SemaDeclCXX.cpp revision cb88a1f968c3d4eb451dafb421a8d9578edcbf1a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_iterator I = Node->child_begin(),
67         E = Node->child_end(); I != E; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// CheckCXXDefaultArguments - Verify that the default arguments for a
387/// function declaration are well-formed according to C++
388/// [dcl.fct.default].
389void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
390  unsigned NumParams = FD->getNumParams();
391  unsigned p;
392
393  // Find first parameter with a default argument
394  for (p = 0; p < NumParams; ++p) {
395    ParmVarDecl *Param = FD->getParamDecl(p);
396    if (Param->hasDefaultArg())
397      break;
398  }
399
400  // C++ [dcl.fct.default]p4:
401  //   In a given function declaration, all parameters
402  //   subsequent to a parameter with a default argument shall
403  //   have default arguments supplied in this or previous
404  //   declarations. A default argument shall not be redefined
405  //   by a later declaration (not even to the same value).
406  unsigned LastMissingDefaultArg = 0;
407  for (; p < NumParams; ++p) {
408    ParmVarDecl *Param = FD->getParamDecl(p);
409    if (!Param->hasDefaultArg()) {
410      if (Param->isInvalidDecl())
411        /* We already complained about this parameter. */;
412      else if (Param->getIdentifier())
413        Diag(Param->getLocation(),
414             diag::err_param_default_argument_missing_name)
415          << Param->getIdentifier();
416      else
417        Diag(Param->getLocation(),
418             diag::err_param_default_argument_missing);
419
420      LastMissingDefaultArg = p;
421    }
422  }
423
424  if (LastMissingDefaultArg > 0) {
425    // Some default arguments were missing. Clear out all of the
426    // default arguments up to (and including) the last missing
427    // default argument, so that we leave the function parameters
428    // in a semantically valid state.
429    for (p = 0; p <= LastMissingDefaultArg; ++p) {
430      ParmVarDecl *Param = FD->getParamDecl(p);
431      if (Param->hasDefaultArg()) {
432        Param->setDefaultArg(0);
433      }
434    }
435  }
436}
437
438/// isCurrentClassName - Determine whether the identifier II is the
439/// name of the class type currently being defined. In the case of
440/// nested classes, this will only return true if II is the name of
441/// the innermost class.
442bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
443                              const CXXScopeSpec *SS) {
444  assert(getLangOptions().CPlusPlus && "No class names in C!");
445
446  CXXRecordDecl *CurDecl;
447  if (SS && SS->isSet() && !SS->isInvalid()) {
448    DeclContext *DC = computeDeclContext(*SS, true);
449    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
450  } else
451    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
452
453  if (CurDecl && CurDecl->getIdentifier())
454    return &II == CurDecl->getIdentifier();
455  else
456    return false;
457}
458
459/// \brief Check the validity of a C++ base class specifier.
460///
461/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
462/// and returns NULL otherwise.
463CXXBaseSpecifier *
464Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
465                         SourceRange SpecifierRange,
466                         bool Virtual, AccessSpecifier Access,
467                         TypeSourceInfo *TInfo,
468                         SourceLocation EllipsisLoc) {
469  QualType BaseType = TInfo->getType();
470
471  // C++ [class.union]p1:
472  //   A union shall not have base classes.
473  if (Class->isUnion()) {
474    Diag(Class->getLocation(), diag::err_base_clause_on_union)
475      << SpecifierRange;
476    return 0;
477  }
478
479  if (EllipsisLoc.isValid() &&
480      !TInfo->getType()->containsUnexpandedParameterPack()) {
481    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
482      << TInfo->getTypeLoc().getSourceRange();
483    EllipsisLoc = SourceLocation();
484  }
485
486  if (BaseType->isDependentType())
487    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
488                                          Class->getTagKind() == TTK_Class,
489                                          Access, TInfo, EllipsisLoc);
490
491  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
492
493  // Base specifiers must be record types.
494  if (!BaseType->isRecordType()) {
495    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
496    return 0;
497  }
498
499  // C++ [class.union]p1:
500  //   A union shall not be used as a base class.
501  if (BaseType->isUnionType()) {
502    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
503    return 0;
504  }
505
506  // C++ [class.derived]p2:
507  //   The class-name in a base-specifier shall not be an incompletely
508  //   defined class.
509  if (RequireCompleteType(BaseLoc, BaseType,
510                          PDiag(diag::err_incomplete_base_class)
511                            << SpecifierRange)) {
512    Class->setInvalidDecl();
513    return 0;
514  }
515
516  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
517  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
518  assert(BaseDecl && "Record type has no declaration");
519  BaseDecl = BaseDecl->getDefinition();
520  assert(BaseDecl && "Base type is not incomplete, but has no definition");
521  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
522  assert(CXXBaseDecl && "Base type is not a C++ type");
523
524  // C++ [class.derived]p2:
525  //   If a class is marked with the class-virt-specifier final and it appears
526  //   as a base-type-specifier in a base-clause (10 class.derived), the program
527  //   is ill-formed.
528  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
529    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
530      << CXXBaseDecl->getDeclName();
531    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
532      << CXXBaseDecl->getDeclName();
533    return 0;
534  }
535
536  if (BaseDecl->isInvalidDecl())
537    Class->setInvalidDecl();
538
539  // Create the base specifier.
540  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
541                                        Class->getTagKind() == TTK_Class,
542                                        Access, TInfo, EllipsisLoc);
543}
544
545/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
546/// one entry in the base class list of a class specifier, for
547/// example:
548///    class foo : public bar, virtual private baz {
549/// 'public bar' and 'virtual private baz' are each base-specifiers.
550BaseResult
551Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
552                         bool Virtual, AccessSpecifier Access,
553                         ParsedType basetype, SourceLocation BaseLoc,
554                         SourceLocation EllipsisLoc) {
555  if (!classdecl)
556    return true;
557
558  AdjustDeclIfTemplate(classdecl);
559  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
560  if (!Class)
561    return true;
562
563  TypeSourceInfo *TInfo = 0;
564  GetTypeFromParser(basetype, &TInfo);
565
566  if (EllipsisLoc.isInvalid() &&
567      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
568                                      UPPC_BaseType))
569    return true;
570
571  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
572                                                      Virtual, Access, TInfo,
573                                                      EllipsisLoc))
574    return BaseSpec;
575
576  return true;
577}
578
579/// \brief Performs the actual work of attaching the given base class
580/// specifiers to a C++ class.
581bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
582                                unsigned NumBases) {
583 if (NumBases == 0)
584    return false;
585
586  // Used to keep track of which base types we have already seen, so
587  // that we can properly diagnose redundant direct base types. Note
588  // that the key is always the unqualified canonical type of the base
589  // class.
590  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
591
592  // Copy non-redundant base specifiers into permanent storage.
593  unsigned NumGoodBases = 0;
594  bool Invalid = false;
595  for (unsigned idx = 0; idx < NumBases; ++idx) {
596    QualType NewBaseType
597      = Context.getCanonicalType(Bases[idx]->getType());
598    NewBaseType = NewBaseType.getLocalUnqualifiedType();
599    if (!Class->hasObjectMember()) {
600      if (const RecordType *FDTTy =
601            NewBaseType.getTypePtr()->getAs<RecordType>())
602        if (FDTTy->getDecl()->hasObjectMember())
603          Class->setHasObjectMember(true);
604    }
605
606    if (KnownBaseTypes[NewBaseType]) {
607      // C++ [class.mi]p3:
608      //   A class shall not be specified as a direct base class of a
609      //   derived class more than once.
610      Diag(Bases[idx]->getSourceRange().getBegin(),
611           diag::err_duplicate_base_class)
612        << KnownBaseTypes[NewBaseType]->getType()
613        << Bases[idx]->getSourceRange();
614
615      // Delete the duplicate base class specifier; we're going to
616      // overwrite its pointer later.
617      Context.Deallocate(Bases[idx]);
618
619      Invalid = true;
620    } else {
621      // Okay, add this new base class.
622      KnownBaseTypes[NewBaseType] = Bases[idx];
623      Bases[NumGoodBases++] = Bases[idx];
624    }
625  }
626
627  // Attach the remaining base class specifiers to the derived class.
628  Class->setBases(Bases, NumGoodBases);
629
630  // Delete the remaining (good) base class specifiers, since their
631  // data has been copied into the CXXRecordDecl.
632  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
633    Context.Deallocate(Bases[idx]);
634
635  return Invalid;
636}
637
638/// ActOnBaseSpecifiers - Attach the given base specifiers to the
639/// class, after checking whether there are any duplicate base
640/// classes.
641void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
642                               unsigned NumBases) {
643  if (!ClassDecl || !Bases || !NumBases)
644    return;
645
646  AdjustDeclIfTemplate(ClassDecl);
647  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
648                       (CXXBaseSpecifier**)(Bases), NumBases);
649}
650
651static CXXRecordDecl *GetClassForType(QualType T) {
652  if (const RecordType *RT = T->getAs<RecordType>())
653    return cast<CXXRecordDecl>(RT->getDecl());
654  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
655    return ICT->getDecl();
656  else
657    return 0;
658}
659
660/// \brief Determine whether the type \p Derived is a C++ class that is
661/// derived from the type \p Base.
662bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
663  if (!getLangOptions().CPlusPlus)
664    return false;
665
666  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
667  if (!DerivedRD)
668    return false;
669
670  CXXRecordDecl *BaseRD = GetClassForType(Base);
671  if (!BaseRD)
672    return false;
673
674  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
675  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  return DerivedRD->isDerivedFrom(BaseRD, Paths);
693}
694
695void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
696                              CXXCastPath &BasePathArray) {
697  assert(BasePathArray.empty() && "Base path array must be empty!");
698  assert(Paths.isRecordingPaths() && "Must record paths!");
699
700  const CXXBasePath &Path = Paths.front();
701
702  // We first go backward and check if we have a virtual base.
703  // FIXME: It would be better if CXXBasePath had the base specifier for
704  // the nearest virtual base.
705  unsigned Start = 0;
706  for (unsigned I = Path.size(); I != 0; --I) {
707    if (Path[I - 1].Base->isVirtual()) {
708      Start = I - 1;
709      break;
710    }
711  }
712
713  // Now add all bases.
714  for (unsigned I = Start, E = Path.size(); I != E; ++I)
715    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
716}
717
718/// \brief Determine whether the given base path includes a virtual
719/// base class.
720bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
721  for (CXXCastPath::const_iterator B = BasePath.begin(),
722                                BEnd = BasePath.end();
723       B != BEnd; ++B)
724    if ((*B)->isVirtual())
725      return true;
726
727  return false;
728}
729
730/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
731/// conversion (where Derived and Base are class types) is
732/// well-formed, meaning that the conversion is unambiguous (and
733/// that all of the base classes are accessible). Returns true
734/// and emits a diagnostic if the code is ill-formed, returns false
735/// otherwise. Loc is the location where this routine should point to
736/// if there is an error, and Range is the source range to highlight
737/// if there is an error.
738bool
739Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
740                                   unsigned InaccessibleBaseID,
741                                   unsigned AmbigiousBaseConvID,
742                                   SourceLocation Loc, SourceRange Range,
743                                   DeclarationName Name,
744                                   CXXCastPath *BasePath) {
745  // First, determine whether the path from Derived to Base is
746  // ambiguous. This is slightly more expensive than checking whether
747  // the Derived to Base conversion exists, because here we need to
748  // explore multiple paths to determine if there is an ambiguity.
749  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
750                     /*DetectVirtual=*/false);
751  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
752  assert(DerivationOkay &&
753         "Can only be used with a derived-to-base conversion");
754  (void)DerivationOkay;
755
756  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
757    if (InaccessibleBaseID) {
758      // Check that the base class can be accessed.
759      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
760                                   InaccessibleBaseID)) {
761        case AR_inaccessible:
762          return true;
763        case AR_accessible:
764        case AR_dependent:
765        case AR_delayed:
766          break;
767      }
768    }
769
770    // Build a base path if necessary.
771    if (BasePath)
772      BuildBasePathArray(Paths, *BasePath);
773    return false;
774  }
775
776  // We know that the derived-to-base conversion is ambiguous, and
777  // we're going to produce a diagnostic. Perform the derived-to-base
778  // search just one more time to compute all of the possible paths so
779  // that we can print them out. This is more expensive than any of
780  // the previous derived-to-base checks we've done, but at this point
781  // performance isn't as much of an issue.
782  Paths.clear();
783  Paths.setRecordingPaths(true);
784  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
785  assert(StillOkay && "Can only be used with a derived-to-base conversion");
786  (void)StillOkay;
787
788  // Build up a textual representation of the ambiguous paths, e.g.,
789  // D -> B -> A, that will be used to illustrate the ambiguous
790  // conversions in the diagnostic. We only print one of the paths
791  // to each base class subobject.
792  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
793
794  Diag(Loc, AmbigiousBaseConvID)
795  << Derived << Base << PathDisplayStr << Range << Name;
796  return true;
797}
798
799bool
800Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
801                                   SourceLocation Loc, SourceRange Range,
802                                   CXXCastPath *BasePath,
803                                   bool IgnoreAccess) {
804  return CheckDerivedToBaseConversion(Derived, Base,
805                                      IgnoreAccess ? 0
806                                       : diag::err_upcast_to_inaccessible_base,
807                                      diag::err_ambiguous_derived_to_base_conv,
808                                      Loc, Range, DeclarationName(),
809                                      BasePath);
810}
811
812
813/// @brief Builds a string representing ambiguous paths from a
814/// specific derived class to different subobjects of the same base
815/// class.
816///
817/// This function builds a string that can be used in error messages
818/// to show the different paths that one can take through the
819/// inheritance hierarchy to go from the derived class to different
820/// subobjects of a base class. The result looks something like this:
821/// @code
822/// struct D -> struct B -> struct A
823/// struct D -> struct C -> struct A
824/// @endcode
825std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
826  std::string PathDisplayStr;
827  std::set<unsigned> DisplayedPaths;
828  for (CXXBasePaths::paths_iterator Path = Paths.begin();
829       Path != Paths.end(); ++Path) {
830    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
831      // We haven't displayed a path to this particular base
832      // class subobject yet.
833      PathDisplayStr += "\n    ";
834      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
835      for (CXXBasePath::const_iterator Element = Path->begin();
836           Element != Path->end(); ++Element)
837        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
838    }
839  }
840
841  return PathDisplayStr;
842}
843
844//===----------------------------------------------------------------------===//
845// C++ class member Handling
846//===----------------------------------------------------------------------===//
847
848/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
849Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
850                                 SourceLocation ASLoc,
851                                 SourceLocation ColonLoc) {
852  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
853  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
854                                                  ASLoc, ColonLoc);
855  CurContext->addHiddenDecl(ASDecl);
856  return ASDecl;
857}
858
859/// CheckOverrideControl - Check C++0x override control semantics.
860void Sema::CheckOverrideControl(const Decl *D) {
861  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
862  if (!MD || !MD->isVirtual())
863    return;
864
865  if (MD->isDependentContext())
866    return;
867
868  // C++0x [class.virtual]p3:
869  //   If a virtual function is marked with the virt-specifier override and does
870  //   not override a member function of a base class,
871  //   the program is ill-formed.
872  bool HasOverriddenMethods =
873    MD->begin_overridden_methods() != MD->end_overridden_methods();
874  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
875    Diag(MD->getLocation(),
876                 diag::err_function_marked_override_not_overriding)
877      << MD->getDeclName();
878    return;
879  }
880
881  // C++0x [class.derived]p8:
882  //   In a class definition marked with the class-virt-specifier explicit,
883  //   if a virtual member function that is neither implicitly-declared nor a
884  //   destructor overrides a member function of a base class and it is not
885  //   marked with the virt-specifier override, the program is ill-formed.
886  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
887      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
888    llvm::SmallVector<const CXXMethodDecl*, 4>
889      OverriddenMethods(MD->begin_overridden_methods(),
890                        MD->end_overridden_methods());
891
892    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
893      << MD->getDeclName()
894      << (unsigned)OverriddenMethods.size();
895
896    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
897      Diag(OverriddenMethods[I]->getLocation(),
898           diag::note_overridden_virtual_function);
899  }
900}
901
902/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
903/// function overrides a virtual member function marked 'final', according to
904/// C++0x [class.virtual]p3.
905bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
906                                                  const CXXMethodDecl *Old) {
907  if (!Old->hasAttr<FinalAttr>())
908    return false;
909
910  Diag(New->getLocation(), diag::err_final_function_overridden)
911    << New->getDeclName();
912  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
913  return true;
914}
915
916/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
917/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
918/// bitfield width if there is one and 'InitExpr' specifies the initializer if
919/// any.
920Decl *
921Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
922                               MultiTemplateParamsArg TemplateParameterLists,
923                               ExprTy *BW, const VirtSpecifiers &VS,
924                               ExprTy *InitExpr, bool IsDefinition,
925                               bool Deleted) {
926  const DeclSpec &DS = D.getDeclSpec();
927  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
928  DeclarationName Name = NameInfo.getName();
929  SourceLocation Loc = NameInfo.getLoc();
930
931  // For anonymous bitfields, the location should point to the type.
932  if (Loc.isInvalid())
933    Loc = D.getSourceRange().getBegin();
934
935  Expr *BitWidth = static_cast<Expr*>(BW);
936  Expr *Init = static_cast<Expr*>(InitExpr);
937
938  assert(isa<CXXRecordDecl>(CurContext));
939  assert(!DS.isFriendSpecified());
940
941  bool isFunc = false;
942  if (D.isFunctionDeclarator())
943    isFunc = true;
944  else if (D.getNumTypeObjects() == 0 &&
945           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
946    QualType TDType = GetTypeFromParser(DS.getRepAsType());
947    isFunc = TDType->isFunctionType();
948  }
949
950  // C++ 9.2p6: A member shall not be declared to have automatic storage
951  // duration (auto, register) or with the extern storage-class-specifier.
952  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
953  // data members and cannot be applied to names declared const or static,
954  // and cannot be applied to reference members.
955  switch (DS.getStorageClassSpec()) {
956    case DeclSpec::SCS_unspecified:
957    case DeclSpec::SCS_typedef:
958    case DeclSpec::SCS_static:
959      // FALL THROUGH.
960      break;
961    case DeclSpec::SCS_mutable:
962      if (isFunc) {
963        if (DS.getStorageClassSpecLoc().isValid())
964          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
965        else
966          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
967
968        // FIXME: It would be nicer if the keyword was ignored only for this
969        // declarator. Otherwise we could get follow-up errors.
970        D.getMutableDeclSpec().ClearStorageClassSpecs();
971      }
972      break;
973    default:
974      if (DS.getStorageClassSpecLoc().isValid())
975        Diag(DS.getStorageClassSpecLoc(),
976             diag::err_storageclass_invalid_for_member);
977      else
978        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
979      D.getMutableDeclSpec().ClearStorageClassSpecs();
980  }
981
982  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
983                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
984                      !isFunc);
985
986  Decl *Member;
987  if (isInstField) {
988    CXXScopeSpec &SS = D.getCXXScopeSpec();
989
990
991    if (SS.isSet() && !SS.isInvalid()) {
992      // The user provided a superfluous scope specifier inside a class
993      // definition:
994      //
995      // class X {
996      //   int X::member;
997      // };
998      DeclContext *DC = 0;
999      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1000        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1001        << Name << FixItHint::CreateRemoval(SS.getRange());
1002      else
1003        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1004          << Name << SS.getRange();
1005
1006      SS.clear();
1007    }
1008
1009    // FIXME: Check for template parameters!
1010    // FIXME: Check that the name is an identifier!
1011    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1012                         AS);
1013    assert(Member && "HandleField never returns null");
1014  } else {
1015    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1016    if (!Member) {
1017      return 0;
1018    }
1019
1020    // Non-instance-fields can't have a bitfield.
1021    if (BitWidth) {
1022      if (Member->isInvalidDecl()) {
1023        // don't emit another diagnostic.
1024      } else if (isa<VarDecl>(Member)) {
1025        // C++ 9.6p3: A bit-field shall not be a static member.
1026        // "static member 'A' cannot be a bit-field"
1027        Diag(Loc, diag::err_static_not_bitfield)
1028          << Name << BitWidth->getSourceRange();
1029      } else if (isa<TypedefDecl>(Member)) {
1030        // "typedef member 'x' cannot be a bit-field"
1031        Diag(Loc, diag::err_typedef_not_bitfield)
1032          << Name << BitWidth->getSourceRange();
1033      } else {
1034        // A function typedef ("typedef int f(); f a;").
1035        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1036        Diag(Loc, diag::err_not_integral_type_bitfield)
1037          << Name << cast<ValueDecl>(Member)->getType()
1038          << BitWidth->getSourceRange();
1039      }
1040
1041      BitWidth = 0;
1042      Member->setInvalidDecl();
1043    }
1044
1045    Member->setAccess(AS);
1046
1047    // If we have declared a member function template, set the access of the
1048    // templated declaration as well.
1049    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1050      FunTmpl->getTemplatedDecl()->setAccess(AS);
1051  }
1052
1053  if (VS.isOverrideSpecified()) {
1054    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1055    if (!MD || !MD->isVirtual()) {
1056      Diag(Member->getLocStart(),
1057           diag::override_keyword_only_allowed_on_virtual_member_functions)
1058        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1059    } else
1060      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1061  }
1062  if (VS.isFinalSpecified()) {
1063    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1064    if (!MD || !MD->isVirtual()) {
1065      Diag(Member->getLocStart(),
1066           diag::override_keyword_only_allowed_on_virtual_member_functions)
1067      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1068    } else
1069      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1070  }
1071
1072  CheckOverrideControl(Member);
1073
1074  assert((Name || isInstField) && "No identifier for non-field ?");
1075
1076  if (Init)
1077    AddInitializerToDecl(Member, Init, false);
1078  if (Deleted) // FIXME: Source location is not very good.
1079    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1080
1081  if (isInstField) {
1082    FieldCollector->Add(cast<FieldDecl>(Member));
1083    return 0;
1084  }
1085  return Member;
1086}
1087
1088/// \brief Find the direct and/or virtual base specifiers that
1089/// correspond to the given base type, for use in base initialization
1090/// within a constructor.
1091static bool FindBaseInitializer(Sema &SemaRef,
1092                                CXXRecordDecl *ClassDecl,
1093                                QualType BaseType,
1094                                const CXXBaseSpecifier *&DirectBaseSpec,
1095                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1096  // First, check for a direct base class.
1097  DirectBaseSpec = 0;
1098  for (CXXRecordDecl::base_class_const_iterator Base
1099         = ClassDecl->bases_begin();
1100       Base != ClassDecl->bases_end(); ++Base) {
1101    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1102      // We found a direct base of this type. That's what we're
1103      // initializing.
1104      DirectBaseSpec = &*Base;
1105      break;
1106    }
1107  }
1108
1109  // Check for a virtual base class.
1110  // FIXME: We might be able to short-circuit this if we know in advance that
1111  // there are no virtual bases.
1112  VirtualBaseSpec = 0;
1113  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1114    // We haven't found a base yet; search the class hierarchy for a
1115    // virtual base class.
1116    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1117                       /*DetectVirtual=*/false);
1118    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1119                              BaseType, Paths)) {
1120      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1121           Path != Paths.end(); ++Path) {
1122        if (Path->back().Base->isVirtual()) {
1123          VirtualBaseSpec = Path->back().Base;
1124          break;
1125        }
1126      }
1127    }
1128  }
1129
1130  return DirectBaseSpec || VirtualBaseSpec;
1131}
1132
1133/// ActOnMemInitializer - Handle a C++ member initializer.
1134MemInitResult
1135Sema::ActOnMemInitializer(Decl *ConstructorD,
1136                          Scope *S,
1137                          CXXScopeSpec &SS,
1138                          IdentifierInfo *MemberOrBase,
1139                          ParsedType TemplateTypeTy,
1140                          SourceLocation IdLoc,
1141                          SourceLocation LParenLoc,
1142                          ExprTy **Args, unsigned NumArgs,
1143                          SourceLocation RParenLoc,
1144                          SourceLocation EllipsisLoc) {
1145  if (!ConstructorD)
1146    return true;
1147
1148  AdjustDeclIfTemplate(ConstructorD);
1149
1150  CXXConstructorDecl *Constructor
1151    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1152  if (!Constructor) {
1153    // The user wrote a constructor initializer on a function that is
1154    // not a C++ constructor. Ignore the error for now, because we may
1155    // have more member initializers coming; we'll diagnose it just
1156    // once in ActOnMemInitializers.
1157    return true;
1158  }
1159
1160  CXXRecordDecl *ClassDecl = Constructor->getParent();
1161
1162  // C++ [class.base.init]p2:
1163  //   Names in a mem-initializer-id are looked up in the scope of the
1164  //   constructor's class and, if not found in that scope, are looked
1165  //   up in the scope containing the constructor's definition.
1166  //   [Note: if the constructor's class contains a member with the
1167  //   same name as a direct or virtual base class of the class, a
1168  //   mem-initializer-id naming the member or base class and composed
1169  //   of a single identifier refers to the class member. A
1170  //   mem-initializer-id for the hidden base class may be specified
1171  //   using a qualified name. ]
1172  if (!SS.getScopeRep() && !TemplateTypeTy) {
1173    // Look for a member, first.
1174    FieldDecl *Member = 0;
1175    DeclContext::lookup_result Result
1176      = ClassDecl->lookup(MemberOrBase);
1177    if (Result.first != Result.second) {
1178      Member = dyn_cast<FieldDecl>(*Result.first);
1179
1180      if (Member) {
1181        if (EllipsisLoc.isValid())
1182          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1183            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1184
1185        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1186                                    LParenLoc, RParenLoc);
1187      }
1188
1189      // Handle anonymous union case.
1190      if (IndirectFieldDecl* IndirectField
1191            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1192        if (EllipsisLoc.isValid())
1193          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1194            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195
1196         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1197                                       NumArgs, IdLoc,
1198                                       LParenLoc, RParenLoc);
1199      }
1200    }
1201  }
1202  // It didn't name a member, so see if it names a class.
1203  QualType BaseType;
1204  TypeSourceInfo *TInfo = 0;
1205
1206  if (TemplateTypeTy) {
1207    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1208  } else {
1209    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1210    LookupParsedName(R, S, &SS);
1211
1212    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1213    if (!TyD) {
1214      if (R.isAmbiguous()) return true;
1215
1216      // We don't want access-control diagnostics here.
1217      R.suppressDiagnostics();
1218
1219      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1220        bool NotUnknownSpecialization = false;
1221        DeclContext *DC = computeDeclContext(SS, false);
1222        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1223          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1224
1225        if (!NotUnknownSpecialization) {
1226          // When the scope specifier can refer to a member of an unknown
1227          // specialization, we take it as a type name.
1228          BaseType = CheckTypenameType(ETK_None,
1229                                       (NestedNameSpecifier *)SS.getScopeRep(),
1230                                       *MemberOrBase, SourceLocation(),
1231                                       SS.getRange(), IdLoc);
1232          if (BaseType.isNull())
1233            return true;
1234
1235          R.clear();
1236          R.setLookupName(MemberOrBase);
1237        }
1238      }
1239
1240      // If no results were found, try to correct typos.
