SemaDeclCXX.cpp revision d01c915dda27bb0045687f0a08bbcab1dd40e652
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403  } else {
404    // C++ [class.ctor]p5:
405    //   A constructor is trivial if all the direct base classes of its
406    //   class have trivial constructors.
407    Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)->
408                                    hasTrivialConstructor());
409  }
410
411  // C++ [class.ctor]p3:
412  //   A destructor is trivial if all the direct base classes of its class
413  //   have trivial destructors.
414  Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)->
415                                 hasTrivialDestructor());
416
417  // Create the base specifier.
418  // FIXME: Allocate via ASTContext?
419  return new CXXBaseSpecifier(SpecifierRange, Virtual,
420                              Class->getTagKind() == RecordDecl::TK_class,
421                              Access, BaseType);
422}
423
424/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
425/// one entry in the base class list of a class specifier, for
426/// example:
427///    class foo : public bar, virtual private baz {
428/// 'public bar' and 'virtual private baz' are each base-specifiers.
429Sema::BaseResult
430Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
431                         bool Virtual, AccessSpecifier Access,
432                         TypeTy *basetype, SourceLocation BaseLoc) {
433  if (!classdecl)
434    return true;
435
436  AdjustDeclIfTemplate(classdecl);
437  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
438  QualType BaseType = QualType::getFromOpaquePtr(basetype);
439  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
440                                                      Virtual, Access,
441                                                      BaseType, BaseLoc))
442    return BaseSpec;
443
444  return true;
445}
446
447/// \brief Performs the actual work of attaching the given base class
448/// specifiers to a C++ class.
449bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
450                                unsigned NumBases) {
451 if (NumBases == 0)
452    return false;
453
454  // Used to keep track of which base types we have already seen, so
455  // that we can properly diagnose redundant direct base types. Note
456  // that the key is always the unqualified canonical type of the base
457  // class.
458  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
459
460  // Copy non-redundant base specifiers into permanent storage.
461  unsigned NumGoodBases = 0;
462  bool Invalid = false;
463  for (unsigned idx = 0; idx < NumBases; ++idx) {
464    QualType NewBaseType
465      = Context.getCanonicalType(Bases[idx]->getType());
466    NewBaseType = NewBaseType.getUnqualifiedType();
467
468    if (KnownBaseTypes[NewBaseType]) {
469      // C++ [class.mi]p3:
470      //   A class shall not be specified as a direct base class of a
471      //   derived class more than once.
472      Diag(Bases[idx]->getSourceRange().getBegin(),
473           diag::err_duplicate_base_class)
474        << KnownBaseTypes[NewBaseType]->getType()
475        << Bases[idx]->getSourceRange();
476
477      // Delete the duplicate base class specifier; we're going to
478      // overwrite its pointer later.
479      delete Bases[idx];
480
481      Invalid = true;
482    } else {
483      // Okay, add this new base class.
484      KnownBaseTypes[NewBaseType] = Bases[idx];
485      Bases[NumGoodBases++] = Bases[idx];
486    }
487  }
488
489  // Attach the remaining base class specifiers to the derived class.
490  Class->setBases(Context, Bases, NumGoodBases);
491
492  // Delete the remaining (good) base class specifiers, since their
493  // data has been copied into the CXXRecordDecl.
494  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
495    delete Bases[idx];
496
497  return Invalid;
498}
499
500/// ActOnBaseSpecifiers - Attach the given base specifiers to the
501/// class, after checking whether there are any duplicate base
502/// classes.
503void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
504                               unsigned NumBases) {
505  if (!ClassDecl || !Bases || !NumBases)
506    return;
507
508  AdjustDeclIfTemplate(ClassDecl);
509  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
510                       (CXXBaseSpecifier**)(Bases), NumBases);
511}
512
513//===----------------------------------------------------------------------===//
514// C++ class member Handling
515//===----------------------------------------------------------------------===//
516
517/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
518/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
519/// bitfield width if there is one and 'InitExpr' specifies the initializer if
520/// any.
521Sema::DeclPtrTy
522Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
523                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
524  const DeclSpec &DS = D.getDeclSpec();
525  DeclarationName Name = GetNameForDeclarator(D);
526  Expr *BitWidth = static_cast<Expr*>(BW);
527  Expr *Init = static_cast<Expr*>(InitExpr);
528  SourceLocation Loc = D.getIdentifierLoc();
529
530  bool isFunc = D.isFunctionDeclarator();
531
532  // C++ 9.2p6: A member shall not be declared to have automatic storage
533  // duration (auto, register) or with the extern storage-class-specifier.
534  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
535  // data members and cannot be applied to names declared const or static,
536  // and cannot be applied to reference members.
537  switch (DS.getStorageClassSpec()) {
538    case DeclSpec::SCS_unspecified:
539    case DeclSpec::SCS_typedef:
540    case DeclSpec::SCS_static:
541      // FALL THROUGH.
542      break;
543    case DeclSpec::SCS_mutable:
544      if (isFunc) {
545        if (DS.getStorageClassSpecLoc().isValid())
546          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
547        else
548          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
549
550        // FIXME: It would be nicer if the keyword was ignored only for this
551        // declarator. Otherwise we could get follow-up errors.
552        D.getMutableDeclSpec().ClearStorageClassSpecs();
553      } else {
554        QualType T = GetTypeForDeclarator(D, S);
555        diag::kind err = static_cast<diag::kind>(0);
556        if (T->isReferenceType())
557          err = diag::err_mutable_reference;
558        else if (T.isConstQualified())
559          err = diag::err_mutable_const;
560        if (err != 0) {
561          if (DS.getStorageClassSpecLoc().isValid())
562            Diag(DS.getStorageClassSpecLoc(), err);
563          else
564            Diag(DS.getThreadSpecLoc(), err);
565          // FIXME: It would be nicer if the keyword was ignored only for this
566          // declarator. Otherwise we could get follow-up errors.
567          D.getMutableDeclSpec().ClearStorageClassSpecs();
568        }
569      }
570      break;
571    default:
572      if (DS.getStorageClassSpecLoc().isValid())
573        Diag(DS.getStorageClassSpecLoc(),
574             diag::err_storageclass_invalid_for_member);
575      else
576        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
577      D.getMutableDeclSpec().ClearStorageClassSpecs();
578  }
579
580  if (!isFunc &&
581      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
582      D.getNumTypeObjects() == 0) {
583    // Check also for this case:
584    //
585    // typedef int f();
586    // f a;
587    //
588    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
589    isFunc = TDType->isFunctionType();
590  }
591
592  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
593                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
594                      !isFunc);
595
596  Decl *Member;
597  if (isInstField) {
598    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
599                         AS);
600    assert(Member && "HandleField never returns null");
601  } else {
602    Member = ActOnDeclarator(S, D).getAs<Decl>();
603    if (!Member) {
604      if (BitWidth) DeleteExpr(BitWidth);
605      return DeclPtrTy();
606    }
607
608    // Non-instance-fields can't have a bitfield.
609    if (BitWidth) {
610      if (Member->isInvalidDecl()) {
611        // don't emit another diagnostic.
612      } else if (isa<VarDecl>(Member)) {
613        // C++ 9.6p3: A bit-field shall not be a static member.
614        // "static member 'A' cannot be a bit-field"
615        Diag(Loc, diag::err_static_not_bitfield)
616          << Name << BitWidth->getSourceRange();
617      } else if (isa<TypedefDecl>(Member)) {
618        // "typedef member 'x' cannot be a bit-field"
619        Diag(Loc, diag::err_typedef_not_bitfield)
620          << Name << BitWidth->getSourceRange();
621      } else {
622        // A function typedef ("typedef int f(); f a;").
623        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
624        Diag(Loc, diag::err_not_integral_type_bitfield)
625          << Name << cast<ValueDecl>(Member)->getType()
626          << BitWidth->getSourceRange();
627      }
628
629      DeleteExpr(BitWidth);
630      BitWidth = 0;
631      Member->setInvalidDecl();
632    }
633
634    Member->setAccess(AS);
635  }
636
637  assert((Name || isInstField) && "No identifier for non-field ?");
638
639  if (Init)
640    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
641  if (Deleted) // FIXME: Source location is not very good.
642    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
643
644  if (isInstField) {
645    FieldCollector->Add(cast<FieldDecl>(Member));
646    return DeclPtrTy();
647  }
648  return DeclPtrTy::make(Member);
649}
650
651/// ActOnMemInitializer - Handle a C++ member initializer.
652Sema::MemInitResult
653Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
654                          Scope *S,
655                          const CXXScopeSpec &SS,
656                          IdentifierInfo *MemberOrBase,
657                          TypeTy *TemplateTypeTy,
658                          SourceLocation IdLoc,
659                          SourceLocation LParenLoc,
660                          ExprTy **Args, unsigned NumArgs,
661                          SourceLocation *CommaLocs,
662                          SourceLocation RParenLoc) {
663  if (!ConstructorD)
664    return true;
665
666  CXXConstructorDecl *Constructor
667    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
668  if (!Constructor) {
669    // The user wrote a constructor initializer on a function that is
670    // not a C++ constructor. Ignore the error for now, because we may
671    // have more member initializers coming; we'll diagnose it just
672    // once in ActOnMemInitializers.
673    return true;
674  }
675
676  CXXRecordDecl *ClassDecl = Constructor->getParent();
677
678  // C++ [class.base.init]p2:
679  //   Names in a mem-initializer-id are looked up in the scope of the
680  //   constructor’s class and, if not found in that scope, are looked
681  //   up in the scope containing the constructor’s
682  //   definition. [Note: if the constructor’s class contains a member
683  //   with the same name as a direct or virtual base class of the
684  //   class, a mem-initializer-id naming the member or base class and
685  //   composed of a single identifier refers to the class member. A
686  //   mem-initializer-id for the hidden base class may be specified
687  //   using a qualified name. ]
688  if (!SS.getScopeRep() && !TemplateTypeTy) {
689    // Look for a member, first.
690    FieldDecl *Member = 0;
691    DeclContext::lookup_result Result
692      = ClassDecl->lookup(MemberOrBase);
693    if (Result.first != Result.second)
694      Member = dyn_cast<FieldDecl>(*Result.first);
695
696    // FIXME: Handle members of an anonymous union.
697
698    if (Member) {
699      // FIXME: Perform direct initialization of the member.
700      return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs,
701                                            IdLoc);
702    }
703  }
704  // It didn't name a member, so see if it names a class.
705  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
706                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
707  if (!BaseTy)
708    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
709      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
710
711  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
712  if (!BaseType->isRecordType() && !BaseType->isDependentType())
713    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
714      << BaseType << SourceRange(IdLoc, RParenLoc);
715
716  // C++ [class.base.init]p2:
717  //   [...] Unless the mem-initializer-id names a nonstatic data
718  //   member of the constructor’s class or a direct or virtual base
719  //   of that class, the mem-initializer is ill-formed. A
720  //   mem-initializer-list can initialize a base class using any
721  //   name that denotes that base class type.
722
723  // First, check for a direct base class.
724  const CXXBaseSpecifier *DirectBaseSpec = 0;
725  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
726       Base != ClassDecl->bases_end(); ++Base) {
727    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
728        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
729      // We found a direct base of this type. That's what we're
730      // initializing.
731      DirectBaseSpec = &*Base;
732      break;
733    }
734  }
735
736  // Check for a virtual base class.
737  // FIXME: We might be able to short-circuit this if we know in advance that
738  // there are no virtual bases.
739  const CXXBaseSpecifier *VirtualBaseSpec = 0;
740  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
741    // We haven't found a base yet; search the class hierarchy for a
742    // virtual base class.
743    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
744                    /*DetectVirtual=*/false);
745    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
746      for (BasePaths::paths_iterator Path = Paths.begin();
747           Path != Paths.end(); ++Path) {
748        if (Path->back().Base->isVirtual()) {
749          VirtualBaseSpec = Path->back().Base;
750          break;
751        }
752      }
753    }
754  }
755
756  // C++ [base.class.init]p2:
757  //   If a mem-initializer-id is ambiguous because it designates both
758  //   a direct non-virtual base class and an inherited virtual base
759  //   class, the mem-initializer is ill-formed.
760  if (DirectBaseSpec && VirtualBaseSpec)
761    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763  // C++ [base.class.init]p2:
764  // Unless the mem-initializer-id names a nonstatic data membeer of the
765  // constructor's class ot a direst or virtual base of that class, the
766  // mem-initializer is ill-formed.
