SemaDeclCXX.cpp revision d6a49bb69fadcb04119433278c808797a87d2d31
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Lex/Preprocessor.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/STLExtras.h"
35#include <map>
36#include <set>
37
38using namespace clang;
39
40//===----------------------------------------------------------------------===//
41// CheckDefaultArgumentVisitor
42//===----------------------------------------------------------------------===//
43
44namespace {
45  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
46  /// the default argument of a parameter to determine whether it
47  /// contains any ill-formed subexpressions. For example, this will
48  /// diagnose the use of local variables or parameters within the
49  /// default argument expression.
50  class CheckDefaultArgumentVisitor
51    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
52    Expr *DefaultArg;
53    Sema *S;
54
55  public:
56    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
57      : DefaultArg(defarg), S(s) {}
58
59    bool VisitExpr(Expr *Node);
60    bool VisitDeclRefExpr(DeclRefExpr *DRE);
61    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
62  };
63
64  /// VisitExpr - Visit all of the children of this expression.
65  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
66    bool IsInvalid = false;
67    for (Stmt::child_range I = Node->children(); I; ++I)
68      IsInvalid |= Visit(*I);
69    return IsInvalid;
70  }
71
72  /// VisitDeclRefExpr - Visit a reference to a declaration, to
73  /// determine whether this declaration can be used in the default
74  /// argument expression.
75  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
76    NamedDecl *Decl = DRE->getDecl();
77    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p9
79      //   Default arguments are evaluated each time the function is
80      //   called. The order of evaluation of function arguments is
81      //   unspecified. Consequently, parameters of a function shall not
82      //   be used in default argument expressions, even if they are not
83      //   evaluated. Parameters of a function declared before a default
84      //   argument expression are in scope and can hide namespace and
85      //   class member names.
86      return S->Diag(DRE->getSourceRange().getBegin(),
87                     diag::err_param_default_argument_references_param)
88         << Param->getDeclName() << DefaultArg->getSourceRange();
89    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
90      // C++ [dcl.fct.default]p7
91      //   Local variables shall not be used in default argument
92      //   expressions.
93      if (VDecl->isLocalVarDecl())
94        return S->Diag(DRE->getSourceRange().getBegin(),
95                       diag::err_param_default_argument_references_local)
96          << VDecl->getDeclName() << DefaultArg->getSourceRange();
97    }
98
99    return false;
100  }
101
102  /// VisitCXXThisExpr - Visit a C++ "this" expression.
103  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
104    // C++ [dcl.fct.default]p8:
105    //   The keyword this shall not be used in a default argument of a
106    //   member function.
107    return S->Diag(ThisE->getSourceRange().getBegin(),
108                   diag::err_param_default_argument_references_this)
109               << ThisE->getSourceRange();
110  }
111}
112
113bool
114Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
115                              SourceLocation EqualLoc) {
116  if (RequireCompleteType(Param->getLocation(), Param->getType(),
117                          diag::err_typecheck_decl_incomplete_type)) {
118    Param->setInvalidDecl();
119    return true;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
129                                                                    Param);
130  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
131                                                           EqualLoc);
132  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
133  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
134                                      MultiExprArg(*this, &Arg, 1));
135  if (Result.isInvalid())
136    return true;
137  Arg = Result.takeAs<Expr>();
138
139  CheckImplicitConversions(Arg, EqualLoc);
140  Arg = MaybeCreateExprWithCleanups(Arg);
141
142  // Okay: add the default argument to the parameter
143  Param->setDefaultArg(Arg);
144
145  // We have already instantiated this parameter; provide each of the
146  // instantiations with the uninstantiated default argument.
147  UnparsedDefaultArgInstantiationsMap::iterator InstPos
148    = UnparsedDefaultArgInstantiations.find(Param);
149  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
150    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
151      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
152
153    // We're done tracking this parameter's instantiations.
154    UnparsedDefaultArgInstantiations.erase(InstPos);
155  }
156
157  return false;
158}
159
160/// ActOnParamDefaultArgument - Check whether the default argument
161/// provided for a function parameter is well-formed. If so, attach it
162/// to the parameter declaration.
163void
164Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
165                                Expr *DefaultArg) {
166  if (!param || !DefaultArg)
167    return;
168
169  ParmVarDecl *Param = cast<ParmVarDecl>(param);
170  UnparsedDefaultArgLocs.erase(Param);
171
172  // Default arguments are only permitted in C++
173  if (!getLangOptions().CPlusPlus) {
174    Diag(EqualLoc, diag::err_param_default_argument)
175      << DefaultArg->getSourceRange();
176    Param->setInvalidDecl();
177    return;
178  }
179
180  // Check for unexpanded parameter packs.
181  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
182    Param->setInvalidDecl();
183    return;
184  }
185
186  // Check that the default argument is well-formed
187  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
188  if (DefaultArgChecker.Visit(DefaultArg)) {
189    Param->setInvalidDecl();
190    return;
191  }
192
193  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
194}
195
196/// ActOnParamUnparsedDefaultArgument - We've seen a default
197/// argument for a function parameter, but we can't parse it yet
198/// because we're inside a class definition. Note that this default
199/// argument will be parsed later.
200void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
201                                             SourceLocation EqualLoc,
202                                             SourceLocation ArgLoc) {
203  if (!param)
204    return;
205
206  ParmVarDecl *Param = cast<ParmVarDecl>(param);
207  if (Param)
208    Param->setUnparsedDefaultArg();
209
210  UnparsedDefaultArgLocs[Param] = ArgLoc;
211}
212
213/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
214/// the default argument for the parameter param failed.
215void Sema::ActOnParamDefaultArgumentError(Decl *param) {
216  if (!param)
217    return;
218
219  ParmVarDecl *Param = cast<ParmVarDecl>(param);
220
221  Param->setInvalidDecl();
222
223  UnparsedDefaultArgLocs.erase(Param);
224}
225
226/// CheckExtraCXXDefaultArguments - Check for any extra default
227/// arguments in the declarator, which is not a function declaration
228/// or definition and therefore is not permitted to have default
229/// arguments. This routine should be invoked for every declarator
230/// that is not a function declaration or definition.
231void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
232  // C++ [dcl.fct.default]p3
233  //   A default argument expression shall be specified only in the
234  //   parameter-declaration-clause of a function declaration or in a
235  //   template-parameter (14.1). It shall not be specified for a
236  //   parameter pack. If it is specified in a
237  //   parameter-declaration-clause, it shall not occur within a
238  //   declarator or abstract-declarator of a parameter-declaration.
239  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
240    DeclaratorChunk &chunk = D.getTypeObject(i);
241    if (chunk.Kind == DeclaratorChunk::Function) {
242      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
243        ParmVarDecl *Param =
244          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
245        if (Param->hasUnparsedDefaultArg()) {
246          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
247          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
248            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
249          delete Toks;
250          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
251        } else if (Param->getDefaultArg()) {
252          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
253            << Param->getDefaultArg()->getSourceRange();
254          Param->setDefaultArg(0);
255        }
256      }
257    }
258  }
259}
260
261// MergeCXXFunctionDecl - Merge two declarations of the same C++
262// function, once we already know that they have the same
263// type. Subroutine of MergeFunctionDecl. Returns true if there was an
264// error, false otherwise.
265bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
266  bool Invalid = false;
267
268  // C++ [dcl.fct.default]p4:
269  //   For non-template functions, default arguments can be added in
270  //   later declarations of a function in the same
271  //   scope. Declarations in different scopes have completely
272  //   distinct sets of default arguments. That is, declarations in
273  //   inner scopes do not acquire default arguments from
274  //   declarations in outer scopes, and vice versa. In a given
275  //   function declaration, all parameters subsequent to a
276  //   parameter with a default argument shall have default
277  //   arguments supplied in this or previous declarations. A
278  //   default argument shall not be redefined by a later
279  //   declaration (not even to the same value).
280  //
281  // C++ [dcl.fct.default]p6:
282  //   Except for member functions of class templates, the default arguments
283  //   in a member function definition that appears outside of the class
284  //   definition are added to the set of default arguments provided by the
285  //   member function declaration in the class definition.
286  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
287    ParmVarDecl *OldParam = Old->getParamDecl(p);
288    ParmVarDecl *NewParam = New->getParamDecl(p);
289
290    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
291      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
292      // hint here. Alternatively, we could walk the type-source information
293      // for NewParam to find the last source location in the type... but it
294      // isn't worth the effort right now. This is the kind of test case that
295      // is hard to get right:
296
297      //   int f(int);
298      //   void g(int (*fp)(int) = f);
299      //   void g(int (*fp)(int) = &f);
300      Diag(NewParam->getLocation(),
301           diag::err_param_default_argument_redefinition)
302        << NewParam->getDefaultArgRange();
303
304      // Look for the function declaration where the default argument was
305      // actually written, which may be a declaration prior to Old.
306      for (FunctionDecl *Older = Old->getPreviousDeclaration();
307           Older; Older = Older->getPreviousDeclaration()) {
308        if (!Older->getParamDecl(p)->hasDefaultArg())
309          break;
310
311        OldParam = Older->getParamDecl(p);
312      }
313
314      Diag(OldParam->getLocation(), diag::note_previous_definition)
315        << OldParam->getDefaultArgRange();
316      Invalid = true;
317    } else if (OldParam->hasDefaultArg()) {
318      // Merge the old default argument into the new parameter.
319      // It's important to use getInit() here;  getDefaultArg()
320      // strips off any top-level ExprWithCleanups.
321      NewParam->setHasInheritedDefaultArg();
322      if (OldParam->hasUninstantiatedDefaultArg())
323        NewParam->setUninstantiatedDefaultArg(
324                                      OldParam->getUninstantiatedDefaultArg());
325      else
326        NewParam->setDefaultArg(OldParam->getInit());
327    } else if (NewParam->hasDefaultArg()) {
328      if (New->getDescribedFunctionTemplate()) {
329        // Paragraph 4, quoted above, only applies to non-template functions.
330        Diag(NewParam->getLocation(),
331             diag::err_param_default_argument_template_redecl)
332          << NewParam->getDefaultArgRange();
333        Diag(Old->getLocation(), diag::note_template_prev_declaration)
334          << false;
335      } else if (New->getTemplateSpecializationKind()
336                   != TSK_ImplicitInstantiation &&
337                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
338        // C++ [temp.expr.spec]p21:
339        //   Default function arguments shall not be specified in a declaration
340        //   or a definition for one of the following explicit specializations:
341        //     - the explicit specialization of a function template;
342        //     - the explicit specialization of a member function template;
343        //     - the explicit specialization of a member function of a class
344        //       template where the class template specialization to which the
345        //       member function specialization belongs is implicitly
346        //       instantiated.
347        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
348          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
349          << New->getDeclName()
350          << NewParam->getDefaultArgRange();
351      } else if (New->getDeclContext()->isDependentContext()) {
352        // C++ [dcl.fct.default]p6 (DR217):
353        //   Default arguments for a member function of a class template shall
354        //   be specified on the initial declaration of the member function
355        //   within the class template.
356        //
357        // Reading the tea leaves a bit in DR217 and its reference to DR205
358        // leads me to the conclusion that one cannot add default function
359        // arguments for an out-of-line definition of a member function of a
360        // dependent type.
361        int WhichKind = 2;
362        if (CXXRecordDecl *Record
363              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
364          if (Record->getDescribedClassTemplate())
365            WhichKind = 0;
366          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
367            WhichKind = 1;
368          else
369            WhichKind = 2;
370        }
371
372        Diag(NewParam->getLocation(),
373             diag::err_param_default_argument_member_template_redecl)
374          << WhichKind
375          << NewParam->getDefaultArgRange();
376      }
377    }
378  }
379
380  if (CheckEquivalentExceptionSpec(Old, New))
381    Invalid = true;
382
383  return Invalid;
384}
385
386/// \brief Merge the exception specifications of two variable declarations.
387///
388/// This is called when there's a redeclaration of a VarDecl. The function
389/// checks if the redeclaration might have an exception specification and
390/// validates compatibility and merges the specs if necessary.
391void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
392  // Shortcut if exceptions are disabled.
393  if (!getLangOptions().CXXExceptions)
394    return;
395
396  assert(Context.hasSameType(New->getType(), Old->getType()) &&
397         "Should only be called if types are otherwise the same.");
398
399  QualType NewType = New->getType();
400  QualType OldType = Old->getType();
401
402  // We're only interested in pointers and references to functions, as well
403  // as pointers to member functions.
404  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
405    NewType = R->getPointeeType();
406    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
407  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
408    NewType = P->getPointeeType();
409    OldType = OldType->getAs<PointerType>()->getPointeeType();
410  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
411    NewType = M->getPointeeType();
412    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
413  }
414
415  if (!NewType->isFunctionProtoType())
416    return;
417
418  // There's lots of special cases for functions. For function pointers, system
419  // libraries are hopefully not as broken so that we don't need these
420  // workarounds.
421  if (CheckEquivalentExceptionSpec(
422        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
423        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
424    New->setInvalidDecl();
425  }
426}
427
428/// CheckCXXDefaultArguments - Verify that the default arguments for a
429/// function declaration are well-formed according to C++
430/// [dcl.fct.default].
431void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
432  unsigned NumParams = FD->getNumParams();
433  unsigned p;
434
435  // Find first parameter with a default argument
436  for (p = 0; p < NumParams; ++p) {
437    ParmVarDecl *Param = FD->getParamDecl(p);
438    if (Param->hasDefaultArg())
439      break;
440  }
441
442  // C++ [dcl.fct.default]p4:
443  //   In a given function declaration, all parameters
444  //   subsequent to a parameter with a default argument shall
445  //   have default arguments supplied in this or previous
446  //   declarations. A default argument shall not be redefined
447  //   by a later declaration (not even to the same value).
448  unsigned LastMissingDefaultArg = 0;
449  for (; p < NumParams; ++p) {
450    ParmVarDecl *Param = FD->getParamDecl(p);
451    if (!Param->hasDefaultArg()) {
452      if (Param->isInvalidDecl())
453        /* We already complained about this parameter. */;
454      else if (Param->getIdentifier())
455        Diag(Param->getLocation(),
456             diag::err_param_default_argument_missing_name)
457          << Param->getIdentifier();
458      else
459        Diag(Param->getLocation(),
460             diag::err_param_default_argument_missing);
461
462      LastMissingDefaultArg = p;
463    }
464  }
465
466  if (LastMissingDefaultArg > 0) {
467    // Some default arguments were missing. Clear out all of the
468    // default arguments up to (and including) the last missing
469    // default argument, so that we leave the function parameters
470    // in a semantically valid state.
471    for (p = 0; p <= LastMissingDefaultArg; ++p) {
472      ParmVarDecl *Param = FD->getParamDecl(p);
473      if (Param->hasDefaultArg()) {
474        Param->setDefaultArg(0);
475      }
476    }
477  }
478}
479
480/// isCurrentClassName - Determine whether the identifier II is the
481/// name of the class type currently being defined. In the case of
482/// nested classes, this will only return true if II is the name of
483/// the innermost class.
484bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
485                              const CXXScopeSpec *SS) {
486  assert(getLangOptions().CPlusPlus && "No class names in C!");
487
488  CXXRecordDecl *CurDecl;
489  if (SS && SS->isSet() && !SS->isInvalid()) {
490    DeclContext *DC = computeDeclContext(*SS, true);
491    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
492  } else
493    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
494
495  if (CurDecl && CurDecl->getIdentifier())
496    return &II == CurDecl->getIdentifier();
497  else
498    return false;
499}
500
501/// \brief Check the validity of a C++ base class specifier.
502///
503/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
504/// and returns NULL otherwise.
505CXXBaseSpecifier *
506Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
507                         SourceRange SpecifierRange,
508                         bool Virtual, AccessSpecifier Access,
509                         TypeSourceInfo *TInfo,
510                         SourceLocation EllipsisLoc) {
511  QualType BaseType = TInfo->getType();
512
513  // C++ [class.union]p1:
514  //   A union shall not have base classes.
515  if (Class->isUnion()) {
516    Diag(Class->getLocation(), diag::err_base_clause_on_union)
517      << SpecifierRange;
518    return 0;
519  }
520
521  if (EllipsisLoc.isValid() &&
522      !TInfo->getType()->containsUnexpandedParameterPack()) {
523    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
524      << TInfo->getTypeLoc().getSourceRange();
525    EllipsisLoc = SourceLocation();
526  }
527
528  if (BaseType->isDependentType())
529    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
530                                          Class->getTagKind() == TTK_Class,
531                                          Access, TInfo, EllipsisLoc);
532
533  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
534
535  // Base specifiers must be record types.
536  if (!BaseType->isRecordType()) {
537    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
538    return 0;
539  }
540
541  // C++ [class.union]p1:
542  //   A union shall not be used as a base class.
543  if (BaseType->isUnionType()) {
544    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
545    return 0;
546  }
547
548  // C++ [class.derived]p2:
549  //   The class-name in a base-specifier shall not be an incompletely
550  //   defined class.
551  if (RequireCompleteType(BaseLoc, BaseType,
552                          PDiag(diag::err_incomplete_base_class)
553                            << SpecifierRange)) {
554    Class->setInvalidDecl();
555    return 0;
556  }
557
558  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
559  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
560  assert(BaseDecl && "Record type has no declaration");
561  BaseDecl = BaseDecl->getDefinition();
562  assert(BaseDecl && "Base type is not incomplete, but has no definition");
563  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
564  assert(CXXBaseDecl && "Base type is not a C++ type");
565
566  // C++ [class.derived]p2:
567  //   If a class is marked with the class-virt-specifier final and it appears
568  //   as a base-type-specifier in a base-clause (10 class.derived), the program
569  //   is ill-formed.
570  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
571    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
572      << CXXBaseDecl->getDeclName();
573    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
574      << CXXBaseDecl->getDeclName();
575    return 0;
576  }
577
578  if (BaseDecl->isInvalidDecl())
579    Class->setInvalidDecl();
580
581  // Create the base specifier.
582  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
583                                        Class->getTagKind() == TTK_Class,
584                                        Access, TInfo, EllipsisLoc);
585}
586
587/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
588/// one entry in the base class list of a class specifier, for
589/// example:
590///    class foo : public bar, virtual private baz {
591/// 'public bar' and 'virtual private baz' are each base-specifiers.
592BaseResult
593Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
594                         bool Virtual, AccessSpecifier Access,
595                         ParsedType basetype, SourceLocation BaseLoc,
596                         SourceLocation EllipsisLoc) {
597  if (!classdecl)
598    return true;
599
600  AdjustDeclIfTemplate(classdecl);
601  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
602  if (!Class)
603    return true;
604
605  TypeSourceInfo *TInfo = 0;
606  GetTypeFromParser(basetype, &TInfo);
607
608  if (EllipsisLoc.isInvalid() &&
609      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
610                                      UPPC_BaseType))
611    return true;
612
613  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
614                                                      Virtual, Access, TInfo,
615                                                      EllipsisLoc))
616    return BaseSpec;
617
618  return true;
619}
620
621/// \brief Performs the actual work of attaching the given base class
622/// specifiers to a C++ class.
623bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
624                                unsigned NumBases) {
625 if (NumBases == 0)
626    return false;
627
628  // Used to keep track of which base types we have already seen, so
629  // that we can properly diagnose redundant direct base types. Note
630  // that the key is always the unqualified canonical type of the base
631  // class.
632  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
633
634  // Copy non-redundant base specifiers into permanent storage.
635  unsigned NumGoodBases = 0;
636  bool Invalid = false;
637  for (unsigned idx = 0; idx < NumBases; ++idx) {
638    QualType NewBaseType
639      = Context.getCanonicalType(Bases[idx]->getType());
640    NewBaseType = NewBaseType.getLocalUnqualifiedType();
641    if (!Class->hasObjectMember()) {
642      if (const RecordType *FDTTy =
643            NewBaseType.getTypePtr()->getAs<RecordType>())
644        if (FDTTy->getDecl()->hasObjectMember())
645          Class->setHasObjectMember(true);
646    }
647
648    if (KnownBaseTypes[NewBaseType]) {
649      // C++ [class.mi]p3:
650      //   A class shall not be specified as a direct base class of a
651      //   derived class more than once.
652      Diag(Bases[idx]->getSourceRange().getBegin(),
653           diag::err_duplicate_base_class)
654        << KnownBaseTypes[NewBaseType]->getType()
655        << Bases[idx]->getSourceRange();
656
657      // Delete the duplicate base class specifier; we're going to
658      // overwrite its pointer later.
659      Context.Deallocate(Bases[idx]);
660
661      Invalid = true;
662    } else {
663      // Okay, add this new base class.
664      KnownBaseTypes[NewBaseType] = Bases[idx];
665      Bases[NumGoodBases++] = Bases[idx];
666    }
667  }
668
669  // Attach the remaining base class specifiers to the derived class.
670  Class->setBases(Bases, NumGoodBases);
671
672  // Delete the remaining (good) base class specifiers, since their
673  // data has been copied into the CXXRecordDecl.
674  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
675    Context.Deallocate(Bases[idx]);
676
677  return Invalid;
678}
679
680/// ActOnBaseSpecifiers - Attach the given base specifiers to the
681/// class, after checking whether there are any duplicate base
682/// classes.
683void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
684                               unsigned NumBases) {
685  if (!ClassDecl || !Bases || !NumBases)
686    return;
687
688  AdjustDeclIfTemplate(ClassDecl);
689  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
690                       (CXXBaseSpecifier**)(Bases), NumBases);
691}
692
693static CXXRecordDecl *GetClassForType(QualType T) {
694  if (const RecordType *RT = T->getAs<RecordType>())
695    return cast<CXXRecordDecl>(RT->getDecl());
696  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
697    return ICT->getDecl();
698  else
699    return 0;
700}
701
702/// \brief Determine whether the type \p Derived is a C++ class that is
703/// derived from the type \p Base.
704bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
705  if (!getLangOptions().CPlusPlus)
706    return false;
707
708  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
709  if (!DerivedRD)
710    return false;
711
712  CXXRecordDecl *BaseRD = GetClassForType(Base);
713  if (!BaseRD)
714    return false;
715
716  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
717  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
718}
719
720/// \brief Determine whether the type \p Derived is a C++ class that is
721/// derived from the type \p Base.
722bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
723  if (!getLangOptions().CPlusPlus)
724    return false;
725
726  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
727  if (!DerivedRD)
728    return false;
729
730  CXXRecordDecl *BaseRD = GetClassForType(Base);
731  if (!BaseRD)
732    return false;
733
734  return DerivedRD->isDerivedFrom(BaseRD, Paths);
735}
736
737void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
738                              CXXCastPath &BasePathArray) {
739  assert(BasePathArray.empty() && "Base path array must be empty!");
740  assert(Paths.isRecordingPaths() && "Must record paths!");
741
742  const CXXBasePath &Path = Paths.front();
743
744  // We first go backward and check if we have a virtual base.
745  // FIXME: It would be better if CXXBasePath had the base specifier for
746  // the nearest virtual base.
747  unsigned Start = 0;
748  for (unsigned I = Path.size(); I != 0; --I) {
749    if (Path[I - 1].Base->isVirtual()) {
750      Start = I - 1;
751      break;
752    }
753  }
754
755  // Now add all bases.
756  for (unsigned I = Start, E = Path.size(); I != E; ++I)
757    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
758}
759
760/// \brief Determine whether the given base path includes a virtual
761/// base class.
762bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
763  for (CXXCastPath::const_iterator B = BasePath.begin(),
764                                BEnd = BasePath.end();
765       B != BEnd; ++B)
766    if ((*B)->isVirtual())
767      return true;
768
769  return false;
770}
771
772/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
773/// conversion (where Derived and Base are class types) is
774/// well-formed, meaning that the conversion is unambiguous (and
775/// that all of the base classes are accessible). Returns true
776/// and emits a diagnostic if the code is ill-formed, returns false
777/// otherwise. Loc is the location where this routine should point to
778/// if there is an error, and Range is the source range to highlight
779/// if there is an error.
780bool
781Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
782                                   unsigned InaccessibleBaseID,
783                                   unsigned AmbigiousBaseConvID,
784                                   SourceLocation Loc, SourceRange Range,
785                                   DeclarationName Name,
786                                   CXXCastPath *BasePath) {
787  // First, determine whether the path from Derived to Base is
788  // ambiguous. This is slightly more expensive than checking whether
789  // the Derived to Base conversion exists, because here we need to
790  // explore multiple paths to determine if there is an ambiguity.
791  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
792                     /*DetectVirtual=*/false);
793  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
794  assert(DerivationOkay &&
795         "Can only be used with a derived-to-base conversion");
796  (void)DerivationOkay;
797
798  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
799    if (InaccessibleBaseID) {
800      // Check that the base class can be accessed.
801      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
802                                   InaccessibleBaseID)) {
803        case AR_inaccessible:
804          return true;
805        case AR_accessible:
806        case AR_dependent:
807        case AR_delayed:
808          break;
809      }
810    }
811
812    // Build a base path if necessary.
813    if (BasePath)
814      BuildBasePathArray(Paths, *BasePath);
815    return false;
816  }
817
818  // We know that the derived-to-base conversion is ambiguous, and
819  // we're going to produce a diagnostic. Perform the derived-to-base
820  // search just one more time to compute all of the possible paths so
821  // that we can print them out. This is more expensive than any of
822  // the previous derived-to-base checks we've done, but at this point
823  // performance isn't as much of an issue.
824  Paths.clear();
825  Paths.setRecordingPaths(true);
826  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
827  assert(StillOkay && "Can only be used with a derived-to-base conversion");
828  (void)StillOkay;
829
830  // Build up a textual representation of the ambiguous paths, e.g.,
831  // D -> B -> A, that will be used to illustrate the ambiguous
832  // conversions in the diagnostic. We only print one of the paths
833  // to each base class subobject.
834  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
835
836  Diag(Loc, AmbigiousBaseConvID)
837  << Derived << Base << PathDisplayStr << Range << Name;
838  return true;
839}
840
841bool
842Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
843                                   SourceLocation Loc, SourceRange Range,
844                                   CXXCastPath *BasePath,
845                                   bool IgnoreAccess) {
846  return CheckDerivedToBaseConversion(Derived, Base,
847                                      IgnoreAccess ? 0
848                                       : diag::err_upcast_to_inaccessible_base,
849                                      diag::err_ambiguous_derived_to_base_conv,
850                                      Loc, Range, DeclarationName(),
851                                      BasePath);
852}
853
854
855/// @brief Builds a string representing ambiguous paths from a
856/// specific derived class to different subobjects of the same base
857/// class.
858///
859/// This function builds a string that can be used in error messages
860/// to show the different paths that one can take through the
861/// inheritance hierarchy to go from the derived class to different
862/// subobjects of a base class. The result looks something like this:
863/// @code
864/// struct D -> struct B -> struct A
865/// struct D -> struct C -> struct A
866/// @endcode
867std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
868  std::string PathDisplayStr;
869  std::set<unsigned> DisplayedPaths;
870  for (CXXBasePaths::paths_iterator Path = Paths.begin();
871       Path != Paths.end(); ++Path) {
872    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
873      // We haven't displayed a path to this particular base
874      // class subobject yet.
875      PathDisplayStr += "\n    ";
876      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
877      for (CXXBasePath::const_iterator Element = Path->begin();
878           Element != Path->end(); ++Element)
879        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
880    }
881  }
882
883  return PathDisplayStr;
884}
885
886//===----------------------------------------------------------------------===//
887// C++ class member Handling
888//===----------------------------------------------------------------------===//
889
890/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
891Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
892                                 SourceLocation ASLoc,
893                                 SourceLocation ColonLoc) {
894  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
895  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
896                                                  ASLoc, ColonLoc);
897  CurContext->addHiddenDecl(ASDecl);
898  return ASDecl;
899}
900
901/// CheckOverrideControl - Check C++0x override control semantics.
902void Sema::CheckOverrideControl(const Decl *D) {
903  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
904  if (!MD || !MD->isVirtual())
905    return;
906
907  if (MD->isDependentContext())
908    return;
909
910  // C++0x [class.virtual]p3:
911  //   If a virtual function is marked with the virt-specifier override and does
912  //   not override a member function of a base class,
913  //   the program is ill-formed.
914  bool HasOverriddenMethods =
915    MD->begin_overridden_methods() != MD->end_overridden_methods();
916  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
917    Diag(MD->getLocation(),
918                 diag::err_function_marked_override_not_overriding)
919      << MD->getDeclName();
920    return;
921  }
922
923  // C++0x [class.derived]p8:
924  //   In a class definition marked with the class-virt-specifier explicit,
925  //   if a virtual member function that is neither implicitly-declared nor a
926  //   destructor overrides a member function of a base class and it is not
927  //   marked with the virt-specifier override, the program is ill-formed.
928  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
929      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
930    llvm::SmallVector<const CXXMethodDecl*, 4>
931      OverriddenMethods(MD->begin_overridden_methods(),
932                        MD->end_overridden_methods());
933
934    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
935      << MD->getDeclName()
936      << (unsigned)OverriddenMethods.size();
937
938    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
939      Diag(OverriddenMethods[I]->getLocation(),
940           diag::note_overridden_virtual_function);
941  }
942}
943
944/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
945/// function overrides a virtual member function marked 'final', according to
946/// C++0x [class.virtual]p3.
947bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
948                                                  const CXXMethodDecl *Old) {
949  if (!Old->hasAttr<FinalAttr>())
950    return false;
951
952  Diag(New->getLocation(), diag::err_final_function_overridden)
953    << New->getDeclName();
954  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
955  return true;
956}
957
958/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
959/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
960/// bitfield width if there is one and 'InitExpr' specifies the initializer if
961/// any.
962Decl *
963Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
964                               MultiTemplateParamsArg TemplateParameterLists,
965                               ExprTy *BW, const VirtSpecifiers &VS,
966                               ExprTy *InitExpr, bool IsDefinition,
967                               bool Deleted) {
968  const DeclSpec &DS = D.getDeclSpec();
969  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
970  DeclarationName Name = NameInfo.getName();
971  SourceLocation Loc = NameInfo.getLoc();
972
973  // For anonymous bitfields, the location should point to the type.
974  if (Loc.isInvalid())
975    Loc = D.getSourceRange().getBegin();
976
977  Expr *BitWidth = static_cast<Expr*>(BW);
978  Expr *Init = static_cast<Expr*>(InitExpr);
979
980  assert(isa<CXXRecordDecl>(CurContext));
981  assert(!DS.isFriendSpecified());
982
983  bool isFunc = false;
984  if (D.isFunctionDeclarator())
985    isFunc = true;
986  else if (D.getNumTypeObjects() == 0 &&
987           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
988    QualType TDType = GetTypeFromParser(DS.getRepAsType());
989    isFunc = TDType->isFunctionType();
990  }
991
992  // C++ 9.2p6: A member shall not be declared to have automatic storage
993  // duration (auto, register) or with the extern storage-class-specifier.
994  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
995  // data members and cannot be applied to names declared const or static,
996  // and cannot be applied to reference members.
997  switch (DS.getStorageClassSpec()) {
998    case DeclSpec::SCS_unspecified:
999    case DeclSpec::SCS_typedef:
1000    case DeclSpec::SCS_static:
1001      // FALL THROUGH.