1241      if (R.empty() && BaseType.isNull() &&
1242          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1243          R.isSingleResult()) {
1244        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1245          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1246            // We have found a non-static data member with a similar
1247            // name to what was typed; complain and initialize that
1248            // member.
1249            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1250              << MemberOrBase << true << R.getLookupName()
1251              << FixItHint::CreateReplacement(R.getNameLoc(),
1252                                              R.getLookupName().getAsString());
1253            Diag(Member->getLocation(), diag::note_previous_decl)
1254              << Member->getDeclName();
1255
1256            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1257                                          LParenLoc, RParenLoc);
1258          }
1259        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1260          const CXXBaseSpecifier *DirectBaseSpec;
1261          const CXXBaseSpecifier *VirtualBaseSpec;
1262          if (FindBaseInitializer(*this, ClassDecl,
1263                                  Context.getTypeDeclType(Type),
1264                                  DirectBaseSpec, VirtualBaseSpec)) {
1265            // We have found a direct or virtual base class with a
1266            // similar name to what was typed; complain and initialize
1267            // that base class.
1268            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1269              << MemberOrBase << false << R.getLookupName()
1270              << FixItHint::CreateReplacement(R.getNameLoc(),
1271                                              R.getLookupName().getAsString());
1272
1273            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1274                                                             : VirtualBaseSpec;
1275            Diag(BaseSpec->getSourceRange().getBegin(),
1276                 diag::note_base_class_specified_here)
1277              << BaseSpec->getType()
1278              << BaseSpec->getSourceRange();
1279
1280            TyD = Type;
1281          }
1282        }
1283      }
1284
1285      if (!TyD && BaseType.isNull()) {
1286        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1287          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1288        return true;
1289      }
1290    }
1291
1292    if (BaseType.isNull()) {
1293      BaseType = Context.getTypeDeclType(TyD);
1294      if (SS.isSet()) {
1295        NestedNameSpecifier *Qualifier =
1296          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1297
1298        // FIXME: preserve source range information
1299        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1300      }
1301    }
1302  }
1303
1304  if (!TInfo)
1305    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1306
1307  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1308                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1309}
1310
1311/// Checks an initializer expression for use of uninitialized fields, such as
1312/// containing the field that is being initialized. Returns true if there is an
1313/// uninitialized field was used an updates the SourceLocation parameter; false
1314/// otherwise.
1315static bool InitExprContainsUninitializedFields(const Stmt *S,
1316                                                const ValueDecl *LhsField,
1317                                                SourceLocation *L) {
1318  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1319
1320  if (isa<CallExpr>(S)) {
1321    // Do not descend into function calls or constructors, as the use
1322    // of an uninitialized field may be valid. One would have to inspect
1323    // the contents of the function/ctor to determine if it is safe or not.
1324    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1325    // may be safe, depending on what the function/ctor does.
1326    return false;
1327  }
1328  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1329    const NamedDecl *RhsField = ME->getMemberDecl();
1330
1331    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1332      // The member expression points to a static data member.
1333      assert(VD->isStaticDataMember() &&
1334             "Member points to non-static data member!");
1335      (void)VD;
1336      return false;
1337    }
1338
1339    if (isa<EnumConstantDecl>(RhsField)) {
1340      // The member expression points to an enum.
1341      return false;
1342    }
1343
1344    if (RhsField == LhsField) {
1345      // Initializing a field with itself. Throw a warning.
1346      // But wait; there are exceptions!
1347      // Exception #1:  The field may not belong to this record.
1348      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1349      const Expr *base = ME->getBase();
1350      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1351        // Even though the field matches, it does not belong to this record.
1352        return false;
1353      }
1354      // None of the exceptions triggered; return true to indicate an
1355      // uninitialized field was used.
1356      *L = ME->getMemberLoc();
1357      return true;
1358    }
1359  } else if (isa<SizeOfAlignOfExpr>(S)) {
1360    // sizeof/alignof doesn't reference contents, do not warn.
1361    return false;
1362  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1363    // address-of doesn't reference contents (the pointer may be dereferenced
1364    // in the same expression but it would be rare; and weird).
1365    if (UOE->getOpcode() == UO_AddrOf)
1366      return false;
1367  }
1368  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1369       it != e; ++it) {
1370    if (!*it) {
1371      // An expression such as 'member(arg ?: "")' may trigger this.
1372      continue;
1373    }
1374    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1375      return true;
1376  }
1377  return false;
1378}
1379
1380MemInitResult
1381Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1382                             unsigned NumArgs, SourceLocation IdLoc,
1383                             SourceLocation LParenLoc,
1384                             SourceLocation RParenLoc) {
1385  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1386  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1387  assert((DirectMember || IndirectMember) &&
1388         "Member must be a FieldDecl or IndirectFieldDecl");
1389
1390  if (Member->isInvalidDecl())
1391    return true;
1392
1393  // Diagnose value-uses of fields to initialize themselves, e.g.
1394  //   foo(foo)
1395  // where foo is not also a parameter to the constructor.
1396  // TODO: implement -Wuninitialized and fold this into that framework.
1397  for (unsigned i = 0; i < NumArgs; ++i) {
1398    SourceLocation L;
1399    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1400      // FIXME: Return true in the case when other fields are used before being
1401      // uninitialized. For example, let this field be the i'th field. When
1402      // initializing the i'th field, throw a warning if any of the >= i'th
1403      // fields are used, as they are not yet initialized.
1404      // Right now we are only handling the case where the i'th field uses
1405      // itself in its initializer.
1406      Diag(L, diag::warn_field_is_uninit);
1407    }
1408  }
1409
1410  bool HasDependentArg = false;
1411  for (unsigned i = 0; i < NumArgs; i++)
1412    HasDependentArg |= Args[i]->isTypeDependent();
1413
1414  Expr *Init;
1415  if (Member->getType()->isDependentType() || HasDependentArg) {
1416    // Can't check initialization for a member of dependent type or when
1417    // any of the arguments are type-dependent expressions.
1418    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1419                                       RParenLoc);
1420
1421    // Erase any temporaries within this evaluation context; we're not
1422    // going to track them in the AST, since we'll be rebuilding the
1423    // ASTs during template instantiation.
1424    ExprTemporaries.erase(
1425              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1426                          ExprTemporaries.end());
1427  } else {
1428    // Initialize the member.
1429    InitializedEntity MemberEntity =
1430      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1431                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1432    InitializationKind Kind =
1433      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1434
1435    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1436
1437    ExprResult MemberInit =
1438      InitSeq.Perform(*this, MemberEntity, Kind,
1439                      MultiExprArg(*this, Args, NumArgs), 0);
1440    if (MemberInit.isInvalid())
1441      return true;
1442
1443    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1444
1445    // C++0x [class.base.init]p7:
1446    //   The initialization of each base and member constitutes a
1447    //   full-expression.
1448    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1449    if (MemberInit.isInvalid())
1450      return true;
1451
1452    // If we are in a dependent context, template instantiation will
1453    // perform this type-checking again. Just save the arguments that we
1454    // received in a ParenListExpr.
1455    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1456    // of the information that we have about the member
1457    // initializer. However, deconstructing the ASTs is a dicey process,
1458    // and this approach is far more likely to get the corner cases right.
1459    if (CurContext->isDependentContext())
1460      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1461                                               RParenLoc);
1462    else
1463      Init = MemberInit.get();
1464  }
1465
1466  if (DirectMember) {
1467    return new (Context) CXXCtorInitializer(Context, DirectMember,
1468                                                    IdLoc, LParenLoc, Init,
1469                                                    RParenLoc);
1470  } else {
1471    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1472                                                    IdLoc, LParenLoc, Init,
1473                                                    RParenLoc);
1474  }
1475}
1476
1477MemInitResult
1478Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1479                                 Expr **Args, unsigned NumArgs,
1480                                 SourceLocation LParenLoc,
1481                                 SourceLocation RParenLoc,
1482                                 CXXRecordDecl *ClassDecl,
1483                                 SourceLocation EllipsisLoc) {
1484  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1485  if (!LangOpts.CPlusPlus0x)
1486    return Diag(Loc, diag::err_delegation_0x_only)
1487      << TInfo->getTypeLoc().getLocalSourceRange();
1488
1489  return Diag(Loc, diag::err_delegation_unimplemented)
1490    << TInfo->getTypeLoc().getLocalSourceRange();
1491}
1492
1493MemInitResult
1494Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1495                           Expr **Args, unsigned NumArgs,
1496                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1497                           CXXRecordDecl *ClassDecl,
1498                           SourceLocation EllipsisLoc) {
1499  bool HasDependentArg = false;
1500  for (unsigned i = 0; i < NumArgs; i++)
1501    HasDependentArg |= Args[i]->isTypeDependent();
1502
1503  SourceLocation BaseLoc
1504    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1505
1506  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1507    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1508             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1509
1510  // C++ [class.base.init]p2:
1511  //   [...] Unless the mem-initializer-id names a nonstatic data
1512  //   member of the constructor's class or a direct or virtual base
1513  //   of that class, the mem-initializer is ill-formed. A
1514  //   mem-initializer-list can initialize a base class using any
1515  //   name that denotes that base class type.
1516  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1517
1518  if (EllipsisLoc.isValid()) {
1519    // This is a pack expansion.
1520    if (!BaseType->containsUnexpandedParameterPack())  {
1521      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1522        << SourceRange(BaseLoc, RParenLoc);
1523
1524      EllipsisLoc = SourceLocation();
1525    }
1526  } else {
1527    // Check for any unexpanded parameter packs.
1528    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1529      return true;
1530
1531    for (unsigned I = 0; I != NumArgs; ++I)
1532      if (DiagnoseUnexpandedParameterPack(Args[I]))
1533        return true;
1534  }
1535
1536  // Check for direct and virtual base classes.
1537  const CXXBaseSpecifier *DirectBaseSpec = 0;
1538  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1539  if (!Dependent) {
1540    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1541                                       BaseType))
1542      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1543                                        LParenLoc, RParenLoc, ClassDecl,
1544                                        EllipsisLoc);
1545
1546    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1547                        VirtualBaseSpec);
1548
1549    // C++ [base.class.init]p2:
1550    // Unless the mem-initializer-id names a nonstatic data member of the
1551    // constructor's class or a direct or virtual base of that class, the
1552    // mem-initializer is ill-formed.
1553    if (!DirectBaseSpec && !VirtualBaseSpec) {
1554      // If the class has any dependent bases, then it's possible that
1555      // one of those types will resolve to the same type as
1556      // BaseType. Therefore, just treat this as a dependent base
1557      // class initialization.  FIXME: Should we try to check the
1558      // initialization anyway? It seems odd.
1559      if (ClassDecl->hasAnyDependentBases())
1560        Dependent = true;
1561      else
1562        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1563          << BaseType << Context.getTypeDeclType(ClassDecl)
1564          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1565    }
1566  }
1567
1568  if (Dependent) {
1569    // Can't check initialization for a base of dependent type or when
1570    // any of the arguments are type-dependent expressions.
1571    ExprResult BaseInit
1572      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1573                                          RParenLoc));
1574
1575    // Erase any temporaries within this evaluation context; we're not
1576    // going to track them in the AST, since we'll be rebuilding the
1577    // ASTs during template instantiation.
1578    ExprTemporaries.erase(
1579              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1580                          ExprTemporaries.end());
1581
1582    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1583                                                    /*IsVirtual=*/false,
1584                                                    LParenLoc,
1585                                                    BaseInit.takeAs<Expr>(),
1586                                                    RParenLoc,
1587                                                    EllipsisLoc);
1588  }
1589
1590  // C++ [base.class.init]p2:
1591  //   If a mem-initializer-id is ambiguous because it designates both
1592  //   a direct non-virtual base class and an inherited virtual base
1593  //   class, the mem-initializer is ill-formed.
1594  if (DirectBaseSpec && VirtualBaseSpec)
1595    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1596      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1597
1598  CXXBaseSpecifier *BaseSpec
1599    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1600  if (!BaseSpec)
1601    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1602
1603  // Initialize the base.
1604  InitializedEntity BaseEntity =
1605    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1606  InitializationKind Kind =
1607    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1608
1609  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1610
1611  ExprResult BaseInit =
1612    InitSeq.Perform(*this, BaseEntity, Kind,
1613                    MultiExprArg(*this, Args, NumArgs), 0);
1614  if (BaseInit.isInvalid())
1615    return true;
1616
1617  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1618
1619  // C++0x [class.base.init]p7:
1620  //   The initialization of each base and member constitutes a
1621  //   full-expression.
1622  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1623  if (BaseInit.isInvalid())
1624    return true;
1625
1626  // If we are in a dependent context, template instantiation will
1627  // perform this type-checking again. Just save the arguments that we
1628  // received in a ParenListExpr.
1629  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1630  // of the information that we have about the base
1631  // initializer. However, deconstructing the ASTs is a dicey process,
1632  // and this approach is far more likely to get the corner cases right.
1633  if (CurContext->isDependentContext()) {
1634    ExprResult Init
1635      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1636                                          RParenLoc));
1637    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1638                                                    BaseSpec->isVirtual(),
1639                                                    LParenLoc,
1640                                                    Init.takeAs<Expr>(),
1641                                                    RParenLoc,
1642                                                    EllipsisLoc);
1643  }
1644
1645  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1646                                                  BaseSpec->isVirtual(),
1647                                                  LParenLoc,
1648                                                  BaseInit.takeAs<Expr>(),
1649                                                  RParenLoc,
1650                                                  EllipsisLoc);
1651}
1652
1653/// ImplicitInitializerKind - How an implicit base or member initializer should
1654/// initialize its base or member.
1655enum ImplicitInitializerKind {
1656  IIK_Default,
1657  IIK_Copy,
1658  IIK_Move
1659};
1660
1661static bool
1662BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1663                             ImplicitInitializerKind ImplicitInitKind,
1664                             CXXBaseSpecifier *BaseSpec,
1665                             bool IsInheritedVirtualBase,
1666                             CXXCtorInitializer *&CXXBaseInit) {
1667  InitializedEntity InitEntity
1668    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1669                                        IsInheritedVirtualBase);
1670
1671  ExprResult BaseInit;
1672
1673  switch (ImplicitInitKind) {
1674  case IIK_Default: {
1675    InitializationKind InitKind
1676      = InitializationKind::CreateDefault(Constructor->getLocation());
1677    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1678    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1679                               MultiExprArg(SemaRef, 0, 0));
1680    break;
1681  }
1682
1683  case IIK_Copy: {
1684    ParmVarDecl *Param = Constructor->getParamDecl(0);
1685    QualType ParamType = Param->getType().getNonReferenceType();
1686
1687    Expr *CopyCtorArg =
1688      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1689                          Constructor->getLocation(), ParamType,
1690                          VK_LValue, 0);
1691
1692    // Cast to the base class to avoid ambiguities.
1693    QualType ArgTy =
1694      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1695                                       ParamType.getQualifiers());
1696
1697    CXXCastPath BasePath;
1698    BasePath.push_back(BaseSpec);
1699    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1700                              CK_UncheckedDerivedToBase,
1701                              VK_LValue, &BasePath);
1702
1703    InitializationKind InitKind
1704      = InitializationKind::CreateDirect(Constructor->getLocation(),
1705                                         SourceLocation(), SourceLocation());
1706    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1707                                   &CopyCtorArg, 1);
1708    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1709                               MultiExprArg(&CopyCtorArg, 1));
1710    break;
1711  }
1712
1713  case IIK_Move:
1714    assert(false && "Unhandled initializer kind!");
1715  }
1716
1717  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1718  if (BaseInit.isInvalid())
1719    return true;
1720
1721  CXXBaseInit =
1722    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1723               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1724                                                        SourceLocation()),
1725                                             BaseSpec->isVirtual(),
1726                                             SourceLocation(),
1727                                             BaseInit.takeAs<Expr>(),
1728                                             SourceLocation(),
1729                                             SourceLocation());
1730
1731  return false;
1732}
1733
1734static bool
1735BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1736                               ImplicitInitializerKind ImplicitInitKind,
1737                               FieldDecl *Field,
1738                               CXXCtorInitializer *&CXXMemberInit) {
1739  if (Field->isInvalidDecl())
1740    return true;
1741
1742  SourceLocation Loc = Constructor->getLocation();
1743
1744  if (ImplicitInitKind == IIK_Copy) {
1745    ParmVarDecl *Param = Constructor->getParamDecl(0);
1746    QualType ParamType = Param->getType().getNonReferenceType();
1747
1748    Expr *MemberExprBase =
1749      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1750                          Loc, ParamType, VK_LValue, 0);
1751
1752    // Build a reference to this field within the parameter.
1753    CXXScopeSpec SS;
1754    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1755                              Sema::LookupMemberName);
1756    MemberLookup.addDecl(Field, AS_public);
1757    MemberLookup.resolveKind();
1758    ExprResult CopyCtorArg
1759      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1760                                         ParamType, Loc,
1761                                         /*IsArrow=*/false,
1762                                         SS,
1763                                         /*FirstQualifierInScope=*/0,
1764                                         MemberLookup,
1765                                         /*TemplateArgs=*/0);
1766    if (CopyCtorArg.isInvalid())
1767      return true;
1768
1769    // When the field we are copying is an array, create index variables for
1770    // each dimension of the array. We use these index variables to subscript
1771    // the source array, and other clients (e.g., CodeGen) will perform the
1772    // necessary iteration with these index variables.
1773    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1774    QualType BaseType = Field->getType();
1775    QualType SizeType = SemaRef.Context.getSizeType();
1776    while (const ConstantArrayType *Array
1777                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1778      // Create the iteration variable for this array index.
1779      IdentifierInfo *IterationVarName = 0;
1780      {
1781        llvm::SmallString<8> Str;
1782        llvm::raw_svector_ostream OS(Str);
1783        OS << "__i" << IndexVariables.size();
1784        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1785      }
1786      VarDecl *IterationVar
1787        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1788                          IterationVarName, SizeType,
1789                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1790                          SC_None, SC_None);
1791      IndexVariables.push_back(IterationVar);
1792
1793      // Create a reference to the iteration variable.
1794      ExprResult IterationVarRef
1795        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1796      assert(!IterationVarRef.isInvalid() &&
1797             "Reference to invented variable cannot fail!");
1798
1799      // Subscript the array with this iteration variable.
1800      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1801                                                            Loc,
1802                                                        IterationVarRef.take(),
1803                                                            Loc);
1804      if (CopyCtorArg.isInvalid())
1805        return true;
1806
1807      BaseType = Array->getElementType();
1808    }
1809
1810    // Construct the entity that we will be initializing. For an array, this
1811    // will be first element in the array, which may require several levels
1812    // of array-subscript entities.
1813    llvm::SmallVector<InitializedEntity, 4> Entities;
1814    Entities.reserve(1 + IndexVariables.size());
1815    Entities.push_back(InitializedEntity::InitializeMember(Field));
1816    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1817      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1818                                                              0,
1819                                                              Entities.back()));
1820
1821    // Direct-initialize to use the copy constructor.
1822    InitializationKind InitKind =
1823      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1824
1825    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1826    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1827                                   &CopyCtorArgE, 1);
1828
1829    ExprResult MemberInit
1830      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1831                        MultiExprArg(&CopyCtorArgE, 1));
1832    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1833    if (MemberInit.isInvalid())
1834      return true;
1835
1836    CXXMemberInit
1837      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1838                                           MemberInit.takeAs<Expr>(), Loc,
1839                                           IndexVariables.data(),
1840                                           IndexVariables.size());
1841    return false;
1842  }
1843
1844  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1845
1846  QualType FieldBaseElementType =
1847    SemaRef.Context.getBaseElementType(Field->getType());
1848
1849  if (FieldBaseElementType->isRecordType()) {
1850    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1851    InitializationKind InitKind =
1852      InitializationKind::CreateDefault(Loc);
1853
1854    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1855    ExprResult MemberInit =
1856      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1857
1858    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1859    if (MemberInit.isInvalid())
1860      return true;
1861
1862    CXXMemberInit =
1863      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1864                                                       Field, Loc, Loc,
1865                                                       MemberInit.get(),
1866                                                       Loc);
1867    return false;
1868  }
1869
1870  if (FieldBaseElementType->isReferenceType()) {
1871    SemaRef.Diag(Constructor->getLocation(),
1872                 diag::err_uninitialized_member_in_ctor)
1873    << (int)Constructor->isImplicit()
1874    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1875    << 0 << Field->getDeclName();
1876    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1877    return true;
1878  }
1879
1880  if (FieldBaseElementType.isConstQualified()) {
1881    SemaRef.Diag(Constructor->getLocation(),
1882                 diag::err_uninitialized_member_in_ctor)
1883    << (int)Constructor->isImplicit()
1884    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1885    << 1 << Field->getDeclName();
1886    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1887    return true;
1888  }
1889
1890  // Nothing to initialize.
1891  CXXMemberInit = 0;
1892  return false;
1893}
1894
1895namespace {
1896struct BaseAndFieldInfo {
1897  Sema &S;
1898  CXXConstructorDecl *Ctor;
1899  bool AnyErrorsInInits;
1900  ImplicitInitializerKind IIK;
1901  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1902  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1903
1904  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1905    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1906    // FIXME: Handle implicit move constructors.
1907    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1908      IIK = IIK_Copy;
1909    else
1910      IIK = IIK_Default;
1911  }
1912};
1913}
1914
1915static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1916                                    FieldDecl *Top, FieldDecl *Field) {
1917
1918  // Overwhelmingly common case: we have a direct initializer for this field.
1919  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1920    Info.AllToInit.push_back(Init);
1921    return false;
1922  }
1923
1924  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1925    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1926    assert(FieldClassType && "anonymous struct/union without record type");
1927    CXXRecordDecl *FieldClassDecl
1928      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1929
1930    // Even though union members never have non-trivial default
1931    // constructions in C++03, we still build member initializers for aggregate
1932    // record types which can be union members, and C++0x allows non-trivial
1933    // default constructors for union members, so we ensure that only one
1934    // member is initialized for these.
1935    if (FieldClassDecl->isUnion()) {
1936      // First check for an explicit initializer for one field.
1937      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1938           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1939        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1940          Info.AllToInit.push_back(Init);
1941
1942          // Once we've initialized a field of an anonymous union, the union
1943          // field in the class is also initialized, so exit immediately.
1944          return false;
1945        } else if ((*FA)->isAnonymousStructOrUnion()) {
1946          if (CollectFieldInitializer(Info, Top, *FA))
1947            return true;
1948        }
1949      }
1950
1951      // Fallthrough and construct a default initializer for the union as
1952      // a whole, which can call its default constructor if such a thing exists
1953      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1954      // behavior going forward with C++0x, when anonymous unions there are
1955      // finalized, we should revisit this.
1956    } else {
1957      // For structs, we simply descend through to initialize all members where
1958      // necessary.
1959      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1960           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1961        if (CollectFieldInitializer(Info, Top, *FA))
1962          return true;
1963      }
1964    }
1965  }
1966
1967  // Don't try to build an implicit initializer if there were semantic
1968  // errors in any of the initializers (and therefore we might be
1969  // missing some that the user actually wrote).
1970  if (Info.AnyErrorsInInits)
1971    return false;
1972
1973  CXXCtorInitializer *Init = 0;
1974  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1975    return true;
1976
1977  if (Init)
1978    Info.AllToInit.push_back(Init);
1979
1980  return false;
1981}
1982
1983bool
1984Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1985                                  CXXCtorInitializer **Initializers,
1986                                  unsigned NumInitializers,
1987                                  bool AnyErrors) {
1988  if (Constructor->getDeclContext()->isDependentContext()) {
1989    // Just store the initializers as written, they will be checked during
1990    // instantiation.
1991    if (NumInitializers > 0) {
1992      Constructor->setNumCtorInitializers(NumInitializers);
1993      CXXCtorInitializer **baseOrMemberInitializers =
1994        new (Context) CXXCtorInitializer*[NumInitializers];
1995      memcpy(baseOrMemberInitializers, Initializers,
1996             NumInitializers * sizeof(CXXCtorInitializer*));
1997      Constructor->setCtorInitializers(baseOrMemberInitializers);
1998    }
1999
2000    return false;
2001  }
2002
2003  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2004
2005  // We need to build the initializer AST according to order of construction
2006  // and not what user specified in the Initializers list.
2007  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2008  if (!ClassDecl)
2009    return true;
2010
2011  bool HadError = false;
2012
2013  for (unsigned i = 0; i < NumInitializers; i++) {
2014    CXXCtorInitializer *Member = Initializers[i];
2015
2016    if (Member->isBaseInitializer())
2017      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2018    else
2019      Info.AllBaseFields[Member->getAnyMember()] = Member;
2020  }
2021
2022  // Keep track of the direct virtual bases.
2023  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2024  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2025       E = ClassDecl->bases_end(); I != E; ++I) {
2026    if (I->isVirtual())
2027      DirectVBases.insert(I);
2028  }
2029
2030  // Push virtual bases before others.
2031  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2032       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2033
2034    if (CXXCtorInitializer *Value
2035        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2036      Info.AllToInit.push_back(Value);
2037    } else if (!AnyErrors) {
2038      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2039      CXXCtorInitializer *CXXBaseInit;
2040      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2041                                       VBase, IsInheritedVirtualBase,
2042                                       CXXBaseInit)) {
2043        HadError = true;
2044        continue;
2045      }
2046
2047      Info.AllToInit.push_back(CXXBaseInit);
2048    }
2049  }
2050
2051  // Non-virtual bases.
2052  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2053       E = ClassDecl->bases_end(); Base != E; ++Base) {
2054    // Virtuals are in the virtual base list and already constructed.
2055    if (Base->isVirtual())
2056      continue;
2057
2058    if (CXXCtorInitializer *Value
2059          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2060      Info.AllToInit.push_back(Value);
2061    } else if (!AnyErrors) {
2062      CXXCtorInitializer *CXXBaseInit;
2063      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2064                                       Base, /*IsInheritedVirtualBase=*/false,
2065                                       CXXBaseInit)) {
2066        HadError = true;
2067        continue;
2068      }
2069
2070      Info.AllToInit.push_back(CXXBaseInit);
2071    }
2072  }
2073
2074  // Fields.
2075  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2076       E = ClassDecl->field_end(); Field != E; ++Field) {
2077    if ((*Field)->getType()->isIncompleteArrayType()) {
2078      assert(ClassDecl->hasFlexibleArrayMember() &&
2079             "Incomplete array type is not valid");
2080      continue;
2081    }
2082    if (CollectFieldInitializer(Info, *Field, *Field))
2083      HadError = true;
2084  }
2085
2086  NumInitializers = Info.AllToInit.size();
2087  if (NumInitializers > 0) {
2088    Constructor->setNumCtorInitializers(NumInitializers);
2089    CXXCtorInitializer **baseOrMemberInitializers =
2090      new (Context) CXXCtorInitializer*[NumInitializers];
2091    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2092           NumInitializers * sizeof(CXXCtorInitializer*));
2093    Constructor->setCtorInitializers(baseOrMemberInitializers);
2094
2095    // Constructors implicitly reference the base and member
2096    // destructors.
2097    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2098                                           Constructor->getParent());
2099  }
2100
2101  return HadError;
2102}
2103
2104static void *GetKeyForTopLevelField(FieldDecl *Field) {
2105  // For anonymous unions, use the class declaration as the key.