767  if (!DirectBaseSpec && !VirtualBaseSpec)
768    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
769    << BaseType << ClassDecl->getNameAsCString()
770    << SourceRange(IdLoc, RParenLoc);
771
772
773  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs,
774                                        IdLoc);
775}
776
777void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
778                                SourceLocation ColonLoc,
779                                MemInitTy **MemInits, unsigned NumMemInits) {
780  if (!ConstructorDecl)
781    return;
782
783  CXXConstructorDecl *Constructor
784    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
785
786  if (!Constructor) {
787    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
788    return;
789  }
790  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
791  bool err = false;
792  for (unsigned i = 0; i < NumMemInits; i++) {
793    CXXBaseOrMemberInitializer *Member =
794      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
795    void *KeyToMember = Member->getBaseOrMember();
796    // For fields injected into the class via declaration of an anonymous union,
797    // use its anonymous union class declaration as the unique key.
798    if (FieldDecl *Field = Member->getMember())
799      if (Field->getDeclContext()->isRecord() &&
800          cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion())
801        KeyToMember = static_cast<void *>(Field->getDeclContext());
802    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
803    if (!PrevMember) {
804      PrevMember = Member;
805      continue;
806    }
807    if (FieldDecl *Field = Member->getMember())
808      Diag(Member->getSourceLocation(),
809           diag::error_multiple_mem_initialization)
810      << Field->getNameAsString();
811    else {
812      Type *BaseClass = Member->getBaseClass();
813      assert(BaseClass && "ActOnMemInitializers - neither field or base");
814      Diag(Member->getSourceLocation(),
815           diag::error_multiple_base_initialization)
816        << BaseClass->getDesugaredType(true);
817    }
818    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
819      << 0;
820    err = true;
821  }
822  if (!err) {
823    Constructor->setBaseOrMemberInitializers(Context,
824                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
825                    NumMemInits);
826    // Also issue warning if order of ctor-initializer list does not match order
827    // of 1) base class declarations and 2) order of non-static data members.
828    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
829
830    CXXRecordDecl *ClassDecl
831      = cast<CXXRecordDecl>(Constructor->getDeclContext());
832    // Push virtual bases before others.
833    for (CXXRecordDecl::base_class_iterator VBase =
834         ClassDecl->vbases_begin(),
835         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
836      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
837
838    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
839         E = ClassDecl->bases_end(); Base != E; ++Base) {
840      // Virtuals are alread in the virtual base list and are constructed
841      // first.
842      if (Base->isVirtual())
843        continue;
844      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
845    }
846
847    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
848         E = ClassDecl->field_end(); Field != E; ++Field)
849      AllBaseOrMembers.push_back(*Field);
850
851    int Last = AllBaseOrMembers.size();
852    int curIndex = 0;
853    CXXBaseOrMemberInitializer *PrevMember = 0;
854    for (unsigned i = 0; i < NumMemInits; i++) {
855      CXXBaseOrMemberInitializer *Member =
856        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
857      void *MemberInCtorList;
858      if (Member->isBaseInitializer())
859        MemberInCtorList = Member->getBaseClass();
860      else
861        MemberInCtorList = Member->getMember();
862
863      int j;
864      for (j = curIndex; j < Last; j++)
865        if (MemberInCtorList == AllBaseOrMembers[j])
866          break;
867      if (j == Last) {
868        if (!PrevMember)
869          continue;
870        // Initializer as specified in ctor-initializer list is out of order.
871        // Issue a warning diagnostic.
872        if (PrevMember->isBaseInitializer()) {
873          // Diagnostics is for an initialized base class.
874          Type *BaseClass = PrevMember->getBaseClass();
875          Diag(PrevMember->getSourceLocation(),
876               diag::warn_base_initialized)
877                << BaseClass->getDesugaredType(true);
878        }
879        else {
880          FieldDecl *Field = PrevMember->getMember();
881          Diag(PrevMember->getSourceLocation(),
882               diag::warn_field_initialized)
883            << Field->getNameAsString();
884        }
885        // Also the note!
886        if (FieldDecl *Field = Member->getMember())
887          Diag(Member->getSourceLocation(),
888               diag::note_fieldorbase_initialized_here) << 0
889            << Field->getNameAsString();
890        else {
891          Type *BaseClass = Member->getBaseClass();
892          Diag(Member->getSourceLocation(),
893               diag::note_fieldorbase_initialized_here) << 1
894            << BaseClass->getDesugaredType(true);
895        }
896      }
897      PrevMember = Member;
898      for (curIndex=0; curIndex < Last; curIndex++)
899        if (MemberInCtorList == AllBaseOrMembers[curIndex])
900          break;
901    }
902  }
903}
904
905void Sema::ActOnDefaultInitializers(DeclPtrTy ConstructorDecl) {
906  if (!ConstructorDecl)
907    return;
908
909  if (CXXConstructorDecl *Constructor
910      = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>()))
911    Constructor->setBaseOrMemberInitializers(Context,
912                                           (CXXBaseOrMemberInitializer **)0, 0);
913
914}
915
916namespace {
917  /// PureVirtualMethodCollector - traverses a class and its superclasses
918  /// and determines if it has any pure virtual methods.
919  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
920    ASTContext &Context;
921
922  public:
923    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
924
925  private:
926    MethodList Methods;
927
928    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
929
930  public:
931    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
932      : Context(Ctx) {
933
934      MethodList List;
935      Collect(RD, List);
936
937      // Copy the temporary list to methods, and make sure to ignore any
938      // null entries.
939      for (size_t i = 0, e = List.size(); i != e; ++i) {
940        if (List[i])
941          Methods.push_back(List[i]);
942      }
943    }
944
945    bool empty() const { return Methods.empty(); }
946
947    MethodList::const_iterator methods_begin() { return Methods.begin(); }
948    MethodList::const_iterator methods_end() { return Methods.end(); }
949  };
950
951  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
952                                           MethodList& Methods) {
953    // First, collect the pure virtual methods for the base classes.
954    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
955         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
956      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
957        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
958        if (BaseDecl && BaseDecl->isAbstract())
959          Collect(BaseDecl, Methods);
960      }
961    }
962
963    // Next, zero out any pure virtual methods that this class overrides.
964    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
965
966    MethodSetTy OverriddenMethods;
967    size_t MethodsSize = Methods.size();
968
969    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
970         i != e; ++i) {
971      // Traverse the record, looking for methods.
972      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
973        // If the method is pure virtual, add it to the methods vector.
974        if (MD->isPure()) {
975          Methods.push_back(MD);
976          continue;
977        }
978
979        // Otherwise, record all the overridden methods in our set.
980        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
981             E = MD->end_overridden_methods(); I != E; ++I) {
982          // Keep track of the overridden methods.
983          OverriddenMethods.insert(*I);
984        }
985      }
986    }
987
988    // Now go through the methods and zero out all the ones we know are
989    // overridden.
990    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
991      if (OverriddenMethods.count(Methods[i]))
992        Methods[i] = 0;
993    }
994
995  }
996}
997
998bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
999                                  unsigned DiagID, AbstractDiagSelID SelID,
1000                                  const CXXRecordDecl *CurrentRD) {
1001
1002  if (!getLangOptions().CPlusPlus)
1003    return false;
1004
1005  if (const ArrayType *AT = Context.getAsArrayType(T))
1006    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1007                                  CurrentRD);
1008
1009  if (const PointerType *PT = T->getAsPointerType()) {
1010    // Find the innermost pointer type.
1011    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1012      PT = T;
1013
1014    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1015      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1016                                    CurrentRD);
1017  }
1018
1019  const RecordType *RT = T->getAsRecordType();
1020  if (!RT)
1021    return false;
1022
1023  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1024  if (!RD)
1025    return false;
1026
1027  if (CurrentRD && CurrentRD != RD)
1028    return false;
1029
1030  if (!RD->isAbstract())
1031    return false;
1032
1033  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1034
1035  // Check if we've already emitted the list of pure virtual functions for this
1036  // class.
1037  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1038    return true;
1039
1040  PureVirtualMethodCollector Collector(Context, RD);
1041
1042  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1043       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1044    const CXXMethodDecl *MD = *I;
1045
1046    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1047      MD->getDeclName();
1048  }
1049
1050  if (!PureVirtualClassDiagSet)
1051    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1052  PureVirtualClassDiagSet->insert(RD);
1053
1054  return true;
1055}
1056
1057namespace {
1058  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1059    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1060    Sema &SemaRef;
1061    CXXRecordDecl *AbstractClass;
1062
1063    bool VisitDeclContext(const DeclContext *DC) {
1064      bool Invalid = false;
1065
1066      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1067           E = DC->decls_end(); I != E; ++I)
1068        Invalid |= Visit(*I);
1069
1070      return Invalid;
1071    }
1072
1073  public:
1074    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1075      : SemaRef(SemaRef), AbstractClass(ac) {
1076        Visit(SemaRef.Context.getTranslationUnitDecl());
1077    }
1078
1079    bool VisitFunctionDecl(const FunctionDecl *FD) {
1080      if (FD->isThisDeclarationADefinition()) {
1081        // No need to do the check if we're in a definition, because it requires
1082        // that the return/param types are complete.
1083        // because that requires
1084        return VisitDeclContext(FD);
1085      }
1086
1087      // Check the return type.
1088      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1089      bool Invalid =
1090        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1091                                       diag::err_abstract_type_in_decl,
1092                                       Sema::AbstractReturnType,
1093                                       AbstractClass);
1094
1095      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1096           E = FD->param_end(); I != E; ++I) {
1097        const ParmVarDecl *VD = *I;
1098        Invalid |=
1099          SemaRef.RequireNonAbstractType(VD->getLocation(),
1100                                         VD->getOriginalType(),
1101                                         diag::err_abstract_type_in_decl,
1102                                         Sema::AbstractParamType,
1103                                         AbstractClass);
1104      }
1105
1106      return Invalid;
1107    }
1108
1109    bool VisitDecl(const Decl* D) {
1110      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1111        return VisitDeclContext(DC);
1112
1113      return false;
1114    }
1115  };
1116}
1117
1118void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1119                                             DeclPtrTy TagDecl,
1120                                             SourceLocation LBrac,
1121                                             SourceLocation RBrac) {
1122  if (!TagDecl)
1123    return;
1124
1125  AdjustDeclIfTemplate(TagDecl);
1126  ActOnFields(S, RLoc, TagDecl,
1127              (DeclPtrTy*)FieldCollector->getCurFields(),
1128              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1129
1130  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1131  if (!RD->isAbstract()) {
1132    // Collect all the pure virtual methods and see if this is an abstract
1133    // class after all.
1134    PureVirtualMethodCollector Collector(Context, RD);
1135    if (!Collector.empty())
1136      RD->setAbstract(true);
1137  }
1138
1139  if (RD->isAbstract())
1140    AbstractClassUsageDiagnoser(*this, RD);
1141
1142  if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) {
1143    for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1144         i != e; ++i) {
1145      // All the nonstatic data members must have trivial constructors.
1146      QualType FTy = i->getType();
1147      while (const ArrayType *AT = Context.getAsArrayType(FTy))
1148        FTy = AT->getElementType();
1149
1150      if (const RecordType *RT = FTy->getAsRecordType()) {
1151        CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl());
1152
1153        if (!FieldRD->hasTrivialConstructor())
1154          RD->setHasTrivialConstructor(false);
1155        if (!FieldRD->hasTrivialDestructor())
1156          RD->setHasTrivialDestructor(false);
1157
1158        // If RD has neither a trivial constructor nor a trivial destructor
1159        // we don't need to continue checking.
1160        if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor())
1161          break;
1162      }
1163    }
1164  }
1165
1166  if (!RD->isDependentType())
1167    AddImplicitlyDeclaredMembersToClass(RD);
1168}
1169
1170/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1171/// special functions, such as the default constructor, copy
1172/// constructor, or destructor, to the given C++ class (C++
1173/// [special]p1).  This routine can only be executed just before the
1174/// definition of the class is complete.
1175void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1176  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1177  ClassType = Context.getCanonicalType(ClassType);
1178
1179  // FIXME: Implicit declarations have exception specifications, which are
1180  // the union of the specifications of the implicitly called functions.
