual())
2229      DirectVirtualBases.insert(RT);
2230
2231    // Ignore trivial destructors.
2232    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2233    if (BaseClassDecl->hasTrivialDestructor())
2234      continue;
2235
2236    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2237
2238    // FIXME: caret should be on the start of the class name
2239    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2240                          PDiag(diag::err_access_dtor_base)
2241                            << Base->getType()
2242                            << Base->getSourceRange());
2243
2244    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2245  }
2246
2247  // Virtual bases.
2248  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2249       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2250
2251    // Bases are always records in a well-formed non-dependent class.
2252    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2253
2254    // Ignore direct virtual bases.
2255    if (DirectVirtualBases.count(RT))
2256      continue;
2257
2258    // Ignore trivial destructors.
2259    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2260    if (BaseClassDecl->hasTrivialDestructor())
2261      continue;
2262
2263    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2264    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2265                          PDiag(diag::err_access_dtor_vbase)
2266                            << VBase->getType());
2267
2268    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2269  }
2270}
2271
2272void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2273  if (!CDtorDecl)
2274    return;
2275
2276  if (CXXConstructorDecl *Constructor
2277      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2278    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2279}
2280
2281bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2282                                  unsigned DiagID, AbstractDiagSelID SelID,
2283                                  const CXXRecordDecl *CurrentRD) {
2284  if (SelID == -1)
2285    return RequireNonAbstractType(Loc, T,
2286                                  PDiag(DiagID), CurrentRD);
2287  else
2288    return RequireNonAbstractType(Loc, T,
2289                                  PDiag(DiagID) << SelID, CurrentRD);
2290}
2291
2292bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2293                                  const PartialDiagnostic &PD,
2294                                  const CXXRecordDecl *CurrentRD) {
2295  if (!getLangOptions().CPlusPlus)
2296    return false;
2297
2298  if (const ArrayType *AT = Context.getAsArrayType(T))
2299    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2300                                  CurrentRD);
2301
2302  if (const PointerType *PT = T->getAs<PointerType>()) {
2303    // Find the innermost pointer type.
2304    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2305      PT = T;
2306
2307    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2308      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2309  }
2310
2311  const RecordType *RT = T->getAs<RecordType>();
2312  if (!RT)
2313    return false;
2314
2315  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2316
2317  if (CurrentRD && CurrentRD != RD)
2318    return false;
2319
2320  // FIXME: is this reasonable?  It matches current behavior, but....
2321  if (!RD->getDefinition())
2322    return false;
2323
2324  if (!RD->isAbstract())
2325    return false;
2326
2327  Diag(Loc, PD) << RD->getDeclName();
2328
2329  // Check if we've already emitted the list of pure virtual functions for this
2330  // class.
2331  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2332    return true;
2333
2334  CXXFinalOverriderMap FinalOverriders;
2335  RD->getFinalOverriders(FinalOverriders);
2336
2337  // Keep a set of seen pure methods so we won't diagnose the same method
2338  // more than once.
2339  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2340
2341  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2342                                   MEnd = FinalOverriders.end();
2343       M != MEnd;
2344       ++M) {
2345    for (OverridingMethods::iterator SO = M->second.begin(),
2346                                  SOEnd = M->second.end();
2347         SO != SOEnd; ++SO) {
2348      // C++ [class.abstract]p4:
2349      //   A class is abstract if it contains or inherits at least one
2350      //   pure virtual function for which the final overrider is pure
2351      //   virtual.
2352
2353      //
2354      if (SO->second.size() != 1)
2355        continue;
2356
2357      if (!SO->second.front().Method->isPure())
2358        continue;
2359
2360      if (!SeenPureMethods.insert(SO->second.front().Method))
2361        continue;
2362
2363      Diag(SO->second.front().Method->getLocation(),
2364           diag::note_pure_virtual_function)
2365        << SO->second.front().Method->getDeclName();
2366    }
2367  }
2368
2369  if (!PureVirtualClassDiagSet)
2370    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2371  PureVirtualClassDiagSet->insert(RD);
2372
2373  return true;
2374}
2375
2376namespace {
2377  class AbstractClassUsageDiagnoser
2378    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2379    Sema &SemaRef;
2380    CXXRecordDecl *AbstractClass;
2381
2382    bool VisitDeclContext(const DeclContext *DC) {
2383      bool Invalid = false;
2384
2385      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2386           E = DC->decls_end(); I != E; ++I)
2387        Invalid |= Visit(*I);
2388
2389      return Invalid;
2390    }
2391
2392  public:
2393    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2394      : SemaRef(SemaRef), AbstractClass(ac) {
2395        Visit(SemaRef.Context.getTranslationUnitDecl());
2396    }
2397
2398    bool VisitFunctionDecl(const FunctionDecl *FD) {
2399      if (FD->isThisDeclarationADefinition()) {
2400        // No need to do the check if we're in a definition, because it requires
2401        // that the return/param types are complete.
2402        // because that requires
2403        return VisitDeclContext(FD);
2404      }
2405
2406      // Check the return type.
2407      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2408      bool Invalid =
2409        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2410                                       diag::err_abstract_type_in_decl,
2411                                       Sema::AbstractReturnType,
2412                                       AbstractClass);
2413
2414      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2415           E = FD->param_end(); I != E; ++I) {
2416        const ParmVarDecl *VD = *I;
2417        Invalid |=
2418          SemaRef.RequireNonAbstractType(VD->getLocation(),
2419                                         VD->getOriginalType(),
2420                                         diag::err_abstract_type_in_decl,
2421                                         Sema::AbstractParamType,
2422                                         AbstractClass);
2423      }
2424
2425      return Invalid;
2426    }
2427
2428    bool VisitDecl(const Decl* D) {
2429      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2430        return VisitDeclContext(DC);
2431
2432      return false;
2433    }
2434  };
2435}
2436
2437/// \brief Perform semantic checks on a class definition that has been
2438/// completing, introducing implicitly-declared members, checking for
2439/// abstract types, etc.
2440void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2441  if (!Record || Record->isInvalidDecl())
2442    return;
2443
2444  if (!Record->isDependentType())
2445    AddImplicitlyDeclaredMembersToClass(S, Record);
2446
2447  if (Record->isInvalidDecl())
2448    return;
2449
2450  // Set access bits correctly on the directly-declared conversions.
2451  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2452  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2453    Convs->setAccess(I, (*I)->getAccess());
2454
2455  // Determine whether we need to check for final overriders. We do
2456  // this either when there are virtual base classes (in which case we
2457  // may end up finding multiple final overriders for a given virtual
2458  // function) or any of the base classes is abstract (in which case
2459  // we might detect that this class is abstract).
2460  bool CheckFinalOverriders = false;
2461  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2462      !Record->isDependentType()) {
2463    if (Record->getNumVBases())
2464      CheckFinalOverriders = true;
2465    else if (!Record->isAbstract()) {
2466      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2467                                                 BEnd = Record->bases_end();
2468           B != BEnd; ++B) {
2469        CXXRecordDecl *BaseDecl
2470          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2471        if (BaseDecl->isAbstract()) {
2472          CheckFinalOverriders = true;
2473          break;
2474        }
2475      }
2476    }
2477  }
2478
2479  if (CheckFinalOverriders) {
2480    CXXFinalOverriderMap FinalOverriders;
2481    Record->getFinalOverriders(FinalOverriders);
2482
2483    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2484                                     MEnd = FinalOverriders.end();
2485         M != MEnd; ++M) {
2486      for (OverridingMethods::iterator SO = M->second.begin(),
2487                                    SOEnd = M->second.end();
2488           SO != SOEnd; ++SO) {
2489        assert(SO->second.size() > 0 &&
2490               "All virtual functions have overridding virtual functions");
2491        if (SO->second.size() == 1) {
2492          // C++ [class.abstract]p4:
2493          //   A class is abstract if it contains or inherits at least one
2494          //   pure virtual function for which the final overrider is pure
2495          //   virtual.
2496          if (SO->second.front().Method->isPure())
2497            Record->setAbstract(true);
2498          continue;
2499        }
2500
2501        // C++ [class.virtual]p2:
2502        //   In a derived class, if a virtual member function of a base
2503        //   class subobject has more than one final overrider the
2504        //   program is ill-formed.
2505        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2506          << (NamedDecl *)M->first << Record;
2507        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2508        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2509                                                 OMEnd = SO->second.end();
2510             OM != OMEnd; ++OM)
2511          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2512            << (NamedDecl *)M->first << OM->Method->getParent();
2513
2514        Record->setInvalidDecl();
2515      }
2516    }
2517  }
2518
2519  if (Record->isAbstract() && !Record->isInvalidDecl())
2520    (void)AbstractClassUsageDiagnoser(*this, Record);
2521
2522  // If this is not an aggregate type and has no user-declared constructor,
2523  // complain about any non-static data members of reference or const scalar
2524  // type, since they will never get initializers.
2525  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2526      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2527    bool Complained = false;
2528    for (RecordDecl::field_iterator F = Record->field_begin(),
2529                                 FEnd = Record->field_end();
2530         F != FEnd; ++F) {
2531      if (F->getType()->isReferenceType() ||
2532          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2533        if (!Complained) {
2534          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2535            << Record->getTagKind() << Record;
2536          Complained = true;
2537        }
2538
2539        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2540          << F->getType()->isReferenceType()
2541          << F->getDeclName();
2542      }
2543    }
2544  }
2545
2546  if (Record->isDynamicClass())
2547    DynamicClasses.push_back(Record);
2548}
2549
2550void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2551                                             DeclPtrTy TagDecl,
2552                                             SourceLocation LBrac,
2553                                             SourceLocation RBrac,
2554                                             AttributeList *AttrList) {
2555  if (!TagDecl)
2556    return;
2557
2558  AdjustDeclIfTemplate(TagDecl);
2559
2560  ActOnFields(S, RLoc, TagDecl,
2561              (DeclPtrTy*)FieldCollector->getCurFields(),
2562              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2563
2564  CheckCompletedCXXClass(S,
2565                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2566}
2567
2568/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2569/// special functions, such as the default constructor, copy
2570/// constructor, or destructor, to the given C++ class (C++
2571/// [special]p1).  This routine can only be executed just before the
2572/// definition of the class is complete.
2573///
2574/// The scope, if provided, is the class scope.
2575void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2576                                               CXXRecordDecl *ClassDecl) {
2577  CanQualType ClassType
2578    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2579
2580  // FIXME: Implicit declarations have exception specifications, which are
2581  // the union of the specifications of the implicitly called functions.
2582
2583  if (!ClassDecl->hasUserDeclaredConstructor()) {
2584    // C++ [class.ctor]p5:
2585    //   A default constructor for a class X is a constructor of class X
2586    //   that can be called without an argument. If there is no
2587    //   user-declared constructor for class X, a default constructor is
2588    //   implicitly declared. An implicitly-declared default constructor
2589    //   is an inline public member of its class.
2590    DeclarationName Name
2591      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2592    CXXConstructorDecl *DefaultCon =
2593      CXXConstructorDecl::Create(Context, ClassDecl,
2594                                 ClassDecl->getLocation(), Name,
2595                                 Context.getFunctionType(Context.VoidTy,
2596                                                         0, 0, false, 0,
2597                                                         /*FIXME*/false, false,
2598                                                         0, 0,
2599                                                       FunctionType::ExtInfo()),
2600                                 /*TInfo=*/0,
2601                                 /*isExplicit=*/false,
2602                                 /*isInline=*/true,
2603                                 /*isImplicitlyDeclared=*/true);
2604    DefaultCon->setAccess(AS_public);
2605    DefaultCon->setImplicit();
2606    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2607    if (S)
2608      PushOnScopeChains(DefaultCon, S, true);
2609    else
2610      ClassDecl->addDecl(DefaultCon);
2611  }
2612
2613  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2614    // C++ [class.copy]p4:
2615    //   If the class definition does not explicitly declare a copy
2616    //   constructor, one is declared implicitly.
2617
2618    // C++ [class.copy]p5:
2619    //   The implicitly-declared copy constructor for a class X will
2620    //   have the form
2621    //
2622    //       X::X(const X&)
2623    //
2624    //   if
2625    bool HasConstCopyConstructor = true;
2626
2627    //     -- each direct or virtual base class B of X has a copy
2628    //        constructor whose first parameter is of type const B& or
2629    //        const volatile B&, and
2630    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2631         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2632      const CXXRecordDecl *BaseClassDecl
2633        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2634      HasConstCopyConstructor
2635        = BaseClassDecl->hasConstCopyConstructor(Context);
2636    }
2637
2638    //     -- for all the nonstatic data members of X that are of a
2639    //        class type M (or array thereof), each such class type
2640    //        has a copy constructor whose first parameter is of type
2641    //        const M& or const volatile M&.
2642    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2643         HasConstCopyConstructor && Field != ClassDecl->field_end();
2644         ++Field) {
2645      QualType FieldType = (*Field)->getType();
2646      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2647        FieldType = Array->getElementType();
2648      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2649        const CXXRecordDecl *FieldClassDecl
2650          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2651        HasConstCopyConstructor
2652          = FieldClassDecl->hasConstCopyConstructor(Context);
2653      }
2654    }
2655
2656    //   Otherwise, the implicitly declared copy constructor will have
2657    //   the form
2658    //
2659    //       X::X(X&)
2660    QualType ArgType = ClassType;
2661    if (HasConstCopyConstructor)
2662      ArgType = ArgType.withConst();
2663    ArgType = Context.getLValueReferenceType(ArgType);
2664
2665    //   An implicitly-declared copy constructor is an inline public
2666    //   member of its class.
2667    DeclarationName Name
2668      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2669    CXXConstructorDecl *CopyConstructor
2670      = CXXConstructorDecl::Create(Context, ClassDecl,
2671                                   ClassDecl->getLocation(), Name,
2672                                   Context.getFunctionType(Context.VoidTy,
2673                                                           &ArgType, 1,
2674                                                           false, 0,
2675                                               /*FIXME: hasExceptionSpec*/false,
2676                                                           false, 0, 0,
2677                                                       FunctionType::ExtInfo()),
2678                                   /*TInfo=*/0,
2679                                   /*isExplicit=*/false,
2680                                   /*isInline=*/true,
2681                                   /*isImplicitlyDeclared=*/true);
2682    CopyConstructor->setAccess(AS_public);
2683    CopyConstructor->setImplicit();
2684    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2685
2686    // Add the parameter to the constructor.
2687    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2688                                                 ClassDecl->getLocation(),
2689                                                 /*IdentifierInfo=*/0,
2690                                                 ArgType, /*TInfo=*/0,
2691                                                 VarDecl::None,
2692                                                 VarDecl::None, 0);
2693    CopyConstructor->setParams(&FromParam, 1);
2694    if (S)
2695      PushOnScopeChains(CopyConstructor, S, true);
2696    else
2697      ClassDecl->addDecl(CopyConstructor);
2698  }
2699
2700  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2701    // Note: The following rules are largely analoguous to the copy
2702    // constructor rules. Note that virtual bases are not taken into account
2703    // for determining the argument type of the operator. Note also that
2704    // operators taking an object instead of a reference are allowed.
2705    //
2706    // C++ [class.copy]p10:
2707    //   If the class definition does not explicitly declare a copy
2708    //   assignment operator, one is declared implicitly.
2709    //   The implicitly-defined copy assignment operator for a class X
2710    //   will have the form
2711    //
2712    //       X& X::operator=(const X&)
2713    //
2714    //   if
2715    bool HasConstCopyAssignment = true;
2716
2717    //       -- each direct base class B of X has a copy assignment operator
2718    //          whose parameter is of type const B&, const volatile B& or B,
2719    //          and
2720    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2721         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2722      assert(!Base->getType()->isDependentType() &&
2723            "Cannot generate implicit members for class with dependent bases.");
2724      const CXXRecordDecl *BaseClassDecl
2725        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2726      const CXXMethodDecl *MD = 0;
2727      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2728                                                                     MD);
2729    }
2730
2731    //       -- for all the nonstatic data members of X that are of a class
2732    //          type M (or array thereof), each such class type has a copy
2733    //          assignment operator whose parameter is of type const M&,
2734    //          const volatile M& or M.
2735    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2736         HasConstCopyAssignment && Field != ClassDecl->field_end();
2737         ++Field) {
2738      QualType FieldType = (*Field)->getType();
2739      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2740        FieldType = Array->getElementType();
2741      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2742        const CXXRecordDecl *FieldClassDecl
2743          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2744        const CXXMethodDecl *MD = 0;
2745        HasConstCopyAssignment
2746          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2747      }
2748    }
2749
2750    //   Otherwise, the implicitly declared copy assignment operator will
2751    //   have the form
2752    //
2753    //       X& X::operator=(X&)
2754    QualType ArgType = ClassType;
2755    QualType RetType = Context.getLValueReferenceType(ArgType);
2756    if (HasConstCopyAssignment)
2757      ArgType = ArgType.withConst();
2758    ArgType = Context.getLValueReferenceType(ArgType);
2759
2760    //   An implicitly-declared copy assignment operator is an inline public
2761    //   member of its class.
