SemaDeclCXX.cpp revision d7b27e1c17d40c72a1ccf8868315bf0c5271aa54
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  // C++ 9.2p6: A member shall not be declared to have automatic storage
554  // duration (auto, register) or with the extern storage-class-specifier.
555  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
556  // data members and cannot be applied to names declared const or static,
557  // and cannot be applied to reference members.
558  switch (DS.getStorageClassSpec()) {
559    case DeclSpec::SCS_unspecified:
560    case DeclSpec::SCS_typedef:
561    case DeclSpec::SCS_static:
562      // FALL THROUGH.
563      break;
564    case DeclSpec::SCS_mutable:
565      if (isFunc) {
566        if (DS.getStorageClassSpecLoc().isValid())
567          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
568        else
569          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
570
571        // FIXME: It would be nicer if the keyword was ignored only for this
572        // declarator. Otherwise we could get follow-up errors.
573        D.getMutableDeclSpec().ClearStorageClassSpecs();
574      } else {
575        QualType T = GetTypeForDeclarator(D, S);
576        diag::kind err = static_cast<diag::kind>(0);
577        if (T->isReferenceType())
578          err = diag::err_mutable_reference;
579        else if (T.isConstQualified())
580          err = diag::err_mutable_const;
581        if (err != 0) {
582          if (DS.getStorageClassSpecLoc().isValid())
583            Diag(DS.getStorageClassSpecLoc(), err);
584          else
585            Diag(DS.getThreadSpecLoc(), err);
586          // FIXME: It would be nicer if the keyword was ignored only for this
587          // declarator. Otherwise we could get follow-up errors.
588          D.getMutableDeclSpec().ClearStorageClassSpecs();
589        }
590      }
591      break;
592    default:
593      if (DS.getStorageClassSpecLoc().isValid())
594        Diag(DS.getStorageClassSpecLoc(),
595             diag::err_storageclass_invalid_for_member);
596      else
597        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
598      D.getMutableDeclSpec().ClearStorageClassSpecs();
599  }
600
601  if (!isFunc &&
602      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
603      D.getNumTypeObjects() == 0) {
604    // Check also for this case:
605    //
606    // typedef int f();
607    // f a;
608    //
609    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
610    isFunc = TDType->isFunctionType();
611  }
612
613  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
614                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
615                      !isFunc);
616
617  Decl *Member;
618  if (isInstField) {
619    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
620                         AS);
621    assert(Member && "HandleField never returns null");
622  } else {
623    Member = ActOnDeclarator(S, D).getAs<Decl>();
624    if (!Member) {
625      if (BitWidth) DeleteExpr(BitWidth);
626      return DeclPtrTy();
627    }
628
629    // Non-instance-fields can't have a bitfield.
630    if (BitWidth) {
631      if (Member->isInvalidDecl()) {
632        // don't emit another diagnostic.
633      } else if (isa<VarDecl>(Member)) {
634        // C++ 9.6p3: A bit-field shall not be a static member.
635        // "static member 'A' cannot be a bit-field"
636        Diag(Loc, diag::err_static_not_bitfield)
637          << Name << BitWidth->getSourceRange();
638      } else if (isa<TypedefDecl>(Member)) {
639        // "typedef member 'x' cannot be a bit-field"
640        Diag(Loc, diag::err_typedef_not_bitfield)
641          << Name << BitWidth->getSourceRange();
642      } else {
643        // A function typedef ("typedef int f(); f a;").
644        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
645        Diag(Loc, diag::err_not_integral_type_bitfield)
646          << Name << cast<ValueDecl>(Member)->getType()
647          << BitWidth->getSourceRange();
648      }
649
650      DeleteExpr(BitWidth);
651      BitWidth = 0;
652      Member->setInvalidDecl();
653    }
654
655    Member->setAccess(AS);
656  }
657
658  assert((Name || isInstField) && "No identifier for non-field ?");
659
660  if (Init)
661    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
662  if (Deleted) // FIXME: Source location is not very good.
663    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
664
665  if (isInstField) {
666    FieldCollector->Add(cast<FieldDecl>(Member));
667    return DeclPtrTy();
668  }
669  return DeclPtrTy::make(Member);
670}
671
672/// ActOnMemInitializer - Handle a C++ member initializer.
673Sema::MemInitResult
674Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
675                          Scope *S,
676                          const CXXScopeSpec &SS,
677                          IdentifierInfo *MemberOrBase,
678                          TypeTy *TemplateTypeTy,
679                          SourceLocation IdLoc,
680                          SourceLocation LParenLoc,
681                          ExprTy **Args, unsigned NumArgs,
682                          SourceLocation *CommaLocs,
683                          SourceLocation RParenLoc) {
684  if (!ConstructorD)
685    return true;
686
687  CXXConstructorDecl *Constructor
688    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
689  if (!Constructor) {
690    // The user wrote a constructor initializer on a function that is
691    // not a C++ constructor. Ignore the error for now, because we may
692    // have more member initializers coming; we'll diagnose it just
693    // once in ActOnMemInitializers.
694    return true;
695  }
696
697  CXXRecordDecl *ClassDecl = Constructor->getParent();
698
699  // C++ [class.base.init]p2:
700  //   Names in a mem-initializer-id are looked up in the scope of the
701  //   constructor’s class and, if not found in that scope, are looked
702  //   up in the scope containing the constructor’s
703  //   definition. [Note: if the constructor’s class contains a member
704  //   with the same name as a direct or virtual base class of the
705  //   class, a mem-initializer-id naming the member or base class and
706  //   composed of a single identifier refers to the class member. A
707  //   mem-initializer-id for the hidden base class may be specified
708  //   using a qualified name. ]
709  if (!SS.getScopeRep() && !TemplateTypeTy) {
710    // Look for a member, first.
711    FieldDecl *Member = 0;
712    DeclContext::lookup_result Result
713      = ClassDecl->lookup(MemberOrBase);
714    if (Result.first != Result.second)
715      Member = dyn_cast<FieldDecl>(*Result.first);
716
717    // FIXME: Handle members of an anonymous union.
718
719    if (Member) {
720      CXXConstructorDecl *C = 0;
721      QualType FieldType = Member->getType();
722      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
723        FieldType = Array->getElementType();
724      if (!FieldType->isDependentType() && FieldType->getAsRecordType())
725        C = PerformInitializationByConstructor(
726              FieldType, (Expr **)Args, NumArgs, IdLoc,
727              SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
728      // FIXME: Perform direct initialization of the member.
729      return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
730                                                      NumArgs, C, IdLoc);
731    }
732  }
733  // It didn't name a member, so see if it names a class.