1002      break;
1003    case DeclSpec::SCS_mutable:
1004      if (isFunc) {
1005        if (DS.getStorageClassSpecLoc().isValid())
1006          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1007        else
1008          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1009
1010        // FIXME: It would be nicer if the keyword was ignored only for this
1011        // declarator. Otherwise we could get follow-up errors.
1012        D.getMutableDeclSpec().ClearStorageClassSpecs();
1013      }
1014      break;
1015    default:
1016      if (DS.getStorageClassSpecLoc().isValid())
1017        Diag(DS.getStorageClassSpecLoc(),
1018             diag::err_storageclass_invalid_for_member);
1019      else
1020        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1021      D.getMutableDeclSpec().ClearStorageClassSpecs();
1022  }
1023
1024  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1025                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1026                      !isFunc);
1027
1028  Decl *Member;
1029  if (isInstField) {
1030    CXXScopeSpec &SS = D.getCXXScopeSpec();
1031
1032
1033    if (SS.isSet() && !SS.isInvalid()) {
1034      // The user provided a superfluous scope specifier inside a class
1035      // definition:
1036      //
1037      // class X {
1038      //   int X::member;
1039      // };
1040      DeclContext *DC = 0;
1041      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1042        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1043        << Name << FixItHint::CreateRemoval(SS.getRange());
1044      else
1045        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1046          << Name << SS.getRange();
1047
1048      SS.clear();
1049    }
1050
1051    // FIXME: Check for template parameters!
1052    // FIXME: Check that the name is an identifier!
1053    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1054                         AS);
1055    assert(Member && "HandleField never returns null");
1056  } else {
1057    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1058    if (!Member) {
1059      return 0;
1060    }
1061
1062    // Non-instance-fields can't have a bitfield.
1063    if (BitWidth) {
1064      if (Member->isInvalidDecl()) {
1065        // don't emit another diagnostic.
1066      } else if (isa<VarDecl>(Member)) {
1067        // C++ 9.6p3: A bit-field shall not be a static member.
1068        // "static member 'A' cannot be a bit-field"
1069        Diag(Loc, diag::err_static_not_bitfield)
1070          << Name << BitWidth->getSourceRange();
1071      } else if (isa<TypedefDecl>(Member)) {
1072        // "typedef member 'x' cannot be a bit-field"
1073        Diag(Loc, diag::err_typedef_not_bitfield)
1074          << Name << BitWidth->getSourceRange();
1075      } else {
1076        // A function typedef ("typedef int f(); f a;").
1077        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1078        Diag(Loc, diag::err_not_integral_type_bitfield)
1079          << Name << cast<ValueDecl>(Member)->getType()
1080          << BitWidth->getSourceRange();
1081      }
1082
1083      BitWidth = 0;
1084      Member->setInvalidDecl();
1085    }
1086
1087    Member->setAccess(AS);
1088
1089    // If we have declared a member function template, set the access of the
1090    // templated declaration as well.
1091    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1092      FunTmpl->getTemplatedDecl()->setAccess(AS);
1093  }
1094
1095  if (VS.isOverrideSpecified()) {
1096    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1097    if (!MD || !MD->isVirtual()) {
1098      Diag(Member->getLocStart(),
1099           diag::override_keyword_only_allowed_on_virtual_member_functions)
1100        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1101    } else
1102      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1103  }
1104  if (VS.isFinalSpecified()) {
1105    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1106    if (!MD || !MD->isVirtual()) {
1107      Diag(Member->getLocStart(),
1108           diag::override_keyword_only_allowed_on_virtual_member_functions)
1109      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1110    } else
1111      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1112  }
1113
1114  if (VS.getLastLocation().isValid()) {
1115    // Update the end location of a method that has a virt-specifiers.
1116    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1117      MD->setRangeEnd(VS.getLastLocation());
1118  }
1119
1120  CheckOverrideControl(Member);
1121
1122  assert((Name || isInstField) && "No identifier for non-field ?");
1123
1124  if (Init)
1125    AddInitializerToDecl(Member, Init, false,
1126                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1127  if (Deleted) // FIXME: Source location is not very good.
1128    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1129
1130  FinalizeDeclaration(Member);
1131
1132  if (isInstField)
1133    FieldCollector->Add(cast<FieldDecl>(Member));
1134  return Member;
1135}
1136
1137/// \brief Find the direct and/or virtual base specifiers that
1138/// correspond to the given base type, for use in base initialization
1139/// within a constructor.
1140static bool FindBaseInitializer(Sema &SemaRef,
1141                                CXXRecordDecl *ClassDecl,
1142                                QualType BaseType,
1143                                const CXXBaseSpecifier *&DirectBaseSpec,
1144                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1145  // First, check for a direct base class.
1146  DirectBaseSpec = 0;
1147  for (CXXRecordDecl::base_class_const_iterator Base
1148         = ClassDecl->bases_begin();
1149       Base != ClassDecl->bases_end(); ++Base) {
1150    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1151      // We found a direct base of this type. That's what we're
1152      // initializing.
1153      DirectBaseSpec = &*Base;
1154      break;
1155    }
1156  }
1157
1158  // Check for a virtual base class.
1159  // FIXME: We might be able to short-circuit this if we know in advance that
1160  // there are no virtual bases.
1161  VirtualBaseSpec = 0;
1162  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1163    // We haven't found a base yet; search the class hierarchy for a
1164    // virtual base class.
1165    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1166                       /*DetectVirtual=*/false);
1167    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1168                              BaseType, Paths)) {
1169      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1170           Path != Paths.end(); ++Path) {
1171        if (Path->back().Base->isVirtual()) {
1172          VirtualBaseSpec = Path->back().Base;
1173          break;
1174        }
1175      }
1176    }
1177  }
1178
1179  return DirectBaseSpec || VirtualBaseSpec;
1180}
1181
1182/// ActOnMemInitializer - Handle a C++ member initializer.
1183MemInitResult
1184Sema::ActOnMemInitializer(Decl *ConstructorD,
1185                          Scope *S,
1186                          CXXScopeSpec &SS,
1187                          IdentifierInfo *MemberOrBase,
1188                          ParsedType TemplateTypeTy,
1189                          SourceLocation IdLoc,
1190                          SourceLocation LParenLoc,
1191                          ExprTy **Args, unsigned NumArgs,
1192                          SourceLocation RParenLoc,
1193                          SourceLocation EllipsisLoc) {
1194  if (!ConstructorD)
1195    return true;
1196
1197  AdjustDeclIfTemplate(ConstructorD);
1198
1199  CXXConstructorDecl *Constructor
1200    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1201  if (!Constructor) {
1202    // The user wrote a constructor initializer on a function that is
1203    // not a C++ constructor. Ignore the error for now, because we may
1204    // have more member initializers coming; we'll diagnose it just
1205    // once in ActOnMemInitializers.
1206    return true;
1207  }
1208
1209  CXXRecordDecl *ClassDecl = Constructor->getParent();
1210
1211  // C++ [class.base.init]p2:
1212  //   Names in a mem-initializer-id are looked up in the scope of the
1213  //   constructor's class and, if not found in that scope, are looked
1214  //   up in the scope containing the constructor's definition.
1215  //   [Note: if the constructor's class contains a member with the
1216  //   same name as a direct or virtual base class of the class, a
1217  //   mem-initializer-id naming the member or base class and composed
1218  //   of a single identifier refers to the class member. A
1219  //   mem-initializer-id for the hidden base class may be specified
1220  //   using a qualified name. ]
1221  if (!SS.getScopeRep() && !TemplateTypeTy) {
1222    // Look for a member, first.
1223    FieldDecl *Member = 0;
1224    DeclContext::lookup_result Result
1225      = ClassDecl->lookup(MemberOrBase);
1226    if (Result.first != Result.second) {
1227      Member = dyn_cast<FieldDecl>(*Result.first);
1228
1229      if (Member) {
1230        if (EllipsisLoc.isValid())
1231          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1232            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1233
1234        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1235                                    LParenLoc, RParenLoc);
1236      }
1237
1238      // Handle anonymous union case.
1239      if (IndirectFieldDecl* IndirectField
1240            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1241        if (EllipsisLoc.isValid())
1242          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1243            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1244
1245         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1246                                       NumArgs, IdLoc,
1247                                       LParenLoc, RParenLoc);
1248      }
1249    }
1250  }
1251  // It didn't name a member, so see if it names a class.
1252  QualType BaseType;
1253  TypeSourceInfo *TInfo = 0;
1254
1255  if (TemplateTypeTy) {
1256    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1257  } else {
1258    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1259    LookupParsedName(R, S, &SS);
1260
1261    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1262    if (!TyD) {
1263      if (R.isAmbiguous()) return true;
1264
1265      // We don't want access-control diagnostics here.
1266      R.suppressDiagnostics();
1267
1268      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1269        bool NotUnknownSpecialization = false;
1270        DeclContext *DC = computeDeclContext(SS, false);
1271        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1272          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1273
1274        if (!NotUnknownSpecialization) {
1275          // When the scope specifier can refer to a member of an unknown
1276          // specialization, we take it as a type name.
1277          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1278                                       SS.getWithLocInContext(Context),
1279                                       *MemberOrBase, IdLoc);
1280          if (BaseType.isNull())
1281            return true;
1282
1283          R.clear();
1284          R.setLookupName(MemberOrBase);
1285        }
1286      }
1287
1288      // If no results were found, try to correct typos.
1289      if (R.empty() && BaseType.isNull() &&
1290          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1291          R.isSingleResult()) {
1292        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1293          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1294            // We have found a non-static data member with a similar
1295            // name to what was typed; complain and initialize that
1296            // member.
1297            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1298              << MemberOrBase << true << R.getLookupName()
1299              << FixItHint::CreateReplacement(R.getNameLoc(),
1300                                              R.getLookupName().getAsString());
1301            Diag(Member->getLocation(), diag::note_previous_decl)
1302              << Member->getDeclName();
1303
1304            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1305                                          LParenLoc, RParenLoc);
1306          }
1307        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1308          const CXXBaseSpecifier *DirectBaseSpec;
1309          const CXXBaseSpecifier *VirtualBaseSpec;
1310          if (FindBaseInitializer(*this, ClassDecl,
1311                                  Context.getTypeDeclType(Type),
1312                                  DirectBaseSpec, VirtualBaseSpec)) {
1313            // We have found a direct or virtual base class with a
1314            // similar name to what was typed; complain and initialize
1315            // that base class.
1316            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1317              << MemberOrBase << false << R.getLookupName()
1318              << FixItHint::CreateReplacement(R.getNameLoc(),
1319                                              R.getLookupName().getAsString());
1320
1321            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1322                                                             : VirtualBaseSpec;
1323            Diag(BaseSpec->getSourceRange().getBegin(),
1324                 diag::note_base_class_specified_here)
1325              << BaseSpec->getType()
1326              << BaseSpec->getSourceRange();
1327
1328            TyD = Type;
1329          }
1330        }
1331      }
1332
1333      if (!TyD && BaseType.isNull()) {
1334        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1335          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1336        return true;
1337      }
1338    }
1339
1340    if (BaseType.isNull()) {
1341      BaseType = Context.getTypeDeclType(TyD);
1342      if (SS.isSet()) {
1343        NestedNameSpecifier *Qualifier =
1344          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1345
1346        // FIXME: preserve source range information
1347        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1348      }
1349    }
1350  }
1351
1352  if (!TInfo)
1353    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1354
1355  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1356                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1357}
1358
1359/// Checks an initializer expression for use of uninitialized fields, such as
1360/// containing the field that is being initialized. Returns true if there is an
1361/// uninitialized field was used an updates the SourceLocation parameter; false
1362/// otherwise.
1363static bool InitExprContainsUninitializedFields(const Stmt *S,
1364                                                const ValueDecl *LhsField,
1365                                                SourceLocation *L) {
1366  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1367
1368  if (isa<CallExpr>(S)) {
1369    // Do not descend into function calls or constructors, as the use
1370    // of an uninitialized field may be valid. One would have to inspect
1371    // the contents of the function/ctor to determine if it is safe or not.
1372    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1373    // may be safe, depending on what the function/ctor does.
1374    return false;
1375  }
1376  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1377    const NamedDecl *RhsField = ME->getMemberDecl();
1378
1379    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1380      // The member expression points to a static data member.
1381      assert(VD->isStaticDataMember() &&
1382             "Member points to non-static data member!");
1383      (void)VD;
1384      return false;
1385    }
1386
1387    if (isa<EnumConstantDecl>(RhsField)) {
1388      // The member expression points to an enum.
1389      return false;
1390    }
1391
1392    if (RhsField == LhsField) {
1393      // Initializing a field with itself. Throw a warning.
1394      // But wait; there are exceptions!
1395      // Exception #1:  The field may not belong to this record.
1396      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1397      const Expr *base = ME->getBase();
1398      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1399        // Even though the field matches, it does not belong to this record.
1400        return false;
1401      }
1402      // None of the exceptions triggered; return true to indicate an
1403      // uninitialized field was used.
1404      *L = ME->getMemberLoc();
1405      return true;
1406    }
1407  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1408    // sizeof/alignof doesn't reference contents, do not warn.
1409    return false;
1410  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1411    // address-of doesn't reference contents (the pointer may be dereferenced
1412    // in the same expression but it would be rare; and weird).
1413    if (UOE->getOpcode() == UO_AddrOf)
1414      return false;
1415  }
1416  for (Stmt::const_child_range it = S->children(); it; ++it) {
1417    if (!*it) {
1418      // An expression such as 'member(arg ?: "")' may trigger this.
1419      continue;
1420    }
1421    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1422      return true;
1423  }
1424  return false;
1425}
1426
1427MemInitResult
1428Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1429                             unsigned NumArgs, SourceLocation IdLoc,
1430                             SourceLocation LParenLoc,
1431                             SourceLocation RParenLoc) {
1432  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1433  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1434  assert((DirectMember || IndirectMember) &&
1435         "Member must be a FieldDecl or IndirectFieldDecl");
1436
1437  if (Member->isInvalidDecl())
1438    return true;
1439
1440  // Diagnose value-uses of fields to initialize themselves, e.g.
1441  //   foo(foo)
1442  // where foo is not also a parameter to the constructor.
1443  // TODO: implement -Wuninitialized and fold this into that framework.
1444  for (unsigned i = 0; i < NumArgs; ++i) {
1445    SourceLocation L;
1446    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1447      // FIXME: Return true in the case when other fields are used before being
1448      // uninitialized. For example, let this field be the i'th field. When
1449      // initializing the i'th field, throw a warning if any of the >= i'th
1450      // fields are used, as they are not yet initialized.
1451      // Right now we are only handling the case where the i'th field uses
1452      // itself in its initializer.
1453      Diag(L, diag::warn_field_is_uninit);
1454    }
1455  }
1456
1457  bool HasDependentArg = false;
1458  for (unsigned i = 0; i < NumArgs; i++)
1459    HasDependentArg |= Args[i]->isTypeDependent();
1460
1461  Expr *Init;
1462  if (Member->getType()->isDependentType() || HasDependentArg) {
1463    // Can't check initialization for a member of dependent type or when
1464    // any of the arguments are type-dependent expressions.
1465    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1466                                       RParenLoc);
1467
1468    // Erase any temporaries within this evaluation context; we're not
1469    // going to track them in the AST, since we'll be rebuilding the
1470    // ASTs during template instantiation.
1471    ExprTemporaries.erase(
1472              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1473                          ExprTemporaries.end());
1474  } else {
1475    // Initialize the member.
1476    InitializedEntity MemberEntity =
1477      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1478                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1479    InitializationKind Kind =
1480      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1481
1482    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1483
1484    ExprResult MemberInit =
1485      InitSeq.Perform(*this, MemberEntity, Kind,
1486                      MultiExprArg(*this, Args, NumArgs), 0);
1487    if (MemberInit.isInvalid())
1488      return true;
1489
1490    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1491
1492    // C++0x [class.base.init]p7:
1493    //   The initialization of each base and member constitutes a
1494    //   full-expression.
1495    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1496    if (MemberInit.isInvalid())
1497      return true;
1498
1499    // If we are in a dependent context, template instantiation will
1500    // perform this type-checking again. Just save the arguments that we
1501    // received in a ParenListExpr.
1502    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1503    // of the information that we have about the member
1504    // initializer. However, deconstructing the ASTs is a dicey process,
1505    // and this approach is far more likely to get the corner cases right.
1506    if (CurContext->isDependentContext())
1507      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1508                                               RParenLoc);
1509    else
1510      Init = MemberInit.get();
1511  }
1512
1513  if (DirectMember) {
1514    return new (Context) CXXCtorInitializer(Context, DirectMember,
1515                                                    IdLoc, LParenLoc, Init,
1516                                                    RParenLoc);
1517  } else {
1518    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1519                                                    IdLoc, LParenLoc, Init,
1520                                                    RParenLoc);
1521  }
1522}
1523
1524MemInitResult
1525Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1526                                 Expr **Args, unsigned NumArgs,
1527                                 SourceLocation NameLoc,
1528                                 SourceLocation LParenLoc,
1529                                 SourceLocation RParenLoc,
1530                                 CXXRecordDecl *ClassDecl) {
1531  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1532  if (!LangOpts.CPlusPlus0x)
1533    return Diag(Loc, diag::err_delegation_0x_only)
1534      << TInfo->getTypeLoc().getLocalSourceRange();
1535
1536  // Initialize the object.
1537  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1538                                     QualType(ClassDecl->getTypeForDecl(), 0));
1539  InitializationKind Kind =
1540    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1541
1542  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1543
1544  ExprResult DelegationInit =
1545    InitSeq.Perform(*this, DelegationEntity, Kind,
1546                    MultiExprArg(*this, Args, NumArgs), 0);
1547  if (DelegationInit.isInvalid())
1548    return true;
1549
1550  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1551  CXXConstructorDecl *Constructor = ConExpr->getConstructor();
1552  assert(Constructor && "Delegating constructor with no target?");
1553
1554  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1555
1556  // C++0x [class.base.init]p7:
1557  //   The initialization of each base and member constitutes a
1558  //   full-expression.
1559  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1560  if (DelegationInit.isInvalid())
1561    return true;
1562
1563  // If we are in a dependent context, template instantiation will
1564  // perform this type-checking again. Just save the arguments that we
1565  // received in a ParenListExpr.
1566  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1567  // of the information that we have about the base
1568  // initializer. However, deconstructing the ASTs is a dicey process,
1569  // and this approach is far more likely to get the corner cases right.
1570  if (CurContext->isDependentContext()) {
1571    ExprResult Init
1572      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1573                                          NumArgs, RParenLoc));
1574    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1575                                            Constructor, Init.takeAs<Expr>(),
1576                                            RParenLoc);
1577  }
1578
1579  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1580                                          DelegationInit.takeAs<Expr>(),
1581                                          RParenLoc);
1582}
1583
1584MemInitResult
1585Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1586                           Expr **Args, unsigned NumArgs,
1587                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1588                           CXXRecordDecl *ClassDecl,
1589                           SourceLocation EllipsisLoc) {
1590  bool HasDependentArg = false;
1591  for (unsigned i = 0; i < NumArgs; i++)
1592    HasDependentArg |= Args[i]->isTypeDependent();
1593
1594  SourceLocation BaseLoc
1595    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1596
1597  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1598    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1599             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1600
1601  // C++ [class.base.init]p2:
1602  //   [...] Unless the mem-initializer-id names a nonstatic data
1603  //   member of the constructor's class or a direct or virtual base
1604  //   of that class, the mem-initializer is ill-formed. A
1605  //   mem-initializer-list can initialize a base class using any
1606  //   name that denotes that base class type.
1607  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1608
1609  if (EllipsisLoc.isValid()) {
1610    // This is a pack expansion.
1611    if (!BaseType->containsUnexpandedParameterPack())  {
1612      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1613        << SourceRange(BaseLoc, RParenLoc);
1614
1615      EllipsisLoc = SourceLocation();
1616    }
1617  } else {
1618    // Check for any unexpanded parameter packs.
1619    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1620      return true;
1621
1622    for (unsigned I = 0; I != NumArgs; ++I)
1623      if (DiagnoseUnexpandedParameterPack(Args[I]))
1624        return true;
1625  }
1626
1627  // Check for direct and virtual base classes.
1628  const CXXBaseSpecifier *DirectBaseSpec = 0;
1629  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1630  if (!Dependent) {
1631    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1632                                       BaseType))
1633      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1634                                        LParenLoc, RParenLoc, ClassDecl);
1635
1636    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1637                        VirtualBaseSpec);
1638
1639    // C++ [base.class.init]p2:
1640    // Unless the mem-initializer-id names a nonstatic data member of the
1641    // constructor's class or a direct or virtual base of that class, the
1642    // mem-initializer is ill-formed.
1643    if (!DirectBaseSpec && !VirtualBaseSpec) {
1644      // If the class has any dependent bases, then it's possible that
1645      // one of those types will resolve to the same type as
1646      // BaseType. Therefore, just treat this as a dependent base
1647      // class initialization.  FIXME: Should we try to check the
1648      // initialization anyway? It seems odd.
1649      if (ClassDecl->hasAnyDependentBases())
1650        Dependent = true;
1651      else
1652        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1653          << BaseType << Context.getTypeDeclType(ClassDecl)
1654          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1655    }
1656  }
1657
1658  if (Dependent) {
1659    // Can't check initialization for a base of dependent type or when
1660    // any of the arguments are type-dependent expressions.
1661    ExprResult BaseInit
1662      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1663                                          RParenLoc));
1664
1665    // Erase any temporaries within this evaluation context; we're not
1666    // going to track them in the AST, since we'll be rebuilding the
1667    // ASTs during template instantiation.
1668    ExprTemporaries.erase(
1669              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1670                          ExprTemporaries.end());
1671
1672    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1673                                                    /*IsVirtual=*/false,
1674                                                    LParenLoc,
1675                                                    BaseInit.takeAs<Expr>(),
1676                                                    RParenLoc,
1677                                                    EllipsisLoc);
1678  }
1679
1680  // C++ [base.class.init]p2:
1681  //   If a mem-initializer-id is ambiguous because it designates both
1682  //   a direct non-virtual base class and an inherited virtual base
1683  //   class, the mem-initializer is ill-formed.
1684  if (DirectBaseSpec && VirtualBaseSpec)
1685    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1686      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1687
1688  CXXBaseSpecifier *BaseSpec
1689    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1690  if (!BaseSpec)
1691    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1692
1693  // Initialize the base.
1694  InitializedEntity BaseEntity =
1695    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1696  InitializationKind Kind =
1697    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1698
1699  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1700
1701  ExprResult BaseInit =
1702    InitSeq.Perform(*this, BaseEntity, Kind,
1703                    MultiExprArg(*this, Args, NumArgs), 0);
1704  if (BaseInit.isInvalid())
1705    return true;
1706
1707  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1708
1709  // C++0x [class.base.init]p7:
1710  //   The initialization of each base and member constitutes a
1711  //   full-expression.
1712  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1713  if (BaseInit.isInvalid())
1714    return true;
1715
1716  // If we are in a dependent context, template instantiation will
1717  // perform this type-checking again. Just save the arguments that we
1718  // received in a ParenListExpr.
1719  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1720  // of the information that we have about the base
1721  // initializer. However, deconstructing the ASTs is a dicey process,
1722  // and this approach is far more likely to get the corner cases right.
1723  if (CurContext->isDependentContext()) {
1724    ExprResult Init
1725      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1726                                          RParenLoc));
1727    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1728                                                    BaseSpec->isVirtual(),
1729                                                    LParenLoc,
1730                                                    Init.takeAs<Expr>(),
1731                                                    RParenLoc,
1732                                                    EllipsisLoc);
1733  }
1734
1735  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1736                                                  BaseSpec->isVirtual(),
1737                                                  LParenLoc,
1738                                                  BaseInit.takeAs<Expr>(),
1739                                                  RParenLoc,
1740                                                  EllipsisLoc);
1741}
1742
1743/// ImplicitInitializerKind - How an implicit base or member initializer should
1744/// initialize its base or member.
1745enum ImplicitInitializerKind {
1746  IIK_Default,
1747  IIK_Copy,
1748  IIK_Move
1749};
1750
1751static bool
1752BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1753                             ImplicitInitializerKind ImplicitInitKind,
1754                             CXXBaseSpecifier *BaseSpec,
1755                             bool IsInheritedVirtualBase,
1756                             CXXCtorInitializer *&CXXBaseInit) {
1757  InitializedEntity InitEntity
1758    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1759                                        IsInheritedVirtualBase);
1760
1761  ExprResult BaseInit;
1762
1763  switch (ImplicitInitKind) {
1764  case IIK_Default: {
1765    InitializationKind InitKind
1766      = InitializationKind::CreateDefault(Constructor->getLocation());
1767    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1768    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1769                               MultiExprArg(SemaRef, 0, 0));
1770    break;
1771  }
1772
1773  case IIK_Copy: {
1774    ParmVarDecl *Param = Constructor->getParamDecl(0);
1775    QualType ParamType = Param->getType().getNonReferenceType();
1776
1777    Expr *CopyCtorArg =
1778      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1779                          Constructor->getLocation(), ParamType,
1780                          VK_LValue, 0);
1781
1782    // Cast to the base class to avoid ambiguities.
1783    QualType ArgTy =
1784      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1785                                       ParamType.getQualifiers());
1786
1787    CXXCastPath BasePath;
1788    BasePath.push_back(BaseSpec);
1789    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1790                              CK_UncheckedDerivedToBase,
1791                              VK_LValue, &BasePath);
1792
1793    InitializationKind InitKind
1794      = InitializationKind::CreateDirect(Constructor->getLocation(),
1795                                         SourceLocation(), SourceLocation());
1796    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1797                                   &CopyCtorArg, 1);
1798    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1799                               MultiExprArg(&CopyCtorArg, 1));
1800    break;
1801  }
1802
1803  case IIK_Move:
1804    assert(false && "Unhandled initializer kind!");
1805  }
1806
1807  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1808  if (BaseInit.isInvalid())
1809    return true;
1810
1811  CXXBaseInit =
1812    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1813               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1814                                                        SourceLocation()),
1815                                             BaseSpec->isVirtual(),
1816                                             SourceLocation(),
1817                                             BaseInit.takeAs<Expr>(),
1818                                             SourceLocation(),
1819                                             SourceLocation());
1820
1821  return false;
1822}
1823
1824static bool
1825BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1826                               ImplicitInitializerKind ImplicitInitKind,
1827                               FieldDecl *Field,
1828                               CXXCtorInitializer *&CXXMemberInit) {
1829  if (Field->isInvalidDecl())
1830    return true;
1831
1832  SourceLocation Loc = Constructor->getLocation();
1833
1834  if (ImplicitInitKind == IIK_Copy) {
1835    ParmVarDecl *Param = Constructor->getParamDecl(0);
1836    QualType ParamType = Param->getType().getNonReferenceType();
1837
1838    Expr *MemberExprBase =
1839      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1840                          Loc, ParamType, VK_LValue, 0);
1841
1842    // Build a reference to this field within the parameter.
1843    CXXScopeSpec SS;
1844    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1845                              Sema::LookupMemberName);
1846    MemberLookup.addDecl(Field, AS_public);
1847    MemberLookup.resolveKind();
1848    ExprResult CopyCtorArg
1849      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1850                                         ParamType, Loc,
1851                                         /*IsArrow=*/false,
1852                                         SS,
1853                                         /*FirstQualifierInScope=*/0,
1854                                         MemberLookup,
1855                                         /*TemplateArgs=*/0);
1856    if (CopyCtorArg.isInvalid())
1857      return true;
1858
1859    // When the field we are copying is an array, create index variables for
1860    // each dimension of the array. We use these index variables to subscript
1861    // the source array, and other clients (e.g., CodeGen) will perform the
1862    // necessary iteration with these index variables.
1863    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1864    QualType BaseType = Field->getType();
1865    QualType SizeType = SemaRef.Context.getSizeType();
1866    while (const ConstantArrayType *Array
1867                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1868      // Create the iteration variable for this array index.
1869      IdentifierInfo *IterationVarName = 0;
1870      {
1871        llvm::SmallString<8> Str;
1872        llvm::raw_svector_ostream OS(Str);
1873        OS << "__i" << IndexVariables.size();
1874        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1875      }
1876      VarDecl *IterationVar
1877        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1878                          IterationVarName, SizeType,
1879                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1880                          SC_None, SC_None);
1881      IndexVariables.push_back(IterationVar);
1882
1883      // Create a reference to the iteration variable.
1884      ExprResult IterationVarRef
1885        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1886      assert(!IterationVarRef.isInvalid() &&
1887             "Reference to invented variable cannot fail!");
1888
1889      // Subscript the array with this iteration variable.
1890      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1891                                                            Loc,
1892                                                        IterationVarRef.take(),
1893                                                            Loc);
1894      if (CopyCtorArg.isInvalid())
1895        return true;
1896
1897      BaseType = Array->getElementType();
1898    }
1899
1900    // Construct the entity that we will be initializing. For an array, this
1901    // will be first element in the array, which may require several levels
1902    // of array-subscript entities.
1903    llvm::SmallVector<InitializedEntity, 4> Entities;
1904    Entities.reserve(1 + IndexVariables.size());
1905    Entities.push_back(InitializedEntity::InitializeMember(Field));
1906    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1907      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1908                                                              0,
1909                                                              Entities.back()));
1910
1911    // Direct-initialize to use the copy constructor.
1912    InitializationKind InitKind =
1913      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1914
1915    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1916    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1917                                   &CopyCtorArgE, 1);
1918
1919    ExprResult MemberInit
1920      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1921                        MultiExprArg(&CopyCtorArgE, 1));
1922    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1923    if (MemberInit.isInvalid())
1924      return true;
1925
1926    CXXMemberInit
1927      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1928                                           MemberInit.takeAs<Expr>(), Loc,
1929                                           IndexVariables.data(),
1930                                           IndexVariables.size());
1931    return false;
1932  }
1933
1934  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1935
1936  QualType FieldBaseElementType =
1937    SemaRef.Context.getBaseElementType(Field->getType());
1938
1939  if (FieldBaseElementType->isRecordType()) {
1940    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1941    InitializationKind InitKind =
1942      InitializationKind::CreateDefault(Loc);
1943
1944    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1945    ExprResult MemberInit =
1946      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1947
1948    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1949    if (MemberInit.isInvalid())
1950      return true;
1951
1952    CXXMemberInit =
1953      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1954                                                       Field, Loc, Loc,
1955                                                       MemberInit.get(),
1956                                                       Loc);
1957    return false;
1958  }
1959
1960  if (FieldBaseElementType->isReferenceType()) {
1961    SemaRef.Diag(Constructor->getLocation(),
1962                 diag::err_uninitialized_member_in_ctor)
1963    << (int)Constructor->isImplicit()
1964    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1965    << 0 << Field->getDeclName();
1966    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1967    return true;
1968  }
1969
1970  if (FieldBaseElementType.isConstQualified()) {
1971    SemaRef.Diag(Constructor->getLocation(),
1972                 diag::err_uninitialized_member_in_ctor)
1973    << (int)Constructor->isImplicit()
1974    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1975    << 1 << Field->getDeclName();
1976    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1977    return true;
1978  }
1979
1980  // Nothing to initialize.