1181
1182  if (!ClassDecl->hasUserDeclaredConstructor()) {
1183    // C++ [class.ctor]p5:
1184    //   A default constructor for a class X is a constructor of class X
1185    //   that can be called without an argument. If there is no
1186    //   user-declared constructor for class X, a default constructor is
1187    //   implicitly declared. An implicitly-declared default constructor
1188    //   is an inline public member of its class.
1189    DeclarationName Name
1190      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1191    CXXConstructorDecl *DefaultCon =
1192      CXXConstructorDecl::Create(Context, ClassDecl,
1193                                 ClassDecl->getLocation(), Name,
1194                                 Context.getFunctionType(Context.VoidTy,
1195                                                         0, 0, false, 0),
1196                                 /*isExplicit=*/false,
1197                                 /*isInline=*/true,
1198                                 /*isImplicitlyDeclared=*/true);
1199    DefaultCon->setAccess(AS_public);
1200    DefaultCon->setImplicit();
1201    ClassDecl->addDecl(DefaultCon);
1202  }
1203
1204  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1205    // C++ [class.copy]p4:
1206    //   If the class definition does not explicitly declare a copy
1207    //   constructor, one is declared implicitly.
1208
1209    // C++ [class.copy]p5:
1210    //   The implicitly-declared copy constructor for a class X will
1211    //   have the form
1212    //
1213    //       X::X(const X&)
1214    //
1215    //   if
1216    bool HasConstCopyConstructor = true;
1217
1218    //     -- each direct or virtual base class B of X has a copy
1219    //        constructor whose first parameter is of type const B& or
1220    //        const volatile B&, and
1221    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1222         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1223      const CXXRecordDecl *BaseClassDecl
1224        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1225      HasConstCopyConstructor
1226        = BaseClassDecl->hasConstCopyConstructor(Context);
1227    }
1228
1229    //     -- for all the nonstatic data members of X that are of a
1230    //        class type M (or array thereof), each such class type
1231    //        has a copy constructor whose first parameter is of type
1232    //        const M& or const volatile M&.
1233    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1234         HasConstCopyConstructor && Field != ClassDecl->field_end();
1235         ++Field) {
1236      QualType FieldType = (*Field)->getType();
1237      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1238        FieldType = Array->getElementType();
1239      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1240        const CXXRecordDecl *FieldClassDecl
1241          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1242        HasConstCopyConstructor
1243          = FieldClassDecl->hasConstCopyConstructor(Context);
1244      }
1245    }
1246
1247    //   Otherwise, the implicitly declared copy constructor will have
1248    //   the form
1249    //
1250    //       X::X(X&)
1251    QualType ArgType = ClassType;
1252    if (HasConstCopyConstructor)
1253      ArgType = ArgType.withConst();
1254    ArgType = Context.getLValueReferenceType(ArgType);
1255
1256    //   An implicitly-declared copy constructor is an inline public
1257    //   member of its class.
1258    DeclarationName Name
1259      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1260    CXXConstructorDecl *CopyConstructor
1261      = CXXConstructorDecl::Create(Context, ClassDecl,
1262                                   ClassDecl->getLocation(), Name,
1263                                   Context.getFunctionType(Context.VoidTy,
1264                                                           &ArgType, 1,
1265                                                           false, 0),
1266                                   /*isExplicit=*/false,
1267                                   /*isInline=*/true,
1268                                   /*isImplicitlyDeclared=*/true);
1269    CopyConstructor->setAccess(AS_public);
1270    CopyConstructor->setImplicit();
1271
1272    // Add the parameter to the constructor.
1273    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1274                                                 ClassDecl->getLocation(),
1275                                                 /*IdentifierInfo=*/0,
1276                                                 ArgType, VarDecl::None, 0);
1277    CopyConstructor->setParams(Context, &FromParam, 1);
1278    ClassDecl->addDecl(CopyConstructor);
1279  }
1280
1281  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1282    // Note: The following rules are largely analoguous to the copy
1283    // constructor rules. Note that virtual bases are not taken into account
1284    // for determining the argument type of the operator. Note also that
1285    // operators taking an object instead of a reference are allowed.
1286    //
1287    // C++ [class.copy]p10:
1288    //   If the class definition does not explicitly declare a copy
1289    //   assignment operator, one is declared implicitly.
1290    //   The implicitly-defined copy assignment operator for a class X
1291    //   will have the form
1292    //
1293    //       X& X::operator=(const X&)
1294    //
1295    //   if
1296    bool HasConstCopyAssignment = true;
1297
1298    //       -- each direct base class B of X has a copy assignment operator
1299    //          whose parameter is of type const B&, const volatile B& or B,
1300    //          and
1301    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1302         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1303      const CXXRecordDecl *BaseClassDecl
1304        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1305      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1306    }
1307
1308    //       -- for all the nonstatic data members of X that are of a class
1309    //          type M (or array thereof), each such class type has a copy
1310    //          assignment operator whose parameter is of type const M&,
1311    //          const volatile M& or M.
1312    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1313         HasConstCopyAssignment && Field != ClassDecl->field_end();
1314         ++Field) {
1315      QualType FieldType = (*Field)->getType();
1316      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1317        FieldType = Array->getElementType();
1318      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1319        const CXXRecordDecl *FieldClassDecl
1320          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1321        HasConstCopyAssignment
1322          = FieldClassDecl->hasConstCopyAssignment(Context);
1323      }
1324    }
1325
1326    //   Otherwise, the implicitly declared copy assignment operator will
1327    //   have the form
1328    //
1329    //       X& X::operator=(X&)
1330    QualType ArgType = ClassType;
1331    QualType RetType = Context.getLValueReferenceType(ArgType);
1332    if (HasConstCopyAssignment)
1333      ArgType = ArgType.withConst();
1334    ArgType = Context.getLValueReferenceType(ArgType);
1335
1336    //   An implicitly-declared copy assignment operator is an inline public
1337    //   member of its class.
1338    DeclarationName Name =
1339      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1340    CXXMethodDecl *CopyAssignment =
1341      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1342                            Context.getFunctionType(RetType, &ArgType, 1,
1343                                                    false, 0),
1344                            /*isStatic=*/false, /*isInline=*/true);
1345    CopyAssignment->setAccess(AS_public);
1346    CopyAssignment->setImplicit();
1347
1348    // Add the parameter to the operator.
1349    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1350                                                 ClassDecl->getLocation(),
1351                                                 /*IdentifierInfo=*/0,
1352                                                 ArgType, VarDecl::None, 0);
1353    CopyAssignment->setParams(Context, &FromParam, 1);
1354
1355    // Don't call addedAssignmentOperator. There is no way to distinguish an
1356    // implicit from an explicit assignment operator.
1357    ClassDecl->addDecl(CopyAssignment);
1358  }
1359
1360  if (!ClassDecl->hasUserDeclaredDestructor()) {
1361    // C++ [class.dtor]p2:
1362    //   If a class has no user-declared destructor, a destructor is
1363    //   declared implicitly. An implicitly-declared destructor is an
1364    //   inline public member of its class.
1365    DeclarationName Name
1366      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1367    CXXDestructorDecl *Destructor
1368      = CXXDestructorDecl::Create(Context, ClassDecl,
1369                                  ClassDecl->getLocation(), Name,
1370                                  Context.getFunctionType(Context.VoidTy,
1371                                                          0, 0, false, 0),
1372                                  /*isInline=*/true,
1373                                  /*isImplicitlyDeclared=*/true);
1374    Destructor->setAccess(AS_public);
1375    Destructor->setImplicit();
1376    ClassDecl->addDecl(Destructor);
1377  }
1378}
1379
1380void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1381  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1382  if (!Template)
1383    return;
1384
1385  TemplateParameterList *Params = Template->getTemplateParameters();
1386  for (TemplateParameterList::iterator Param = Params->begin(),
1387                                    ParamEnd = Params->end();
1388       Param != ParamEnd; ++Param) {
1389    NamedDecl *Named = cast<NamedDecl>(*Param);
1390    if (Named->getDeclName()) {
1391      S->AddDecl(DeclPtrTy::make(Named));
1392      IdResolver.AddDecl(Named);
1393    }
1394  }
1395}
1396
1397/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1398/// parsing a top-level (non-nested) C++ class, and we are now
1399/// parsing those parts of the given Method declaration that could
1400/// not be parsed earlier (C++ [class.mem]p2), such as default
1401/// arguments. This action should enter the scope of the given
1402/// Method declaration as if we had just parsed the qualified method
1403/// name. However, it should not bring the parameters into scope;
1404/// that will be performed by ActOnDelayedCXXMethodParameter.
1405void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1406  if (!MethodD)
1407    return;
1408
1409  CXXScopeSpec SS;
1410  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1411  QualType ClassTy
1412    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1413  SS.setScopeRep(
1414    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1415  ActOnCXXEnterDeclaratorScope(S, SS);
1416}
1417
1418/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1419/// C++ method declaration. We're (re-)introducing the given
1420/// function parameter into scope for use in parsing later parts of
1421/// the method declaration. For example, we could see an
1422/// ActOnParamDefaultArgument event for this parameter.
1423void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1424  if (!ParamD)
1425    return;
1426
1427  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1428
1429  // If this parameter has an unparsed default argument, clear it out
1430  // to make way for the parsed default argument.
1431  if (Param->hasUnparsedDefaultArg())
1432    Param->setDefaultArg(0);
1433
1434  S->AddDecl(DeclPtrTy::make(Param));
1435  if (Param->getDeclName())
1436    IdResolver.AddDecl(Param);
1437}
1438
1439/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1440/// processing the delayed method declaration for Method. The method
1441/// declaration is now considered finished. There may be a separate
1442/// ActOnStartOfFunctionDef action later (not necessarily
1443/// immediately!) for this method, if it was also defined inside the
1444/// class body.
1445void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1446  if (!MethodD)
1447    return;
1448
1449  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1450  CXXScopeSpec SS;
1451  QualType ClassTy
1452    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1453  SS.setScopeRep(
1454    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1455  ActOnCXXExitDeclaratorScope(S, SS);
1456
1457  // Now that we have our default arguments, check the constructor
1458  // again. It could produce additional diagnostics or affect whether
1459  // the class has implicitly-declared destructors, among other
1460  // things.
1461  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1462    CheckConstructor(Constructor);
1463
1464  // Check the default arguments, which we may have added.
1465  if (!Method->isInvalidDecl())
1466    CheckCXXDefaultArguments(Method);
1467}
1468
1469/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1470/// the well-formedness of the constructor declarator @p D with type @p
1471/// R. If there are any errors in the declarator, this routine will
1472/// emit diagnostics and set the invalid bit to true.  In any case, the type
1473/// will be updated to reflect a well-formed type for the constructor and
1474/// returned.
1475QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1476                                          FunctionDecl::StorageClass &SC) {
1477  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1478
1479  // C++ [class.ctor]p3:
1480  //   A constructor shall not be virtual (10.3) or static (9.4). A
1481  //   constructor can be invoked for a const, volatile or const
1482  //   volatile object. A constructor shall not be declared const,
1483  //   volatile, or const volatile (9.3.2).
1484  if (isVirtual) {
1485    if (!D.isInvalidType())
1486      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1487        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1488        << SourceRange(D.getIdentifierLoc());
1489    D.setInvalidType();
1490  }
1491  if (SC == FunctionDecl::Static) {
1492    if (!D.isInvalidType())
1493      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1494        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1495        << SourceRange(D.getIdentifierLoc());
1496    D.setInvalidType();
1497    SC = FunctionDecl::None;
1498  }
1499
1500  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1501  if (FTI.TypeQuals != 0) {
1502    if (FTI.TypeQuals & QualType::Const)
1503      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1504        << "const" << SourceRange(D.getIdentifierLoc());
1505    if (FTI.TypeQuals & QualType::Volatile)
1506      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1507        << "volatile" << SourceRange(D.getIdentifierLoc());
1508    if (FTI.TypeQuals & QualType::Restrict)
1509      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1510        << "restrict" << SourceRange(D.getIdentifierLoc());
1511  }
1512
1513  // Rebuild the function type "R" without any type qualifiers (in
1514  // case any of the errors above fired) and with "void" as the
1515  // return type, since constructors don't have return types. We
1516  // *always* have to do this, because GetTypeForDeclarator will
1517  // put in a result type of "int" when none was specified.