734  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
735                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
736  if (!BaseTy)
737    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
738      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
739
740  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
741  if (!BaseType->isRecordType() && !BaseType->isDependentType())
742    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
743      << BaseType << SourceRange(IdLoc, RParenLoc);
744
745  // C++ [class.base.init]p2:
746  //   [...] Unless the mem-initializer-id names a nonstatic data
747  //   member of the constructor’s class or a direct or virtual base
748  //   of that class, the mem-initializer is ill-formed. A
749  //   mem-initializer-list can initialize a base class using any
750  //   name that denotes that base class type.
751
752  // First, check for a direct base class.
753  const CXXBaseSpecifier *DirectBaseSpec = 0;
754  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
755       Base != ClassDecl->bases_end(); ++Base) {
756    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
757        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
758      // We found a direct base of this type. That's what we're
759      // initializing.
760      DirectBaseSpec = &*Base;
761      break;
762    }
763  }
764
765  // Check for a virtual base class.
766  // FIXME: We might be able to short-circuit this if we know in advance that
767  // there are no virtual bases.
768  const CXXBaseSpecifier *VirtualBaseSpec = 0;
769  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
770    // We haven't found a base yet; search the class hierarchy for a
771    // virtual base class.
772    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
773                    /*DetectVirtual=*/false);
774    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
775      for (BasePaths::paths_iterator Path = Paths.begin();
776           Path != Paths.end(); ++Path) {
777        if (Path->back().Base->isVirtual()) {
778          VirtualBaseSpec = Path->back().Base;
779          break;
780        }
781      }
782    }
783  }
784
785  // C++ [base.class.init]p2:
786  //   If a mem-initializer-id is ambiguous because it designates both
787  //   a direct non-virtual base class and an inherited virtual base
788  //   class, the mem-initializer is ill-formed.
789  if (DirectBaseSpec && VirtualBaseSpec)
790    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
791      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
792  // C++ [base.class.init]p2:
793  // Unless the mem-initializer-id names a nonstatic data membeer of the
794  // constructor's class ot a direst or virtual base of that class, the
795  // mem-initializer is ill-formed.
796  if (!DirectBaseSpec && !VirtualBaseSpec)
797    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
798    << BaseType << ClassDecl->getNameAsCString()
799    << SourceRange(IdLoc, RParenLoc);
800  DeclarationName Name
801    = Context.DeclarationNames.getCXXConstructorName(
802        Context.getCanonicalType(BaseType));
803  CXXConstructorDecl *C = 0;
804  if (!BaseType->isDependentType())
805    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs, IdLoc,
806                                       SourceRange(IdLoc, RParenLoc), Name,
807                                       IK_Direct);
808
809  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
810                                                  NumArgs, C, IdLoc);
811}
812
813static void *GetKeyForTopLevelField(FieldDecl *Field) {
814  // For anonymous unions, use the class declaration as the key.
815  if (const RecordType *RT = Field->getType()->getAsRecordType()) {
816    if (RT->getDecl()->isAnonymousStructOrUnion())
817      return static_cast<void *>(RT->getDecl());
818  }
819  return static_cast<void *>(Field);
820}
821
822static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
823  // For fields injected into the class via declaration of an anonymous union,
824  // use its anonymous union class declaration as the unique key.
825  if (FieldDecl *Field = Member->getMember()) {
826    if (Field->getDeclContext()->isRecord()) {
827      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
828      if (RD->isAnonymousStructOrUnion())
829        return static_cast<void *>(RD);
830    }
831    return static_cast<void *>(Field);
832  }
833  return static_cast<RecordType *>(Member->getBaseClass());
834}
835
836void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
837                                SourceLocation ColonLoc,
838                                MemInitTy **MemInits, unsigned NumMemInits) {
839  if (!ConstructorDecl)
840    return;
841
842  CXXConstructorDecl *Constructor
843    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
844
845  if (!Constructor) {
846    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
847    return;
848  }
849  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
850  bool err = false;
851  for (unsigned i = 0; i < NumMemInits; i++) {
852    CXXBaseOrMemberInitializer *Member =
853      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
854    void *KeyToMember = GetKeyForMember(Member);
855    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
856    if (!PrevMember) {
857      PrevMember = Member;
858      continue;
859    }
860    if (FieldDecl *Field = Member->getMember())
861      Diag(Member->getSourceLocation(),
862           diag::error_multiple_mem_initialization)
863      << Field->getNameAsString();
864    else {
865      Type *BaseClass = Member->getBaseClass();
866      assert(BaseClass && "ActOnMemInitializers - neither field or base");
867      Diag(Member->getSourceLocation(),
868           diag::error_multiple_base_initialization)
869        << BaseClass->getDesugaredType(true);
870    }
871    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
872      << 0;
873    err = true;
874  }
875  if (!err) {
876    Constructor->setBaseOrMemberInitializers(Context,
877                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
878                    NumMemInits);
879  }
880  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
881               != Diagnostic::Ignored ||
882               Diags.getDiagnosticLevel(diag::warn_field_initialized)
883               != Diagnostic::Ignored)) {
884    // Also issue warning if order of ctor-initializer list does not match order
885    // of 1) base class declarations and 2) order of non-static data members.
886    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
887
888    CXXRecordDecl *ClassDecl
889      = cast<CXXRecordDecl>(Constructor->getDeclContext());
890    // Push virtual bases before others.
891    for (CXXRecordDecl::base_class_iterator VBase =
892         ClassDecl->vbases_begin(),
893         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
894      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
895
896    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
897         E = ClassDecl->bases_end(); Base != E; ++Base) {
898      // Virtuals are alread in the virtual base list and are constructed
899      // first.
900      if (Base->isVirtual())
901        continue;
902      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
903    }
904
905    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
906         E = ClassDecl->field_end(); Field != E; ++Field)
907      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
908
909    int Last = AllBaseOrMembers.size();
910    int curIndex = 0;
911    CXXBaseOrMemberInitializer *PrevMember = 0;
912    for (unsigned i = 0; i < NumMemInits; i++) {
913      CXXBaseOrMemberInitializer *Member =
914        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
915      void *MemberInCtorList = GetKeyForMember(Member);
916
917      for (; curIndex < Last; curIndex++)
918        if (MemberInCtorList == AllBaseOrMembers[curIndex])
919          break;
920      if (curIndex == Last) {
921        assert(PrevMember && "Member not in member list?!");
922        // Initializer as specified in ctor-initializer list is out of order.
923        // Issue a warning diagnostic.
924        if (PrevMember->isBaseInitializer()) {
925          // Diagnostics is for an initialized base class.
926          Type *BaseClass = PrevMember->getBaseClass();
927          Diag(PrevMember->getSourceLocation(),
928               diag::warn_base_initialized)
929                << BaseClass->getDesugaredType(true);
930        }
931        else {
932          FieldDecl *Field = PrevMember->getMember();
933          Diag(PrevMember->getSourceLocation(),
934               diag::warn_field_initialized)
935            << Field->getNameAsString();
936        }
937        // Also the note!