1981  CXXMemberInit = 0;
1982  return false;
1983}
1984
1985namespace {
1986struct BaseAndFieldInfo {
1987  Sema &S;
1988  CXXConstructorDecl *Ctor;
1989  bool AnyErrorsInInits;
1990  ImplicitInitializerKind IIK;
1991  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1992  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1993
1994  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1995    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1996    // FIXME: Handle implicit move constructors.
1997    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1998      IIK = IIK_Copy;
1999    else
2000      IIK = IIK_Default;
2001  }
2002};
2003}
2004
2005static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2006                                    FieldDecl *Top, FieldDecl *Field) {
2007
2008  // Overwhelmingly common case: we have a direct initializer for this field.
2009  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2010    Info.AllToInit.push_back(Init);
2011    return false;
2012  }
2013
2014  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2015    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2016    assert(FieldClassType && "anonymous struct/union without record type");
2017    CXXRecordDecl *FieldClassDecl
2018      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2019
2020    // Even though union members never have non-trivial default
2021    // constructions in C++03, we still build member initializers for aggregate
2022    // record types which can be union members, and C++0x allows non-trivial
2023    // default constructors for union members, so we ensure that only one
2024    // member is initialized for these.
2025    if (FieldClassDecl->isUnion()) {
2026      // First check for an explicit initializer for one field.
2027      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2028           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2029        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2030          Info.AllToInit.push_back(Init);
2031
2032          // Once we've initialized a field of an anonymous union, the union
2033          // field in the class is also initialized, so exit immediately.
2034          return false;
2035        } else if ((*FA)->isAnonymousStructOrUnion()) {
2036          if (CollectFieldInitializer(Info, Top, *FA))
2037            return true;
2038        }
2039      }
2040
2041      // Fallthrough and construct a default initializer for the union as
2042      // a whole, which can call its default constructor if such a thing exists
2043      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2044      // behavior going forward with C++0x, when anonymous unions there are
2045      // finalized, we should revisit this.
2046    } else {
2047      // For structs, we simply descend through to initialize all members where
2048      // necessary.
2049      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2050           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2051        if (CollectFieldInitializer(Info, Top, *FA))
2052          return true;
2053      }
2054    }
2055  }
2056
2057  // Don't try to build an implicit initializer if there were semantic
2058  // errors in any of the initializers (and therefore we might be
2059  // missing some that the user actually wrote).
2060  if (Info.AnyErrorsInInits)
2061    return false;
2062
2063  CXXCtorInitializer *Init = 0;
2064  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2065    return true;
2066
2067  if (Init)
2068    Info.AllToInit.push_back(Init);
2069
2070  return false;
2071}
2072
2073bool
2074Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2075                                  CXXCtorInitializer **Initializers,
2076                                  unsigned NumInitializers,
2077                                  bool AnyErrors) {
2078  if (Constructor->getDeclContext()->isDependentContext()) {
2079    // Just store the initializers as written, they will be checked during
2080    // instantiation.
2081    if (NumInitializers > 0) {
2082      Constructor->setNumCtorInitializers(NumInitializers);
2083      CXXCtorInitializer **baseOrMemberInitializers =
2084        new (Context) CXXCtorInitializer*[NumInitializers];
2085      memcpy(baseOrMemberInitializers, Initializers,
2086             NumInitializers * sizeof(CXXCtorInitializer*));
2087      Constructor->setCtorInitializers(baseOrMemberInitializers);
2088    }
2089
2090    return false;
2091  }
2092
2093  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2094
2095  // We need to build the initializer AST according to order of construction
2096  // and not what user specified in the Initializers list.
2097  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2098  if (!ClassDecl)
2099    return true;
2100
2101  bool HadError = false;
2102
2103  for (unsigned i = 0; i < NumInitializers; i++) {
2104    CXXCtorInitializer *Member = Initializers[i];
2105
2106    if (Member->isBaseInitializer())
2107      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2108    else
2109      Info.AllBaseFields[Member->getAnyMember()] = Member;
2110  }
2111
2112  // Keep track of the direct virtual bases.
2113  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2114  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2115       E = ClassDecl->bases_end(); I != E; ++I) {
2116    if (I->isVirtual())
2117      DirectVBases.insert(I);
2118  }
2119
2120  // Push virtual bases before others.
2121  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2122       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2123
2124    if (CXXCtorInitializer *Value
2125        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2126      Info.AllToInit.push_back(Value);
2127    } else if (!AnyErrors) {
2128      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2129      CXXCtorInitializer *CXXBaseInit;
2130      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2131                                       VBase, IsInheritedVirtualBase,
2132                                       CXXBaseInit)) {
2133        HadError = true;
2134        continue;
2135      }
2136
2137      Info.AllToInit.push_back(CXXBaseInit);
2138    }
2139  }
2140
2141  // Non-virtual bases.
2142  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2143       E = ClassDecl->bases_end(); Base != E; ++Base) {
2144    // Virtuals are in the virtual base list and already constructed.
2145    if (Base->isVirtual())
2146      continue;
2147
2148    if (CXXCtorInitializer *Value
2149          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2150      Info.AllToInit.push_back(Value);
2151    } else if (!AnyErrors) {
2152      CXXCtorInitializer *CXXBaseInit;
2153      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2154                                       Base, /*IsInheritedVirtualBase=*/false,
2155                                       CXXBaseInit)) {
2156        HadError = true;
2157        continue;
2158      }
2159
2160      Info.AllToInit.push_back(CXXBaseInit);
2161    }
2162  }
2163
2164  // Fields.
2165  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2166       E = ClassDecl->field_end(); Field != E; ++Field) {
2167    if ((*Field)->getType()->isIncompleteArrayType()) {
2168      assert(ClassDecl->hasFlexibleArrayMember() &&
2169             "Incomplete array type is not valid");
2170      continue;
2171    }
2172    if (CollectFieldInitializer(Info, *Field, *Field))
2173      HadError = true;
2174  }
2175
2176  NumInitializers = Info.AllToInit.size();
2177  if (NumInitializers > 0) {
2178    Constructor->setNumCtorInitializers(NumInitializers);
2179    CXXCtorInitializer **baseOrMemberInitializers =
2180      new (Context) CXXCtorInitializer*[NumInitializers];
2181    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2182           NumInitializers * sizeof(CXXCtorInitializer*));
2183    Constructor->setCtorInitializers(baseOrMemberInitializers);
2184
2185    // Constructors implicitly reference the base and member
2186    // destructors.
2187    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2188                                           Constructor->getParent());
2189  }
2190
2191  return HadError;
2192}
2193
2194static void *GetKeyForTopLevelField(FieldDecl *Field) {
2195  // For anonymous unions, use the class declaration as the key.
2196  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2197    if (RT->getDecl()->isAnonymousStructOrUnion())
2198      return static_cast<void *>(RT->getDecl());
2199  }
2200  return static_cast<void *>(Field);
2201}
2202
2203static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2204  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2205}
2206
2207static void *GetKeyForMember(ASTContext &Context,
2208                             CXXCtorInitializer *Member) {
2209  if (!Member->isAnyMemberInitializer())
2210    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2211
2212  // For fields injected into the class via declaration of an anonymous union,
2213  // use its anonymous union class declaration as the unique key.
2214  FieldDecl *Field = Member->getAnyMember();
2215
2216  // If the field is a member of an anonymous struct or union, our key
2217  // is the anonymous record decl that's a direct child of the class.
2218  RecordDecl *RD = Field->getParent();
2219  if (RD->isAnonymousStructOrUnion()) {
2220    while (true) {
2221      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2222      if (Parent->isAnonymousStructOrUnion())
2223        RD = Parent;
2224      else
2225        break;
2226    }
2227
2228    return static_cast<void *>(RD);
2229  }
2230
2231  return static_cast<void *>(Field);
2232}
2233
2234static void
2235DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2236                                  const CXXConstructorDecl *Constructor,
2237                                  CXXCtorInitializer **Inits,
2238                                  unsigned NumInits) {
2239  if (Constructor->getDeclContext()->isDependentContext())
2240    return;
2241
2242  // Don't check initializers order unless the warning is enabled at the
2243  // location of at least one initializer.
2244  bool ShouldCheckOrder = false;
2245  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2246    CXXCtorInitializer *Init = Inits[InitIndex];
2247    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2248                                         Init->getSourceLocation())
2249          != Diagnostic::Ignored) {
2250      ShouldCheckOrder = true;
2251      break;
2252    }
2253  }
2254  if (!ShouldCheckOrder)
2255    return;
2256
2257  // Build the list of bases and members in the order that they'll
2258  // actually be initialized.  The explicit initializers should be in
2259  // this same order but may be missing things.
2260  llvm::SmallVector<const void*, 32> IdealInitKeys;
2261
2262  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2263
2264  // 1. Virtual bases.
2265  for (CXXRecordDecl::base_class_const_iterator VBase =
2266       ClassDecl->vbases_begin(),
2267       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2268    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2269
2270  // 2. Non-virtual bases.
2271  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2272       E = ClassDecl->bases_end(); Base != E; ++Base) {
2273    if (Base->isVirtual())
2274      continue;
2275    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2276  }
2277
2278  // 3. Direct fields.
2279  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2280       E = ClassDecl->field_end(); Field != E; ++Field)
2281    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2282
2283  unsigned NumIdealInits = IdealInitKeys.size();
2284  unsigned IdealIndex = 0;
2285
2286  CXXCtorInitializer *PrevInit = 0;
2287  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2288    CXXCtorInitializer *Init = Inits[InitIndex];
2289    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2290
2291    // Scan forward to try to find this initializer in the idealized
2292    // initializers list.
2293    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2294      if (InitKey == IdealInitKeys[IdealIndex])
2295        break;
2296
2297    // If we didn't find this initializer, it must be because we
2298    // scanned past it on a previous iteration.  That can only
2299    // happen if we're out of order;  emit a warning.
2300    if (IdealIndex == NumIdealInits && PrevInit) {
2301      Sema::SemaDiagnosticBuilder D =
2302        SemaRef.Diag(PrevInit->getSourceLocation(),
2303                     diag::warn_initializer_out_of_order);
2304
2305      if (PrevInit->isAnyMemberInitializer())
2306        D << 0 << PrevInit->getAnyMember()->getDeclName();
2307      else
2308        D << 1 << PrevInit->getBaseClassInfo()->getType();
2309
2310      if (Init->isAnyMemberInitializer())
2311        D << 0 << Init->getAnyMember()->getDeclName();
2312      else
2313        D << 1 << Init->getBaseClassInfo()->getType();
2314
2315      // Move back to the initializer's location in the ideal list.
2316      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2317        if (InitKey == IdealInitKeys[IdealIndex])
2318          break;
2319
2320      assert(IdealIndex != NumIdealInits &&
2321             "initializer not found in initializer list");
2322    }
2323
2324    PrevInit = Init;
2325  }
2326}
2327
2328namespace {
2329bool CheckRedundantInit(Sema &S,
2330                        CXXCtorInitializer *Init,
2331                        CXXCtorInitializer *&PrevInit) {
2332  if (!PrevInit) {
2333    PrevInit = Init;
2334    return false;
2335  }
2336
2337  if (FieldDecl *Field = Init->getMember())
2338    S.Diag(Init->getSourceLocation(),
2339           diag::err_multiple_mem_initialization)
2340      << Field->getDeclName()
2341      << Init->getSourceRange();
2342  else {
2343    const Type *BaseClass = Init->getBaseClass();
2344    assert(BaseClass && "neither field nor base");
2345    S.Diag(Init->getSourceLocation(),
2346           diag::err_multiple_base_initialization)
2347      << QualType(BaseClass, 0)
2348      << Init->getSourceRange();
2349  }
2350  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2351    << 0 << PrevInit->getSourceRange();
2352
2353  return true;
2354}
2355
2356typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2357typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2358
2359bool CheckRedundantUnionInit(Sema &S,
2360                             CXXCtorInitializer *Init,
2361                             RedundantUnionMap &Unions) {
2362  FieldDecl *Field = Init->getAnyMember();
2363  RecordDecl *Parent = Field->getParent();
2364  if (!Parent->isAnonymousStructOrUnion())
2365    return false;
2366
2367  NamedDecl *Child = Field;
2368  do {
2369    if (Parent->isUnion()) {
2370      UnionEntry &En = Unions[Parent];
2371      if (En.first && En.first != Child) {
2372        S.Diag(Init->getSourceLocation(),
2373               diag::err_multiple_mem_union_initialization)
2374          << Field->getDeclName()
2375          << Init->getSourceRange();
2376        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2377          << 0 << En.second->getSourceRange();
2378        return true;
2379      } else if (!En.first) {
2380        En.first = Child;
2381        En.second = Init;
2382      }
2383    }
2384
2385    Child = Parent;
2386    Parent = cast<RecordDecl>(Parent->getDeclContext());
2387  } while (Parent->isAnonymousStructOrUnion());
2388
2389  return false;
2390}
2391}
2392
2393/// ActOnMemInitializers - Handle the member initializers for a constructor.
2394void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2395                                SourceLocation ColonLoc,
2396                                MemInitTy **meminits, unsigned NumMemInits,
2397                                bool AnyErrors) {
2398  if (!ConstructorDecl)
2399    return;
2400
2401  AdjustDeclIfTemplate(ConstructorDecl);
2402
2403  CXXConstructorDecl *Constructor
2404    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2405
2406  if (!Constructor) {
2407    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2408    return;
2409  }
2410
2411  CXXCtorInitializer **MemInits =
2412    reinterpret_cast<CXXCtorInitializer **>(meminits);
2413
2414  // Mapping for the duplicate initializers check.
2415  // For member initializers, this is keyed with a FieldDecl*.
2416  // For base initializers, this is keyed with a Type*.
2417  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2418
2419  // Mapping for the inconsistent anonymous-union initializers check.
2420  RedundantUnionMap MemberUnions;
2421
2422  bool HadError = false;
2423  for (unsigned i = 0; i < NumMemInits; i++) {
2424    CXXCtorInitializer *Init = MemInits[i];
2425
2426    // Set the source order index.
2427    Init->setSourceOrder(i);
2428
2429    if (Init->isAnyMemberInitializer()) {
2430      FieldDecl *Field = Init->getAnyMember();
2431      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2432          CheckRedundantUnionInit(*this, Init, MemberUnions))
2433        HadError = true;
2434    } else if (Init->isBaseInitializer()) {
2435      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2436      if (CheckRedundantInit(*this, Init, Members[Key]))
2437        HadError = true;
2438    } else {
2439      assert(Init->isDelegatingInitializer());
2440      // This must be the only initializer
2441      if (i != 0 || NumMemInits > 1) {
2442        Diag(MemInits[0]->getSourceLocation(),
2443             diag::err_delegating_initializer_alone)
2444          << MemInits[0]->getSourceRange();
2445        HadError = true;
2446      }
2447    }
2448  }
2449
2450  if (HadError)
2451    return;
2452
2453  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2454
2455  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2456}
2457
2458void
2459Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2460                                             CXXRecordDecl *ClassDecl) {
2461  // Ignore dependent contexts.
2462  if (ClassDecl->isDependentContext())
2463    return;
2464
2465  // FIXME: all the access-control diagnostics are positioned on the
2466  // field/base declaration.  That's probably good; that said, the
2467  // user might reasonably want to know why the destructor is being
2468  // emitted, and we currently don't say.
2469
2470  // Non-static data members.
2471  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2472       E = ClassDecl->field_end(); I != E; ++I) {
2473    FieldDecl *Field = *I;
2474    if (Field->isInvalidDecl())
2475      continue;
2476    QualType FieldType = Context.getBaseElementType(Field->getType());
2477
2478    const RecordType* RT = FieldType->getAs<RecordType>();
2479    if (!RT)
2480      continue;
2481
2482    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2483    if (FieldClassDecl->hasTrivialDestructor())
2484      continue;
2485
2486    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2487    CheckDestructorAccess(Field->getLocation(), Dtor,
2488                          PDiag(diag::err_access_dtor_field)
2489                            << Field->getDeclName()
2490                            << FieldType);
2491
2492    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2493  }
2494
2495  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2496
2497  // Bases.
2498  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2499       E = ClassDecl->bases_end(); Base != E; ++Base) {
2500    // Bases are always records in a well-formed non-dependent class.
2501    const RecordType *RT = Base->getType()->getAs<RecordType>();
2502
2503    // Remember direct virtual bases.
2504    if (Base->isVirtual())
2505      DirectVirtualBases.insert(RT);
2506
2507    // Ignore trivial destructors.
2508    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2509    if (BaseClassDecl->hasTrivialDestructor())
2510      continue;
2511
2512    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2513
2514    // FIXME: caret should be on the start of the class name
2515    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2516                          PDiag(diag::err_access_dtor_base)
2517                            << Base->getType()
2518                            << Base->getSourceRange());
2519
2520    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2521  }
2522
2523  // Virtual bases.
2524  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2525       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2526
2527    // Bases are always records in a well-formed non-dependent class.
2528    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2529
2530    // Ignore direct virtual bases.
2531    if (DirectVirtualBases.count(RT))
2532      continue;
2533
2534    // Ignore trivial destructors.
2535    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2536    if (BaseClassDecl->hasTrivialDestructor())
2537      continue;
2538
2539    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2540    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2541                          PDiag(diag::err_access_dtor_vbase)
2542                            << VBase->getType());
2543
2544    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2545  }
2546}
2547
2548void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2549  if (!CDtorDecl)
2550    return;
2551
2552  if (CXXConstructorDecl *Constructor
2553      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2554    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2555}
2556
2557bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2558                                  unsigned DiagID, AbstractDiagSelID SelID) {
2559  if (SelID == -1)
2560    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2561  else
2562    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2563}
2564
2565bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2566                                  const PartialDiagnostic &PD) {
2567  if (!getLangOptions().CPlusPlus)
2568    return false;
2569
2570  if (const ArrayType *AT = Context.getAsArrayType(T))
2571    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2572
2573  if (const PointerType *PT = T->getAs<PointerType>()) {
2574    // Find the innermost pointer type.
2575    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2576      PT = T;
2577
2578    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2579      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2580  }
2581
2582  const RecordType *RT = T->getAs<RecordType>();
2583  if (!RT)
2584    return false;
2585
2586  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2587
2588  // We can't answer whether something is abstract until it has a
2589  // definition.  If it's currently being defined, we'll walk back
2590  // over all the declarations when we have a full definition.
2591  const CXXRecordDecl *Def = RD->getDefinition();
2592  if (!Def || Def->isBeingDefined())
2593    return false;
2594
2595  if (!RD->isAbstract())
2596    return false;
2597
2598  Diag(Loc, PD) << RD->getDeclName();
2599  DiagnoseAbstractType(RD);
2600
2601  return true;
2602}
2603
2604void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2605  // Check if we've already emitted the list of pure virtual functions
2606  // for this class.
2607  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2608    return;
2609
2610  CXXFinalOverriderMap FinalOverriders;
2611  RD->getFinalOverriders(FinalOverriders);
2612
2613  // Keep a set of seen pure methods so we won't diagnose the same method
2614  // more than once.
2615  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2616
2617  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2618                                   MEnd = FinalOverriders.end();
2619       M != MEnd;
2620       ++M) {
2621    for (OverridingMethods::iterator SO = M->second.begin(),
2622                                  SOEnd = M->second.end();
2623         SO != SOEnd; ++SO) {
2624      // C++ [class.abstract]p4:
2625      //   A class is abstract if it contains or inherits at least one
2626      //   pure virtual function for which the final overrider is pure
2627      //   virtual.
2628
2629      //
2630      if (SO->second.size() != 1)
2631        continue;
2632
2633      if (!SO->second.front().Method->isPure())
2634        continue;
2635
2636      if (!SeenPureMethods.insert(SO->second.front().Method))
2637        continue;
2638
2639      Diag(SO->second.front().Method->getLocation(),
2640           diag::note_pure_virtual_function)
2641        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2642    }
2643  }
2644
2645  if (!PureVirtualClassDiagSet)
2646    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2647  PureVirtualClassDiagSet->insert(RD);
2648}
2649
2650namespace {
2651struct AbstractUsageInfo {
2652  Sema &S;
2653  CXXRecordDecl *Record;
2654  CanQualType AbstractType;
2655  bool Invalid;
2656
2657  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2658    : S(S), Record(Record),
2659      AbstractType(S.Context.getCanonicalType(
2660                   S.Context.getTypeDeclType(Record))),
2661      Invalid(false) {}
2662
2663  void DiagnoseAbstractType() {
2664    if (Invalid) return;
2665    S.DiagnoseAbstractType(Record);
2666    Invalid = true;
2667  }
2668
2669  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2670};
2671
2672struct CheckAbstractUsage {
2673  AbstractUsageInfo &Info;
2674  const NamedDecl *Ctx;
2675
2676  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2677    : Info(Info), Ctx(Ctx) {}
2678
2679  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2680    switch (TL.getTypeLocClass()) {
2681#define ABSTRACT_TYPELOC(CLASS, PARENT)
2682#define TYPELOC(CLASS, PARENT) \
2683    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2684#include "clang/AST/TypeLocNodes.def"
2685    }
2686  }
2687
2688  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2689    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2690    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2691      if (!TL.getArg(I))
2692        continue;
2693
2694      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2695      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2696    }
2697  }
2698
2699  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2700    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2701  }
2702
2703  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2704    // Visit the type parameters from a permissive context.
2705    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2706      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2707      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2708        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2709          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2710      // TODO: other template argument types?
2711    }
2712  }
2713
2714  // Visit pointee types from a permissive context.
2715#define CheckPolymorphic(Type) \
2716  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2717    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2718  }
2719  CheckPolymorphic(PointerTypeLoc)
2720  CheckPolymorphic(ReferenceTypeLoc)
2721  CheckPolymorphic(MemberPointerTypeLoc)
2722  CheckPolymorphic(BlockPointerTypeLoc)
2723
2724  /// Handle all the types we haven't given a more specific
2725  /// implementation for above.
2726  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2727    // Every other kind of type that we haven't called out already
2728    // that has an inner type is either (1) sugar or (2) contains that
2729    // inner type in some way as a subobject.
2730    if (TypeLoc Next = TL.getNextTypeLoc())
2731      return Visit(Next, Sel);
2732
2733    // If there's no inner type and we're in a permissive context,
2734    // don't diagnose.
2735    if (Sel == Sema::AbstractNone) return;
2736
2737    // Check whether the type matches the abstract type.
2738    QualType T = TL.getType();
2739    if (T->isArrayType()) {
2740      Sel = Sema::AbstractArrayType;
2741      T = Info.S.Context.getBaseElementType(T);
2742    }
2743    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2744    if (CT != Info.AbstractType) return;
2745
2746    // It matched; do some magic.
2747    if (Sel == Sema::AbstractArrayType) {
2748      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2749        << T << TL.getSourceRange();
2750    } else {
2751      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2752        << Sel << T << TL.getSourceRange();
2753    }
2754    Info.DiagnoseAbstractType();
2755  }
2756};
2757
2758void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2759                                  Sema::AbstractDiagSelID Sel) {
2760  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2761}
2762
2763}
2764
2765/// Check for invalid uses of an abstract type in a method declaration.
2766static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2767                                    CXXMethodDecl *MD) {
2768  // No need to do the check on definitions, which require that
2769  // the return/param types be complete.
2770  if (MD->isThisDeclarationADefinition())
2771    return;
2772
2773  // For safety's sake, just ignore it if we don't have type source
2774  // information.  This should never happen for non-implicit methods,
2775  // but...
2776  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2777    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2778}
2779
2780/// Check for invalid uses of an abstract type within a class definition.
2781static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2782                                    CXXRecordDecl *RD) {
2783  for (CXXRecordDecl::decl_iterator
2784         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2785    Decl *D = *I;
2786    if (D->isImplicit()) continue;
2787
2788    // Methods and method templates.
2789    if (isa<CXXMethodDecl>(D)) {
2790      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2791    } else if (isa<FunctionTemplateDecl>(D)) {
2792      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2793      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2794
2795    // Fields and static variables.
2796    } else if (isa<FieldDecl>(D)) {
2797      FieldDecl *FD = cast<FieldDecl>(D);
2798      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2799        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2800    } else if (isa<VarDecl>(D)) {
2801      VarDecl *VD = cast<VarDecl>(D);
2802      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2803        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2804
2805    // Nested classes and class templates.
2806    } else if (isa<CXXRecordDecl>(D)) {
2807      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2808    } else if (isa<ClassTemplateDecl>(D)) {
2809      CheckAbstractClassUsage(Info,
2810                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2811    }
2812  }
2813}
2814
2815/// \brief Perform semantic checks on a class definition that has been
2816/// completing, introducing implicitly-declared members, checking for
2817/// abstract types, etc.
2818void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2819  if (!Record)
2820    return;
2821
2822  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2823    AbstractUsageInfo Info(*this, Record);
2824    CheckAbstractClassUsage(Info, Record);
2825  }
2826
2827  // If this is not an aggregate type and has no user-declared constructor,
2828  // complain about any non-static data members of reference or const scalar
2829  // type, since they will never get initializers.
2830  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2831      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2832    bool Complained = false;
2833    for (RecordDecl::field_iterator F = Record->field_begin(),
2834                                 FEnd = Record->field_end();
2835         F != FEnd; ++F) {
2836      if (F->getType()->isReferenceType() ||
2837          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2838        if (!Complained) {
2839          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2840            << Record->getTagKind() << Record;
2841          Complained = true;
2842        }
2843
2844        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2845          << F->getType()->isReferenceType()
2846          << F->getDeclName();
2847      }
2848    }
2849  }
2850
2851  if (Record->isDynamicClass() && !Record->isDependentType())
2852    DynamicClasses.push_back(Record);
2853
2854  if (Record->getIdentifier()) {
2855    // C++ [class.mem]p13:
2856    //   If T is the name of a class, then each of the following shall have a
2857    //   name different from T:
2858    //     - every member of every anonymous union that is a member of class T.
2859    //
2860    // C++ [class.mem]p14:
2861    //   In addition, if class T has a user-declared constructor (12.1), every
2862    //   non-static data member of class T shall have a name different from T.
2863    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2864         R.first != R.second; ++R.first) {
2865      NamedDecl *D = *R.first;
2866      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2867          isa<IndirectFieldDecl>(D)) {
2868        Diag(D->getLocation(), diag::err_member_name_of_class)
2869          << D->getDeclName();
2870        break;
2871      }
2872    }
2873  }
2874
2875  // Warn if the class has virtual methods but non-virtual public destructor.
2876  if (Record->isPolymorphic() && !Record->isDependentType()) {
2877    CXXDestructorDecl *dtor = Record->getDestructor();
2878    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2879      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2880           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2881  }
2882
2883  // See if a method overloads virtual methods in a base
2884  /// class without overriding any.
2885  if (!Record->isDependentType()) {
2886    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2887                                     MEnd = Record->method_end();
2888         M != MEnd; ++M) {
2889      if (!(*M)->isStatic())
2890        DiagnoseHiddenVirtualMethods(Record, *M);
2891    }
2892  }
2893
2894  // Declare inherited constructors. We do this eagerly here because:
2895  // - The standard requires an eager diagnostic for conflicting inherited
2896  //   constructors from different classes.
2897  // - The lazy declaration of the other implicit constructors is so as to not
2898  //   waste space and performance on classes that are not meant to be
2899  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2900  //   have inherited constructors.
2901  DeclareInheritedConstructors(Record);
2902}
2903
2904/// \brief Data used with FindHiddenVirtualMethod
2905namespace {
2906  struct FindHiddenVirtualMethodData {
2907    Sema *S;
2908    CXXMethodDecl *Method;
2909    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2910    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2911  };
2912}
2913
2914/// \brief Member lookup function that determines whether a given C++
2915/// method overloads virtual methods in a base class without overriding any,
2916/// to be used with CXXRecordDecl::lookupInBases().
2917static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2918                                    CXXBasePath &Path,
2919                                    void *UserData) {
2920  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2921
2922  FindHiddenVirtualMethodData &Data
2923    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2924
2925  DeclarationName Name = Data.Method->getDeclName();
2926  assert(Name.getNameKind() == DeclarationName::Identifier);
2927
2928  bool foundSameNameMethod = false;
2929  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2930  for (Path.Decls = BaseRecord->lookup(Name);
2931       Path.Decls.first != Path.Decls.second;
2932       ++Path.Decls.first) {
2933    NamedDecl *D = *Path.Decls.first;
2934    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2935      MD = MD->getCanonicalDecl();
2936      foundSameNameMethod = true;
2937      // Interested only in hidden virtual methods.
2938      if (!MD->isVirtual())
2939        continue;
2940      // If the method we are checking overrides a method from its base
2941      // don't warn about the other overloaded methods.
2942      if (!Data.S->IsOverload(Data.Method, MD, false))
2943        return true;
2944      // Collect the overload only if its hidden.
2945      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2946        overloadedMethods.push_back(MD);
2947    }
2948  }
2949
2950  if (foundSameNameMethod)
2951    Data.OverloadedMethods.append(overloadedMethods.begin(),
2952                                   overloadedMethods.end());
2953  return foundSameNameMethod;
2954}
2955
2956/// \brief See if a method overloads virtual methods in a base class without
2957/// overriding any.
2958void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2959  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2960                               MD->getLocation()) == Diagnostic::Ignored)
2961    return;
2962  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2963    return;
2964
2965  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2966                     /*bool RecordPaths=*/false,
2967                     /*bool DetectVirtual=*/false);
2968  FindHiddenVirtualMethodData Data;
2969  Data.Method = MD;
2970  Data.S = this;
2971
2972  // Keep the base methods that were overriden or introduced in the subclass
2973  // by 'using' in a set. A base method not in this set is hidden.
2974  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2975       res.first != res.second; ++res.first) {
2976    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2977      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2978                                          E = MD->end_overridden_methods();
2979           I != E; ++I)
2980        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2981    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2982      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2983        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2984  }
2985
2986  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2987      !Data.OverloadedMethods.empty()) {
2988    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2989      << MD << (Data.OverloadedMethods.size() > 1);
2990
2991    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2992      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2993      Diag(overloadedMD->getLocation(),
2994           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2995    }
2996  }
2997}
2998
2999void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
3000                                             Decl *TagDecl,
3001                                             SourceLocation LBrac,
3002                                             SourceLocation RBrac,
3003                                             AttributeList *AttrList) {
3004  if (!TagDecl)
3005    return;
3006
3007  AdjustDeclIfTemplate(TagDecl);
3008
3009  ActOnFields(S, RLoc, TagDecl,
3010              // strict aliasing violation!
3011              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
3012              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
3013
3014  CheckCompletedCXXClass(
3015                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
3016}
3017
3018namespace {
3019  /// \brief Helper class that collects exception specifications for
3020  /// implicitly-declared special member functions.
3021  class ImplicitExceptionSpecification {
3022    ASTContext &Context;
3023    // We order exception specifications thus:
3024    // noexcept is the most restrictive, but is only used in C++0x.
3025    // throw() comes next.
3026    // Then a throw(collected exceptions)
3027    // Finally no specification.
3028    // throw(...) is used instead if any called function uses it.
3029    ExceptionSpecificationType ComputedEST;
3030    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
3031    llvm::SmallVector<QualType, 4> Exceptions;
3032
3033    void ClearExceptions() {
3034      ExceptionsSeen.clear();
3035      Exceptions.clear();
3036    }
3037
3038  public:
3039    explicit ImplicitExceptionSpecification(ASTContext &Context)
3040      : Context(Context), ComputedEST(EST_BasicNoexcept) {
3041      if (!Context.getLangOptions().CPlusPlus0x)
3042        ComputedEST = EST_DynamicNone;
3043    }
3044
3045    /// \brief Get the computed exception specification type.