2106  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2107    if (RT->getDecl()->isAnonymousStructOrUnion())
2108      return static_cast<void *>(RT->getDecl());
2109  }
2110  return static_cast<void *>(Field);
2111}
2112
2113static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2114  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2115}
2116
2117static void *GetKeyForMember(ASTContext &Context,
2118                             CXXCtorInitializer *Member) {
2119  if (!Member->isAnyMemberInitializer())
2120    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2121
2122  // For fields injected into the class via declaration of an anonymous union,
2123  // use its anonymous union class declaration as the unique key.
2124  FieldDecl *Field = Member->getAnyMember();
2125
2126  // If the field is a member of an anonymous struct or union, our key
2127  // is the anonymous record decl that's a direct child of the class.
2128  RecordDecl *RD = Field->getParent();
2129  if (RD->isAnonymousStructOrUnion()) {
2130    while (true) {
2131      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2132      if (Parent->isAnonymousStructOrUnion())
2133        RD = Parent;
2134      else
2135        break;
2136    }
2137
2138    return static_cast<void *>(RD);
2139  }
2140
2141  return static_cast<void *>(Field);
2142}
2143
2144static void
2145DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2146                                  const CXXConstructorDecl *Constructor,
2147                                  CXXCtorInitializer **Inits,
2148                                  unsigned NumInits) {
2149  if (Constructor->getDeclContext()->isDependentContext())
2150    return;
2151
2152  // Don't check initializers order unless the warning is enabled at the
2153  // location of at least one initializer.
2154  bool ShouldCheckOrder = false;
2155  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2156    CXXCtorInitializer *Init = Inits[InitIndex];
2157    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2158                                         Init->getSourceLocation())
2159          != Diagnostic::Ignored) {
2160      ShouldCheckOrder = true;
2161      break;
2162    }
2163  }
2164  if (!ShouldCheckOrder)
2165    return;
2166
2167  // Build the list of bases and members in the order that they'll
2168  // actually be initialized.  The explicit initializers should be in
2169  // this same order but may be missing things.
2170  llvm::SmallVector<const void*, 32> IdealInitKeys;
2171
2172  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2173
2174  // 1. Virtual bases.
2175  for (CXXRecordDecl::base_class_const_iterator VBase =
2176       ClassDecl->vbases_begin(),
2177       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2178    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2179
2180  // 2. Non-virtual bases.
2181  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2182       E = ClassDecl->bases_end(); Base != E; ++Base) {
2183    if (Base->isVirtual())
2184      continue;
2185    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2186  }
2187
2188  // 3. Direct fields.
2189  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2190       E = ClassDecl->field_end(); Field != E; ++Field)
2191    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2192
2193  unsigned NumIdealInits = IdealInitKeys.size();
2194  unsigned IdealIndex = 0;
2195
2196  CXXCtorInitializer *PrevInit = 0;
2197  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2198    CXXCtorInitializer *Init = Inits[InitIndex];
2199    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2200
2201    // Scan forward to try to find this initializer in the idealized
2202    // initializers list.
2203    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2204      if (InitKey == IdealInitKeys[IdealIndex])
2205        break;
2206
2207    // If we didn't find this initializer, it must be because we
2208    // scanned past it on a previous iteration.  That can only
2209    // happen if we're out of order;  emit a warning.
2210    if (IdealIndex == NumIdealInits && PrevInit) {
2211      Sema::SemaDiagnosticBuilder D =
2212        SemaRef.Diag(PrevInit->getSourceLocation(),
2213                     diag::warn_initializer_out_of_order);
2214
2215      if (PrevInit->isAnyMemberInitializer())
2216        D << 0 << PrevInit->getAnyMember()->getDeclName();
2217      else
2218        D << 1 << PrevInit->getBaseClassInfo()->getType();
2219
2220      if (Init->isAnyMemberInitializer())
2221        D << 0 << Init->getAnyMember()->getDeclName();
2222      else
2223        D << 1 << Init->getBaseClassInfo()->getType();
2224
2225      // Move back to the initializer's location in the ideal list.
2226      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2227        if (InitKey == IdealInitKeys[IdealIndex])
2228          break;
2229
2230      assert(IdealIndex != NumIdealInits &&
2231             "initializer not found in initializer list");
2232    }
2233
2234    PrevInit = Init;
2235  }
2236}
2237
2238namespace {
2239bool CheckRedundantInit(Sema &S,
2240                        CXXCtorInitializer *Init,
2241                        CXXCtorInitializer *&PrevInit) {
2242  if (!PrevInit) {
2243    PrevInit = Init;
2244    return false;
2245  }
2246
2247  if (FieldDecl *Field = Init->getMember())
2248    S.Diag(Init->getSourceLocation(),
2249           diag::err_multiple_mem_initialization)
2250      << Field->getDeclName()
2251      << Init->getSourceRange();
2252  else {
2253    const Type *BaseClass = Init->getBaseClass();
2254    assert(BaseClass && "neither field nor base");
2255    S.Diag(Init->getSourceLocation(),
2256           diag::err_multiple_base_initialization)
2257      << QualType(BaseClass, 0)
2258      << Init->getSourceRange();
2259  }
2260  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2261    << 0 << PrevInit->getSourceRange();
2262
2263  return true;
2264}
2265
2266typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2267typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2268
2269bool CheckRedundantUnionInit(Sema &S,
2270                             CXXCtorInitializer *Init,
2271                             RedundantUnionMap &Unions) {
2272  FieldDecl *Field = Init->getAnyMember();
2273  RecordDecl *Parent = Field->getParent();
2274  if (!Parent->isAnonymousStructOrUnion())
2275    return false;
2276
2277  NamedDecl *Child = Field;
2278  do {
2279    if (Parent->isUnion()) {
2280      UnionEntry &En = Unions[Parent];
2281      if (En.first && En.first != Child) {
2282        S.Diag(Init->getSourceLocation(),
2283               diag::err_multiple_mem_union_initialization)
2284          << Field->getDeclName()
2285          << Init->getSourceRange();
2286        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2287          << 0 << En.second->getSourceRange();
2288        return true;
2289      } else if (!En.first) {
2290        En.first = Child;
2291        En.second = Init;
2292      }
2293    }
2294
2295    Child = Parent;
2296    Parent = cast<RecordDecl>(Parent->getDeclContext());
2297  } while (Parent->isAnonymousStructOrUnion());
2298
2299  return false;
2300}
2301}
2302
2303/// ActOnMemInitializers - Handle the member initializers for a constructor.
2304void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2305                                SourceLocation ColonLoc,
2306                                MemInitTy **meminits, unsigned NumMemInits,
2307                                bool AnyErrors) {
2308  if (!ConstructorDecl)
2309    return;
2310
2311  AdjustDeclIfTemplate(ConstructorDecl);
2312
2313  CXXConstructorDecl *Constructor
2314    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2315
2316  if (!Constructor) {
2317    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2318    return;
2319  }
2320
2321  CXXCtorInitializer **MemInits =
2322    reinterpret_cast<CXXCtorInitializer **>(meminits);
2323
2324  // Mapping for the duplicate initializers check.
2325  // For member initializers, this is keyed with a FieldDecl*.
2326  // For base initializers, this is keyed with a Type*.
2327  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2328
2329  // Mapping for the inconsistent anonymous-union initializers check.
2330  RedundantUnionMap MemberUnions;
2331
2332  bool HadError = false;
2333  for (unsigned i = 0; i < NumMemInits; i++) {
2334    CXXCtorInitializer *Init = MemInits[i];
2335
2336    // Set the source order index.
2337    Init->setSourceOrder(i);
2338
2339    if (Init->isAnyMemberInitializer()) {
2340      FieldDecl *Field = Init->getAnyMember();
2341      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2342          CheckRedundantUnionInit(*this, Init, MemberUnions))
2343        HadError = true;
2344    } else {
2345      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2346      if (CheckRedundantInit(*this, Init, Members[Key]))
2347        HadError = true;
2348    }
2349  }
2350
2351  if (HadError)
2352    return;
2353
2354  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2355
2356  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2357}
2358
2359void
2360Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2361                                             CXXRecordDecl *ClassDecl) {
2362  // Ignore dependent contexts.
2363  if (ClassDecl->isDependentContext())
2364    return;
2365
2366  // FIXME: all the access-control diagnostics are positioned on the
2367  // field/base declaration.  That's probably good; that said, the
2368  // user might reasonably want to know why the destructor is being
2369  // emitted, and we currently don't say.
2370
2371  // Non-static data members.
2372  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2373       E = ClassDecl->field_end(); I != E; ++I) {
2374    FieldDecl *Field = *I;
2375    if (Field->isInvalidDecl())
2376      continue;
2377    QualType FieldType = Context.getBaseElementType(Field->getType());
2378
2379    const RecordType* RT = FieldType->getAs<RecordType>();
2380    if (!RT)
2381      continue;
2382
2383    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2384    if (FieldClassDecl->hasTrivialDestructor())
2385      continue;
2386
2387    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2388    CheckDestructorAccess(Field->getLocation(), Dtor,
2389                          PDiag(diag::err_access_dtor_field)
2390                            << Field->getDeclName()
2391                            << FieldType);
2392
2393    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2394  }
2395
2396  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2397
2398  // Bases.
2399  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2400       E = ClassDecl->bases_end(); Base != E; ++Base) {
2401    // Bases are always records in a well-formed non-dependent class.
2402    const RecordType *RT = Base->getType()->getAs<RecordType>();
2403
2404    // Remember direct virtual bases.
2405    if (Base->isVirtual())
2406      DirectVirtualBases.insert(RT);
2407
2408    // Ignore trivial destructors.
2409    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2410    if (BaseClassDecl->hasTrivialDestructor())
2411      continue;
2412
2413    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2414
2415    // FIXME: caret should be on the start of the class name
2416    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2417                          PDiag(diag::err_access_dtor_base)
2418                            << Base->getType()
2419                            << Base->getSourceRange());
2420
2421    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2422  }
2423
2424  // Virtual bases.
2425  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2426       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2427
2428    // Bases are always records in a well-formed non-dependent class.
2429    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2430
2431    // Ignore direct virtual bases.
2432    if (DirectVirtualBases.count(RT))
2433      continue;
2434
2435    // Ignore trivial destructors.
2436    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2437    if (BaseClassDecl->hasTrivialDestructor())
2438      continue;
2439
2440    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2441    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2442                          PDiag(diag::err_access_dtor_vbase)
2443                            << VBase->getType());
2444
2445    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2446  }
2447}
2448
2449void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2450  if (!CDtorDecl)
2451    return;
2452
2453  if (CXXConstructorDecl *Constructor
2454      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2455    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2456}
2457
2458bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2459                                  unsigned DiagID, AbstractDiagSelID SelID) {
2460  if (SelID == -1)
2461    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2462  else
2463    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2464}
2465
2466bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2467                                  const PartialDiagnostic &PD) {
2468  if (!getLangOptions().CPlusPlus)
2469    return false;
2470
2471  if (const ArrayType *AT = Context.getAsArrayType(T))
2472    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2473
2474  if (const PointerType *PT = T->getAs<PointerType>()) {
2475    // Find the innermost pointer type.
2476    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2477      PT = T;
2478
2479    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2480      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2481  }
2482
2483  const RecordType *RT = T->getAs<RecordType>();
2484  if (!RT)
2485    return false;
2486
2487  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2488
2489  // We can't answer whether something is abstract until it has a
2490  // definition.  If it's currently being defined, we'll walk back
2491  // over all the declarations when we have a full definition.
2492  const CXXRecordDecl *Def = RD->getDefinition();
2493  if (!Def || Def->isBeingDefined())
2494    return false;
2495
2496  if (!RD->isAbstract())
2497    return false;
2498
2499  Diag(Loc, PD) << RD->getDeclName();
2500  DiagnoseAbstractType(RD);
2501
2502  return true;
2503}
2504
2505void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2506  // Check if we've already emitted the list of pure virtual functions
2507  // for this class.
2508  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2509    return;
2510
2511  CXXFinalOverriderMap FinalOverriders;
2512  RD->getFinalOverriders(FinalOverriders);
2513
2514  // Keep a set of seen pure methods so we won't diagnose the same method
2515  // more than once.
2516  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2517
2518  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2519                                   MEnd = FinalOverriders.end();
2520       M != MEnd;
2521       ++M) {
2522    for (OverridingMethods::iterator SO = M->second.begin(),
2523                                  SOEnd = M->second.end();
2524         SO != SOEnd; ++SO) {
2525      // C++ [class.abstract]p4:
2526      //   A class is abstract if it contains or inherits at least one
2527      //   pure virtual function for which the final overrider is pure
2528      //   virtual.
2529
2530      //
2531      if (SO->second.size() != 1)
2532        continue;
2533
2534      if (!SO->second.front().Method->isPure())
2535        continue;
2536
2537      if (!SeenPureMethods.insert(SO->second.front().Method))
2538        continue;
2539
2540      Diag(SO->second.front().Method->getLocation(),
2541           diag::note_pure_virtual_function)
2542        << SO->second.front().Method->getDeclName();
2543    }
2544  }
2545
2546  if (!PureVirtualClassDiagSet)
2547    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2548  PureVirtualClassDiagSet->insert(RD);
2549}
2550
2551namespace {
2552struct AbstractUsageInfo {
2553  Sema &S;
2554  CXXRecordDecl *Record;
2555  CanQualType AbstractType;
2556  bool Invalid;
2557
2558  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2559    : S(S), Record(Record),
2560      AbstractType(S.Context.getCanonicalType(
2561                   S.Context.getTypeDeclType(Record))),
2562      Invalid(false) {}
2563
2564  void DiagnoseAbstractType() {
2565    if (Invalid) return;
2566    S.DiagnoseAbstractType(Record);
2567    Invalid = true;
2568  }
2569
2570  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2571};
2572
2573struct CheckAbstractUsage {
2574  AbstractUsageInfo &Info;
2575  const NamedDecl *Ctx;
2576
2577  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2578    : Info(Info), Ctx(Ctx) {}
2579
2580  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2581    switch (TL.getTypeLocClass()) {
2582#define ABSTRACT_TYPELOC(CLASS, PARENT)
2583#define TYPELOC(CLASS, PARENT) \
2584    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2585#include "clang/AST/TypeLocNodes.def"
2586    }
2587  }
2588
2589  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2590    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2591    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2592      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2593      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2594    }
2595  }
2596
2597  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2598    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2599  }
2600
2601  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2602    // Visit the type parameters from a permissive context.
2603    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2604      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2605      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2606        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2607          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2608      // TODO: other template argument types?
2609    }
2610  }
2611
2612  // Visit pointee types from a permissive context.
2613#define CheckPolymorphic(Type) \
2614  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2615    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2616  }
2617  CheckPolymorphic(PointerTypeLoc)
2618  CheckPolymorphic(ReferenceTypeLoc)
2619  CheckPolymorphic(MemberPointerTypeLoc)
2620  CheckPolymorphic(BlockPointerTypeLoc)
2621
2622  /// Handle all the types we haven't given a more specific
2623  /// implementation for above.
2624  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2625    // Every other kind of type that we haven't called out already
2626    // that has an inner type is either (1) sugar or (2) contains that
2627    // inner type in some way as a subobject.
2628    if (TypeLoc Next = TL.getNextTypeLoc())
2629      return Visit(Next, Sel);
2630
2631    // If there's no inner type and we're in a permissive context,
2632    // don't diagnose.
2633    if (Sel == Sema::AbstractNone) return;
2634
2635    // Check whether the type matches the abstract type.
2636    QualType T = TL.getType();
2637    if (T->isArrayType()) {
2638      Sel = Sema::AbstractArrayType;
2639      T = Info.S.Context.getBaseElementType(T);
2640    }
2641    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2642    if (CT != Info.AbstractType) return;
2643
2644    // It matched; do some magic.
2645    if (Sel == Sema::AbstractArrayType) {
2646      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2647        << T << TL.getSourceRange();
2648    } else {
2649      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2650        << Sel << T << TL.getSourceRange();
2651    }
2652    Info.DiagnoseAbstractType();
2653  }
2654};
2655
2656void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2657                                  Sema::AbstractDiagSelID Sel) {
2658  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2659}
2660
2661}
2662
2663/// Check for invalid uses of an abstract type in a method declaration.
2664static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2665                                    CXXMethodDecl *MD) {
2666  // No need to do the check on definitions, which require that
2667  // the return/param types be complete.
2668  if (MD->isThisDeclarationADefinition())
2669    return;
2670
2671  // For safety's sake, just ignore it if we don't have type source
2672  // information.  This should never happen for non-implicit methods,
2673  // but...
2674  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2675    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2676}
2677
2678/// Check for invalid uses of an abstract type within a class definition.
2679static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2680                                    CXXRecordDecl *RD) {
2681  for (CXXRecordDecl::decl_iterator
2682         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2683    Decl *D = *I;
2684    if (D->isImplicit()) continue;
2685
2686    // Methods and method templates.
2687    if (isa<CXXMethodDecl>(D)) {
2688      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2689    } else if (isa<FunctionTemplateDecl>(D)) {
2690      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2691      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2692
2693    // Fields and static variables.
2694    } else if (isa<FieldDecl>(D)) {
2695      FieldDecl *FD = cast<FieldDecl>(D);
2696      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2697        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2698    } else if (isa<VarDecl>(D)) {
2699      VarDecl *VD = cast<VarDecl>(D);
2700      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2701        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2702
2703    // Nested classes and class templates.
2704    } else if (isa<CXXRecordDecl>(D)) {
2705      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2706    } else if (isa<ClassTemplateDecl>(D)) {
2707      CheckAbstractClassUsage(Info,
2708                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2709    }
2710  }
2711}
2712
2713/// \brief Perform semantic checks on a class definition that has been
2714/// completing, introducing implicitly-declared members, checking for
2715/// abstract types, etc.
2716void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2717  if (!Record)
2718    return;
2719
2720  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2721    AbstractUsageInfo Info(*this, Record);
2722    CheckAbstractClassUsage(Info, Record);
2723  }
2724
2725  // If this is not an aggregate type and has no user-declared constructor,
2726  // complain about any non-static data members of reference or const scalar
2727  // type, since they will never get initializers.
2728  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2729      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2730    bool Complained = false;
2731    for (RecordDecl::field_iterator F = Record->field_begin(),
2732                                 FEnd = Record->field_end();
2733         F != FEnd; ++F) {
2734      if (F->getType()->isReferenceType() ||
2735          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2736        if (!Complained) {
2737          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2738            << Record->getTagKind() << Record;
2739          Complained = true;
2740        }
2741
2742        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2743          << F->getType()->isReferenceType()
2744          << F->getDeclName();
2745      }
2746    }
2747  }
2748
2749  if (Record->isDynamicClass())
2750    DynamicClasses.push_back(Record);
2751
2752  if (Record->getIdentifier()) {
2753    // C++ [class.mem]p13:
2754    //   If T is the name of a class, then each of the following shall have a
2755    //   name different from T:
2756    //     - every member of every anonymous union that is a member of class T.
2757    //
2758    // C++ [class.mem]p14:
2759    //   In addition, if class T has a user-declared constructor (12.1), every
2760    //   non-static data member of class T shall have a name different from T.
2761    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2762         R.first != R.second; ++R.first) {
2763      NamedDecl *D = *R.first;
2764      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2765          isa<IndirectFieldDecl>(D)) {
2766        Diag(D->getLocation(), diag::err_member_name_of_class)
2767          << D->getDeclName();
2768        break;
2769      }
2770    }
2771  }
2772}
2773
2774void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2775                                             Decl *TagDecl,
2776                                             SourceLocation LBrac,
2777                                             SourceLocation RBrac,
2778                                             AttributeList *AttrList) {
2779  if (!TagDecl)
2780    return;
2781
2782  AdjustDeclIfTemplate(TagDecl);
2783
2784  ActOnFields(S, RLoc, TagDecl,
2785              // strict aliasing violation!
2786              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2787              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2788
2789  CheckCompletedCXXClass(
2790                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2791}
2792
2793namespace {
2794  /// \brief Helper class that collects exception specifications for
2795  /// implicitly-declared special member functions.
2796  class ImplicitExceptionSpecification {
2797    ASTContext &Context;
2798    bool AllowsAllExceptions;
2799    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2800    llvm::SmallVector<QualType, 4> Exceptions;
2801
2802  public:
2803    explicit ImplicitExceptionSpecification(ASTContext &Context)
2804      : Context(Context), AllowsAllExceptions(false) { }
2805
2806    /// \brief Whether the special member function should have any
2807    /// exception specification at all.
2808    bool hasExceptionSpecification() const {
2809      return !AllowsAllExceptions;
2810    }
2811
2812    /// \brief Whether the special member function should have a
2813    /// throw(...) exception specification (a Microsoft extension).
2814    bool hasAnyExceptionSpecification() const {
2815      return false;
2816    }
2817
2818    /// \brief The number of exceptions in the exception specification.
2819    unsigned size() const { return Exceptions.size(); }
2820
2821    /// \brief The set of exceptions in the exception specification.
2822    const QualType *data() const { return Exceptions.data(); }
2823
2824    /// \brief Note that
2825    void CalledDecl(CXXMethodDecl *Method) {
2826      // If we already know that we allow all exceptions, do nothing.
2827      if (AllowsAllExceptions || !Method)
2828        return;
2829
2830      const FunctionProtoType *Proto
2831        = Method->getType()->getAs<FunctionProtoType>();
2832
2833      // If this function can throw any exceptions, make a note of that.
2834      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2835        AllowsAllExceptions = true;
2836        ExceptionsSeen.clear();
2837        Exceptions.clear();
2838        return;
2839      }
2840
2841      // Record the exceptions in this function's exception specification.
2842      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2843                                              EEnd = Proto->exception_end();
2844           E != EEnd; ++E)
2845        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2846          Exceptions.push_back(*E);
2847    }
2848  };
2849}
2850
2851
2852/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2853/// special functions, such as the default constructor, copy
2854/// constructor, or destructor, to the given C++ class (C++
2855/// [special]p1).  This routine can only be executed just before the
2856/// definition of the class is complete.
2857void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2858  if (!ClassDecl->hasUserDeclaredConstructor())
2859    ++ASTContext::NumImplicitDefaultConstructors;
2860
2861  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2862    ++ASTContext::NumImplicitCopyConstructors;
2863
2864  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2865    ++ASTContext::NumImplicitCopyAssignmentOperators;
2866
2867    // If we have a dynamic class, then the copy assignment operator may be
2868    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2869    // it shows up in the right place in the vtable and that we diagnose
2870    // problems with the implicit exception specification.
2871    if (ClassDecl->isDynamicClass())
2872      DeclareImplicitCopyAssignment(ClassDecl);
2873  }
2874
2875  if (!ClassDecl->hasUserDeclaredDestructor()) {
2876    ++ASTContext::NumImplicitDestructors;
2877
2878    // If we have a dynamic class, then the destructor may be virtual, so we
2879    // have to declare the destructor immediately. This ensures that, e.g., it
2880    // shows up in the right place in the vtable and that we diagnose problems
2881    // with the implicit exception specification.
2882    if (ClassDecl->isDynamicClass())
2883      DeclareImplicitDestructor(ClassDecl);
2884  }
2885}
2886
2887void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
2888  if (!D)
2889    return;
2890
2891  TemplateParameterList *Params = 0;
2892  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2893    Params = Template->getTemplateParameters();
2894  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2895           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2896    Params = PartialSpec->getTemplateParameters();
2897  else
2898    return;
2899
2900  for (TemplateParameterList::iterator Param = Params->begin(),
2901                                    ParamEnd = Params->end();
2902       Param != ParamEnd; ++Param) {
2903    NamedDecl *Named = cast<NamedDecl>(*Param);
2904    if (Named->getDeclName()) {
2905      S->AddDecl(Named);
2906      IdResolver.AddDecl(Named);
2907    }
2908  }
2909}
2910
2911void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2912  if (!RecordD) return;
2913  AdjustDeclIfTemplate(RecordD);
2914  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
2915  PushDeclContext(S, Record);
2916}
2917
2918void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
2919  if (!RecordD) return;
2920  PopDeclContext();
2921}
2922
2923/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2924/// parsing a top-level (non-nested) C++ class, and we are now
2925/// parsing those parts of the given Method declaration that could
2926/// not be parsed earlier (C++ [class.mem]p2), such as default
2927/// arguments. This action should enter the scope of the given
2928/// Method declaration as if we had just parsed the qualified method
2929/// name. However, it should not bring the parameters into scope;
2930/// that will be performed by ActOnDelayedCXXMethodParameter.
2931void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2932}
2933
2934/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2935/// C++ method declaration. We're (re-)introducing the given
2936/// function parameter into scope for use in parsing later parts of
2937/// the method declaration. For example, we could see an
2938/// ActOnParamDefaultArgument event for this parameter.
2939void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
2940  if (!ParamD)
2941    return;
2942
2943  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
2944
2945  // If this parameter has an unparsed default argument, clear it out
2946  // to make way for the parsed default argument.
2947  if (Param->hasUnparsedDefaultArg())
2948    Param->setDefaultArg(0);
2949
2950  S->AddDecl(Param);
2951  if (Param->getDeclName())
2952    IdResolver.AddDecl(Param);
2953}
2954
2955/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2956/// processing the delayed method declaration for Method. The method
2957/// declaration is now considered finished. There may be a separate
2958/// ActOnStartOfFunctionDef action later (not necessarily
2959/// immediately!) for this method, if it was also defined inside the
2960/// class body.
2961void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
2962  if (!MethodD)
2963    return;
2964
2965  AdjustDeclIfTemplate(MethodD);
2966
2967  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
2968
2969  // Now that we have our default arguments, check the constructor
2970  // again. It could produce additional diagnostics or affect whether
2971  // the class has implicitly-declared destructors, among other
2972  // things.
2973  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2974    CheckConstructor(Constructor);
2975
2976  // Check the default arguments, which we may have added.
2977  if (!Method->isInvalidDecl())
2978    CheckCXXDefaultArguments(Method);
2979}
2980
2981/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2982/// the well-formedness of the constructor declarator @p D with type @p
2983/// R. If there are any errors in the declarator, this routine will
2984/// emit diagnostics and set the invalid bit to true.  In any case, the type
2985/// will be updated to reflect a well-formed type for the constructor and
2986/// returned.
2987QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2988                                          StorageClass &SC) {
2989  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2990
2991  // C++ [class.ctor]p3:
2992  //   A constructor shall not be virtual (10.3) or static (9.4). A
2993  //   constructor can be invoked for a const, volatile or const
2994  //   volatile object. A constructor shall not be declared const,
2995  //   volatile, or const volatile (9.3.2).
2996  if (isVirtual) {
2997    if (!D.isInvalidType())
2998      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2999        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3000        << SourceRange(D.getIdentifierLoc());
3001    D.setInvalidType();
3002  }
3003  if (SC == SC_Static) {
3004    if (!D.isInvalidType())
3005      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3006        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3007        << SourceRange(D.getIdentifierLoc());
3008    D.setInvalidType();
3009    SC = SC_None;
3010  }
3011
3012  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3013  if (FTI.TypeQuals != 0) {
3014    if (FTI.TypeQuals & Qualifiers::Const)
3015      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3016        << "const" << SourceRange(D.getIdentifierLoc());
3017    if (FTI.TypeQuals & Qualifiers::Volatile)
3018      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3019        << "volatile" << SourceRange(D.getIdentifierLoc());
3020    if (FTI.TypeQuals & Qualifiers::Restrict)
3021      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3022        << "restrict" << SourceRange(D.getIdentifierLoc());
3023    D.setInvalidType();
3024  }
3025
3026  // Rebuild the function type "R" without any type qualifiers (in
3027  // case any of the errors above fired) and with "void" as the
3028  // return type, since constructors don't have return types.