938        if (FieldDecl *Field = Member->getMember())
939          Diag(Member->getSourceLocation(),
940               diag::note_fieldorbase_initialized_here) << 0
941            << Field->getNameAsString();
942        else {
943          Type *BaseClass = Member->getBaseClass();
944          Diag(Member->getSourceLocation(),
945               diag::note_fieldorbase_initialized_here) << 1
946            << BaseClass->getDesugaredType(true);
947        }
948        for (curIndex = 0; curIndex < Last; curIndex++)
949          if (MemberInCtorList == AllBaseOrMembers[curIndex])
950            break;
951      }
952      PrevMember = Member;
953    }
954  }
955}
956
957void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
958  if (!CDtorDecl)
959    return;
960
961  if (CXXConstructorDecl *Constructor
962      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
963    Constructor->setBaseOrMemberInitializers(Context,
964                                           (CXXBaseOrMemberInitializer **)0, 0);
965}
966
967namespace {
968  /// PureVirtualMethodCollector - traverses a class and its superclasses
969  /// and determines if it has any pure virtual methods.
970  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
971    ASTContext &Context;
972
973  public:
974    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
975
976  private:
977    MethodList Methods;
978
979    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
980
981  public:
982    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
983      : Context(Ctx) {
984
985      MethodList List;
986      Collect(RD, List);
987
988      // Copy the temporary list to methods, and make sure to ignore any
989      // null entries.
990      for (size_t i = 0, e = List.size(); i != e; ++i) {
991        if (List[i])
992          Methods.push_back(List[i]);
993      }
994    }
995
996    bool empty() const { return Methods.empty(); }
997
998    MethodList::const_iterator methods_begin() { return Methods.begin(); }
999    MethodList::const_iterator methods_end() { return Methods.end(); }
1000  };
1001
1002  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1003                                           MethodList& Methods) {
1004    // First, collect the pure virtual methods for the base classes.
1005    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1006         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1007      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
1008        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1009        if (BaseDecl && BaseDecl->isAbstract())
1010          Collect(BaseDecl, Methods);
1011      }
1012    }
1013
1014    // Next, zero out any pure virtual methods that this class overrides.
1015    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1016
1017    MethodSetTy OverriddenMethods;
1018    size_t MethodsSize = Methods.size();
1019
1020    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1021         i != e; ++i) {
1022      // Traverse the record, looking for methods.
1023      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1024        // If the method is pure virtual, add it to the methods vector.
1025        if (MD->isPure()) {
1026          Methods.push_back(MD);
1027          continue;
1028        }
1029
1030        // Otherwise, record all the overridden methods in our set.
1031        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1032             E = MD->end_overridden_methods(); I != E; ++I) {
1033          // Keep track of the overridden methods.
1034          OverriddenMethods.insert(*I);
1035        }
1036      }
1037    }
1038
1039    // Now go through the methods and zero out all the ones we know are
1040    // overridden.
1041    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1042      if (OverriddenMethods.count(Methods[i]))
1043        Methods[i] = 0;
1044    }
1045
1046  }
1047}
1048
1049bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1050                                  unsigned DiagID, AbstractDiagSelID SelID,
1051                                  const CXXRecordDecl *CurrentRD) {
1052
1053  if (!getLangOptions().CPlusPlus)
1054    return false;
1055
1056  if (const ArrayType *AT = Context.getAsArrayType(T))
1057    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1058                                  CurrentRD);
1059
1060  if (const PointerType *PT = T->getAsPointerType()) {
1061    // Find the innermost pointer type.
1062    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1063      PT = T;
1064
1065    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1066      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1067                                    CurrentRD);
1068  }
1069
1070  const RecordType *RT = T->getAsRecordType();
1071  if (!RT)
1072    return false;
1073
1074  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1075  if (!RD)
1076    return false;
1077
1078  if (CurrentRD && CurrentRD != RD)
1079    return false;
1080
1081  if (!RD->isAbstract())
1082    return false;
1083
1084  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1085
1086  // Check if we've already emitted the list of pure virtual functions for this
1087  // class.
1088  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1089    return true;
1090
1091  PureVirtualMethodCollector Collector(Context, RD);
1092
1093  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1094       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1095    const CXXMethodDecl *MD = *I;
1096
1097    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1098      MD->getDeclName();
1099  }
1100
1101  if (!PureVirtualClassDiagSet)
1102    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1103  PureVirtualClassDiagSet->insert(RD);
1104
1105  return true;
1106}
1107
1108namespace {
1109  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1110    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1111    Sema &SemaRef;
1112    CXXRecordDecl *AbstractClass;
1113
1114    bool VisitDeclContext(const DeclContext *DC) {
1115      bool Invalid = false;
1116
1117      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1118           E = DC->decls_end(); I != E; ++I)
1119        Invalid |= Visit(*I);
1120
1121      return Invalid;
1122    }
1123
1124  public:
1125    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1126      : SemaRef(SemaRef), AbstractClass(ac) {
1127        Visit(SemaRef.Context.getTranslationUnitDecl());
1128    }
1129
1130    bool VisitFunctionDecl(const FunctionDecl *FD) {
1131      if (FD->isThisDeclarationADefinition()) {
1132        // No need to do the check if we're in a definition, because it requires
1133        // that the return/param types are complete.
1134        // because that requires
1135        return VisitDeclContext(FD);
1136      }
1137
1138      // Check the return type.
1139      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1140      bool Invalid =
1141        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1142                                       diag::err_abstract_type_in_decl,
1143                                       Sema::AbstractReturnType,
1144                                       AbstractClass);
1145
1146      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1147           E = FD->param_end(); I != E; ++I) {
1148        const ParmVarDecl *VD = *I;
1149        Invalid |=
1150          SemaRef.RequireNonAbstractType(VD->getLocation(),
1151                                         VD->getOriginalType(),
1152                                         diag::err_abstract_type_in_decl,
1153                                         Sema::AbstractParamType,
1154                                         AbstractClass);
1155      }
1156
1157      return Invalid;
1158    }
1159
1160    bool VisitDecl(const Decl* D) {
1161      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1162        return VisitDeclContext(DC);
1163
1164      return false;
1165    }
1166  };
1167}
1168
1169void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1170                                             DeclPtrTy TagDecl,
1171                                             SourceLocation LBrac,
1172                                             SourceLocation RBrac) {
1173  if (!TagDecl)
1174    return;
1175
1176  AdjustDeclIfTemplate(TagDecl);
1177  ActOnFields(S, RLoc, TagDecl,
1178              (DeclPtrTy*)FieldCollector->getCurFields(),
1179              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1180
1181  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1182  if (!RD->isAbstract()) {
1183    // Collect all the pure virtual methods and see if this is an abstract
1184    // class after all.