3046    ExceptionSpecificationType getExceptionSpecType() const {
3047      assert(ComputedEST != EST_ComputedNoexcept &&
3048             "noexcept(expr) should not be a possible result");
3049      return ComputedEST;
3050    }
3051
3052    /// \brief The number of exceptions in the exception specification.
3053    unsigned size() const { return Exceptions.size(); }
3054
3055    /// \brief The set of exceptions in the exception specification.
3056    const QualType *data() const { return Exceptions.data(); }
3057
3058    /// \brief Integrate another called method into the collected data.
3059    void CalledDecl(CXXMethodDecl *Method) {
3060      // If we have an MSAny spec already, don't bother.
3061      if (!Method || ComputedEST == EST_MSAny)
3062        return;
3063
3064      const FunctionProtoType *Proto
3065        = Method->getType()->getAs<FunctionProtoType>();
3066
3067      ExceptionSpecificationType EST = Proto->getExceptionSpecType();
3068
3069      // If this function can throw any exceptions, make a note of that.
3070      if (EST == EST_MSAny || EST == EST_None) {
3071        ClearExceptions();
3072        ComputedEST = EST;
3073        return;
3074      }
3075
3076      // If this function has a basic noexcept, it doesn't affect the outcome.
3077      if (EST == EST_BasicNoexcept)
3078        return;
3079
3080      // If we have a throw-all spec at this point, ignore the function.
3081      if (ComputedEST == EST_None)
3082        return;
3083
3084      // If we're still at noexcept(true) and there's a nothrow() callee,
3085      // change to that specification.
3086      if (EST == EST_DynamicNone) {
3087        if (ComputedEST == EST_BasicNoexcept)
3088          ComputedEST = EST_DynamicNone;
3089        return;
3090      }
3091
3092      // Check out noexcept specs.
3093      if (EST == EST_ComputedNoexcept) {
3094        FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(Context);
3095        assert(NR != FunctionProtoType::NR_NoNoexcept &&
3096               "Must have noexcept result for EST_ComputedNoexcept.");
3097        assert(NR != FunctionProtoType::NR_Dependent &&
3098               "Should not generate implicit declarations for dependent cases, "
3099               "and don't know how to handle them anyway.");
3100
3101        // noexcept(false) -> no spec on the new function
3102        if (NR == FunctionProtoType::NR_Throw) {
3103          ClearExceptions();
3104          ComputedEST = EST_None;
3105        }
3106        // noexcept(true) won't change anything either.
3107        return;
3108      }
3109
3110      assert(EST == EST_Dynamic && "EST case not considered earlier.");
3111      assert(ComputedEST != EST_None &&
3112             "Shouldn't collect exceptions when throw-all is guaranteed.");
3113      ComputedEST = EST_Dynamic;
3114      // Record the exceptions in this function's exception specification.
3115      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
3116                                              EEnd = Proto->exception_end();
3117           E != EEnd; ++E)
3118        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
3119          Exceptions.push_back(*E);
3120    }
3121  };
3122}
3123
3124
3125/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
3126/// special functions, such as the default constructor, copy
3127/// constructor, or destructor, to the given C++ class (C++
3128/// [special]p1).  This routine can only be executed just before the
3129/// definition of the class is complete.
3130void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
3131  if (!ClassDecl->hasUserDeclaredConstructor())
3132    ++ASTContext::NumImplicitDefaultConstructors;
3133
3134  if (!ClassDecl->hasUserDeclaredCopyConstructor())
3135    ++ASTContext::NumImplicitCopyConstructors;
3136
3137  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
3138    ++ASTContext::NumImplicitCopyAssignmentOperators;
3139
3140    // If we have a dynamic class, then the copy assignment operator may be
3141    // virtual, so we have to declare it immediately. This ensures that, e.g.,
3142    // it shows up in the right place in the vtable and that we diagnose
3143    // problems with the implicit exception specification.
3144    if (ClassDecl->isDynamicClass())
3145      DeclareImplicitCopyAssignment(ClassDecl);
3146  }
3147
3148  if (!ClassDecl->hasUserDeclaredDestructor()) {
3149    ++ASTContext::NumImplicitDestructors;
3150
3151    // If we have a dynamic class, then the destructor may be virtual, so we
3152    // have to declare the destructor immediately. This ensures that, e.g., it
3153    // shows up in the right place in the vtable and that we diagnose problems
3154    // with the implicit exception specification.
3155    if (ClassDecl->isDynamicClass())
3156      DeclareImplicitDestructor(ClassDecl);
3157  }
3158}
3159
3160void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3161  if (!D)
3162    return;
3163
3164  TemplateParameterList *Params = 0;
3165  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3166    Params = Template->getTemplateParameters();
3167  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3168           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3169    Params = PartialSpec->getTemplateParameters();
3170  else
3171    return;
3172
3173  for (TemplateParameterList::iterator Param = Params->begin(),
3174                                    ParamEnd = Params->end();
3175       Param != ParamEnd; ++Param) {
3176    NamedDecl *Named = cast<NamedDecl>(*Param);
3177    if (Named->getDeclName()) {
3178      S->AddDecl(Named);
3179      IdResolver.AddDecl(Named);
3180    }
3181  }
3182}
3183
3184void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3185  if (!RecordD) return;
3186  AdjustDeclIfTemplate(RecordD);
3187  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3188  PushDeclContext(S, Record);
3189}
3190
3191void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3192  if (!RecordD) return;
3193  PopDeclContext();
3194}
3195
3196/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3197/// parsing a top-level (non-nested) C++ class, and we are now
3198/// parsing those parts of the given Method declaration that could
3199/// not be parsed earlier (C++ [class.mem]p2), such as default
3200/// arguments. This action should enter the scope of the given
3201/// Method declaration as if we had just parsed the qualified method
3202/// name. However, it should not bring the parameters into scope;
3203/// that will be performed by ActOnDelayedCXXMethodParameter.
3204void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3205}
3206
3207/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3208/// C++ method declaration. We're (re-)introducing the given
3209/// function parameter into scope for use in parsing later parts of
3210/// the method declaration. For example, we could see an
3211/// ActOnParamDefaultArgument event for this parameter.
3212void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3213  if (!ParamD)
3214    return;
3215
3216  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3217
3218  // If this parameter has an unparsed default argument, clear it out
3219  // to make way for the parsed default argument.
3220  if (Param->hasUnparsedDefaultArg())
3221    Param->setDefaultArg(0);
3222
3223  S->AddDecl(Param);
3224  if (Param->getDeclName())
3225    IdResolver.AddDecl(Param);
3226}
3227
3228/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3229/// processing the delayed method declaration for Method. The method
3230/// declaration is now considered finished. There may be a separate
3231/// ActOnStartOfFunctionDef action later (not necessarily
3232/// immediately!) for this method, if it was also defined inside the
3233/// class body.
3234void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3235  if (!MethodD)
3236    return;
3237
3238  AdjustDeclIfTemplate(MethodD);
3239
3240  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3241
3242  // Now that we have our default arguments, check the constructor
3243  // again. It could produce additional diagnostics or affect whether
3244  // the class has implicitly-declared destructors, among other
3245  // things.
3246  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3247    CheckConstructor(Constructor);
3248
3249  // Check the default arguments, which we may have added.
3250  if (!Method->isInvalidDecl())
3251    CheckCXXDefaultArguments(Method);
3252}
3253
3254/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3255/// the well-formedness of the constructor declarator @p D with type @p
3256/// R. If there are any errors in the declarator, this routine will
3257/// emit diagnostics and set the invalid bit to true.  In any case, the type
3258/// will be updated to reflect a well-formed type for the constructor and
3259/// returned.
3260QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3261                                          StorageClass &SC) {
3262  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3263
3264  // C++ [class.ctor]p3:
3265  //   A constructor shall not be virtual (10.3) or static (9.4). A
3266  //   constructor can be invoked for a const, volatile or const
3267  //   volatile object. A constructor shall not be declared const,
3268  //   volatile, or const volatile (9.3.2).
3269  if (isVirtual) {
3270    if (!D.isInvalidType())
3271      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3272        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3273        << SourceRange(D.getIdentifierLoc());
3274    D.setInvalidType();
3275  }
3276  if (SC == SC_Static) {
3277    if (!D.isInvalidType())
3278      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3279        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3280        << SourceRange(D.getIdentifierLoc());
3281    D.setInvalidType();
3282    SC = SC_None;
3283  }
3284
3285  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3286  if (FTI.TypeQuals != 0) {
3287    if (FTI.TypeQuals & Qualifiers::Const)
3288      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3289        << "const" << SourceRange(D.getIdentifierLoc());
3290    if (FTI.TypeQuals & Qualifiers::Volatile)
3291      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3292        << "volatile" << SourceRange(D.getIdentifierLoc());
3293    if (FTI.TypeQuals & Qualifiers::Restrict)
3294      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3295        << "restrict" << SourceRange(D.getIdentifierLoc());
3296    D.setInvalidType();
3297  }
3298
3299  // C++0x [class.ctor]p4:
3300  //   A constructor shall not be declared with a ref-qualifier.
3301  if (FTI.hasRefQualifier()) {
3302    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3303      << FTI.RefQualifierIsLValueRef
3304      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3305    D.setInvalidType();
3306  }
3307
3308  // Rebuild the function type "R" without any type qualifiers (in
3309  // case any of the errors above fired) and with "void" as the
3310  // return type, since constructors don't have return types.
3311  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3312  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3313    return R;
3314
3315  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3316  EPI.TypeQuals = 0;
3317  EPI.RefQualifier = RQ_None;
3318
3319  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3320                                 Proto->getNumArgs(), EPI);
3321}
3322
3323/// CheckConstructor - Checks a fully-formed constructor for
3324/// well-formedness, issuing any diagnostics required. Returns true if
3325/// the constructor declarator is invalid.
3326void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3327  CXXRecordDecl *ClassDecl
3328    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3329  if (!ClassDecl)
3330    return Constructor->setInvalidDecl();
3331
3332  // C++ [class.copy]p3:
3333  //   A declaration of a constructor for a class X is ill-formed if
3334  //   its first parameter is of type (optionally cv-qualified) X and
3335  //   either there are no other parameters or else all other
3336  //   parameters have default arguments.
3337  if (!Constructor->isInvalidDecl() &&
3338      ((Constructor->getNumParams() == 1) ||
3339       (Constructor->getNumParams() > 1 &&
3340        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3341      Constructor->getTemplateSpecializationKind()
3342                                              != TSK_ImplicitInstantiation) {
3343    QualType ParamType = Constructor->getParamDecl(0)->getType();
3344    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3345    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3346      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3347      const char *ConstRef
3348        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3349                                                        : " const &";
3350      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3351        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3352
3353      // FIXME: Rather that making the constructor invalid, we should endeavor
3354      // to fix the type.
3355      Constructor->setInvalidDecl();
3356    }
3357  }
3358}
3359
3360/// CheckDestructor - Checks a fully-formed destructor definition for
3361/// well-formedness, issuing any diagnostics required.  Returns true
3362/// on error.
3363bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3364  CXXRecordDecl *RD = Destructor->getParent();
3365
3366  if (Destructor->isVirtual()) {
3367    SourceLocation Loc;
3368
3369    if (!Destructor->isImplicit())
3370      Loc = Destructor->getLocation();
3371    else
3372      Loc = RD->getLocation();
3373
3374    // If we have a virtual destructor, look up the deallocation function
3375    FunctionDecl *OperatorDelete = 0;
3376    DeclarationName Name =
3377    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3378    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3379      return true;
3380
3381    MarkDeclarationReferenced(Loc, OperatorDelete);
3382
3383    Destructor->setOperatorDelete(OperatorDelete);
3384  }
3385
3386  return false;
3387}
3388
3389static inline bool
3390FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3391  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3392          FTI.ArgInfo[0].Param &&
3393          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3394}
3395
3396/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3397/// the well-formednes of the destructor declarator @p D with type @p
3398/// R. If there are any errors in the declarator, this routine will
3399/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3400/// will be updated to reflect a well-formed type for the destructor and
3401/// returned.
3402QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3403                                         StorageClass& SC) {
3404  // C++ [class.dtor]p1:
3405  //   [...] A typedef-name that names a class is a class-name
3406  //   (7.1.3); however, a typedef-name that names a class shall not
3407  //   be used as the identifier in the declarator for a destructor
3408  //   declaration.
3409  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3410  if (isa<TypedefType>(DeclaratorType))
3411    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3412      << DeclaratorType;
3413
3414  // C++ [class.dtor]p2:
3415  //   A destructor is used to destroy objects of its class type. A
3416  //   destructor takes no parameters, and no return type can be
3417  //   specified for it (not even void). The address of a destructor
3418  //   shall not be taken. A destructor shall not be static. A
3419  //   destructor can be invoked for a const, volatile or const
3420  //   volatile object. A destructor shall not be declared const,
3421  //   volatile or const volatile (9.3.2).
3422  if (SC == SC_Static) {
3423    if (!D.isInvalidType())
3424      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3425        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3426        << SourceRange(D.getIdentifierLoc())
3427        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3428
3429    SC = SC_None;
3430  }
3431  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3432    // Destructors don't have return types, but the parser will
3433    // happily parse something like:
3434    //
3435    //   class X {
3436    //     float ~X();
3437    //   };
3438    //
3439    // The return type will be eliminated later.
3440    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3441      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3442      << SourceRange(D.getIdentifierLoc());
3443  }
3444
3445  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3446  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3447    if (FTI.TypeQuals & Qualifiers::Const)
3448      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3449        << "const" << SourceRange(D.getIdentifierLoc());
3450    if (FTI.TypeQuals & Qualifiers::Volatile)
3451      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3452        << "volatile" << SourceRange(D.getIdentifierLoc());
3453    if (FTI.TypeQuals & Qualifiers::Restrict)
3454      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3455        << "restrict" << SourceRange(D.getIdentifierLoc());
3456    D.setInvalidType();
3457  }
3458
3459  // C++0x [class.dtor]p2:
3460  //   A destructor shall not be declared with a ref-qualifier.
3461  if (FTI.hasRefQualifier()) {
3462    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3463      << FTI.RefQualifierIsLValueRef
3464      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3465    D.setInvalidType();
3466  }
3467
3468  // Make sure we don't have any parameters.
3469  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3470    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3471
3472    // Delete the parameters.
3473    FTI.freeArgs();
3474    D.setInvalidType();
3475  }
3476
3477  // Make sure the destructor isn't variadic.
3478  if (FTI.isVariadic) {
3479    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3480    D.setInvalidType();
3481  }
3482
3483  // Rebuild the function type "R" without any type qualifiers or
3484  // parameters (in case any of the errors above fired) and with
3485  // "void" as the return type, since destructors don't have return
3486  // types.
3487  if (!D.isInvalidType())
3488    return R;
3489
3490  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3491  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3492  EPI.Variadic = false;
3493  EPI.TypeQuals = 0;
3494  EPI.RefQualifier = RQ_None;
3495  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3496}
3497
3498/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3499/// well-formednes of the conversion function declarator @p D with
3500/// type @p R. If there are any errors in the declarator, this routine
3501/// will emit diagnostics and return true. Otherwise, it will return
3502/// false. Either way, the type @p R will be updated to reflect a
3503/// well-formed type for the conversion operator.
3504void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3505                                     StorageClass& SC) {
3506  // C++ [class.conv.fct]p1:
3507  //   Neither parameter types nor return type can be specified. The
3508  //   type of a conversion function (8.3.5) is "function taking no
3509  //   parameter returning conversion-type-id."
3510  if (SC == SC_Static) {
3511    if (!D.isInvalidType())
3512      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3513        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3514        << SourceRange(D.getIdentifierLoc());
3515    D.setInvalidType();
3516    SC = SC_None;
3517  }
3518
3519  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3520
3521  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3522    // Conversion functions don't have return types, but the parser will
3523    // happily parse something like:
3524    //
3525    //   class X {
3526    //     float operator bool();
3527    //   };
3528    //
3529    // The return type will be changed later anyway.
3530    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3531      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3532      << SourceRange(D.getIdentifierLoc());
3533    D.setInvalidType();
3534  }
3535
3536  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3537
3538  // Make sure we don't have any parameters.
3539  if (Proto->getNumArgs() > 0) {
3540    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3541
3542    // Delete the parameters.
3543    D.getFunctionTypeInfo().freeArgs();
3544    D.setInvalidType();
3545  } else if (Proto->isVariadic()) {
3546    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3547    D.setInvalidType();
3548  }
3549
3550  // Diagnose "&operator bool()" and other such nonsense.  This
3551  // is actually a gcc extension which we don't support.
3552  if (Proto->getResultType() != ConvType) {
3553    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3554      << Proto->getResultType();
3555    D.setInvalidType();
3556    ConvType = Proto->getResultType();
3557  }
3558
3559  // C++ [class.conv.fct]p4:
3560  //   The conversion-type-id shall not represent a function type nor
3561  //   an array type.
3562  if (ConvType->isArrayType()) {
3563    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3564    ConvType = Context.getPointerType(ConvType);
3565    D.setInvalidType();
3566  } else if (ConvType->isFunctionType()) {
3567    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3568    ConvType = Context.getPointerType(ConvType);
3569    D.setInvalidType();
3570  }
3571
3572  // Rebuild the function type "R" without any parameters (in case any
3573  // of the errors above fired) and with the conversion type as the
3574  // return type.
3575  if (D.isInvalidType())
3576    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3577
3578  // C++0x explicit conversion operators.
3579  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3580    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3581         diag::warn_explicit_conversion_functions)
3582      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3583}
3584
3585/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3586/// the declaration of the given C++ conversion function. This routine
3587/// is responsible for recording the conversion function in the C++
3588/// class, if possible.
3589Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3590  assert(Conversion && "Expected to receive a conversion function declaration");
3591
3592  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3593
3594  // Make sure we aren't redeclaring the conversion function.
3595  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3596
3597  // C++ [class.conv.fct]p1:
3598  //   [...] A conversion function is never used to convert a
3599  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3600  //   same object type (or a reference to it), to a (possibly
3601  //   cv-qualified) base class of that type (or a reference to it),
3602  //   or to (possibly cv-qualified) void.
3603  // FIXME: Suppress this warning if the conversion function ends up being a
3604  // virtual function that overrides a virtual function in a base class.
3605  QualType ClassType
3606    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3607  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3608    ConvType = ConvTypeRef->getPointeeType();
3609  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3610      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3611    /* Suppress diagnostics for instantiations. */;
3612  else if (ConvType->isRecordType()) {
3613    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3614    if (ConvType == ClassType)
3615      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3616        << ClassType;
3617    else if (IsDerivedFrom(ClassType, ConvType))
3618      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3619        <<  ClassType << ConvType;
3620  } else if (ConvType->isVoidType()) {
3621    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3622      << ClassType << ConvType;
3623  }
3624
3625  if (FunctionTemplateDecl *ConversionTemplate
3626                                = Conversion->getDescribedFunctionTemplate())
3627    return ConversionTemplate;
3628
3629  return Conversion;
3630}
3631
3632//===----------------------------------------------------------------------===//
3633// Namespace Handling
3634//===----------------------------------------------------------------------===//
3635
3636
3637
3638/// ActOnStartNamespaceDef - This is called at the start of a namespace
3639/// definition.
3640Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3641                                   SourceLocation InlineLoc,
3642                                   SourceLocation NamespaceLoc,
3643                                   SourceLocation IdentLoc,
3644                                   IdentifierInfo *II,
3645                                   SourceLocation LBrace,
3646                                   AttributeList *AttrList) {
3647  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
3648  // For anonymous namespace, take the location of the left brace.
3649  SourceLocation Loc = II ? IdentLoc : LBrace;
3650  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3651                                                 StartLoc, Loc, II);
3652  Namespc->setInline(InlineLoc.isValid());
3653
3654  Scope *DeclRegionScope = NamespcScope->getParent();
3655
3656  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3657
3658  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3659    PushNamespaceVisibilityAttr(Attr);
3660
3661  if (II) {
3662    // C++ [namespace.def]p2:
3663    //   The identifier in an original-namespace-definition shall not
3664    //   have been previously defined in the declarative region in
3665    //   which the original-namespace-definition appears. The
3666    //   identifier in an original-namespace-definition is the name of
3667    //   the namespace. Subsequently in that declarative region, it is
3668    //   treated as an original-namespace-name.
3669    //
3670    // Since namespace names are unique in their scope, and we don't
3671    // look through using directives, just
3672    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3673    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3674
3675    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3676      // This is an extended namespace definition.
3677      if (Namespc->isInline() != OrigNS->isInline()) {
3678        // inline-ness must match
3679        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3680          << Namespc->isInline();
3681        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3682        Namespc->setInvalidDecl();
3683        // Recover by ignoring the new namespace's inline status.
3684        Namespc->setInline(OrigNS->isInline());
3685      }
3686
3687      // Attach this namespace decl to the chain of extended namespace
3688      // definitions.
3689      OrigNS->setNextNamespace(Namespc);
3690      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3691
3692      // Remove the previous declaration from the scope.
3693      if (DeclRegionScope->isDeclScope(OrigNS)) {
3694        IdResolver.RemoveDecl(OrigNS);
3695        DeclRegionScope->RemoveDecl(OrigNS);
3696      }
3697    } else if (PrevDecl) {
3698      // This is an invalid name redefinition.
3699      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3700       << Namespc->getDeclName();
3701      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3702      Namespc->setInvalidDecl();
3703      // Continue on to push Namespc as current DeclContext and return it.
3704    } else if (II->isStr("std") &&
3705               CurContext->getRedeclContext()->isTranslationUnit()) {
3706      // This is the first "real" definition of the namespace "std", so update
3707      // our cache of the "std" namespace to point at this definition.
3708      if (NamespaceDecl *StdNS = getStdNamespace()) {
3709        // We had already defined a dummy namespace "std". Link this new
3710        // namespace definition to the dummy namespace "std".
3711        StdNS->setNextNamespace(Namespc);
3712        StdNS->setLocation(IdentLoc);
3713        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3714      }
3715
3716      // Make our StdNamespace cache point at the first real definition of the
3717      // "std" namespace.
3718      StdNamespace = Namespc;
3719    }
3720
3721    PushOnScopeChains(Namespc, DeclRegionScope);
3722  } else {
3723    // Anonymous namespaces.
3724    assert(Namespc->isAnonymousNamespace());
3725
3726    // Link the anonymous namespace into its parent.
3727    NamespaceDecl *PrevDecl;
3728    DeclContext *Parent = CurContext->getRedeclContext();
3729    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3730      PrevDecl = TU->getAnonymousNamespace();
3731      TU->setAnonymousNamespace(Namespc);
3732    } else {
3733      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3734      PrevDecl = ND->getAnonymousNamespace();
3735      ND->setAnonymousNamespace(Namespc);
3736    }
3737
3738    // Link the anonymous namespace with its previous declaration.
3739    if (PrevDecl) {
3740      assert(PrevDecl->isAnonymousNamespace());
3741      assert(!PrevDecl->getNextNamespace());
3742      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3743      PrevDecl->setNextNamespace(Namespc);
3744
3745      if (Namespc->isInline() != PrevDecl->isInline()) {
3746        // inline-ness must match
3747        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3748          << Namespc->isInline();
3749        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3750        Namespc->setInvalidDecl();
3751        // Recover by ignoring the new namespace's inline status.
3752        Namespc->setInline(PrevDecl->isInline());
3753      }
3754    }
3755
3756    CurContext->addDecl(Namespc);
3757
3758    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3759    //   behaves as if it were replaced by
3760    //     namespace unique { /* empty body */ }
3761    //     using namespace unique;
3762    //     namespace unique { namespace-body }
3763    //   where all occurrences of 'unique' in a translation unit are
3764    //   replaced by the same identifier and this identifier differs
3765    //   from all other identifiers in the entire program.
3766
3767    // We just create the namespace with an empty name and then add an
3768    // implicit using declaration, just like the standard suggests.
3769    //
3770    // CodeGen enforces the "universally unique" aspect by giving all
3771    // declarations semantically contained within an anonymous
3772    // namespace internal linkage.
3773
3774    if (!PrevDecl) {
3775      UsingDirectiveDecl* UD
3776        = UsingDirectiveDecl::Create(Context, CurContext,
3777                                     /* 'using' */ LBrace,
3778                                     /* 'namespace' */ SourceLocation(),
3779                                     /* qualifier */ NestedNameSpecifierLoc(),
3780                                     /* identifier */ SourceLocation(),
3781                                     Namespc,
3782                                     /* Ancestor */ CurContext);
3783      UD->setImplicit();
3784      CurContext->addDecl(UD);
3785    }
3786  }
3787
3788  // Although we could have an invalid decl (i.e. the namespace name is a
3789  // redefinition), push it as current DeclContext and try to continue parsing.
3790  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3791  // for the namespace has the declarations that showed up in that particular
3792  // namespace definition.
3793  PushDeclContext(NamespcScope, Namespc);
3794  return Namespc;
3795}
3796
3797/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3798/// is a namespace alias, returns the namespace it points to.
3799static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3800  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3801    return AD->getNamespace();
3802  return dyn_cast_or_null<NamespaceDecl>(D);
3803}
3804
3805/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3806/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3807void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3808  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3809  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3810  Namespc->setRBraceLoc(RBrace);
3811  PopDeclContext();
3812  if (Namespc->hasAttr<VisibilityAttr>())
3813    PopPragmaVisibility();
3814}
3815
3816CXXRecordDecl *Sema::getStdBadAlloc() const {
3817  return cast_or_null<CXXRecordDecl>(
3818                                  StdBadAlloc.get(Context.getExternalSource()));
3819}
3820
3821NamespaceDecl *Sema::getStdNamespace() const {
3822  return cast_or_null<NamespaceDecl>(
3823                                 StdNamespace.get(Context.getExternalSource()));
3824}
3825
3826/// \brief Retrieve the special "std" namespace, which may require us to
3827/// implicitly define the namespace.
3828NamespaceDecl *Sema::getOrCreateStdNamespace() {
3829  if (!StdNamespace) {
3830    // The "std" namespace has not yet been defined, so build one implicitly.
3831    StdNamespace = NamespaceDecl::Create(Context,
3832                                         Context.getTranslationUnitDecl(),
3833                                         SourceLocation(), SourceLocation(),
3834                                         &PP.getIdentifierTable().get("std"));
3835    getStdNamespace()->setImplicit(true);
3836  }
3837
3838  return getStdNamespace();
3839}
3840
3841Decl *Sema::ActOnUsingDirective(Scope *S,
3842                                          SourceLocation UsingLoc,
3843                                          SourceLocation NamespcLoc,
3844                                          CXXScopeSpec &SS,
3845                                          SourceLocation IdentLoc,
3846                                          IdentifierInfo *NamespcName,
3847                                          AttributeList *AttrList) {
3848  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3849  assert(NamespcName && "Invalid NamespcName.");
3850  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3851
3852  // This can only happen along a recovery path.
3853  while (S->getFlags() & Scope::TemplateParamScope)
3854    S = S->getParent();
3855  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3856
3857  UsingDirectiveDecl *UDir = 0;
3858  NestedNameSpecifier *Qualifier = 0;
3859  if (SS.isSet())
3860    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3861
3862  // Lookup namespace name.
3863  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3864  LookupParsedName(R, S, &SS);
3865  if (R.isAmbiguous())
3866    return 0;
3867
3868  if (R.empty()) {
3869    // Allow "using namespace std;" or "using namespace ::std;" even if
3870    // "std" hasn't been defined yet, for GCC compatibility.
3871    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3872        NamespcName->isStr("std")) {
3873      Diag(IdentLoc, diag::ext_using_undefined_std);
3874      R.addDecl(getOrCreateStdNamespace());
3875      R.resolveKind();
3876    }
3877    // Otherwise, attempt typo correction.
3878    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3879                                                       CTC_NoKeywords, 0)) {
3880      if (R.getAsSingle<NamespaceDecl>() ||
3881          R.getAsSingle<NamespaceAliasDecl>()) {
3882        if (DeclContext *DC = computeDeclContext(SS, false))
3883          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3884            << NamespcName << DC << Corrected << SS.getRange()
3885            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3886        else
3887          Diag(IdentLoc, diag::err_using_directive_suggest)
3888            << NamespcName << Corrected
3889            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3890        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3891          << Corrected;
3892
3893        NamespcName = Corrected.getAsIdentifierInfo();
3894      } else {
3895        R.clear();
3896        R.setLookupName(NamespcName);
3897      }
3898    }
3899  }
3900
3901  if (!R.empty()) {
3902    NamedDecl *Named = R.getFoundDecl();
3903    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3904        && "expected namespace decl");
3905    // C++ [namespace.udir]p1:
3906    //   A using-directive specifies that the names in the nominated
3907    //   namespace can be used in the scope in which the
3908    //   using-directive appears after the using-directive. During
3909    //   unqualified name lookup (3.4.1), the names appear as if they
3910    //   were declared in the nearest enclosing namespace which
3911    //   contains both the using-directive and the nominated
3912    //   namespace. [Note: in this context, "contains" means "contains
3913    //   directly or indirectly". ]
3914
3915    // Find enclosing context containing both using-directive and
3916    // nominated namespace.
3917    NamespaceDecl *NS = getNamespaceDecl(Named);
3918    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3919    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3920      CommonAncestor = CommonAncestor->getParent();
3921
3922    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3923                                      SS.getWithLocInContext(Context),
3924                                      IdentLoc, Named, CommonAncestor);
3925
3926    if (CurContext->getDeclKind() == Decl::TranslationUnit &&
3927        !SourceMgr.isFromMainFile(IdentLoc)) {
3928      Diag(IdentLoc, diag::warn_using_directive_in_header);
3929    }
3930
3931    PushUsingDirective(S, UDir);
3932  } else {
3933    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3934  }
3935
3936  // FIXME: We ignore attributes for now.
3937  return UDir;
3938}
3939
3940void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3941  // If scope has associated entity, then using directive is at namespace
3942  // or translation unit scope. We add UsingDirectiveDecls, into
3943  // it's lookup structure.
3944  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3945    Ctx->addDecl(UDir);
3946  else
3947    // Otherwise it is block-sope. using-directives will affect lookup
3948    // only to the end of scope.
3949    S->PushUsingDirective(UDir);
3950}
3951
3952
3953Decl *Sema::ActOnUsingDeclaration(Scope *S,
3954                                  AccessSpecifier AS,
3955                                  bool HasUsingKeyword,
3956                                  SourceLocation UsingLoc,
3957                                  CXXScopeSpec &SS,
3958                                  UnqualifiedId &Name,
3959                                  AttributeList *AttrList,
3960                                  bool IsTypeName,
3961                                  SourceLocation TypenameLoc) {
3962  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3963
3964  switch (Name.getKind()) {
3965  case UnqualifiedId::IK_Identifier:
3966  case UnqualifiedId::IK_OperatorFunctionId:
3967  case UnqualifiedId::IK_LiteralOperatorId:
3968  case UnqualifiedId::IK_ConversionFunctionId:
3969    break;
3970
3971  case UnqualifiedId::IK_ConstructorName:
3972  case UnqualifiedId::IK_ConstructorTemplateId:
3973    // C++0x inherited constructors.