2762    DeclarationName Name =
2763      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2764    CXXMethodDecl *CopyAssignment =
2765      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2766                            Context.getFunctionType(RetType, &ArgType, 1,
2767                                                    false, 0,
2768                                              /*FIXME: hasExceptionSpec*/false,
2769                                                    false, 0, 0,
2770                                                    FunctionType::ExtInfo()),
2771                            /*TInfo=*/0, /*isStatic=*/false,
2772                            /*StorageClassAsWritten=*/FunctionDecl::None,
2773                            /*isInline=*/true);
2774    CopyAssignment->setAccess(AS_public);
2775    CopyAssignment->setImplicit();
2776    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2777    CopyAssignment->setCopyAssignment(true);
2778
2779    // Add the parameter to the operator.
2780    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2781                                                 ClassDecl->getLocation(),
2782                                                 /*Id=*/0,
2783                                                 ArgType, /*TInfo=*/0,
2784                                                 VarDecl::None,
2785                                                 VarDecl::None, 0);
2786    CopyAssignment->setParams(&FromParam, 1);
2787
2788    // Don't call addedAssignmentOperator. There is no way to distinguish an
2789    // implicit from an explicit assignment operator.
2790    if (S)
2791      PushOnScopeChains(CopyAssignment, S, true);
2792    else
2793      ClassDecl->addDecl(CopyAssignment);
2794    AddOverriddenMethods(ClassDecl, CopyAssignment);
2795  }
2796
2797  if (!ClassDecl->hasUserDeclaredDestructor()) {
2798    // C++ [class.dtor]p2:
2799    //   If a class has no user-declared destructor, a destructor is
2800    //   declared implicitly. An implicitly-declared destructor is an
2801    //   inline public member of its class.
2802    QualType Ty = Context.getFunctionType(Context.VoidTy,
2803                                          0, 0, false, 0,
2804                                          /*FIXME: hasExceptionSpec*/false,
2805                                          false, 0, 0, FunctionType::ExtInfo());
2806
2807    DeclarationName Name
2808      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2809    CXXDestructorDecl *Destructor
2810      = CXXDestructorDecl::Create(Context, ClassDecl,
2811                                  ClassDecl->getLocation(), Name, Ty,
2812                                  /*isInline=*/true,
2813                                  /*isImplicitlyDeclared=*/true);
2814    Destructor->setAccess(AS_public);
2815    Destructor->setImplicit();
2816    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2817    if (S)
2818      PushOnScopeChains(Destructor, S, true);
2819    else
2820      ClassDecl->addDecl(Destructor);
2821
2822    // This could be uniqued if it ever proves significant.
2823    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2824
2825    AddOverriddenMethods(ClassDecl, Destructor);
2826  }
2827}
2828
2829void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2830  Decl *D = TemplateD.getAs<Decl>();
2831  if (!D)
2832    return;
2833
2834  TemplateParameterList *Params = 0;
2835  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2836    Params = Template->getTemplateParameters();
2837  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2838           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2839    Params = PartialSpec->getTemplateParameters();
2840  else
2841    return;
2842
2843  for (TemplateParameterList::iterator Param = Params->begin(),
2844                                    ParamEnd = Params->end();
2845       Param != ParamEnd; ++Param) {
2846    NamedDecl *Named = cast<NamedDecl>(*Param);
2847    if (Named->getDeclName()) {
2848      S->AddDecl(DeclPtrTy::make(Named));
2849      IdResolver.AddDecl(Named);
2850    }
2851  }
2852}
2853
2854void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2855  if (!RecordD) return;
2856  AdjustDeclIfTemplate(RecordD);
2857  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2858  PushDeclContext(S, Record);
2859}
2860
2861void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2862  if (!RecordD) return;
2863  PopDeclContext();
2864}
2865
2866/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2867/// parsing a top-level (non-nested) C++ class, and we are now
2868/// parsing those parts of the given Method declaration that could
2869/// not be parsed earlier (C++ [class.mem]p2), such as default
2870/// arguments. This action should enter the scope of the given
2871/// Method declaration as if we had just parsed the qualified method
2872/// name. However, it should not bring the parameters into scope;
2873/// that will be performed by ActOnDelayedCXXMethodParameter.
2874void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2875}
2876
2877/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2878/// C++ method declaration. We're (re-)introducing the given
2879/// function parameter into scope for use in parsing later parts of
2880/// the method declaration. For example, we could see an
2881/// ActOnParamDefaultArgument event for this parameter.
2882void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2883  if (!ParamD)
2884    return;
2885
2886  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2887
2888  // If this parameter has an unparsed default argument, clear it out
2889  // to make way for the parsed default argument.
2890  if (Param->hasUnparsedDefaultArg())
2891    Param->setDefaultArg(0);
2892
2893  S->AddDecl(DeclPtrTy::make(Param));
2894  if (Param->getDeclName())
2895    IdResolver.AddDecl(Param);
2896}
2897
2898/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2899/// processing the delayed method declaration for Method. The method
2900/// declaration is now considered finished. There may be a separate
2901/// ActOnStartOfFunctionDef action later (not necessarily
2902/// immediately!) for this method, if it was also defined inside the
2903/// class body.
2904void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2905  if (!MethodD)
2906    return;
2907
2908  AdjustDeclIfTemplate(MethodD);
2909
2910  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2911
2912  // Now that we have our default arguments, check the constructor
2913  // again. It could produce additional diagnostics or affect whether
2914  // the class has implicitly-declared destructors, among other
2915  // things.
2916  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2917    CheckConstructor(Constructor);
2918
2919  // Check the default arguments, which we may have added.
2920  if (!Method->isInvalidDecl())
2921    CheckCXXDefaultArguments(Method);
2922}
2923
2924/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2925/// the well-formedness of the constructor declarator @p D with type @p
2926/// R. If there are any errors in the declarator, this routine will
2927/// emit diagnostics and set the invalid bit to true.  In any case, the type
2928/// will be updated to reflect a well-formed type for the constructor and
2929/// returned.
2930QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2931                                          FunctionDecl::StorageClass &SC) {
2932  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2933
2934  // C++ [class.ctor]p3:
2935  //   A constructor shall not be virtual (10.3) or static (9.4). A
2936  //   constructor can be invoked for a const, volatile or const
2937  //   volatile object. A constructor shall not be declared const,
2938  //   volatile, or const volatile (9.3.2).
2939  if (isVirtual) {
2940    if (!D.isInvalidType())
2941      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2942        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2943        << SourceRange(D.getIdentifierLoc());
2944    D.setInvalidType();
2945  }
2946  if (SC == FunctionDecl::Static) {
2947    if (!D.isInvalidType())
2948      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2949        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2950        << SourceRange(D.getIdentifierLoc());
2951    D.setInvalidType();
2952    SC = FunctionDecl::None;
2953  }
2954
2955  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2956  if (FTI.TypeQuals != 0) {
2957    if (FTI.TypeQuals & Qualifiers::Const)
2958      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2959        << "const" << SourceRange(D.getIdentifierLoc());
2960    if (FTI.TypeQuals & Qualifiers::Volatile)
2961      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2962        << "volatile" << SourceRange(D.getIdentifierLoc());
2963    if (FTI.TypeQuals & Qualifiers::Restrict)
2964      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2965        << "restrict" << SourceRange(D.getIdentifierLoc());
2966  }
2967
2968  // Rebuild the function type "R" without any type qualifiers (in
2969  // case any of the errors above fired) and with "void" as the
2970  // return type, since constructors don't have return types. We
2971  // *always* have to do this, because GetTypeForDeclarator will
2972  // put in a result type of "int" when none was specified.
2973  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2974  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2975                                 Proto->getNumArgs(),
2976                                 Proto->isVariadic(), 0,
2977                                 Proto->hasExceptionSpec(),
2978                                 Proto->hasAnyExceptionSpec(),
2979                                 Proto->getNumExceptions(),
2980                                 Proto->exception_begin(),
2981                                 Proto->getExtInfo());
2982}
2983
2984/// CheckConstructor - Checks a fully-formed constructor for
2985/// well-formedness, issuing any diagnostics required. Returns true if
2986/// the constructor declarator is invalid.
2987void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2988  CXXRecordDecl *ClassDecl
2989    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2990  if (!ClassDecl)
2991    return Constructor->setInvalidDecl();
2992
2993  // C++ [class.copy]p3:
2994  //   A declaration of a constructor for a class X is ill-formed if
2995  //   its first parameter is of type (optionally cv-qualified) X and
2996  //   either there are no other parameters or else all other
2997  //   parameters have default arguments.
2998  if (!Constructor->isInvalidDecl() &&
2999      ((Constructor->getNumParams() == 1) ||
3000       (Constructor->getNumParams() > 1 &&
3001        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3002      Constructor->getTemplateSpecializationKind()
3003                                              != TSK_ImplicitInstantiation) {
3004    QualType ParamType = Constructor->getParamDecl(0)->getType();
3005    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3006    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3007      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3008      const char *ConstRef
3009        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3010                                                        : " const &";
3011      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3012        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3013
3014      // FIXME: Rather that making the constructor invalid, we should endeavor
3015      // to fix the type.
3016      Constructor->setInvalidDecl();
3017    }
3018  }
3019
3020  // Notify the class that we've added a constructor.  In principle we
3021  // don't need to do this for out-of-line declarations; in practice
3022  // we only instantiate the most recent declaration of a method, so
3023  // we have to call this for everything but friends.
3024  if (!Constructor->getFriendObjectKind())
3025    ClassDecl->addedConstructor(Context, Constructor);
3026}
3027
3028/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3029/// issuing any diagnostics required. Returns true on error.
3030bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3031  CXXRecordDecl *RD = Destructor->getParent();
3032
3033  if (Destructor->isVirtual()) {
3034    SourceLocation Loc;
3035
3036    if (!Destructor->isImplicit())
3037      Loc = Destructor->getLocation();
3038    else
3039      Loc = RD->getLocation();
3040
3041    // If we have a virtual destructor, look up the deallocation function
3042    FunctionDecl *OperatorDelete = 0;
3043    DeclarationName Name =
3044    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3045    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3046      return true;
3047
3048    Destructor->setOperatorDelete(OperatorDelete);
3049  }
3050
3051  return false;
3052}
3053
3054static inline bool
3055FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3056  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3057          FTI.ArgInfo[0].Param &&
3058          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3059}
3060
3061/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3062/// the well-formednes of the destructor declarator @p D with type @p
3063/// R. If there are any errors in the declarator, this routine will
3064/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3065/// will be updated to reflect a well-formed type for the destructor and
3066/// returned.
3067QualType Sema::CheckDestructorDeclarator(Declarator &D,
3068                                         FunctionDecl::StorageClass& SC) {
3069  // C++ [class.dtor]p1:
3070  //   [...] A typedef-name that names a class is a class-name
3071  //   (7.1.3); however, a typedef-name that names a class shall not
3072  //   be used as the identifier in the declarator for a destructor
3073  //   declaration.
3074  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3075  if (isa<TypedefType>(DeclaratorType)) {
3076    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3077      << DeclaratorType;
3078    D.setInvalidType();
3079  }
3080
3081  // C++ [class.dtor]p2:
3082  //   A destructor is used to destroy objects of its class type. A
3083  //   destructor takes no parameters, and no return type can be
3084  //   specified for it (not even void). The address of a destructor
3085  //   shall not be taken. A destructor shall not be static. A
3086  //   destructor can be invoked for a const, volatile or const
3087  //   volatile object. A destructor shall not be declared const,
3088  //   volatile or const volatile (9.3.2).
3089  if (SC == FunctionDecl::Static) {
3090    if (!D.isInvalidType())
3091      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3092        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3093        << SourceRange(D.getIdentifierLoc());
3094    SC = FunctionDecl::None;
3095    D.setInvalidType();
3096  }
3097  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3098    // Destructors don't have return types, but the parser will
3099    // happily parse something like:
3100    //
3101    //   class X {
3102    //     float ~X();
3103    //   };
3104    //
3105    // The return type will be eliminated later.
3106    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3107      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3108      << SourceRange(D.getIdentifierLoc());
3109  }
3110
3111  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3112  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3113    if (FTI.TypeQuals & Qualifiers::Const)
3114      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3115        << "const" << SourceRange(D.getIdentifierLoc());
3116    if (FTI.TypeQuals & Qualifiers::Volatile)
3117      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3118        << "volatile" << SourceRange(D.getIdentifierLoc());
3119    if (FTI.TypeQuals & Qualifiers::Restrict)
3120      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3121        << "restrict" << SourceRange(D.getIdentifierLoc());
3122    D.setInvalidType();
3123  }
3124
3125  // Make sure we don't have any parameters.
3126  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3127    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3128
3129    // Delete the parameters.
3130    FTI.freeArgs();
3131    D.setInvalidType();
3132  }
3133
3134  // Make sure the destructor isn't variadic.
3135  if (FTI.isVariadic) {
3136    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3137    D.setInvalidType();
3138  }
3139
3140  // Rebuild the function type "R" without any type qualifiers or
3141  // parameters (in case any of the errors above fired) and with
3142  // "void" as the return type, since destructors don't have return
3143  // types. We *always* have to do this, because GetTypeForDeclarator
3144  // will put in a result type of "int" when none was specified.
3145  // FIXME: Exceptions!
3146  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3147                                 false, false, 0, 0, FunctionType::ExtInfo());
3148}
3149
3150/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3151/// well-formednes of the conversion function declarator @p D with
3152/// type @p R. If there are any errors in the declarator, this routine
3153/// will emit diagnostics and return true. Otherwise, it will return
3154/// false. Either way, the type @p R will be updated to reflect a
3155/// well-formed type for the conversion operator.
3156void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3157                                     FunctionDecl::StorageClass& SC) {
3158  // C++ [class.conv.fct]p1:
3159  //   Neither parameter types nor return type can be specified. The
3160  //   type of a conversion function (8.3.5) is "function taking no
3161  //   parameter returning conversion-type-id."
3162  if (SC == FunctionDecl::Static) {
3163    if (!D.isInvalidType())
3164      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3165        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3166        << SourceRange(D.getIdentifierLoc());
3167    D.setInvalidType();
3168    SC = FunctionDecl::None;
3169  }
3170
3171  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3172
3173  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3174    // Conversion functions don't have return types, but the parser will
3175    // happily parse something like:
3176    //
3177    //   class X {
3178    //     float operator bool();
3179    //   };
3180    //
3181    // The return type will be changed later anyway.
3182    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3183      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3184      << SourceRange(D.getIdentifierLoc());
3185    D.setInvalidType();
3186  }
3187
3188  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3189
3190  // Make sure we don't have any parameters.
3191  if (Proto->getNumArgs() > 0) {
3192    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3193
3194    // Delete the parameters.
3195    D.getTypeObject(0).Fun.freeArgs();
3196    D.setInvalidType();
3197  } else if (Proto->isVariadic()) {
3198    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3199    D.setInvalidType();
3200  }
3201
3202  // Diagnose "&operator bool()" and other such nonsense.  This
3203  // is actually a gcc extension which we don't support.
3204  if (Proto->getResultType() != ConvType) {
3205    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3206      << Proto->getResultType();
3207    D.setInvalidType();
3208    ConvType = Proto->getResultType();
3209  }
3210
3211  // C++ [class.conv.fct]p4:
3212  //   The conversion-type-id shall not represent a function type nor
3213  //   an array type.
3214  if (ConvType->isArrayType()) {
3215    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3216    ConvType = Context.getPointerType(ConvType);
3217    D.setInvalidType();
3218  } else if (ConvType->isFunctionType()) {
3219    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3220    ConvType = Context.getPointerType(ConvType);
3221    D.setInvalidType();
3222  }
3223
3224  // Rebuild the function type "R" without any parameters (in case any
3225  // of the errors above fired) and with the conversion type as the
3226  // return type.
3227  if (D.isInvalidType()) {
3228    R = Context.getFunctionType(ConvType, 0, 0, false,
3229                                Proto->getTypeQuals(),
3230                                Proto->hasExceptionSpec(),
3231                                Proto->hasAnyExceptionSpec(),
3232                                Proto->getNumExceptions(),
3233                                Proto->exception_begin(),
3234                                Proto->getExtInfo());
3235  }
3236
3237  // C++0x explicit conversion operators.
3238  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3239    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3240         diag::warn_explicit_conversion_functions)
3241      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3242}
3243
3244/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3245/// the declaration of the given C++ conversion function. This routine
3246/// is responsible for recording the conversion function in the C++
3247/// class, if possible.
3248Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3249  assert(Conversion && "Expected to receive a conversion function declaration");
3250
3251  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3252
3253  // Make sure we aren't redeclaring the conversion function.