3029  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3030  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3031    return R;
3032
3033  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3034  EPI.TypeQuals = 0;
3035
3036  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3037                                 Proto->getNumArgs(), EPI);
3038}
3039
3040/// CheckConstructor - Checks a fully-formed constructor for
3041/// well-formedness, issuing any diagnostics required. Returns true if
3042/// the constructor declarator is invalid.
3043void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3044  CXXRecordDecl *ClassDecl
3045    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3046  if (!ClassDecl)
3047    return Constructor->setInvalidDecl();
3048
3049  // C++ [class.copy]p3:
3050  //   A declaration of a constructor for a class X is ill-formed if
3051  //   its first parameter is of type (optionally cv-qualified) X and
3052  //   either there are no other parameters or else all other
3053  //   parameters have default arguments.
3054  if (!Constructor->isInvalidDecl() &&
3055      ((Constructor->getNumParams() == 1) ||
3056       (Constructor->getNumParams() > 1 &&
3057        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3058      Constructor->getTemplateSpecializationKind()
3059                                              != TSK_ImplicitInstantiation) {
3060    QualType ParamType = Constructor->getParamDecl(0)->getType();
3061    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3062    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3063      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3064      const char *ConstRef
3065        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3066                                                        : " const &";
3067      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3068        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3069
3070      // FIXME: Rather that making the constructor invalid, we should endeavor
3071      // to fix the type.
3072      Constructor->setInvalidDecl();
3073    }
3074  }
3075}
3076
3077/// CheckDestructor - Checks a fully-formed destructor definition for
3078/// well-formedness, issuing any diagnostics required.  Returns true
3079/// on error.
3080bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3081  CXXRecordDecl *RD = Destructor->getParent();
3082
3083  if (Destructor->isVirtual()) {
3084    SourceLocation Loc;
3085
3086    if (!Destructor->isImplicit())
3087      Loc = Destructor->getLocation();
3088    else
3089      Loc = RD->getLocation();
3090
3091    // If we have a virtual destructor, look up the deallocation function
3092    FunctionDecl *OperatorDelete = 0;
3093    DeclarationName Name =
3094    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3095    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3096      return true;
3097
3098    MarkDeclarationReferenced(Loc, OperatorDelete);
3099
3100    Destructor->setOperatorDelete(OperatorDelete);
3101  }
3102
3103  return false;
3104}
3105
3106static inline bool
3107FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3108  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3109          FTI.ArgInfo[0].Param &&
3110          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3111}
3112
3113/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3114/// the well-formednes of the destructor declarator @p D with type @p
3115/// R. If there are any errors in the declarator, this routine will
3116/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3117/// will be updated to reflect a well-formed type for the destructor and
3118/// returned.
3119QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3120                                         StorageClass& SC) {
3121  // C++ [class.dtor]p1:
3122  //   [...] A typedef-name that names a class is a class-name
3123  //   (7.1.3); however, a typedef-name that names a class shall not
3124  //   be used as the identifier in the declarator for a destructor
3125  //   declaration.
3126  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3127  if (isa<TypedefType>(DeclaratorType))
3128    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3129      << DeclaratorType;
3130
3131  // C++ [class.dtor]p2:
3132  //   A destructor is used to destroy objects of its class type. A
3133  //   destructor takes no parameters, and no return type can be
3134  //   specified for it (not even void). The address of a destructor
3135  //   shall not be taken. A destructor shall not be static. A
3136  //   destructor can be invoked for a const, volatile or const
3137  //   volatile object. A destructor shall not be declared const,
3138  //   volatile or const volatile (9.3.2).
3139  if (SC == SC_Static) {
3140    if (!D.isInvalidType())
3141      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3142        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3143        << SourceRange(D.getIdentifierLoc())
3144        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3145
3146    SC = SC_None;
3147  }
3148  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3149    // Destructors don't have return types, but the parser will
3150    // happily parse something like:
3151    //
3152    //   class X {
3153    //     float ~X();
3154    //   };
3155    //
3156    // The return type will be eliminated later.
3157    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3158      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3159      << SourceRange(D.getIdentifierLoc());
3160  }
3161
3162  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3163  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3164    if (FTI.TypeQuals & Qualifiers::Const)
3165      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3166        << "const" << SourceRange(D.getIdentifierLoc());
3167    if (FTI.TypeQuals & Qualifiers::Volatile)
3168      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3169        << "volatile" << SourceRange(D.getIdentifierLoc());
3170    if (FTI.TypeQuals & Qualifiers::Restrict)
3171      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3172        << "restrict" << SourceRange(D.getIdentifierLoc());
3173    D.setInvalidType();
3174  }
3175
3176  // Make sure we don't have any parameters.
3177  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3178    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3179
3180    // Delete the parameters.
3181    FTI.freeArgs();
3182    D.setInvalidType();
3183  }
3184
3185  // Make sure the destructor isn't variadic.
3186  if (FTI.isVariadic) {
3187    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3188    D.setInvalidType();
3189  }
3190
3191  // Rebuild the function type "R" without any type qualifiers or
3192  // parameters (in case any of the errors above fired) and with
3193  // "void" as the return type, since destructors don't have return
3194  // types.
3195  if (!D.isInvalidType())
3196    return R;
3197
3198  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3199  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3200  EPI.Variadic = false;
3201  EPI.TypeQuals = 0;
3202  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3203}
3204
3205/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3206/// well-formednes of the conversion function declarator @p D with
3207/// type @p R. If there are any errors in the declarator, this routine
3208/// will emit diagnostics and return true. Otherwise, it will return
3209/// false. Either way, the type @p R will be updated to reflect a
3210/// well-formed type for the conversion operator.
3211void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3212                                     StorageClass& SC) {
3213  // C++ [class.conv.fct]p1:
3214  //   Neither parameter types nor return type can be specified. The
3215  //   type of a conversion function (8.3.5) is "function taking no
3216  //   parameter returning conversion-type-id."
3217  if (SC == SC_Static) {
3218    if (!D.isInvalidType())
3219      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3220        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3221        << SourceRange(D.getIdentifierLoc());
3222    D.setInvalidType();
3223    SC = SC_None;
3224  }
3225
3226  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3227
3228  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3229    // Conversion functions don't have return types, but the parser will
3230    // happily parse something like:
3231    //
3232    //   class X {
3233    //     float operator bool();
3234    //   };
3235    //
3236    // The return type will be changed later anyway.
3237    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3238      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3239      << SourceRange(D.getIdentifierLoc());
3240    D.setInvalidType();
3241  }
3242
3243  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3244
3245  // Make sure we don't have any parameters.
3246  if (Proto->getNumArgs() > 0) {
3247    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3248
3249    // Delete the parameters.
3250    D.getFunctionTypeInfo().freeArgs();
3251    D.setInvalidType();
3252  } else if (Proto->isVariadic()) {
3253    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3254    D.setInvalidType();
3255  }
3256
3257  // Diagnose "&operator bool()" and other such nonsense.  This
3258  // is actually a gcc extension which we don't support.
3259  if (Proto->getResultType() != ConvType) {
3260    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3261      << Proto->getResultType();
3262    D.setInvalidType();
3263    ConvType = Proto->getResultType();
3264  }
3265
3266  // C++ [class.conv.fct]p4:
3267  //   The conversion-type-id shall not represent a function type nor
3268  //   an array type.
3269  if (ConvType->isArrayType()) {
3270    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3271    ConvType = Context.getPointerType(ConvType);
3272    D.setInvalidType();
3273  } else if (ConvType->isFunctionType()) {
3274    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3275    ConvType = Context.getPointerType(ConvType);
3276    D.setInvalidType();
3277  }
3278
3279  // Rebuild the function type "R" without any parameters (in case any
3280  // of the errors above fired) and with the conversion type as the
3281  // return type.
3282  if (D.isInvalidType())
3283    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3284
3285  // C++0x explicit conversion operators.
3286  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3287    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3288         diag::warn_explicit_conversion_functions)
3289      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3290}
3291
3292/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3293/// the declaration of the given C++ conversion function. This routine
3294/// is responsible for recording the conversion function in the C++
3295/// class, if possible.
3296Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3297  assert(Conversion && "Expected to receive a conversion function declaration");
3298
3299  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3300
3301  // Make sure we aren't redeclaring the conversion function.
3302  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3303
3304  // C++ [class.conv.fct]p1:
3305  //   [...] A conversion function is never used to convert a
3306  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3307  //   same object type (or a reference to it), to a (possibly
3308  //   cv-qualified) base class of that type (or a reference to it),
3309  //   or to (possibly cv-qualified) void.
3310  // FIXME: Suppress this warning if the conversion function ends up being a
3311  // virtual function that overrides a virtual function in a base class.
3312  QualType ClassType
3313    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3314  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3315    ConvType = ConvTypeRef->getPointeeType();
3316  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3317      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3318    /* Suppress diagnostics for instantiations. */;
3319  else if (ConvType->isRecordType()) {
3320    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3321    if (ConvType == ClassType)
3322      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3323        << ClassType;
3324    else if (IsDerivedFrom(ClassType, ConvType))
3325      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3326        <<  ClassType << ConvType;
3327  } else if (ConvType->isVoidType()) {
3328    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3329      << ClassType << ConvType;
3330  }
3331
3332  if (FunctionTemplateDecl *ConversionTemplate
3333                                = Conversion->getDescribedFunctionTemplate())
3334    return ConversionTemplate;
3335
3336  return Conversion;
3337}
3338
3339//===----------------------------------------------------------------------===//
3340// Namespace Handling
3341//===----------------------------------------------------------------------===//
3342
3343
3344
3345/// ActOnStartNamespaceDef - This is called at the start of a namespace
3346/// definition.
3347Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3348                                   SourceLocation InlineLoc,
3349                                   SourceLocation IdentLoc,
3350                                   IdentifierInfo *II,
3351                                   SourceLocation LBrace,
3352                                   AttributeList *AttrList) {
3353  // anonymous namespace starts at its left brace
3354  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3355    (II ? IdentLoc : LBrace) , II);
3356  Namespc->setLBracLoc(LBrace);
3357  Namespc->setInline(InlineLoc.isValid());
3358
3359  Scope *DeclRegionScope = NamespcScope->getParent();
3360
3361  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3362
3363  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3364    PushNamespaceVisibilityAttr(Attr);
3365
3366  if (II) {
3367    // C++ [namespace.def]p2:
3368    //   The identifier in an original-namespace-definition shall not
3369    //   have been previously defined in the declarative region in
3370    //   which the original-namespace-definition appears. The
3371    //   identifier in an original-namespace-definition is the name of
3372    //   the namespace. Subsequently in that declarative region, it is
3373    //   treated as an original-namespace-name.
3374    //
3375    // Since namespace names are unique in their scope, and we don't
3376    // look through using directives, just
3377    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3378    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3379
3380    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3381      // This is an extended namespace definition.
3382      if (Namespc->isInline() != OrigNS->isInline()) {
3383        // inline-ness must match
3384        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3385          << Namespc->isInline();
3386        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3387        Namespc->setInvalidDecl();
3388        // Recover by ignoring the new namespace's inline status.
3389        Namespc->setInline(OrigNS->isInline());
3390      }
3391
3392      // Attach this namespace decl to the chain of extended namespace
3393      // definitions.
3394      OrigNS->setNextNamespace(Namespc);
3395      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3396
3397      // Remove the previous declaration from the scope.
3398      if (DeclRegionScope->isDeclScope(OrigNS)) {
3399        IdResolver.RemoveDecl(OrigNS);
3400        DeclRegionScope->RemoveDecl(OrigNS);
3401      }
3402    } else if (PrevDecl) {
3403      // This is an invalid name redefinition.
3404      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3405       << Namespc->getDeclName();
3406      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3407      Namespc->setInvalidDecl();
3408      // Continue on to push Namespc as current DeclContext and return it.
3409    } else if (II->isStr("std") &&
3410               CurContext->getRedeclContext()->isTranslationUnit()) {
3411      // This is the first "real" definition of the namespace "std", so update
3412      // our cache of the "std" namespace to point at this definition.
3413      if (NamespaceDecl *StdNS = getStdNamespace()) {
3414        // We had already defined a dummy namespace "std". Link this new
3415        // namespace definition to the dummy namespace "std".
3416        StdNS->setNextNamespace(Namespc);
3417        StdNS->setLocation(IdentLoc);
3418        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3419      }
3420
3421      // Make our StdNamespace cache point at the first real definition of the
3422      // "std" namespace.
3423      StdNamespace = Namespc;
3424    }
3425
3426    PushOnScopeChains(Namespc, DeclRegionScope);
3427  } else {
3428    // Anonymous namespaces.
3429    assert(Namespc->isAnonymousNamespace());
3430
3431    // Link the anonymous namespace into its parent.
3432    NamespaceDecl *PrevDecl;
3433    DeclContext *Parent = CurContext->getRedeclContext();
3434    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3435      PrevDecl = TU->getAnonymousNamespace();
3436      TU->setAnonymousNamespace(Namespc);
3437    } else {
3438      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3439      PrevDecl = ND->getAnonymousNamespace();
3440      ND->setAnonymousNamespace(Namespc);
3441    }
3442
3443    // Link the anonymous namespace with its previous declaration.
3444    if (PrevDecl) {
3445      assert(PrevDecl->isAnonymousNamespace());
3446      assert(!PrevDecl->getNextNamespace());
3447      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3448      PrevDecl->setNextNamespace(Namespc);
3449
3450      if (Namespc->isInline() != PrevDecl->isInline()) {
3451        // inline-ness must match
3452        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3453          << Namespc->isInline();
3454        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3455        Namespc->setInvalidDecl();
3456        // Recover by ignoring the new namespace's inline status.
3457        Namespc->setInline(PrevDecl->isInline());
3458      }
3459    }
3460
3461    CurContext->addDecl(Namespc);
3462
3463    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3464    //   behaves as if it were replaced by
3465    //     namespace unique { /* empty body */ }
3466    //     using namespace unique;
3467    //     namespace unique { namespace-body }
3468    //   where all occurrences of 'unique' in a translation unit are
3469    //   replaced by the same identifier and this identifier differs
3470    //   from all other identifiers in the entire program.
3471
3472    // We just create the namespace with an empty name and then add an
3473    // implicit using declaration, just like the standard suggests.
3474    //
3475    // CodeGen enforces the "universally unique" aspect by giving all
3476    // declarations semantically contained within an anonymous
3477    // namespace internal linkage.
3478
3479    if (!PrevDecl) {
3480      UsingDirectiveDecl* UD
3481        = UsingDirectiveDecl::Create(Context, CurContext,
3482                                     /* 'using' */ LBrace,
3483                                     /* 'namespace' */ SourceLocation(),
3484                                     /* qualifier */ SourceRange(),
3485                                     /* NNS */ NULL,
3486                                     /* identifier */ SourceLocation(),
3487                                     Namespc,
3488                                     /* Ancestor */ CurContext);
3489      UD->setImplicit();
3490      CurContext->addDecl(UD);
3491    }
3492  }
3493
3494  // Although we could have an invalid decl (i.e. the namespace name is a
3495  // redefinition), push it as current DeclContext and try to continue parsing.
3496  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3497  // for the namespace has the declarations that showed up in that particular
3498  // namespace definition.
3499  PushDeclContext(NamespcScope, Namespc);
3500  return Namespc;
3501}
3502
3503/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3504/// is a namespace alias, returns the namespace it points to.
3505static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3506  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3507    return AD->getNamespace();
3508  return dyn_cast_or_null<NamespaceDecl>(D);
3509}
3510
3511/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3512/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3513void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3514  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3515  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3516  Namespc->setRBracLoc(RBrace);
3517  PopDeclContext();
3518  if (Namespc->hasAttr<VisibilityAttr>())
3519    PopPragmaVisibility();
3520}
3521
3522CXXRecordDecl *Sema::getStdBadAlloc() const {
3523  return cast_or_null<CXXRecordDecl>(
3524                                  StdBadAlloc.get(Context.getExternalSource()));
3525}
3526
3527NamespaceDecl *Sema::getStdNamespace() const {
3528  return cast_or_null<NamespaceDecl>(
3529                                 StdNamespace.get(Context.getExternalSource()));
3530}
3531
3532/// \brief Retrieve the special "std" namespace, which may require us to
3533/// implicitly define the namespace.
3534NamespaceDecl *Sema::getOrCreateStdNamespace() {
3535  if (!StdNamespace) {
3536    // The "std" namespace has not yet been defined, so build one implicitly.
3537    StdNamespace = NamespaceDecl::Create(Context,
3538                                         Context.getTranslationUnitDecl(),
3539                                         SourceLocation(),
3540                                         &PP.getIdentifierTable().get("std"));
3541    getStdNamespace()->setImplicit(true);
3542  }
3543
3544  return getStdNamespace();
3545}
3546
3547Decl *Sema::ActOnUsingDirective(Scope *S,
3548                                          SourceLocation UsingLoc,
3549                                          SourceLocation NamespcLoc,
3550                                          CXXScopeSpec &SS,
3551                                          SourceLocation IdentLoc,
3552                                          IdentifierInfo *NamespcName,
3553                                          AttributeList *AttrList) {
3554  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3555  assert(NamespcName && "Invalid NamespcName.");
3556  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3557
3558  // This can only happen along a recovery path.
3559  while (S->getFlags() & Scope::TemplateParamScope)
3560    S = S->getParent();
3561  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3562
3563  UsingDirectiveDecl *UDir = 0;
3564  NestedNameSpecifier *Qualifier = 0;
3565  if (SS.isSet())
3566    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3567
3568  // Lookup namespace name.
3569  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3570  LookupParsedName(R, S, &SS);
3571  if (R.isAmbiguous())
3572    return 0;
3573
3574  if (R.empty()) {
3575    // Allow "using namespace std;" or "using namespace ::std;" even if
3576    // "std" hasn't been defined yet, for GCC compatibility.
3577    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3578        NamespcName->isStr("std")) {
3579      Diag(IdentLoc, diag::ext_using_undefined_std);
3580      R.addDecl(getOrCreateStdNamespace());
3581      R.resolveKind();
3582    }
3583    // Otherwise, attempt typo correction.
3584    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3585                                                       CTC_NoKeywords, 0)) {
3586      if (R.getAsSingle<NamespaceDecl>() ||
3587          R.getAsSingle<NamespaceAliasDecl>()) {
3588        if (DeclContext *DC = computeDeclContext(SS, false))
3589          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3590            << NamespcName << DC << Corrected << SS.getRange()
3591            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3592        else
3593          Diag(IdentLoc, diag::err_using_directive_suggest)
3594            << NamespcName << Corrected
3595            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3596        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3597          << Corrected;
3598
3599        NamespcName = Corrected.getAsIdentifierInfo();
3600      } else {
3601        R.clear();
3602        R.setLookupName(NamespcName);
3603      }
3604    }
3605  }
3606
3607  if (!R.empty()) {
3608    NamedDecl *Named = R.getFoundDecl();
3609    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3610        && "expected namespace decl");
3611    // C++ [namespace.udir]p1:
3612    //   A using-directive specifies that the names in the nominated
3613    //   namespace can be used in the scope in which the
3614    //   using-directive appears after the using-directive. During
3615    //   unqualified name lookup (3.4.1), the names appear as if they
3616    //   were declared in the nearest enclosing namespace which
3617    //   contains both the using-directive and the nominated
3618    //   namespace. [Note: in this context, "contains" means "contains
3619    //   directly or indirectly". ]
3620
3621    // Find enclosing context containing both using-directive and
3622    // nominated namespace.
3623    NamespaceDecl *NS = getNamespaceDecl(Named);
3624    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3625    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3626      CommonAncestor = CommonAncestor->getParent();
3627
3628    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3629                                      SS.getRange(),
3630                                      (NestedNameSpecifier *)SS.getScopeRep(),
3631                                      IdentLoc, Named, CommonAncestor);
3632    PushUsingDirective(S, UDir);
3633  } else {
3634    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3635  }
3636
3637  // FIXME: We ignore attributes for now.
3638  return UDir;
3639}
3640
3641void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3642  // If scope has associated entity, then using directive is at namespace
3643  // or translation unit scope. We add UsingDirectiveDecls, into
3644  // it's lookup structure.
3645  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3646    Ctx->addDecl(UDir);
3647  else
3648    // Otherwise it is block-sope. using-directives will affect lookup
3649    // only to the end of scope.
3650    S->PushUsingDirective(UDir);
3651}
3652
3653
3654Decl *Sema::ActOnUsingDeclaration(Scope *S,
3655                                  AccessSpecifier AS,
3656                                  bool HasUsingKeyword,
3657                                  SourceLocation UsingLoc,
3658                                  CXXScopeSpec &SS,
3659                                  UnqualifiedId &Name,
3660                                  AttributeList *AttrList,
3661                                  bool IsTypeName,
3662                                  SourceLocation TypenameLoc) {
3663  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3664
3665  switch (Name.getKind()) {
3666  case UnqualifiedId::IK_Identifier:
3667  case UnqualifiedId::IK_OperatorFunctionId:
3668  case UnqualifiedId::IK_LiteralOperatorId:
3669  case UnqualifiedId::IK_ConversionFunctionId:
3670    break;
3671
3672  case UnqualifiedId::IK_ConstructorName:
3673  case UnqualifiedId::IK_ConstructorTemplateId:
3674    // C++0x inherited constructors.
3675    if (getLangOptions().CPlusPlus0x) break;
3676
3677    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3678      << SS.getRange();
3679    return 0;
3680
3681  case UnqualifiedId::IK_DestructorName:
3682    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3683      << SS.getRange();
3684    return 0;
3685
3686  case UnqualifiedId::IK_TemplateId:
3687    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3688      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3689    return 0;
3690  }
3691
3692  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3693  DeclarationName TargetName = TargetNameInfo.getName();
3694  if (!TargetName)
3695    return 0;
3696
3697  // Warn about using declarations.
3698  // TODO: store that the declaration was written without 'using' and
3699  // talk about access decls instead of using decls in the
3700  // diagnostics.
3701  if (!HasUsingKeyword) {
3702    UsingLoc = Name.getSourceRange().getBegin();
3703
3704    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3705      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3706  }
3707
3708  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3709      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3710    return 0;
3711
3712  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3713                                        TargetNameInfo, AttrList,
3714                                        /* IsInstantiation */ false,
3715                                        IsTypeName, TypenameLoc);
3716  if (UD)
3717    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3718
3719  return UD;
3720}
3721
3722/// \brief Determine whether a using declaration considers the given
3723/// declarations as "equivalent", e.g., if they are redeclarations of
3724/// the same entity or are both typedefs of the same type.
3725static bool
3726IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3727                         bool &SuppressRedeclaration) {
3728  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3729    SuppressRedeclaration = false;
3730    return true;
3731  }
3732
3733  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3734    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3735      SuppressRedeclaration = true;
3736      return Context.hasSameType(TD1->getUnderlyingType(),
3737                                 TD2->getUnderlyingType());
3738    }
3739
3740  return false;
3741}
3742
3743
3744/// Determines whether to create a using shadow decl for a particular
3745/// decl, given the set of decls existing prior to this using lookup.
3746bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3747                                const LookupResult &Previous) {
3748  // Diagnose finding a decl which is not from a base class of the
3749  // current class.  We do this now because there are cases where this
3750  // function will silently decide not to build a shadow decl, which
3751  // will pre-empt further diagnostics.
3752  //
3753  // We don't need to do this in C++0x because we do the check once on
3754  // the qualifier.
3755  //
3756  // FIXME: diagnose the following if we care enough:
3757  //   struct A { int foo; };
3758  //   struct B : A { using A::foo; };
3759  //   template <class T> struct C : A {};
3760  //   template <class T> struct D : C<T> { using B::foo; } // <---
3761  // This is invalid (during instantiation) in C++03 because B::foo
3762  // resolves to the using decl in B, which is not a base class of D<T>.
3763  // We can't diagnose it immediately because C<T> is an unknown
3764  // specialization.  The UsingShadowDecl in D<T> then points directly
3765  // to A::foo, which will look well-formed when we instantiate.
3766  // The right solution is to not collapse the shadow-decl chain.
3767  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3768    DeclContext *OrigDC = Orig->getDeclContext();
3769
3770    // Handle enums and anonymous structs.
3771    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3772    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3773    while (OrigRec->isAnonymousStructOrUnion())
3774      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3775
3776    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3777      if (OrigDC == CurContext) {
3778        Diag(Using->getLocation(),
3779             diag::err_using_decl_nested_name_specifier_is_current_class)
3780          << Using->getNestedNameRange();
3781        Diag(Orig->getLocation(), diag::note_using_decl_target);
3782        return true;
3783      }
3784
3785      Diag(Using->getNestedNameRange().getBegin(),
3786           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3787        << Using->getTargetNestedNameDecl()
3788        << cast<CXXRecordDecl>(CurContext)
3789        << Using->getNestedNameRange();
3790      Diag(Orig->getLocation(), diag::note_using_decl_target);
3791      return true;
3792    }
3793  }
3794
3795  if (Previous.empty()) return false;
3796
3797  NamedDecl *Target = Orig;
3798  if (isa<UsingShadowDecl>(Target))
3799    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3800
3801  // If the target happens to be one of the previous declarations, we
3802  // don't have a conflict.
3803  //
3804  // FIXME: but we might be increasing its access, in which case we
3805  // should redeclare it.
3806  NamedDecl *NonTag = 0, *Tag = 0;
3807  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3808         I != E; ++I) {
3809    NamedDecl *D = (*I)->getUnderlyingDecl();
3810    bool Result;
3811    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3812      return Result;
3813
3814    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3815  }
3816
3817  if (Target->isFunctionOrFunctionTemplate()) {
3818    FunctionDecl *FD;
3819    if (isa<FunctionTemplateDecl>(Target))
3820      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3821    else
3822      FD = cast<FunctionDecl>(Target);
3823
3824    NamedDecl *OldDecl = 0;
3825    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3826    case Ovl_Overload:
3827      return false;
3828
3829    case Ovl_NonFunction:
3830      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3831      break;
3832
3833    // We found a decl with the exact signature.
3834    case Ovl_Match:
3835      // If we're in a record, we want to hide the target, so we
3836      // return true (without a diagnostic) to tell the caller not to
3837      // build a shadow decl.
3838      if (CurContext->isRecord())
3839        return true;
3840
3841      // If we're not in a record, this is an error.
3842      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3843      break;
3844    }
3845
3846    Diag(Target->getLocation(), diag::note_using_decl_target);
3847    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3848    return true;
3849  }
3850
3851  // Target is not a function.
3852
3853  if (isa<TagDecl>(Target)) {
3854    // No conflict between a tag and a non-tag.