1518  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1519  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1520                                 Proto->getNumArgs(),
1521                                 Proto->isVariadic(), 0);
1522}
1523
1524/// CheckConstructor - Checks a fully-formed constructor for
1525/// well-formedness, issuing any diagnostics required. Returns true if
1526/// the constructor declarator is invalid.
1527void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1528  CXXRecordDecl *ClassDecl
1529    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1530  if (!ClassDecl)
1531    return Constructor->setInvalidDecl();
1532
1533  // C++ [class.copy]p3:
1534  //   A declaration of a constructor for a class X is ill-formed if
1535  //   its first parameter is of type (optionally cv-qualified) X and
1536  //   either there are no other parameters or else all other
1537  //   parameters have default arguments.
1538  if (!Constructor->isInvalidDecl() &&
1539      ((Constructor->getNumParams() == 1) ||
1540       (Constructor->getNumParams() > 1 &&
1541        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1542    QualType ParamType = Constructor->getParamDecl(0)->getType();
1543    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1544    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1545      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1546      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1547        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1548      Constructor->setInvalidDecl();
1549    }
1550  }
1551
1552  // Notify the class that we've added a constructor.
1553  ClassDecl->addedConstructor(Context, Constructor);
1554}
1555
1556static inline bool
1557FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1558  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1559          FTI.ArgInfo[0].Param &&
1560          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1561}
1562
1563/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1564/// the well-formednes of the destructor declarator @p D with type @p
1565/// R. If there are any errors in the declarator, this routine will
1566/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1567/// will be updated to reflect a well-formed type for the destructor and
1568/// returned.
1569QualType Sema::CheckDestructorDeclarator(Declarator &D,
1570                                         FunctionDecl::StorageClass& SC) {
1571  // C++ [class.dtor]p1:
1572  //   [...] A typedef-name that names a class is a class-name
1573  //   (7.1.3); however, a typedef-name that names a class shall not
1574  //   be used as the identifier in the declarator for a destructor
1575  //   declaration.
1576  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1577  if (isa<TypedefType>(DeclaratorType)) {
1578    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1579      << DeclaratorType;
1580    D.setInvalidType();
1581  }
1582
1583  // C++ [class.dtor]p2:
1584  //   A destructor is used to destroy objects of its class type. A
1585  //   destructor takes no parameters, and no return type can be
1586  //   specified for it (not even void). The address of a destructor
1587  //   shall not be taken. A destructor shall not be static. A
1588  //   destructor can be invoked for a const, volatile or const
1589  //   volatile object. A destructor shall not be declared const,
1590  //   volatile or const volatile (9.3.2).
1591  if (SC == FunctionDecl::Static) {
1592    if (!D.isInvalidType())
1593      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1594        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1595        << SourceRange(D.getIdentifierLoc());
1596    SC = FunctionDecl::None;
1597    D.setInvalidType();
1598  }
1599  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1600    // Destructors don't have return types, but the parser will
1601    // happily parse something like:
1602    //
1603    //   class X {
1604    //     float ~X();
1605    //   };
1606    //
1607    // The return type will be eliminated later.
1608    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1609      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1610      << SourceRange(D.getIdentifierLoc());
1611  }
1612
1613  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1614  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1615    if (FTI.TypeQuals & QualType::Const)
1616      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1617        << "const" << SourceRange(D.getIdentifierLoc());
1618    if (FTI.TypeQuals & QualType::Volatile)
1619      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1620        << "volatile" << SourceRange(D.getIdentifierLoc());
1621    if (FTI.TypeQuals & QualType::Restrict)
1622      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1623        << "restrict" << SourceRange(D.getIdentifierLoc());
1624    D.setInvalidType();
1625  }
1626
1627  // Make sure we don't have any parameters.
1628  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1629    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1630
1631    // Delete the parameters.
1632    FTI.freeArgs();
1633    D.setInvalidType();
1634  }
1635
1636  // Make sure the destructor isn't variadic.
1637  if (FTI.isVariadic) {
1638    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1639    D.setInvalidType();
1640  }
1641
1642  // Rebuild the function type "R" without any type qualifiers or
1643  // parameters (in case any of the errors above fired) and with
1644  // "void" as the return type, since destructors don't have return
1645  // types. We *always* have to do this, because GetTypeForDeclarator
1646  // will put in a result type of "int" when none was specified.
1647  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1648}
1649
1650/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1651/// well-formednes of the conversion function declarator @p D with
1652/// type @p R. If there are any errors in the declarator, this routine
1653/// will emit diagnostics and return true. Otherwise, it will return
1654/// false. Either way, the type @p R will be updated to reflect a
1655/// well-formed type for the conversion operator.
1656void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1657                                     FunctionDecl::StorageClass& SC) {
1658  // C++ [class.conv.fct]p1:
1659  //   Neither parameter types nor return type can be specified. The
1660  //   type of a conversion function (8.3.5) is “function taking no
1661  //   parameter returning conversion-type-id.”
1662  if (SC == FunctionDecl::Static) {
1663    if (!D.isInvalidType())
1664      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1665        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1666        << SourceRange(D.getIdentifierLoc());
1667    D.setInvalidType();
1668    SC = FunctionDecl::None;
1669  }
1670  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1671    // Conversion functions don't have return types, but the parser will
1672    // happily parse something like:
1673    //
1674    //   class X {
1675    //     float operator bool();
1676    //   };
1677    //
1678    // The return type will be changed later anyway.
1679    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1680      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1681      << SourceRange(D.getIdentifierLoc());
1682  }
1683
1684  // Make sure we don't have any parameters.
1685  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1686    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1687
1688    // Delete the parameters.
1689    D.getTypeObject(0).Fun.freeArgs();
1690    D.setInvalidType();
1691  }
1692
1693  // Make sure the conversion function isn't variadic.
1694  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1695    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1696    D.setInvalidType();
1697  }
1698
1699  // C++ [class.conv.fct]p4:
1700  //   The conversion-type-id shall not represent a function type nor
1701  //   an array type.
1702  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1703  if (ConvType->isArrayType()) {
1704    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1705    ConvType = Context.getPointerType(ConvType);
1706    D.setInvalidType();
1707  } else if (ConvType->isFunctionType()) {
1708    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1709    ConvType = Context.getPointerType(ConvType);
1710    D.setInvalidType();
1711  }
1712
1713  // Rebuild the function type "R" without any parameters (in case any
1714  // of the errors above fired) and with the conversion type as the
1715  // return type.
1716  R = Context.getFunctionType(ConvType, 0, 0, false,
1717                              R->getAsFunctionProtoType()->getTypeQuals());
1718
1719  // C++0x explicit conversion operators.
1720  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1721    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1722         diag::warn_explicit_conversion_functions)
1723      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1724}
1725
1726/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1727/// the declaration of the given C++ conversion function. This routine
1728/// is responsible for recording the conversion function in the C++
1729/// class, if possible.
1730Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1731  assert(Conversion && "Expected to receive a conversion function declaration");
1732
1733  // Set the lexical context of this conversion function
1734  Conversion->setLexicalDeclContext(CurContext);
1735
1736  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1737
1738  // Make sure we aren't redeclaring the conversion function.
1739  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1740
1741  // C++ [class.conv.fct]p1:
1742  //   [...] A conversion function is never used to convert a
1743  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1744  //   same object type (or a reference to it), to a (possibly
1745  //   cv-qualified) base class of that type (or a reference to it),
1746  //   or to (possibly cv-qualified) void.
1747  // FIXME: Suppress this warning if the conversion function ends up being a
1748  // virtual function that overrides a virtual function in a base class.
1749  QualType ClassType
1750    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1751  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1752    ConvType = ConvTypeRef->getPointeeType();
1753  if (ConvType->isRecordType()) {
1754    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1755    if (ConvType == ClassType)
1756      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1757        << ClassType;
1758    else if (IsDerivedFrom(ClassType, ConvType))
1759      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1760        <<  ClassType << ConvType;
1761  } else if (ConvType->isVoidType()) {
1762    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1763      << ClassType << ConvType;
1764  }
1765
1766  if (Conversion->getPreviousDeclaration()) {
1767    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1768    for (OverloadedFunctionDecl::function_iterator
1769           Conv = Conversions->function_begin(),
1770           ConvEnd = Conversions->function_end();
1771         Conv != ConvEnd; ++Conv) {
1772      if (*Conv
1773            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1774        *Conv = Conversion;
1775        return DeclPtrTy::make(Conversion);
1776      }
1777    }
1778    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1779  } else
1780    ClassDecl->addConversionFunction(Context, Conversion);
1781
1782  return DeclPtrTy::make(Conversion);
1783}
1784
1785//===----------------------------------------------------------------------===//
1786// Namespace Handling
1787//===----------------------------------------------------------------------===//
1788
1789/// ActOnStartNamespaceDef - This is called at the start of a namespace
1790/// definition.
1791Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1792                                             SourceLocation IdentLoc,
1793                                             IdentifierInfo *II,
1794                                             SourceLocation LBrace) {
1795  NamespaceDecl *Namespc =
1796      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1797  Namespc->setLBracLoc(LBrace);
1798
1799  Scope *DeclRegionScope = NamespcScope->getParent();
1800
1801  if (II) {
1802    // C++ [namespace.def]p2:
1803    // The identifier in an original-namespace-definition shall not have been
1804    // previously defined in the declarative region in which the
1805    // original-namespace-definition appears. The identifier in an
1806    // original-namespace-definition is the name of the namespace. Subsequently
1807    // in that declarative region, it is treated as an original-namespace-name.
1808
1809    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1810                                     true);
1811
1812    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1813      // This is an extended namespace definition.
1814      // Attach this namespace decl to the chain of extended namespace
1815      // definitions.
1816      OrigNS->setNextNamespace(Namespc);
1817      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1818
1819      // Remove the previous declaration from the scope.
1820      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1821        IdResolver.RemoveDecl(OrigNS);
1822        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1823      }
1824    } else if (PrevDecl) {
1825      // This is an invalid name redefinition.
1826      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1827       << Namespc->getDeclName();
1828      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1829      Namespc->setInvalidDecl();
1830      // Continue on to push Namespc as current DeclContext and return it.
1831    }
1832
1833    PushOnScopeChains(Namespc, DeclRegionScope);
1834  } else {
1835    // FIXME: Handle anonymous namespaces
1836  }
1837
1838  // Although we could have an invalid decl (i.e. the namespace name is a
1839  // redefinition), push it as current DeclContext and try to continue parsing.
1840  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1841  // for the namespace has the declarations that showed up in that particular
1842  // namespace definition.
1843  PushDeclContext(NamespcScope, Namespc);
1844  return DeclPtrTy::make(Namespc);
1845}
1846
1847/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1848/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1849void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1850  Decl *Dcl = D.getAs<Decl>();
1851  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1852  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1853  Namespc->setRBracLoc(RBrace);
1854  PopDeclContext();
1855}
1856
1857Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1858                                          SourceLocation UsingLoc,
1859                                          SourceLocation NamespcLoc,
1860                                          const CXXScopeSpec &SS,
1861                                          SourceLocation IdentLoc,
1862                                          IdentifierInfo *NamespcName,
1863                                          AttributeList *AttrList) {
1864  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1865  assert(NamespcName && "Invalid NamespcName.");
1866  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1867  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1868
1869  UsingDirectiveDecl *UDir = 0;
1870
1871  // Lookup namespace name.
1872  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1873                                    LookupNamespaceName, false);
1874  if (R.isAmbiguous()) {
1875    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1876    return DeclPtrTy();
1877  }
1878  if (NamedDecl *NS = R) {
1879    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1880    // C++ [namespace.udir]p1:
1881    //   A using-directive specifies that the names in the nominated
1882    //   namespace can be used in the scope in which the
1883    //   using-directive appears after the using-directive. During
1884    //   unqualified name lookup (3.4.1), the names appear as if they
1885    //   were declared in the nearest enclosing namespace which
1886    //   contains both the using-directive and the nominated
1887    //   namespace. [Note: in this context, “contains” means “contains
1888    //   directly or indirectly”. ]
1889
1890    // Find enclosing context containing both using-directive and
1891    // nominated namespace.