3974    if (getLangOptions().CPlusPlus0x) break;
3975
3976    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3977      << SS.getRange();
3978    return 0;
3979
3980  case UnqualifiedId::IK_DestructorName:
3981    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3982      << SS.getRange();
3983    return 0;
3984
3985  case UnqualifiedId::IK_TemplateId:
3986    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3987      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3988    return 0;
3989  }
3990
3991  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3992  DeclarationName TargetName = TargetNameInfo.getName();
3993  if (!TargetName)
3994    return 0;
3995
3996  // Warn about using declarations.
3997  // TODO: store that the declaration was written without 'using' and
3998  // talk about access decls instead of using decls in the
3999  // diagnostics.
4000  if (!HasUsingKeyword) {
4001    UsingLoc = Name.getSourceRange().getBegin();
4002
4003    Diag(UsingLoc, diag::warn_access_decl_deprecated)
4004      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
4005  }
4006
4007  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
4008      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
4009    return 0;
4010
4011  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
4012                                        TargetNameInfo, AttrList,
4013                                        /* IsInstantiation */ false,
4014                                        IsTypeName, TypenameLoc);
4015  if (UD)
4016    PushOnScopeChains(UD, S, /*AddToContext*/ false);
4017
4018  return UD;
4019}
4020
4021/// \brief Determine whether a using declaration considers the given
4022/// declarations as "equivalent", e.g., if they are redeclarations of
4023/// the same entity or are both typedefs of the same type.
4024static bool
4025IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
4026                         bool &SuppressRedeclaration) {
4027  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
4028    SuppressRedeclaration = false;
4029    return true;
4030  }
4031
4032  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
4033    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
4034      SuppressRedeclaration = true;
4035      return Context.hasSameType(TD1->getUnderlyingType(),
4036                                 TD2->getUnderlyingType());
4037    }
4038
4039  return false;
4040}
4041
4042
4043/// Determines whether to create a using shadow decl for a particular
4044/// decl, given the set of decls existing prior to this using lookup.
4045bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
4046                                const LookupResult &Previous) {
4047  // Diagnose finding a decl which is not from a base class of the
4048  // current class.  We do this now because there are cases where this
4049  // function will silently decide not to build a shadow decl, which
4050  // will pre-empt further diagnostics.
4051  //
4052  // We don't need to do this in C++0x because we do the check once on
4053  // the qualifier.
4054  //
4055  // FIXME: diagnose the following if we care enough:
4056  //   struct A { int foo; };
4057  //   struct B : A { using A::foo; };
4058  //   template <class T> struct C : A {};
4059  //   template <class T> struct D : C<T> { using B::foo; } // <---
4060  // This is invalid (during instantiation) in C++03 because B::foo
4061  // resolves to the using decl in B, which is not a base class of D<T>.
4062  // We can't diagnose it immediately because C<T> is an unknown
4063  // specialization.  The UsingShadowDecl in D<T> then points directly
4064  // to A::foo, which will look well-formed when we instantiate.
4065  // The right solution is to not collapse the shadow-decl chain.
4066  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
4067    DeclContext *OrigDC = Orig->getDeclContext();
4068
4069    // Handle enums and anonymous structs.
4070    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
4071    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
4072    while (OrigRec->isAnonymousStructOrUnion())
4073      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
4074
4075    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
4076      if (OrigDC == CurContext) {
4077        Diag(Using->getLocation(),
4078             diag::err_using_decl_nested_name_specifier_is_current_class)
4079          << Using->getQualifierLoc().getSourceRange();
4080        Diag(Orig->getLocation(), diag::note_using_decl_target);
4081        return true;
4082      }
4083
4084      Diag(Using->getQualifierLoc().getBeginLoc(),
4085           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4086        << Using->getQualifier()
4087        << cast<CXXRecordDecl>(CurContext)
4088        << Using->getQualifierLoc().getSourceRange();
4089      Diag(Orig->getLocation(), diag::note_using_decl_target);
4090      return true;
4091    }
4092  }
4093
4094  if (Previous.empty()) return false;
4095
4096  NamedDecl *Target = Orig;
4097  if (isa<UsingShadowDecl>(Target))
4098    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4099
4100  // If the target happens to be one of the previous declarations, we
4101  // don't have a conflict.
4102  //
4103  // FIXME: but we might be increasing its access, in which case we
4104  // should redeclare it.
4105  NamedDecl *NonTag = 0, *Tag = 0;
4106  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
4107         I != E; ++I) {
4108    NamedDecl *D = (*I)->getUnderlyingDecl();
4109    bool Result;
4110    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
4111      return Result;
4112
4113    (isa<TagDecl>(D) ? Tag : NonTag) = D;
4114  }
4115
4116  if (Target->isFunctionOrFunctionTemplate()) {
4117    FunctionDecl *FD;
4118    if (isa<FunctionTemplateDecl>(Target))
4119      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
4120    else
4121      FD = cast<FunctionDecl>(Target);
4122
4123    NamedDecl *OldDecl = 0;
4124    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
4125    case Ovl_Overload:
4126      return false;
4127
4128    case Ovl_NonFunction:
4129      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4130      break;
4131
4132    // We found a decl with the exact signature.
4133    case Ovl_Match:
4134      // If we're in a record, we want to hide the target, so we
4135      // return true (without a diagnostic) to tell the caller not to
4136      // build a shadow decl.
4137      if (CurContext->isRecord())
4138        return true;
4139
4140      // If we're not in a record, this is an error.
4141      Diag(Using->getLocation(), diag::err_using_decl_conflict);
4142      break;
4143    }
4144
4145    Diag(Target->getLocation(), diag::note_using_decl_target);
4146    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
4147    return true;
4148  }
4149
4150  // Target is not a function.
4151
4152  if (isa<TagDecl>(Target)) {
4153    // No conflict between a tag and a non-tag.
4154    if (!Tag) return false;
4155
4156    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4157    Diag(Target->getLocation(), diag::note_using_decl_target);
4158    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4159    return true;
4160  }
4161
4162  // No conflict between a tag and a non-tag.
4163  if (!NonTag) return false;
4164
4165  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4166  Diag(Target->getLocation(), diag::note_using_decl_target);
4167  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4168  return true;
4169}
4170
4171/// Builds a shadow declaration corresponding to a 'using' declaration.
4172UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4173                                            UsingDecl *UD,
4174                                            NamedDecl *Orig) {
4175
4176  // If we resolved to another shadow declaration, just coalesce them.
4177  NamedDecl *Target = Orig;
4178  if (isa<UsingShadowDecl>(Target)) {
4179    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4180    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4181  }
4182
4183  UsingShadowDecl *Shadow
4184    = UsingShadowDecl::Create(Context, CurContext,
4185                              UD->getLocation(), UD, Target);
4186  UD->addShadowDecl(Shadow);
4187
4188  Shadow->setAccess(UD->getAccess());
4189  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4190    Shadow->setInvalidDecl();
4191
4192  if (S)
4193    PushOnScopeChains(Shadow, S);
4194  else
4195    CurContext->addDecl(Shadow);
4196
4197
4198  return Shadow;
4199}
4200
4201/// Hides a using shadow declaration.  This is required by the current
4202/// using-decl implementation when a resolvable using declaration in a
4203/// class is followed by a declaration which would hide or override
4204/// one or more of the using decl's targets; for example:
4205///
4206///   struct Base { void foo(int); };
4207///   struct Derived : Base {
4208///     using Base::foo;
4209///     void foo(int);
4210///   };
4211///
4212/// The governing language is C++03 [namespace.udecl]p12:
4213///
4214///   When a using-declaration brings names from a base class into a
4215///   derived class scope, member functions in the derived class
4216///   override and/or hide member functions with the same name and
4217///   parameter types in a base class (rather than conflicting).
4218///
4219/// There are two ways to implement this:
4220///   (1) optimistically create shadow decls when they're not hidden
4221///       by existing declarations, or
4222///   (2) don't create any shadow decls (or at least don't make them
4223///       visible) until we've fully parsed/instantiated the class.
4224/// The problem with (1) is that we might have to retroactively remove
4225/// a shadow decl, which requires several O(n) operations because the
4226/// decl structures are (very reasonably) not designed for removal.
4227/// (2) avoids this but is very fiddly and phase-dependent.
4228void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4229  if (Shadow->getDeclName().getNameKind() ==
4230        DeclarationName::CXXConversionFunctionName)
4231    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4232
4233  // Remove it from the DeclContext...
4234  Shadow->getDeclContext()->removeDecl(Shadow);
4235
4236  // ...and the scope, if applicable...
4237  if (S) {
4238    S->RemoveDecl(Shadow);
4239    IdResolver.RemoveDecl(Shadow);
4240  }
4241
4242  // ...and the using decl.
4243  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4244
4245  // TODO: complain somehow if Shadow was used.  It shouldn't
4246  // be possible for this to happen, because...?
4247}
4248
4249/// Builds a using declaration.
4250///
4251/// \param IsInstantiation - Whether this call arises from an
4252///   instantiation of an unresolved using declaration.  We treat
4253///   the lookup differently for these declarations.
4254NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4255                                       SourceLocation UsingLoc,
4256                                       CXXScopeSpec &SS,
4257                                       const DeclarationNameInfo &NameInfo,
4258                                       AttributeList *AttrList,
4259                                       bool IsInstantiation,
4260                                       bool IsTypeName,
4261                                       SourceLocation TypenameLoc) {
4262  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4263  SourceLocation IdentLoc = NameInfo.getLoc();
4264  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4265
4266  // FIXME: We ignore attributes for now.
4267
4268  if (SS.isEmpty()) {
4269    Diag(IdentLoc, diag::err_using_requires_qualname);
4270    return 0;
4271  }
4272
4273  // Do the redeclaration lookup in the current scope.
4274  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4275                        ForRedeclaration);
4276  Previous.setHideTags(false);
4277  if (S) {
4278    LookupName(Previous, S);
4279
4280    // It is really dumb that we have to do this.
4281    LookupResult::Filter F = Previous.makeFilter();
4282    while (F.hasNext()) {
4283      NamedDecl *D = F.next();
4284      if (!isDeclInScope(D, CurContext, S))
4285        F.erase();
4286    }
4287    F.done();
4288  } else {
4289    assert(IsInstantiation && "no scope in non-instantiation");
4290    assert(CurContext->isRecord() && "scope not record in instantiation");
4291    LookupQualifiedName(Previous, CurContext);
4292  }
4293
4294  // Check for invalid redeclarations.
4295  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4296    return 0;
4297
4298  // Check for bad qualifiers.
4299  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4300    return 0;
4301
4302  DeclContext *LookupContext = computeDeclContext(SS);
4303  NamedDecl *D;
4304  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4305  if (!LookupContext) {
4306    if (IsTypeName) {
4307      // FIXME: not all declaration name kinds are legal here
4308      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4309                                              UsingLoc, TypenameLoc,
4310                                              QualifierLoc,
4311                                              IdentLoc, NameInfo.getName());
4312    } else {
4313      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4314                                           QualifierLoc, NameInfo);
4315    }
4316  } else {
4317    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4318                          NameInfo, IsTypeName);
4319  }
4320  D->setAccess(AS);
4321  CurContext->addDecl(D);
4322
4323  if (!LookupContext) return D;
4324  UsingDecl *UD = cast<UsingDecl>(D);
4325
4326  if (RequireCompleteDeclContext(SS, LookupContext)) {
4327    UD->setInvalidDecl();
4328    return UD;
4329  }
4330
4331  // Constructor inheriting using decls get special treatment.
4332  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4333    if (CheckInheritedConstructorUsingDecl(UD))
4334      UD->setInvalidDecl();
4335    return UD;
4336  }
4337
4338  // Otherwise, look up the target name.
4339
4340  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4341
4342  // Unlike most lookups, we don't always want to hide tag
4343  // declarations: tag names are visible through the using declaration
4344  // even if hidden by ordinary names, *except* in a dependent context
4345  // where it's important for the sanity of two-phase lookup.
4346  if (!IsInstantiation)
4347    R.setHideTags(false);
4348
4349  LookupQualifiedName(R, LookupContext);
4350
4351  if (R.empty()) {
4352    Diag(IdentLoc, diag::err_no_member)
4353      << NameInfo.getName() << LookupContext << SS.getRange();
4354    UD->setInvalidDecl();
4355    return UD;
4356  }
4357
4358  if (R.isAmbiguous()) {
4359    UD->setInvalidDecl();
4360    return UD;
4361  }
4362
4363  if (IsTypeName) {
4364    // If we asked for a typename and got a non-type decl, error out.
4365    if (!R.getAsSingle<TypeDecl>()) {
4366      Diag(IdentLoc, diag::err_using_typename_non_type);
4367      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4368        Diag((*I)->getUnderlyingDecl()->getLocation(),
4369             diag::note_using_decl_target);
4370      UD->setInvalidDecl();
4371      return UD;
4372    }
4373  } else {
4374    // If we asked for a non-typename and we got a type, error out,
4375    // but only if this is an instantiation of an unresolved using
4376    // decl.  Otherwise just silently find the type name.
4377    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4378      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4379      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4380      UD->setInvalidDecl();
4381      return UD;
4382    }
4383  }
4384
4385  // C++0x N2914 [namespace.udecl]p6:
4386  // A using-declaration shall not name a namespace.
4387  if (R.getAsSingle<NamespaceDecl>()) {
4388    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4389      << SS.getRange();
4390    UD->setInvalidDecl();
4391    return UD;
4392  }
4393
4394  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4395    if (!CheckUsingShadowDecl(UD, *I, Previous))
4396      BuildUsingShadowDecl(S, UD, *I);
4397  }
4398
4399  return UD;
4400}
4401
4402/// Additional checks for a using declaration referring to a constructor name.
4403bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4404  if (UD->isTypeName()) {
4405    // FIXME: Cannot specify typename when specifying constructor
4406    return true;
4407  }
4408
4409  const Type *SourceType = UD->getQualifier()->getAsType();
4410  assert(SourceType &&
4411         "Using decl naming constructor doesn't have type in scope spec.");
4412  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4413
4414  // Check whether the named type is a direct base class.
4415  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4416  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4417  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4418       BaseIt != BaseE; ++BaseIt) {
4419    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4420    if (CanonicalSourceType == BaseType)
4421      break;
4422  }
4423
4424  if (BaseIt == BaseE) {
4425    // Did not find SourceType in the bases.
4426    Diag(UD->getUsingLocation(),
4427         diag::err_using_decl_constructor_not_in_direct_base)
4428      << UD->getNameInfo().getSourceRange()
4429      << QualType(SourceType, 0) << TargetClass;
4430    return true;
4431  }
4432
4433  BaseIt->setInheritConstructors();
4434
4435  return false;
4436}
4437
4438/// Checks that the given using declaration is not an invalid
4439/// redeclaration.  Note that this is checking only for the using decl
4440/// itself, not for any ill-formedness among the UsingShadowDecls.
4441bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4442                                       bool isTypeName,
4443                                       const CXXScopeSpec &SS,
4444                                       SourceLocation NameLoc,
4445                                       const LookupResult &Prev) {
4446  // C++03 [namespace.udecl]p8:
4447  // C++0x [namespace.udecl]p10:
4448  //   A using-declaration is a declaration and can therefore be used
4449  //   repeatedly where (and only where) multiple declarations are
4450  //   allowed.
4451  //
4452  // That's in non-member contexts.
4453  if (!CurContext->getRedeclContext()->isRecord())
4454    return false;
4455
4456  NestedNameSpecifier *Qual
4457    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4458
4459  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4460    NamedDecl *D = *I;
4461
4462    bool DTypename;
4463    NestedNameSpecifier *DQual;
4464    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4465      DTypename = UD->isTypeName();
4466      DQual = UD->getQualifier();
4467    } else if (UnresolvedUsingValueDecl *UD
4468                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4469      DTypename = false;
4470      DQual = UD->getQualifier();
4471    } else if (UnresolvedUsingTypenameDecl *UD
4472                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4473      DTypename = true;
4474      DQual = UD->getQualifier();
4475    } else continue;
4476
4477    // using decls differ if one says 'typename' and the other doesn't.
4478    // FIXME: non-dependent using decls?
4479    if (isTypeName != DTypename) continue;
4480
4481    // using decls differ if they name different scopes (but note that
4482    // template instantiation can cause this check to trigger when it
4483    // didn't before instantiation).
4484    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4485        Context.getCanonicalNestedNameSpecifier(DQual))
4486      continue;
4487
4488    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4489    Diag(D->getLocation(), diag::note_using_decl) << 1;
4490    return true;
4491  }
4492
4493  return false;
4494}
4495
4496
4497/// Checks that the given nested-name qualifier used in a using decl
4498/// in the current context is appropriately related to the current
4499/// scope.  If an error is found, diagnoses it and returns true.
4500bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4501                                   const CXXScopeSpec &SS,
4502                                   SourceLocation NameLoc) {
4503  DeclContext *NamedContext = computeDeclContext(SS);
4504
4505  if (!CurContext->isRecord()) {
4506    // C++03 [namespace.udecl]p3:
4507    // C++0x [namespace.udecl]p8:
4508    //   A using-declaration for a class member shall be a member-declaration.
4509
4510    // If we weren't able to compute a valid scope, it must be a
4511    // dependent class scope.
4512    if (!NamedContext || NamedContext->isRecord()) {
4513      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4514        << SS.getRange();
4515      return true;
4516    }
4517
4518    // Otherwise, everything is known to be fine.
4519    return false;
4520  }
4521
4522  // The current scope is a record.
4523
4524  // If the named context is dependent, we can't decide much.
4525  if (!NamedContext) {
4526    // FIXME: in C++0x, we can diagnose if we can prove that the
4527    // nested-name-specifier does not refer to a base class, which is
4528    // still possible in some cases.
4529
4530    // Otherwise we have to conservatively report that things might be
4531    // okay.
4532    return false;
4533  }
4534
4535  if (!NamedContext->isRecord()) {
4536    // Ideally this would point at the last name in the specifier,
4537    // but we don't have that level of source info.
4538    Diag(SS.getRange().getBegin(),
4539         diag::err_using_decl_nested_name_specifier_is_not_class)
4540      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4541    return true;
4542  }
4543
4544  if (!NamedContext->isDependentContext() &&
4545      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4546    return true;
4547
4548  if (getLangOptions().CPlusPlus0x) {
4549    // C++0x [namespace.udecl]p3:
4550    //   In a using-declaration used as a member-declaration, the
4551    //   nested-name-specifier shall name a base class of the class
4552    //   being defined.
4553
4554    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4555                                 cast<CXXRecordDecl>(NamedContext))) {
4556      if (CurContext == NamedContext) {
4557        Diag(NameLoc,
4558             diag::err_using_decl_nested_name_specifier_is_current_class)
4559          << SS.getRange();
4560        return true;
4561      }
4562
4563      Diag(SS.getRange().getBegin(),
4564           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4565        << (NestedNameSpecifier*) SS.getScopeRep()
4566        << cast<CXXRecordDecl>(CurContext)
4567        << SS.getRange();
4568      return true;
4569    }
4570
4571    return false;
4572  }
4573
4574  // C++03 [namespace.udecl]p4:
4575  //   A using-declaration used as a member-declaration shall refer
4576  //   to a member of a base class of the class being defined [etc.].
4577
4578  // Salient point: SS doesn't have to name a base class as long as
4579  // lookup only finds members from base classes.  Therefore we can
4580  // diagnose here only if we can prove that that can't happen,
4581  // i.e. if the class hierarchies provably don't intersect.
4582
4583  // TODO: it would be nice if "definitely valid" results were cached
4584  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4585  // need to be repeated.
4586
4587  struct UserData {
4588    llvm::DenseSet<const CXXRecordDecl*> Bases;
4589
4590    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4591      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4592      Data->Bases.insert(Base);
4593      return true;
4594    }
4595
4596    bool hasDependentBases(const CXXRecordDecl *Class) {
4597      return !Class->forallBases(collect, this);
4598    }
4599
4600    /// Returns true if the base is dependent or is one of the
4601    /// accumulated base classes.
4602    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4603      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4604      return !Data->Bases.count(Base);
4605    }
4606
4607    bool mightShareBases(const CXXRecordDecl *Class) {
4608      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4609    }
4610  };
4611
4612  UserData Data;
4613
4614  // Returns false if we find a dependent base.
4615  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4616    return false;
4617
4618  // Returns false if the class has a dependent base or if it or one
4619  // of its bases is present in the base set of the current context.
4620  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4621    return false;
4622
4623  Diag(SS.getRange().getBegin(),
4624       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4625    << (NestedNameSpecifier*) SS.getScopeRep()
4626    << cast<CXXRecordDecl>(CurContext)
4627    << SS.getRange();
4628
4629  return true;
4630}
4631
4632Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4633                                             SourceLocation NamespaceLoc,
4634                                             SourceLocation AliasLoc,
4635                                             IdentifierInfo *Alias,
4636                                             CXXScopeSpec &SS,
4637                                             SourceLocation IdentLoc,
4638                                             IdentifierInfo *Ident) {
4639
4640  // Lookup the namespace name.
4641  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4642  LookupParsedName(R, S, &SS);
4643
4644  // Check if we have a previous declaration with the same name.
4645  NamedDecl *PrevDecl
4646    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4647                       ForRedeclaration);
4648  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4649    PrevDecl = 0;
4650
4651  if (PrevDecl) {
4652    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4653      // We already have an alias with the same name that points to the same
4654      // namespace, so don't create a new one.
4655      // FIXME: At some point, we'll want to create the (redundant)
4656      // declaration to maintain better source information.
4657      if (!R.isAmbiguous() && !R.empty() &&
4658          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4659        return 0;
4660    }
4661
4662    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4663      diag::err_redefinition_different_kind;
4664    Diag(AliasLoc, DiagID) << Alias;
4665    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4666    return 0;
4667  }
4668
4669  if (R.isAmbiguous())
4670    return 0;
4671
4672  if (R.empty()) {
4673    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4674                                                CTC_NoKeywords, 0)) {
4675      if (R.getAsSingle<NamespaceDecl>() ||
4676          R.getAsSingle<NamespaceAliasDecl>()) {
4677        if (DeclContext *DC = computeDeclContext(SS, false))
4678          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4679            << Ident << DC << Corrected << SS.getRange()
4680            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4681        else
4682          Diag(IdentLoc, diag::err_using_directive_suggest)
4683            << Ident << Corrected
4684            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4685
4686        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4687          << Corrected;
4688
4689        Ident = Corrected.getAsIdentifierInfo();
4690      } else {
4691        R.clear();
4692        R.setLookupName(Ident);
4693      }
4694    }
4695
4696    if (R.empty()) {
4697      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4698      return 0;
4699    }
4700  }
4701
4702  NamespaceAliasDecl *AliasDecl =
4703    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4704                               Alias, SS.getWithLocInContext(Context),
4705                               IdentLoc, R.getFoundDecl());
4706
4707  PushOnScopeChains(AliasDecl, S);
4708  return AliasDecl;
4709}
4710
4711namespace {
4712  /// \brief Scoped object used to handle the state changes required in Sema
4713  /// to implicitly define the body of a C++ member function;
4714  class ImplicitlyDefinedFunctionScope {
4715    Sema &S;
4716    Sema::ContextRAII SavedContext;
4717
4718  public:
4719    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4720      : S(S), SavedContext(S, Method)
4721    {
4722      S.PushFunctionScope();
4723      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4724    }
4725
4726    ~ImplicitlyDefinedFunctionScope() {
4727      S.PopExpressionEvaluationContext();
4728      S.PopFunctionOrBlockScope();
4729    }
4730  };
4731}
4732
4733static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4734                                                       CXXRecordDecl *D) {
4735  ASTContext &Context = Self.Context;
4736  QualType ClassType = Context.getTypeDeclType(D);
4737  DeclarationName ConstructorName
4738    = Context.DeclarationNames.getCXXConstructorName(
4739                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4740
4741  DeclContext::lookup_const_iterator Con, ConEnd;
4742  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4743       Con != ConEnd; ++Con) {
4744    // FIXME: In C++0x, a constructor template can be a default constructor.
4745    if (isa<FunctionTemplateDecl>(*Con))
4746      continue;
4747
4748    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4749    if (Constructor->isDefaultConstructor())
4750      return Constructor;
4751  }
4752  return 0;
4753}
4754
4755CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4756                                                     CXXRecordDecl *ClassDecl) {
4757  // C++ [class.ctor]p5:
4758  //   A default constructor for a class X is a constructor of class X
4759  //   that can be called without an argument. If there is no
4760  //   user-declared constructor for class X, a default constructor is
4761  //   implicitly declared. An implicitly-declared default constructor
4762  //   is an inline public member of its class.
4763  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4764         "Should not build implicit default constructor!");
4765
4766  // C++ [except.spec]p14:
4767  //   An implicitly declared special member function (Clause 12) shall have an
4768  //   exception-specification. [...]
4769  ImplicitExceptionSpecification ExceptSpec(Context);
4770
4771  // Direct base-class constructors.
4772  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4773                                       BEnd = ClassDecl->bases_end();
4774       B != BEnd; ++B) {
4775    if (B->isVirtual()) // Handled below.
4776      continue;
4777
4778    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4779      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4780      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4781        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4782      else if (CXXConstructorDecl *Constructor
4783                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4784        ExceptSpec.CalledDecl(Constructor);
4785    }
4786  }
4787
4788  // Virtual base-class constructors.
4789  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4790                                       BEnd = ClassDecl->vbases_end();
4791       B != BEnd; ++B) {
4792    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4793      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4794      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4795        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4796      else if (CXXConstructorDecl *Constructor
4797                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4798        ExceptSpec.CalledDecl(Constructor);
4799    }
4800  }
4801
4802  // Field constructors.
4803  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4804                               FEnd = ClassDecl->field_end();
4805       F != FEnd; ++F) {
4806    if (const RecordType *RecordTy
4807              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4808      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4809      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4810        ExceptSpec.CalledDecl(
4811                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4812      else if (CXXConstructorDecl *Constructor
4813                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4814        ExceptSpec.CalledDecl(Constructor);
4815    }
4816  }
4817
4818  FunctionProtoType::ExtProtoInfo EPI;
4819  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
4820  EPI.NumExceptions = ExceptSpec.size();
4821  EPI.Exceptions = ExceptSpec.data();
4822
4823  // Create the actual constructor declaration.
4824  CanQualType ClassType
4825    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4826  SourceLocation ClassLoc = ClassDecl->getLocation();
4827  DeclarationName Name
4828    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4829  DeclarationNameInfo NameInfo(Name, ClassLoc);
4830  CXXConstructorDecl *DefaultCon
4831    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
4832                                 Context.getFunctionType(Context.VoidTy,
4833                                                         0, 0, EPI),
4834                                 /*TInfo=*/0,
4835                                 /*isExplicit=*/false,
4836                                 /*isInline=*/true,
4837                                 /*isImplicitlyDeclared=*/true);
4838  DefaultCon->setAccess(AS_public);
4839  DefaultCon->setImplicit();
4840  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4841
4842  // Note that we have declared this constructor.
4843  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4844
4845  if (Scope *S = getScopeForContext(ClassDecl))
4846    PushOnScopeChains(DefaultCon, S, false);
4847  ClassDecl->addDecl(DefaultCon);
4848
4849  return DefaultCon;
4850}
4851
4852void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4853                                            CXXConstructorDecl *Constructor) {
4854  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4855          !Constructor->isUsed(false)) &&
4856    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4857
4858  CXXRecordDecl *ClassDecl = Constructor->getParent();
4859  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4860
4861  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4862  DiagnosticErrorTrap Trap(Diags);
4863  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4864      Trap.hasErrorOccurred()) {
4865    Diag(CurrentLocation, diag::note_member_synthesized_at)
4866      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4867    Constructor->setInvalidDecl();
4868    return;
4869  }
4870
4871  SourceLocation Loc = Constructor->getLocation();
4872  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4873
4874  Constructor->setUsed();
4875  MarkVTableUsed(CurrentLocation, ClassDecl);
4876}
4877
4878void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4879  // We start with an initial pass over the base classes to collect those that
4880  // inherit constructors from. If there are none, we can forgo all further
4881  // processing.
4882  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4883  BasesVector BasesToInheritFrom;
4884  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4885                                          BaseE = ClassDecl->bases_end();
4886         BaseIt != BaseE; ++BaseIt) {
4887    if (BaseIt->getInheritConstructors()) {
4888      QualType Base = BaseIt->getType();
4889      if (Base->isDependentType()) {
4890        // If we inherit constructors from anything that is dependent, just
4891        // abort processing altogether. We'll get another chance for the
4892        // instantiations.
4893        return;
4894      }
4895      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4896    }
4897  }
4898  if (BasesToInheritFrom.empty())
4899    return;
4900
4901  // Now collect the constructors that we already have in the current class.
4902  // Those take precedence over inherited constructors.
4903  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4904  //   unless there is a user-declared constructor with the same signature in
4905  //   the class where the using-declaration appears.
4906  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4907  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4908                                    CtorE = ClassDecl->ctor_end();
4909       CtorIt != CtorE; ++CtorIt) {
4910    ExistingConstructors.insert(
4911        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4912  }
4913
4914  Scope *S = getScopeForContext(ClassDecl);
4915  DeclarationName CreatedCtorName =
4916      Context.DeclarationNames.getCXXConstructorName(
4917          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4918
4919  // Now comes the true work.
4920  // First, we keep a map from constructor types to the base that introduced
4921  // them. Needed for finding conflicting constructors. We also keep the
4922  // actually inserted declarations in there, for pretty diagnostics.
4923  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4924  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4925  ConstructorToSourceMap InheritedConstructors;
4926  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4927                             BaseE = BasesToInheritFrom.end();
4928       BaseIt != BaseE; ++BaseIt) {
4929    const RecordType *Base = *BaseIt;
4930    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4931    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4932    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4933                                      CtorE = BaseDecl->ctor_end();
4934         CtorIt != CtorE; ++CtorIt) {
4935      // Find the using declaration for inheriting this base's constructors.
4936      DeclarationName Name =
4937          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4938      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4939          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4940      SourceLocation UsingLoc = UD ? UD->getLocation() :
4941                                     ClassDecl->getLocation();
4942
4943      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4944      //   from the class X named in the using-declaration consists of actual
4945      //   constructors and notional constructors that result from the
4946      //   transformation of defaulted parameters as follows:
4947      //   - all non-template default constructors of X, and
4948      //   - for each non-template constructor of X that has at least one
4949      //     parameter with a default argument, the set of constructors that
4950      //     results from omitting any ellipsis parameter specification and
4951      //     successively omitting parameters with a default argument from the
4952      //     end of the parameter-type-list.
4953      CXXConstructorDecl *BaseCtor = *CtorIt;
4954      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4955      const FunctionProtoType *BaseCtorType =
4956          BaseCtor->getType()->getAs<FunctionProtoType>();
4957
4958      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4959                    maxParams = BaseCtor->getNumParams();
4960           params <= maxParams; ++params) {
4961        // Skip default constructors. They're never inherited.
4962        if (params == 0)
4963          continue;
4964        // Skip copy and move constructors for the same reason.
4965        if (CanBeCopyOrMove && params == 1)
4966          continue;
4967
4968        // Build up a function type for this particular constructor.