3254  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3255
3256  // C++ [class.conv.fct]p1:
3257  //   [...] A conversion function is never used to convert a
3258  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3259  //   same object type (or a reference to it), to a (possibly
3260  //   cv-qualified) base class of that type (or a reference to it),
3261  //   or to (possibly cv-qualified) void.
3262  // FIXME: Suppress this warning if the conversion function ends up being a
3263  // virtual function that overrides a virtual function in a base class.
3264  QualType ClassType
3265    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3266  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3267    ConvType = ConvTypeRef->getPointeeType();
3268  if (ConvType->isRecordType()) {
3269    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3270    if (ConvType == ClassType)
3271      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3272        << ClassType;
3273    else if (IsDerivedFrom(ClassType, ConvType))
3274      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3275        <<  ClassType << ConvType;
3276  } else if (ConvType->isVoidType()) {
3277    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3278      << ClassType << ConvType;
3279  }
3280
3281  if (Conversion->getPrimaryTemplate()) {
3282    // ignore specializations
3283  } else if (Conversion->getPreviousDeclaration()) {
3284    if (FunctionTemplateDecl *ConversionTemplate
3285                                  = Conversion->getDescribedFunctionTemplate()) {
3286      if (ClassDecl->replaceConversion(
3287                                   ConversionTemplate->getPreviousDeclaration(),
3288                                       ConversionTemplate))
3289        return DeclPtrTy::make(ConversionTemplate);
3290    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3291                                            Conversion))
3292      return DeclPtrTy::make(Conversion);
3293    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3294  } else if (FunctionTemplateDecl *ConversionTemplate
3295               = Conversion->getDescribedFunctionTemplate())
3296    ClassDecl->addConversionFunction(ConversionTemplate);
3297  else
3298    ClassDecl->addConversionFunction(Conversion);
3299
3300  return DeclPtrTy::make(Conversion);
3301}
3302
3303//===----------------------------------------------------------------------===//
3304// Namespace Handling
3305//===----------------------------------------------------------------------===//
3306
3307/// ActOnStartNamespaceDef - This is called at the start of a namespace
3308/// definition.
3309Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3310                                             SourceLocation IdentLoc,
3311                                             IdentifierInfo *II,
3312                                             SourceLocation LBrace,
3313                                             AttributeList *AttrList) {
3314  NamespaceDecl *Namespc =
3315      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3316  Namespc->setLBracLoc(LBrace);
3317
3318  Scope *DeclRegionScope = NamespcScope->getParent();
3319
3320  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3321
3322  if (II) {
3323    // C++ [namespace.def]p2:
3324    // The identifier in an original-namespace-definition shall not have been
3325    // previously defined in the declarative region in which the
3326    // original-namespace-definition appears. The identifier in an
3327    // original-namespace-definition is the name of the namespace. Subsequently
3328    // in that declarative region, it is treated as an original-namespace-name.
3329
3330    NamedDecl *PrevDecl
3331      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3332                         ForRedeclaration);
3333
3334    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3335      // This is an extended namespace definition.
3336      // Attach this namespace decl to the chain of extended namespace
3337      // definitions.
3338      OrigNS->setNextNamespace(Namespc);
3339      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3340
3341      // Remove the previous declaration from the scope.
3342      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3343        IdResolver.RemoveDecl(OrigNS);
3344        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3345      }
3346    } else if (PrevDecl) {
3347      // This is an invalid name redefinition.
3348      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3349       << Namespc->getDeclName();
3350      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3351      Namespc->setInvalidDecl();
3352      // Continue on to push Namespc as current DeclContext and return it.
3353    } else if (II->isStr("std") &&
3354               CurContext->getLookupContext()->isTranslationUnit()) {
3355      // This is the first "real" definition of the namespace "std", so update
3356      // our cache of the "std" namespace to point at this definition.
3357      if (StdNamespace) {
3358        // We had already defined a dummy namespace "std". Link this new
3359        // namespace definition to the dummy namespace "std".
3360        StdNamespace->setNextNamespace(Namespc);
3361        StdNamespace->setLocation(IdentLoc);
3362        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3363      }
3364
3365      // Make our StdNamespace cache point at the first real definition of the
3366      // "std" namespace.
3367      StdNamespace = Namespc;
3368    }
3369
3370    PushOnScopeChains(Namespc, DeclRegionScope);
3371  } else {
3372    // Anonymous namespaces.
3373    assert(Namespc->isAnonymousNamespace());
3374
3375    // Link the anonymous namespace into its parent.
3376    NamespaceDecl *PrevDecl;
3377    DeclContext *Parent = CurContext->getLookupContext();
3378    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3379      PrevDecl = TU->getAnonymousNamespace();
3380      TU->setAnonymousNamespace(Namespc);
3381    } else {
3382      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3383      PrevDecl = ND->getAnonymousNamespace();
3384      ND->setAnonymousNamespace(Namespc);
3385    }
3386
3387    // Link the anonymous namespace with its previous declaration.
3388    if (PrevDecl) {
3389      assert(PrevDecl->isAnonymousNamespace());
3390      assert(!PrevDecl->getNextNamespace());
3391      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3392      PrevDecl->setNextNamespace(Namespc);
3393    }
3394
3395    CurContext->addDecl(Namespc);
3396
3397    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3398    //   behaves as if it were replaced by
3399    //     namespace unique { /* empty body */ }
3400    //     using namespace unique;
3401    //     namespace unique { namespace-body }
3402    //   where all occurrences of 'unique' in a translation unit are
3403    //   replaced by the same identifier and this identifier differs
3404    //   from all other identifiers in the entire program.
3405
3406    // We just create the namespace with an empty name and then add an
3407    // implicit using declaration, just like the standard suggests.
3408    //
3409    // CodeGen enforces the "universally unique" aspect by giving all
3410    // declarations semantically contained within an anonymous
3411    // namespace internal linkage.
3412
3413    if (!PrevDecl) {
3414      UsingDirectiveDecl* UD
3415        = UsingDirectiveDecl::Create(Context, CurContext,
3416                                     /* 'using' */ LBrace,
3417                                     /* 'namespace' */ SourceLocation(),
3418                                     /* qualifier */ SourceRange(),
3419                                     /* NNS */ NULL,
3420                                     /* identifier */ SourceLocation(),
3421                                     Namespc,
3422                                     /* Ancestor */ CurContext);
3423      UD->setImplicit();
3424      CurContext->addDecl(UD);
3425    }
3426  }
3427
3428  // Although we could have an invalid decl (i.e. the namespace name is a
3429  // redefinition), push it as current DeclContext and try to continue parsing.
3430  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3431  // for the namespace has the declarations that showed up in that particular
3432  // namespace definition.
3433  PushDeclContext(NamespcScope, Namespc);
3434  return DeclPtrTy::make(Namespc);
3435}
3436
3437/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3438/// is a namespace alias, returns the namespace it points to.
3439static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3440  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3441    return AD->getNamespace();
3442  return dyn_cast_or_null<NamespaceDecl>(D);
3443}
3444
3445/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3446/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3447void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3448  Decl *Dcl = D.getAs<Decl>();
3449  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3450  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3451  Namespc->setRBracLoc(RBrace);
3452  PopDeclContext();
3453}
3454
3455Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3456                                          SourceLocation UsingLoc,
3457                                          SourceLocation NamespcLoc,
3458                                          CXXScopeSpec &SS,
3459                                          SourceLocation IdentLoc,
3460                                          IdentifierInfo *NamespcName,
3461                                          AttributeList *AttrList) {
3462  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3463  assert(NamespcName && "Invalid NamespcName.");
3464  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3465  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3466
3467  UsingDirectiveDecl *UDir = 0;
3468
3469  // Lookup namespace name.
3470  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3471  LookupParsedName(R, S, &SS);
3472  if (R.isAmbiguous())
3473    return DeclPtrTy();
3474
3475  if (!R.empty()) {
3476    NamedDecl *Named = R.getFoundDecl();
3477    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3478        && "expected namespace decl");
3479    // C++ [namespace.udir]p1:
3480    //   A using-directive specifies that the names in the nominated
3481    //   namespace can be used in the scope in which the
3482    //   using-directive appears after the using-directive. During
3483    //   unqualified name lookup (3.4.1), the names appear as if they
3484    //   were declared in the nearest enclosing namespace which
3485    //   contains both the using-directive and the nominated
3486    //   namespace. [Note: in this context, "contains" means "contains
3487    //   directly or indirectly". ]
3488
3489    // Find enclosing context containing both using-directive and
3490    // nominated namespace.
3491    NamespaceDecl *NS = getNamespaceDecl(Named);
3492    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3493    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3494      CommonAncestor = CommonAncestor->getParent();
3495
3496    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3497                                      SS.getRange(),
3498                                      (NestedNameSpecifier *)SS.getScopeRep(),
3499                                      IdentLoc, Named, CommonAncestor);
3500    PushUsingDirective(S, UDir);
3501  } else {
3502    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3503  }
3504
3505  // FIXME: We ignore attributes for now.
3506  delete AttrList;
3507  return DeclPtrTy::make(UDir);
3508}
3509
3510void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3511  // If scope has associated entity, then using directive is at namespace
3512  // or translation unit scope. We add UsingDirectiveDecls, into
3513  // it's lookup structure.
3514  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3515    Ctx->addDecl(UDir);
3516  else
3517    // Otherwise it is block-sope. using-directives will affect lookup
3518    // only to the end of scope.
3519    S->PushUsingDirective(DeclPtrTy::make(UDir));
3520}
3521
3522
3523Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3524                                            AccessSpecifier AS,
3525                                            bool HasUsingKeyword,
3526                                            SourceLocation UsingLoc,
3527                                            CXXScopeSpec &SS,
3528                                            UnqualifiedId &Name,
3529                                            AttributeList *AttrList,
3530                                            bool IsTypeName,
3531                                            SourceLocation TypenameLoc) {
3532  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3533
3534  switch (Name.getKind()) {
3535  case UnqualifiedId::IK_Identifier:
3536  case UnqualifiedId::IK_OperatorFunctionId:
3537  case UnqualifiedId::IK_LiteralOperatorId:
3538  case UnqualifiedId::IK_ConversionFunctionId:
3539    break;
3540
3541  case UnqualifiedId::IK_ConstructorName:
3542  case UnqualifiedId::IK_ConstructorTemplateId:
3543    // C++0x inherited constructors.
3544    if (getLangOptions().CPlusPlus0x) break;
3545
3546    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3547      << SS.getRange();
3548    return DeclPtrTy();
3549
3550  case UnqualifiedId::IK_DestructorName:
3551    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3552      << SS.getRange();
3553    return DeclPtrTy();
3554
3555  case UnqualifiedId::IK_TemplateId:
3556    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3557      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3558    return DeclPtrTy();
3559  }
3560
3561  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3562  if (!TargetName)
3563    return DeclPtrTy();
3564
3565  // Warn about using declarations.
3566  // TODO: store that the declaration was written without 'using' and
3567  // talk about access decls instead of using decls in the
3568  // diagnostics.
3569  if (!HasUsingKeyword) {
3570    UsingLoc = Name.getSourceRange().getBegin();
3571
3572    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3573      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3574  }
3575
3576  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3577                                        Name.getSourceRange().getBegin(),
3578                                        TargetName, AttrList,
3579                                        /* IsInstantiation */ false,
3580                                        IsTypeName, TypenameLoc);
3581  if (UD)
3582    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3583
3584  return DeclPtrTy::make(UD);
3585}
3586
3587/// Determines whether to create a using shadow decl for a particular
3588/// decl, given the set of decls existing prior to this using lookup.
3589bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3590                                const LookupResult &Previous) {
3591  // Diagnose finding a decl which is not from a base class of the
3592  // current class.  We do this now because there are cases where this
3593  // function will silently decide not to build a shadow decl, which
3594  // will pre-empt further diagnostics.
3595  //
3596  // We don't need to do this in C++0x because we do the check once on
3597  // the qualifier.
3598  //
3599  // FIXME: diagnose the following if we care enough:
3600  //   struct A { int foo; };
3601  //   struct B : A { using A::foo; };
3602  //   template <class T> struct C : A {};
3603  //   template <class T> struct D : C<T> { using B::foo; } // <---
3604  // This is invalid (during instantiation) in C++03 because B::foo
3605  // resolves to the using decl in B, which is not a base class of D<T>.
3606  // We can't diagnose it immediately because C<T> is an unknown
3607  // specialization.  The UsingShadowDecl in D<T> then points directly
3608  // to A::foo, which will look well-formed when we instantiate.
3609  // The right solution is to not collapse the shadow-decl chain.
3610  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3611    DeclContext *OrigDC = Orig->getDeclContext();
3612
3613    // Handle enums and anonymous structs.
3614    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3615    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3616    while (OrigRec->isAnonymousStructOrUnion())
3617      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3618
3619    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3620      if (OrigDC == CurContext) {
3621        Diag(Using->getLocation(),
3622             diag::err_using_decl_nested_name_specifier_is_current_class)
3623          << Using->getNestedNameRange();
3624        Diag(Orig->getLocation(), diag::note_using_decl_target);
3625        return true;
3626      }
3627
3628      Diag(Using->getNestedNameRange().getBegin(),
3629           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3630        << Using->getTargetNestedNameDecl()
3631        << cast<CXXRecordDecl>(CurContext)
3632        << Using->getNestedNameRange();
3633      Diag(Orig->getLocation(), diag::note_using_decl_target);
3634      return true;
3635    }
3636  }
3637
3638  if (Previous.empty()) return false;
3639
3640  NamedDecl *Target = Orig;
3641  if (isa<UsingShadowDecl>(Target))
3642    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3643
3644  // If the target happens to be one of the previous declarations, we
3645  // don't have a conflict.
3646  //
3647  // FIXME: but we might be increasing its access, in which case we
3648  // should redeclare it.
3649  NamedDecl *NonTag = 0, *Tag = 0;
3650  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3651         I != E; ++I) {
3652    NamedDecl *D = (*I)->getUnderlyingDecl();
3653    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3654      return false;
3655
3656    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3657  }
3658
3659  if (Target->isFunctionOrFunctionTemplate()) {
3660    FunctionDecl *FD;
3661    if (isa<FunctionTemplateDecl>(Target))
3662      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3663    else
3664      FD = cast<FunctionDecl>(Target);
3665
3666    NamedDecl *OldDecl = 0;
3667    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3668    case Ovl_Overload:
3669      return false;
3670
3671    case Ovl_NonFunction:
3672      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3673      break;
3674
3675    // We found a decl with the exact signature.
3676    case Ovl_Match:
3677      // If we're in a record, we want to hide the target, so we
3678      // return true (without a diagnostic) to tell the caller not to
3679      // build a shadow decl.
3680      if (CurContext->isRecord())
3681        return true;
3682
3683      // If we're not in a record, this is an error.
3684      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3685      break;
3686    }
3687
3688    Diag(Target->getLocation(), diag::note_using_decl_target);
3689    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3690    return true;
3691  }
3692
3693  // Target is not a function.
3694
3695  if (isa<TagDecl>(Target)) {
3696    // No conflict between a tag and a non-tag.
3697    if (!Tag) return false;
3698
3699    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3700    Diag(Target->getLocation(), diag::note_using_decl_target);
3701    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3702    return true;
3703  }
3704
3705  // No conflict between a tag and a non-tag.
3706  if (!NonTag) return false;
3707
3708  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3709  Diag(Target->getLocation(), diag::note_using_decl_target);
3710  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3711  return true;
3712}
3713
3714/// Builds a shadow declaration corresponding to a 'using' declaration.
3715UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3716                                            UsingDecl *UD,
3717                                            NamedDecl *Orig) {
3718
3719  // If we resolved to another shadow declaration, just coalesce them.
3720  NamedDecl *Target = Orig;
3721  if (isa<UsingShadowDecl>(Target)) {
3722    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3723    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3724  }
3725
3726  UsingShadowDecl *Shadow
3727    = UsingShadowDecl::Create(Context, CurContext,
3728                              UD->getLocation(), UD, Target);
3729  UD->addShadowDecl(Shadow);
3730
3731  if (S)
3732    PushOnScopeChains(Shadow, S);
3733  else
3734    CurContext->addDecl(Shadow);
3735  Shadow->setAccess(UD->getAccess());
3736
3737  // Register it as a conversion if appropriate.
3738  if (Shadow->getDeclName().getNameKind()
3739        == DeclarationName::CXXConversionFunctionName)
3740    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3741
3742  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3743    Shadow->setInvalidDecl();
3744
3745  return Shadow;
3746}
3747
3748/// Hides a using shadow declaration.  This is required by the current
3749/// using-decl implementation when a resolvable using declaration in a
3750/// class is followed by a declaration which would hide or override
3751/// one or more of the using decl's targets; for example:
3752///
3753///   struct Base { void foo(int); };
3754///   struct Derived : Base {
3755///     using Base::foo;
3756///     void foo(int);
3757///   };
3758///
3759/// The governing language is C++03 [namespace.udecl]p12:
3760///
3761///   When a using-declaration brings names from a base class into a
3762///   derived class scope, member functions in the derived class
3763///   override and/or hide member functions with the same name and
3764///   parameter types in a base class (rather than conflicting).