1892    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1893    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1894      CommonAncestor = CommonAncestor->getParent();
1895
1896    UDir = UsingDirectiveDecl::Create(Context,
1897                                      CurContext, UsingLoc,
1898                                      NamespcLoc,
1899                                      SS.getRange(),
1900                                      (NestedNameSpecifier *)SS.getScopeRep(),
1901                                      IdentLoc,
1902                                      cast<NamespaceDecl>(NS),
1903                                      CommonAncestor);
1904    PushUsingDirective(S, UDir);
1905  } else {
1906    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1907  }
1908
1909  // FIXME: We ignore attributes for now.
1910  delete AttrList;
1911  return DeclPtrTy::make(UDir);
1912}
1913
1914void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1915  // If scope has associated entity, then using directive is at namespace
1916  // or translation unit scope. We add UsingDirectiveDecls, into
1917  // it's lookup structure.
1918  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1919    Ctx->addDecl(UDir);
1920  else
1921    // Otherwise it is block-sope. using-directives will affect lookup
1922    // only to the end of scope.
1923    S->PushUsingDirective(DeclPtrTy::make(UDir));
1924}
1925
1926
1927Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1928                                          SourceLocation UsingLoc,
1929                                          const CXXScopeSpec &SS,
1930                                          SourceLocation IdentLoc,
1931                                          IdentifierInfo *TargetName,
1932                                          OverloadedOperatorKind Op,
1933                                          AttributeList *AttrList,
1934                                          bool IsTypeName) {
1935  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1936  assert((TargetName || Op) && "Invalid TargetName.");
1937  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1938  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1939
1940  UsingDecl *UsingAlias = 0;
1941
1942  DeclarationName Name;
1943  if (TargetName)
1944    Name = TargetName;
1945  else
1946    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1947
1948  // Lookup target name.
1949  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1950
1951  if (NamedDecl *NS = R) {
1952    if (IsTypeName && !isa<TypeDecl>(NS)) {
1953      Diag(IdentLoc, diag::err_using_typename_non_type);
1954    }
1955    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1956        NS->getLocation(), UsingLoc, NS,
1957        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1958        IsTypeName);
1959    PushOnScopeChains(UsingAlias, S);
1960  } else {
1961    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1962  }
1963
1964  // FIXME: We ignore attributes for now.
1965  delete AttrList;
1966  return DeclPtrTy::make(UsingAlias);
1967}
1968
1969/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1970/// is a namespace alias, returns the namespace it points to.
1971static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1972  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1973    return AD->getNamespace();
1974  return dyn_cast_or_null<NamespaceDecl>(D);
1975}
1976
1977Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1978                                             SourceLocation NamespaceLoc,
1979                                             SourceLocation AliasLoc,
1980                                             IdentifierInfo *Alias,
1981                                             const CXXScopeSpec &SS,
1982                                             SourceLocation IdentLoc,
1983                                             IdentifierInfo *Ident) {
1984
1985  // Lookup the namespace name.
1986  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1987
1988  // Check if we have a previous declaration with the same name.
1989  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1990    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
1991      // We already have an alias with the same name that points to the same
1992      // namespace, so don't create a new one.
1993      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
1994        return DeclPtrTy();
1995    }
1996
1997    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1998      diag::err_redefinition_different_kind;
1999    Diag(AliasLoc, DiagID) << Alias;
2000    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2001    return DeclPtrTy();
2002  }
2003
2004  if (R.isAmbiguous()) {
2005    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2006    return DeclPtrTy();
2007  }
2008
2009  if (!R) {
2010    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2011    return DeclPtrTy();
2012  }
2013
2014  NamespaceAliasDecl *AliasDecl =
2015    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2016                               Alias, SS.getRange(),
2017                               (NestedNameSpecifier *)SS.getScopeRep(),
2018                               IdentLoc, R);
2019
2020  CurContext->addDecl(AliasDecl);
2021  return DeclPtrTy::make(AliasDecl);
2022}
2023
2024void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2025                                            CXXConstructorDecl *Constructor) {
2026  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2027          !Constructor->isUsed()) &&
2028    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2029
2030  CXXRecordDecl *ClassDecl
2031    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2032  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2033  // Before the implicitly-declared default constructor for a class is
2034  // implicitly defined, all the implicitly-declared default constructors
2035  // for its base class and its non-static data members shall have been
2036  // implicitly defined.
2037  bool err = false;
2038  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2039       E = ClassDecl->bases_end(); Base != E; ++Base) {
2040    CXXRecordDecl *BaseClassDecl
2041      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2042    if (!BaseClassDecl->hasTrivialConstructor()) {
2043      if (CXXConstructorDecl *BaseCtor =
2044            BaseClassDecl->getDefaultConstructor(Context))
2045        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2046      else {
2047        Diag(CurrentLocation, diag::err_defining_default_ctor)
2048          << Context.getTagDeclType(ClassDecl) << 1
2049          << Context.getTagDeclType(BaseClassDecl);
2050        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2051              << Context.getTagDeclType(BaseClassDecl);
2052        err = true;
2053      }
2054    }
2055  }
2056  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2057       E = ClassDecl->field_end(); Field != E; ++Field) {
2058    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2059    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2060      FieldType = Array->getElementType();
2061    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2062      CXXRecordDecl *FieldClassDecl
2063        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2064      if (!FieldClassDecl->hasTrivialConstructor()) {
2065        if (CXXConstructorDecl *FieldCtor =
2066            FieldClassDecl->getDefaultConstructor(Context))
2067          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2068        else {
2069          Diag(CurrentLocation, diag::err_defining_default_ctor)
2070          << Context.getTagDeclType(ClassDecl) << 0 <<
2071              Context.getTagDeclType(FieldClassDecl);
2072          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2073          << Context.getTagDeclType(FieldClassDecl);
2074          err = true;
2075        }
2076      }
2077    }
2078    else if (FieldType->isReferenceType()) {
2079      Diag(CurrentLocation, diag::err_unintialized_member)
2080        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2081      Diag((*Field)->getLocation(), diag::note_declared_at);
2082      err = true;
2083    }
2084    else if (FieldType.isConstQualified()) {
2085      Diag(CurrentLocation, diag::err_unintialized_member)
2086        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2087       Diag((*Field)->getLocation(), diag::note_declared_at);
2088      err = true;
2089    }
2090  }
2091  if (!err)
2092    Constructor->setUsed();
2093  else
2094    Constructor->setInvalidDecl();
2095}
2096
2097void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2098                                            CXXDestructorDecl *Destructor) {
2099  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2100         "DefineImplicitDestructor - call it for implicit default dtor");
2101
2102  CXXRecordDecl *ClassDecl
2103  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2104  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2105  // C++ [class.dtor] p5
2106  // Before the implicitly-declared default destructor for a class is
2107  // implicitly defined, all the implicitly-declared default destructors
2108  // for its base class and its non-static data members shall have been
2109  // implicitly defined.
2110  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2111       E = ClassDecl->bases_end(); Base != E; ++Base) {
2112    CXXRecordDecl *BaseClassDecl
2113      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2114    if (!BaseClassDecl->hasTrivialDestructor()) {
2115      if (CXXDestructorDecl *BaseDtor =
2116          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2117        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2118      else
2119        assert(false &&
2120               "DefineImplicitDestructor - missing dtor in a base class");
2121    }
2122  }
2123
2124  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2125       E = ClassDecl->field_end(); Field != E; ++Field) {
2126    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2127    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2128      FieldType = Array->getElementType();
2129    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2130      CXXRecordDecl *FieldClassDecl
2131        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2132      if (!FieldClassDecl->hasTrivialDestructor()) {
2133        if (CXXDestructorDecl *FieldDtor =
2134            const_cast<CXXDestructorDecl*>(
2135                                        FieldClassDecl->getDestructor(Context)))
2136          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2137        else
2138          assert(false &&
2139          "DefineImplicitDestructor - missing dtor in class of a data member");
2140      }
2141    }
2142  }
2143  Destructor->setUsed();
2144}
2145
2146void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2147                                          CXXMethodDecl *MethodDecl) {
2148  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2149          MethodDecl->getOverloadedOperator() == OO_Equal &&
2150          !MethodDecl->isUsed()) &&
2151         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2152
2153  CXXRecordDecl *ClassDecl
2154    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2155
2156  // C++[class.copy] p12
2157  // Before the implicitly-declared copy assignment operator for a class is
2158  // implicitly defined, all implicitly-declared copy assignment operators
2159  // for its direct base classes and its nonstatic data members shall have
2160  // been implicitly defined.
2161  bool err = false;
2162  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2163       E = ClassDecl->bases_end(); Base != E; ++Base) {
2164    CXXRecordDecl *BaseClassDecl
2165      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2166    if (CXXMethodDecl *BaseAssignOpMethod =
2167          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2168      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2169  }
2170  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2171       E = ClassDecl->field_end(); Field != E; ++Field) {
2172    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2173    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2174      FieldType = Array->getElementType();
2175    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2176      CXXRecordDecl *FieldClassDecl
2177        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2178      if (CXXMethodDecl *FieldAssignOpMethod =
2179          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2180        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2181    }
2182    else if (FieldType->isReferenceType()) {
2183      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2184      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2185      Diag(Field->getLocation(), diag::note_declared_at);
2186      Diag(CurrentLocation, diag::note_first_required_here);
2187      err = true;
2188    }
2189    else if (FieldType.isConstQualified()) {
2190      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2191      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2192      Diag(Field->getLocation(), diag::note_declared_at);
2193      Diag(CurrentLocation, diag::note_first_required_here);
2194      err = true;
2195    }
2196  }
2197  if (!err)
2198    MethodDecl->setUsed();
2199}
2200
2201CXXMethodDecl *
2202Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2203                              CXXRecordDecl *ClassDecl) {
2204  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2205  QualType RHSType(LHSType);
2206  // If class's assignment operator argument is const/volatile qualified,
2207  // look for operator = (const/volatile B&). Otherwise, look for
2208  // operator = (B&).
2209  if (ParmDecl->getType().isConstQualified())
2210    RHSType.addConst();
2211  if (ParmDecl->getType().isVolatileQualified())
2212    RHSType.addVolatile();
2213  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2214                                                          LHSType,
2215                                                          SourceLocation()));
2216  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2217                                                          RHSType,
2218                                                          SourceLocation()));
2219  Expr *Args[2] = { &*LHS, &*RHS };
2220  OverloadCandidateSet CandidateSet;
2221  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2222                              CandidateSet);
2223  OverloadCandidateSet::iterator Best;
2224  if (BestViableFunction(CandidateSet,
2225                         ClassDecl->getLocation(), Best) == OR_Success)
2226    return cast<CXXMethodDecl>(Best->Function);
2227  assert(false &&
2228         "getAssignOperatorMethod - copy assignment operator method not found");
2229  return 0;
2230}
2231
2232void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2233                                   CXXConstructorDecl *CopyConstructor,
2234                                   unsigned TypeQuals) {
2235  assert((CopyConstructor->isImplicit() &&
2236          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2237          !CopyConstructor->isUsed()) &&
2238         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2239
2240  CXXRecordDecl *ClassDecl
2241    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2242  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2243  // C++ [class.copy] p209
2244  // Before the implicitly-declared copy constructor for a class is
2245  // implicitly defined, all the implicitly-declared copy constructors
2246  // for its base class and its non-static data members shall have been
2247  // implicitly defined.
2248  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2249       Base != ClassDecl->bases_end(); ++Base) {
2250    CXXRecordDecl *BaseClassDecl
2251      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2252    if (CXXConstructorDecl *BaseCopyCtor =
2253        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2254      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2255  }
2256  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2257                                  FieldEnd = ClassDecl->field_end();
2258       Field != FieldEnd; ++Field) {
2259    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2260    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2261      FieldType = Array->getElementType();
2262    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2263      CXXRecordDecl *FieldClassDecl
2264        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2265      if (CXXConstructorDecl *FieldCopyCtor =
2266          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2267        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2268    }
2269  }
2270  CopyConstructor->setUsed();
2271}
2272
2273void Sema::InitializeVarWithConstructor(VarDecl *VD,
2274                                        CXXConstructorDecl *Constructor,
2275                                        QualType DeclInitType,
2276                                        Expr **Exprs, unsigned NumExprs) {
2277  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2278                                        false, Exprs, NumExprs);
2279  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2280  VD->setInit(Context, Temp);
2281}
2282
2283void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2284{
2285  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2286                                  DeclInitType->getAsRecordType()->getDecl());
2287  if (!ClassDecl->hasTrivialDestructor())
2288    if (CXXDestructorDecl *Destructor =
2289        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2290      MarkDeclarationReferenced(Loc, Destructor);
2291}
2292
2293/// AddCXXDirectInitializerToDecl - This action is called immediately after
2294/// ActOnDeclarator, when a C++ direct initializer is present.