3855    if (!Tag) return false;
3856
3857    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3858    Diag(Target->getLocation(), diag::note_using_decl_target);
3859    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3860    return true;
3861  }
3862
3863  // No conflict between a tag and a non-tag.
3864  if (!NonTag) return false;
3865
3866  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3867  Diag(Target->getLocation(), diag::note_using_decl_target);
3868  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3869  return true;
3870}
3871
3872/// Builds a shadow declaration corresponding to a 'using' declaration.
3873UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3874                                            UsingDecl *UD,
3875                                            NamedDecl *Orig) {
3876
3877  // If we resolved to another shadow declaration, just coalesce them.
3878  NamedDecl *Target = Orig;
3879  if (isa<UsingShadowDecl>(Target)) {
3880    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3881    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3882  }
3883
3884  UsingShadowDecl *Shadow
3885    = UsingShadowDecl::Create(Context, CurContext,
3886                              UD->getLocation(), UD, Target);
3887  UD->addShadowDecl(Shadow);
3888
3889  Shadow->setAccess(UD->getAccess());
3890  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3891    Shadow->setInvalidDecl();
3892
3893  if (S)
3894    PushOnScopeChains(Shadow, S);
3895  else
3896    CurContext->addDecl(Shadow);
3897
3898
3899  return Shadow;
3900}
3901
3902/// Hides a using shadow declaration.  This is required by the current
3903/// using-decl implementation when a resolvable using declaration in a
3904/// class is followed by a declaration which would hide or override
3905/// one or more of the using decl's targets; for example:
3906///
3907///   struct Base { void foo(int); };
3908///   struct Derived : Base {
3909///     using Base::foo;
3910///     void foo(int);
3911///   };
3912///
3913/// The governing language is C++03 [namespace.udecl]p12:
3914///
3915///   When a using-declaration brings names from a base class into a
3916///   derived class scope, member functions in the derived class
3917///   override and/or hide member functions with the same name and
3918///   parameter types in a base class (rather than conflicting).
3919///
3920/// There are two ways to implement this:
3921///   (1) optimistically create shadow decls when they're not hidden
3922///       by existing declarations, or
3923///   (2) don't create any shadow decls (or at least don't make them
3924///       visible) until we've fully parsed/instantiated the class.
3925/// The problem with (1) is that we might have to retroactively remove
3926/// a shadow decl, which requires several O(n) operations because the
3927/// decl structures are (very reasonably) not designed for removal.
3928/// (2) avoids this but is very fiddly and phase-dependent.
3929void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3930  if (Shadow->getDeclName().getNameKind() ==
3931        DeclarationName::CXXConversionFunctionName)
3932    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3933
3934  // Remove it from the DeclContext...
3935  Shadow->getDeclContext()->removeDecl(Shadow);
3936
3937  // ...and the scope, if applicable...
3938  if (S) {
3939    S->RemoveDecl(Shadow);
3940    IdResolver.RemoveDecl(Shadow);
3941  }
3942
3943  // ...and the using decl.
3944  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3945
3946  // TODO: complain somehow if Shadow was used.  It shouldn't
3947  // be possible for this to happen, because...?
3948}
3949
3950/// Builds a using declaration.
3951///
3952/// \param IsInstantiation - Whether this call arises from an
3953///   instantiation of an unresolved using declaration.  We treat
3954///   the lookup differently for these declarations.
3955NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3956                                       SourceLocation UsingLoc,
3957                                       CXXScopeSpec &SS,
3958                                       const DeclarationNameInfo &NameInfo,
3959                                       AttributeList *AttrList,
3960                                       bool IsInstantiation,
3961                                       bool IsTypeName,
3962                                       SourceLocation TypenameLoc) {
3963  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3964  SourceLocation IdentLoc = NameInfo.getLoc();
3965  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3966
3967  // FIXME: We ignore attributes for now.
3968
3969  if (SS.isEmpty()) {
3970    Diag(IdentLoc, diag::err_using_requires_qualname);
3971    return 0;
3972  }
3973
3974  // Do the redeclaration lookup in the current scope.
3975  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
3976                        ForRedeclaration);
3977  Previous.setHideTags(false);
3978  if (S) {
3979    LookupName(Previous, S);
3980
3981    // It is really dumb that we have to do this.
3982    LookupResult::Filter F = Previous.makeFilter();
3983    while (F.hasNext()) {
3984      NamedDecl *D = F.next();
3985      if (!isDeclInScope(D, CurContext, S))
3986        F.erase();
3987    }
3988    F.done();
3989  } else {
3990    assert(IsInstantiation && "no scope in non-instantiation");
3991    assert(CurContext->isRecord() && "scope not record in instantiation");
3992    LookupQualifiedName(Previous, CurContext);
3993  }
3994
3995  NestedNameSpecifier *NNS =
3996    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3997
3998  // Check for invalid redeclarations.
3999  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4000    return 0;
4001
4002  // Check for bad qualifiers.
4003  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4004    return 0;
4005
4006  DeclContext *LookupContext = computeDeclContext(SS);
4007  NamedDecl *D;
4008  if (!LookupContext) {
4009    if (IsTypeName) {
4010      // FIXME: not all declaration name kinds are legal here
4011      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4012                                              UsingLoc, TypenameLoc,
4013                                              SS.getRange(), NNS,
4014                                              IdentLoc, NameInfo.getName());
4015    } else {
4016      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4017                                           UsingLoc, SS.getRange(),
4018                                           NNS, NameInfo);
4019    }
4020  } else {
4021    D = UsingDecl::Create(Context, CurContext,
4022                          SS.getRange(), UsingLoc, NNS, NameInfo,
4023                          IsTypeName);
4024  }
4025  D->setAccess(AS);
4026  CurContext->addDecl(D);
4027
4028  if (!LookupContext) return D;
4029  UsingDecl *UD = cast<UsingDecl>(D);
4030
4031  if (RequireCompleteDeclContext(SS, LookupContext)) {
4032    UD->setInvalidDecl();
4033    return UD;
4034  }
4035
4036  // Look up the target name.
4037
4038  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4039
4040  // Unlike most lookups, we don't always want to hide tag
4041  // declarations: tag names are visible through the using declaration
4042  // even if hidden by ordinary names, *except* in a dependent context
4043  // where it's important for the sanity of two-phase lookup.
4044  if (!IsInstantiation)
4045    R.setHideTags(false);
4046
4047  LookupQualifiedName(R, LookupContext);
4048
4049  if (R.empty()) {
4050    Diag(IdentLoc, diag::err_no_member)
4051      << NameInfo.getName() << LookupContext << SS.getRange();
4052    UD->setInvalidDecl();
4053    return UD;
4054  }
4055
4056  if (R.isAmbiguous()) {
4057    UD->setInvalidDecl();
4058    return UD;
4059  }
4060
4061  if (IsTypeName) {
4062    // If we asked for a typename and got a non-type decl, error out.
4063    if (!R.getAsSingle<TypeDecl>()) {
4064      Diag(IdentLoc, diag::err_using_typename_non_type);
4065      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4066        Diag((*I)->getUnderlyingDecl()->getLocation(),
4067             diag::note_using_decl_target);
4068      UD->setInvalidDecl();
4069      return UD;
4070    }
4071  } else {
4072    // If we asked for a non-typename and we got a type, error out,
4073    // but only if this is an instantiation of an unresolved using
4074    // decl.  Otherwise just silently find the type name.
4075    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4076      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4077      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4078      UD->setInvalidDecl();
4079      return UD;
4080    }
4081  }
4082
4083  // C++0x N2914 [namespace.udecl]p6:
4084  // A using-declaration shall not name a namespace.
4085  if (R.getAsSingle<NamespaceDecl>()) {
4086    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4087      << SS.getRange();
4088    UD->setInvalidDecl();
4089    return UD;
4090  }
4091
4092  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4093    if (!CheckUsingShadowDecl(UD, *I, Previous))
4094      BuildUsingShadowDecl(S, UD, *I);
4095  }
4096
4097  return UD;
4098}
4099
4100/// Checks that the given using declaration is not an invalid
4101/// redeclaration.  Note that this is checking only for the using decl
4102/// itself, not for any ill-formedness among the UsingShadowDecls.
4103bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4104                                       bool isTypeName,
4105                                       const CXXScopeSpec &SS,
4106                                       SourceLocation NameLoc,
4107                                       const LookupResult &Prev) {
4108  // C++03 [namespace.udecl]p8:
4109  // C++0x [namespace.udecl]p10:
4110  //   A using-declaration is a declaration and can therefore be used
4111  //   repeatedly where (and only where) multiple declarations are
4112  //   allowed.
4113  //
4114  // That's in non-member contexts.
4115  if (!CurContext->getRedeclContext()->isRecord())
4116    return false;
4117
4118  NestedNameSpecifier *Qual
4119    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4120
4121  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4122    NamedDecl *D = *I;
4123
4124    bool DTypename;
4125    NestedNameSpecifier *DQual;
4126    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4127      DTypename = UD->isTypeName();
4128      DQual = UD->getTargetNestedNameDecl();
4129    } else if (UnresolvedUsingValueDecl *UD
4130                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4131      DTypename = false;
4132      DQual = UD->getTargetNestedNameSpecifier();
4133    } else if (UnresolvedUsingTypenameDecl *UD
4134                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4135      DTypename = true;
4136      DQual = UD->getTargetNestedNameSpecifier();
4137    } else continue;
4138
4139    // using decls differ if one says 'typename' and the other doesn't.
4140    // FIXME: non-dependent using decls?
4141    if (isTypeName != DTypename) continue;
4142
4143    // using decls differ if they name different scopes (but note that
4144    // template instantiation can cause this check to trigger when it
4145    // didn't before instantiation).
4146    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4147        Context.getCanonicalNestedNameSpecifier(DQual))
4148      continue;
4149
4150    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4151    Diag(D->getLocation(), diag::note_using_decl) << 1;
4152    return true;
4153  }
4154
4155  return false;
4156}
4157
4158
4159/// Checks that the given nested-name qualifier used in a using decl
4160/// in the current context is appropriately related to the current
4161/// scope.  If an error is found, diagnoses it and returns true.
4162bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4163                                   const CXXScopeSpec &SS,
4164                                   SourceLocation NameLoc) {
4165  DeclContext *NamedContext = computeDeclContext(SS);
4166
4167  if (!CurContext->isRecord()) {
4168    // C++03 [namespace.udecl]p3:
4169    // C++0x [namespace.udecl]p8:
4170    //   A using-declaration for a class member shall be a member-declaration.
4171
4172    // If we weren't able to compute a valid scope, it must be a
4173    // dependent class scope.
4174    if (!NamedContext || NamedContext->isRecord()) {
4175      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4176        << SS.getRange();
4177      return true;
4178    }
4179
4180    // Otherwise, everything is known to be fine.
4181    return false;
4182  }
4183
4184  // The current scope is a record.
4185
4186  // If the named context is dependent, we can't decide much.
4187  if (!NamedContext) {
4188    // FIXME: in C++0x, we can diagnose if we can prove that the
4189    // nested-name-specifier does not refer to a base class, which is
4190    // still possible in some cases.
4191
4192    // Otherwise we have to conservatively report that things might be
4193    // okay.
4194    return false;
4195  }
4196
4197  if (!NamedContext->isRecord()) {
4198    // Ideally this would point at the last name in the specifier,
4199    // but we don't have that level of source info.
4200    Diag(SS.getRange().getBegin(),
4201         diag::err_using_decl_nested_name_specifier_is_not_class)
4202      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4203    return true;
4204  }
4205
4206  if (!NamedContext->isDependentContext() &&
4207      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4208    return true;
4209
4210  if (getLangOptions().CPlusPlus0x) {
4211    // C++0x [namespace.udecl]p3:
4212    //   In a using-declaration used as a member-declaration, the
4213    //   nested-name-specifier shall name a base class of the class
4214    //   being defined.
4215
4216    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4217                                 cast<CXXRecordDecl>(NamedContext))) {
4218      if (CurContext == NamedContext) {
4219        Diag(NameLoc,
4220             diag::err_using_decl_nested_name_specifier_is_current_class)
4221          << SS.getRange();
4222        return true;
4223      }
4224
4225      Diag(SS.getRange().getBegin(),
4226           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4227        << (NestedNameSpecifier*) SS.getScopeRep()
4228        << cast<CXXRecordDecl>(CurContext)
4229        << SS.getRange();
4230      return true;
4231    }
4232
4233    return false;
4234  }
4235
4236  // C++03 [namespace.udecl]p4:
4237  //   A using-declaration used as a member-declaration shall refer
4238  //   to a member of a base class of the class being defined [etc.].
4239
4240  // Salient point: SS doesn't have to name a base class as long as
4241  // lookup only finds members from base classes.  Therefore we can
4242  // diagnose here only if we can prove that that can't happen,
4243  // i.e. if the class hierarchies provably don't intersect.
4244
4245  // TODO: it would be nice if "definitely valid" results were cached
4246  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4247  // need to be repeated.
4248
4249  struct UserData {
4250    llvm::DenseSet<const CXXRecordDecl*> Bases;
4251
4252    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4253      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4254      Data->Bases.insert(Base);
4255      return true;
4256    }
4257
4258    bool hasDependentBases(const CXXRecordDecl *Class) {
4259      return !Class->forallBases(collect, this);
4260    }
4261
4262    /// Returns true if the base is dependent or is one of the
4263    /// accumulated base classes.
4264    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4265      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4266      return !Data->Bases.count(Base);
4267    }
4268
4269    bool mightShareBases(const CXXRecordDecl *Class) {
4270      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4271    }
4272  };
4273
4274  UserData Data;
4275
4276  // Returns false if we find a dependent base.
4277  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4278    return false;
4279
4280  // Returns false if the class has a dependent base or if it or one
4281  // of its bases is present in the base set of the current context.
4282  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4283    return false;
4284
4285  Diag(SS.getRange().getBegin(),
4286       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4287    << (NestedNameSpecifier*) SS.getScopeRep()
4288    << cast<CXXRecordDecl>(CurContext)
4289    << SS.getRange();
4290
4291  return true;
4292}
4293
4294Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4295                                             SourceLocation NamespaceLoc,
4296                                             SourceLocation AliasLoc,
4297                                             IdentifierInfo *Alias,
4298                                             CXXScopeSpec &SS,
4299                                             SourceLocation IdentLoc,
4300                                             IdentifierInfo *Ident) {
4301
4302  // Lookup the namespace name.
4303  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4304  LookupParsedName(R, S, &SS);
4305
4306  // Check if we have a previous declaration with the same name.
4307  NamedDecl *PrevDecl
4308    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4309                       ForRedeclaration);
4310  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4311    PrevDecl = 0;
4312
4313  if (PrevDecl) {
4314    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4315      // We already have an alias with the same name that points to the same
4316      // namespace, so don't create a new one.
4317      // FIXME: At some point, we'll want to create the (redundant)
4318      // declaration to maintain better source information.
4319      if (!R.isAmbiguous() && !R.empty() &&
4320          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4321        return 0;
4322    }
4323
4324    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4325      diag::err_redefinition_different_kind;
4326    Diag(AliasLoc, DiagID) << Alias;
4327    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4328    return 0;
4329  }
4330
4331  if (R.isAmbiguous())
4332    return 0;
4333
4334  if (R.empty()) {
4335    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4336                                                CTC_NoKeywords, 0)) {
4337      if (R.getAsSingle<NamespaceDecl>() ||
4338          R.getAsSingle<NamespaceAliasDecl>()) {
4339        if (DeclContext *DC = computeDeclContext(SS, false))
4340          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4341            << Ident << DC << Corrected << SS.getRange()
4342            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4343        else
4344          Diag(IdentLoc, diag::err_using_directive_suggest)
4345            << Ident << Corrected
4346            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4347
4348        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4349          << Corrected;
4350
4351        Ident = Corrected.getAsIdentifierInfo();
4352      } else {
4353        R.clear();
4354        R.setLookupName(Ident);
4355      }
4356    }
4357
4358    if (R.empty()) {
4359      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4360      return 0;
4361    }
4362  }
4363
4364  NamespaceAliasDecl *AliasDecl =
4365    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4366                               Alias, SS.getRange(),
4367                               (NestedNameSpecifier *)SS.getScopeRep(),
4368                               IdentLoc, R.getFoundDecl());
4369
4370  PushOnScopeChains(AliasDecl, S);
4371  return AliasDecl;
4372}
4373
4374namespace {
4375  /// \brief Scoped object used to handle the state changes required in Sema
4376  /// to implicitly define the body of a C++ member function;
4377  class ImplicitlyDefinedFunctionScope {
4378    Sema &S;
4379    DeclContext *PreviousContext;
4380
4381  public:
4382    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4383      : S(S), PreviousContext(S.CurContext)
4384    {
4385      S.CurContext = Method;
4386      S.PushFunctionScope();
4387      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4388    }
4389
4390    ~ImplicitlyDefinedFunctionScope() {
4391      S.PopExpressionEvaluationContext();
4392      S.PopFunctionOrBlockScope();
4393      S.CurContext = PreviousContext;
4394    }
4395  };
4396}
4397
4398static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4399                                                       CXXRecordDecl *D) {
4400  ASTContext &Context = Self.Context;
4401  QualType ClassType = Context.getTypeDeclType(D);
4402  DeclarationName ConstructorName
4403    = Context.DeclarationNames.getCXXConstructorName(
4404                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4405
4406  DeclContext::lookup_const_iterator Con, ConEnd;
4407  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4408       Con != ConEnd; ++Con) {
4409    // FIXME: In C++0x, a constructor template can be a default constructor.
4410    if (isa<FunctionTemplateDecl>(*Con))
4411      continue;
4412
4413    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4414    if (Constructor->isDefaultConstructor())
4415      return Constructor;
4416  }
4417  return 0;
4418}
4419
4420CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4421                                                     CXXRecordDecl *ClassDecl) {
4422  // C++ [class.ctor]p5:
4423  //   A default constructor for a class X is a constructor of class X
4424  //   that can be called without an argument. If there is no
4425  //   user-declared constructor for class X, a default constructor is
4426  //   implicitly declared. An implicitly-declared default constructor
4427  //   is an inline public member of its class.
4428  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4429         "Should not build implicit default constructor!");
4430
4431  // C++ [except.spec]p14:
4432  //   An implicitly declared special member function (Clause 12) shall have an
4433  //   exception-specification. [...]
4434  ImplicitExceptionSpecification ExceptSpec(Context);
4435
4436  // Direct base-class destructors.
4437  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4438                                       BEnd = ClassDecl->bases_end();
4439       B != BEnd; ++B) {
4440    if (B->isVirtual()) // Handled below.
4441      continue;
4442
4443    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4444      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4445      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4446        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4447      else if (CXXConstructorDecl *Constructor
4448                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4449        ExceptSpec.CalledDecl(Constructor);
4450    }
4451  }
4452
4453  // Virtual base-class destructors.
4454  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4455                                       BEnd = ClassDecl->vbases_end();
4456       B != BEnd; ++B) {
4457    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4458      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4459      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4460        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4461      else if (CXXConstructorDecl *Constructor
4462                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4463        ExceptSpec.CalledDecl(Constructor);
4464    }
4465  }
4466
4467  // Field destructors.
4468  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4469                               FEnd = ClassDecl->field_end();
4470       F != FEnd; ++F) {
4471    if (const RecordType *RecordTy
4472              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4473      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4474      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4475        ExceptSpec.CalledDecl(
4476                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4477      else if (CXXConstructorDecl *Constructor
4478                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4479        ExceptSpec.CalledDecl(Constructor);
4480    }
4481  }
4482
4483  FunctionProtoType::ExtProtoInfo EPI;
4484  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4485  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4486  EPI.NumExceptions = ExceptSpec.size();
4487  EPI.Exceptions = ExceptSpec.data();
4488
4489  // Create the actual constructor declaration.
4490  CanQualType ClassType
4491    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4492  DeclarationName Name
4493    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4494  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4495  CXXConstructorDecl *DefaultCon
4496    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4497                                 Context.getFunctionType(Context.VoidTy,
4498                                                         0, 0, EPI),
4499                                 /*TInfo=*/0,
4500                                 /*isExplicit=*/false,
4501                                 /*isInline=*/true,
4502                                 /*isImplicitlyDeclared=*/true);
4503  DefaultCon->setAccess(AS_public);
4504  DefaultCon->setImplicit();
4505  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4506
4507  // Note that we have declared this constructor.
4508  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4509
4510  if (Scope *S = getScopeForContext(ClassDecl))
4511    PushOnScopeChains(DefaultCon, S, false);
4512  ClassDecl->addDecl(DefaultCon);
4513
4514  return DefaultCon;
4515}
4516
4517void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4518                                            CXXConstructorDecl *Constructor) {
4519  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4520          !Constructor->isUsed(false)) &&
4521    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4522
4523  CXXRecordDecl *ClassDecl = Constructor->getParent();
4524  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4525
4526  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4527  DiagnosticErrorTrap Trap(Diags);
4528  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4529      Trap.hasErrorOccurred()) {
4530    Diag(CurrentLocation, diag::note_member_synthesized_at)
4531      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4532    Constructor->setInvalidDecl();
4533    return;
4534  }
4535
4536  SourceLocation Loc = Constructor->getLocation();
4537  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4538
4539  Constructor->setUsed();
4540  MarkVTableUsed(CurrentLocation, ClassDecl);
4541}
4542
4543CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4544  // C++ [class.dtor]p2:
4545  //   If a class has no user-declared destructor, a destructor is
4546  //   declared implicitly. An implicitly-declared destructor is an
4547  //   inline public member of its class.
4548
4549  // C++ [except.spec]p14:
4550  //   An implicitly declared special member function (Clause 12) shall have
4551  //   an exception-specification.
4552  ImplicitExceptionSpecification ExceptSpec(Context);
4553
4554  // Direct base-class destructors.
4555  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4556                                       BEnd = ClassDecl->bases_end();
4557       B != BEnd; ++B) {
4558    if (B->isVirtual()) // Handled below.
4559      continue;
4560
4561    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4562      ExceptSpec.CalledDecl(
4563                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4564  }
4565
4566  // Virtual base-class destructors.
4567  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4568                                       BEnd = ClassDecl->vbases_end();
4569       B != BEnd; ++B) {
4570    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4571      ExceptSpec.CalledDecl(
4572                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4573  }
4574
4575  // Field destructors.
4576  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4577                               FEnd = ClassDecl->field_end();
4578       F != FEnd; ++F) {
4579    if (const RecordType *RecordTy
4580        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4581      ExceptSpec.CalledDecl(
4582                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4583  }
4584
4585  // Create the actual destructor declaration.
4586  FunctionProtoType::ExtProtoInfo EPI;
4587  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4588  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4589  EPI.NumExceptions = ExceptSpec.size();
4590  EPI.Exceptions = ExceptSpec.data();
4591  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4592
4593  CanQualType ClassType
4594    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4595  DeclarationName Name
4596    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4597  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4598  CXXDestructorDecl *Destructor
4599      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4600                                /*isInline=*/true,
4601                                /*isImplicitlyDeclared=*/true);
4602  Destructor->setAccess(AS_public);
4603  Destructor->setImplicit();
4604  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4605
4606  // Note that we have declared this destructor.
4607  ++ASTContext::NumImplicitDestructorsDeclared;
4608
4609  // Introduce this destructor into its scope.
4610  if (Scope *S = getScopeForContext(ClassDecl))
4611    PushOnScopeChains(Destructor, S, false);
4612  ClassDecl->addDecl(Destructor);
4613
4614  // This could be uniqued if it ever proves significant.
4615  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4616
4617  AddOverriddenMethods(ClassDecl, Destructor);
4618
4619  return Destructor;
4620}
4621
4622void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4623                                    CXXDestructorDecl *Destructor) {
4624  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4625         "DefineImplicitDestructor - call it for implicit default dtor");
4626  CXXRecordDecl *ClassDecl = Destructor->getParent();
4627  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4628
4629  if (Destructor->isInvalidDecl())
4630    return;
4631
4632  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4633
4634  DiagnosticErrorTrap Trap(Diags);
4635  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4636                                         Destructor->getParent());
4637
4638  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4639    Diag(CurrentLocation, diag::note_member_synthesized_at)
4640      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4641
4642    Destructor->setInvalidDecl();
4643    return;
4644  }
4645
4646  SourceLocation Loc = Destructor->getLocation();
4647  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4648
4649  Destructor->setUsed();
4650  MarkVTableUsed(CurrentLocation, ClassDecl);
4651}
4652
4653/// \brief Builds a statement that copies the given entity from \p From to
4654/// \c To.
4655///
4656/// This routine is used to copy the members of a class with an
4657/// implicitly-declared copy assignment operator. When the entities being
4658/// copied are arrays, this routine builds for loops to copy them.
4659///
4660/// \param S The Sema object used for type-checking.
4661///
4662/// \param Loc The location where the implicit copy is being generated.
4663///
4664/// \param T The type of the expressions being copied. Both expressions must
4665/// have this type.
4666///
4667/// \param To The expression we are copying to.
4668///
4669/// \param From The expression we are copying from.
4670///
4671/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4672/// Otherwise, it's a non-static member subobject.
4673///
4674/// \param Depth Internal parameter recording the depth of the recursion.
4675///
4676/// \returns A statement or a loop that copies the expressions.
4677static StmtResult
4678BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4679                      Expr *To, Expr *From,
4680                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4681  // C++0x [class.copy]p30:
4682  //   Each subobject is assigned in the manner appropriate to its type:
4683  //
4684  //     - if the subobject is of class type, the copy assignment operator
4685  //       for the class is used (as if by explicit qualification; that is,
4686  //       ignoring any possible virtual overriding functions in more derived
4687  //       classes);
4688  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4689    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4690
4691    // Look for operator=.
4692    DeclarationName Name
4693      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4694    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4695    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4696
4697    // Filter out any result that isn't a copy-assignment operator.
4698    LookupResult::Filter F = OpLookup.makeFilter();
4699    while (F.hasNext()) {
4700      NamedDecl *D = F.next();
4701      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4702        if (Method->isCopyAssignmentOperator())
4703          continue;
4704
4705      F.erase();
4706    }
4707    F.done();
4708
4709    // Suppress the protected check (C++ [class.protected]) for each of the
4710    // assignment operators we found. This strange dance is required when
4711    // we're assigning via a base classes's copy-assignment operator. To
4712    // ensure that we're getting the right base class subobject (without
4713    // ambiguities), we need to cast "this" to that subobject type; to
4714    // ensure that we don't go through the virtual call mechanism, we need
4715    // to qualify the operator= name with the base class (see below). However,
4716    // this means that if the base class has a protected copy assignment
4717    // operator, the protected member access check will fail. So, we
4718    // rewrite "protected" access to "public" access in this case, since we
4719    // know by construction that we're calling from a derived class.
4720    if (CopyingBaseSubobject) {
4721      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4722           L != LEnd; ++L) {
4723        if (L.getAccess() == AS_protected)
4724          L.setAccess(AS_public);
4725      }
4726    }
4727
4728    // Create the nested-name-specifier that will be used to qualify the
4729    // reference to operator=; this is required to suppress the virtual
4730    // call mechanism.
4731    CXXScopeSpec SS;
4732    SS.setRange(Loc);
4733    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4734                                               T.getTypePtr()));
4735
4736    // Create the reference to operator=.