1185    PureVirtualMethodCollector Collector(Context, RD);
1186    if (!Collector.empty())
1187      RD->setAbstract(true);
1188  }
1189
1190  if (RD->isAbstract())
1191    AbstractClassUsageDiagnoser(*this, RD);
1192
1193  if (!RD->isDependentType())
1194    AddImplicitlyDeclaredMembersToClass(RD);
1195}
1196
1197/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1198/// special functions, such as the default constructor, copy
1199/// constructor, or destructor, to the given C++ class (C++
1200/// [special]p1).  This routine can only be executed just before the
1201/// definition of the class is complete.
1202void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1203  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1204  ClassType = Context.getCanonicalType(ClassType);
1205
1206  // FIXME: Implicit declarations have exception specifications, which are
1207  // the union of the specifications of the implicitly called functions.
1208
1209  if (!ClassDecl->hasUserDeclaredConstructor()) {
1210    // C++ [class.ctor]p5:
1211    //   A default constructor for a class X is a constructor of class X
1212    //   that can be called without an argument. If there is no
1213    //   user-declared constructor for class X, a default constructor is
1214    //   implicitly declared. An implicitly-declared default constructor
1215    //   is an inline public member of its class.
1216    DeclarationName Name
1217      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1218    CXXConstructorDecl *DefaultCon =
1219      CXXConstructorDecl::Create(Context, ClassDecl,
1220                                 ClassDecl->getLocation(), Name,
1221                                 Context.getFunctionType(Context.VoidTy,
1222                                                         0, 0, false, 0),
1223                                 /*isExplicit=*/false,
1224                                 /*isInline=*/true,
1225                                 /*isImplicitlyDeclared=*/true);
1226    DefaultCon->setAccess(AS_public);
1227    DefaultCon->setImplicit();
1228    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1229    ClassDecl->addDecl(DefaultCon);
1230  }
1231
1232  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1233    // C++ [class.copy]p4:
1234    //   If the class definition does not explicitly declare a copy
1235    //   constructor, one is declared implicitly.
1236
1237    // C++ [class.copy]p5:
1238    //   The implicitly-declared copy constructor for a class X will
1239    //   have the form
1240    //
1241    //       X::X(const X&)
1242    //
1243    //   if
1244    bool HasConstCopyConstructor = true;
1245
1246    //     -- each direct or virtual base class B of X has a copy
1247    //        constructor whose first parameter is of type const B& or
1248    //        const volatile B&, and
1249    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1250         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1251      const CXXRecordDecl *BaseClassDecl
1252        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1253      HasConstCopyConstructor
1254        = BaseClassDecl->hasConstCopyConstructor(Context);
1255    }
1256
1257    //     -- for all the nonstatic data members of X that are of a
1258    //        class type M (or array thereof), each such class type
1259    //        has a copy constructor whose first parameter is of type
1260    //        const M& or const volatile M&.
1261    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1262         HasConstCopyConstructor && Field != ClassDecl->field_end();
1263         ++Field) {
1264      QualType FieldType = (*Field)->getType();
1265      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1266        FieldType = Array->getElementType();
1267      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1268        const CXXRecordDecl *FieldClassDecl
1269          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1270        HasConstCopyConstructor
1271          = FieldClassDecl->hasConstCopyConstructor(Context);
1272      }
1273    }
1274
1275    //   Otherwise, the implicitly declared copy constructor will have
1276    //   the form
1277    //
1278    //       X::X(X&)
1279    QualType ArgType = ClassType;
1280    if (HasConstCopyConstructor)
1281      ArgType = ArgType.withConst();
1282    ArgType = Context.getLValueReferenceType(ArgType);
1283
1284    //   An implicitly-declared copy constructor is an inline public
1285    //   member of its class.
1286    DeclarationName Name
1287      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1288    CXXConstructorDecl *CopyConstructor
1289      = CXXConstructorDecl::Create(Context, ClassDecl,
1290                                   ClassDecl->getLocation(), Name,
1291                                   Context.getFunctionType(Context.VoidTy,
1292                                                           &ArgType, 1,
1293                                                           false, 0),
1294                                   /*isExplicit=*/false,
1295                                   /*isInline=*/true,
1296                                   /*isImplicitlyDeclared=*/true);
1297    CopyConstructor->setAccess(AS_public);
1298    CopyConstructor->setImplicit();
1299    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1300
1301    // Add the parameter to the constructor.
1302    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1303                                                 ClassDecl->getLocation(),
1304                                                 /*IdentifierInfo=*/0,
1305                                                 ArgType, VarDecl::None, 0);
1306    CopyConstructor->setParams(Context, &FromParam, 1);
1307    ClassDecl->addDecl(CopyConstructor);
1308  }
1309
1310  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1311    // Note: The following rules are largely analoguous to the copy
1312    // constructor rules. Note that virtual bases are not taken into account
1313    // for determining the argument type of the operator. Note also that
1314    // operators taking an object instead of a reference are allowed.
1315    //
1316    // C++ [class.copy]p10:
1317    //   If the class definition does not explicitly declare a copy
1318    //   assignment operator, one is declared implicitly.
1319    //   The implicitly-defined copy assignment operator for a class X
1320    //   will have the form
1321    //
1322    //       X& X::operator=(const X&)
1323    //
1324    //   if
1325    bool HasConstCopyAssignment = true;
1326
1327    //       -- each direct base class B of X has a copy assignment operator
1328    //          whose parameter is of type const B&, const volatile B& or B,
1329    //          and
1330    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1331         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1332      const CXXRecordDecl *BaseClassDecl
1333        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1334      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1335    }
1336
1337    //       -- for all the nonstatic data members of X that are of a class
1338    //          type M (or array thereof), each such class type has a copy
1339    //          assignment operator whose parameter is of type const M&,
1340    //          const volatile M& or M.
1341    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1342         HasConstCopyAssignment && Field != ClassDecl->field_end();
1343         ++Field) {
1344      QualType FieldType = (*Field)->getType();
1345      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1346        FieldType = Array->getElementType();
1347      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1348        const CXXRecordDecl *FieldClassDecl
1349          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1350        HasConstCopyAssignment
1351          = FieldClassDecl->hasConstCopyAssignment(Context);
1352      }
1353    }
1354
1355    //   Otherwise, the implicitly declared copy assignment operator will
1356    //   have the form
1357    //
1358    //       X& X::operator=(X&)
1359    QualType ArgType = ClassType;
1360    QualType RetType = Context.getLValueReferenceType(ArgType);
1361    if (HasConstCopyAssignment)
1362      ArgType = ArgType.withConst();
1363    ArgType = Context.getLValueReferenceType(ArgType);
1364
1365    //   An implicitly-declared copy assignment operator is an inline public
1366    //   member of its class.