3765///
3766/// There are two ways to implement this:
3767///   (1) optimistically create shadow decls when they're not hidden
3768///       by existing declarations, or
3769///   (2) don't create any shadow decls (or at least don't make them
3770///       visible) until we've fully parsed/instantiated the class.
3771/// The problem with (1) is that we might have to retroactively remove
3772/// a shadow decl, which requires several O(n) operations because the
3773/// decl structures are (very reasonably) not designed for removal.
3774/// (2) avoids this but is very fiddly and phase-dependent.
3775void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3776  if (Shadow->getDeclName().getNameKind() ==
3777        DeclarationName::CXXConversionFunctionName)
3778    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3779
3780  // Remove it from the DeclContext...
3781  Shadow->getDeclContext()->removeDecl(Shadow);
3782
3783  // ...and the scope, if applicable...
3784  if (S) {
3785    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3786    IdResolver.RemoveDecl(Shadow);
3787  }
3788
3789  // ...and the using decl.
3790  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3791
3792  // TODO: complain somehow if Shadow was used.  It shouldn't
3793  // be possible for this to happen, because...?
3794}
3795
3796/// Builds a using declaration.
3797///
3798/// \param IsInstantiation - Whether this call arises from an
3799///   instantiation of an unresolved using declaration.  We treat
3800///   the lookup differently for these declarations.
3801NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3802                                       SourceLocation UsingLoc,
3803                                       CXXScopeSpec &SS,
3804                                       SourceLocation IdentLoc,
3805                                       DeclarationName Name,
3806                                       AttributeList *AttrList,
3807                                       bool IsInstantiation,
3808                                       bool IsTypeName,
3809                                       SourceLocation TypenameLoc) {
3810  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3811  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3812
3813  // FIXME: We ignore attributes for now.
3814  delete AttrList;
3815
3816  if (SS.isEmpty()) {
3817    Diag(IdentLoc, diag::err_using_requires_qualname);
3818    return 0;
3819  }
3820
3821  // Do the redeclaration lookup in the current scope.
3822  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3823                        ForRedeclaration);
3824  Previous.setHideTags(false);
3825  if (S) {
3826    LookupName(Previous, S);
3827
3828    // It is really dumb that we have to do this.
3829    LookupResult::Filter F = Previous.makeFilter();
3830    while (F.hasNext()) {
3831      NamedDecl *D = F.next();
3832      if (!isDeclInScope(D, CurContext, S))
3833        F.erase();
3834    }
3835    F.done();
3836  } else {
3837    assert(IsInstantiation && "no scope in non-instantiation");
3838    assert(CurContext->isRecord() && "scope not record in instantiation");
3839    LookupQualifiedName(Previous, CurContext);
3840  }
3841
3842  NestedNameSpecifier *NNS =
3843    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3844
3845  // Check for invalid redeclarations.
3846  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3847    return 0;
3848
3849  // Check for bad qualifiers.
3850  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3851    return 0;
3852
3853  DeclContext *LookupContext = computeDeclContext(SS);
3854  NamedDecl *D;
3855  if (!LookupContext) {
3856    if (IsTypeName) {
3857      // FIXME: not all declaration name kinds are legal here
3858      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3859                                              UsingLoc, TypenameLoc,
3860                                              SS.getRange(), NNS,
3861                                              IdentLoc, Name);
3862    } else {
3863      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3864                                           UsingLoc, SS.getRange(), NNS,
3865                                           IdentLoc, Name);
3866    }
3867  } else {
3868    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3869                          SS.getRange(), UsingLoc, NNS, Name,
3870                          IsTypeName);
3871  }
3872  D->setAccess(AS);
3873  CurContext->addDecl(D);
3874
3875  if (!LookupContext) return D;
3876  UsingDecl *UD = cast<UsingDecl>(D);
3877
3878  if (RequireCompleteDeclContext(SS, LookupContext)) {
3879    UD->setInvalidDecl();
3880    return UD;
3881  }
3882
3883  // Look up the target name.
3884
3885  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3886
3887  // Unlike most lookups, we don't always want to hide tag
3888  // declarations: tag names are visible through the using declaration
3889  // even if hidden by ordinary names, *except* in a dependent context
3890  // where it's important for the sanity of two-phase lookup.
3891  if (!IsInstantiation)
3892    R.setHideTags(false);
3893
3894  LookupQualifiedName(R, LookupContext);
3895
3896  if (R.empty()) {
3897    Diag(IdentLoc, diag::err_no_member)
3898      << Name << LookupContext << SS.getRange();
3899    UD->setInvalidDecl();
3900    return UD;
3901  }
3902
3903  if (R.isAmbiguous()) {
3904    UD->setInvalidDecl();
3905    return UD;
3906  }
3907
3908  if (IsTypeName) {
3909    // If we asked for a typename and got a non-type decl, error out.
3910    if (!R.getAsSingle<TypeDecl>()) {
3911      Diag(IdentLoc, diag::err_using_typename_non_type);
3912      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3913        Diag((*I)->getUnderlyingDecl()->getLocation(),
3914             diag::note_using_decl_target);
3915      UD->setInvalidDecl();
3916      return UD;
3917    }
3918  } else {
3919    // If we asked for a non-typename and we got a type, error out,
3920    // but only if this is an instantiation of an unresolved using
3921    // decl.  Otherwise just silently find the type name.
3922    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3923      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3924      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3925      UD->setInvalidDecl();
3926      return UD;
3927    }
3928  }
3929
3930  // C++0x N2914 [namespace.udecl]p6:
3931  // A using-declaration shall not name a namespace.
3932  if (R.getAsSingle<NamespaceDecl>()) {
3933    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3934      << SS.getRange();
3935    UD->setInvalidDecl();
3936    return UD;
3937  }
3938
3939  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3940    if (!CheckUsingShadowDecl(UD, *I, Previous))
3941      BuildUsingShadowDecl(S, UD, *I);
3942  }
3943
3944  return UD;
3945}
3946
3947/// Checks that the given using declaration is not an invalid
3948/// redeclaration.  Note that this is checking only for the using decl
3949/// itself, not for any ill-formedness among the UsingShadowDecls.
3950bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3951                                       bool isTypeName,
3952                                       const CXXScopeSpec &SS,
3953                                       SourceLocation NameLoc,
3954                                       const LookupResult &Prev) {
3955  // C++03 [namespace.udecl]p8:
3956  // C++0x [namespace.udecl]p10:
3957  //   A using-declaration is a declaration and can therefore be used
3958  //   repeatedly where (and only where) multiple declarations are
3959  //   allowed.
3960  //
3961  // That's in non-member contexts.
3962  if (!CurContext->getLookupContext()->isRecord())
3963    return false;
3964
3965  NestedNameSpecifier *Qual
3966    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3967
3968  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3969    NamedDecl *D = *I;
3970
3971    bool DTypename;
3972    NestedNameSpecifier *DQual;
3973    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3974      DTypename = UD->isTypeName();
3975      DQual = UD->getTargetNestedNameDecl();
3976    } else if (UnresolvedUsingValueDecl *UD
3977                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3978      DTypename = false;
3979      DQual = UD->getTargetNestedNameSpecifier();
3980    } else if (UnresolvedUsingTypenameDecl *UD
3981                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3982      DTypename = true;
3983      DQual = UD->getTargetNestedNameSpecifier();
3984    } else continue;
3985
3986    // using decls differ if one says 'typename' and the other doesn't.
3987    // FIXME: non-dependent using decls?
3988    if (isTypeName != DTypename) continue;
3989
3990    // using decls differ if they name different scopes (but note that
3991    // template instantiation can cause this check to trigger when it
3992    // didn't before instantiation).
3993    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3994        Context.getCanonicalNestedNameSpecifier(DQual))
3995      continue;
3996
3997    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3998    Diag(D->getLocation(), diag::note_using_decl) << 1;
3999    return true;
4000  }
4001
4002  return false;
4003}
4004
4005
4006/// Checks that the given nested-name qualifier used in a using decl
4007/// in the current context is appropriately related to the current
4008/// scope.  If an error is found, diagnoses it and returns true.
4009bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4010                                   const CXXScopeSpec &SS,
4011                                   SourceLocation NameLoc) {
4012  DeclContext *NamedContext = computeDeclContext(SS);
4013
4014  if (!CurContext->isRecord()) {
4015    // C++03 [namespace.udecl]p3:
4016    // C++0x [namespace.udecl]p8:
4017    //   A using-declaration for a class member shall be a member-declaration.
4018
4019    // If we weren't able to compute a valid scope, it must be a
4020    // dependent class scope.
4021    if (!NamedContext || NamedContext->isRecord()) {
4022      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4023        << SS.getRange();
4024      return true;
4025    }
4026
4027    // Otherwise, everything is known to be fine.
4028    return false;
4029  }
4030
4031  // The current scope is a record.
4032
4033  // If the named context is dependent, we can't decide much.
4034  if (!NamedContext) {
4035    // FIXME: in C++0x, we can diagnose if we can prove that the
4036    // nested-name-specifier does not refer to a base class, which is
4037    // still possible in some cases.
4038
4039    // Otherwise we have to conservatively report that things might be
4040    // okay.
4041    return false;
4042  }
4043
4044  if (!NamedContext->isRecord()) {
4045    // Ideally this would point at the last name in the specifier,
4046    // but we don't have that level of source info.
4047    Diag(SS.getRange().getBegin(),
4048         diag::err_using_decl_nested_name_specifier_is_not_class)
4049      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4050    return true;
4051  }
4052
4053  if (getLangOptions().CPlusPlus0x) {
4054    // C++0x [namespace.udecl]p3:
4055    //   In a using-declaration used as a member-declaration, the
4056    //   nested-name-specifier shall name a base class of the class
4057    //   being defined.
4058
4059    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4060                                 cast<CXXRecordDecl>(NamedContext))) {
4061      if (CurContext == NamedContext) {
4062        Diag(NameLoc,
4063             diag::err_using_decl_nested_name_specifier_is_current_class)
4064          << SS.getRange();
4065        return true;
4066      }
4067
4068      Diag(SS.getRange().getBegin(),
4069           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4070        << (NestedNameSpecifier*) SS.getScopeRep()
4071        << cast<CXXRecordDecl>(CurContext)
4072        << SS.getRange();
4073      return true;
4074    }
4075
4076    return false;
4077  }
4078
4079  // C++03 [namespace.udecl]p4:
4080  //   A using-declaration used as a member-declaration shall refer
4081  //   to a member of a base class of the class being defined [etc.].
4082
4083  // Salient point: SS doesn't have to name a base class as long as
4084  // lookup only finds members from base classes.  Therefore we can
4085  // diagnose here only if we can prove that that can't happen,
4086  // i.e. if the class hierarchies provably don't intersect.
4087
4088  // TODO: it would be nice if "definitely valid" results were cached
4089  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4090  // need to be repeated.
4091
4092  struct UserData {
4093    llvm::DenseSet<const CXXRecordDecl*> Bases;
4094
4095    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4096      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4097      Data->Bases.insert(Base);
4098      return true;
4099    }
4100
4101    bool hasDependentBases(const CXXRecordDecl *Class) {
4102      return !Class->forallBases(collect, this);
4103    }
4104
4105    /// Returns true if the base is dependent or is one of the
4106    /// accumulated base classes.
4107    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4108      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4109      return !Data->Bases.count(Base);
4110    }
4111
4112    bool mightShareBases(const CXXRecordDecl *Class) {
4113      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4114    }
4115  };
4116
4117  UserData Data;
4118
4119  // Returns false if we find a dependent base.
4120  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4121    return false;
4122
4123  // Returns false if the class has a dependent base or if it or one
4124  // of its bases is present in the base set of the current context.
4125  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4126    return false;
4127
4128  Diag(SS.getRange().getBegin(),
4129       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4130    << (NestedNameSpecifier*) SS.getScopeRep()
4131    << cast<CXXRecordDecl>(CurContext)
4132    << SS.getRange();
4133
4134  return true;
4135}
4136
4137Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4138                                             SourceLocation NamespaceLoc,
4139                                             SourceLocation AliasLoc,
4140                                             IdentifierInfo *Alias,
4141                                             CXXScopeSpec &SS,
4142                                             SourceLocation IdentLoc,
4143                                             IdentifierInfo *Ident) {
4144
4145  // Lookup the namespace name.
4146  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4147  LookupParsedName(R, S, &SS);
4148
4149  // Check if we have a previous declaration with the same name.
4150  NamedDecl *PrevDecl
4151    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4152                       ForRedeclaration);
4153  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4154    PrevDecl = 0;
4155
4156  if (PrevDecl) {
4157    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4158      // We already have an alias with the same name that points to the same
4159      // namespace, so don't create a new one.
4160      // FIXME: At some point, we'll want to create the (redundant)
4161      // declaration to maintain better source information.
4162      if (!R.isAmbiguous() && !R.empty() &&
4163          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4164        return DeclPtrTy();
4165    }
4166
4167    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4168      diag::err_redefinition_different_kind;
4169    Diag(AliasLoc, DiagID) << Alias;
4170    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4171    return DeclPtrTy();
4172  }
4173
4174  if (R.isAmbiguous())
4175    return DeclPtrTy();
4176
4177  if (R.empty()) {
4178    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4179    return DeclPtrTy();
4180  }
4181
4182  NamespaceAliasDecl *AliasDecl =
4183    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4184                               Alias, SS.getRange(),
4185                               (NestedNameSpecifier *)SS.getScopeRep(),
4186                               IdentLoc, R.getFoundDecl());
4187
4188  PushOnScopeChains(AliasDecl, S);
4189  return DeclPtrTy::make(AliasDecl);
4190}
4191
4192namespace {
4193  /// \brief Scoped object used to handle the state changes required in Sema
4194  /// to implicitly define the body of a C++ member function;
4195  class ImplicitlyDefinedFunctionScope {
4196    Sema &S;
4197    DeclContext *PreviousContext;
4198
4199  public:
4200    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4201      : S(S), PreviousContext(S.CurContext)
4202    {
4203      S.CurContext = Method;
4204      S.PushFunctionScope();
4205      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4206    }
4207
4208    ~ImplicitlyDefinedFunctionScope() {
4209      S.PopExpressionEvaluationContext();
4210      S.PopFunctionOrBlockScope();
4211      S.CurContext = PreviousContext;
4212    }
4213  };
4214}
4215
4216void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4217                                            CXXConstructorDecl *Constructor) {
4218  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4219          !Constructor->isUsed(false)) &&
4220    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4221
4222  CXXRecordDecl *ClassDecl = Constructor->getParent();
4223  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4224
4225  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4226  ErrorTrap Trap(*this);
4227  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4228      Trap.hasErrorOccurred()) {
4229    Diag(CurrentLocation, diag::note_member_synthesized_at)
4230      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4231    Constructor->setInvalidDecl();
4232  } else {
4233    Constructor->setUsed();
4234    MarkVTableUsed(CurrentLocation, ClassDecl);
4235  }
4236}
4237
4238void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4239                                    CXXDestructorDecl *Destructor) {
4240  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4241         "DefineImplicitDestructor - call it for implicit default dtor");
4242  CXXRecordDecl *ClassDecl = Destructor->getParent();
4243  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4244
4245  if (Destructor->isInvalidDecl())
4246    return;
4247
4248  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4249
4250  ErrorTrap Trap(*this);
4251  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4252                                         Destructor->getParent());
4253
4254  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4255    Diag(CurrentLocation, diag::note_member_synthesized_at)
4256      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4257
4258    Destructor->setInvalidDecl();
4259    return;
4260  }
4261
4262  Destructor->setUsed();
4263  MarkVTableUsed(CurrentLocation, ClassDecl);
4264}
4265
4266/// \brief Builds a statement that copies the given entity from \p From to
4267/// \c To.
4268///
4269/// This routine is used to copy the members of a class with an
4270/// implicitly-declared copy assignment operator. When the entities being
4271/// copied are arrays, this routine builds for loops to copy them.
4272///
4273/// \param S The Sema object used for type-checking.
4274///
4275/// \param Loc The location where the implicit copy is being generated.
4276///
4277/// \param T The type of the expressions being copied. Both expressions must
4278/// have this type.
4279///
4280/// \param To The expression we are copying to.
4281///
4282/// \param From The expression we are copying from.
4283///
4284/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4285/// Otherwise, it's a non-static member subobject.
4286///
4287/// \param Depth Internal parameter recording the depth of the recursion.
4288///
4289/// \returns A statement or a loop that copies the expressions.
4290static Sema::OwningStmtResult
4291BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4292                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4293                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4294  typedef Sema::OwningStmtResult OwningStmtResult;
4295  typedef Sema::OwningExprResult OwningExprResult;
4296
4297  // C++0x [class.copy]p30:
4298  //   Each subobject is assigned in the manner appropriate to its type:
4299  //
4300  //     - if the subobject is of class type, the copy assignment operator
4301  //       for the class is used (as if by explicit qualification; that is,
4302  //       ignoring any possible virtual overriding functions in more derived
4303  //       classes);
4304  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4305    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4306
4307    // Look for operator=.