4969        // FIXME: The working paper does not consider that the exception spec
4970        // for the inheriting constructor might be larger than that of the
4971        // source. This code doesn't yet, either.
4972        const Type *NewCtorType;
4973        if (params == maxParams)
4974          NewCtorType = BaseCtorType;
4975        else {
4976          llvm::SmallVector<QualType, 16> Args;
4977          for (unsigned i = 0; i < params; ++i) {
4978            Args.push_back(BaseCtorType->getArgType(i));
4979          }
4980          FunctionProtoType::ExtProtoInfo ExtInfo =
4981              BaseCtorType->getExtProtoInfo();
4982          ExtInfo.Variadic = false;
4983          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4984                                                Args.data(), params, ExtInfo)
4985                       .getTypePtr();
4986        }
4987        const Type *CanonicalNewCtorType =
4988            Context.getCanonicalType(NewCtorType);
4989
4990        // Now that we have the type, first check if the class already has a
4991        // constructor with this signature.
4992        if (ExistingConstructors.count(CanonicalNewCtorType))
4993          continue;
4994
4995        // Then we check if we have already declared an inherited constructor
4996        // with this signature.
4997        std::pair<ConstructorToSourceMap::iterator, bool> result =
4998            InheritedConstructors.insert(std::make_pair(
4999                CanonicalNewCtorType,
5000                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
5001        if (!result.second) {
5002          // Already in the map. If it came from a different class, that's an
5003          // error. Not if it's from the same.
5004          CanQualType PreviousBase = result.first->second.first;
5005          if (CanonicalBase != PreviousBase) {
5006            const CXXConstructorDecl *PrevCtor = result.first->second.second;
5007            const CXXConstructorDecl *PrevBaseCtor =
5008                PrevCtor->getInheritedConstructor();
5009            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
5010
5011            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
5012            Diag(BaseCtor->getLocation(),
5013                 diag::note_using_decl_constructor_conflict_current_ctor);
5014            Diag(PrevBaseCtor->getLocation(),
5015                 diag::note_using_decl_constructor_conflict_previous_ctor);
5016            Diag(PrevCtor->getLocation(),
5017                 diag::note_using_decl_constructor_conflict_previous_using);
5018          }
5019          continue;
5020        }
5021
5022        // OK, we're there, now add the constructor.
5023        // C++0x [class.inhctor]p8: [...] that would be performed by a
5024        //   user-writtern inline constructor [...]
5025        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
5026        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
5027            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
5028            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
5029            /*ImplicitlyDeclared=*/true);
5030        NewCtor->setAccess(BaseCtor->getAccess());
5031
5032        // Build up the parameter decls and add them.
5033        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
5034        for (unsigned i = 0; i < params; ++i) {
5035          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
5036                                                   UsingLoc, UsingLoc,
5037                                                   /*IdentifierInfo=*/0,
5038                                                   BaseCtorType->getArgType(i),
5039                                                   /*TInfo=*/0, SC_None,
5040                                                   SC_None, /*DefaultArg=*/0));
5041        }
5042        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
5043        NewCtor->setInheritedConstructor(BaseCtor);
5044
5045        PushOnScopeChains(NewCtor, S, false);
5046        ClassDecl->addDecl(NewCtor);
5047        result.first->second.second = NewCtor;
5048      }
5049    }
5050  }
5051}
5052
5053CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
5054  // C++ [class.dtor]p2:
5055  //   If a class has no user-declared destructor, a destructor is
5056  //   declared implicitly. An implicitly-declared destructor is an
5057  //   inline public member of its class.
5058
5059  // C++ [except.spec]p14:
5060  //   An implicitly declared special member function (Clause 12) shall have
5061  //   an exception-specification.
5062  ImplicitExceptionSpecification ExceptSpec(Context);
5063
5064  // Direct base-class destructors.
5065  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5066                                       BEnd = ClassDecl->bases_end();
5067       B != BEnd; ++B) {
5068    if (B->isVirtual()) // Handled below.
5069      continue;
5070
5071    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5072      ExceptSpec.CalledDecl(
5073                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5074  }
5075
5076  // Virtual base-class destructors.
5077  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5078                                       BEnd = ClassDecl->vbases_end();
5079       B != BEnd; ++B) {
5080    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
5081      ExceptSpec.CalledDecl(
5082                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
5083  }
5084
5085  // Field destructors.
5086  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5087                               FEnd = ClassDecl->field_end();
5088       F != FEnd; ++F) {
5089    if (const RecordType *RecordTy
5090        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
5091      ExceptSpec.CalledDecl(
5092                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
5093  }
5094
5095  // Create the actual destructor declaration.
5096  FunctionProtoType::ExtProtoInfo EPI;
5097  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5098  EPI.NumExceptions = ExceptSpec.size();
5099  EPI.Exceptions = ExceptSpec.data();
5100  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5101
5102  CanQualType ClassType
5103    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5104  SourceLocation ClassLoc = ClassDecl->getLocation();
5105  DeclarationName Name
5106    = Context.DeclarationNames.getCXXDestructorName(ClassType);
5107  DeclarationNameInfo NameInfo(Name, ClassLoc);
5108  CXXDestructorDecl *Destructor
5109      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
5110                                  /*isInline=*/true,
5111                                  /*isImplicitlyDeclared=*/true);
5112  Destructor->setAccess(AS_public);
5113  Destructor->setImplicit();
5114  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
5115
5116  // Note that we have declared this destructor.
5117  ++ASTContext::NumImplicitDestructorsDeclared;
5118
5119  // Introduce this destructor into its scope.
5120  if (Scope *S = getScopeForContext(ClassDecl))
5121    PushOnScopeChains(Destructor, S, false);
5122  ClassDecl->addDecl(Destructor);
5123
5124  // This could be uniqued if it ever proves significant.
5125  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
5126
5127  AddOverriddenMethods(ClassDecl, Destructor);
5128
5129  return Destructor;
5130}
5131
5132void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
5133                                    CXXDestructorDecl *Destructor) {
5134  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
5135         "DefineImplicitDestructor - call it for implicit default dtor");
5136  CXXRecordDecl *ClassDecl = Destructor->getParent();
5137  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
5138
5139  if (Destructor->isInvalidDecl())
5140    return;
5141
5142  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
5143
5144  DiagnosticErrorTrap Trap(Diags);
5145  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5146                                         Destructor->getParent());
5147
5148  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
5149    Diag(CurrentLocation, diag::note_member_synthesized_at)
5150      << CXXDestructor << Context.getTagDeclType(ClassDecl);
5151
5152    Destructor->setInvalidDecl();
5153    return;
5154  }
5155
5156  SourceLocation Loc = Destructor->getLocation();
5157  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5158
5159  Destructor->setUsed();
5160  MarkVTableUsed(CurrentLocation, ClassDecl);
5161}
5162
5163/// \brief Builds a statement that copies the given entity from \p From to
5164/// \c To.
5165///
5166/// This routine is used to copy the members of a class with an
5167/// implicitly-declared copy assignment operator. When the entities being
5168/// copied are arrays, this routine builds for loops to copy them.
5169///
5170/// \param S The Sema object used for type-checking.
5171///
5172/// \param Loc The location where the implicit copy is being generated.
5173///
5174/// \param T The type of the expressions being copied. Both expressions must
5175/// have this type.
5176///
5177/// \param To The expression we are copying to.
5178///
5179/// \param From The expression we are copying from.
5180///
5181/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5182/// Otherwise, it's a non-static member subobject.
5183///
5184/// \param Depth Internal parameter recording the depth of the recursion.
5185///
5186/// \returns A statement or a loop that copies the expressions.
5187static StmtResult
5188BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5189                      Expr *To, Expr *From,
5190                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5191  // C++0x [class.copy]p30:
5192  //   Each subobject is assigned in the manner appropriate to its type:
5193  //
5194  //     - if the subobject is of class type, the copy assignment operator
5195  //       for the class is used (as if by explicit qualification; that is,
5196  //       ignoring any possible virtual overriding functions in more derived
5197  //       classes);
5198  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5199    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5200
5201    // Look for operator=.
5202    DeclarationName Name
5203      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5204    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5205    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5206
5207    // Filter out any result that isn't a copy-assignment operator.
5208    LookupResult::Filter F = OpLookup.makeFilter();
5209    while (F.hasNext()) {
5210      NamedDecl *D = F.next();
5211      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5212        if (Method->isCopyAssignmentOperator())
5213          continue;
5214
5215      F.erase();
5216    }
5217    F.done();
5218
5219    // Suppress the protected check (C++ [class.protected]) for each of the
5220    // assignment operators we found. This strange dance is required when
5221    // we're assigning via a base classes's copy-assignment operator. To
5222    // ensure that we're getting the right base class subobject (without
5223    // ambiguities), we need to cast "this" to that subobject type; to
5224    // ensure that we don't go through the virtual call mechanism, we need
5225    // to qualify the operator= name with the base class (see below). However,
5226    // this means that if the base class has a protected copy assignment
5227    // operator, the protected member access check will fail. So, we
5228    // rewrite "protected" access to "public" access in this case, since we
5229    // know by construction that we're calling from a derived class.
5230    if (CopyingBaseSubobject) {
5231      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5232           L != LEnd; ++L) {
5233        if (L.getAccess() == AS_protected)
5234          L.setAccess(AS_public);
5235      }
5236    }
5237
5238    // Create the nested-name-specifier that will be used to qualify the
5239    // reference to operator=; this is required to suppress the virtual
5240    // call mechanism.
5241    CXXScopeSpec SS;
5242    SS.MakeTrivial(S.Context,
5243                   NestedNameSpecifier::Create(S.Context, 0, false,
5244                                               T.getTypePtr()),
5245                   Loc);
5246
5247    // Create the reference to operator=.
5248    ExprResult OpEqualRef
5249      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5250                                   /*FirstQualifierInScope=*/0, OpLookup,
5251                                   /*TemplateArgs=*/0,
5252                                   /*SuppressQualifierCheck=*/true);
5253    if (OpEqualRef.isInvalid())
5254      return StmtError();
5255
5256    // Build the call to the assignment operator.
5257
5258    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5259                                                  OpEqualRef.takeAs<Expr>(),
5260                                                  Loc, &From, 1, Loc);
5261    if (Call.isInvalid())
5262      return StmtError();
5263
5264    return S.Owned(Call.takeAs<Stmt>());
5265  }
5266
5267  //     - if the subobject is of scalar type, the built-in assignment
5268  //       operator is used.
5269  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5270  if (!ArrayTy) {
5271    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5272    if (Assignment.isInvalid())
5273      return StmtError();
5274
5275    return S.Owned(Assignment.takeAs<Stmt>());
5276  }
5277
5278  //     - if the subobject is an array, each element is assigned, in the
5279  //       manner appropriate to the element type;
5280
5281  // Construct a loop over the array bounds, e.g.,
5282  //
5283  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5284  //
5285  // that will copy each of the array elements.
5286  QualType SizeType = S.Context.getSizeType();
5287
5288  // Create the iteration variable.
5289  IdentifierInfo *IterationVarName = 0;
5290  {
5291    llvm::SmallString<8> Str;
5292    llvm::raw_svector_ostream OS(Str);
5293    OS << "__i" << Depth;
5294    IterationVarName = &S.Context.Idents.get(OS.str());
5295  }
5296  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
5297                                          IterationVarName, SizeType,
5298                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5299                                          SC_None, SC_None);
5300
5301  // Initialize the iteration variable to zero.
5302  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5303  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5304
5305  // Create a reference to the iteration variable; we'll use this several
5306  // times throughout.
5307  Expr *IterationVarRef
5308    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5309  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5310
5311  // Create the DeclStmt that holds the iteration variable.
5312  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5313
5314  // Create the comparison against the array bound.
5315  llvm::APInt Upper
5316    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5317  Expr *Comparison
5318    = new (S.Context) BinaryOperator(IterationVarRef,
5319                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5320                                     BO_NE, S.Context.BoolTy,
5321                                     VK_RValue, OK_Ordinary, Loc);
5322
5323  // Create the pre-increment of the iteration variable.
5324  Expr *Increment
5325    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5326                                    VK_LValue, OK_Ordinary, Loc);
5327
5328  // Subscript the "from" and "to" expressions with the iteration variable.
5329  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5330                                                         IterationVarRef, Loc));
5331  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5332                                                       IterationVarRef, Loc));
5333
5334  // Build the copy for an individual element of the array.
5335  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5336                                          To, From, CopyingBaseSubobject,
5337                                          Depth + 1);
5338  if (Copy.isInvalid())
5339    return StmtError();
5340
5341  // Construct the loop that copies all elements of this array.
5342  return S.ActOnForStmt(Loc, Loc, InitStmt,
5343                        S.MakeFullExpr(Comparison),
5344                        0, S.MakeFullExpr(Increment),
5345                        Loc, Copy.take());
5346}
5347
5348/// \brief Determine whether the given class has a copy assignment operator
5349/// that accepts a const-qualified argument.
5350static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5351  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5352
5353  if (!Class->hasDeclaredCopyAssignment())
5354    S.DeclareImplicitCopyAssignment(Class);
5355
5356  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5357  DeclarationName OpName
5358    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5359
5360  DeclContext::lookup_const_iterator Op, OpEnd;
5361  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5362    // C++ [class.copy]p9:
5363    //   A user-declared copy assignment operator is a non-static non-template
5364    //   member function of class X with exactly one parameter of type X, X&,
5365    //   const X&, volatile X& or const volatile X&.
5366    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5367    if (!Method)
5368      continue;
5369
5370    if (Method->isStatic())
5371      continue;
5372    if (Method->getPrimaryTemplate())
5373      continue;
5374    const FunctionProtoType *FnType =
5375    Method->getType()->getAs<FunctionProtoType>();
5376    assert(FnType && "Overloaded operator has no prototype.");
5377    // Don't assert on this; an invalid decl might have been left in the AST.
5378    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5379      continue;
5380    bool AcceptsConst = true;
5381    QualType ArgType = FnType->getArgType(0);
5382    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5383      ArgType = Ref->getPointeeType();
5384      // Is it a non-const lvalue reference?
5385      if (!ArgType.isConstQualified())
5386        AcceptsConst = false;
5387    }
5388    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5389      continue;
5390
5391    // We have a single argument of type cv X or cv X&, i.e. we've found the
5392    // copy assignment operator. Return whether it accepts const arguments.
5393    return AcceptsConst;
5394  }
5395  assert(Class->isInvalidDecl() &&
5396         "No copy assignment operator declared in valid code.");
5397  return false;
5398}
5399
5400CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5401  // Note: The following rules are largely analoguous to the copy
5402  // constructor rules. Note that virtual bases are not taken into account
5403  // for determining the argument type of the operator. Note also that
5404  // operators taking an object instead of a reference are allowed.
5405
5406
5407  // C++ [class.copy]p10:
5408  //   If the class definition does not explicitly declare a copy
5409  //   assignment operator, one is declared implicitly.
5410  //   The implicitly-defined copy assignment operator for a class X
5411  //   will have the form
5412  //
5413  //       X& X::operator=(const X&)
5414  //
5415  //   if
5416  bool HasConstCopyAssignment = true;
5417
5418  //       -- each direct base class B of X has a copy assignment operator
5419  //          whose parameter is of type const B&, const volatile B& or B,
5420  //          and
5421  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5422                                       BaseEnd = ClassDecl->bases_end();
5423       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5424    assert(!Base->getType()->isDependentType() &&
5425           "Cannot generate implicit members for class with dependent bases.");
5426    const CXXRecordDecl *BaseClassDecl
5427      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5428    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5429  }
5430
5431  //       -- for all the nonstatic data members of X that are of a class
5432  //          type M (or array thereof), each such class type has a copy
5433  //          assignment operator whose parameter is of type const M&,
5434  //          const volatile M& or M.
5435  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5436                                  FieldEnd = ClassDecl->field_end();
5437       HasConstCopyAssignment && Field != FieldEnd;
5438       ++Field) {
5439    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5440    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5441      const CXXRecordDecl *FieldClassDecl
5442        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5443      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5444    }
5445  }
5446
5447  //   Otherwise, the implicitly declared copy assignment operator will
5448  //   have the form
5449  //
5450  //       X& X::operator=(X&)
5451  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5452  QualType RetType = Context.getLValueReferenceType(ArgType);
5453  if (HasConstCopyAssignment)
5454    ArgType = ArgType.withConst();
5455  ArgType = Context.getLValueReferenceType(ArgType);
5456
5457  // C++ [except.spec]p14:
5458  //   An implicitly declared special member function (Clause 12) shall have an
5459  //   exception-specification. [...]
5460  ImplicitExceptionSpecification ExceptSpec(Context);
5461  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5462                                       BaseEnd = ClassDecl->bases_end();
5463       Base != BaseEnd; ++Base) {
5464    CXXRecordDecl *BaseClassDecl
5465      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5466
5467    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5468      DeclareImplicitCopyAssignment(BaseClassDecl);
5469
5470    if (CXXMethodDecl *CopyAssign
5471           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5472      ExceptSpec.CalledDecl(CopyAssign);
5473  }
5474  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5475                                  FieldEnd = ClassDecl->field_end();
5476       Field != FieldEnd;
5477       ++Field) {
5478    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5479    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5480      CXXRecordDecl *FieldClassDecl
5481        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5482
5483      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5484        DeclareImplicitCopyAssignment(FieldClassDecl);
5485
5486      if (CXXMethodDecl *CopyAssign
5487            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5488        ExceptSpec.CalledDecl(CopyAssign);
5489    }
5490  }
5491
5492  //   An implicitly-declared copy assignment operator is an inline public
5493  //   member of its class.
5494  FunctionProtoType::ExtProtoInfo EPI;
5495  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5496  EPI.NumExceptions = ExceptSpec.size();
5497  EPI.Exceptions = ExceptSpec.data();
5498  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5499  SourceLocation ClassLoc = ClassDecl->getLocation();
5500  DeclarationNameInfo NameInfo(Name, ClassLoc);
5501  CXXMethodDecl *CopyAssignment
5502    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5503                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5504                            /*TInfo=*/0, /*isStatic=*/false,
5505                            /*StorageClassAsWritten=*/SC_None,
5506                            /*isInline=*/true,
5507                            SourceLocation());
5508  CopyAssignment->setAccess(AS_public);
5509  CopyAssignment->setImplicit();
5510  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5511
5512  // Add the parameter to the operator.
5513  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5514                                               ClassLoc, ClassLoc, /*Id=*/0,
5515                                               ArgType, /*TInfo=*/0,
5516                                               SC_None,
5517                                               SC_None, 0);
5518  CopyAssignment->setParams(&FromParam, 1);
5519
5520  // Note that we have added this copy-assignment operator.
5521  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5522
5523  if (Scope *S = getScopeForContext(ClassDecl))
5524    PushOnScopeChains(CopyAssignment, S, false);
5525  ClassDecl->addDecl(CopyAssignment);
5526
5527  AddOverriddenMethods(ClassDecl, CopyAssignment);
5528  return CopyAssignment;
5529}
5530
5531void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5532                                        CXXMethodDecl *CopyAssignOperator) {
5533  assert((CopyAssignOperator->isImplicit() &&
5534          CopyAssignOperator->isOverloadedOperator() &&
5535          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5536          !CopyAssignOperator->isUsed(false)) &&
5537         "DefineImplicitCopyAssignment called for wrong function");
5538
5539  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5540
5541  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5542    CopyAssignOperator->setInvalidDecl();
5543    return;
5544  }
5545
5546  CopyAssignOperator->setUsed();
5547
5548  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5549  DiagnosticErrorTrap Trap(Diags);
5550
5551  // C++0x [class.copy]p30:
5552  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5553  //   for a non-union class X performs memberwise copy assignment of its
5554  //   subobjects. The direct base classes of X are assigned first, in the
5555  //   order of their declaration in the base-specifier-list, and then the
5556  //   immediate non-static data members of X are assigned, in the order in
5557  //   which they were declared in the class definition.
5558
5559  // The statements that form the synthesized function body.
5560  ASTOwningVector<Stmt*> Statements(*this);
5561
5562  // The parameter for the "other" object, which we are copying from.
5563  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5564  Qualifiers OtherQuals = Other->getType().getQualifiers();
5565  QualType OtherRefType = Other->getType();
5566  if (const LValueReferenceType *OtherRef
5567                                = OtherRefType->getAs<LValueReferenceType>()) {
5568    OtherRefType = OtherRef->getPointeeType();
5569    OtherQuals = OtherRefType.getQualifiers();
5570  }
5571
5572  // Our location for everything implicitly-generated.
5573  SourceLocation Loc = CopyAssignOperator->getLocation();
5574
5575  // Construct a reference to the "other" object. We'll be using this
5576  // throughout the generated ASTs.
5577  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5578  assert(OtherRef && "Reference to parameter cannot fail!");
5579
5580  // Construct the "this" pointer. We'll be using this throughout the generated
5581  // ASTs.
5582  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5583  assert(This && "Reference to this cannot fail!");
5584
5585  // Assign base classes.
5586  bool Invalid = false;
5587  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5588       E = ClassDecl->bases_end(); Base != E; ++Base) {
5589    // Form the assignment:
5590    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5591    QualType BaseType = Base->getType().getUnqualifiedType();
5592    if (!BaseType->isRecordType()) {
5593      Invalid = true;
5594      continue;
5595    }
5596
5597    CXXCastPath BasePath;
5598    BasePath.push_back(Base);
5599
5600    // Construct the "from" expression, which is an implicit cast to the
5601    // appropriately-qualified base type.
5602    Expr *From = OtherRef;
5603    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5604                      CK_UncheckedDerivedToBase,
5605                      VK_LValue, &BasePath);
5606
5607    // Dereference "this".
5608    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5609
5610    // Implicitly cast "this" to the appropriately-qualified base type.
5611    Expr *ToE = To.takeAs<Expr>();
5612    ImpCastExprToType(ToE,
5613                      Context.getCVRQualifiedType(BaseType,
5614                                      CopyAssignOperator->getTypeQualifiers()),
5615                      CK_UncheckedDerivedToBase,
5616                      VK_LValue, &BasePath);
5617    To = Owned(ToE);
5618
5619    // Build the copy.
5620    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5621                                            To.get(), From,
5622                                            /*CopyingBaseSubobject=*/true);
5623    if (Copy.isInvalid()) {
5624      Diag(CurrentLocation, diag::note_member_synthesized_at)
5625        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5626      CopyAssignOperator->setInvalidDecl();
5627      return;
5628    }
5629
5630    // Success! Record the copy.
5631    Statements.push_back(Copy.takeAs<Expr>());
5632  }
5633
5634  // \brief Reference to the __builtin_memcpy function.
5635  Expr *BuiltinMemCpyRef = 0;
5636  // \brief Reference to the __builtin_objc_memmove_collectable function.
5637  Expr *CollectableMemCpyRef = 0;
5638
5639  // Assign non-static members.
5640  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5641                                  FieldEnd = ClassDecl->field_end();
5642       Field != FieldEnd; ++Field) {
5643    // Check for members of reference type; we can't copy those.
5644    if (Field->getType()->isReferenceType()) {
5645      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5646        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5647      Diag(Field->getLocation(), diag::note_declared_at);
5648      Diag(CurrentLocation, diag::note_member_synthesized_at)
5649        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5650      Invalid = true;
5651      continue;
5652    }
5653
5654    // Check for members of const-qualified, non-class type.
5655    QualType BaseType = Context.getBaseElementType(Field->getType());
5656    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5657      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5658        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5659      Diag(Field->getLocation(), diag::note_declared_at);
5660      Diag(CurrentLocation, diag::note_member_synthesized_at)
5661        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5662      Invalid = true;
5663      continue;
5664    }
5665
5666    QualType FieldType = Field->getType().getNonReferenceType();
5667    if (FieldType->isIncompleteArrayType()) {
5668      assert(ClassDecl->hasFlexibleArrayMember() &&
5669             "Incomplete array type is not valid");
5670      continue;
5671    }
5672
5673    // Build references to the field in the object we're copying from and to.
5674    CXXScopeSpec SS; // Intentionally empty
5675    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5676                              LookupMemberName);
5677    MemberLookup.addDecl(*Field);
5678    MemberLookup.resolveKind();
5679    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5680                                               Loc, /*IsArrow=*/false,
5681                                               SS, 0, MemberLookup, 0);
5682    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5683                                             Loc, /*IsArrow=*/true,
5684                                             SS, 0, MemberLookup, 0);
5685    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5686    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5687
5688    // If the field should be copied with __builtin_memcpy rather than via
5689    // explicit assignments, do so. This optimization only applies for arrays
5690    // of scalars and arrays of class type with trivial copy-assignment
5691    // operators.
5692    if (FieldType->isArrayType() &&
5693        (!BaseType->isRecordType() ||
5694         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5695           ->hasTrivialCopyAssignment())) {
5696      // Compute the size of the memory buffer to be copied.
5697      QualType SizeType = Context.getSizeType();
5698      llvm::APInt Size(Context.getTypeSize(SizeType),
5699                       Context.getTypeSizeInChars(BaseType).getQuantity());
5700      for (const ConstantArrayType *Array
5701              = Context.getAsConstantArrayType(FieldType);
5702           Array;
5703           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5704        llvm::APInt ArraySize
5705          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5706        Size *= ArraySize;
5707      }
5708
5709      // Take the address of the field references for "from" and "to".
5710      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5711      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5712
5713      bool NeedsCollectableMemCpy =
5714          (BaseType->isRecordType() &&
5715           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5716
5717      if (NeedsCollectableMemCpy) {
5718        if (!CollectableMemCpyRef) {
5719          // Create a reference to the __builtin_objc_memmove_collectable function.
5720          LookupResult R(*this,
5721                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5722                         Loc, LookupOrdinaryName);
5723          LookupName(R, TUScope, true);
5724
5725          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5726          if (!CollectableMemCpy) {
5727            // Something went horribly wrong earlier, and we will have
5728            // complained about it.
5729            Invalid = true;
5730            continue;
5731          }
5732
5733          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5734                                                  CollectableMemCpy->getType(),
5735                                                  VK_LValue, Loc, 0).take();
5736          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5737        }
5738      }
5739      // Create a reference to the __builtin_memcpy builtin function.
5740      else if (!BuiltinMemCpyRef) {
5741        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5742                       LookupOrdinaryName);
5743        LookupName(R, TUScope, true);
5744
5745        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5746        if (!BuiltinMemCpy) {
5747          // Something went horribly wrong earlier, and we will have complained
5748          // about it.
5749          Invalid = true;
5750          continue;
5751        }
5752
5753        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5754                                            BuiltinMemCpy->getType(),
5755                                            VK_LValue, Loc, 0).take();
5756        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5757      }
5758
5759      ASTOwningVector<Expr*> CallArgs(*this);
5760      CallArgs.push_back(To.takeAs<Expr>());
5761      CallArgs.push_back(From.takeAs<Expr>());
5762      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5763      ExprResult Call = ExprError();
5764      if (NeedsCollectableMemCpy)
5765        Call = ActOnCallExpr(/*Scope=*/0,
5766                             CollectableMemCpyRef,
5767                             Loc, move_arg(CallArgs),
5768                             Loc);
5769      else
5770        Call = ActOnCallExpr(/*Scope=*/0,
5771                             BuiltinMemCpyRef,
5772                             Loc, move_arg(CallArgs),
5773                             Loc);
5774
5775      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5776      Statements.push_back(Call.takeAs<Expr>());
5777      continue;
5778    }
5779
5780    // Build the copy of this field.
5781    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5782                                                  To.get(), From.get(),
5783                                              /*CopyingBaseSubobject=*/false);
5784    if (Copy.isInvalid()) {
5785      Diag(CurrentLocation, diag::note_member_synthesized_at)
5786        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5787      CopyAssignOperator->setInvalidDecl();
5788      return;
5789    }
5790
5791    // Success! Record the copy.
5792    Statements.push_back(Copy.takeAs<Stmt>());
5793  }
5794
5795  if (!Invalid) {
5796    // Add a "return *this;"
5797    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5798
5799    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5800    if (Return.isInvalid())
5801      Invalid = true;
5802    else {
5803      Statements.push_back(Return.takeAs<Stmt>());
5804
5805      if (Trap.hasErrorOccurred()) {
5806        Diag(CurrentLocation, diag::note_member_synthesized_at)
5807          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5808        Invalid = true;
5809      }
5810    }
5811  }
5812
5813  if (Invalid) {
5814    CopyAssignOperator->setInvalidDecl();
5815    return;
5816  }
5817
5818  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5819                                            /*isStmtExpr=*/false);
5820  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5821  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5822}
5823
5824CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5825                                                    CXXRecordDecl *ClassDecl) {
5826  // C++ [class.copy]p4:
5827  //   If the class definition does not explicitly declare a copy
5828  //   constructor, one is declared implicitly.
5829
5830  // C++ [class.copy]p5:
5831  //   The implicitly-declared copy constructor for a class X will
5832  //   have the form
5833  //
5834  //       X::X(const X&)
5835  //
5836  //   if
5837  bool HasConstCopyConstructor = true;
5838
5839  //     -- each direct or virtual base class B of X has a copy
5840  //        constructor whose first parameter is of type const B& or
5841  //        const volatile B&, and
5842  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5843                                       BaseEnd = ClassDecl->bases_end();
5844       HasConstCopyConstructor && Base != BaseEnd;
5845       ++Base) {
5846    // Virtual bases are handled below.
5847    if (Base->isVirtual())
5848      continue;
5849
5850    CXXRecordDecl *BaseClassDecl
5851      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5852    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5853      DeclareImplicitCopyConstructor(BaseClassDecl);
5854
5855    HasConstCopyConstructor
5856      = BaseClassDecl->hasConstCopyConstructor(Context);
5857  }
5858
5859  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5860                                       BaseEnd = ClassDecl->vbases_end();
5861       HasConstCopyConstructor && Base != BaseEnd;
5862       ++Base) {
5863    CXXRecordDecl *BaseClassDecl
5864      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5865    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5866      DeclareImplicitCopyConstructor(BaseClassDecl);
5867
5868    HasConstCopyConstructor
5869      = BaseClassDecl->hasConstCopyConstructor(Context);
5870  }
5871
5872  //     -- for all the nonstatic data members of X that are of a
5873  //        class type M (or array thereof), each such class type
5874  //        has a copy constructor whose first parameter is of type
5875  //        const M& or const volatile M&.
5876  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5877                                  FieldEnd = ClassDecl->field_end();
5878       HasConstCopyConstructor && Field != FieldEnd;
5879       ++Field) {
5880    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5881    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5882      CXXRecordDecl *FieldClassDecl
5883        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5884      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5885        DeclareImplicitCopyConstructor(FieldClassDecl);
5886
5887      HasConstCopyConstructor
5888        = FieldClassDecl->hasConstCopyConstructor(Context);
5889    }
5890  }
5891
5892  //   Otherwise, the implicitly declared copy constructor will have
5893  //   the form
5894  //
5895  //       X::X(X&)
5896  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5897  QualType ArgType = ClassType;
5898  if (HasConstCopyConstructor)
5899    ArgType = ArgType.withConst();
5900  ArgType = Context.getLValueReferenceType(ArgType);
5901
5902  // C++ [except.spec]p14:
5903  //   An implicitly declared special member function (Clause 12) shall have an
5904  //   exception-specification. [...]