1367    DeclarationName Name =
1368      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1369    CXXMethodDecl *CopyAssignment =
1370      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1371                            Context.getFunctionType(RetType, &ArgType, 1,
1372                                                    false, 0),
1373                            /*isStatic=*/false, /*isInline=*/true);
1374    CopyAssignment->setAccess(AS_public);
1375    CopyAssignment->setImplicit();
1376    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1377
1378    // Add the parameter to the operator.
1379    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1380                                                 ClassDecl->getLocation(),
1381                                                 /*IdentifierInfo=*/0,
1382                                                 ArgType, VarDecl::None, 0);
1383    CopyAssignment->setParams(Context, &FromParam, 1);
1384
1385    // Don't call addedAssignmentOperator. There is no way to distinguish an
1386    // implicit from an explicit assignment operator.
1387    ClassDecl->addDecl(CopyAssignment);
1388  }
1389
1390  if (!ClassDecl->hasUserDeclaredDestructor()) {
1391    // C++ [class.dtor]p2:
1392    //   If a class has no user-declared destructor, a destructor is
1393    //   declared implicitly. An implicitly-declared destructor is an
1394    //   inline public member of its class.
1395    DeclarationName Name
1396      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1397    CXXDestructorDecl *Destructor
1398      = CXXDestructorDecl::Create(Context, ClassDecl,
1399                                  ClassDecl->getLocation(), Name,
1400                                  Context.getFunctionType(Context.VoidTy,
1401                                                          0, 0, false, 0),
1402                                  /*isInline=*/true,
1403                                  /*isImplicitlyDeclared=*/true);
1404    Destructor->setAccess(AS_public);
1405    Destructor->setImplicit();
1406    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1407    ClassDecl->addDecl(Destructor);
1408  }
1409}
1410
1411void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1412  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1413  if (!Template)
1414    return;
1415
1416  TemplateParameterList *Params = Template->getTemplateParameters();
1417  for (TemplateParameterList::iterator Param = Params->begin(),
1418                                    ParamEnd = Params->end();
1419       Param != ParamEnd; ++Param) {
1420    NamedDecl *Named = cast<NamedDecl>(*Param);
1421    if (Named->getDeclName()) {
1422      S->AddDecl(DeclPtrTy::make(Named));
1423      IdResolver.AddDecl(Named);
1424    }
1425  }
1426}
1427
1428/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1429/// parsing a top-level (non-nested) C++ class, and we are now
1430/// parsing those parts of the given Method declaration that could
1431/// not be parsed earlier (C++ [class.mem]p2), such as default
1432/// arguments. This action should enter the scope of the given
1433/// Method declaration as if we had just parsed the qualified method
1434/// name. However, it should not bring the parameters into scope;
1435/// that will be performed by ActOnDelayedCXXMethodParameter.
1436void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1437  if (!MethodD)
1438    return;
1439
1440  CXXScopeSpec SS;
1441  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1442  QualType ClassTy
1443    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1444  SS.setScopeRep(
1445    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1446  ActOnCXXEnterDeclaratorScope(S, SS);
1447}
1448
1449/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1450/// C++ method declaration. We're (re-)introducing the given
1451/// function parameter into scope for use in parsing later parts of
1452/// the method declaration. For example, we could see an
1453/// ActOnParamDefaultArgument event for this parameter.
1454void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1455  if (!ParamD)
1456    return;
1457
1458  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1459
1460  // If this parameter has an unparsed default argument, clear it out
1461  // to make way for the parsed default argument.
1462  if (Param->hasUnparsedDefaultArg())
1463    Param->setDefaultArg(0);
1464
1465  S->AddDecl(DeclPtrTy::make(Param));
1466  if (Param->getDeclName())
1467    IdResolver.AddDecl(Param);
1468}
1469
1470/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1471/// processing the delayed method declaration for Method. The method
1472/// declaration is now considered finished. There may be a separate
1473/// ActOnStartOfFunctionDef action later (not necessarily
1474/// immediately!) for this method, if it was also defined inside the
1475/// class body.
1476void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1477  if (!MethodD)
1478    return;
1479
1480  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1481  CXXScopeSpec SS;
1482  QualType ClassTy
1483    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1484  SS.setScopeRep(
1485    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1486  ActOnCXXExitDeclaratorScope(S, SS);
1487
1488  // Now that we have our default arguments, check the constructor
1489  // again. It could produce additional diagnostics or affect whether
1490  // the class has implicitly-declared destructors, among other
1491  // things.
1492  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1493    CheckConstructor(Constructor);
1494
1495  // Check the default arguments, which we may have added.
1496  if (!Method->isInvalidDecl())
1497    CheckCXXDefaultArguments(Method);
1498}
1499
1500/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1501/// the well-formedness of the constructor declarator @p D with type @p
1502/// R. If there are any errors in the declarator, this routine will
1503/// emit diagnostics and set the invalid bit to true.  In any case, the type
1504/// will be updated to reflect a well-formed type for the constructor and
1505/// returned.
1506QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1507                                          FunctionDecl::StorageClass &SC) {
1508  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1509
1510  // C++ [class.ctor]p3:
1511  //   A constructor shall not be virtual (10.3) or static (9.4). A
1512  //   constructor can be invoked for a const, volatile or const
1513  //   volatile object. A constructor shall not be declared const,
1514  //   volatile, or const volatile (9.3.2).
1515  if (isVirtual) {
1516    if (!D.isInvalidType())
1517      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1518        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1519        << SourceRange(D.getIdentifierLoc());
1520    D.setInvalidType();
1521  }
1522  if (SC == FunctionDecl::Static) {
1523    if (!D.isInvalidType())
1524      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1525        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1526        << SourceRange(D.getIdentifierLoc());
1527    D.setInvalidType();
1528    SC = FunctionDecl::None;
1529  }
1530
1531  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1532  if (FTI.TypeQuals != 0) {
1533    if (FTI.TypeQuals & QualType::Const)
1534      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1535        << "const" << SourceRange(D.getIdentifierLoc());
1536    if (FTI.TypeQuals & QualType::Volatile)
1537      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1538        << "volatile" << SourceRange(D.getIdentifierLoc());
1539    if (FTI.TypeQuals & QualType::Restrict)
1540      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1541        << "restrict" << SourceRange(D.getIdentifierLoc());
1542  }
1543
1544  // Rebuild the function type "R" without any type qualifiers (in
1545  // case any of the errors above fired) and with "void" as the
1546  // return type, since constructors don't have return types. We
1547  // *always* have to do this, because GetTypeForDeclarator will
1548  // put in a result type of "int" when none was specified.