4308    DeclarationName Name
4309      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4310    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4311    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4312
4313    // Filter out any result that isn't a copy-assignment operator.
4314    LookupResult::Filter F = OpLookup.makeFilter();
4315    while (F.hasNext()) {
4316      NamedDecl *D = F.next();
4317      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4318        if (Method->isCopyAssignmentOperator())
4319          continue;
4320
4321      F.erase();
4322    }
4323    F.done();
4324
4325    // Suppress the protected check (C++ [class.protected]) for each of the
4326    // assignment operators we found. This strange dance is required when
4327    // we're assigning via a base classes's copy-assignment operator. To
4328    // ensure that we're getting the right base class subobject (without
4329    // ambiguities), we need to cast "this" to that subobject type; to
4330    // ensure that we don't go through the virtual call mechanism, we need
4331    // to qualify the operator= name with the base class (see below). However,
4332    // this means that if the base class has a protected copy assignment
4333    // operator, the protected member access check will fail. So, we
4334    // rewrite "protected" access to "public" access in this case, since we
4335    // know by construction that we're calling from a derived class.
4336    if (CopyingBaseSubobject) {
4337      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4338           L != LEnd; ++L) {
4339        if (L.getAccess() == AS_protected)
4340          L.setAccess(AS_public);
4341      }
4342    }
4343
4344    // Create the nested-name-specifier that will be used to qualify the
4345    // reference to operator=; this is required to suppress the virtual
4346    // call mechanism.
4347    CXXScopeSpec SS;
4348    SS.setRange(Loc);
4349    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4350                                               T.getTypePtr()));
4351
4352    // Create the reference to operator=.
4353    OwningExprResult OpEqualRef
4354      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4355                                   /*FirstQualifierInScope=*/0, OpLookup,
4356                                   /*TemplateArgs=*/0,
4357                                   /*SuppressQualifierCheck=*/true);
4358    if (OpEqualRef.isInvalid())
4359      return S.StmtError();
4360
4361    // Build the call to the assignment operator.
4362    Expr *FromE = From.takeAs<Expr>();
4363    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4364                                                      OpEqualRef.takeAs<Expr>(),
4365                                                        Loc, &FromE, 1, 0, Loc);
4366    if (Call.isInvalid())
4367      return S.StmtError();
4368
4369    return S.Owned(Call.takeAs<Stmt>());
4370  }
4371
4372  //     - if the subobject is of scalar type, the built-in assignment
4373  //       operator is used.
4374  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4375  if (!ArrayTy) {
4376    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4377                                                       BinaryOperator::Assign,
4378                                                       To.takeAs<Expr>(),
4379                                                       From.takeAs<Expr>());
4380    if (Assignment.isInvalid())
4381      return S.StmtError();
4382
4383    return S.Owned(Assignment.takeAs<Stmt>());
4384  }
4385
4386  //     - if the subobject is an array, each element is assigned, in the
4387  //       manner appropriate to the element type;
4388
4389  // Construct a loop over the array bounds, e.g.,
4390  //
4391  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4392  //
4393  // that will copy each of the array elements.
4394  QualType SizeType = S.Context.getSizeType();
4395
4396  // Create the iteration variable.
4397  IdentifierInfo *IterationVarName = 0;
4398  {
4399    llvm::SmallString<8> Str;
4400    llvm::raw_svector_ostream OS(Str);
4401    OS << "__i" << Depth;
4402    IterationVarName = &S.Context.Idents.get(OS.str());
4403  }
4404  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4405                                          IterationVarName, SizeType,
4406                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4407                                          VarDecl::None, VarDecl::None);
4408
4409  // Initialize the iteration variable to zero.
4410  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4411  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4412
4413  // Create a reference to the iteration variable; we'll use this several
4414  // times throughout.
4415  Expr *IterationVarRef
4416    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4417  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4418
4419  // Create the DeclStmt that holds the iteration variable.
4420  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4421
4422  // Create the comparison against the array bound.
4423  llvm::APInt Upper = ArrayTy->getSize();
4424  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4425  OwningExprResult Comparison
4426    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4427                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4428                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4429
4430  // Create the pre-increment of the iteration variable.
4431  OwningExprResult Increment
4432    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4433                                            UnaryOperator::PreInc,
4434                                            SizeType, Loc));
4435
4436  // Subscript the "from" and "to" expressions with the iteration variable.
4437  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4438                                           S.Owned(IterationVarRef->Retain()),
4439                                           Loc);
4440  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4441                                         S.Owned(IterationVarRef->Retain()),
4442                                         Loc);
4443  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4444  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4445
4446  // Build the copy for an individual element of the array.
4447  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4448                                                ArrayTy->getElementType(),
4449                                                move(To), move(From),
4450                                                CopyingBaseSubobject, Depth+1);
4451  if (Copy.isInvalid()) {
4452    InitStmt->Destroy(S.Context);
4453    return S.StmtError();
4454  }
4455
4456  // Construct the loop that copies all elements of this array.
4457  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4458                        S.MakeFullExpr(Comparison),
4459                        Sema::DeclPtrTy(),
4460                        S.MakeFullExpr(Increment),
4461                        Loc, move(Copy));
4462}
4463
4464void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4465                                        CXXMethodDecl *CopyAssignOperator) {
4466  assert((CopyAssignOperator->isImplicit() &&
4467          CopyAssignOperator->isOverloadedOperator() &&
4468          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4469          !CopyAssignOperator->isUsed(false)) &&
4470         "DefineImplicitCopyAssignment called for wrong function");
4471
4472  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4473
4474  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4475    CopyAssignOperator->setInvalidDecl();
4476    return;
4477  }
4478
4479  CopyAssignOperator->setUsed();
4480
4481  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4482  ErrorTrap Trap(*this);
4483
4484  // C++0x [class.copy]p30:
4485  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4486  //   for a non-union class X performs memberwise copy assignment of its
4487  //   subobjects. The direct base classes of X are assigned first, in the
4488  //   order of their declaration in the base-specifier-list, and then the
4489  //   immediate non-static data members of X are assigned, in the order in
4490  //   which they were declared in the class definition.
4491
4492  // The statements that form the synthesized function body.
4493  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4494
4495  // The parameter for the "other" object, which we are copying from.
4496  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4497  Qualifiers OtherQuals = Other->getType().getQualifiers();
4498  QualType OtherRefType = Other->getType();
4499  if (const LValueReferenceType *OtherRef
4500                                = OtherRefType->getAs<LValueReferenceType>()) {
4501    OtherRefType = OtherRef->getPointeeType();
4502    OtherQuals = OtherRefType.getQualifiers();
4503  }
4504
4505  // Our location for everything implicitly-generated.
4506  SourceLocation Loc = CopyAssignOperator->getLocation();
4507
4508  // Construct a reference to the "other" object. We'll be using this
4509  // throughout the generated ASTs.
4510  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4511  assert(OtherRef && "Reference to parameter cannot fail!");
4512
4513  // Construct the "this" pointer. We'll be using this throughout the generated
4514  // ASTs.
4515  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4516  assert(This && "Reference to this cannot fail!");
4517
4518  // Assign base classes.
4519  bool Invalid = false;
4520  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4521       E = ClassDecl->bases_end(); Base != E; ++Base) {
4522    // Form the assignment:
4523    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4524    QualType BaseType = Base->getType().getUnqualifiedType();
4525    CXXRecordDecl *BaseClassDecl = 0;
4526    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4527      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4528    else {
4529      Invalid = true;
4530      continue;
4531    }
4532
4533    // Construct the "from" expression, which is an implicit cast to the
4534    // appropriately-qualified base type.
4535    Expr *From = OtherRef->Retain();
4536    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4537                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4538                      CXXBaseSpecifierArray(Base));
4539
4540    // Dereference "this".
4541    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4542                                               Owned(This->Retain()));
4543
4544    // Implicitly cast "this" to the appropriately-qualified base type.
4545    Expr *ToE = To.takeAs<Expr>();
4546    ImpCastExprToType(ToE,
4547                      Context.getCVRQualifiedType(BaseType,
4548                                      CopyAssignOperator->getTypeQualifiers()),
4549                      CastExpr::CK_UncheckedDerivedToBase,
4550                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4551    To = Owned(ToE);
4552
4553    // Build the copy.
4554    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4555                                                  move(To), Owned(From),
4556                                                /*CopyingBaseSubobject=*/true);
4557    if (Copy.isInvalid()) {
4558      Diag(CurrentLocation, diag::note_member_synthesized_at)
4559        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4560      CopyAssignOperator->setInvalidDecl();
4561      return;
4562    }
4563
4564    // Success! Record the copy.
4565    Statements.push_back(Copy.takeAs<Expr>());
4566  }
4567
4568  // \brief Reference to the __builtin_memcpy function.
4569  Expr *BuiltinMemCpyRef = 0;
4570  // \brief Reference to the __builtin_objc_memmove_collectable function.
4571  Expr *CollectableMemCpyRef = 0;
4572
4573  // Assign non-static members.
4574  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4575                                  FieldEnd = ClassDecl->field_end();
4576       Field != FieldEnd; ++Field) {
4577    // Check for members of reference type; we can't copy those.
4578    if (Field->getType()->isReferenceType()) {
4579      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4580        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4581      Diag(Field->getLocation(), diag::note_declared_at);
4582      Diag(CurrentLocation, diag::note_member_synthesized_at)
4583        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4584      Invalid = true;
4585      continue;
4586    }
4587
4588    // Check for members of const-qualified, non-class type.
4589    QualType BaseType = Context.getBaseElementType(Field->getType());
4590    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4591      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4592        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4593      Diag(Field->getLocation(), diag::note_declared_at);
4594      Diag(CurrentLocation, diag::note_member_synthesized_at)
4595        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4596      Invalid = true;
4597      continue;
4598    }
4599
4600    QualType FieldType = Field->getType().getNonReferenceType();
4601    if (FieldType->isIncompleteArrayType()) {
4602      assert(ClassDecl->hasFlexibleArrayMember() &&
4603             "Incomplete array type is not valid");
4604      continue;
4605    }
4606
4607    // Build references to the field in the object we're copying from and to.
4608    CXXScopeSpec SS; // Intentionally empty
4609    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4610                              LookupMemberName);
4611    MemberLookup.addDecl(*Field);
4612    MemberLookup.resolveKind();
4613    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4614                                                     OtherRefType,
4615                                                     Loc, /*IsArrow=*/false,
4616                                                     SS, 0, MemberLookup, 0);
4617    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4618                                                   This->getType(),
4619                                                   Loc, /*IsArrow=*/true,
4620                                                   SS, 0, MemberLookup, 0);
4621    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4622    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4623
4624    // If the field should be copied with __builtin_memcpy rather than via
4625    // explicit assignments, do so. This optimization only applies for arrays
4626    // of scalars and arrays of class type with trivial copy-assignment
4627    // operators.
4628    if (FieldType->isArrayType() &&
4629        (!BaseType->isRecordType() ||
4630         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4631           ->hasTrivialCopyAssignment())) {
4632      // Compute the size of the memory buffer to be copied.
4633      QualType SizeType = Context.getSizeType();
4634      llvm::APInt Size(Context.getTypeSize(SizeType),
4635                       Context.getTypeSizeInChars(BaseType).getQuantity());
4636      for (const ConstantArrayType *Array
4637              = Context.getAsConstantArrayType(FieldType);
4638           Array;
4639           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4640        llvm::APInt ArraySize = Array->getSize();
4641        ArraySize.zextOrTrunc(Size.getBitWidth());
4642        Size *= ArraySize;
4643      }
4644
4645      // Take the address of the field references for "from" and "to".
4646      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4647      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4648
4649      bool NeedsCollectableMemCpy =
4650          (BaseType->isRecordType() &&
4651           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4652
4653      if (NeedsCollectableMemCpy) {
4654        if (!CollectableMemCpyRef) {
4655          // Create a reference to the __builtin_objc_memmove_collectable function.
4656          LookupResult R(*this,
4657                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4658                         Loc, LookupOrdinaryName);
4659          LookupName(R, TUScope, true);
4660
4661          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4662          if (!CollectableMemCpy) {
4663            // Something went horribly wrong earlier, and we will have
4664            // complained about it.
4665            Invalid = true;
4666            continue;
4667          }
4668
4669          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4670                                                  CollectableMemCpy->getType(),
4671                                                  Loc, 0).takeAs<Expr>();
4672          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4673        }
4674      }
4675      // Create a reference to the __builtin_memcpy builtin function.
4676      else if (!BuiltinMemCpyRef) {
4677        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4678                       LookupOrdinaryName);
4679        LookupName(R, TUScope, true);
4680
4681        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4682        if (!BuiltinMemCpy) {
4683          // Something went horribly wrong earlier, and we will have complained
4684          // about it.
4685          Invalid = true;
4686          continue;
4687        }
4688
4689        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4690                                            BuiltinMemCpy->getType(),
4691                                            Loc, 0).takeAs<Expr>();
4692        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4693      }
4694
4695      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4696      CallArgs.push_back(To.takeAs<Expr>());
4697      CallArgs.push_back(From.takeAs<Expr>());
4698      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4699      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4700      Commas.push_back(Loc);
4701      Commas.push_back(Loc);
4702      OwningExprResult Call = ExprError();
4703      if (NeedsCollectableMemCpy)
4704        Call = ActOnCallExpr(/*Scope=*/0,
4705                             Owned(CollectableMemCpyRef->Retain()),
4706                             Loc, move_arg(CallArgs),
4707                             Commas.data(), Loc);
4708      else
4709        Call = ActOnCallExpr(/*Scope=*/0,
4710                             Owned(BuiltinMemCpyRef->Retain()),
4711                             Loc, move_arg(CallArgs),
4712                             Commas.data(), Loc);
4713
4714      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4715      Statements.push_back(Call.takeAs<Expr>());
4716      continue;
4717    }
4718
4719    // Build the copy of this field.
4720    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4721                                                  move(To), move(From),
4722                                              /*CopyingBaseSubobject=*/false);
4723    if (Copy.isInvalid()) {
4724      Diag(CurrentLocation, diag::note_member_synthesized_at)
4725        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4726      CopyAssignOperator->setInvalidDecl();
4727      return;
4728    }
4729
4730    // Success! Record the copy.
4731    Statements.push_back(Copy.takeAs<Stmt>());
4732  }
4733
4734  if (!Invalid) {
4735    // Add a "return *this;"
4736    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4737                                                    Owned(This->Retain()));
4738
4739    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4740    if (Return.isInvalid())
4741      Invalid = true;
4742    else {
4743      Statements.push_back(Return.takeAs<Stmt>());
4744
4745      if (Trap.hasErrorOccurred()) {
4746        Diag(CurrentLocation, diag::note_member_synthesized_at)
4747          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4748        Invalid = true;
4749      }
4750    }
4751  }
4752
4753  if (Invalid) {
4754    CopyAssignOperator->setInvalidDecl();
4755    return;
4756  }
4757
4758  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4759                                            /*isStmtExpr=*/false);
4760  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4761  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4762}
4763
4764void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4765                                   CXXConstructorDecl *CopyConstructor,
4766                                   unsigned TypeQuals) {
4767  assert((CopyConstructor->isImplicit() &&
4768          CopyConstructor->isCopyConstructor(TypeQuals) &&
4769          !CopyConstructor->isUsed(false)) &&
4770         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4771
4772  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4773  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4774
4775  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4776  ErrorTrap Trap(*this);
4777
4778  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4779      Trap.hasErrorOccurred()) {
4780    Diag(CurrentLocation, diag::note_member_synthesized_at)
4781      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4782    CopyConstructor->setInvalidDecl();
4783  }  else {
4784    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4785                                               CopyConstructor->getLocation(),
4786                                               MultiStmtArg(*this, 0, 0),
4787                                               /*isStmtExpr=*/false)
4788                                                              .takeAs<Stmt>());
4789  }
4790
4791  CopyConstructor->setUsed();
4792}
4793
4794Sema::OwningExprResult
4795Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4796                            CXXConstructorDecl *Constructor,
4797                            MultiExprArg ExprArgs,
4798                            bool RequiresZeroInit,
4799                            CXXConstructExpr::ConstructionKind ConstructKind) {
4800  bool Elidable = false;
4801
4802  // C++0x [class.copy]p34:
4803  //   When certain criteria are met, an implementation is allowed to
4804  //   omit the copy/move construction of a class object, even if the
4805  //   copy/move constructor and/or destructor for the object have
4806  //   side effects. [...]