5905  ImplicitExceptionSpecification ExceptSpec(Context);
5906  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5907  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5908                                       BaseEnd = ClassDecl->bases_end();
5909       Base != BaseEnd;
5910       ++Base) {
5911    // Virtual bases are handled below.
5912    if (Base->isVirtual())
5913      continue;
5914
5915    CXXRecordDecl *BaseClassDecl
5916      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5917    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5918      DeclareImplicitCopyConstructor(BaseClassDecl);
5919
5920    if (CXXConstructorDecl *CopyConstructor
5921                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5922      ExceptSpec.CalledDecl(CopyConstructor);
5923  }
5924  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5925                                       BaseEnd = ClassDecl->vbases_end();
5926       Base != BaseEnd;
5927       ++Base) {
5928    CXXRecordDecl *BaseClassDecl
5929      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5930    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5931      DeclareImplicitCopyConstructor(BaseClassDecl);
5932
5933    if (CXXConstructorDecl *CopyConstructor
5934                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5935      ExceptSpec.CalledDecl(CopyConstructor);
5936  }
5937  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5938                                  FieldEnd = ClassDecl->field_end();
5939       Field != FieldEnd;
5940       ++Field) {
5941    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5942    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5943      CXXRecordDecl *FieldClassDecl
5944        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5945      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5946        DeclareImplicitCopyConstructor(FieldClassDecl);
5947
5948      if (CXXConstructorDecl *CopyConstructor
5949                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5950        ExceptSpec.CalledDecl(CopyConstructor);
5951    }
5952  }
5953
5954  //   An implicitly-declared copy constructor is an inline public
5955  //   member of its class.
5956  FunctionProtoType::ExtProtoInfo EPI;
5957  EPI.ExceptionSpecType = ExceptSpec.getExceptionSpecType();
5958  EPI.NumExceptions = ExceptSpec.size();
5959  EPI.Exceptions = ExceptSpec.data();
5960  DeclarationName Name
5961    = Context.DeclarationNames.getCXXConstructorName(
5962                                           Context.getCanonicalType(ClassType));
5963  SourceLocation ClassLoc = ClassDecl->getLocation();
5964  DeclarationNameInfo NameInfo(Name, ClassLoc);
5965  CXXConstructorDecl *CopyConstructor
5966    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5967                                 Context.getFunctionType(Context.VoidTy,
5968                                                         &ArgType, 1, EPI),
5969                                 /*TInfo=*/0,
5970                                 /*isExplicit=*/false,
5971                                 /*isInline=*/true,
5972                                 /*isImplicitlyDeclared=*/true);
5973  CopyConstructor->setAccess(AS_public);
5974  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5975
5976  // Note that we have declared this constructor.
5977  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5978
5979  // Add the parameter to the constructor.
5980  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5981                                               ClassLoc, ClassLoc,
5982                                               /*IdentifierInfo=*/0,
5983                                               ArgType, /*TInfo=*/0,
5984                                               SC_None,
5985                                               SC_None, 0);
5986  CopyConstructor->setParams(&FromParam, 1);
5987  if (Scope *S = getScopeForContext(ClassDecl))
5988    PushOnScopeChains(CopyConstructor, S, false);
5989  ClassDecl->addDecl(CopyConstructor);
5990
5991  return CopyConstructor;
5992}
5993
5994void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5995                                   CXXConstructorDecl *CopyConstructor,
5996                                   unsigned TypeQuals) {
5997  assert((CopyConstructor->isImplicit() &&
5998          CopyConstructor->isCopyConstructor(TypeQuals) &&
5999          !CopyConstructor->isUsed(false)) &&
6000         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
6001
6002  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
6003  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
6004
6005  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
6006  DiagnosticErrorTrap Trap(Diags);
6007
6008  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
6009      Trap.hasErrorOccurred()) {
6010    Diag(CurrentLocation, diag::note_member_synthesized_at)
6011      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
6012    CopyConstructor->setInvalidDecl();
6013  }  else {
6014    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
6015                                               CopyConstructor->getLocation(),
6016                                               MultiStmtArg(*this, 0, 0),
6017                                               /*isStmtExpr=*/false)
6018                                                              .takeAs<Stmt>());
6019  }
6020
6021  CopyConstructor->setUsed();
6022}
6023
6024ExprResult
6025Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6026                            CXXConstructorDecl *Constructor,
6027                            MultiExprArg ExprArgs,
6028                            bool RequiresZeroInit,
6029                            unsigned ConstructKind,
6030                            SourceRange ParenRange) {
6031  bool Elidable = false;
6032
6033  // C++0x [class.copy]p34:
6034  //   When certain criteria are met, an implementation is allowed to
6035  //   omit the copy/move construction of a class object, even if the
6036  //   copy/move constructor and/or destructor for the object have
6037  //   side effects. [...]
6038  //     - when a temporary class object that has not been bound to a
6039  //       reference (12.2) would be copied/moved to a class object
6040  //       with the same cv-unqualified type, the copy/move operation
6041  //       can be omitted by constructing the temporary object
6042  //       directly into the target of the omitted copy/move
6043  if (ConstructKind == CXXConstructExpr::CK_Complete &&
6044      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
6045    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
6046    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
6047  }
6048
6049  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
6050                               Elidable, move(ExprArgs), RequiresZeroInit,
6051                               ConstructKind, ParenRange);
6052}
6053
6054/// BuildCXXConstructExpr - Creates a complete call to a constructor,
6055/// including handling of its default argument expressions.
6056ExprResult
6057Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
6058                            CXXConstructorDecl *Constructor, bool Elidable,
6059                            MultiExprArg ExprArgs,
6060                            bool RequiresZeroInit,
6061                            unsigned ConstructKind,
6062                            SourceRange ParenRange) {
6063  unsigned NumExprs = ExprArgs.size();
6064  Expr **Exprs = (Expr **)ExprArgs.release();
6065
6066  MarkDeclarationReferenced(ConstructLoc, Constructor);
6067  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
6068                                        Constructor, Elidable, Exprs, NumExprs,
6069                                        RequiresZeroInit,
6070              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
6071                                        ParenRange));
6072}
6073
6074bool Sema::InitializeVarWithConstructor(VarDecl *VD,
6075                                        CXXConstructorDecl *Constructor,
6076                                        MultiExprArg Exprs) {
6077  // FIXME: Provide the correct paren SourceRange when available.
6078  ExprResult TempResult =
6079    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
6080                          move(Exprs), false, CXXConstructExpr::CK_Complete,
6081                          SourceRange());
6082  if (TempResult.isInvalid())
6083    return true;
6084
6085  Expr *Temp = TempResult.takeAs<Expr>();
6086  CheckImplicitConversions(Temp, VD->getLocation());
6087  MarkDeclarationReferenced(VD->getLocation(), Constructor);
6088  Temp = MaybeCreateExprWithCleanups(Temp);
6089  VD->setInit(Temp);
6090
6091  return false;
6092}
6093
6094void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
6095  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
6096  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
6097      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
6098    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
6099    MarkDeclarationReferenced(VD->getLocation(), Destructor);
6100    CheckDestructorAccess(VD->getLocation(), Destructor,
6101                          PDiag(diag::err_access_dtor_var)
6102                            << VD->getDeclName()
6103                            << VD->getType());
6104
6105    // TODO: this should be re-enabled for static locals by !CXAAtExit
6106    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
6107      Diag(VD->getLocation(), diag::warn_global_destructor);
6108  }
6109}
6110
6111/// AddCXXDirectInitializerToDecl - This action is called immediately after
6112/// ActOnDeclarator, when a C++ direct initializer is present.
6113/// e.g: "int x(1);"
6114void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
6115                                         SourceLocation LParenLoc,
6116                                         MultiExprArg Exprs,
6117                                         SourceLocation RParenLoc,
6118                                         bool TypeMayContainAuto) {
6119  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
6120
6121  // If there is no declaration, there was an error parsing it.  Just ignore
6122  // the initializer.
6123  if (RealDecl == 0)
6124    return;
6125
6126  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6127  if (!VDecl) {
6128    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6129    RealDecl->setInvalidDecl();
6130    return;
6131  }
6132
6133  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6134  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6135    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
6136    if (Exprs.size() > 1) {
6137      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
6138           diag::err_auto_var_init_multiple_expressions)
6139        << VDecl->getDeclName() << VDecl->getType()
6140        << VDecl->getSourceRange();
6141      RealDecl->setInvalidDecl();
6142      return;
6143    }
6144
6145    Expr *Init = Exprs.get()[0];
6146    TypeSourceInfo *DeducedType = 0;
6147    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
6148      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
6149        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
6150        << Init->getSourceRange();
6151    if (!DeducedType) {
6152      RealDecl->setInvalidDecl();
6153      return;
6154    }
6155    VDecl->setTypeSourceInfo(DeducedType);
6156    VDecl->setType(DeducedType->getType());
6157
6158    // If this is a redeclaration, check that the type we just deduced matches
6159    // the previously declared type.
6160    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6161      MergeVarDeclTypes(VDecl, Old);
6162  }
6163
6164  // We will represent direct-initialization similarly to copy-initialization:
6165  //    int x(1);  -as-> int x = 1;
6166  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6167  //
6168  // Clients that want to distinguish between the two forms, can check for
6169  // direct initializer using VarDecl::hasCXXDirectInitializer().
6170  // A major benefit is that clients that don't particularly care about which
6171  // exactly form was it (like the CodeGen) can handle both cases without
6172  // special case code.
6173
6174  // C++ 8.5p11:
6175  // The form of initialization (using parentheses or '=') is generally
6176  // insignificant, but does matter when the entity being initialized has a
6177  // class type.
6178
6179  if (!VDecl->getType()->isDependentType() &&
6180      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6181                          diag::err_typecheck_decl_incomplete_type)) {
6182    VDecl->setInvalidDecl();
6183    return;
6184  }
6185
6186  // The variable can not have an abstract class type.
6187  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6188                             diag::err_abstract_type_in_decl,
6189                             AbstractVariableType))
6190    VDecl->setInvalidDecl();
6191
6192  const VarDecl *Def;
6193  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6194    Diag(VDecl->getLocation(), diag::err_redefinition)
6195    << VDecl->getDeclName();
6196    Diag(Def->getLocation(), diag::note_previous_definition);
6197    VDecl->setInvalidDecl();
6198    return;
6199  }
6200
6201  // C++ [class.static.data]p4
6202  //   If a static data member is of const integral or const
6203  //   enumeration type, its declaration in the class definition can
6204  //   specify a constant-initializer which shall be an integral
6205  //   constant expression (5.19). In that case, the member can appear
6206  //   in integral constant expressions. The member shall still be
6207  //   defined in a namespace scope if it is used in the program and the
6208  //   namespace scope definition shall not contain an initializer.
6209  //
6210  // We already performed a redefinition check above, but for static
6211  // data members we also need to check whether there was an in-class
6212  // declaration with an initializer.
6213  const VarDecl* PrevInit = 0;
6214  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6215    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6216    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6217    return;
6218  }
6219
6220  bool IsDependent = false;
6221  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6222    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6223      VDecl->setInvalidDecl();
6224      return;
6225    }
6226
6227    if (Exprs.get()[I]->isTypeDependent())
6228      IsDependent = true;
6229  }
6230
6231  // If either the declaration has a dependent type or if any of the
6232  // expressions is type-dependent, we represent the initialization
6233  // via a ParenListExpr for later use during template instantiation.
6234  if (VDecl->getType()->isDependentType() || IsDependent) {
6235    // Let clients know that initialization was done with a direct initializer.
6236    VDecl->setCXXDirectInitializer(true);
6237
6238    // Store the initialization expressions as a ParenListExpr.
6239    unsigned NumExprs = Exprs.size();
6240    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6241                                               (Expr **)Exprs.release(),
6242                                               NumExprs, RParenLoc));
6243    return;
6244  }
6245
6246  // Capture the variable that is being initialized and the style of
6247  // initialization.
6248  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6249
6250  // FIXME: Poor source location information.
6251  InitializationKind Kind
6252    = InitializationKind::CreateDirect(VDecl->getLocation(),
6253                                       LParenLoc, RParenLoc);
6254
6255  InitializationSequence InitSeq(*this, Entity, Kind,
6256                                 Exprs.get(), Exprs.size());
6257  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6258  if (Result.isInvalid()) {
6259    VDecl->setInvalidDecl();
6260    return;
6261  }
6262
6263  CheckImplicitConversions(Result.get(), LParenLoc);
6264
6265  Result = MaybeCreateExprWithCleanups(Result);
6266  VDecl->setInit(Result.takeAs<Expr>());
6267  VDecl->setCXXDirectInitializer(true);
6268
6269  CheckCompleteVariableDeclaration(VDecl);
6270}
6271
6272/// \brief Given a constructor and the set of arguments provided for the
6273/// constructor, convert the arguments and add any required default arguments
6274/// to form a proper call to this constructor.
6275///
6276/// \returns true if an error occurred, false otherwise.
6277bool
6278Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6279                              MultiExprArg ArgsPtr,
6280                              SourceLocation Loc,
6281                              ASTOwningVector<Expr*> &ConvertedArgs) {
6282  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6283  unsigned NumArgs = ArgsPtr.size();
6284  Expr **Args = (Expr **)ArgsPtr.get();
6285
6286  const FunctionProtoType *Proto
6287    = Constructor->getType()->getAs<FunctionProtoType>();
6288  assert(Proto && "Constructor without a prototype?");
6289  unsigned NumArgsInProto = Proto->getNumArgs();
6290
6291  // If too few arguments are available, we'll fill in the rest with defaults.
6292  if (NumArgs < NumArgsInProto)
6293    ConvertedArgs.reserve(NumArgsInProto);
6294  else
6295    ConvertedArgs.reserve(NumArgs);
6296
6297  VariadicCallType CallType =
6298    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6299  llvm::SmallVector<Expr *, 8> AllArgs;
6300  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6301                                        Proto, 0, Args, NumArgs, AllArgs,
6302                                        CallType);
6303  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6304    ConvertedArgs.push_back(AllArgs[i]);
6305  return Invalid;
6306}
6307
6308static inline bool
6309CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6310                                       const FunctionDecl *FnDecl) {
6311  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6312  if (isa<NamespaceDecl>(DC)) {
6313    return SemaRef.Diag(FnDecl->getLocation(),
6314                        diag::err_operator_new_delete_declared_in_namespace)
6315      << FnDecl->getDeclName();
6316  }
6317
6318  if (isa<TranslationUnitDecl>(DC) &&
6319      FnDecl->getStorageClass() == SC_Static) {
6320    return SemaRef.Diag(FnDecl->getLocation(),
6321                        diag::err_operator_new_delete_declared_static)
6322      << FnDecl->getDeclName();
6323  }
6324
6325  return false;
6326}
6327
6328static inline bool
6329CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6330                            CanQualType ExpectedResultType,
6331                            CanQualType ExpectedFirstParamType,
6332                            unsigned DependentParamTypeDiag,
6333                            unsigned InvalidParamTypeDiag) {
6334  QualType ResultType =
6335    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6336
6337  // Check that the result type is not dependent.
6338  if (ResultType->isDependentType())
6339    return SemaRef.Diag(FnDecl->getLocation(),
6340                        diag::err_operator_new_delete_dependent_result_type)
6341    << FnDecl->getDeclName() << ExpectedResultType;
6342
6343  // Check that the result type is what we expect.
6344  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6345    return SemaRef.Diag(FnDecl->getLocation(),
6346                        diag::err_operator_new_delete_invalid_result_type)
6347    << FnDecl->getDeclName() << ExpectedResultType;
6348
6349  // A function template must have at least 2 parameters.
6350  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6351    return SemaRef.Diag(FnDecl->getLocation(),
6352                      diag::err_operator_new_delete_template_too_few_parameters)
6353        << FnDecl->getDeclName();
6354
6355  // The function decl must have at least 1 parameter.
6356  if (FnDecl->getNumParams() == 0)
6357    return SemaRef.Diag(FnDecl->getLocation(),
6358                        diag::err_operator_new_delete_too_few_parameters)
6359      << FnDecl->getDeclName();
6360
6361  // Check the the first parameter type is not dependent.
6362  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6363  if (FirstParamType->isDependentType())
6364    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6365      << FnDecl->getDeclName() << ExpectedFirstParamType;
6366
6367  // Check that the first parameter type is what we expect.
6368  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6369      ExpectedFirstParamType)
6370    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6371    << FnDecl->getDeclName() << ExpectedFirstParamType;
6372
6373  return false;
6374}
6375
6376static bool
6377CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6378  // C++ [basic.stc.dynamic.allocation]p1:
6379  //   A program is ill-formed if an allocation function is declared in a
6380  //   namespace scope other than global scope or declared static in global
6381  //   scope.
6382  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6383    return true;
6384
6385  CanQualType SizeTy =
6386    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6387
6388  // C++ [basic.stc.dynamic.allocation]p1:
6389  //  The return type shall be void*. The first parameter shall have type
6390  //  std::size_t.
6391  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6392                                  SizeTy,
6393                                  diag::err_operator_new_dependent_param_type,
6394                                  diag::err_operator_new_param_type))
6395    return true;
6396
6397  // C++ [basic.stc.dynamic.allocation]p1:
6398  //  The first parameter shall not have an associated default argument.
6399  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6400    return SemaRef.Diag(FnDecl->getLocation(),
6401                        diag::err_operator_new_default_arg)
6402      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6403
6404  return false;
6405}
6406
6407static bool
6408CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6409  // C++ [basic.stc.dynamic.deallocation]p1:
6410  //   A program is ill-formed if deallocation functions are declared in a
6411  //   namespace scope other than global scope or declared static in global
6412  //   scope.
6413  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6414    return true;
6415
6416  // C++ [basic.stc.dynamic.deallocation]p2:
6417  //   Each deallocation function shall return void and its first parameter
6418  //   shall be void*.
6419  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6420                                  SemaRef.Context.VoidPtrTy,
6421                                 diag::err_operator_delete_dependent_param_type,
6422                                 diag::err_operator_delete_param_type))
6423    return true;
6424
6425  return false;
6426}
6427
6428/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6429/// of this overloaded operator is well-formed. If so, returns false;
6430/// otherwise, emits appropriate diagnostics and returns true.
6431bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6432  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6433         "Expected an overloaded operator declaration");
6434
6435  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6436
6437  // C++ [over.oper]p5:
6438  //   The allocation and deallocation functions, operator new,
6439  //   operator new[], operator delete and operator delete[], are
6440  //   described completely in 3.7.3. The attributes and restrictions
6441  //   found in the rest of this subclause do not apply to them unless
6442  //   explicitly stated in 3.7.3.
6443  if (Op == OO_Delete || Op == OO_Array_Delete)
6444    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6445
6446  if (Op == OO_New || Op == OO_Array_New)
6447    return CheckOperatorNewDeclaration(*this, FnDecl);
6448
6449  // C++ [over.oper]p6:
6450  //   An operator function shall either be a non-static member
6451  //   function or be a non-member function and have at least one
6452  //   parameter whose type is a class, a reference to a class, an
6453  //   enumeration, or a reference to an enumeration.
6454  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6455    if (MethodDecl->isStatic())
6456      return Diag(FnDecl->getLocation(),
6457                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6458  } else {
6459    bool ClassOrEnumParam = false;
6460    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6461                                   ParamEnd = FnDecl->param_end();
6462         Param != ParamEnd; ++Param) {
6463      QualType ParamType = (*Param)->getType().getNonReferenceType();
6464      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6465          ParamType->isEnumeralType()) {
6466        ClassOrEnumParam = true;
6467        break;
6468      }
6469    }
6470
6471    if (!ClassOrEnumParam)
6472      return Diag(FnDecl->getLocation(),
6473                  diag::err_operator_overload_needs_class_or_enum)
6474        << FnDecl->getDeclName();
6475  }
6476
6477  // C++ [over.oper]p8:
6478  //   An operator function cannot have default arguments (8.3.6),
6479  //   except where explicitly stated below.
6480  //
6481  // Only the function-call operator allows default arguments
6482  // (C++ [over.call]p1).
6483  if (Op != OO_Call) {
6484    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6485         Param != FnDecl->param_end(); ++Param) {
6486      if ((*Param)->hasDefaultArg())
6487        return Diag((*Param)->getLocation(),
6488                    diag::err_operator_overload_default_arg)
6489          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6490    }
6491  }
6492
6493  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6494    { false, false, false }
6495#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6496    , { Unary, Binary, MemberOnly }
6497#include "clang/Basic/OperatorKinds.def"
6498  };
6499
6500  bool CanBeUnaryOperator = OperatorUses[Op][0];
6501  bool CanBeBinaryOperator = OperatorUses[Op][1];
6502  bool MustBeMemberOperator = OperatorUses[Op][2];
6503
6504  // C++ [over.oper]p8:
6505  //   [...] Operator functions cannot have more or fewer parameters
6506  //   than the number required for the corresponding operator, as
6507  //   described in the rest of this subclause.
6508  unsigned NumParams = FnDecl->getNumParams()
6509                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6510  if (Op != OO_Call &&
6511      ((NumParams == 1 && !CanBeUnaryOperator) ||
6512       (NumParams == 2 && !CanBeBinaryOperator) ||
6513       (NumParams < 1) || (NumParams > 2))) {
6514    // We have the wrong number of parameters.
6515    unsigned ErrorKind;
6516    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6517      ErrorKind = 2;  // 2 -> unary or binary.
6518    } else if (CanBeUnaryOperator) {
6519      ErrorKind = 0;  // 0 -> unary
6520    } else {
6521      assert(CanBeBinaryOperator &&
6522             "All non-call overloaded operators are unary or binary!");
6523      ErrorKind = 1;  // 1 -> binary
6524    }
6525
6526    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6527      << FnDecl->getDeclName() << NumParams << ErrorKind;
6528  }
6529
6530  // Overloaded operators other than operator() cannot be variadic.
6531  if (Op != OO_Call &&
6532      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6533    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6534      << FnDecl->getDeclName();
6535  }
6536
6537  // Some operators must be non-static member functions.
6538  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6539    return Diag(FnDecl->getLocation(),
6540                diag::err_operator_overload_must_be_member)
6541      << FnDecl->getDeclName();
6542  }
6543
6544  // C++ [over.inc]p1:
6545  //   The user-defined function called operator++ implements the
6546  //   prefix and postfix ++ operator. If this function is a member
6547  //   function with no parameters, or a non-member function with one
6548  //   parameter of class or enumeration type, it defines the prefix
6549  //   increment operator ++ for objects of that type. If the function
6550  //   is a member function with one parameter (which shall be of type
6551  //   int) or a non-member function with two parameters (the second
6552  //   of which shall be of type int), it defines the postfix
6553  //   increment operator ++ for objects of that type.
6554  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6555    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6556    bool ParamIsInt = false;
6557    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6558      ParamIsInt = BT->getKind() == BuiltinType::Int;
6559
6560    if (!ParamIsInt)
6561      return Diag(LastParam->getLocation(),
6562                  diag::err_operator_overload_post_incdec_must_be_int)
6563        << LastParam->getType() << (Op == OO_MinusMinus);
6564  }
6565
6566  return false;
6567}
6568
6569/// CheckLiteralOperatorDeclaration - Check whether the declaration
6570/// of this literal operator function is well-formed. If so, returns
6571/// false; otherwise, emits appropriate diagnostics and returns true.
6572bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6573  DeclContext *DC = FnDecl->getDeclContext();
6574  Decl::Kind Kind = DC->getDeclKind();
6575  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6576      Kind != Decl::LinkageSpec) {
6577    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6578      << FnDecl->getDeclName();
6579    return true;
6580  }
6581
6582  bool Valid = false;
6583
6584  // template <char...> type operator "" name() is the only valid template
6585  // signature, and the only valid signature with no parameters.
6586  if (FnDecl->param_size() == 0) {
6587    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6588      // Must have only one template parameter
6589      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6590      if (Params->size() == 1) {
6591        NonTypeTemplateParmDecl *PmDecl =
6592          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6593
6594        // The template parameter must be a char parameter pack.
6595        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6596            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6597          Valid = true;
6598      }
6599    }
6600  } else {
6601    // Check the first parameter
6602    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6603
6604    QualType T = (*Param)->getType();
6605
6606    // unsigned long long int, long double, and any character type are allowed
6607    // as the only parameters.
6608    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6609        Context.hasSameType(T, Context.LongDoubleTy) ||
6610        Context.hasSameType(T, Context.CharTy) ||
6611        Context.hasSameType(T, Context.WCharTy) ||
6612        Context.hasSameType(T, Context.Char16Ty) ||
6613        Context.hasSameType(T, Context.Char32Ty)) {
6614      if (++Param == FnDecl->param_end())
6615        Valid = true;
6616      goto FinishedParams;
6617    }
6618
6619    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6620    const PointerType *PT = T->getAs<PointerType>();
6621    if (!PT)
6622      goto FinishedParams;
6623    T = PT->getPointeeType();
6624    if (!T.isConstQualified())
6625      goto FinishedParams;
6626    T = T.getUnqualifiedType();
6627
6628    // Move on to the second parameter;
6629    ++Param;
6630
6631    // If there is no second parameter, the first must be a const char *
6632    if (Param == FnDecl->param_end()) {
6633      if (Context.hasSameType(T, Context.CharTy))
6634        Valid = true;
6635      goto FinishedParams;
6636    }
6637
6638    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6639    // are allowed as the first parameter to a two-parameter function
6640    if (!(Context.hasSameType(T, Context.CharTy) ||
6641          Context.hasSameType(T, Context.WCharTy) ||
6642          Context.hasSameType(T, Context.Char16Ty) ||
6643          Context.hasSameType(T, Context.Char32Ty)))
6644      goto FinishedParams;
6645
6646    // The second and final parameter must be an std::size_t
6647    T = (*Param)->getType().getUnqualifiedType();
6648    if (Context.hasSameType(T, Context.getSizeType()) &&
6649        ++Param == FnDecl->param_end())
6650      Valid = true;
6651  }
6652
6653  // FIXME: This diagnostic is absolutely terrible.
6654FinishedParams:
6655  if (!Valid) {
6656    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6657      << FnDecl->getDeclName();
6658    return true;
6659  }
6660
6661  return false;
6662}
6663
6664/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6665/// linkage specification, including the language and (if present)
6666/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6667/// the location of the language string literal, which is provided
6668/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6669/// the '{' brace. Otherwise, this linkage specification does not
6670/// have any braces.
6671Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6672                                           SourceLocation LangLoc,
6673                                           llvm::StringRef Lang,
6674                                           SourceLocation LBraceLoc) {
6675  LinkageSpecDecl::LanguageIDs Language;
6676  if (Lang == "\"C\"")
6677    Language = LinkageSpecDecl::lang_c;
6678  else if (Lang == "\"C++\"")
6679    Language = LinkageSpecDecl::lang_cxx;
6680  else {
6681    Diag(LangLoc, diag::err_bad_language);
6682    return 0;
6683  }
6684
6685  // FIXME: Add all the various semantics of linkage specifications
6686
6687  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6688                                               ExternLoc, LangLoc, Language);
6689  CurContext->addDecl(D);
6690  PushDeclContext(S, D);
6691  return D;
6692}
6693
6694/// ActOnFinishLinkageSpecification - Complete the definition of
6695/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6696/// valid, it's the position of the closing '}' brace in a linkage
6697/// specification that uses braces.
6698Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6699                                            Decl *LinkageSpec,
6700                                            SourceLocation RBraceLoc) {
6701  if (LinkageSpec) {
6702    if (RBraceLoc.isValid()) {
6703      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
6704      LSDecl->setRBraceLoc(RBraceLoc);
6705    }
6706    PopDeclContext();
6707  }
6708  return LinkageSpec;
6709}
6710
6711/// \brief Perform semantic analysis for the variable declaration that
6712/// occurs within a C++ catch clause, returning the newly-created
6713/// variable.
6714VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6715                                         TypeSourceInfo *TInfo,
6716                                         SourceLocation StartLoc,
6717                                         SourceLocation Loc,
6718                                         IdentifierInfo *Name) {
6719  bool Invalid = false;
6720  QualType ExDeclType = TInfo->getType();
6721
6722  // Arrays and functions decay.
6723  if (ExDeclType->isArrayType())
6724    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6725  else if (ExDeclType->isFunctionType())
6726    ExDeclType = Context.getPointerType(ExDeclType);
6727
6728  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6729  // The exception-declaration shall not denote a pointer or reference to an
6730  // incomplete type, other than [cv] void*.
6731  // N2844 forbids rvalue references.
6732  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6733    Diag(Loc, diag::err_catch_rvalue_ref);
6734    Invalid = true;
6735  }
6736
6737  // GCC allows catching pointers and references to incomplete types
6738  // as an extension; so do we, but we warn by default.
6739
6740  QualType BaseType = ExDeclType;
6741  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6742  unsigned DK = diag::err_catch_incomplete;
6743  bool IncompleteCatchIsInvalid = true;
6744  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6745    BaseType = Ptr->getPointeeType();
6746    Mode = 1;
6747    DK = diag::ext_catch_incomplete_ptr;
6748    IncompleteCatchIsInvalid = false;
6749  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6750    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6751    BaseType = Ref->getPointeeType();
6752    Mode = 2;
6753    DK = diag::ext_catch_incomplete_ref;
6754    IncompleteCatchIsInvalid = false;
6755  }
6756  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6757      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6758      IncompleteCatchIsInvalid)
6759    Invalid = true;
6760
6761  if (!Invalid && !ExDeclType->isDependentType() &&
6762      RequireNonAbstractType(Loc, ExDeclType,
6763                             diag::err_abstract_type_in_decl,
6764                             AbstractVariableType))
6765    Invalid = true;
6766
6767  // Only the non-fragile NeXT runtime currently supports C++ catches
6768  // of ObjC types, and no runtime supports catching ObjC types by value.
6769  if (!Invalid && getLangOptions().ObjC1) {
6770    QualType T = ExDeclType;
6771    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6772      T = RT->getPointeeType();
6773
6774    if (T->isObjCObjectType()) {
6775      Diag(Loc, diag::err_objc_object_catch);
6776      Invalid = true;
6777    } else if (T->isObjCObjectPointerType()) {
6778      if (!getLangOptions().NeXTRuntime) {
6779        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6780        Invalid = true;
6781      } else if (!getLangOptions().ObjCNonFragileABI) {
6782        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6783        Invalid = true;
6784      }
6785    }
6786  }
6787
6788  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
6789                                    ExDeclType, TInfo, SC_None, SC_None);
6790  ExDecl->setExceptionVariable(true);
6791
6792  if (!Invalid) {
6793    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6794      // C++ [except.handle]p16:
6795      //   The object declared in an exception-declaration or, if the
6796      //   exception-declaration does not specify a name, a temporary (12.2) is
6797      //   copy-initialized (8.5) from the exception object. [...]
6798      //   The object is destroyed when the handler exits, after the destruction
6799      //   of any automatic objects initialized within the handler.
6800      //
6801      // We just pretend to initialize the object with itself, then make sure
6802      // it can be destroyed later.