2295/// e.g: "int x(1);"
2296void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2297                                         SourceLocation LParenLoc,
2298                                         MultiExprArg Exprs,
2299                                         SourceLocation *CommaLocs,
2300                                         SourceLocation RParenLoc) {
2301  unsigned NumExprs = Exprs.size();
2302  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2303  Decl *RealDecl = Dcl.getAs<Decl>();
2304
2305  // If there is no declaration, there was an error parsing it.  Just ignore
2306  // the initializer.
2307  if (RealDecl == 0)
2308    return;
2309
2310  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2311  if (!VDecl) {
2312    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2313    RealDecl->setInvalidDecl();
2314    return;
2315  }
2316
2317  // FIXME: Need to handle dependent types and expressions here.
2318
2319  // We will treat direct-initialization as a copy-initialization:
2320  //    int x(1);  -as-> int x = 1;
2321  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2322  //
2323  // Clients that want to distinguish between the two forms, can check for
2324  // direct initializer using VarDecl::hasCXXDirectInitializer().
2325  // A major benefit is that clients that don't particularly care about which
2326  // exactly form was it (like the CodeGen) can handle both cases without
2327  // special case code.
2328
2329  // C++ 8.5p11:
2330  // The form of initialization (using parentheses or '=') is generally
2331  // insignificant, but does matter when the entity being initialized has a
2332  // class type.
2333  QualType DeclInitType = VDecl->getType();
2334  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2335    DeclInitType = Array->getElementType();
2336
2337  // FIXME: This isn't the right place to complete the type.
2338  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2339                          diag::err_typecheck_decl_incomplete_type)) {
2340    VDecl->setInvalidDecl();
2341    return;
2342  }
2343
2344  if (VDecl->getType()->isRecordType()) {
2345    CXXConstructorDecl *Constructor
2346      = PerformInitializationByConstructor(DeclInitType,
2347                                           (Expr **)Exprs.get(), NumExprs,
2348                                           VDecl->getLocation(),
2349                                           SourceRange(VDecl->getLocation(),
2350                                                       RParenLoc),
2351                                           VDecl->getDeclName(),
2352                                           IK_Direct);
2353    if (!Constructor)
2354      RealDecl->setInvalidDecl();
2355    else {
2356      VDecl->setCXXDirectInitializer(true);
2357      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2358                                   (Expr**)Exprs.release(), NumExprs);
2359      // FIXME. Must do all that is needed to destroy the object
2360      // on scope exit. For now, just mark the destructor as used.
2361      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2362    }
2363    return;
2364  }
2365
2366  if (NumExprs > 1) {
2367    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2368      << SourceRange(VDecl->getLocation(), RParenLoc);
2369    RealDecl->setInvalidDecl();
2370    return;
2371  }
2372
2373  // Let clients know that initialization was done with a direct initializer.
2374  VDecl->setCXXDirectInitializer(true);
2375
2376  assert(NumExprs == 1 && "Expected 1 expression");
2377  // Set the init expression, handles conversions.
2378  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2379                       /*DirectInit=*/true);
2380}
2381
2382/// PerformInitializationByConstructor - Perform initialization by
2383/// constructor (C++ [dcl.init]p14), which may occur as part of
2384/// direct-initialization or copy-initialization. We are initializing
2385/// an object of type @p ClassType with the given arguments @p
2386/// Args. @p Loc is the location in the source code where the
2387/// initializer occurs (e.g., a declaration, member initializer,
2388/// functional cast, etc.) while @p Range covers the whole
2389/// initialization. @p InitEntity is the entity being initialized,
2390/// which may by the name of a declaration or a type. @p Kind is the
2391/// kind of initialization we're performing, which affects whether
2392/// explicit constructors will be considered. When successful, returns
2393/// the constructor that will be used to perform the initialization;
2394/// when the initialization fails, emits a diagnostic and returns
2395/// null.
2396CXXConstructorDecl *
2397Sema::PerformInitializationByConstructor(QualType ClassType,
2398                                         Expr **Args, unsigned NumArgs,
2399                                         SourceLocation Loc, SourceRange Range,
2400                                         DeclarationName InitEntity,
2401                                         InitializationKind Kind) {
2402  const RecordType *ClassRec = ClassType->getAsRecordType();
2403  assert(ClassRec && "Can only initialize a class type here");
2404
2405  // C++ [dcl.init]p14:
2406  //
2407  //   If the initialization is direct-initialization, or if it is
2408  //   copy-initialization where the cv-unqualified version of the
2409  //   source type is the same class as, or a derived class of, the
2410  //   class of the destination, constructors are considered. The
2411  //   applicable constructors are enumerated (13.3.1.3), and the
2412  //   best one is chosen through overload resolution (13.3). The
2413  //   constructor so selected is called to initialize the object,
2414  //   with the initializer expression(s) as its argument(s). If no
2415  //   constructor applies, or the overload resolution is ambiguous,
2416  //   the initialization is ill-formed.
2417  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2418  OverloadCandidateSet CandidateSet;
2419
2420  // Add constructors to the overload set.
2421  DeclarationName ConstructorName
2422    = Context.DeclarationNames.getCXXConstructorName(
2423                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2424  DeclContext::lookup_const_iterator Con, ConEnd;
2425  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2426       Con != ConEnd; ++Con) {
2427    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2428    if ((Kind == IK_Direct) ||
2429        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2430        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2431      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2432  }
2433
2434  // FIXME: When we decide not to synthesize the implicitly-declared
2435  // constructors, we'll need to make them appear here.
2436
2437  OverloadCandidateSet::iterator Best;
2438  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2439  case OR_Success:
2440    // We found a constructor. Return it.
2441    return cast<CXXConstructorDecl>(Best->Function);
2442
2443  case OR_No_Viable_Function:
2444    if (InitEntity)
2445      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2446        << InitEntity << Range;
2447    else
2448      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2449        << ClassType << Range;
2450    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2451    return 0;
2452
2453  case OR_Ambiguous:
2454    if (InitEntity)
2455      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2456    else
2457      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2458    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2459    return 0;
2460
2461  case OR_Deleted:
2462    if (InitEntity)
2463      Diag(Loc, diag::err_ovl_deleted_init)
2464        << Best->Function->isDeleted()
2465        << InitEntity << Range;
2466    else
2467      Diag(Loc, diag::err_ovl_deleted_init)
2468        << Best->Function->isDeleted()
2469        << InitEntity << Range;
2470    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2471    return 0;
2472  }
2473
2474  return 0;
2475}
2476
2477/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2478/// determine whether they are reference-related,
2479/// reference-compatible, reference-compatible with added
2480/// qualification, or incompatible, for use in C++ initialization by
2481/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2482/// type, and the first type (T1) is the pointee type of the reference
2483/// type being initialized.
2484Sema::ReferenceCompareResult
2485Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2486                                   bool& DerivedToBase) {
2487  assert(!T1->isReferenceType() &&
2488    "T1 must be the pointee type of the reference type");
2489  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2490
2491  T1 = Context.getCanonicalType(T1);
2492  T2 = Context.getCanonicalType(T2);
2493  QualType UnqualT1 = T1.getUnqualifiedType();
2494  QualType UnqualT2 = T2.getUnqualifiedType();
2495
2496  // C++ [dcl.init.ref]p4:
2497  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2498  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2499  //   T1 is a base class of T2.
2500  if (UnqualT1 == UnqualT2)
2501    DerivedToBase = false;
2502  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2503    DerivedToBase = true;
2504  else
2505    return Ref_Incompatible;
2506
2507  // At this point, we know that T1 and T2 are reference-related (at
2508  // least).
2509
2510  // C++ [dcl.init.ref]p4:
2511  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2512  //   reference-related to T2 and cv1 is the same cv-qualification
2513  //   as, or greater cv-qualification than, cv2. For purposes of
2514  //   overload resolution, cases for which cv1 is greater
2515  //   cv-qualification than cv2 are identified as
2516  //   reference-compatible with added qualification (see 13.3.3.2).
2517  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2518    return Ref_Compatible;
2519  else if (T1.isMoreQualifiedThan(T2))
2520    return Ref_Compatible_With_Added_Qualification;
2521  else
2522    return Ref_Related;
2523}
2524
2525/// CheckReferenceInit - Check the initialization of a reference
2526/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2527/// the initializer (either a simple initializer or an initializer
2528/// list), and DeclType is the type of the declaration. When ICS is
2529/// non-null, this routine will compute the implicit conversion
2530/// sequence according to C++ [over.ics.ref] and will not produce any
2531/// diagnostics; when ICS is null, it will emit diagnostics when any
2532/// errors are found. Either way, a return value of true indicates
2533/// that there was a failure, a return value of false indicates that
2534/// the reference initialization succeeded.
2535///
2536/// When @p SuppressUserConversions, user-defined conversions are
2537/// suppressed.
2538/// When @p AllowExplicit, we also permit explicit user-defined
2539/// conversion functions.
2540/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2541bool
2542Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2543                         ImplicitConversionSequence *ICS,
2544                         bool SuppressUserConversions,
2545                         bool AllowExplicit, bool ForceRValue) {
2546  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2547
2548  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2549  QualType T2 = Init->getType();
2550
2551  // If the initializer is the address of an overloaded function, try
2552  // to resolve the overloaded function. If all goes well, T2 is the
2553  // type of the resulting function.
2554  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2555    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2556                                                          ICS != 0);
2557    if (Fn) {
2558      // Since we're performing this reference-initialization for
2559      // real, update the initializer with the resulting function.
2560      if (!ICS) {
2561        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2562          return true;
2563
2564        FixOverloadedFunctionReference(Init, Fn);
2565      }
2566
2567      T2 = Fn->getType();
2568    }
2569  }
2570
2571  // Compute some basic properties of the types and the initializer.
2572  bool isRValRef = DeclType->isRValueReferenceType();
2573  bool DerivedToBase = false;
2574  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2575                                                  Init->isLvalue(Context);
2576  ReferenceCompareResult RefRelationship
2577    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2578
2579  // Most paths end in a failed conversion.
2580  if (ICS)
2581    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2582
2583  // C++ [dcl.init.ref]p5:
2584  //   A reference to type “cv1 T1” is initialized by an expression
2585  //   of type “cv2 T2” as follows:
2586
2587  //     -- If the initializer expression
2588
2589  // Rvalue references cannot bind to lvalues (N2812).
2590  // There is absolutely no situation where they can. In particular, note that
2591  // this is ill-formed, even if B has a user-defined conversion to A&&:
2592  //   B b;
2593  //   A&& r = b;
2594  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2595    if (!ICS)
2596      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2597        << Init->getSourceRange();
2598    return true;
2599  }
2600
2601  bool BindsDirectly = false;
2602  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2603  //          reference-compatible with “cv2 T2,” or
2604  //
2605  // Note that the bit-field check is skipped if we are just computing
2606  // the implicit conversion sequence (C++ [over.best.ics]p2).
2607  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2608      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2609    BindsDirectly = true;
2610
2611    if (ICS) {
2612      // C++ [over.ics.ref]p1:
2613      //   When a parameter of reference type binds directly (8.5.3)
2614      //   to an argument expression, the implicit conversion sequence
2615      //   is the identity conversion, unless the argument expression
2616      //   has a type that is a derived class of the parameter type,
2617      //   in which case the implicit conversion sequence is a
2618      //   derived-to-base Conversion (13.3.3.1).
2619      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2620      ICS->Standard.First = ICK_Identity;
2621      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2622      ICS->Standard.Third = ICK_Identity;
2623      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2624      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2625      ICS->Standard.ReferenceBinding = true;
2626      ICS->Standard.DirectBinding = true;
2627      ICS->Standard.RRefBinding = false;
2628      ICS->Standard.CopyConstructor = 0;
2629
2630      // Nothing more to do: the inaccessibility/ambiguity check for
2631      // derived-to-base conversions is suppressed when we're
2632      // computing the implicit conversion sequence (C++
2633      // [over.best.ics]p2).