4807  //     - when a temporary class object that has not been bound to a
4808  //       reference (12.2) would be copied/moved to a class object
4809  //       with the same cv-unqualified type, the copy/move operation
4810  //       can be omitted by constructing the temporary object
4811  //       directly into the target of the omitted copy/move
4812  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4813    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4814    Elidable = SubExpr->isTemporaryObject() &&
4815      Context.hasSameUnqualifiedType(SubExpr->getType(),
4816                           Context.getTypeDeclType(Constructor->getParent()));
4817  }
4818
4819  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4820                               Elidable, move(ExprArgs), RequiresZeroInit,
4821                               ConstructKind);
4822}
4823
4824/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4825/// including handling of its default argument expressions.
4826Sema::OwningExprResult
4827Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4828                            CXXConstructorDecl *Constructor, bool Elidable,
4829                            MultiExprArg ExprArgs,
4830                            bool RequiresZeroInit,
4831                            CXXConstructExpr::ConstructionKind ConstructKind) {
4832  unsigned NumExprs = ExprArgs.size();
4833  Expr **Exprs = (Expr **)ExprArgs.release();
4834
4835  MarkDeclarationReferenced(ConstructLoc, Constructor);
4836  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4837                                        Constructor, Elidable, Exprs, NumExprs,
4838                                        RequiresZeroInit, ConstructKind));
4839}
4840
4841bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4842                                        CXXConstructorDecl *Constructor,
4843                                        MultiExprArg Exprs) {
4844  OwningExprResult TempResult =
4845    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4846                          move(Exprs));
4847  if (TempResult.isInvalid())
4848    return true;
4849
4850  Expr *Temp = TempResult.takeAs<Expr>();
4851  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4852  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4853  VD->setInit(Temp);
4854
4855  return false;
4856}
4857
4858void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4859  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4860  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4861      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
4862    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4863    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4864    CheckDestructorAccess(VD->getLocation(), Destructor,
4865                          PDiag(diag::err_access_dtor_var)
4866                            << VD->getDeclName()
4867                            << VD->getType());
4868  }
4869}
4870
4871/// AddCXXDirectInitializerToDecl - This action is called immediately after
4872/// ActOnDeclarator, when a C++ direct initializer is present.
4873/// e.g: "int x(1);"
4874void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4875                                         SourceLocation LParenLoc,
4876                                         MultiExprArg Exprs,
4877                                         SourceLocation *CommaLocs,
4878                                         SourceLocation RParenLoc) {
4879  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4880  Decl *RealDecl = Dcl.getAs<Decl>();
4881
4882  // If there is no declaration, there was an error parsing it.  Just ignore
4883  // the initializer.
4884  if (RealDecl == 0)
4885    return;
4886
4887  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4888  if (!VDecl) {
4889    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4890    RealDecl->setInvalidDecl();
4891    return;
4892  }
4893
4894  // We will represent direct-initialization similarly to copy-initialization:
4895  //    int x(1);  -as-> int x = 1;
4896  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4897  //
4898  // Clients that want to distinguish between the two forms, can check for
4899  // direct initializer using VarDecl::hasCXXDirectInitializer().
4900  // A major benefit is that clients that don't particularly care about which
4901  // exactly form was it (like the CodeGen) can handle both cases without
4902  // special case code.
4903
4904  // C++ 8.5p11:
4905  // The form of initialization (using parentheses or '=') is generally
4906  // insignificant, but does matter when the entity being initialized has a
4907  // class type.
4908  QualType DeclInitType = VDecl->getType();
4909  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4910    DeclInitType = Context.getBaseElementType(Array);
4911
4912  if (!VDecl->getType()->isDependentType() &&
4913      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4914                          diag::err_typecheck_decl_incomplete_type)) {
4915    VDecl->setInvalidDecl();
4916    return;
4917  }
4918
4919  // The variable can not have an abstract class type.
4920  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4921                             diag::err_abstract_type_in_decl,
4922                             AbstractVariableType))
4923    VDecl->setInvalidDecl();
4924
4925  const VarDecl *Def;
4926  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4927    Diag(VDecl->getLocation(), diag::err_redefinition)
4928    << VDecl->getDeclName();
4929    Diag(Def->getLocation(), diag::note_previous_definition);
4930    VDecl->setInvalidDecl();
4931    return;
4932  }
4933
4934  // If either the declaration has a dependent type or if any of the
4935  // expressions is type-dependent, we represent the initialization
4936  // via a ParenListExpr for later use during template instantiation.
4937  if (VDecl->getType()->isDependentType() ||
4938      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4939    // Let clients know that initialization was done with a direct initializer.
4940    VDecl->setCXXDirectInitializer(true);
4941
4942    // Store the initialization expressions as a ParenListExpr.
4943    unsigned NumExprs = Exprs.size();
4944    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4945                                               (Expr **)Exprs.release(),
4946                                               NumExprs, RParenLoc));
4947    return;
4948  }
4949
4950  // Capture the variable that is being initialized and the style of
4951  // initialization.
4952  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4953
4954  // FIXME: Poor source location information.
4955  InitializationKind Kind
4956    = InitializationKind::CreateDirect(VDecl->getLocation(),
4957                                       LParenLoc, RParenLoc);
4958
4959  InitializationSequence InitSeq(*this, Entity, Kind,
4960                                 (Expr**)Exprs.get(), Exprs.size());
4961  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4962  if (Result.isInvalid()) {
4963    VDecl->setInvalidDecl();
4964    return;
4965  }
4966
4967  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4968  VDecl->setInit(Result.takeAs<Expr>());
4969  VDecl->setCXXDirectInitializer(true);
4970
4971  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4972    FinalizeVarWithDestructor(VDecl, Record);
4973}
4974
4975/// \brief Given a constructor and the set of arguments provided for the
4976/// constructor, convert the arguments and add any required default arguments
4977/// to form a proper call to this constructor.
4978///
4979/// \returns true if an error occurred, false otherwise.
4980bool
4981Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4982                              MultiExprArg ArgsPtr,
4983                              SourceLocation Loc,
4984                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4985  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4986  unsigned NumArgs = ArgsPtr.size();
4987  Expr **Args = (Expr **)ArgsPtr.get();
4988
4989  const FunctionProtoType *Proto
4990    = Constructor->getType()->getAs<FunctionProtoType>();
4991  assert(Proto && "Constructor without a prototype?");
4992  unsigned NumArgsInProto = Proto->getNumArgs();
4993
4994  // If too few arguments are available, we'll fill in the rest with defaults.
4995  if (NumArgs < NumArgsInProto)
4996    ConvertedArgs.reserve(NumArgsInProto);
4997  else
4998    ConvertedArgs.reserve(NumArgs);
4999
5000  VariadicCallType CallType =
5001    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5002  llvm::SmallVector<Expr *, 8> AllArgs;
5003  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5004                                        Proto, 0, Args, NumArgs, AllArgs,
5005                                        CallType);
5006  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5007    ConvertedArgs.push_back(AllArgs[i]);
5008  return Invalid;
5009}
5010
5011static inline bool
5012CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5013                                       const FunctionDecl *FnDecl) {
5014  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5015  if (isa<NamespaceDecl>(DC)) {
5016    return SemaRef.Diag(FnDecl->getLocation(),
5017                        diag::err_operator_new_delete_declared_in_namespace)
5018      << FnDecl->getDeclName();
5019  }
5020
5021  if (isa<TranslationUnitDecl>(DC) &&
5022      FnDecl->getStorageClass() == FunctionDecl::Static) {
5023    return SemaRef.Diag(FnDecl->getLocation(),
5024                        diag::err_operator_new_delete_declared_static)
5025      << FnDecl->getDeclName();
5026  }
5027
5028  return false;
5029}
5030
5031static inline bool
5032CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5033                            CanQualType ExpectedResultType,
5034                            CanQualType ExpectedFirstParamType,
5035                            unsigned DependentParamTypeDiag,
5036                            unsigned InvalidParamTypeDiag) {
5037  QualType ResultType =
5038    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5039
5040  // Check that the result type is not dependent.
5041  if (ResultType->isDependentType())
5042    return SemaRef.Diag(FnDecl->getLocation(),
5043                        diag::err_operator_new_delete_dependent_result_type)
5044    << FnDecl->getDeclName() << ExpectedResultType;
5045
5046  // Check that the result type is what we expect.
5047  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5048    return SemaRef.Diag(FnDecl->getLocation(),
5049                        diag::err_operator_new_delete_invalid_result_type)
5050    << FnDecl->getDeclName() << ExpectedResultType;
5051
5052  // A function template must have at least 2 parameters.
5053  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5054    return SemaRef.Diag(FnDecl->getLocation(),
5055                      diag::err_operator_new_delete_template_too_few_parameters)
5056        << FnDecl->getDeclName();
5057
5058  // The function decl must have at least 1 parameter.
5059  if (FnDecl->getNumParams() == 0)
5060    return SemaRef.Diag(FnDecl->getLocation(),
5061                        diag::err_operator_new_delete_too_few_parameters)
5062      << FnDecl->getDeclName();
5063
5064  // Check the the first parameter type is not dependent.
5065  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5066  if (FirstParamType->isDependentType())
5067    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5068      << FnDecl->getDeclName() << ExpectedFirstParamType;
5069
5070  // Check that the first parameter type is what we expect.
5071  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5072      ExpectedFirstParamType)
5073    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5074    << FnDecl->getDeclName() << ExpectedFirstParamType;
5075
5076  return false;
5077}
5078
5079static bool
5080CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5081  // C++ [basic.stc.dynamic.allocation]p1:
5082  //   A program is ill-formed if an allocation function is declared in a
5083  //   namespace scope other than global scope or declared static in global
5084  //   scope.
5085  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5086    return true;
5087
5088  CanQualType SizeTy =
5089    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5090
5091  // C++ [basic.stc.dynamic.allocation]p1:
5092  //  The return type shall be void*. The first parameter shall have type
5093  //  std::size_t.
5094  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5095                                  SizeTy,
5096                                  diag::err_operator_new_dependent_param_type,
5097                                  diag::err_operator_new_param_type))
5098    return true;
5099
5100  // C++ [basic.stc.dynamic.allocation]p1:
5101  //  The first parameter shall not have an associated default argument.
5102  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5103    return SemaRef.Diag(FnDecl->getLocation(),
5104                        diag::err_operator_new_default_arg)
5105      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5106
5107  return false;
5108}
5109
5110static bool
5111CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5112  // C++ [basic.stc.dynamic.deallocation]p1:
5113  //   A program is ill-formed if deallocation functions are declared in a
5114  //   namespace scope other than global scope or declared static in global
5115  //   scope.
5116  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5117    return true;
5118
5119  // C++ [basic.stc.dynamic.deallocation]p2:
5120  //   Each deallocation function shall return void and its first parameter
5121  //   shall be void*.
5122  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5123                                  SemaRef.Context.VoidPtrTy,
5124                                 diag::err_operator_delete_dependent_param_type,
5125                                 diag::err_operator_delete_param_type))
5126    return true;
5127
5128  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5129  if (FirstParamType->isDependentType())
5130    return SemaRef.Diag(FnDecl->getLocation(),
5131                        diag::err_operator_delete_dependent_param_type)
5132    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5133
5134  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5135      SemaRef.Context.VoidPtrTy)
5136    return SemaRef.Diag(FnDecl->getLocation(),
5137                        diag::err_operator_delete_param_type)
5138      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5139
5140  return false;
5141}
5142
5143/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5144/// of this overloaded operator is well-formed. If so, returns false;
5145/// otherwise, emits appropriate diagnostics and returns true.
5146bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5147  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5148         "Expected an overloaded operator declaration");
5149
5150  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5151
5152  // C++ [over.oper]p5:
5153  //   The allocation and deallocation functions, operator new,
5154  //   operator new[], operator delete and operator delete[], are
5155  //   described completely in 3.7.3. The attributes and restrictions
5156  //   found in the rest of this subclause do not apply to them unless
5157  //   explicitly stated in 3.7.3.
5158  if (Op == OO_Delete || Op == OO_Array_Delete)
5159    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5160
5161  if (Op == OO_New || Op == OO_Array_New)
5162    return CheckOperatorNewDeclaration(*this, FnDecl);
5163
5164  // C++ [over.oper]p6:
5165  //   An operator function shall either be a non-static member
5166  //   function or be a non-member function and have at least one
5167  //   parameter whose type is a class, a reference to a class, an
5168  //   enumeration, or a reference to an enumeration.
5169  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5170    if (MethodDecl->isStatic())
5171      return Diag(FnDecl->getLocation(),
5172                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5173  } else {
5174    bool ClassOrEnumParam = false;
5175    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5176                                   ParamEnd = FnDecl->param_end();
5177         Param != ParamEnd; ++Param) {
5178      QualType ParamType = (*Param)->getType().getNonReferenceType();
5179      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5180          ParamType->isEnumeralType()) {
5181        ClassOrEnumParam = true;
5182        break;
5183      }
5184    }
5185
5186    if (!ClassOrEnumParam)
5187      return Diag(FnDecl->getLocation(),
5188                  diag::err_operator_overload_needs_class_or_enum)
5189        << FnDecl->getDeclName();
5190  }
5191
5192  // C++ [over.oper]p8:
5193  //   An operator function cannot have default arguments (8.3.6),
5194  //   except where explicitly stated below.
5195  //
5196  // Only the function-call operator allows default arguments
5197  // (C++ [over.call]p1).
5198  if (Op != OO_Call) {
5199    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5200         Param != FnDecl->param_end(); ++Param) {
5201      if ((*Param)->hasDefaultArg())
5202        return Diag((*Param)->getLocation(),
5203                    diag::err_operator_overload_default_arg)
5204          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5205    }
5206  }
5207
5208  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5209    { false, false, false }
5210#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5211    , { Unary, Binary, MemberOnly }
5212#include "clang/Basic/OperatorKinds.def"
5213  };
5214
5215  bool CanBeUnaryOperator = OperatorUses[Op][0];
5216  bool CanBeBinaryOperator = OperatorUses[Op][1];
5217  bool MustBeMemberOperator = OperatorUses[Op][2];
5218
5219  // C++ [over.oper]p8:
5220  //   [...] Operator functions cannot have more or fewer parameters
5221  //   than the number required for the corresponding operator, as
5222  //   described in the rest of this subclause.
5223  unsigned NumParams = FnDecl->getNumParams()
5224                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5225  if (Op != OO_Call &&
5226      ((NumParams == 1 && !CanBeUnaryOperator) ||
5227       (NumParams == 2 && !CanBeBinaryOperator) ||
5228       (NumParams < 1) || (NumParams > 2))) {
5229    // We have the wrong number of parameters.
5230    unsigned ErrorKind;
5231    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5232      ErrorKind = 2;  // 2 -> unary or binary.
5233    } else if (CanBeUnaryOperator) {
5234      ErrorKind = 0;  // 0 -> unary
5235    } else {
5236      assert(CanBeBinaryOperator &&
5237             "All non-call overloaded operators are unary or binary!");
5238      ErrorKind = 1;  // 1 -> binary
5239    }
5240
5241    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5242      << FnDecl->getDeclName() << NumParams << ErrorKind;
5243  }
5244
5245  // Overloaded operators other than operator() cannot be variadic.
5246  if (Op != OO_Call &&
5247      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5248    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5249      << FnDecl->getDeclName();
5250  }
5251
5252  // Some operators must be non-static member functions.
5253  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5254    return Diag(FnDecl->getLocation(),
5255                diag::err_operator_overload_must_be_member)
5256      << FnDecl->getDeclName();
5257  }
5258
5259  // C++ [over.inc]p1:
5260  //   The user-defined function called operator++ implements the
5261  //   prefix and postfix ++ operator. If this function is a member
5262  //   function with no parameters, or a non-member function with one
5263  //   parameter of class or enumeration type, it defines the prefix
5264  //   increment operator ++ for objects of that type. If the function
5265  //   is a member function with one parameter (which shall be of type
5266  //   int) or a non-member function with two parameters (the second
5267  //   of which shall be of type int), it defines the postfix
5268  //   increment operator ++ for objects of that type.
5269  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5270    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5271    bool ParamIsInt = false;
5272    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5273      ParamIsInt = BT->getKind() == BuiltinType::Int;
5274
5275    if (!ParamIsInt)
5276      return Diag(LastParam->getLocation(),
5277                  diag::err_operator_overload_post_incdec_must_be_int)
5278        << LastParam->getType() << (Op == OO_MinusMinus);
5279  }
5280
5281  // Notify the class if it got an assignment operator.
5282  if (Op == OO_Equal) {
5283    // Would have returned earlier otherwise.
5284    assert(isa<CXXMethodDecl>(FnDecl) &&
5285      "Overloaded = not member, but not filtered.");
5286    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5287    Method->getParent()->addedAssignmentOperator(Context, Method);
5288  }
5289
5290  return false;
5291}
5292
5293/// CheckLiteralOperatorDeclaration - Check whether the declaration
5294/// of this literal operator function is well-formed. If so, returns
5295/// false; otherwise, emits appropriate diagnostics and returns true.