6803      QualType initType = ExDeclType;
6804
6805      InitializedEntity entity =
6806        InitializedEntity::InitializeVariable(ExDecl);
6807      InitializationKind initKind =
6808        InitializationKind::CreateCopy(Loc, SourceLocation());
6809
6810      Expr *opaqueValue =
6811        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6812      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6813      ExprResult result = sequence.Perform(*this, entity, initKind,
6814                                           MultiExprArg(&opaqueValue, 1));
6815      if (result.isInvalid())
6816        Invalid = true;
6817      else {
6818        // If the constructor used was non-trivial, set this as the
6819        // "initializer".
6820        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6821        if (!construct->getConstructor()->isTrivial()) {
6822          Expr *init = MaybeCreateExprWithCleanups(construct);
6823          ExDecl->setInit(init);
6824        }
6825
6826        // And make sure it's destructable.
6827        FinalizeVarWithDestructor(ExDecl, recordType);
6828      }
6829    }
6830  }
6831
6832  if (Invalid)
6833    ExDecl->setInvalidDecl();
6834
6835  return ExDecl;
6836}
6837
6838/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6839/// handler.
6840Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6841  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6842  bool Invalid = D.isInvalidType();
6843
6844  // Check for unexpanded parameter packs.
6845  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6846                                               UPPC_ExceptionType)) {
6847    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6848                                             D.getIdentifierLoc());
6849    Invalid = true;
6850  }
6851
6852  IdentifierInfo *II = D.getIdentifier();
6853  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6854                                             LookupOrdinaryName,
6855                                             ForRedeclaration)) {
6856    // The scope should be freshly made just for us. There is just no way
6857    // it contains any previous declaration.
6858    assert(!S->isDeclScope(PrevDecl));
6859    if (PrevDecl->isTemplateParameter()) {
6860      // Maybe we will complain about the shadowed template parameter.
6861      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6862    }
6863  }
6864
6865  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6866    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6867      << D.getCXXScopeSpec().getRange();
6868    Invalid = true;
6869  }
6870
6871  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6872                                              D.getSourceRange().getBegin(),
6873                                              D.getIdentifierLoc(),
6874                                              D.getIdentifier());
6875  if (Invalid)
6876    ExDecl->setInvalidDecl();
6877
6878  // Add the exception declaration into this scope.
6879  if (II)
6880    PushOnScopeChains(ExDecl, S);
6881  else
6882    CurContext->addDecl(ExDecl);
6883
6884  ProcessDeclAttributes(S, ExDecl, D);
6885  return ExDecl;
6886}
6887
6888Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
6889                                         Expr *AssertExpr,
6890                                         Expr *AssertMessageExpr_,
6891                                         SourceLocation RParenLoc) {
6892  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6893
6894  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6895    llvm::APSInt Value(32);
6896    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6897      Diag(StaticAssertLoc,
6898           diag::err_static_assert_expression_is_not_constant) <<
6899        AssertExpr->getSourceRange();
6900      return 0;
6901    }
6902
6903    if (Value == 0) {
6904      Diag(StaticAssertLoc, diag::err_static_assert_failed)
6905        << AssertMessage->getString() << AssertExpr->getSourceRange();
6906    }
6907  }
6908
6909  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6910    return 0;
6911
6912  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
6913                                        AssertExpr, AssertMessage, RParenLoc);
6914
6915  CurContext->addDecl(Decl);
6916  return Decl;
6917}
6918
6919/// \brief Perform semantic analysis of the given friend type declaration.
6920///
6921/// \returns A friend declaration that.
6922FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6923                                      TypeSourceInfo *TSInfo) {
6924  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6925
6926  QualType T = TSInfo->getType();
6927  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6928
6929  if (!getLangOptions().CPlusPlus0x) {
6930    // C++03 [class.friend]p2:
6931    //   An elaborated-type-specifier shall be used in a friend declaration
6932    //   for a class.*
6933    //
6934    //   * The class-key of the elaborated-type-specifier is required.
6935    if (!ActiveTemplateInstantiations.empty()) {
6936      // Do not complain about the form of friend template types during
6937      // template instantiation; we will already have complained when the
6938      // template was declared.
6939    } else if (!T->isElaboratedTypeSpecifier()) {
6940      // If we evaluated the type to a record type, suggest putting
6941      // a tag in front.
6942      if (const RecordType *RT = T->getAs<RecordType>()) {
6943        RecordDecl *RD = RT->getDecl();
6944
6945        std::string InsertionText = std::string(" ") + RD->getKindName();
6946
6947        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6948          << (unsigned) RD->getTagKind()
6949          << T
6950          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6951                                        InsertionText);
6952      } else {
6953        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6954          << T
6955          << SourceRange(FriendLoc, TypeRange.getEnd());
6956      }
6957    } else if (T->getAs<EnumType>()) {
6958      Diag(FriendLoc, diag::ext_enum_friend)
6959        << T
6960        << SourceRange(FriendLoc, TypeRange.getEnd());
6961    }
6962  }
6963
6964  // C++0x [class.friend]p3:
6965  //   If the type specifier in a friend declaration designates a (possibly
6966  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6967  //   the friend declaration is ignored.
6968
6969  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6970  // in [class.friend]p3 that we do not implement.
6971
6972  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6973}
6974
6975/// Handle a friend tag declaration where the scope specifier was
6976/// templated.
6977Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6978                                    unsigned TagSpec, SourceLocation TagLoc,
6979                                    CXXScopeSpec &SS,
6980                                    IdentifierInfo *Name, SourceLocation NameLoc,
6981                                    AttributeList *Attr,
6982                                    MultiTemplateParamsArg TempParamLists) {
6983  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6984
6985  bool isExplicitSpecialization = false;
6986  bool Invalid = false;
6987
6988  if (TemplateParameterList *TemplateParams
6989        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6990                                                  TempParamLists.get(),
6991                                                  TempParamLists.size(),
6992                                                  /*friend*/ true,
6993                                                  isExplicitSpecialization,
6994                                                  Invalid)) {
6995    if (TemplateParams->size() > 0) {
6996      // This is a declaration of a class template.
6997      if (Invalid)
6998        return 0;
6999
7000      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
7001                                SS, Name, NameLoc, Attr,
7002                                TemplateParams, AS_public,
7003                                TempParamLists.size() - 1,
7004                   (TemplateParameterList**) TempParamLists.release()).take();
7005    } else {
7006      // The "template<>" header is extraneous.
7007      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7008        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7009      isExplicitSpecialization = true;
7010    }
7011  }
7012
7013  if (Invalid) return 0;
7014
7015  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
7016
7017  bool isAllExplicitSpecializations = true;
7018  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
7019    if (TempParamLists.get()[I]->size()) {
7020      isAllExplicitSpecializations = false;
7021      break;
7022    }
7023  }
7024
7025  // FIXME: don't ignore attributes.
7026
7027  // If it's explicit specializations all the way down, just forget
7028  // about the template header and build an appropriate non-templated
7029  // friend.  TODO: for source fidelity, remember the headers.
7030  if (isAllExplicitSpecializations) {
7031    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7032    ElaboratedTypeKeyword Keyword
7033      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7034    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
7035                                   *Name, NameLoc);
7036    if (T.isNull())
7037      return 0;
7038
7039    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7040    if (isa<DependentNameType>(T)) {
7041      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7042      TL.setKeywordLoc(TagLoc);
7043      TL.setQualifierLoc(QualifierLoc);
7044      TL.setNameLoc(NameLoc);
7045    } else {
7046      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
7047      TL.setKeywordLoc(TagLoc);
7048      TL.setQualifierLoc(QualifierLoc);
7049      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
7050    }
7051
7052    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7053                                            TSI, FriendLoc);
7054    Friend->setAccess(AS_public);
7055    CurContext->addDecl(Friend);
7056    return Friend;
7057  }
7058
7059  // Handle the case of a templated-scope friend class.  e.g.
7060  //   template <class T> class A<T>::B;
7061  // FIXME: we don't support these right now.
7062  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
7063  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
7064  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
7065  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
7066  TL.setKeywordLoc(TagLoc);
7067  TL.setQualifierLoc(SS.getWithLocInContext(Context));
7068  TL.setNameLoc(NameLoc);
7069
7070  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
7071                                          TSI, FriendLoc);
7072  Friend->setAccess(AS_public);
7073  Friend->setUnsupportedFriend(true);
7074  CurContext->addDecl(Friend);
7075  return Friend;
7076}
7077
7078
7079/// Handle a friend type declaration.  This works in tandem with
7080/// ActOnTag.
7081///
7082/// Notes on friend class templates:
7083///
7084/// We generally treat friend class declarations as if they were
7085/// declaring a class.  So, for example, the elaborated type specifier
7086/// in a friend declaration is required to obey the restrictions of a
7087/// class-head (i.e. no typedefs in the scope chain), template
7088/// parameters are required to match up with simple template-ids, &c.
7089/// However, unlike when declaring a template specialization, it's
7090/// okay to refer to a template specialization without an empty
7091/// template parameter declaration, e.g.
7092///   friend class A<T>::B<unsigned>;
7093/// We permit this as a special case; if there are any template
7094/// parameters present at all, require proper matching, i.e.
7095///   template <> template <class T> friend class A<int>::B;
7096Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7097                                MultiTemplateParamsArg TempParams) {
7098  SourceLocation Loc = DS.getSourceRange().getBegin();
7099
7100  assert(DS.isFriendSpecified());
7101  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7102
7103  // Try to convert the decl specifier to a type.  This works for
7104  // friend templates because ActOnTag never produces a ClassTemplateDecl
7105  // for a TUK_Friend.
7106  Declarator TheDeclarator(DS, Declarator::MemberContext);
7107  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
7108  QualType T = TSI->getType();
7109  if (TheDeclarator.isInvalidType())
7110    return 0;
7111
7112  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
7113    return 0;
7114
7115  // This is definitely an error in C++98.  It's probably meant to
7116  // be forbidden in C++0x, too, but the specification is just
7117  // poorly written.
7118  //
7119  // The problem is with declarations like the following:
7120  //   template <T> friend A<T>::foo;
7121  // where deciding whether a class C is a friend or not now hinges
7122  // on whether there exists an instantiation of A that causes
7123  // 'foo' to equal C.  There are restrictions on class-heads
7124  // (which we declare (by fiat) elaborated friend declarations to
7125  // be) that makes this tractable.
7126  //
7127  // FIXME: handle "template <> friend class A<T>;", which
7128  // is possibly well-formed?  Who even knows?
7129  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
7130    Diag(Loc, diag::err_tagless_friend_type_template)
7131      << DS.getSourceRange();
7132    return 0;
7133  }
7134
7135  // C++98 [class.friend]p1: A friend of a class is a function
7136  //   or class that is not a member of the class . . .
7137  // This is fixed in DR77, which just barely didn't make the C++03
7138  // deadline.  It's also a very silly restriction that seriously
7139  // affects inner classes and which nobody else seems to implement;
7140  // thus we never diagnose it, not even in -pedantic.
7141  //
7142  // But note that we could warn about it: it's always useless to
7143  // friend one of your own members (it's not, however, worthless to
7144  // friend a member of an arbitrary specialization of your template).
7145
7146  Decl *D;
7147  if (unsigned NumTempParamLists = TempParams.size())
7148    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
7149                                   NumTempParamLists,
7150                                   TempParams.release(),
7151                                   TSI,
7152                                   DS.getFriendSpecLoc());
7153  else
7154    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
7155
7156  if (!D)
7157    return 0;
7158
7159  D->setAccess(AS_public);
7160  CurContext->addDecl(D);
7161
7162  return D;
7163}
7164
7165Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7166                                    MultiTemplateParamsArg TemplateParams) {
7167  const DeclSpec &DS = D.getDeclSpec();
7168
7169  assert(DS.isFriendSpecified());
7170  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7171
7172  SourceLocation Loc = D.getIdentifierLoc();
7173  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7174  QualType T = TInfo->getType();
7175
7176  // C++ [class.friend]p1
7177  //   A friend of a class is a function or class....
7178  // Note that this sees through typedefs, which is intended.
7179  // It *doesn't* see through dependent types, which is correct
7180  // according to [temp.arg.type]p3:
7181  //   If a declaration acquires a function type through a
7182  //   type dependent on a template-parameter and this causes
7183  //   a declaration that does not use the syntactic form of a
7184  //   function declarator to have a function type, the program
7185  //   is ill-formed.
7186  if (!T->isFunctionType()) {
7187    Diag(Loc, diag::err_unexpected_friend);
7188
7189    // It might be worthwhile to try to recover by creating an
7190    // appropriate declaration.
7191    return 0;
7192  }
7193
7194  // C++ [namespace.memdef]p3
7195  //  - If a friend declaration in a non-local class first declares a
7196  //    class or function, the friend class or function is a member
7197  //    of the innermost enclosing namespace.
7198  //  - The name of the friend is not found by simple name lookup
7199  //    until a matching declaration is provided in that namespace
7200  //    scope (either before or after the class declaration granting
7201  //    friendship).
7202  //  - If a friend function is called, its name may be found by the
7203  //    name lookup that considers functions from namespaces and
7204  //    classes associated with the types of the function arguments.
7205  //  - When looking for a prior declaration of a class or a function
7206  //    declared as a friend, scopes outside the innermost enclosing
7207  //    namespace scope are not considered.
7208
7209  CXXScopeSpec &SS = D.getCXXScopeSpec();
7210  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7211  DeclarationName Name = NameInfo.getName();
7212  assert(Name);
7213
7214  // Check for unexpanded parameter packs.
7215  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7216      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7217      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7218    return 0;
7219
7220  // The context we found the declaration in, or in which we should
7221  // create the declaration.
7222  DeclContext *DC;
7223  Scope *DCScope = S;
7224  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7225                        ForRedeclaration);
7226
7227  // FIXME: there are different rules in local classes
7228
7229  // There are four cases here.
7230  //   - There's no scope specifier, in which case we just go to the
7231  //     appropriate scope and look for a function or function template
7232  //     there as appropriate.
7233  // Recover from invalid scope qualifiers as if they just weren't there.
7234  if (SS.isInvalid() || !SS.isSet()) {
7235    // C++0x [namespace.memdef]p3:
7236    //   If the name in a friend declaration is neither qualified nor
7237    //   a template-id and the declaration is a function or an
7238    //   elaborated-type-specifier, the lookup to determine whether
7239    //   the entity has been previously declared shall not consider
7240    //   any scopes outside the innermost enclosing namespace.
7241    // C++0x [class.friend]p11:
7242    //   If a friend declaration appears in a local class and the name
7243    //   specified is an unqualified name, a prior declaration is
7244    //   looked up without considering scopes that are outside the
7245    //   innermost enclosing non-class scope. For a friend function
7246    //   declaration, if there is no prior declaration, the program is
7247    //   ill-formed.
7248    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7249    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7250
7251    // Find the appropriate context according to the above.
7252    DC = CurContext;
7253    while (true) {
7254      // Skip class contexts.  If someone can cite chapter and verse
7255      // for this behavior, that would be nice --- it's what GCC and
7256      // EDG do, and it seems like a reasonable intent, but the spec
7257      // really only says that checks for unqualified existing
7258      // declarations should stop at the nearest enclosing namespace,
7259      // not that they should only consider the nearest enclosing
7260      // namespace.
7261      while (DC->isRecord())
7262        DC = DC->getParent();
7263
7264      LookupQualifiedName(Previous, DC);
7265
7266      // TODO: decide what we think about using declarations.
7267      if (isLocal || !Previous.empty())
7268        break;
7269
7270      if (isTemplateId) {
7271        if (isa<TranslationUnitDecl>(DC)) break;
7272      } else {
7273        if (DC->isFileContext()) break;
7274      }
7275      DC = DC->getParent();
7276    }
7277
7278    // C++ [class.friend]p1: A friend of a class is a function or
7279    //   class that is not a member of the class . . .
7280    // C++0x changes this for both friend types and functions.
7281    // Most C++ 98 compilers do seem to give an error here, so
7282    // we do, too.
7283    if (!Previous.empty() && DC->Equals(CurContext)
7284        && !getLangOptions().CPlusPlus0x)
7285      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7286
7287    DCScope = getScopeForDeclContext(S, DC);
7288
7289  //   - There's a non-dependent scope specifier, in which case we
7290  //     compute it and do a previous lookup there for a function
7291  //     or function template.
7292  } else if (!SS.getScopeRep()->isDependent()) {
7293    DC = computeDeclContext(SS);
7294    if (!DC) return 0;
7295
7296    if (RequireCompleteDeclContext(SS, DC)) return 0;
7297
7298    LookupQualifiedName(Previous, DC);
7299
7300    // Ignore things found implicitly in the wrong scope.
7301    // TODO: better diagnostics for this case.  Suggesting the right
7302    // qualified scope would be nice...
7303    LookupResult::Filter F = Previous.makeFilter();
7304    while (F.hasNext()) {
7305      NamedDecl *D = F.next();
7306      if (!DC->InEnclosingNamespaceSetOf(
7307              D->getDeclContext()->getRedeclContext()))
7308        F.erase();
7309    }
7310    F.done();
7311
7312    if (Previous.empty()) {
7313      D.setInvalidType();
7314      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7315      return 0;
7316    }
7317
7318    // C++ [class.friend]p1: A friend of a class is a function or
7319    //   class that is not a member of the class . . .
7320    if (DC->Equals(CurContext))
7321      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7322
7323  //   - There's a scope specifier that does not match any template
7324  //     parameter lists, in which case we use some arbitrary context,
7325  //     create a method or method template, and wait for instantiation.
7326  //   - There's a scope specifier that does match some template
7327  //     parameter lists, which we don't handle right now.
7328  } else {
7329    DC = CurContext;
7330    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7331  }
7332
7333  if (!DC->isRecord()) {
7334    // This implies that it has to be an operator or function.
7335    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7336        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7337        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7338      Diag(Loc, diag::err_introducing_special_friend) <<
7339        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7340         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7341      return 0;
7342    }
7343  }
7344
7345  bool Redeclaration = false;
7346  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7347                                          move(TemplateParams),
7348                                          IsDefinition,
7349                                          Redeclaration);
7350  if (!ND) return 0;
7351
7352  assert(ND->getDeclContext() == DC);
7353  assert(ND->getLexicalDeclContext() == CurContext);
7354
7355  // Add the function declaration to the appropriate lookup tables,
7356  // adjusting the redeclarations list as necessary.  We don't
7357  // want to do this yet if the friending class is dependent.
7358  //
7359  // Also update the scope-based lookup if the target context's
7360  // lookup context is in lexical scope.
7361  if (!CurContext->isDependentContext()) {
7362    DC = DC->getRedeclContext();
7363    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7364    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7365      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7366  }
7367
7368  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7369                                       D.getIdentifierLoc(), ND,
7370                                       DS.getFriendSpecLoc());
7371  FrD->setAccess(AS_public);
7372  CurContext->addDecl(FrD);
7373
7374  if (ND->isInvalidDecl())
7375    FrD->setInvalidDecl();
7376  else {
7377    FunctionDecl *FD;
7378    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7379      FD = FTD->getTemplatedDecl();
7380    else
7381      FD = cast<FunctionDecl>(ND);
7382
7383    // Mark templated-scope function declarations as unsupported.
7384    if (FD->getNumTemplateParameterLists())
7385      FrD->setUnsupportedFriend(true);
7386  }
7387
7388  return ND;
7389}
7390
7391void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7392  AdjustDeclIfTemplate(Dcl);
7393
7394  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7395  if (!Fn) {
7396    Diag(DelLoc, diag::err_deleted_non_function);
7397    return;
7398  }
7399  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7400    Diag(DelLoc, diag::err_deleted_decl_not_first);
7401    Diag(Prev->getLocation(), diag::note_previous_declaration);
7402    // If the declaration wasn't the first, we delete the function anyway for
7403    // recovery.
7404  }
7405  Fn->setDeleted();
7406}
7407
7408static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7409  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7410    Stmt *SubStmt = *CI;
7411    if (!SubStmt)
7412      continue;
7413    if (isa<ReturnStmt>(SubStmt))
7414      Self.Diag(SubStmt->getSourceRange().getBegin(),
7415           diag::err_return_in_constructor_handler);
7416    if (!isa<Expr>(SubStmt))
7417      SearchForReturnInStmt(Self, SubStmt);
7418  }
7419}
7420
7421void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7422  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7423    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7424    SearchForReturnInStmt(*this, Handler);
7425  }
7426}
7427
7428bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7429                                             const CXXMethodDecl *Old) {
7430  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7431  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7432
7433  if (Context.hasSameType(NewTy, OldTy) ||
7434      NewTy->isDependentType() || OldTy->isDependentType())
7435    return false;
7436
7437  // Check if the return types are covariant
7438  QualType NewClassTy, OldClassTy;
7439
7440  /// Both types must be pointers or references to classes.
7441  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7442    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7443      NewClassTy = NewPT->getPointeeType();
7444      OldClassTy = OldPT->getPointeeType();
7445    }
7446  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7447    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7448      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7449        NewClassTy = NewRT->getPointeeType();
7450        OldClassTy = OldRT->getPointeeType();
7451      }
7452    }
7453  }
7454
7455  // The return types aren't either both pointers or references to a class type.
7456  if (NewClassTy.isNull()) {
7457    Diag(New->getLocation(),
7458         diag::err_different_return_type_for_overriding_virtual_function)
7459      << New->getDeclName() << NewTy << OldTy;
7460    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7461
7462    return true;
7463  }
7464
7465  // C++ [class.virtual]p6:
7466  //   If the return type of D::f differs from the return type of B::f, the
7467  //   class type in the return type of D::f shall be complete at the point of
7468  //   declaration of D::f or shall be the class type D.
7469  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7470    if (!RT->isBeingDefined() &&
7471        RequireCompleteType(New->getLocation(), NewClassTy,
7472                            PDiag(diag::err_covariant_return_incomplete)
7473                              << New->getDeclName()))
7474    return true;
7475  }
7476
7477  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7478    // Check if the new class derives from the old class.
7479    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7480      Diag(New->getLocation(),
7481           diag::err_covariant_return_not_derived)
7482      << New->getDeclName() << NewTy << OldTy;
7483      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7484      return true;
7485    }
7486
7487    // Check if we the conversion from derived to base is valid.
7488    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7489                    diag::err_covariant_return_inaccessible_base,
7490                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7491                    // FIXME: Should this point to the return type?
7492                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7493      // FIXME: this note won't trigger for delayed access control
7494      // diagnostics, and it's impossible to get an undelayed error
7495      // here from access control during the original parse because
7496      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7497      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7498      return true;
7499    }
7500  }
7501
7502  // The qualifiers of the return types must be the same.
7503  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7504    Diag(New->getLocation(),
7505         diag::err_covariant_return_type_different_qualifications)
7506    << New->getDeclName() << NewTy << OldTy;
7507    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7508    return true;
7509  };
7510
7511
7512  // The new class type must have the same or less qualifiers as the old type.
7513  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7514    Diag(New->getLocation(),
7515         diag::err_covariant_return_type_class_type_more_qualified)
7516    << New->getDeclName() << NewTy << OldTy;
7517    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7518    return true;
7519  };
7520
7521  return false;
7522}
7523
7524/// \brief Mark the given method pure.
7525///
7526/// \param Method the method to be marked pure.
7527///
7528/// \param InitRange the source range that covers the "0" initializer.
7529bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7530  SourceLocation EndLoc = InitRange.getEnd();
7531  if (EndLoc.isValid())
7532    Method->setRangeEnd(EndLoc);
7533
7534  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7535    Method->setPure();
7536    return false;
7537  }
7538
7539  if (!Method->isInvalidDecl())
7540    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7541      << Method->getDeclName() << InitRange;
7542  return true;
7543}
7544
7545/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7546/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7547/// is a fresh scope pushed for just this purpose.
7548///
7549/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7550/// static data member of class X, names should be looked up in the scope of
7551/// class X.
7552void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7553  // If there is no declaration, there was an error parsing it.
7554  if (D == 0) return;
7555
7556  // We should only get called for declarations with scope specifiers, like:
7557  //   int foo::bar;
7558  assert(D->isOutOfLine());
7559  EnterDeclaratorContext(S, D->getDeclContext());
7560}
7561
7562/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7563/// initializer for the out-of-line declaration 'D'.
7564void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7565  // If there is no declaration, there was an error parsing it.
7566  if (D == 0) return;
7567
7568  assert(D->isOutOfLine());
7569  ExitDeclaratorContext(S);
7570}
7571
7572/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7573/// C++ if/switch/while/for statement.
7574/// e.g: "if (int x = f()) {...}"
7575DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7576  // C++ 6.4p2:
7577  // The declarator shall not specify a function or an array.
7578  // The type-specifier-seq shall not contain typedef and shall not declare a
7579  // new class or enumeration.
7580  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7581         "Parser allowed 'typedef' as storage class of condition decl.");
7582
7583  TagDecl *OwnedTag = 0;
7584  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7585  QualType Ty = TInfo->getType();
7586
7587  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7588                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7589                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7590    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7591      << D.getSourceRange();
7592    return DeclResult();
7593  } else if (OwnedTag && OwnedTag->isDefinition()) {
7594    // The type-specifier-seq shall not declare a new class or enumeration.
7595    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7596  }
7597
7598  Decl *Dcl = ActOnDeclarator(S, D);
7599  if (!Dcl)
7600    return DeclResult();
7601
7602  return Dcl;
7603}
7604
7605void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7606                          bool DefinitionRequired) {
7607  // Ignore any vtable uses in unevaluated operands or for classes that do
7608  // not have a vtable.
7609  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7610      CurContext->isDependentContext() ||
7611      ExprEvalContexts.back().Context == Unevaluated)
7612    return;
7613
7614  // Try to insert this class into the map.
7615  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7616  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7617    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7618  if (!Pos.second) {
7619    // If we already had an entry, check to see if we are promoting this vtable
7620    // to required a definition. If so, we need to reappend to the VTableUses
7621    // list, since we may have already processed the first entry.
7622    if (DefinitionRequired && !Pos.first->second) {
7623      Pos.first->second = true;
7624    } else {
7625      // Otherwise, we can early exit.
7626      return;
7627    }
7628  }
7629
7630  // Local classes need to have their virtual members marked
7631  // immediately. For all other classes, we mark their virtual members
7632  // at the end of the translation unit.
7633  if (Class->isLocalClass())
7634    MarkVirtualMembersReferenced(Loc, Class);
7635  else
7636    VTableUses.push_back(std::make_pair(Class, Loc));
7637}
7638
7639bool Sema::DefineUsedVTables() {
7640  if (VTableUses.empty())
7641    return false;
7642
7643  // Note: The VTableUses vector could grow as a result of marking
7644  // the members of a class as "used", so we check the size each
7645  // time through the loop and prefer indices (with are stable) to
7646  // iterators (which are not).
7647  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7648    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7649    if (!Class)
7650      continue;
7651
7652    SourceLocation Loc = VTableUses[I].second;
7653
7654    // If this class has a key function, but that key function is
7655    // defined in another translation unit, we don't need to emit the
7656    // vtable even though we're using it.
7657    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7658    if (KeyFunction && !KeyFunction->hasBody()) {
7659      switch (KeyFunction->getTemplateSpecializationKind()) {
7660      case TSK_Undeclared:
7661      case TSK_ExplicitSpecialization:
7662      case TSK_ExplicitInstantiationDeclaration:
7663        // The key function is in another translation unit.
7664        continue;
7665
7666      case TSK_ExplicitInstantiationDefinition:
7667      case TSK_ImplicitInstantiation:
7668        // We will be instantiating the key function.
7669        break;
7670      }
7671    } else if (!KeyFunction) {
7672      // If we have a class with no key function that is the subject
7673      // of an explicit instantiation declaration, suppress the
7674      // vtable; it will live with the explicit instantiation
7675      // definition.
7676      bool IsExplicitInstantiationDeclaration
7677        = Class->getTemplateSpecializationKind()
7678                                      == TSK_ExplicitInstantiationDeclaration;
7679      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7680                                 REnd = Class->redecls_end();
7681           R != REnd; ++R) {
7682        TemplateSpecializationKind TSK
7683          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7684        if (TSK == TSK_ExplicitInstantiationDeclaration)
7685          IsExplicitInstantiationDeclaration = true;
7686        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7687          IsExplicitInstantiationDeclaration = false;
7688          break;
7689        }
7690      }
7691
7692      if (IsExplicitInstantiationDeclaration)
7693        continue;
7694    }
7695
7696    // Mark all of the virtual members of this class as referenced, so
7697    // that we can build a vtable. Then, tell the AST consumer that a
7698    // vtable for this class is required.
7699    MarkVirtualMembersReferenced(Loc, Class);
7700    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7701    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7702
7703    // Optionally warn if we're emitting a weak vtable.
7704    if (Class->getLinkage() == ExternalLinkage &&
7705        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7706      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7707        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7708    }
7709  }
7710  VTableUses.clear();
7711
7712  return true;
7713}
7714
7715void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7716                                        const CXXRecordDecl *RD) {
7717  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7718       e = RD->method_end(); i != e; ++i) {
7719    CXXMethodDecl *MD = *i;
7720
7721    // C++ [basic.def.odr]p2:
7722    //   [...] A virtual member function is used if it is not pure. [...]
7723    if (MD->isVirtual() && !MD->isPure())
7724      MarkDeclarationReferenced(Loc, MD);
7725  }
7726
7727  // Only classes that have virtual bases need a VTT.
7728  if (RD->getNumVBases() == 0)
7729    return;
7730
7731  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7732           e = RD->bases_end(); i != e; ++i) {
7733    const CXXRecordDecl *Base =
7734        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7735    if (Base->getNumVBases() == 0)
7736      continue;
7737    MarkVirtualMembersReferenced(Loc, Base);
7738  }
7739}
7740
7741/// SetIvarInitializers - This routine builds initialization ASTs for the
7742/// Objective-C implementation whose ivars need be initialized.
7743void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7744  if (!getLangOptions().CPlusPlus)
7745    return;
7746  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7747    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7748    CollectIvarsToConstructOrDestruct(OID, ivars);
7749    if (ivars.empty())
7750      return;
7751    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7752    for (unsigned i = 0; i < ivars.size(); i++) {
7753      FieldDecl *Field = ivars[i];
7754      if (Field->isInvalidDecl())
7755        continue;
7756
7757      CXXCtorInitializer *Member;
7758      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7759      InitializationKind InitKind =
7760        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7761
7762      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7763      ExprResult MemberInit =
7764        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7765      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7766      // Note, MemberInit could actually come back empty if no initialization
7767      // is required (e.g., because it would call a trivial default constructor)
7768      if (!MemberInit.get() || MemberInit.isInvalid())
7769        continue;
7770
7771      Member =
7772        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7773                                         SourceLocation(),
7774                                         MemberInit.takeAs<Expr>(),
7775                                         SourceLocation());
7776      AllToInit.push_back(Member);
7777
7778      // Be sure that the destructor is accessible and is marked as referenced.
7779      if (const RecordType *RecordTy
7780                  = Context.getBaseElementType(Field->getType())
7781                                                        ->getAs<RecordType>()) {
7782                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7783        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7784          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7785          CheckDestructorAccess(Field->getLocation(), Destructor,
7786                            PDiag(diag::err_access_dtor_ivar)
7787                              << Context.getBaseElementType(Field->getType()));
7788        }
7789      }
7790    }
7791    ObjCImplementation->setIvarInitializers(Context,
7792                                            AllToInit.data(), AllToInit.size());
7793  }
7794}
7795