2634      return false;
2635    } else {
2636      // Perform the conversion.
2637      // FIXME: Binding to a subobject of the lvalue is going to require more
2638      // AST annotation than this.
2639      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2640    }
2641  }
2642
2643  //       -- has a class type (i.e., T2 is a class type) and can be
2644  //          implicitly converted to an lvalue of type “cv3 T3,”
2645  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2646  //          92) (this conversion is selected by enumerating the
2647  //          applicable conversion functions (13.3.1.6) and choosing
2648  //          the best one through overload resolution (13.3)),
2649  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2650    // FIXME: Look for conversions in base classes!
2651    CXXRecordDecl *T2RecordDecl
2652      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2653
2654    OverloadCandidateSet CandidateSet;
2655    OverloadedFunctionDecl *Conversions
2656      = T2RecordDecl->getConversionFunctions();
2657    for (OverloadedFunctionDecl::function_iterator Func
2658           = Conversions->function_begin();
2659         Func != Conversions->function_end(); ++Func) {
2660      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2661
2662      // If the conversion function doesn't return a reference type,
2663      // it can't be considered for this conversion.
2664      if (Conv->getConversionType()->isLValueReferenceType() &&
2665          (AllowExplicit || !Conv->isExplicit()))
2666        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2667    }
2668
2669    OverloadCandidateSet::iterator Best;
2670    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2671    case OR_Success:
2672      // This is a direct binding.
2673      BindsDirectly = true;
2674
2675      if (ICS) {
2676        // C++ [over.ics.ref]p1:
2677        //
2678        //   [...] If the parameter binds directly to the result of
2679        //   applying a conversion function to the argument
2680        //   expression, the implicit conversion sequence is a
2681        //   user-defined conversion sequence (13.3.3.1.2), with the
2682        //   second standard conversion sequence either an identity
2683        //   conversion or, if the conversion function returns an
2684        //   entity of a type that is a derived class of the parameter
2685        //   type, a derived-to-base Conversion.
2686        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2687        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2688        ICS->UserDefined.After = Best->FinalConversion;
2689        ICS->UserDefined.ConversionFunction = Best->Function;
2690        assert(ICS->UserDefined.After.ReferenceBinding &&
2691               ICS->UserDefined.After.DirectBinding &&
2692               "Expected a direct reference binding!");
2693        return false;
2694      } else {
2695        // Perform the conversion.
2696        // FIXME: Binding to a subobject of the lvalue is going to require more
2697        // AST annotation than this.
2698        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2699      }
2700      break;
2701
2702    case OR_Ambiguous:
2703      assert(false && "Ambiguous reference binding conversions not implemented.");
2704      return true;
2705
2706    case OR_No_Viable_Function:
2707    case OR_Deleted:
2708      // There was no suitable conversion, or we found a deleted
2709      // conversion; continue with other checks.
2710      break;
2711    }
2712  }
2713
2714  if (BindsDirectly) {
2715    // C++ [dcl.init.ref]p4:
2716    //   [...] In all cases where the reference-related or
2717    //   reference-compatible relationship of two types is used to
2718    //   establish the validity of a reference binding, and T1 is a
2719    //   base class of T2, a program that necessitates such a binding
2720    //   is ill-formed if T1 is an inaccessible (clause 11) or
2721    //   ambiguous (10.2) base class of T2.
2722    //
2723    // Note that we only check this condition when we're allowed to
2724    // complain about errors, because we should not be checking for
2725    // ambiguity (or inaccessibility) unless the reference binding
2726    // actually happens.
2727    if (DerivedToBase)
2728      return CheckDerivedToBaseConversion(T2, T1,
2729                                          Init->getSourceRange().getBegin(),
2730                                          Init->getSourceRange());
2731    else
2732      return false;
2733  }
2734
2735  //     -- Otherwise, the reference shall be to a non-volatile const
2736  //        type (i.e., cv1 shall be const), or the reference shall be an
2737  //        rvalue reference and the initializer expression shall be an rvalue.
2738  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2739    if (!ICS)
2740      Diag(Init->getSourceRange().getBegin(),
2741           diag::err_not_reference_to_const_init)
2742        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2743        << T2 << Init->getSourceRange();
2744    return true;
2745  }
2746
2747  //       -- If the initializer expression is an rvalue, with T2 a
2748  //          class type, and “cv1 T1” is reference-compatible with
2749  //          “cv2 T2,” the reference is bound in one of the
2750  //          following ways (the choice is implementation-defined):
2751  //
2752  //          -- The reference is bound to the object represented by
2753  //             the rvalue (see 3.10) or to a sub-object within that
2754  //             object.
2755  //
2756  //          -- A temporary of type “cv1 T2” [sic] is created, and
2757  //             a constructor is called to copy the entire rvalue
2758  //             object into the temporary. The reference is bound to
2759  //             the temporary or to a sub-object within the
2760  //             temporary.
2761  //
2762  //          The constructor that would be used to make the copy
2763  //          shall be callable whether or not the copy is actually
2764  //          done.
2765  //
2766  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2767  // freedom, so we will always take the first option and never build
2768  // a temporary in this case. FIXME: We will, however, have to check
2769  // for the presence of a copy constructor in C++98/03 mode.
2770  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2771      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2772    if (ICS) {
2773      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2774      ICS->Standard.First = ICK_Identity;
2775      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2776      ICS->Standard.Third = ICK_Identity;
2777      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2778      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2779      ICS->Standard.ReferenceBinding = true;
2780      ICS->Standard.DirectBinding = false;
2781      ICS->Standard.RRefBinding = isRValRef;
2782      ICS->Standard.CopyConstructor = 0;
2783    } else {
2784      // FIXME: Binding to a subobject of the rvalue is going to require more
2785      // AST annotation than this.
2786      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2787    }
2788    return false;
2789  }
2790
2791  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2792  //          initialized from the initializer expression using the
2793  //          rules for a non-reference copy initialization (8.5). The
2794  //          reference is then bound to the temporary. If T1 is
2795  //          reference-related to T2, cv1 must be the same
2796  //          cv-qualification as, or greater cv-qualification than,
2797  //          cv2; otherwise, the program is ill-formed.
2798  if (RefRelationship == Ref_Related) {
2799    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2800    // we would be reference-compatible or reference-compatible with
2801    // added qualification. But that wasn't the case, so the reference
2802    // initialization fails.
2803    if (!ICS)
2804      Diag(Init->getSourceRange().getBegin(),
2805           diag::err_reference_init_drops_quals)
2806        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2807        << T2 << Init->getSourceRange();
2808    return true;
2809  }
2810
2811  // If at least one of the types is a class type, the types are not
2812  // related, and we aren't allowed any user conversions, the
2813  // reference binding fails. This case is important for breaking
2814  // recursion, since TryImplicitConversion below will attempt to
2815  // create a temporary through the use of a copy constructor.
2816  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2817      (T1->isRecordType() || T2->isRecordType())) {
2818    if (!ICS)
2819      Diag(Init->getSourceRange().getBegin(),
2820           diag::err_typecheck_convert_incompatible)
2821        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2822    return true;
2823  }
2824
2825  // Actually try to convert the initializer to T1.
2826  if (ICS) {
2827    // C++ [over.ics.ref]p2:
2828    //
2829    //   When a parameter of reference type is not bound directly to
2830    //   an argument expression, the conversion sequence is the one
2831    //   required to convert the argument expression to the
2832    //   underlying type of the reference according to
2833    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2834    //   to copy-initializing a temporary of the underlying type with
2835    //   the argument expression. Any difference in top-level
2836    //   cv-qualification is subsumed by the initialization itself
2837    //   and does not constitute a conversion.
2838    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2839    // Of course, that's still a reference binding.
2840    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2841      ICS->Standard.ReferenceBinding = true;
2842      ICS->Standard.RRefBinding = isRValRef;
2843    } else if(ICS->ConversionKind ==
2844              ImplicitConversionSequence::UserDefinedConversion) {
2845      ICS->UserDefined.After.ReferenceBinding = true;
2846      ICS->UserDefined.After.RRefBinding = isRValRef;
2847    }
2848    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2849  } else {
2850    return PerformImplicitConversion(Init, T1, "initializing");
2851  }
2852}
2853
2854/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2855/// of this overloaded operator is well-formed. If so, returns false;
2856/// otherwise, emits appropriate diagnostics and returns true.
2857bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2858  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2859         "Expected an overloaded operator declaration");
2860
2861  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2862
2863  // C++ [over.oper]p5:
2864  //   The allocation and deallocation functions, operator new,
2865  //   operator new[], operator delete and operator delete[], are
2866  //   described completely in 3.7.3. The attributes and restrictions
2867  //   found in the rest of this subclause do not apply to them unless
2868  //   explicitly stated in 3.7.3.
2869  // FIXME: Write a separate routine for checking this. For now, just allow it.
2870  if (Op == OO_New || Op == OO_Array_New ||
2871      Op == OO_Delete || Op == OO_Array_Delete)
2872    return false;
2873
2874  // C++ [over.oper]p6:
2875  //   An operator function shall either be a non-static member
2876  //   function or be a non-member function and have at least one
2877  //   parameter whose type is a class, a reference to a class, an
2878  //   enumeration, or a reference to an enumeration.
2879  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2880    if (MethodDecl->isStatic())
2881      return Diag(FnDecl->getLocation(),
2882                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2883  } else {
2884    bool ClassOrEnumParam = false;
2885    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2886                                   ParamEnd = FnDecl->param_end();
2887         Param != ParamEnd; ++Param) {
2888      QualType ParamType = (*Param)->getType().getNonReferenceType();
2889      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2890          ParamType->isEnumeralType()) {
2891        ClassOrEnumParam = true;
2892        break;
2893      }
2894    }
2895
2896    if (!ClassOrEnumParam)
2897      return Diag(FnDecl->getLocation(),
2898                  diag::err_operator_overload_needs_class_or_enum)
2899        << FnDecl->getDeclName();
2900  }
2901
2902  // C++ [over.oper]p8:
2903  //   An operator function cannot have default arguments (8.3.6),
2904  //   except where explicitly stated below.
2905  //
2906  // Only the function-call operator allows default arguments
2907  // (C++ [over.call]p1).
2908  if (Op != OO_Call) {
2909    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2910         Param != FnDecl->param_end(); ++Param) {
2911      if ((*Param)->hasUnparsedDefaultArg())
2912        return Diag((*Param)->getLocation(),
2913                    diag::err_operator_overload_default_arg)
2914          << FnDecl->getDeclName();
2915      else if (Expr *DefArg = (*Param)->getDefaultArg())
2916        return Diag((*Param)->getLocation(),
2917                    diag::err_operator_overload_default_arg)
2918          << FnDecl->getDeclName() << DefArg->getSourceRange();
2919    }
2920  }
2921
2922  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2923    { false, false, false }
2924#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2925    , { Unary, Binary, MemberOnly }
2926#include "clang/Basic/OperatorKinds.def"
2927  };
2928
2929  bool CanBeUnaryOperator = OperatorUses[Op][0];
2930  bool CanBeBinaryOperator = OperatorUses[Op][1];
2931  bool MustBeMemberOperator = OperatorUses[Op][2];
2932
2933  // C++ [over.oper]p8:
2934  //   [...] Operator functions cannot have more or fewer parameters
2935  //   than the number required for the corresponding operator, as
2936  //   described in the rest of this subclause.
2937  unsigned NumParams = FnDecl->getNumParams()
2938                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2939  if (Op != OO_Call &&
2940      ((NumParams == 1 && !CanBeUnaryOperator) ||
2941       (NumParams == 2 && !CanBeBinaryOperator) ||
2942       (NumParams < 1) || (NumParams > 2))) {
2943    // We have the wrong number of parameters.
2944    unsigned ErrorKind;
2945    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2946      ErrorKind = 2;  // 2 -> unary or binary.
2947    } else if (CanBeUnaryOperator) {
2948      ErrorKind = 0;  // 0 -> unary
2949    } else {
2950      assert(CanBeBinaryOperator &&
2951             "All non-call overloaded operators are unary or binary!");
2952      ErrorKind = 1;  // 1 -> binary
2953    }
2954
2955    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2956      << FnDecl->getDeclName() << NumParams << ErrorKind;
2957  }
2958
2959  // Overloaded operators other than operator() cannot be variadic.