5296bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5297  DeclContext *DC = FnDecl->getDeclContext();
5298  Decl::Kind Kind = DC->getDeclKind();
5299  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5300      Kind != Decl::LinkageSpec) {
5301    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5302      << FnDecl->getDeclName();
5303    return true;
5304  }
5305
5306  bool Valid = false;
5307
5308  // template <char...> type operator "" name() is the only valid template
5309  // signature, and the only valid signature with no parameters.
5310  if (FnDecl->param_size() == 0) {
5311    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5312      // Must have only one template parameter
5313      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5314      if (Params->size() == 1) {
5315        NonTypeTemplateParmDecl *PmDecl =
5316          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5317
5318        // The template parameter must be a char parameter pack.
5319        // FIXME: This test will always fail because non-type parameter packs
5320        //   have not been implemented.
5321        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5322            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5323          Valid = true;
5324      }
5325    }
5326  } else {
5327    // Check the first parameter
5328    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5329
5330    QualType T = (*Param)->getType();
5331
5332    // unsigned long long int, long double, and any character type are allowed
5333    // as the only parameters.
5334    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5335        Context.hasSameType(T, Context.LongDoubleTy) ||
5336        Context.hasSameType(T, Context.CharTy) ||
5337        Context.hasSameType(T, Context.WCharTy) ||
5338        Context.hasSameType(T, Context.Char16Ty) ||
5339        Context.hasSameType(T, Context.Char32Ty)) {
5340      if (++Param == FnDecl->param_end())
5341        Valid = true;
5342      goto FinishedParams;
5343    }
5344
5345    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5346    const PointerType *PT = T->getAs<PointerType>();
5347    if (!PT)
5348      goto FinishedParams;
5349    T = PT->getPointeeType();
5350    if (!T.isConstQualified())
5351      goto FinishedParams;
5352    T = T.getUnqualifiedType();
5353
5354    // Move on to the second parameter;
5355    ++Param;
5356
5357    // If there is no second parameter, the first must be a const char *
5358    if (Param == FnDecl->param_end()) {
5359      if (Context.hasSameType(T, Context.CharTy))
5360        Valid = true;
5361      goto FinishedParams;
5362    }
5363
5364    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5365    // are allowed as the first parameter to a two-parameter function
5366    if (!(Context.hasSameType(T, Context.CharTy) ||
5367          Context.hasSameType(T, Context.WCharTy) ||
5368          Context.hasSameType(T, Context.Char16Ty) ||
5369          Context.hasSameType(T, Context.Char32Ty)))
5370      goto FinishedParams;
5371
5372    // The second and final parameter must be an std::size_t
5373    T = (*Param)->getType().getUnqualifiedType();
5374    if (Context.hasSameType(T, Context.getSizeType()) &&
5375        ++Param == FnDecl->param_end())
5376      Valid = true;
5377  }
5378
5379  // FIXME: This diagnostic is absolutely terrible.
5380FinishedParams:
5381  if (!Valid) {
5382    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5383      << FnDecl->getDeclName();
5384    return true;
5385  }
5386
5387  return false;
5388}
5389
5390/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5391/// linkage specification, including the language and (if present)
5392/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5393/// the location of the language string literal, which is provided
5394/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5395/// the '{' brace. Otherwise, this linkage specification does not
5396/// have any braces.
5397Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5398                                                     SourceLocation ExternLoc,
5399                                                     SourceLocation LangLoc,
5400                                                     llvm::StringRef Lang,
5401                                                     SourceLocation LBraceLoc) {
5402  LinkageSpecDecl::LanguageIDs Language;
5403  if (Lang == "\"C\"")
5404    Language = LinkageSpecDecl::lang_c;
5405  else if (Lang == "\"C++\"")
5406    Language = LinkageSpecDecl::lang_cxx;
5407  else {
5408    Diag(LangLoc, diag::err_bad_language);
5409    return DeclPtrTy();
5410  }
5411
5412  // FIXME: Add all the various semantics of linkage specifications
5413
5414  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5415                                               LangLoc, Language,
5416                                               LBraceLoc.isValid());
5417  CurContext->addDecl(D);
5418  PushDeclContext(S, D);
5419  return DeclPtrTy::make(D);
5420}
5421
5422/// ActOnFinishLinkageSpecification - Completely the definition of
5423/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5424/// valid, it's the position of the closing '}' brace in a linkage
5425/// specification that uses braces.
5426Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5427                                                      DeclPtrTy LinkageSpec,
5428                                                      SourceLocation RBraceLoc) {
5429  if (LinkageSpec)
5430    PopDeclContext();
5431  return LinkageSpec;
5432}
5433
5434/// \brief Perform semantic analysis for the variable declaration that
5435/// occurs within a C++ catch clause, returning the newly-created
5436/// variable.
5437VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5438                                         TypeSourceInfo *TInfo,
5439                                         IdentifierInfo *Name,
5440                                         SourceLocation Loc,
5441                                         SourceRange Range) {
5442  bool Invalid = false;
5443
5444  // Arrays and functions decay.
5445  if (ExDeclType->isArrayType())
5446    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5447  else if (ExDeclType->isFunctionType())
5448    ExDeclType = Context.getPointerType(ExDeclType);
5449
5450  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5451  // The exception-declaration shall not denote a pointer or reference to an
5452  // incomplete type, other than [cv] void*.
5453  // N2844 forbids rvalue references.
5454  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5455    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5456    Invalid = true;
5457  }
5458
5459  // GCC allows catching pointers and references to incomplete types
5460  // as an extension; so do we, but we warn by default.
5461
5462  QualType BaseType = ExDeclType;
5463  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5464  unsigned DK = diag::err_catch_incomplete;
5465  bool IncompleteCatchIsInvalid = true;
5466  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5467    BaseType = Ptr->getPointeeType();
5468    Mode = 1;
5469    DK = diag::ext_catch_incomplete_ptr;
5470    IncompleteCatchIsInvalid = false;
5471  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5472    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5473    BaseType = Ref->getPointeeType();
5474    Mode = 2;
5475    DK = diag::ext_catch_incomplete_ref;
5476    IncompleteCatchIsInvalid = false;
5477  }
5478  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5479      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5480      IncompleteCatchIsInvalid)
5481    Invalid = true;
5482
5483  if (!Invalid && !ExDeclType->isDependentType() &&
5484      RequireNonAbstractType(Loc, ExDeclType,
5485                             diag::err_abstract_type_in_decl,
5486                             AbstractVariableType))
5487    Invalid = true;
5488
5489  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5490                                    Name, ExDeclType, TInfo, VarDecl::None,
5491                                    VarDecl::None);
5492  ExDecl->setExceptionVariable(true);
5493
5494  if (!Invalid) {
5495    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5496      // C++ [except.handle]p16:
5497      //   The object declared in an exception-declaration or, if the
5498      //   exception-declaration does not specify a name, a temporary (12.2) is
5499      //   copy-initialized (8.5) from the exception object. [...]
5500      //   The object is destroyed when the handler exits, after the destruction
5501      //   of any automatic objects initialized within the handler.
5502      //
5503      // We just pretend to initialize the object with itself, then make sure
5504      // it can be destroyed later.
5505      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5506      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5507                                            Loc, ExDeclType, 0);
5508      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5509                                                               SourceLocation());
5510      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5511      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5512                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5513      if (Result.isInvalid())
5514        Invalid = true;
5515      else
5516        FinalizeVarWithDestructor(ExDecl, RecordTy);
5517    }
5518  }
5519
5520  if (Invalid)
5521    ExDecl->setInvalidDecl();
5522
5523  return ExDecl;
5524}
5525
5526/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5527/// handler.
5528Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5529  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5530  QualType ExDeclType = TInfo->getType();
5531
5532  bool Invalid = D.isInvalidType();
5533  IdentifierInfo *II = D.getIdentifier();
5534  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5535                                             LookupOrdinaryName,
5536                                             ForRedeclaration)) {
5537    // The scope should be freshly made just for us. There is just no way
5538    // it contains any previous declaration.
5539    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5540    if (PrevDecl->isTemplateParameter()) {
5541      // Maybe we will complain about the shadowed template parameter.
5542      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5543    }
5544  }
5545
5546  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5547    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5548      << D.getCXXScopeSpec().getRange();
5549    Invalid = true;
5550  }
5551
5552  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5553                                              D.getIdentifier(),
5554                                              D.getIdentifierLoc(),
5555                                            D.getDeclSpec().getSourceRange());
5556
5557  if (Invalid)
5558    ExDecl->setInvalidDecl();
5559
5560  // Add the exception declaration into this scope.
5561  if (II)
5562    PushOnScopeChains(ExDecl, S);
5563  else
5564    CurContext->addDecl(ExDecl);
5565
5566  ProcessDeclAttributes(S, ExDecl, D);
5567  return DeclPtrTy::make(ExDecl);
5568}
5569
5570Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5571                                                   ExprArg assertexpr,
5572                                                   ExprArg assertmessageexpr) {
5573  Expr *AssertExpr = (Expr *)assertexpr.get();
5574  StringLiteral *AssertMessage =
5575    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5576
5577  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5578    llvm::APSInt Value(32);
5579    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5580      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5581        AssertExpr->getSourceRange();
5582      return DeclPtrTy();
5583    }
5584
5585    if (Value == 0) {
5586      Diag(AssertLoc, diag::err_static_assert_failed)
5587        << AssertMessage->getString() << AssertExpr->getSourceRange();
5588    }
5589  }
5590
5591  assertexpr.release();
5592  assertmessageexpr.release();
5593  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5594                                        AssertExpr, AssertMessage);
5595
5596  CurContext->addDecl(Decl);
5597  return DeclPtrTy::make(Decl);
5598}
5599
5600/// \brief Perform semantic analysis of the given friend type declaration.
5601///
5602/// \returns A friend declaration that.
5603FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5604                                      TypeSourceInfo *TSInfo) {
5605  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5606
5607  QualType T = TSInfo->getType();
5608  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5609
5610  if (!getLangOptions().CPlusPlus0x) {
5611    // C++03 [class.friend]p2:
5612    //   An elaborated-type-specifier shall be used in a friend declaration
5613    //   for a class.*
5614    //
5615    //   * The class-key of the elaborated-type-specifier is required.
5616    if (!ActiveTemplateInstantiations.empty()) {
5617      // Do not complain about the form of friend template types during
5618      // template instantiation; we will already have complained when the
5619      // template was declared.
5620    } else if (!T->isElaboratedTypeSpecifier()) {
5621      // If we evaluated the type to a record type, suggest putting
5622      // a tag in front.
5623      if (const RecordType *RT = T->getAs<RecordType>()) {
5624        RecordDecl *RD = RT->getDecl();
5625
5626        std::string InsertionText = std::string(" ") + RD->getKindName();
5627
5628        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5629          << (unsigned) RD->getTagKind()
5630          << T
5631          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5632                                        InsertionText);
5633      } else {
5634        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5635          << T
5636          << SourceRange(FriendLoc, TypeRange.getEnd());
5637      }
5638    } else if (T->getAs<EnumType>()) {
5639      Diag(FriendLoc, diag::ext_enum_friend)
5640        << T
5641        << SourceRange(FriendLoc, TypeRange.getEnd());
5642    }
5643  }
5644
5645  // C++0x [class.friend]p3:
5646  //   If the type specifier in a friend declaration designates a (possibly
5647  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5648  //   the friend declaration is ignored.
5649
5650  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5651  // in [class.friend]p3 that we do not implement.
5652
5653  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5654}
5655
5656/// Handle a friend type declaration.  This works in tandem with
5657/// ActOnTag.
5658///
5659/// Notes on friend class templates:
5660///
5661/// We generally treat friend class declarations as if they were
5662/// declaring a class.  So, for example, the elaborated type specifier
5663/// in a friend declaration is required to obey the restrictions of a
5664/// class-head (i.e. no typedefs in the scope chain), template
5665/// parameters are required to match up with simple template-ids, &c.
5666/// However, unlike when declaring a template specialization, it's
5667/// okay to refer to a template specialization without an empty
5668/// template parameter declaration, e.g.
5669///   friend class A<T>::B<unsigned>;
5670/// We permit this as a special case; if there are any template
5671/// parameters present at all, require proper matching, i.e.
5672///   template <> template <class T> friend class A<int>::B;
5673Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5674                                          MultiTemplateParamsArg TempParams) {
5675  SourceLocation Loc = DS.getSourceRange().getBegin();
5676
5677  assert(DS.isFriendSpecified());
5678  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5679
5680  // Try to convert the decl specifier to a type.  This works for
5681  // friend templates because ActOnTag never produces a ClassTemplateDecl
5682  // for a TUK_Friend.
5683  Declarator TheDeclarator(DS, Declarator::MemberContext);
5684  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
5685  QualType T = TSI->getType();
5686  if (TheDeclarator.isInvalidType())
5687    return DeclPtrTy();
5688
5689  // This is definitely an error in C++98.  It's probably meant to
5690  // be forbidden in C++0x, too, but the specification is just
5691  // poorly written.
5692  //
5693  // The problem is with declarations like the following:
5694  //   template <T> friend A<T>::foo;
5695  // where deciding whether a class C is a friend or not now hinges
5696  // on whether there exists an instantiation of A that causes
5697  // 'foo' to equal C.  There are restrictions on class-heads
5698  // (which we declare (by fiat) elaborated friend declarations to
5699  // be) that makes this tractable.
5700  //
5701  // FIXME: handle "template <> friend class A<T>;", which
5702  // is possibly well-formed?  Who even knows?
5703  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5704    Diag(Loc, diag::err_tagless_friend_type_template)
5705      << DS.getSourceRange();
5706    return DeclPtrTy();
5707  }
5708
5709  // C++98 [class.friend]p1: A friend of a class is a function
5710  //   or class that is not a member of the class . . .
5711  // This is fixed in DR77, which just barely didn't make the C++03
5712  // deadline.  It's also a very silly restriction that seriously
5713  // affects inner classes and which nobody else seems to implement;
5714  // thus we never diagnose it, not even in -pedantic.
5715  //
5716  // But note that we could warn about it: it's always useless to
5717  // friend one of your own members (it's not, however, worthless to
5718  // friend a member of an arbitrary specialization of your template).
5719
5720  Decl *D;
5721  if (unsigned NumTempParamLists = TempParams.size())
5722    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5723                                   NumTempParamLists,
5724                                 (TemplateParameterList**) TempParams.release(),
5725                                   TSI,
5726                                   DS.getFriendSpecLoc());
5727  else
5728    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5729
5730  if (!D)
5731    return DeclPtrTy();
5732
5733  D->setAccess(AS_public);
5734  CurContext->addDecl(D);
5735
5736  return DeclPtrTy::make(D);
5737}
5738
5739Sema::DeclPtrTy
5740Sema::ActOnFriendFunctionDecl(Scope *S,
5741                              Declarator &D,
5742                              bool IsDefinition,
5743                              MultiTemplateParamsArg TemplateParams) {
5744  const DeclSpec &DS = D.getDeclSpec();
5745
5746  assert(DS.isFriendSpecified());
5747  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5748
5749  SourceLocation Loc = D.getIdentifierLoc();
5750  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5751  QualType T = TInfo->getType();
5752
5753  // C++ [class.friend]p1
5754  //   A friend of a class is a function or class....
5755  // Note that this sees through typedefs, which is intended.
5756  // It *doesn't* see through dependent types, which is correct
5757  // according to [temp.arg.type]p3:
5758  //   If a declaration acquires a function type through a
5759  //   type dependent on a template-parameter and this causes
5760  //   a declaration that does not use the syntactic form of a
5761  //   function declarator to have a function type, the program
5762  //   is ill-formed.
5763  if (!T->isFunctionType()) {
5764    Diag(Loc, diag::err_unexpected_friend);
5765
5766    // It might be worthwhile to try to recover by creating an
5767    // appropriate declaration.
5768    return DeclPtrTy();
5769  }
5770
5771  // C++ [namespace.memdef]p3
5772  //  - If a friend declaration in a non-local class first declares a
5773  //    class or function, the friend class or function is a member
5774  //    of the innermost enclosing namespace.
5775  //  - The name of the friend is not found by simple name lookup
5776  //    until a matching declaration is provided in that namespace
5777  //    scope (either before or after the class declaration granting
5778  //    friendship).
5779  //  - If a friend function is called, its name may be found by the
5780  //    name lookup that considers functions from namespaces and
5781  //    classes associated with the types of the function arguments.
5782  //  - When looking for a prior declaration of a class or a function
5783  //    declared as a friend, scopes outside the innermost enclosing
5784  //    namespace scope are not considered.
5785
5786  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5787  DeclarationName Name = GetNameForDeclarator(D);
5788  assert(Name);
5789
5790  // The context we found the declaration in, or in which we should
5791  // create the declaration.
5792  DeclContext *DC;
5793
5794  // FIXME: handle local classes
5795
5796  // Recover from invalid scope qualifiers as if they just weren't there.