1549  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1550  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1551                                 Proto->getNumArgs(),
1552                                 Proto->isVariadic(), 0);
1553}
1554
1555/// CheckConstructor - Checks a fully-formed constructor for
1556/// well-formedness, issuing any diagnostics required. Returns true if
1557/// the constructor declarator is invalid.
1558void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1559  CXXRecordDecl *ClassDecl
1560    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1561  if (!ClassDecl)
1562    return Constructor->setInvalidDecl();
1563
1564  // C++ [class.copy]p3:
1565  //   A declaration of a constructor for a class X is ill-formed if
1566  //   its first parameter is of type (optionally cv-qualified) X and
1567  //   either there are no other parameters or else all other
1568  //   parameters have default arguments.
1569  if (!Constructor->isInvalidDecl() &&
1570      ((Constructor->getNumParams() == 1) ||
1571       (Constructor->getNumParams() > 1 &&
1572        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1573    QualType ParamType = Constructor->getParamDecl(0)->getType();
1574    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1575    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1576      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1577      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1578        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1579      Constructor->setInvalidDecl();
1580    }
1581  }
1582
1583  // Notify the class that we've added a constructor.
1584  ClassDecl->addedConstructor(Context, Constructor);
1585}
1586
1587static inline bool
1588FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1589  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1590          FTI.ArgInfo[0].Param &&
1591          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1592}
1593
1594/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1595/// the well-formednes of the destructor declarator @p D with type @p
1596/// R. If there are any errors in the declarator, this routine will
1597/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1598/// will be updated to reflect a well-formed type for the destructor and
1599/// returned.
1600QualType Sema::CheckDestructorDeclarator(Declarator &D,
1601                                         FunctionDecl::StorageClass& SC) {
1602  // C++ [class.dtor]p1:
1603  //   [...] A typedef-name that names a class is a class-name
1604  //   (7.1.3); however, a typedef-name that names a class shall not
1605  //   be used as the identifier in the declarator for a destructor
1606  //   declaration.
1607  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1608  if (isa<TypedefType>(DeclaratorType)) {
1609    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1610      << DeclaratorType;
1611    D.setInvalidType();
1612  }
1613
1614  // C++ [class.dtor]p2:
1615  //   A destructor is used to destroy objects of its class type. A
1616  //   destructor takes no parameters, and no return type can be
1617  //   specified for it (not even void). The address of a destructor
1618  //   shall not be taken. A destructor shall not be static. A
1619  //   destructor can be invoked for a const, volatile or const
1620  //   volatile object. A destructor shall not be declared const,
1621  //   volatile or const volatile (9.3.2).
1622  if (SC == FunctionDecl::Static) {
1623    if (!D.isInvalidType())
1624      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1625        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1626        << SourceRange(D.getIdentifierLoc());
1627    SC = FunctionDecl::None;
1628    D.setInvalidType();
1629  }
1630  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1631    // Destructors don't have return types, but the parser will
1632    // happily parse something like:
1633    //
1634    //   class X {
1635    //     float ~X();
1636    //   };
1637    //
1638    // The return type will be eliminated later.
1639    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1640      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1641      << SourceRange(D.getIdentifierLoc());
1642  }
1643
1644  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1645  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1646    if (FTI.TypeQuals & QualType::Const)
1647      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1648        << "const" << SourceRange(D.getIdentifierLoc());
1649    if (FTI.TypeQuals & QualType::Volatile)
1650      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1651        << "volatile" << SourceRange(D.getIdentifierLoc());
1652    if (FTI.TypeQuals & QualType::Restrict)
1653      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1654        << "restrict" << SourceRange(D.getIdentifierLoc());
1655    D.setInvalidType();
1656  }
1657
1658  // Make sure we don't have any parameters.
1659  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1660    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1661
1662    // Delete the parameters.
1663    FTI.freeArgs();
1664    D.setInvalidType();
1665  }
1666
1667  // Make sure the destructor isn't variadic.
1668  if (FTI.isVariadic) {
1669    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1670    D.setInvalidType();
1671  }
1672
1673  // Rebuild the function type "R" without any type qualifiers or
1674  // parameters (in case any of the errors above fired) and with
1675  // "void" as the return type, since destructors don't have return
1676  // types. We *always* have to do this, because GetTypeForDeclarator
1677  // will put in a result type of "int" when none was specified.
1678  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1679}
1680
1681/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1682/// well-formednes of the conversion function declarator @p D with
1683/// type @p R. If there are any errors in the declarator, this routine
1684/// will emit diagnostics and return true. Otherwise, it will return
1685/// false. Either way, the type @p R will be updated to reflect a
1686/// well-formed type for the conversion operator.
1687void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1688                                     FunctionDecl::StorageClass& SC) {
1689  // C++ [class.conv.fct]p1:
1690  //   Neither parameter types nor return type can be specified. The
1691  //   type of a conversion function (8.3.5) is “function taking no
1692  //   parameter returning conversion-type-id.”
1693  if (SC == FunctionDecl::Static) {
1694    if (!D.isInvalidType())
1695      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1696        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1697        << SourceRange(D.getIdentifierLoc());
1698    D.setInvalidType();
1699    SC = FunctionDecl::None;
1700  }
1701  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1702    // Conversion functions don't have return types, but the parser will
1703    // happily parse something like:
1704    //
1705    //   class X {
1706    //     float operator bool();
1707    //   };
1708    //
1709    // The return type will be changed later anyway.
1710    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1711      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1712      << SourceRange(D.getIdentifierLoc());
1713  }
1714
1715  // Make sure we don't have any parameters.
1716  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1717    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1718
1719    // Delete the parameters.
1720    D.getTypeObject(0).Fun.freeArgs();
1721    D.setInvalidType();
1722  }
1723
1724  // Make sure the conversion function isn't variadic.
1725  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1726    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1727    D.setInvalidType();
1728  }
1729
1730  // C++ [class.conv.fct]p4:
1731  //   The conversion-type-id shall not represent a function type nor
1732  //   an array type.
1733  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1734  if (ConvType->isArrayType()) {
1735    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1736    ConvType = Context.getPointerType(ConvType);
1737    D.setInvalidType();
1738  } else if (ConvType->isFunctionType()) {
1739    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1740    ConvType = Context.getPointerType(ConvType);
1741    D.setInvalidType();
1742  }
1743
1744  // Rebuild the function type "R" without any parameters (in case any
1745  // of the errors above fired) and with the conversion type as the
1746  // return type.
1747  R = Context.getFunctionType(ConvType, 0, 0, false,
1748                              R->getAsFunctionProtoType()->getTypeQuals());
1749
1750  // C++0x explicit conversion operators.