2960  if (Op != OO_Call &&
2961      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2962    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2963      << FnDecl->getDeclName();
2964  }
2965
2966  // Some operators must be non-static member functions.
2967  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2968    return Diag(FnDecl->getLocation(),
2969                diag::err_operator_overload_must_be_member)
2970      << FnDecl->getDeclName();
2971  }
2972
2973  // C++ [over.inc]p1:
2974  //   The user-defined function called operator++ implements the
2975  //   prefix and postfix ++ operator. If this function is a member
2976  //   function with no parameters, or a non-member function with one
2977  //   parameter of class or enumeration type, it defines the prefix
2978  //   increment operator ++ for objects of that type. If the function
2979  //   is a member function with one parameter (which shall be of type
2980  //   int) or a non-member function with two parameters (the second
2981  //   of which shall be of type int), it defines the postfix
2982  //   increment operator ++ for objects of that type.
2983  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2984    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2985    bool ParamIsInt = false;
2986    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2987      ParamIsInt = BT->getKind() == BuiltinType::Int;
2988
2989    if (!ParamIsInt)
2990      return Diag(LastParam->getLocation(),
2991                  diag::err_operator_overload_post_incdec_must_be_int)
2992        << LastParam->getType() << (Op == OO_MinusMinus);
2993  }
2994
2995  // Notify the class if it got an assignment operator.
2996  if (Op == OO_Equal) {
2997    // Would have returned earlier otherwise.
2998    assert(isa<CXXMethodDecl>(FnDecl) &&
2999      "Overloaded = not member, but not filtered.");
3000    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3001    Method->getParent()->addedAssignmentOperator(Context, Method);
3002  }
3003
3004  return false;
3005}
3006
3007/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3008/// linkage specification, including the language and (if present)
3009/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3010/// the location of the language string literal, which is provided
3011/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3012/// the '{' brace. Otherwise, this linkage specification does not
3013/// have any braces.
3014Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3015                                                     SourceLocation ExternLoc,
3016                                                     SourceLocation LangLoc,
3017                                                     const char *Lang,
3018                                                     unsigned StrSize,
3019                                                     SourceLocation LBraceLoc) {
3020  LinkageSpecDecl::LanguageIDs Language;
3021  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3022    Language = LinkageSpecDecl::lang_c;
3023  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3024    Language = LinkageSpecDecl::lang_cxx;
3025  else {
3026    Diag(LangLoc, diag::err_bad_language);
3027    return DeclPtrTy();
3028  }
3029
3030  // FIXME: Add all the various semantics of linkage specifications
3031
3032  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3033                                               LangLoc, Language,
3034                                               LBraceLoc.isValid());
3035  CurContext->addDecl(D);
3036  PushDeclContext(S, D);
3037  return DeclPtrTy::make(D);
3038}
3039
3040/// ActOnFinishLinkageSpecification - Completely the definition of
3041/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3042/// valid, it's the position of the closing '}' brace in a linkage
3043/// specification that uses braces.
3044Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3045                                                      DeclPtrTy LinkageSpec,
3046                                                      SourceLocation RBraceLoc) {
3047  if (LinkageSpec)
3048    PopDeclContext();
3049  return LinkageSpec;
3050}
3051
3052/// \brief Perform semantic analysis for the variable declaration that
3053/// occurs within a C++ catch clause, returning the newly-created
3054/// variable.
3055VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3056                                         IdentifierInfo *Name,
3057                                         SourceLocation Loc,
3058                                         SourceRange Range) {
3059  bool Invalid = false;
3060
3061  // Arrays and functions decay.
3062  if (ExDeclType->isArrayType())
3063    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3064  else if (ExDeclType->isFunctionType())
3065    ExDeclType = Context.getPointerType(ExDeclType);
3066
3067  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3068  // The exception-declaration shall not denote a pointer or reference to an
3069  // incomplete type, other than [cv] void*.
3070  // N2844 forbids rvalue references.
3071  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3072    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3073    Invalid = true;
3074  }
3075
3076  QualType BaseType = ExDeclType;
3077  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3078  unsigned DK = diag::err_catch_incomplete;
3079  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3080    BaseType = Ptr->getPointeeType();
3081    Mode = 1;
3082    DK = diag::err_catch_incomplete_ptr;
3083  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3084    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3085    BaseType = Ref->getPointeeType();
3086    Mode = 2;
3087    DK = diag::err_catch_incomplete_ref;
3088  }
3089  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3090      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3091    Invalid = true;
3092
3093  if (!Invalid && !ExDeclType->isDependentType() &&
3094      RequireNonAbstractType(Loc, ExDeclType,
3095                             diag::err_abstract_type_in_decl,
3096                             AbstractVariableType))
3097    Invalid = true;
3098
3099  // FIXME: Need to test for ability to copy-construct and destroy the
3100  // exception variable.
3101
3102  // FIXME: Need to check for abstract classes.
3103
3104  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3105                                    Name, ExDeclType, VarDecl::None,
3106                                    Range.getBegin());
3107
3108  if (Invalid)
3109    ExDecl->setInvalidDecl();
3110
3111  return ExDecl;
3112}
3113
3114/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3115/// handler.
3116Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3117  QualType ExDeclType = GetTypeForDeclarator(D, S);
3118
3119  bool Invalid = D.isInvalidType();
3120  IdentifierInfo *II = D.getIdentifier();
3121  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3122    // The scope should be freshly made just for us. There is just no way
3123    // it contains any previous declaration.
3124    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3125    if (PrevDecl->isTemplateParameter()) {
3126      // Maybe we will complain about the shadowed template parameter.
3127      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3128    }
3129  }
3130
3131  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3132    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3133      << D.getCXXScopeSpec().getRange();
3134    Invalid = true;
3135  }
3136
3137  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3138                                              D.getIdentifier(),
3139                                              D.getIdentifierLoc(),
3140                                            D.getDeclSpec().getSourceRange());
3141
3142  if (Invalid)
3143    ExDecl->setInvalidDecl();
3144
3145  // Add the exception declaration into this scope.
3146  if (II)
3147    PushOnScopeChains(ExDecl, S);
3148  else
3149    CurContext->addDecl(ExDecl);
3150
3151  ProcessDeclAttributes(S, ExDecl, D);
3152  return DeclPtrTy::make(ExDecl);
3153}
3154
3155Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3156                                                   ExprArg assertexpr,
3157                                                   ExprArg assertmessageexpr) {
3158  Expr *AssertExpr = (Expr *)assertexpr.get();
3159  StringLiteral *AssertMessage =
3160    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3161
3162  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3163    llvm::APSInt Value(32);
3164    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3165      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3166        AssertExpr->getSourceRange();
3167      return DeclPtrTy();
3168    }
3169
3170    if (Value == 0) {
3171      std::string str(AssertMessage->getStrData(),
3172                      AssertMessage->getByteLength());
3173      Diag(AssertLoc, diag::err_static_assert_failed)
3174        << str << AssertExpr->getSourceRange();
3175    }
3176  }
3177
3178  assertexpr.release();
3179  assertmessageexpr.release();
3180  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3181                                        AssertExpr, AssertMessage);
3182
3183  CurContext->addDecl(Decl);
3184  return DeclPtrTy::make(Decl);
3185}
3186
3187bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3188  if (!(S->getFlags() & Scope::ClassScope)) {
3189    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3190    return true;
3191  }
3192
3193  return false;
3194}
3195
3196void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3197  Decl *Dcl = dcl.getAs<Decl>();
3198  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3199  if (!Fn) {
3200    Diag(DelLoc, diag::err_deleted_non_function);
3201    return;
3202  }
3203  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3204    Diag(DelLoc, diag::err_deleted_decl_not_first);
3205    Diag(Prev->getLocation(), diag::note_previous_declaration);
3206    // If the declaration wasn't the first, we delete the function anyway for
3207    // recovery.
3208  }
3209  Fn->setDeleted();
3210}
3211
3212static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3213  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3214       ++CI) {
3215    Stmt *SubStmt = *CI;
3216    if (!SubStmt)
3217      continue;
3218    if (isa<ReturnStmt>(SubStmt))
3219      Self.Diag(SubStmt->getSourceRange().getBegin(),
3220           diag::err_return_in_constructor_handler);
3221    if (!isa<Expr>(SubStmt))
3222      SearchForReturnInStmt(Self, SubStmt);
3223  }
3224}
3225
3226void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3227  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3228    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3229    SearchForReturnInStmt(*this, Handler);
3230  }
3231}
3232
3233bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3234                                             const CXXMethodDecl *Old) {
3235  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3236  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3237
3238  QualType CNewTy = Context.getCanonicalType(NewTy);
3239  QualType COldTy = Context.getCanonicalType(OldTy);
3240
3241  if (CNewTy == COldTy &&
3242      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3243    return false;
3244
3245  // Check if the return types are covariant
3246  QualType NewClassTy, OldClassTy;
3247
3248  /// Both types must be pointers or references to classes.
3249  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3250    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3251      NewClassTy = NewPT->getPointeeType();
3252      OldClassTy = OldPT->getPointeeType();
3253    }
3254  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3255    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3256      NewClassTy = NewRT->getPointeeType();
3257      OldClassTy = OldRT->getPointeeType();
3258    }
3259  }
3260
3261  // The return types aren't either both pointers or references to a class type.
3262  if (NewClassTy.isNull()) {
3263    Diag(New->getLocation(),
3264         diag::err_different_return_type_for_overriding_virtual_function)
3265      << New->getDeclName() << NewTy << OldTy;
3266    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3267
3268    return true;
3269  }
3270
3271  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3272    // Check if the new class derives from the old class.
3273    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3274      Diag(New->getLocation(),
3275           diag::err_covariant_return_not_derived)
3276      << New->getDeclName() << NewTy << OldTy;
3277      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3278      return true;
3279    }
3280
3281    // Check if we the conversion from derived to base is valid.
3282    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3283                      diag::err_covariant_return_inaccessible_base,
3284                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3285                      // FIXME: Should this point to the return type?
3286                      New->getLocation(), SourceRange(), New->getDeclName())) {
3287      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3288      return true;
3289    }
3290  }
3291
3292  // The qualifiers of the return types must be the same.
3293  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3294    Diag(New->getLocation(),
3295         diag::err_covariant_return_type_different_qualifications)
3296    << New->getDeclName() << NewTy << OldTy;
3297    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3298    return true;
3299  };
3300
3301
3302  // The new class type must have the same or less qualifiers as the old type.
3303  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3304    Diag(New->getLocation(),
3305         diag::err_covariant_return_type_class_type_more_qualified)
3306    << New->getDeclName() << NewTy << OldTy;
3307    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3308    return true;
3309  };
3310
3311  return false;
3312}
3313
3314bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3315                                                const CXXMethodDecl *Old)
3316{
3317  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3318                                  diag::note_overridden_virtual_function,
3319                                  Old->getType()->getAsFunctionProtoType(),
3320                                  Old->getLocation(),
3321                                  New->getType()->getAsFunctionProtoType(),
3322                                  New->getLocation());
3323}
3324
3325/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3326/// initializer for the declaration 'Dcl'.
3327/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3328/// static data member of class X, names should be looked up in the scope of
3329/// class X.
3330void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3331  Decl *D = Dcl.getAs<Decl>();
3332  // If there is no declaration, there was an error parsing it.
3333  if (D == 0)
3334    return;
3335
3336  // Check whether it is a declaration with a nested name specifier like
3337  // int foo::bar;
3338  if (!D->isOutOfLine())
3339    return;
3340
3341  // C++ [basic.lookup.unqual]p13
3342  //
3343  // A name used in the definition of a static data member of class X
3344  // (after the qualified-id of the static member) is looked up as if the name
3345  // was used in a member function of X.
3346
3347  // Change current context into the context of the initializing declaration.
3348  EnterDeclaratorContext(S, D->getDeclContext());
3349}
3350
3351/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3352/// initializer for the declaration 'Dcl'.
3353void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3354  Decl *D = Dcl.getAs<Decl>();
3355  // If there is no declaration, there was an error parsing it.
3356  if (D == 0)
3357    return;
3358
3359  // Check whether it is a declaration with a nested name specifier like
3360  // int foo::bar;
3361  if (!D->isOutOfLine())
3362    return;
3363
3364  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3365  ExitDeclaratorContext(S);
3366}
3367