5797  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5798                        ForRedeclaration);
5799  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5800    DC = computeDeclContext(ScopeQual);
5801
5802    // FIXME: handle dependent contexts
5803    if (!DC) return DeclPtrTy();
5804    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5805
5806    LookupQualifiedName(Previous, DC);
5807
5808    // Ignore things found implicitly in the wrong scope.
5809    // TODO: better diagnostics for this case.  Suggesting the right
5810    // qualified scope would be nice...
5811    LookupResult::Filter F = Previous.makeFilter();
5812    while (F.hasNext()) {
5813      NamedDecl *D = F.next();
5814      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
5815        F.erase();
5816    }
5817    F.done();
5818
5819    if (Previous.empty()) {
5820      D.setInvalidType();
5821      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5822      return DeclPtrTy();
5823    }
5824
5825    // C++ [class.friend]p1: A friend of a class is a function or
5826    //   class that is not a member of the class . . .
5827    if (DC->Equals(CurContext))
5828      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5829
5830  // Otherwise walk out to the nearest namespace scope looking for matches.
5831  } else {
5832    // TODO: handle local class contexts.
5833
5834    DC = CurContext;
5835    while (true) {
5836      // Skip class contexts.  If someone can cite chapter and verse
5837      // for this behavior, that would be nice --- it's what GCC and
5838      // EDG do, and it seems like a reasonable intent, but the spec
5839      // really only says that checks for unqualified existing
5840      // declarations should stop at the nearest enclosing namespace,
5841      // not that they should only consider the nearest enclosing
5842      // namespace.
5843      while (DC->isRecord())
5844        DC = DC->getParent();
5845
5846      LookupQualifiedName(Previous, DC);
5847
5848      // TODO: decide what we think about using declarations.
5849      if (!Previous.empty())
5850        break;
5851
5852      if (DC->isFileContext()) break;
5853      DC = DC->getParent();
5854    }
5855
5856    // C++ [class.friend]p1: A friend of a class is a function or
5857    //   class that is not a member of the class . . .
5858    // C++0x changes this for both friend types and functions.
5859    // Most C++ 98 compilers do seem to give an error here, so
5860    // we do, too.
5861    if (!Previous.empty() && DC->Equals(CurContext)
5862        && !getLangOptions().CPlusPlus0x)
5863      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5864  }
5865
5866  if (DC->isFileContext()) {
5867    // This implies that it has to be an operator or function.
5868    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5869        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5870        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5871      Diag(Loc, diag::err_introducing_special_friend) <<
5872        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5873         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5874      return DeclPtrTy();
5875    }
5876  }
5877
5878  bool Redeclaration = false;
5879  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5880                                          move(TemplateParams),
5881                                          IsDefinition,
5882                                          Redeclaration);
5883  if (!ND) return DeclPtrTy();
5884
5885  assert(ND->getDeclContext() == DC);
5886  assert(ND->getLexicalDeclContext() == CurContext);
5887
5888  // Add the function declaration to the appropriate lookup tables,
5889  // adjusting the redeclarations list as necessary.  We don't
5890  // want to do this yet if the friending class is dependent.
5891  //
5892  // Also update the scope-based lookup if the target context's
5893  // lookup context is in lexical scope.
5894  if (!CurContext->isDependentContext()) {
5895    DC = DC->getLookupContext();
5896    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5897    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5898      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5899  }
5900
5901  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5902                                       D.getIdentifierLoc(), ND,
5903                                       DS.getFriendSpecLoc());
5904  FrD->setAccess(AS_public);
5905  CurContext->addDecl(FrD);
5906
5907  return DeclPtrTy::make(ND);
5908}
5909
5910void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5911  AdjustDeclIfTemplate(dcl);
5912
5913  Decl *Dcl = dcl.getAs<Decl>();
5914  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5915  if (!Fn) {
5916    Diag(DelLoc, diag::err_deleted_non_function);
5917    return;
5918  }
5919  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5920    Diag(DelLoc, diag::err_deleted_decl_not_first);
5921    Diag(Prev->getLocation(), diag::note_previous_declaration);
5922    // If the declaration wasn't the first, we delete the function anyway for
5923    // recovery.
5924  }
5925  Fn->setDeleted();
5926}
5927
5928static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5929  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5930       ++CI) {
5931    Stmt *SubStmt = *CI;
5932    if (!SubStmt)
5933      continue;
5934    if (isa<ReturnStmt>(SubStmt))
5935      Self.Diag(SubStmt->getSourceRange().getBegin(),
5936           diag::err_return_in_constructor_handler);
5937    if (!isa<Expr>(SubStmt))
5938      SearchForReturnInStmt(Self, SubStmt);
5939  }
5940}
5941
5942void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5943  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5944    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5945    SearchForReturnInStmt(*this, Handler);
5946  }
5947}
5948
5949bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5950                                             const CXXMethodDecl *Old) {
5951  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5952  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5953
5954  if (Context.hasSameType(NewTy, OldTy) ||
5955      NewTy->isDependentType() || OldTy->isDependentType())
5956    return false;
5957
5958  // Check if the return types are covariant
5959  QualType NewClassTy, OldClassTy;
5960
5961  /// Both types must be pointers or references to classes.
5962  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5963    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5964      NewClassTy = NewPT->getPointeeType();
5965      OldClassTy = OldPT->getPointeeType();
5966    }
5967  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5968    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5969      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5970        NewClassTy = NewRT->getPointeeType();
5971        OldClassTy = OldRT->getPointeeType();
5972      }
5973    }
5974  }
5975
5976  // The return types aren't either both pointers or references to a class type.
5977  if (NewClassTy.isNull()) {
5978    Diag(New->getLocation(),
5979         diag::err_different_return_type_for_overriding_virtual_function)
5980      << New->getDeclName() << NewTy << OldTy;
5981    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5982
5983    return true;
5984  }
5985
5986  // C++ [class.virtual]p6:
5987  //   If the return type of D::f differs from the return type of B::f, the
5988  //   class type in the return type of D::f shall be complete at the point of
5989  //   declaration of D::f or shall be the class type D.
5990  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5991    if (!RT->isBeingDefined() &&
5992        RequireCompleteType(New->getLocation(), NewClassTy,
5993                            PDiag(diag::err_covariant_return_incomplete)
5994                              << New->getDeclName()))
5995    return true;
5996  }
5997
5998  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5999    // Check if the new class derives from the old class.
6000    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6001      Diag(New->getLocation(),
6002           diag::err_covariant_return_not_derived)
6003      << New->getDeclName() << NewTy << OldTy;
6004      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6005      return true;
6006    }
6007
6008    // Check if we the conversion from derived to base is valid.
6009    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6010                    diag::err_covariant_return_inaccessible_base,
6011                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6012                    // FIXME: Should this point to the return type?
6013                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6014      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6015      return true;
6016    }
6017  }
6018
6019  // The qualifiers of the return types must be the same.
6020  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6021    Diag(New->getLocation(),
6022         diag::err_covariant_return_type_different_qualifications)
6023    << New->getDeclName() << NewTy << OldTy;
6024    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6025    return true;
6026  };
6027
6028
6029  // The new class type must have the same or less qualifiers as the old type.
6030  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6031    Diag(New->getLocation(),
6032         diag::err_covariant_return_type_class_type_more_qualified)
6033    << New->getDeclName() << NewTy << OldTy;
6034    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6035    return true;
6036  };
6037
6038  return false;
6039}
6040
6041bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6042                                             const CXXMethodDecl *Old)
6043{
6044  if (Old->hasAttr<FinalAttr>()) {
6045    Diag(New->getLocation(), diag::err_final_function_overridden)
6046      << New->getDeclName();
6047    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6048    return true;
6049  }
6050
6051  return false;
6052}
6053
6054/// \brief Mark the given method pure.
6055///
6056/// \param Method the method to be marked pure.
6057///
6058/// \param InitRange the source range that covers the "0" initializer.
6059bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6060  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6061    Method->setPure();
6062
6063    // A class is abstract if at least one function is pure virtual.
6064    Method->getParent()->setAbstract(true);
6065    return false;
6066  }
6067
6068  if (!Method->isInvalidDecl())
6069    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6070      << Method->getDeclName() << InitRange;
6071  return true;
6072}
6073
6074/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6075/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6076/// is a fresh scope pushed for just this purpose.
6077///
6078/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6079/// static data member of class X, names should be looked up in the scope of
6080/// class X.
6081void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6082  // If there is no declaration, there was an error parsing it.
6083  Decl *D = Dcl.getAs<Decl>();
6084  if (D == 0) return;
6085
6086  // We should only get called for declarations with scope specifiers, like:
6087  //   int foo::bar;
6088  assert(D->isOutOfLine());
6089  EnterDeclaratorContext(S, D->getDeclContext());
6090}
6091
6092/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6093/// initializer for the out-of-line declaration 'Dcl'.
6094void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6095  // If there is no declaration, there was an error parsing it.
6096  Decl *D = Dcl.getAs<Decl>();
6097  if (D == 0) return;
6098
6099  assert(D->isOutOfLine());
6100  ExitDeclaratorContext(S);
6101}
6102
6103/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6104/// C++ if/switch/while/for statement.
6105/// e.g: "if (int x = f()) {...}"
6106Action::DeclResult
6107Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6108  // C++ 6.4p2:
6109  // The declarator shall not specify a function or an array.
6110  // The type-specifier-seq shall not contain typedef and shall not declare a
6111  // new class or enumeration.
6112  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6113         "Parser allowed 'typedef' as storage class of condition decl.");
6114
6115  TagDecl *OwnedTag = 0;
6116  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6117  QualType Ty = TInfo->getType();
6118
6119  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6120                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6121                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6122    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6123      << D.getSourceRange();
6124    return DeclResult();
6125  } else if (OwnedTag && OwnedTag->isDefinition()) {
6126    // The type-specifier-seq shall not declare a new class or enumeration.
6127    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6128  }
6129
6130  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6131  if (!Dcl)
6132    return DeclResult();
6133
6134  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6135  VD->setDeclaredInCondition(true);
6136  return Dcl;
6137}
6138
6139void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6140                          bool DefinitionRequired) {
6141  // Ignore any vtable uses in unevaluated operands or for classes that do
6142  // not have a vtable.
6143  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6144      CurContext->isDependentContext() ||
6145      ExprEvalContexts.back().Context == Unevaluated)
6146    return;
6147
6148  // Try to insert this class into the map.
6149  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6150  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6151    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6152  if (!Pos.second) {
6153    // If we already had an entry, check to see if we are promoting this vtable
6154    // to required a definition. If so, we need to reappend to the VTableUses
6155    // list, since we may have already processed the first entry.
6156    if (DefinitionRequired && !Pos.first->second) {
6157      Pos.first->second = true;
6158    } else {
6159      // Otherwise, we can early exit.
6160      return;
6161    }
6162  }
6163
6164  // Local classes need to have their virtual members marked
6165  // immediately. For all other classes, we mark their virtual members
6166  // at the end of the translation unit.
6167  if (Class->isLocalClass())
6168    MarkVirtualMembersReferenced(Loc, Class);
6169  else
6170    VTableUses.push_back(std::make_pair(Class, Loc));
6171}
6172
6173bool Sema::DefineUsedVTables() {
6174  // If any dynamic classes have their key function defined within
6175  // this translation unit, then those vtables are considered "used" and must
6176  // be emitted.
6177  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6178    if (const CXXMethodDecl *KeyFunction
6179                             = Context.getKeyFunction(DynamicClasses[I])) {
6180      const FunctionDecl *Definition = 0;
6181      if (KeyFunction->getBody(Definition))
6182        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6183    }
6184  }
6185
6186  if (VTableUses.empty())
6187    return false;
6188
6189  // Note: The VTableUses vector could grow as a result of marking
6190  // the members of a class as "used", so we check the size each
6191  // time through the loop and prefer indices (with are stable) to
6192  // iterators (which are not).
6193  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6194    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6195    if (!Class)
6196      continue;
6197
6198    SourceLocation Loc = VTableUses[I].second;
6199
6200    // If this class has a key function, but that key function is
6201    // defined in another translation unit, we don't need to emit the
6202    // vtable even though we're using it.
6203    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6204    if (KeyFunction && !KeyFunction->getBody()) {
6205      switch (KeyFunction->getTemplateSpecializationKind()) {
6206      case TSK_Undeclared:
6207      case TSK_ExplicitSpecialization:
6208      case TSK_ExplicitInstantiationDeclaration:
6209        // The key function is in another translation unit.
6210        continue;
6211
6212      case TSK_ExplicitInstantiationDefinition:
6213      case TSK_ImplicitInstantiation:
6214        // We will be instantiating the key function.
6215        break;
6216      }
6217    } else if (!KeyFunction) {
6218      // If we have a class with no key function that is the subject
6219      // of an explicit instantiation declaration, suppress the
6220      // vtable; it will live with the explicit instantiation
6221      // definition.
6222      bool IsExplicitInstantiationDeclaration
6223        = Class->getTemplateSpecializationKind()
6224                                      == TSK_ExplicitInstantiationDeclaration;
6225      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6226                                 REnd = Class->redecls_end();
6227           R != REnd; ++R) {
6228        TemplateSpecializationKind TSK
6229          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6230        if (TSK == TSK_ExplicitInstantiationDeclaration)
6231          IsExplicitInstantiationDeclaration = true;
6232        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6233          IsExplicitInstantiationDeclaration = false;
6234          break;
6235        }
6236      }
6237
6238      if (IsExplicitInstantiationDeclaration)
6239        continue;
6240    }
6241
6242    // Mark all of the virtual members of this class as referenced, so
6243    // that we can build a vtable. Then, tell the AST consumer that a
6244    // vtable for this class is required.
6245    MarkVirtualMembersReferenced(Loc, Class);
6246    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6247    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6248
6249    // Optionally warn if we're emitting a weak vtable.
6250    if (Class->getLinkage() == ExternalLinkage &&
6251        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6252      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6253        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6254    }
6255  }
6256  VTableUses.clear();
6257
6258  return true;
6259}
6260
6261void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6262                                        const CXXRecordDecl *RD) {
6263  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6264       e = RD->method_end(); i != e; ++i) {
6265    CXXMethodDecl *MD = *i;
6266
6267    // C++ [basic.def.odr]p2:
6268    //   [...] A virtual member function is used if it is not pure. [...]
6269    if (MD->isVirtual() && !MD->isPure())
6270      MarkDeclarationReferenced(Loc, MD);
6271  }
6272
6273  // Only classes that have virtual bases need a VTT.
6274  if (RD->getNumVBases() == 0)
6275    return;
6276
6277  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6278           e = RD->bases_end(); i != e; ++i) {
6279    const CXXRecordDecl *Base =
6280        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6281    if (i->isVirtual())
6282      continue;
6283    if (Base->getNumVBases() == 0)
6284      continue;
6285    MarkVirtualMembersReferenced(Loc, Base);
6286  }
6287}
6288
6289/// SetIvarInitializers - This routine builds initialization ASTs for the
6290/// Objective-C implementation whose ivars need be initialized.
6291void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6292  if (!getLangOptions().CPlusPlus)
6293    return;
6294  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6295    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6296    CollectIvarsToConstructOrDestruct(OID, ivars);
6297    if (ivars.empty())
6298      return;
6299    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6300    for (unsigned i = 0; i < ivars.size(); i++) {
6301      FieldDecl *Field = ivars[i];
6302      if (Field->isInvalidDecl())
6303        continue;
6304
6305      CXXBaseOrMemberInitializer *Member;
6306      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6307      InitializationKind InitKind =
6308        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6309
6310      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6311      Sema::OwningExprResult MemberInit =
6312        InitSeq.Perform(*this, InitEntity, InitKind,
6313                        Sema::MultiExprArg(*this, 0, 0));
6314      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6315      // Note, MemberInit could actually come back empty if no initialization
6316      // is required (e.g., because it would call a trivial default constructor)
6317      if (!MemberInit.get() || MemberInit.isInvalid())
6318        continue;
6319
6320      Member =
6321        new (Context) CXXBaseOrMemberInitializer(Context,
6322                                                 Field, SourceLocation(),
6323                                                 SourceLocation(),
6324                                                 MemberInit.takeAs<Expr>(),
6325                                                 SourceLocation());
6326      AllToInit.push_back(Member);
6327
6328      // Be sure that the destructor is accessible and is marked as referenced.
6329      if (const RecordType *RecordTy
6330                  = Context.getBaseElementType(Field->getType())
6331                                                        ->getAs<RecordType>()) {
6332                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6333        if (CXXDestructorDecl *Destructor
6334              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6335          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6336          CheckDestructorAccess(Field->getLocation(), Destructor,
6337                            PDiag(diag::err_access_dtor_ivar)
6338                              << Context.getBaseElementType(Field->getType()));
6339        }
6340      }
6341    }
6342    ObjCImplementation->setIvarInitializers(Context,
6343                                            AllToInit.data(), AllToInit.size());
6344  }
6345}
6346