4737    ExprResult OpEqualRef
4738      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
4739                                   /*FirstQualifierInScope=*/0, OpLookup,
4740                                   /*TemplateArgs=*/0,
4741                                   /*SuppressQualifierCheck=*/true);
4742    if (OpEqualRef.isInvalid())
4743      return StmtError();
4744
4745    // Build the call to the assignment operator.
4746
4747    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4748                                                  OpEqualRef.takeAs<Expr>(),
4749                                                  Loc, &From, 1, Loc);
4750    if (Call.isInvalid())
4751      return StmtError();
4752
4753    return S.Owned(Call.takeAs<Stmt>());
4754  }
4755
4756  //     - if the subobject is of scalar type, the built-in assignment
4757  //       operator is used.
4758  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4759  if (!ArrayTy) {
4760    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
4761    if (Assignment.isInvalid())
4762      return StmtError();
4763
4764    return S.Owned(Assignment.takeAs<Stmt>());
4765  }
4766
4767  //     - if the subobject is an array, each element is assigned, in the
4768  //       manner appropriate to the element type;
4769
4770  // Construct a loop over the array bounds, e.g.,
4771  //
4772  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4773  //
4774  // that will copy each of the array elements.
4775  QualType SizeType = S.Context.getSizeType();
4776
4777  // Create the iteration variable.
4778  IdentifierInfo *IterationVarName = 0;
4779  {
4780    llvm::SmallString<8> Str;
4781    llvm::raw_svector_ostream OS(Str);
4782    OS << "__i" << Depth;
4783    IterationVarName = &S.Context.Idents.get(OS.str());
4784  }
4785  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4786                                          IterationVarName, SizeType,
4787                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4788                                          SC_None, SC_None);
4789
4790  // Initialize the iteration variable to zero.
4791  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4792  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
4793
4794  // Create a reference to the iteration variable; we'll use this several
4795  // times throughout.
4796  Expr *IterationVarRef
4797    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
4798  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4799
4800  // Create the DeclStmt that holds the iteration variable.
4801  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4802
4803  // Create the comparison against the array bound.
4804  llvm::APInt Upper
4805    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
4806  Expr *Comparison
4807    = new (S.Context) BinaryOperator(IterationVarRef,
4808                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
4809                                     BO_NE, S.Context.BoolTy,
4810                                     VK_RValue, OK_Ordinary, Loc);
4811
4812  // Create the pre-increment of the iteration variable.
4813  Expr *Increment
4814    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
4815                                    VK_LValue, OK_Ordinary, Loc);
4816
4817  // Subscript the "from" and "to" expressions with the iteration variable.
4818  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
4819                                                         IterationVarRef, Loc));
4820  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
4821                                                       IterationVarRef, Loc));
4822
4823  // Build the copy for an individual element of the array.
4824  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
4825                                          To, From, CopyingBaseSubobject,
4826                                          Depth + 1);
4827  if (Copy.isInvalid())
4828    return StmtError();
4829
4830  // Construct the loop that copies all elements of this array.
4831  return S.ActOnForStmt(Loc, Loc, InitStmt,
4832                        S.MakeFullExpr(Comparison),
4833                        0, S.MakeFullExpr(Increment),
4834                        Loc, Copy.take());
4835}
4836
4837/// \brief Determine whether the given class has a copy assignment operator
4838/// that accepts a const-qualified argument.
4839static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
4840  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
4841
4842  if (!Class->hasDeclaredCopyAssignment())
4843    S.DeclareImplicitCopyAssignment(Class);
4844
4845  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
4846  DeclarationName OpName
4847    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4848
4849  DeclContext::lookup_const_iterator Op, OpEnd;
4850  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
4851    // C++ [class.copy]p9:
4852    //   A user-declared copy assignment operator is a non-static non-template
4853    //   member function of class X with exactly one parameter of type X, X&,
4854    //   const X&, volatile X& or const volatile X&.
4855    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
4856    if (!Method)
4857      continue;
4858
4859    if (Method->isStatic())
4860      continue;
4861    if (Method->getPrimaryTemplate())
4862      continue;
4863    const FunctionProtoType *FnType =
4864    Method->getType()->getAs<FunctionProtoType>();
4865    assert(FnType && "Overloaded operator has no prototype.");
4866    // Don't assert on this; an invalid decl might have been left in the AST.
4867    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
4868      continue;
4869    bool AcceptsConst = true;
4870    QualType ArgType = FnType->getArgType(0);
4871    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
4872      ArgType = Ref->getPointeeType();
4873      // Is it a non-const lvalue reference?
4874      if (!ArgType.isConstQualified())
4875        AcceptsConst = false;
4876    }
4877    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
4878      continue;
4879
4880    // We have a single argument of type cv X or cv X&, i.e. we've found the
4881    // copy assignment operator. Return whether it accepts const arguments.
4882    return AcceptsConst;
4883  }
4884  assert(Class->isInvalidDecl() &&
4885         "No copy assignment operator declared in valid code.");
4886  return false;
4887}
4888
4889CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
4890  // Note: The following rules are largely analoguous to the copy
4891  // constructor rules. Note that virtual bases are not taken into account
4892  // for determining the argument type of the operator. Note also that
4893  // operators taking an object instead of a reference are allowed.
4894
4895
4896  // C++ [class.copy]p10:
4897  //   If the class definition does not explicitly declare a copy
4898  //   assignment operator, one is declared implicitly.
4899  //   The implicitly-defined copy assignment operator for a class X
4900  //   will have the form
4901  //
4902  //       X& X::operator=(const X&)
4903  //
4904  //   if
4905  bool HasConstCopyAssignment = true;
4906
4907  //       -- each direct base class B of X has a copy assignment operator
4908  //          whose parameter is of type const B&, const volatile B& or B,
4909  //          and
4910  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4911                                       BaseEnd = ClassDecl->bases_end();
4912       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
4913    assert(!Base->getType()->isDependentType() &&
4914           "Cannot generate implicit members for class with dependent bases.");
4915    const CXXRecordDecl *BaseClassDecl
4916      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4917    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
4918  }
4919
4920  //       -- for all the nonstatic data members of X that are of a class
4921  //          type M (or array thereof), each such class type has a copy
4922  //          assignment operator whose parameter is of type const M&,
4923  //          const volatile M& or M.
4924  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4925                                  FieldEnd = ClassDecl->field_end();
4926       HasConstCopyAssignment && Field != FieldEnd;
4927       ++Field) {
4928    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4929    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4930      const CXXRecordDecl *FieldClassDecl
4931        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4932      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
4933    }
4934  }
4935
4936  //   Otherwise, the implicitly declared copy assignment operator will
4937  //   have the form
4938  //
4939  //       X& X::operator=(X&)
4940  QualType ArgType = Context.getTypeDeclType(ClassDecl);
4941  QualType RetType = Context.getLValueReferenceType(ArgType);
4942  if (HasConstCopyAssignment)
4943    ArgType = ArgType.withConst();
4944  ArgType = Context.getLValueReferenceType(ArgType);
4945
4946  // C++ [except.spec]p14:
4947  //   An implicitly declared special member function (Clause 12) shall have an
4948  //   exception-specification. [...]
4949  ImplicitExceptionSpecification ExceptSpec(Context);
4950  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4951                                       BaseEnd = ClassDecl->bases_end();
4952       Base != BaseEnd; ++Base) {
4953    CXXRecordDecl *BaseClassDecl
4954      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4955
4956    if (!BaseClassDecl->hasDeclaredCopyAssignment())
4957      DeclareImplicitCopyAssignment(BaseClassDecl);
4958
4959    if (CXXMethodDecl *CopyAssign
4960           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4961      ExceptSpec.CalledDecl(CopyAssign);
4962  }
4963  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4964                                  FieldEnd = ClassDecl->field_end();
4965       Field != FieldEnd;
4966       ++Field) {
4967    QualType FieldType = Context.getBaseElementType((*Field)->getType());
4968    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4969      CXXRecordDecl *FieldClassDecl
4970        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4971
4972      if (!FieldClassDecl->hasDeclaredCopyAssignment())
4973        DeclareImplicitCopyAssignment(FieldClassDecl);
4974
4975      if (CXXMethodDecl *CopyAssign
4976            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
4977        ExceptSpec.CalledDecl(CopyAssign);
4978    }
4979  }
4980
4981  //   An implicitly-declared copy assignment operator is an inline public
4982  //   member of its class.
4983  FunctionProtoType::ExtProtoInfo EPI;
4984  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4985  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4986  EPI.NumExceptions = ExceptSpec.size();
4987  EPI.Exceptions = ExceptSpec.data();
4988  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4989  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4990  CXXMethodDecl *CopyAssignment
4991    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
4992                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
4993                            /*TInfo=*/0, /*isStatic=*/false,
4994                            /*StorageClassAsWritten=*/SC_None,
4995                            /*isInline=*/true);
4996  CopyAssignment->setAccess(AS_public);
4997  CopyAssignment->setImplicit();
4998  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
4999
5000  // Add the parameter to the operator.
5001  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5002                                               ClassDecl->getLocation(),
5003                                               /*Id=*/0,
5004                                               ArgType, /*TInfo=*/0,
5005                                               SC_None,
5006                                               SC_None, 0);
5007  CopyAssignment->setParams(&FromParam, 1);
5008
5009  // Note that we have added this copy-assignment operator.
5010  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5011
5012  if (Scope *S = getScopeForContext(ClassDecl))
5013    PushOnScopeChains(CopyAssignment, S, false);
5014  ClassDecl->addDecl(CopyAssignment);
5015
5016  AddOverriddenMethods(ClassDecl, CopyAssignment);
5017  return CopyAssignment;
5018}
5019
5020void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5021                                        CXXMethodDecl *CopyAssignOperator) {
5022  assert((CopyAssignOperator->isImplicit() &&
5023          CopyAssignOperator->isOverloadedOperator() &&
5024          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5025          !CopyAssignOperator->isUsed(false)) &&
5026         "DefineImplicitCopyAssignment called for wrong function");
5027
5028  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5029
5030  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5031    CopyAssignOperator->setInvalidDecl();
5032    return;
5033  }
5034
5035  CopyAssignOperator->setUsed();
5036
5037  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5038  DiagnosticErrorTrap Trap(Diags);
5039
5040  // C++0x [class.copy]p30:
5041  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5042  //   for a non-union class X performs memberwise copy assignment of its
5043  //   subobjects. The direct base classes of X are assigned first, in the
5044  //   order of their declaration in the base-specifier-list, and then the
5045  //   immediate non-static data members of X are assigned, in the order in
5046  //   which they were declared in the class definition.
5047
5048  // The statements that form the synthesized function body.
5049  ASTOwningVector<Stmt*> Statements(*this);
5050
5051  // The parameter for the "other" object, which we are copying from.
5052  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5053  Qualifiers OtherQuals = Other->getType().getQualifiers();
5054  QualType OtherRefType = Other->getType();
5055  if (const LValueReferenceType *OtherRef
5056                                = OtherRefType->getAs<LValueReferenceType>()) {
5057    OtherRefType = OtherRef->getPointeeType();
5058    OtherQuals = OtherRefType.getQualifiers();
5059  }
5060
5061  // Our location for everything implicitly-generated.
5062  SourceLocation Loc = CopyAssignOperator->getLocation();
5063
5064  // Construct a reference to the "other" object. We'll be using this
5065  // throughout the generated ASTs.
5066  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5067  assert(OtherRef && "Reference to parameter cannot fail!");
5068
5069  // Construct the "this" pointer. We'll be using this throughout the generated
5070  // ASTs.
5071  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5072  assert(This && "Reference to this cannot fail!");
5073
5074  // Assign base classes.
5075  bool Invalid = false;
5076  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5077       E = ClassDecl->bases_end(); Base != E; ++Base) {
5078    // Form the assignment:
5079    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5080    QualType BaseType = Base->getType().getUnqualifiedType();
5081    if (!BaseType->isRecordType()) {
5082      Invalid = true;
5083      continue;
5084    }
5085
5086    CXXCastPath BasePath;
5087    BasePath.push_back(Base);
5088
5089    // Construct the "from" expression, which is an implicit cast to the
5090    // appropriately-qualified base type.
5091    Expr *From = OtherRef;
5092    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5093                      CK_UncheckedDerivedToBase,
5094                      VK_LValue, &BasePath);
5095
5096    // Dereference "this".
5097    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5098
5099    // Implicitly cast "this" to the appropriately-qualified base type.
5100    Expr *ToE = To.takeAs<Expr>();
5101    ImpCastExprToType(ToE,
5102                      Context.getCVRQualifiedType(BaseType,
5103                                      CopyAssignOperator->getTypeQualifiers()),
5104                      CK_UncheckedDerivedToBase,
5105                      VK_LValue, &BasePath);
5106    To = Owned(ToE);
5107
5108    // Build the copy.
5109    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5110                                            To.get(), From,
5111                                            /*CopyingBaseSubobject=*/true);
5112    if (Copy.isInvalid()) {
5113      Diag(CurrentLocation, diag::note_member_synthesized_at)
5114        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5115      CopyAssignOperator->setInvalidDecl();
5116      return;
5117    }
5118
5119    // Success! Record the copy.
5120    Statements.push_back(Copy.takeAs<Expr>());
5121  }
5122
5123  // \brief Reference to the __builtin_memcpy function.
5124  Expr *BuiltinMemCpyRef = 0;
5125  // \brief Reference to the __builtin_objc_memmove_collectable function.
5126  Expr *CollectableMemCpyRef = 0;
5127
5128  // Assign non-static members.
5129  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5130                                  FieldEnd = ClassDecl->field_end();
5131       Field != FieldEnd; ++Field) {
5132    // Check for members of reference type; we can't copy those.
5133    if (Field->getType()->isReferenceType()) {
5134      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5135        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5136      Diag(Field->getLocation(), diag::note_declared_at);
5137      Diag(CurrentLocation, diag::note_member_synthesized_at)
5138        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5139      Invalid = true;
5140      continue;
5141    }
5142
5143    // Check for members of const-qualified, non-class type.
5144    QualType BaseType = Context.getBaseElementType(Field->getType());
5145    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5146      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5147        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5148      Diag(Field->getLocation(), diag::note_declared_at);
5149      Diag(CurrentLocation, diag::note_member_synthesized_at)
5150        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5151      Invalid = true;
5152      continue;
5153    }
5154
5155    QualType FieldType = Field->getType().getNonReferenceType();
5156    if (FieldType->isIncompleteArrayType()) {
5157      assert(ClassDecl->hasFlexibleArrayMember() &&
5158             "Incomplete array type is not valid");
5159      continue;
5160    }
5161
5162    // Build references to the field in the object we're copying from and to.
5163    CXXScopeSpec SS; // Intentionally empty
5164    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5165                              LookupMemberName);
5166    MemberLookup.addDecl(*Field);
5167    MemberLookup.resolveKind();
5168    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5169                                               Loc, /*IsArrow=*/false,
5170                                               SS, 0, MemberLookup, 0);
5171    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5172                                             Loc, /*IsArrow=*/true,
5173                                             SS, 0, MemberLookup, 0);
5174    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5175    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5176
5177    // If the field should be copied with __builtin_memcpy rather than via
5178    // explicit assignments, do so. This optimization only applies for arrays
5179    // of scalars and arrays of class type with trivial copy-assignment
5180    // operators.
5181    if (FieldType->isArrayType() &&
5182        (!BaseType->isRecordType() ||
5183         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5184           ->hasTrivialCopyAssignment())) {
5185      // Compute the size of the memory buffer to be copied.
5186      QualType SizeType = Context.getSizeType();
5187      llvm::APInt Size(Context.getTypeSize(SizeType),
5188                       Context.getTypeSizeInChars(BaseType).getQuantity());
5189      for (const ConstantArrayType *Array
5190              = Context.getAsConstantArrayType(FieldType);
5191           Array;
5192           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5193        llvm::APInt ArraySize
5194          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5195        Size *= ArraySize;
5196      }
5197
5198      // Take the address of the field references for "from" and "to".
5199      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5200      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5201
5202      bool NeedsCollectableMemCpy =
5203          (BaseType->isRecordType() &&
5204           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5205
5206      if (NeedsCollectableMemCpy) {
5207        if (!CollectableMemCpyRef) {
5208          // Create a reference to the __builtin_objc_memmove_collectable function.
5209          LookupResult R(*this,
5210                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5211                         Loc, LookupOrdinaryName);
5212          LookupName(R, TUScope, true);
5213
5214          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5215          if (!CollectableMemCpy) {
5216            // Something went horribly wrong earlier, and we will have
5217            // complained about it.
5218            Invalid = true;
5219            continue;
5220          }
5221
5222          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5223                                                  CollectableMemCpy->getType(),
5224                                                  VK_LValue, Loc, 0).take();
5225          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5226        }
5227      }
5228      // Create a reference to the __builtin_memcpy builtin function.
5229      else if (!BuiltinMemCpyRef) {
5230        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5231                       LookupOrdinaryName);
5232        LookupName(R, TUScope, true);
5233
5234        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5235        if (!BuiltinMemCpy) {
5236          // Something went horribly wrong earlier, and we will have complained
5237          // about it.
5238          Invalid = true;
5239          continue;
5240        }
5241
5242        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5243                                            BuiltinMemCpy->getType(),
5244                                            VK_LValue, Loc, 0).take();
5245        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5246      }
5247
5248      ASTOwningVector<Expr*> CallArgs(*this);
5249      CallArgs.push_back(To.takeAs<Expr>());
5250      CallArgs.push_back(From.takeAs<Expr>());
5251      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5252      ExprResult Call = ExprError();
5253      if (NeedsCollectableMemCpy)
5254        Call = ActOnCallExpr(/*Scope=*/0,
5255                             CollectableMemCpyRef,
5256                             Loc, move_arg(CallArgs),
5257                             Loc);
5258      else
5259        Call = ActOnCallExpr(/*Scope=*/0,
5260                             BuiltinMemCpyRef,
5261                             Loc, move_arg(CallArgs),
5262                             Loc);
5263
5264      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5265      Statements.push_back(Call.takeAs<Expr>());
5266      continue;
5267    }
5268
5269    // Build the copy of this field.
5270    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5271                                                  To.get(), From.get(),
5272                                              /*CopyingBaseSubobject=*/false);
5273    if (Copy.isInvalid()) {
5274      Diag(CurrentLocation, diag::note_member_synthesized_at)
5275        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5276      CopyAssignOperator->setInvalidDecl();
5277      return;
5278    }
5279
5280    // Success! Record the copy.
5281    Statements.push_back(Copy.takeAs<Stmt>());
5282  }
5283
5284  if (!Invalid) {
5285    // Add a "return *this;"
5286    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5287
5288    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5289    if (Return.isInvalid())
5290      Invalid = true;
5291    else {
5292      Statements.push_back(Return.takeAs<Stmt>());
5293
5294      if (Trap.hasErrorOccurred()) {
5295        Diag(CurrentLocation, diag::note_member_synthesized_at)
5296          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5297        Invalid = true;
5298      }
5299    }
5300  }
5301
5302  if (Invalid) {
5303    CopyAssignOperator->setInvalidDecl();
5304    return;
5305  }
5306
5307  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5308                                            /*isStmtExpr=*/false);
5309  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5310  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5311}
5312
5313CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5314                                                    CXXRecordDecl *ClassDecl) {
5315  // C++ [class.copy]p4:
5316  //   If the class definition does not explicitly declare a copy
5317  //   constructor, one is declared implicitly.
5318
5319  // C++ [class.copy]p5:
5320  //   The implicitly-declared copy constructor for a class X will
5321  //   have the form
5322  //
5323  //       X::X(const X&)
5324  //
5325  //   if
5326  bool HasConstCopyConstructor = true;
5327
5328  //     -- each direct or virtual base class B of X has a copy
5329  //        constructor whose first parameter is of type const B& or
5330  //        const volatile B&, and
5331  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5332                                       BaseEnd = ClassDecl->bases_end();
5333       HasConstCopyConstructor && Base != BaseEnd;
5334       ++Base) {
5335    // Virtual bases are handled below.
5336    if (Base->isVirtual())
5337      continue;
5338
5339    CXXRecordDecl *BaseClassDecl
5340      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5341    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5342      DeclareImplicitCopyConstructor(BaseClassDecl);
5343
5344    HasConstCopyConstructor
5345      = BaseClassDecl->hasConstCopyConstructor(Context);
5346  }
5347
5348  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5349                                       BaseEnd = ClassDecl->vbases_end();
5350       HasConstCopyConstructor && Base != BaseEnd;
5351       ++Base) {
5352    CXXRecordDecl *BaseClassDecl
5353      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5354    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5355      DeclareImplicitCopyConstructor(BaseClassDecl);
5356
5357    HasConstCopyConstructor
5358      = BaseClassDecl->hasConstCopyConstructor(Context);
5359  }
5360
5361  //     -- for all the nonstatic data members of X that are of a
5362  //        class type M (or array thereof), each such class type
5363  //        has a copy constructor whose first parameter is of type
5364  //        const M& or const volatile M&.
5365  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5366                                  FieldEnd = ClassDecl->field_end();
5367       HasConstCopyConstructor && Field != FieldEnd;
5368       ++Field) {
5369    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5370    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5371      CXXRecordDecl *FieldClassDecl
5372        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5373      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5374        DeclareImplicitCopyConstructor(FieldClassDecl);
5375
5376      HasConstCopyConstructor
5377        = FieldClassDecl->hasConstCopyConstructor(Context);
5378    }
5379  }
5380
5381  //   Otherwise, the implicitly declared copy constructor will have
5382  //   the form
5383  //
5384  //       X::X(X&)
5385  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5386  QualType ArgType = ClassType;
5387  if (HasConstCopyConstructor)
5388    ArgType = ArgType.withConst();
5389  ArgType = Context.getLValueReferenceType(ArgType);
5390
5391  // C++ [except.spec]p14:
5392  //   An implicitly declared special member function (Clause 12) shall have an
5393  //   exception-specification. [...]
5394  ImplicitExceptionSpecification ExceptSpec(Context);
5395  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5396  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5397                                       BaseEnd = ClassDecl->bases_end();
5398       Base != BaseEnd;
5399       ++Base) {
5400    // Virtual bases are handled below.
5401    if (Base->isVirtual())
5402      continue;
5403
5404    CXXRecordDecl *BaseClassDecl
5405      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5406    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5407      DeclareImplicitCopyConstructor(BaseClassDecl);
5408
5409    if (CXXConstructorDecl *CopyConstructor
5410                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5411      ExceptSpec.CalledDecl(CopyConstructor);
5412  }
5413  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5414                                       BaseEnd = ClassDecl->vbases_end();
5415       Base != BaseEnd;
5416       ++Base) {
5417    CXXRecordDecl *BaseClassDecl
5418      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5419    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5420      DeclareImplicitCopyConstructor(BaseClassDecl);
5421
5422    if (CXXConstructorDecl *CopyConstructor
5423                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5424      ExceptSpec.CalledDecl(CopyConstructor);
5425  }
5426  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5427                                  FieldEnd = ClassDecl->field_end();
5428       Field != FieldEnd;
5429       ++Field) {
5430    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5431    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5432      CXXRecordDecl *FieldClassDecl
5433        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5434      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5435        DeclareImplicitCopyConstructor(FieldClassDecl);
5436
5437      if (CXXConstructorDecl *CopyConstructor
5438                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5439        ExceptSpec.CalledDecl(CopyConstructor);
5440    }
5441  }
5442
5443  //   An implicitly-declared copy constructor is an inline public
5444  //   member of its class.
5445  FunctionProtoType::ExtProtoInfo EPI;
5446  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5447  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5448  EPI.NumExceptions = ExceptSpec.size();
5449  EPI.Exceptions = ExceptSpec.data();
5450  DeclarationName Name
5451    = Context.DeclarationNames.getCXXConstructorName(
5452                                           Context.getCanonicalType(ClassType));
5453  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5454  CXXConstructorDecl *CopyConstructor
5455    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5456                                 Context.getFunctionType(Context.VoidTy,
5457                                                         &ArgType, 1, EPI),
5458                                 /*TInfo=*/0,
5459                                 /*isExplicit=*/false,
5460                                 /*isInline=*/true,
5461                                 /*isImplicitlyDeclared=*/true);
5462  CopyConstructor->setAccess(AS_public);
5463  CopyConstructor->setImplicit();
5464  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5465
5466  // Note that we have declared this constructor.
5467  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5468
5469  // Add the parameter to the constructor.
5470  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5471                                               ClassDecl->getLocation(),
5472                                               /*IdentifierInfo=*/0,
5473                                               ArgType, /*TInfo=*/0,
5474                                               SC_None,
5475                                               SC_None, 0);
5476  CopyConstructor->setParams(&FromParam, 1);
5477  if (Scope *S = getScopeForContext(ClassDecl))
5478    PushOnScopeChains(CopyConstructor, S, false);
5479  ClassDecl->addDecl(CopyConstructor);
5480
5481  return CopyConstructor;
5482}
5483
5484void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5485                                   CXXConstructorDecl *CopyConstructor,
5486                                   unsigned TypeQuals) {
5487  assert((CopyConstructor->isImplicit() &&
5488          CopyConstructor->isCopyConstructor(TypeQuals) &&
5489          !CopyConstructor->isUsed(false)) &&
5490         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5491
5492  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5493  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5494
5495  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5496  DiagnosticErrorTrap Trap(Diags);
5497
5498  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5499      Trap.hasErrorOccurred()) {
5500    Diag(CurrentLocation, diag::note_member_synthesized_at)
5501      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5502    CopyConstructor->setInvalidDecl();
5503  }  else {
5504    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5505                                               CopyConstructor->getLocation(),
5506                                               MultiStmtArg(*this, 0, 0),
5507                                               /*isStmtExpr=*/false)
5508                                                              .takeAs<Stmt>());
5509  }
5510
5511  CopyConstructor->setUsed();
5512}
5513
5514ExprResult
5515Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5516                            CXXConstructorDecl *Constructor,
5517                            MultiExprArg ExprArgs,
5518                            bool RequiresZeroInit,
5519                            unsigned ConstructKind,
5520                            SourceRange ParenRange) {
5521  bool Elidable = false;
5522
5523  // C++0x [class.copy]p34:
5524  //   When certain criteria are met, an implementation is allowed to
5525  //   omit the copy/move construction of a class object, even if the
5526  //   copy/move constructor and/or destructor for the object have
5527  //   side effects. [...]
5528  //     - when a temporary class object that has not been bound to a
5529  //       reference (12.2) would be copied/moved to a class object
5530  //       with the same cv-unqualified type, the copy/move operation
5531  //       can be omitted by constructing the temporary object
5532  //       directly into the target of the omitted copy/move
5533  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5534      Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
5535    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5536    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5537  }
5538
5539  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5540                               Elidable, move(ExprArgs), RequiresZeroInit,
5541                               ConstructKind, ParenRange);
5542}
5543
5544/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5545/// including handling of its default argument expressions.