1751  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1752    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1753         diag::warn_explicit_conversion_functions)
1754      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1755}
1756
1757/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1758/// the declaration of the given C++ conversion function. This routine
1759/// is responsible for recording the conversion function in the C++
1760/// class, if possible.
1761Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1762  assert(Conversion && "Expected to receive a conversion function declaration");
1763
1764  // Set the lexical context of this conversion function
1765  Conversion->setLexicalDeclContext(CurContext);
1766
1767  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1768
1769  // Make sure we aren't redeclaring the conversion function.
1770  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1771
1772  // C++ [class.conv.fct]p1:
1773  //   [...] A conversion function is never used to convert a
1774  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1775  //   same object type (or a reference to it), to a (possibly
1776  //   cv-qualified) base class of that type (or a reference to it),
1777  //   or to (possibly cv-qualified) void.
1778  // FIXME: Suppress this warning if the conversion function ends up being a
1779  // virtual function that overrides a virtual function in a base class.
1780  QualType ClassType
1781    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1782  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1783    ConvType = ConvTypeRef->getPointeeType();
1784  if (ConvType->isRecordType()) {
1785    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1786    if (ConvType == ClassType)
1787      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1788        << ClassType;
1789    else if (IsDerivedFrom(ClassType, ConvType))
1790      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1791        <<  ClassType << ConvType;
1792  } else if (ConvType->isVoidType()) {
1793    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1794      << ClassType << ConvType;
1795  }
1796
1797  if (Conversion->getPreviousDeclaration()) {
1798    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1799    for (OverloadedFunctionDecl::function_iterator
1800           Conv = Conversions->function_begin(),
1801           ConvEnd = Conversions->function_end();
1802         Conv != ConvEnd; ++Conv) {
1803      if (*Conv
1804            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1805        *Conv = Conversion;
1806        return DeclPtrTy::make(Conversion);
1807      }
1808    }
1809    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1810  } else
1811    ClassDecl->addConversionFunction(Context, Conversion);
1812
1813  return DeclPtrTy::make(Conversion);
1814}
1815
1816//===----------------------------------------------------------------------===//
1817// Namespace Handling
1818//===----------------------------------------------------------------------===//
1819
1820/// ActOnStartNamespaceDef - This is called at the start of a namespace
1821/// definition.
1822Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1823                                             SourceLocation IdentLoc,
1824                                             IdentifierInfo *II,
1825                                             SourceLocation LBrace) {
1826  NamespaceDecl *Namespc =
1827      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1828  Namespc->setLBracLoc(LBrace);
1829
1830  Scope *DeclRegionScope = NamespcScope->getParent();
1831
1832  if (II) {
1833    // C++ [namespace.def]p2:
1834    // The identifier in an original-namespace-definition shall not have been
1835    // previously defined in the declarative region in which the
1836    // original-namespace-definition appears. The identifier in an
1837    // original-namespace-definition is the name of the namespace. Subsequently
1838    // in that declarative region, it is treated as an original-namespace-name.
1839
1840    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1841                                     true);
1842
1843    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1844      // This is an extended namespace definition.
1845      // Attach this namespace decl to the chain of extended namespace
1846      // definitions.
1847      OrigNS->setNextNamespace(Namespc);
1848      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1849
1850      // Remove the previous declaration from the scope.
1851      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1852        IdResolver.RemoveDecl(OrigNS);
1853        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1854      }
1855    } else if (PrevDecl) {
1856      // This is an invalid name redefinition.
1857      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1858       << Namespc->getDeclName();
1859      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1860      Namespc->setInvalidDecl();
1861      // Continue on to push Namespc as current DeclContext and return it.
1862    }
1863
1864    PushOnScopeChains(Namespc, DeclRegionScope);
1865  } else {
1866    // FIXME: Handle anonymous namespaces
1867  }
1868
1869  // Although we could have an invalid decl (i.e. the namespace name is a
1870  // redefinition), push it as current DeclContext and try to continue parsing.
1871  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1872  // for the namespace has the declarations that showed up in that particular
1873  // namespace definition.
1874  PushDeclContext(NamespcScope, Namespc);
1875  return DeclPtrTy::make(Namespc);
1876}
1877
1878/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1879/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1880void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1881  Decl *Dcl = D.getAs<Decl>();
1882  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1883  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1884  Namespc->setRBracLoc(RBrace);
1885  PopDeclContext();
1886}
1887
1888Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1889                                          SourceLocation UsingLoc,
1890                                          SourceLocation NamespcLoc,
1891                                          const CXXScopeSpec &SS,
1892                                          SourceLocation IdentLoc,
1893                                          IdentifierInfo *NamespcName,
1894                                          AttributeList *AttrList) {
1895  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1896  assert(NamespcName && "Invalid NamespcName.");
1897  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1898  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1899
1900  UsingDirectiveDecl *UDir = 0;
1901
1902  // Lookup namespace name.
1903  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1904                                    LookupNamespaceName, false);
1905  if (R.isAmbiguous()) {
1906    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1907    return DeclPtrTy();
1908  }
1909  if (NamedDecl *NS = R) {
1910    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1911    // C++ [namespace.udir]p1:
1912    //   A using-directive specifies that the names in the nominated
1913    //   namespace can be used in the scope in which the
1914    //   using-directive appears after the using-directive. During
1915    //   unqualified name lookup (3.4.1), the names appear as if they
1916    //   were declared in the nearest enclosing namespace which
1917    //   contains both the using-directive and the nominated
1918    //   namespace. [Note: in this context, “contains” means “contains
1919    //   directly or indirectly”. ]
1920
1921    // Find enclosing context containing both using-directive and
1922    // nominated namespace.
1923    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1924    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1925      CommonAncestor = CommonAncestor->getParent();
1926
1927    UDir = UsingDirectiveDecl::Create(Context,
1928                                      CurContext, UsingLoc,
1929                                      NamespcLoc,
1930                                      SS.getRange(),
1931                                      (NestedNameSpecifier *)SS.getScopeRep(),
1932                                      IdentLoc,
1933                                      cast<NamespaceDecl>(NS),
1934                                      CommonAncestor);
1935    PushUsingDirective(S, UDir);
1936  } else {
1937    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1938  }
1939
1940  // FIXME: We ignore attributes for now.
1941  delete AttrList;
1942  return DeclPtrTy::make(UDir);
1943}
1944
1945void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1946  // If scope has associated entity, then using directive is at namespace
1947  // or translation unit scope. We add UsingDirectiveDecls, into
1948  // it's lookup structure.
1949  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1950    Ctx->addDecl(UDir);
1951  else
1952    // Otherwise it is block-sope. using-directives will affect lookup
1953    // only to the end of scope.