5546ExprResult
5547Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5548                            CXXConstructorDecl *Constructor, bool Elidable,
5549                            MultiExprArg ExprArgs,
5550                            bool RequiresZeroInit,
5551                            unsigned ConstructKind,
5552                            SourceRange ParenRange) {
5553  unsigned NumExprs = ExprArgs.size();
5554  Expr **Exprs = (Expr **)ExprArgs.release();
5555
5556  MarkDeclarationReferenced(ConstructLoc, Constructor);
5557  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5558                                        Constructor, Elidable, Exprs, NumExprs,
5559                                        RequiresZeroInit,
5560              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5561                                        ParenRange));
5562}
5563
5564bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5565                                        CXXConstructorDecl *Constructor,
5566                                        MultiExprArg Exprs) {
5567  // FIXME: Provide the correct paren SourceRange when available.
5568  ExprResult TempResult =
5569    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5570                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5571                          SourceRange());
5572  if (TempResult.isInvalid())
5573    return true;
5574
5575  Expr *Temp = TempResult.takeAs<Expr>();
5576  CheckImplicitConversions(Temp, VD->getLocation());
5577  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5578  Temp = MaybeCreateExprWithCleanups(Temp);
5579  VD->setInit(Temp);
5580
5581  return false;
5582}
5583
5584void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5585  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5586  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5587      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5588    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5589    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5590    CheckDestructorAccess(VD->getLocation(), Destructor,
5591                          PDiag(diag::err_access_dtor_var)
5592                            << VD->getDeclName()
5593                            << VD->getType());
5594
5595    // TODO: this should be re-enabled for static locals by !CXAAtExit
5596    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5597      Diag(VD->getLocation(), diag::warn_global_destructor);
5598  }
5599}
5600
5601/// AddCXXDirectInitializerToDecl - This action is called immediately after
5602/// ActOnDeclarator, when a C++ direct initializer is present.
5603/// e.g: "int x(1);"
5604void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5605                                         SourceLocation LParenLoc,
5606                                         MultiExprArg Exprs,
5607                                         SourceLocation RParenLoc) {
5608  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5609
5610  // If there is no declaration, there was an error parsing it.  Just ignore
5611  // the initializer.
5612  if (RealDecl == 0)
5613    return;
5614
5615  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5616  if (!VDecl) {
5617    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5618    RealDecl->setInvalidDecl();
5619    return;
5620  }
5621
5622  // We will represent direct-initialization similarly to copy-initialization:
5623  //    int x(1);  -as-> int x = 1;
5624  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5625  //
5626  // Clients that want to distinguish between the two forms, can check for
5627  // direct initializer using VarDecl::hasCXXDirectInitializer().
5628  // A major benefit is that clients that don't particularly care about which
5629  // exactly form was it (like the CodeGen) can handle both cases without
5630  // special case code.
5631
5632  // C++ 8.5p11:
5633  // The form of initialization (using parentheses or '=') is generally
5634  // insignificant, but does matter when the entity being initialized has a
5635  // class type.
5636
5637  if (!VDecl->getType()->isDependentType() &&
5638      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5639                          diag::err_typecheck_decl_incomplete_type)) {
5640    VDecl->setInvalidDecl();
5641    return;
5642  }
5643
5644  // The variable can not have an abstract class type.
5645  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5646                             diag::err_abstract_type_in_decl,
5647                             AbstractVariableType))
5648    VDecl->setInvalidDecl();
5649
5650  const VarDecl *Def;
5651  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5652    Diag(VDecl->getLocation(), diag::err_redefinition)
5653    << VDecl->getDeclName();
5654    Diag(Def->getLocation(), diag::note_previous_definition);
5655    VDecl->setInvalidDecl();
5656    return;
5657  }
5658
5659  // C++ [class.static.data]p4
5660  //   If a static data member is of const integral or const
5661  //   enumeration type, its declaration in the class definition can
5662  //   specify a constant-initializer which shall be an integral
5663  //   constant expression (5.19). In that case, the member can appear
5664  //   in integral constant expressions. The member shall still be
5665  //   defined in a namespace scope if it is used in the program and the
5666  //   namespace scope definition shall not contain an initializer.
5667  //
5668  // We already performed a redefinition check above, but for static
5669  // data members we also need to check whether there was an in-class
5670  // declaration with an initializer.
5671  const VarDecl* PrevInit = 0;
5672  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5673    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5674    Diag(PrevInit->getLocation(), diag::note_previous_definition);
5675    return;
5676  }
5677
5678  bool IsDependent = false;
5679  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
5680    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
5681      VDecl->setInvalidDecl();
5682      return;
5683    }
5684
5685    if (Exprs.get()[I]->isTypeDependent())
5686      IsDependent = true;
5687  }
5688
5689  // If either the declaration has a dependent type or if any of the
5690  // expressions is type-dependent, we represent the initialization
5691  // via a ParenListExpr for later use during template instantiation.
5692  if (VDecl->getType()->isDependentType() || IsDependent) {
5693    // Let clients know that initialization was done with a direct initializer.
5694    VDecl->setCXXDirectInitializer(true);
5695
5696    // Store the initialization expressions as a ParenListExpr.
5697    unsigned NumExprs = Exprs.size();
5698    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5699                                               (Expr **)Exprs.release(),
5700                                               NumExprs, RParenLoc));
5701    return;
5702  }
5703
5704  // Capture the variable that is being initialized and the style of
5705  // initialization.
5706  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5707
5708  // FIXME: Poor source location information.
5709  InitializationKind Kind
5710    = InitializationKind::CreateDirect(VDecl->getLocation(),
5711                                       LParenLoc, RParenLoc);
5712
5713  InitializationSequence InitSeq(*this, Entity, Kind,
5714                                 Exprs.get(), Exprs.size());
5715  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5716  if (Result.isInvalid()) {
5717    VDecl->setInvalidDecl();
5718    return;
5719  }
5720
5721  CheckImplicitConversions(Result.get(), LParenLoc);
5722
5723  Result = MaybeCreateExprWithCleanups(Result);
5724  VDecl->setInit(Result.takeAs<Expr>());
5725  VDecl->setCXXDirectInitializer(true);
5726
5727  CheckCompleteVariableDeclaration(VDecl);
5728}
5729
5730/// \brief Given a constructor and the set of arguments provided for the
5731/// constructor, convert the arguments and add any required default arguments
5732/// to form a proper call to this constructor.
5733///
5734/// \returns true if an error occurred, false otherwise.
5735bool
5736Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5737                              MultiExprArg ArgsPtr,
5738                              SourceLocation Loc,
5739                              ASTOwningVector<Expr*> &ConvertedArgs) {
5740  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5741  unsigned NumArgs = ArgsPtr.size();
5742  Expr **Args = (Expr **)ArgsPtr.get();
5743
5744  const FunctionProtoType *Proto
5745    = Constructor->getType()->getAs<FunctionProtoType>();
5746  assert(Proto && "Constructor without a prototype?");
5747  unsigned NumArgsInProto = Proto->getNumArgs();
5748
5749  // If too few arguments are available, we'll fill in the rest with defaults.
5750  if (NumArgs < NumArgsInProto)
5751    ConvertedArgs.reserve(NumArgsInProto);
5752  else
5753    ConvertedArgs.reserve(NumArgs);
5754
5755  VariadicCallType CallType =
5756    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5757  llvm::SmallVector<Expr *, 8> AllArgs;
5758  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5759                                        Proto, 0, Args, NumArgs, AllArgs,
5760                                        CallType);
5761  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5762    ConvertedArgs.push_back(AllArgs[i]);
5763  return Invalid;
5764}
5765
5766static inline bool
5767CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5768                                       const FunctionDecl *FnDecl) {
5769  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
5770  if (isa<NamespaceDecl>(DC)) {
5771    return SemaRef.Diag(FnDecl->getLocation(),
5772                        diag::err_operator_new_delete_declared_in_namespace)
5773      << FnDecl->getDeclName();
5774  }
5775
5776  if (isa<TranslationUnitDecl>(DC) &&
5777      FnDecl->getStorageClass() == SC_Static) {
5778    return SemaRef.Diag(FnDecl->getLocation(),
5779                        diag::err_operator_new_delete_declared_static)
5780      << FnDecl->getDeclName();
5781  }
5782
5783  return false;
5784}
5785
5786static inline bool
5787CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5788                            CanQualType ExpectedResultType,
5789                            CanQualType ExpectedFirstParamType,
5790                            unsigned DependentParamTypeDiag,
5791                            unsigned InvalidParamTypeDiag) {
5792  QualType ResultType =
5793    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5794
5795  // Check that the result type is not dependent.
5796  if (ResultType->isDependentType())
5797    return SemaRef.Diag(FnDecl->getLocation(),
5798                        diag::err_operator_new_delete_dependent_result_type)
5799    << FnDecl->getDeclName() << ExpectedResultType;
5800
5801  // Check that the result type is what we expect.
5802  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5803    return SemaRef.Diag(FnDecl->getLocation(),
5804                        diag::err_operator_new_delete_invalid_result_type)
5805    << FnDecl->getDeclName() << ExpectedResultType;
5806
5807  // A function template must have at least 2 parameters.
5808  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5809    return SemaRef.Diag(FnDecl->getLocation(),
5810                      diag::err_operator_new_delete_template_too_few_parameters)
5811        << FnDecl->getDeclName();
5812
5813  // The function decl must have at least 1 parameter.
5814  if (FnDecl->getNumParams() == 0)
5815    return SemaRef.Diag(FnDecl->getLocation(),
5816                        diag::err_operator_new_delete_too_few_parameters)
5817      << FnDecl->getDeclName();
5818
5819  // Check the the first parameter type is not dependent.
5820  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5821  if (FirstParamType->isDependentType())
5822    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5823      << FnDecl->getDeclName() << ExpectedFirstParamType;
5824
5825  // Check that the first parameter type is what we expect.
5826  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5827      ExpectedFirstParamType)
5828    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5829    << FnDecl->getDeclName() << ExpectedFirstParamType;
5830
5831  return false;
5832}
5833
5834static bool
5835CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5836  // C++ [basic.stc.dynamic.allocation]p1:
5837  //   A program is ill-formed if an allocation function is declared in a
5838  //   namespace scope other than global scope or declared static in global
5839  //   scope.
5840  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5841    return true;
5842
5843  CanQualType SizeTy =
5844    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5845
5846  // C++ [basic.stc.dynamic.allocation]p1:
5847  //  The return type shall be void*. The first parameter shall have type
5848  //  std::size_t.
5849  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5850                                  SizeTy,
5851                                  diag::err_operator_new_dependent_param_type,
5852                                  diag::err_operator_new_param_type))
5853    return true;
5854
5855  // C++ [basic.stc.dynamic.allocation]p1:
5856  //  The first parameter shall not have an associated default argument.
5857  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5858    return SemaRef.Diag(FnDecl->getLocation(),
5859                        diag::err_operator_new_default_arg)
5860      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5861
5862  return false;
5863}
5864
5865static bool
5866CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5867  // C++ [basic.stc.dynamic.deallocation]p1:
5868  //   A program is ill-formed if deallocation functions are declared in a
5869  //   namespace scope other than global scope or declared static in global
5870  //   scope.
5871  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5872    return true;
5873
5874  // C++ [basic.stc.dynamic.deallocation]p2:
5875  //   Each deallocation function shall return void and its first parameter
5876  //   shall be void*.
5877  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5878                                  SemaRef.Context.VoidPtrTy,
5879                                 diag::err_operator_delete_dependent_param_type,
5880                                 diag::err_operator_delete_param_type))
5881    return true;
5882
5883  return false;
5884}
5885
5886/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5887/// of this overloaded operator is well-formed. If so, returns false;
5888/// otherwise, emits appropriate diagnostics and returns true.
5889bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5890  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5891         "Expected an overloaded operator declaration");
5892
5893  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5894
5895  // C++ [over.oper]p5:
5896  //   The allocation and deallocation functions, operator new,
5897  //   operator new[], operator delete and operator delete[], are
5898  //   described completely in 3.7.3. The attributes and restrictions
5899  //   found in the rest of this subclause do not apply to them unless
5900  //   explicitly stated in 3.7.3.
5901  if (Op == OO_Delete || Op == OO_Array_Delete)
5902    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5903
5904  if (Op == OO_New || Op == OO_Array_New)
5905    return CheckOperatorNewDeclaration(*this, FnDecl);
5906
5907  // C++ [over.oper]p6:
5908  //   An operator function shall either be a non-static member
5909  //   function or be a non-member function and have at least one
5910  //   parameter whose type is a class, a reference to a class, an
5911  //   enumeration, or a reference to an enumeration.
5912  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5913    if (MethodDecl->isStatic())
5914      return Diag(FnDecl->getLocation(),
5915                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5916  } else {
5917    bool ClassOrEnumParam = false;
5918    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5919                                   ParamEnd = FnDecl->param_end();
5920         Param != ParamEnd; ++Param) {
5921      QualType ParamType = (*Param)->getType().getNonReferenceType();
5922      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5923          ParamType->isEnumeralType()) {
5924        ClassOrEnumParam = true;
5925        break;
5926      }
5927    }
5928
5929    if (!ClassOrEnumParam)
5930      return Diag(FnDecl->getLocation(),
5931                  diag::err_operator_overload_needs_class_or_enum)
5932        << FnDecl->getDeclName();
5933  }
5934
5935  // C++ [over.oper]p8:
5936  //   An operator function cannot have default arguments (8.3.6),
5937  //   except where explicitly stated below.
5938  //
5939  // Only the function-call operator allows default arguments
5940  // (C++ [over.call]p1).
5941  if (Op != OO_Call) {
5942    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5943         Param != FnDecl->param_end(); ++Param) {
5944      if ((*Param)->hasDefaultArg())
5945        return Diag((*Param)->getLocation(),
5946                    diag::err_operator_overload_default_arg)
5947          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5948    }
5949  }
5950
5951  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5952    { false, false, false }
5953#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5954    , { Unary, Binary, MemberOnly }
5955#include "clang/Basic/OperatorKinds.def"
5956  };
5957
5958  bool CanBeUnaryOperator = OperatorUses[Op][0];
5959  bool CanBeBinaryOperator = OperatorUses[Op][1];
5960  bool MustBeMemberOperator = OperatorUses[Op][2];
5961
5962  // C++ [over.oper]p8:
5963  //   [...] Operator functions cannot have more or fewer parameters
5964  //   than the number required for the corresponding operator, as
5965  //   described in the rest of this subclause.
5966  unsigned NumParams = FnDecl->getNumParams()
5967                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5968  if (Op != OO_Call &&
5969      ((NumParams == 1 && !CanBeUnaryOperator) ||
5970       (NumParams == 2 && !CanBeBinaryOperator) ||
5971       (NumParams < 1) || (NumParams > 2))) {
5972    // We have the wrong number of parameters.
5973    unsigned ErrorKind;
5974    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5975      ErrorKind = 2;  // 2 -> unary or binary.
5976    } else if (CanBeUnaryOperator) {
5977      ErrorKind = 0;  // 0 -> unary
5978    } else {
5979      assert(CanBeBinaryOperator &&
5980             "All non-call overloaded operators are unary or binary!");
5981      ErrorKind = 1;  // 1 -> binary
5982    }
5983
5984    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5985      << FnDecl->getDeclName() << NumParams << ErrorKind;
5986  }
5987
5988  // Overloaded operators other than operator() cannot be variadic.
5989  if (Op != OO_Call &&
5990      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5991    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5992      << FnDecl->getDeclName();
5993  }
5994
5995  // Some operators must be non-static member functions.
5996  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5997    return Diag(FnDecl->getLocation(),
5998                diag::err_operator_overload_must_be_member)
5999      << FnDecl->getDeclName();
6000  }
6001
6002  // C++ [over.inc]p1:
6003  //   The user-defined function called operator++ implements the
6004  //   prefix and postfix ++ operator. If this function is a member
6005  //   function with no parameters, or a non-member function with one
6006  //   parameter of class or enumeration type, it defines the prefix
6007  //   increment operator ++ for objects of that type. If the function
6008  //   is a member function with one parameter (which shall be of type
6009  //   int) or a non-member function with two parameters (the second
6010  //   of which shall be of type int), it defines the postfix
6011  //   increment operator ++ for objects of that type.
6012  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6013    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6014    bool ParamIsInt = false;
6015    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6016      ParamIsInt = BT->getKind() == BuiltinType::Int;
6017
6018    if (!ParamIsInt)
6019      return Diag(LastParam->getLocation(),
6020                  diag::err_operator_overload_post_incdec_must_be_int)
6021        << LastParam->getType() << (Op == OO_MinusMinus);
6022  }
6023
6024  return false;
6025}
6026
6027/// CheckLiteralOperatorDeclaration - Check whether the declaration
6028/// of this literal operator function is well-formed. If so, returns
6029/// false; otherwise, emits appropriate diagnostics and returns true.
6030bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6031  DeclContext *DC = FnDecl->getDeclContext();
6032  Decl::Kind Kind = DC->getDeclKind();
6033  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6034      Kind != Decl::LinkageSpec) {
6035    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6036      << FnDecl->getDeclName();
6037    return true;
6038  }
6039
6040  bool Valid = false;
6041
6042  // template <char...> type operator "" name() is the only valid template
6043  // signature, and the only valid signature with no parameters.
6044  if (FnDecl->param_size() == 0) {
6045    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6046      // Must have only one template parameter
6047      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6048      if (Params->size() == 1) {
6049        NonTypeTemplateParmDecl *PmDecl =
6050          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6051
6052        // The template parameter must be a char parameter pack.
6053        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6054            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6055          Valid = true;
6056      }
6057    }
6058  } else {
6059    // Check the first parameter
6060    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6061
6062    QualType T = (*Param)->getType();
6063
6064    // unsigned long long int, long double, and any character type are allowed
6065    // as the only parameters.
6066    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6067        Context.hasSameType(T, Context.LongDoubleTy) ||
6068        Context.hasSameType(T, Context.CharTy) ||
6069        Context.hasSameType(T, Context.WCharTy) ||
6070        Context.hasSameType(T, Context.Char16Ty) ||
6071        Context.hasSameType(T, Context.Char32Ty)) {
6072      if (++Param == FnDecl->param_end())
6073        Valid = true;
6074      goto FinishedParams;
6075    }
6076
6077    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6078    const PointerType *PT = T->getAs<PointerType>();
6079    if (!PT)
6080      goto FinishedParams;
6081    T = PT->getPointeeType();
6082    if (!T.isConstQualified())
6083      goto FinishedParams;
6084    T = T.getUnqualifiedType();
6085
6086    // Move on to the second parameter;
6087    ++Param;
6088
6089    // If there is no second parameter, the first must be a const char *
6090    if (Param == FnDecl->param_end()) {
6091      if (Context.hasSameType(T, Context.CharTy))
6092        Valid = true;
6093      goto FinishedParams;
6094    }
6095
6096    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6097    // are allowed as the first parameter to a two-parameter function
6098    if (!(Context.hasSameType(T, Context.CharTy) ||
6099          Context.hasSameType(T, Context.WCharTy) ||
6100          Context.hasSameType(T, Context.Char16Ty) ||
6101          Context.hasSameType(T, Context.Char32Ty)))
6102      goto FinishedParams;
6103
6104    // The second and final parameter must be an std::size_t
6105    T = (*Param)->getType().getUnqualifiedType();
6106    if (Context.hasSameType(T, Context.getSizeType()) &&
6107        ++Param == FnDecl->param_end())
6108      Valid = true;
6109  }
6110
6111  // FIXME: This diagnostic is absolutely terrible.
6112FinishedParams:
6113  if (!Valid) {
6114    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6115      << FnDecl->getDeclName();
6116    return true;
6117  }
6118
6119  return false;
6120}
6121
6122/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6123/// linkage specification, including the language and (if present)
6124/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6125/// the location of the language string literal, which is provided
6126/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6127/// the '{' brace. Otherwise, this linkage specification does not
6128/// have any braces.
6129Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6130                                           SourceLocation LangLoc,
6131                                           llvm::StringRef Lang,
6132                                           SourceLocation LBraceLoc) {
6133  LinkageSpecDecl::LanguageIDs Language;
6134  if (Lang == "\"C\"")
6135    Language = LinkageSpecDecl::lang_c;
6136  else if (Lang == "\"C++\"")
6137    Language = LinkageSpecDecl::lang_cxx;
6138  else {
6139    Diag(LangLoc, diag::err_bad_language);
6140    return 0;
6141  }
6142
6143  // FIXME: Add all the various semantics of linkage specifications
6144
6145  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6146                                               LangLoc, Language,
6147                                               LBraceLoc.isValid());
6148  CurContext->addDecl(D);
6149  PushDeclContext(S, D);
6150  return D;
6151}
6152
6153/// ActOnFinishLinkageSpecification - Complete the definition of
6154/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6155/// valid, it's the position of the closing '}' brace in a linkage
6156/// specification that uses braces.
6157Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6158                                                      Decl *LinkageSpec,
6159                                                      SourceLocation RBraceLoc) {
6160  if (LinkageSpec)
6161    PopDeclContext();
6162  return LinkageSpec;
6163}
6164
6165/// \brief Perform semantic analysis for the variable declaration that
6166/// occurs within a C++ catch clause, returning the newly-created
6167/// variable.
6168VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6169                                         TypeSourceInfo *TInfo,
6170                                         IdentifierInfo *Name,
6171                                         SourceLocation Loc) {
6172  bool Invalid = false;
6173  QualType ExDeclType = TInfo->getType();
6174
6175  // Arrays and functions decay.
6176  if (ExDeclType->isArrayType())
6177    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6178  else if (ExDeclType->isFunctionType())
6179    ExDeclType = Context.getPointerType(ExDeclType);
6180
6181  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6182  // The exception-declaration shall not denote a pointer or reference to an
6183  // incomplete type, other than [cv] void*.
6184  // N2844 forbids rvalue references.
6185  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6186    Diag(Loc, diag::err_catch_rvalue_ref);
6187    Invalid = true;
6188  }
6189
6190  // GCC allows catching pointers and references to incomplete types
6191  // as an extension; so do we, but we warn by default.
6192
6193  QualType BaseType = ExDeclType;
6194  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6195  unsigned DK = diag::err_catch_incomplete;
6196  bool IncompleteCatchIsInvalid = true;
6197  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6198    BaseType = Ptr->getPointeeType();
6199    Mode = 1;
6200    DK = diag::ext_catch_incomplete_ptr;
6201    IncompleteCatchIsInvalid = false;
6202  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6203    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6204    BaseType = Ref->getPointeeType();
6205    Mode = 2;
6206    DK = diag::ext_catch_incomplete_ref;
6207    IncompleteCatchIsInvalid = false;
6208  }
6209  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6210      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6211      IncompleteCatchIsInvalid)
6212    Invalid = true;
6213
6214  if (!Invalid && !ExDeclType->isDependentType() &&
6215      RequireNonAbstractType(Loc, ExDeclType,
6216                             diag::err_abstract_type_in_decl,
6217                             AbstractVariableType))
6218    Invalid = true;
6219
6220  // Only the non-fragile NeXT runtime currently supports C++ catches
6221  // of ObjC types, and no runtime supports catching ObjC types by value.
6222  if (!Invalid && getLangOptions().ObjC1) {
6223    QualType T = ExDeclType;
6224    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6225      T = RT->getPointeeType();
6226
6227    if (T->isObjCObjectType()) {
6228      Diag(Loc, diag::err_objc_object_catch);
6229      Invalid = true;
6230    } else if (T->isObjCObjectPointerType()) {
6231      if (!getLangOptions().NeXTRuntime) {
6232        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6233        Invalid = true;
6234      } else if (!getLangOptions().ObjCNonFragileABI) {
6235        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6236        Invalid = true;
6237      }
6238    }
6239  }
6240
6241  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6242                                    Name, ExDeclType, TInfo, SC_None,
6243                                    SC_None);
6244  ExDecl->setExceptionVariable(true);
6245
6246  if (!Invalid) {
6247    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6248      // C++ [except.handle]p16:
6249      //   The object declared in an exception-declaration or, if the
6250      //   exception-declaration does not specify a name, a temporary (12.2) is
6251      //   copy-initialized (8.5) from the exception object. [...]
6252      //   The object is destroyed when the handler exits, after the destruction
6253      //   of any automatic objects initialized within the handler.
6254      //
6255      // We just pretend to initialize the object with itself, then make sure
6256      // it can be destroyed later.
6257      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6258      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6259                                            Loc, ExDeclType, VK_LValue, 0);
6260      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6261                                                               SourceLocation());
6262      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6263      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6264                                         MultiExprArg(*this, &ExDeclRef, 1));
6265      if (Result.isInvalid())
6266        Invalid = true;
6267      else
6268        FinalizeVarWithDestructor(ExDecl, RecordTy);
6269    }
6270  }
6271
6272  if (Invalid)
6273    ExDecl->setInvalidDecl();
6274
6275  return ExDecl;
6276}
6277
6278/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6279/// handler.
6280Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6281  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6282  bool Invalid = D.isInvalidType();
6283
6284  // Check for unexpanded parameter packs.
6285  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6286                                               UPPC_ExceptionType)) {
6287    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6288                                             D.getIdentifierLoc());
6289    Invalid = true;
6290  }
6291
6292  IdentifierInfo *II = D.getIdentifier();
6293  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6294                                             LookupOrdinaryName,
6295                                             ForRedeclaration)) {
6296    // The scope should be freshly made just for us. There is just no way
6297    // it contains any previous declaration.
6298    assert(!S->isDeclScope(PrevDecl));
6299    if (PrevDecl->isTemplateParameter()) {
6300      // Maybe we will complain about the shadowed template parameter.
6301      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6302    }
6303  }
6304
6305  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6306    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6307      << D.getCXXScopeSpec().getRange();
6308    Invalid = true;
6309  }
6310
6311  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6312                                              D.getIdentifier(),
6313                                              D.getIdentifierLoc());
6314
6315  if (Invalid)
6316    ExDecl->setInvalidDecl();
6317
6318  // Add the exception declaration into this scope.
6319  if (II)
6320    PushOnScopeChains(ExDecl, S);
6321  else
6322    CurContext->addDecl(ExDecl);
6323
6324  ProcessDeclAttributes(S, ExDecl, D);
6325  return ExDecl;
6326}
6327
6328Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6329                                         Expr *AssertExpr,
6330                                         Expr *AssertMessageExpr_) {
6331  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6332
6333  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6334    llvm::APSInt Value(32);
6335    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6336      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6337        AssertExpr->getSourceRange();
6338      return 0;
6339    }
6340
6341    if (Value == 0) {
6342      Diag(AssertLoc, diag::err_static_assert_failed)
6343        << AssertMessage->getString() << AssertExpr->getSourceRange();
6344    }
6345  }
6346
6347  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6348    return 0;
6349
6350  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6351                                        AssertExpr, AssertMessage);
6352
6353  CurContext->addDecl(Decl);
6354  return Decl;
6355}
6356
6357/// \brief Perform semantic analysis of the given friend type declaration.
6358///
6359/// \returns A friend declaration that.
6360FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6361                                      TypeSourceInfo *TSInfo) {
6362  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6363
6364  QualType T = TSInfo->getType();
6365  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6366
6367  if (!getLangOptions().CPlusPlus0x) {
6368    // C++03 [class.friend]p2:
6369    //   An elaborated-type-specifier shall be used in a friend declaration
6370    //   for a class.*
6371    //
6372    //   * The class-key of the elaborated-type-specifier is required.
6373    if (!ActiveTemplateInstantiations.empty()) {
6374      // Do not complain about the form of friend template types during
6375      // template instantiation; we will already have complained when the
6376      // template was declared.
6377    } else if (!T->isElaboratedTypeSpecifier()) {
6378      // If we evaluated the type to a record type, suggest putting
6379      // a tag in front.
6380      if (const RecordType *RT = T->getAs<RecordType>()) {
6381        RecordDecl *RD = RT->getDecl();
6382
6383        std::string InsertionText = std::string(" ") + RD->getKindName();
6384
6385        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6386          << (unsigned) RD->getTagKind()
6387          << T
6388          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6389                                        InsertionText);
6390      } else {
6391        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6392          << T
6393          << SourceRange(FriendLoc, TypeRange.getEnd());
6394      }
6395    } else if (T->getAs<EnumType>()) {
6396      Diag(FriendLoc, diag::ext_enum_friend)
6397        << T
6398        << SourceRange(FriendLoc, TypeRange.getEnd());
6399    }
6400  }
6401
6402  // C++0x [class.friend]p3:
6403  //   If the type specifier in a friend declaration designates a (possibly
6404  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6405  //   the friend declaration is ignored.
6406
6407  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6408  // in [class.friend]p3 that we do not implement.
6409
6410  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6411}
6412
6413/// Handle a friend tag declaration where the scope specifier was
6414/// templated.
6415Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6416                                    unsigned TagSpec, SourceLocation TagLoc,
6417                                    CXXScopeSpec &SS,
6418                                    IdentifierInfo *Name, SourceLocation NameLoc,
6419                                    AttributeList *Attr,
6420                                    MultiTemplateParamsArg TempParamLists) {
6421  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6422
6423  bool isExplicitSpecialization = false;
6424  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6425  bool Invalid = false;
6426
6427  if (TemplateParameterList *TemplateParams
6428        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6429                                                  TempParamLists.get(),
6430                                                  TempParamLists.size(),
6431                                                  /*friend*/ true,
6432                                                  isExplicitSpecialization,
6433                                                  Invalid)) {
6434    --NumMatchedTemplateParamLists;
6435
6436    if (TemplateParams->size() > 0) {
6437      // This is a declaration of a class template.
6438      if (Invalid)
6439        return 0;
6440
6441      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6442                                SS, Name, NameLoc, Attr,
6443                                TemplateParams, AS_public).take();
6444    } else {
6445      // The "template<>" header is extraneous.
6446      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6447        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6448      isExplicitSpecialization = true;
6449    }
6450  }
6451
6452  if (Invalid) return 0;
6453
6454  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6455
6456  bool isAllExplicitSpecializations = true;
6457  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6458    if (TempParamLists.get()[I]->size()) {
6459      isAllExplicitSpecializations = false;
6460      break;
6461    }
6462  }
6463
6464  // FIXME: don't ignore attributes.
6465
6466  // If it's explicit specializations all the way down, just forget
6467  // about the template header and build an appropriate non-templated
6468  // friend.  TODO: for source fidelity, remember the headers.
6469  if (isAllExplicitSpecializations) {
6470    ElaboratedTypeKeyword Keyword
6471      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6472    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6473                                   TagLoc, SS.getRange(), NameLoc);
6474    if (T.isNull())
6475      return 0;
6476
6477    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6478    if (isa<DependentNameType>(T)) {
6479      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6480      TL.setKeywordLoc(TagLoc);
6481      TL.setQualifierRange(SS.getRange());
6482      TL.setNameLoc(NameLoc);
6483    } else {
6484      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6485      TL.setKeywordLoc(TagLoc);
6486      TL.setQualifierRange(SS.getRange());
6487      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6488    }
6489
6490    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6491                                            TSI, FriendLoc);
6492    Friend->setAccess(AS_public);
6493    CurContext->addDecl(Friend);
6494    return Friend;
6495  }
6496
6497  // Handle the case of a templated-scope friend class.  e.g.
6498  //   template <class T> class A<T>::B;
6499  // FIXME: we don't support these right now.
6500  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6501  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6502  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6503  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6504  TL.setKeywordLoc(TagLoc);
6505  TL.setQualifierRange(SS.getRange());
6506  TL.setNameLoc(NameLoc);
6507
6508  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6509                                          TSI, FriendLoc);
6510  Friend->setAccess(AS_public);
6511  Friend->setUnsupportedFriend(true);
6512  CurContext->addDecl(Friend);
6513  return Friend;
6514}
6515
6516
6517/// Handle a friend type declaration.  This works in tandem with
6518/// ActOnTag.
6519///
6520/// Notes on friend class templates:
6521///
6522/// We generally treat friend class declarations as if they were
6523/// declaring a class.  So, for example, the elaborated type specifier
6524/// in a friend declaration is required to obey the restrictions of a
6525/// class-head (i.e. no typedefs in the scope chain), template
6526/// parameters are required to match up with simple template-ids, &c.
6527/// However, unlike when declaring a template specialization, it's
6528/// okay to refer to a template specialization without an empty
6529/// template parameter declaration, e.g.
6530///   friend class A<T>::B<unsigned>;
6531/// We permit this as a special case; if there are any template
6532/// parameters present at all, require proper matching, i.e.
6533///   template <> template <class T> friend class A<int>::B;
6534Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6535                                MultiTemplateParamsArg TempParams) {
6536  SourceLocation Loc = DS.getSourceRange().getBegin();
6537
6538  assert(DS.isFriendSpecified());
6539  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6540
6541  // Try to convert the decl specifier to a type.  This works for
6542  // friend templates because ActOnTag never produces a ClassTemplateDecl
6543  // for a TUK_Friend.
6544  Declarator TheDeclarator(DS, Declarator::MemberContext);
6545  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6546  QualType T = TSI->getType();
6547  if (TheDeclarator.isInvalidType())
6548    return 0;
6549
6550  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6551    return 0;
6552
6553  // This is definitely an error in C++98.  It's probably meant to
6554  // be forbidden in C++0x, too, but the specification is just
6555  // poorly written.
6556  //
6557  // The problem is with declarations like the following:
6558  //   template <T> friend A<T>::foo;
6559  // where deciding whether a class C is a friend or not now hinges
6560  // on whether there exists an instantiation of A that causes
6561  // 'foo' to equal C.  There are restrictions on class-heads
6562  // (which we declare (by fiat) elaborated friend declarations to
6563  // be) that makes this tractable.
6564  //
6565  // FIXME: handle "template <> friend class A<T>;", which
6566  // is possibly well-formed?  Who even knows?
6567  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6568    Diag(Loc, diag::err_tagless_friend_type_template)
6569      << DS.getSourceRange();
6570    return 0;
6571  }
6572
6573  // C++98 [class.friend]p1: A friend of a class is a function
6574  //   or class that is not a member of the class . . .
6575  // This is fixed in DR77, which just barely didn't make the C++03
6576  // deadline.  It's also a very silly restriction that seriously
6577  // affects inner classes and which nobody else seems to implement;
6578  // thus we never diagnose it, not even in -pedantic.
6579  //
6580  // But note that we could warn about it: it's always useless to
6581  // friend one of your own members (it's not, however, worthless to
6582  // friend a member of an arbitrary specialization of your template).
6583
6584  Decl *D;
6585  if (unsigned NumTempParamLists = TempParams.size())
6586    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6587                                   NumTempParamLists,
6588                                   TempParams.release(),
6589                                   TSI,
6590                                   DS.getFriendSpecLoc());
6591  else
6592    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6593
6594  if (!D)
6595    return 0;
6596
6597  D->setAccess(AS_public);
6598  CurContext->addDecl(D);
6599
6600  return D;
6601}
6602
6603Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6604                                    MultiTemplateParamsArg TemplateParams) {
6605  const DeclSpec &DS = D.getDeclSpec();
6606
6607  assert(DS.isFriendSpecified());
6608  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6609
6610  SourceLocation Loc = D.getIdentifierLoc();
6611  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6612  QualType T = TInfo->getType();
6613
6614  // C++ [class.friend]p1
6615  //   A friend of a class is a function or class....
6616  // Note that this sees through typedefs, which is intended.
6617  // It *doesn't* see through dependent types, which is correct
6618  // according to [temp.arg.type]p3:
6619  //   If a declaration acquires a function type through a
6620  //   type dependent on a template-parameter and this causes
6621  //   a declaration that does not use the syntactic form of a
6622  //   function declarator to have a function type, the program
6623  //   is ill-formed.
6624  if (!T->isFunctionType()) {
6625    Diag(Loc, diag::err_unexpected_friend);
6626
6627    // It might be worthwhile to try to recover by creating an
6628    // appropriate declaration.
6629    return 0;
6630  }
6631
6632  // C++ [namespace.memdef]p3
6633  //  - If a friend declaration in a non-local class first declares a
6634  //    class or function, the friend class or function is a member
6635  //    of the innermost enclosing namespace.
6636  //  - The name of the friend is not found by simple name lookup
6637  //    until a matching declaration is provided in that namespace
6638  //    scope (either before or after the class declaration granting
6639  //    friendship).
6640  //  - If a friend function is called, its name may be found by the
6641  //    name lookup that considers functions from namespaces and
6642  //    classes associated with the types of the function arguments.
6643  //  - When looking for a prior declaration of a class or a function
6644  //    declared as a friend, scopes outside the innermost enclosing
6645  //    namespace scope are not considered.
6646
6647  CXXScopeSpec &SS = D.getCXXScopeSpec();
6648  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6649  DeclarationName Name = NameInfo.getName();
6650  assert(Name);
6651
6652  // Check for unexpanded parameter packs.
6653  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
6654      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
6655      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
6656    return 0;
6657
6658  // The context we found the declaration in, or in which we should
6659  // create the declaration.
6660  DeclContext *DC;
6661  Scope *DCScope = S;
6662  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6663                        ForRedeclaration);
6664
6665  // FIXME: there are different rules in local classes
6666
6667  // There are four cases here.
6668  //   - There's no scope specifier, in which case we just go to the
6669  //     appropriate scope and look for a function or function template
6670  //     there as appropriate.
6671  // Recover from invalid scope qualifiers as if they just weren't there.
6672  if (SS.isInvalid() || !SS.isSet()) {
6673    // C++0x [namespace.memdef]p3:
6674    //   If the name in a friend declaration is neither qualified nor
6675    //   a template-id and the declaration is a function or an
6676    //   elaborated-type-specifier, the lookup to determine whether
6677    //   the entity has been previously declared shall not consider
6678    //   any scopes outside the innermost enclosing namespace.
6679    // C++0x [class.friend]p11:
6680    //   If a friend declaration appears in a local class and the name
6681    //   specified is an unqualified name, a prior declaration is
6682    //   looked up without considering scopes that are outside the
6683    //   innermost enclosing non-class scope. For a friend function
6684    //   declaration, if there is no prior declaration, the program is
6685    //   ill-formed.
6686    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
6687    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
6688
6689    // Find the appropriate context according to the above.
6690    DC = CurContext;
6691    while (true) {
6692      // Skip class contexts.  If someone can cite chapter and verse
6693      // for this behavior, that would be nice --- it's what GCC and
6694      // EDG do, and it seems like a reasonable intent, but the spec
6695      // really only says that checks for unqualified existing
6696      // declarations should stop at the nearest enclosing namespace,
6697      // not that they should only consider the nearest enclosing
6698      // namespace.
6699      while (DC->isRecord())
6700        DC = DC->getParent();
6701
6702      LookupQualifiedName(Previous, DC);
6703
6704      // TODO: decide what we think about using declarations.
6705      if (isLocal || !Previous.empty())
6706        break;
6707
6708      if (isTemplateId) {
6709        if (isa<TranslationUnitDecl>(DC)) break;
6710      } else {
6711        if (DC->isFileContext()) break;
6712      }
6713      DC = DC->getParent();
6714    }
6715
6716    // C++ [class.friend]p1: A friend of a class is a function or
6717    //   class that is not a member of the class . . .
6718    // C++0x changes this for both friend types and functions.
6719    // Most C++ 98 compilers do seem to give an error here, so
6720    // we do, too.
6721    if (!Previous.empty() && DC->Equals(CurContext)
6722        && !getLangOptions().CPlusPlus0x)
6723      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6724
6725    DCScope = getScopeForDeclContext(S, DC);
6726
6727  //   - There's a non-dependent scope specifier, in which case we
6728  //     compute it and do a previous lookup there for a function
6729  //     or function template.
6730  } else if (!SS.getScopeRep()->isDependent()) {
6731    DC = computeDeclContext(SS);
6732    if (!DC) return 0;
6733
6734    if (RequireCompleteDeclContext(SS, DC)) return 0;
6735
6736    LookupQualifiedName(Previous, DC);
6737
6738    // Ignore things found implicitly in the wrong scope.
6739    // TODO: better diagnostics for this case.  Suggesting the right
6740    // qualified scope would be nice...
6741    LookupResult::Filter F = Previous.makeFilter();
6742    while (F.hasNext()) {
6743      NamedDecl *D = F.next();
6744      if (!DC->InEnclosingNamespaceSetOf(
6745              D->getDeclContext()->getRedeclContext()))
6746        F.erase();
6747    }
6748    F.done();
6749
6750    if (Previous.empty()) {
6751      D.setInvalidType();
6752      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
6753      return 0;
6754    }
6755
6756    // C++ [class.friend]p1: A friend of a class is a function or
6757    //   class that is not a member of the class . . .
6758    if (DC->Equals(CurContext))
6759      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
6760
6761  //   - There's a scope specifier that does not match any template
6762  //     parameter lists, in which case we use some arbitrary context,
6763  //     create a method or method template, and wait for instantiation.
6764  //   - There's a scope specifier that does match some template
6765  //     parameter lists, which we don't handle right now.
6766  } else {
6767    DC = CurContext;
6768    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
6769  }
6770
6771  if (!DC->isRecord()) {
6772    // This implies that it has to be an operator or function.
6773    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
6774        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
6775        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
6776      Diag(Loc, diag::err_introducing_special_friend) <<
6777        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
6778         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
6779      return 0;
6780    }
6781  }
6782
6783  bool Redeclaration = false;
6784  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
6785                                          move(TemplateParams),
6786                                          IsDefinition,
6787                                          Redeclaration);
6788  if (!ND) return 0;
6789
6790  assert(ND->getDeclContext() == DC);
6791  assert(ND->getLexicalDeclContext() == CurContext);
6792
6793  // Add the function declaration to the appropriate lookup tables,
6794  // adjusting the redeclarations list as necessary.  We don't
6795  // want to do this yet if the friending class is dependent.
6796  //
6797  // Also update the scope-based lookup if the target context's
6798  // lookup context is in lexical scope.
6799  if (!CurContext->isDependentContext()) {
6800    DC = DC->getRedeclContext();
6801    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
6802    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6803      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
6804  }
6805
6806  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
6807                                       D.getIdentifierLoc(), ND,
6808                                       DS.getFriendSpecLoc());
6809  FrD->setAccess(AS_public);
6810  CurContext->addDecl(FrD);
6811
6812  if (ND->isInvalidDecl())
6813    FrD->setInvalidDecl();
6814  else {
6815    FunctionDecl *FD;
6816    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
6817      FD = FTD->getTemplatedDecl();
6818    else
6819      FD = cast<FunctionDecl>(ND);
6820
6821    // Mark templated-scope function declarations as unsupported.
6822    if (FD->getNumTemplateParameterLists())
6823      FrD->setUnsupportedFriend(true);
6824  }
6825
6826  return ND;
6827}
6828
6829void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
6830  AdjustDeclIfTemplate(Dcl);
6831
6832  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6833  if (!Fn) {
6834    Diag(DelLoc, diag::err_deleted_non_function);
6835    return;
6836  }
6837  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6838    Diag(DelLoc, diag::err_deleted_decl_not_first);
6839    Diag(Prev->getLocation(), diag::note_previous_declaration);
6840    // If the declaration wasn't the first, we delete the function anyway for
6841    // recovery.
6842  }
6843  Fn->setDeleted();
6844}
6845
6846static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6847  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6848       ++CI) {
6849    Stmt *SubStmt = *CI;
6850    if (!SubStmt)
6851      continue;
6852    if (isa<ReturnStmt>(SubStmt))
6853      Self.Diag(SubStmt->getSourceRange().getBegin(),
6854           diag::err_return_in_constructor_handler);
6855    if (!isa<Expr>(SubStmt))
6856      SearchForReturnInStmt(Self, SubStmt);
6857  }
6858}
6859
6860void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6861  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6862    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6863    SearchForReturnInStmt(*this, Handler);
6864  }
6865}
6866
6867bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6868                                             const CXXMethodDecl *Old) {
6869  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6870  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6871
6872  if (Context.hasSameType(NewTy, OldTy) ||
6873      NewTy->isDependentType() || OldTy->isDependentType())
6874    return false;
6875
6876  // Check if the return types are covariant
6877  QualType NewClassTy, OldClassTy;
6878
6879  /// Both types must be pointers or references to classes.
6880  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6881    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6882      NewClassTy = NewPT->getPointeeType();
6883      OldClassTy = OldPT->getPointeeType();
6884    }
6885  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6886    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6887      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6888        NewClassTy = NewRT->getPointeeType();
6889        OldClassTy = OldRT->getPointeeType();
6890      }
6891    }
6892  }
6893
6894  // The return types aren't either both pointers or references to a class type.
6895  if (NewClassTy.isNull()) {
6896    Diag(New->getLocation(),
6897         diag::err_different_return_type_for_overriding_virtual_function)
6898      << New->getDeclName() << NewTy << OldTy;
6899    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6900
6901    return true;
6902  }
6903
6904  // C++ [class.virtual]p6:
6905  //   If the return type of D::f differs from the return type of B::f, the
6906  //   class type in the return type of D::f shall be complete at the point of
6907  //   declaration of D::f or shall be the class type D.
6908  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6909    if (!RT->isBeingDefined() &&
6910        RequireCompleteType(New->getLocation(), NewClassTy,
6911                            PDiag(diag::err_covariant_return_incomplete)
6912                              << New->getDeclName()))
6913    return true;
6914  }
6915
6916  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6917    // Check if the new class derives from the old class.
6918    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6919      Diag(New->getLocation(),
6920           diag::err_covariant_return_not_derived)
6921      << New->getDeclName() << NewTy << OldTy;
6922      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6923      return true;
6924    }
6925
6926    // Check if we the conversion from derived to base is valid.
6927    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6928                    diag::err_covariant_return_inaccessible_base,
6929                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6930                    // FIXME: Should this point to the return type?
6931                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6932      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6933      return true;
6934    }
6935  }
6936
6937  // The qualifiers of the return types must be the same.
6938  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6939    Diag(New->getLocation(),
6940         diag::err_covariant_return_type_different_qualifications)
6941    << New->getDeclName() << NewTy << OldTy;
6942    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6943    return true;
6944  };
6945
6946
6947  // The new class type must have the same or less qualifiers as the old type.
6948  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6949    Diag(New->getLocation(),
6950         diag::err_covariant_return_type_class_type_more_qualified)
6951    << New->getDeclName() << NewTy << OldTy;
6952    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6953    return true;
6954  };
6955
6956  return false;
6957}
6958
6959/// \brief Mark the given method pure.
6960///
6961/// \param Method the method to be marked pure.
6962///
6963/// \param InitRange the source range that covers the "0" initializer.
6964bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6965  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6966    Method->setPure();
6967    return false;
6968  }
6969
6970  if (!Method->isInvalidDecl())
6971    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6972      << Method->getDeclName() << InitRange;
6973  return true;
6974}
6975
6976/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6977/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6978/// is a fresh scope pushed for just this purpose.
6979///
6980/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6981/// static data member of class X, names should be looked up in the scope of
6982/// class X.
6983void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
6984  // If there is no declaration, there was an error parsing it.
6985  if (D == 0) return;
6986
6987  // We should only get called for declarations with scope specifiers, like:
6988  //   int foo::bar;
6989  assert(D->isOutOfLine());
6990  EnterDeclaratorContext(S, D->getDeclContext());
6991}
6992
6993/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6994/// initializer for the out-of-line declaration 'D'.
6995void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
6996  // If there is no declaration, there was an error parsing it.
6997  if (D == 0) return;
6998
6999  assert(D->isOutOfLine());
7000  ExitDeclaratorContext(S);
7001}
7002
7003/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7004/// C++ if/switch/while/for statement.
7005/// e.g: "if (int x = f()) {...}"
7006DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7007  // C++ 6.4p2:
7008  // The declarator shall not specify a function or an array.
7009  // The type-specifier-seq shall not contain typedef and shall not declare a
7010  // new class or enumeration.
7011  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7012         "Parser allowed 'typedef' as storage class of condition decl.");
7013
7014  TagDecl *OwnedTag = 0;
7015  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7016  QualType Ty = TInfo->getType();
7017
7018  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7019                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7020                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7021    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7022      << D.getSourceRange();
7023    return DeclResult();
7024  } else if (OwnedTag && OwnedTag->isDefinition()) {
7025    // The type-specifier-seq shall not declare a new class or enumeration.
7026    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7027  }
7028
7029  Decl *Dcl = ActOnDeclarator(S, D);
7030  if (!Dcl)
7031    return DeclResult();
7032
7033  return Dcl;
7034}
7035
7036void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7037                          bool DefinitionRequired) {
7038  // Ignore any vtable uses in unevaluated operands or for classes that do
7039  // not have a vtable.
7040  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7041      CurContext->isDependentContext() ||
7042      ExprEvalContexts.back().Context == Unevaluated)
7043    return;
7044
7045  // Try to insert this class into the map.
7046  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7047  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7048    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7049  if (!Pos.second) {
7050    // If we already had an entry, check to see if we are promoting this vtable
7051    // to required a definition. If so, we need to reappend to the VTableUses
7052    // list, since we may have already processed the first entry.
7053    if (DefinitionRequired && !Pos.first->second) {
7054      Pos.first->second = true;
7055    } else {
7056      // Otherwise, we can early exit.
7057      return;
7058    }
7059  }
7060
7061  // Local classes need to have their virtual members marked
7062  // immediately. For all other classes, we mark their virtual members
7063  // at the end of the translation unit.
7064  if (Class->isLocalClass())
7065    MarkVirtualMembersReferenced(Loc, Class);
7066  else
7067    VTableUses.push_back(std::make_pair(Class, Loc));
7068}
7069
7070bool Sema::DefineUsedVTables() {
7071  if (VTableUses.empty())
7072    return false;
7073
7074  // Note: The VTableUses vector could grow as a result of marking
7075  // the members of a class as "used", so we check the size each
7076  // time through the loop and prefer indices (with are stable) to
7077  // iterators (which are not).
7078  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7079    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7080    if (!Class)
7081      continue;
7082
7083    SourceLocation Loc = VTableUses[I].second;
7084
7085    // If this class has a key function, but that key function is
7086    // defined in another translation unit, we don't need to emit the
7087    // vtable even though we're using it.
7088    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7089    if (KeyFunction && !KeyFunction->hasBody()) {
7090      switch (KeyFunction->getTemplateSpecializationKind()) {
7091      case TSK_Undeclared:
7092      case TSK_ExplicitSpecialization:
7093      case TSK_ExplicitInstantiationDeclaration:
7094        // The key function is in another translation unit.
7095        continue;
7096
7097      case TSK_ExplicitInstantiationDefinition:
7098      case TSK_ImplicitInstantiation:
7099        // We will be instantiating the key function.
7100        break;
7101      }
7102    } else if (!KeyFunction) {
7103      // If we have a class with no key function that is the subject
7104      // of an explicit instantiation declaration, suppress the
7105      // vtable; it will live with the explicit instantiation
7106      // definition.
7107      bool IsExplicitInstantiationDeclaration
7108        = Class->getTemplateSpecializationKind()
7109                                      == TSK_ExplicitInstantiationDeclaration;
7110      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7111                                 REnd = Class->redecls_end();
7112           R != REnd; ++R) {
7113        TemplateSpecializationKind TSK
7114          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7115        if (TSK == TSK_ExplicitInstantiationDeclaration)
7116          IsExplicitInstantiationDeclaration = true;
7117        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7118          IsExplicitInstantiationDeclaration = false;
7119          break;
7120        }
7121      }
7122
7123      if (IsExplicitInstantiationDeclaration)
7124        continue;
7125    }
7126
7127    // Mark all of the virtual members of this class as referenced, so
7128    // that we can build a vtable. Then, tell the AST consumer that a
7129    // vtable for this class is required.
7130    MarkVirtualMembersReferenced(Loc, Class);
7131    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7132    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7133
7134    // Optionally warn if we're emitting a weak vtable.
7135    if (Class->getLinkage() == ExternalLinkage &&
7136        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7137      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7138        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7139    }
7140  }
7141  VTableUses.clear();
7142
7143  return true;
7144}
7145
7146void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7147                                        const CXXRecordDecl *RD) {
7148  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7149       e = RD->method_end(); i != e; ++i) {
7150    CXXMethodDecl *MD = *i;
7151
7152    // C++ [basic.def.odr]p2:
7153    //   [...] A virtual member function is used if it is not pure. [...]
7154    if (MD->isVirtual() && !MD->isPure())
7155      MarkDeclarationReferenced(Loc, MD);
7156  }
7157
7158  // Only classes that have virtual bases need a VTT.
7159  if (RD->getNumVBases() == 0)
7160    return;
7161
7162  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7163           e = RD->bases_end(); i != e; ++i) {
7164    const CXXRecordDecl *Base =
7165        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7166    if (Base->getNumVBases() == 0)
7167      continue;
7168    MarkVirtualMembersReferenced(Loc, Base);
7169  }
7170}
7171
7172/// SetIvarInitializers - This routine builds initialization ASTs for the
7173/// Objective-C implementation whose ivars need be initialized.
7174void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7175  if (!getLangOptions().CPlusPlus)
7176    return;
7177  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7178    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7179    CollectIvarsToConstructOrDestruct(OID, ivars);
7180    if (ivars.empty())
7181      return;
7182    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7183    for (unsigned i = 0; i < ivars.size(); i++) {
7184      FieldDecl *Field = ivars[i];
7185      if (Field->isInvalidDecl())
7186        continue;
7187
7188      CXXCtorInitializer *Member;
7189      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7190      InitializationKind InitKind =
7191        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7192
7193      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7194      ExprResult MemberInit =
7195        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7196      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7197      // Note, MemberInit could actually come back empty if no initialization
7198      // is required (e.g., because it would call a trivial default constructor)
7199      if (!MemberInit.get() || MemberInit.isInvalid())
7200        continue;
7201
7202      Member =
7203        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7204                                         SourceLocation(),
7205                                         MemberInit.takeAs<Expr>(),
7206                                         SourceLocation());
7207      AllToInit.push_back(Member);
7208
7209      // Be sure that the destructor is accessible and is marked as referenced.
7210      if (const RecordType *RecordTy
7211                  = Context.getBaseElementType(Field->getType())
7212                                                        ->getAs<RecordType>()) {
7213                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7214        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7215          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7216          CheckDestructorAccess(Field->getLocation(), Destructor,
7217                            PDiag(diag::err_access_dtor_ivar)
7218                              << Context.getBaseElementType(Field->getType()));
7219        }
7220      }
7221    }
7222    ObjCImplementation->setIvarInitializers(Context,
7223                                            AllToInit.data(), AllToInit.size());
7224  }
7225}
7226