1954    S->PushUsingDirective(DeclPtrTy::make(UDir));
1955}
1956
1957
1958Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1959                                          SourceLocation UsingLoc,
1960                                          const CXXScopeSpec &SS,
1961                                          SourceLocation IdentLoc,
1962                                          IdentifierInfo *TargetName,
1963                                          OverloadedOperatorKind Op,
1964                                          AttributeList *AttrList,
1965                                          bool IsTypeName) {
1966  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1967  assert((TargetName || Op) && "Invalid TargetName.");
1968  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1969  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1970
1971  UsingDecl *UsingAlias = 0;
1972
1973  DeclarationName Name;
1974  if (TargetName)
1975    Name = TargetName;
1976  else
1977    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1978
1979  // Lookup target name.
1980  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1981
1982  if (NamedDecl *NS = R) {
1983    if (IsTypeName && !isa<TypeDecl>(NS)) {
1984      Diag(IdentLoc, diag::err_using_typename_non_type);
1985    }
1986    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1987        NS->getLocation(), UsingLoc, NS,
1988        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1989        IsTypeName);
1990    PushOnScopeChains(UsingAlias, S);
1991  } else {
1992    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1993  }
1994
1995  // FIXME: We ignore attributes for now.
1996  delete AttrList;
1997  return DeclPtrTy::make(UsingAlias);
1998}
1999
2000/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2001/// is a namespace alias, returns the namespace it points to.
2002static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2003  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2004    return AD->getNamespace();
2005  return dyn_cast_or_null<NamespaceDecl>(D);
2006}
2007
2008Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2009                                             SourceLocation NamespaceLoc,
2010                                             SourceLocation AliasLoc,
2011                                             IdentifierInfo *Alias,
2012                                             const CXXScopeSpec &SS,
2013                                             SourceLocation IdentLoc,
2014                                             IdentifierInfo *Ident) {
2015
2016  // Lookup the namespace name.
2017  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2018
2019  // Check if we have a previous declaration with the same name.
2020  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2021    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2022      // We already have an alias with the same name that points to the same
2023      // namespace, so don't create a new one.
2024      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2025        return DeclPtrTy();
2026    }
2027
2028    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2029      diag::err_redefinition_different_kind;
2030    Diag(AliasLoc, DiagID) << Alias;
2031    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2032    return DeclPtrTy();
2033  }
2034
2035  if (R.isAmbiguous()) {
2036    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2037    return DeclPtrTy();
2038  }
2039
2040  if (!R) {
2041    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2042    return DeclPtrTy();
2043  }
2044
2045  NamespaceAliasDecl *AliasDecl =
2046    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2047                               Alias, SS.getRange(),
2048                               (NestedNameSpecifier *)SS.getScopeRep(),
2049                               IdentLoc, R);
2050
2051  CurContext->addDecl(AliasDecl);
2052  return DeclPtrTy::make(AliasDecl);
2053}
2054
2055void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2056                                            CXXConstructorDecl *Constructor) {
2057  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2058          !Constructor->isUsed()) &&
2059    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2060
2061  CXXRecordDecl *ClassDecl
2062    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2063  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2064  // Before the implicitly-declared default constructor for a class is
2065  // implicitly defined, all the implicitly-declared default constructors
2066  // for its base class and its non-static data members shall have been
2067  // implicitly defined.
2068  bool err = false;
2069  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2070       E = ClassDecl->bases_end(); Base != E; ++Base) {
2071    CXXRecordDecl *BaseClassDecl
2072      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2073    if (!BaseClassDecl->hasTrivialConstructor()) {
2074      if (CXXConstructorDecl *BaseCtor =
2075            BaseClassDecl->getDefaultConstructor(Context))
2076        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2077      else {
2078        Diag(CurrentLocation, diag::err_defining_default_ctor)
2079          << Context.getTagDeclType(ClassDecl) << 1
2080          << Context.getTagDeclType(BaseClassDecl);
2081        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2082              << Context.getTagDeclType(BaseClassDecl);
2083        err = true;
2084      }
2085    }
2086  }
2087  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2088       E = ClassDecl->field_end(); Field != E; ++Field) {
2089    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2090    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2091      FieldType = Array->getElementType();
2092    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2093      CXXRecordDecl *FieldClassDecl
2094        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2095      if (!FieldClassDecl->hasTrivialConstructor()) {
2096        if (CXXConstructorDecl *FieldCtor =
2097            FieldClassDecl->getDefaultConstructor(Context))
2098          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2099        else {
2100          Diag(CurrentLocation, diag::err_defining_default_ctor)
2101          << Context.getTagDeclType(ClassDecl) << 0 <<
2102              Context.getTagDeclType(FieldClassDecl);
2103          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2104          << Context.getTagDeclType(FieldClassDecl);
2105          err = true;
2106        }
2107      }
2108    }
2109    else if (FieldType->isReferenceType()) {
2110      Diag(CurrentLocation, diag::err_unintialized_member)
2111        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2112      Diag((*Field)->getLocation(), diag::note_declared_at);
2113      err = true;
2114    }
2115    else if (FieldType.isConstQualified()) {
2116      Diag(CurrentLocation, diag::err_unintialized_member)
2117        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2118       Diag((*Field)->getLocation(), diag::note_declared_at);
2119      err = true;
2120    }
2121  }
2122  if (!err)
2123    Constructor->setUsed();
2124  else
2125    Constructor->setInvalidDecl();
2126}
2127
2128void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2129                                            CXXDestructorDecl *Destructor) {
2130  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2131         "DefineImplicitDestructor - call it for implicit default dtor");
2132
2133  CXXRecordDecl *ClassDecl
2134  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2135  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2136  // C++ [class.dtor] p5
2137  // Before the implicitly-declared default destructor for a class is
2138  // implicitly defined, all the implicitly-declared default destructors
2139  // for its base class and its non-static data members shall have been
2140  // implicitly defined.
2141  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2142       E = ClassDecl->bases_end(); Base != E; ++Base) {
2143    CXXRecordDecl *BaseClassDecl
2144      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2145    if (!BaseClassDecl->hasTrivialDestructor()) {
2146      if (CXXDestructorDecl *BaseDtor =
2147          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2148        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2149      else
2150        assert(false &&
2151               "DefineImplicitDestructor - missing dtor in a base class");
2152    }
2153  }
2154
2155  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2156       E = ClassDecl->field_end(); Field != E; ++Field) {
2157    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2158    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2159      FieldType = Array->getElementType();
2160    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2161      CXXRecordDecl *FieldClassDecl
2162        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2163      if (!FieldClassDecl->hasTrivialDestructor()) {
2164        if (CXXDestructorDecl *FieldDtor =
2165            const_cast<CXXDestructorDecl*>(
2166                                        FieldClassDecl->getDestructor(Context)))
2167          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2168        else
2169          assert(false &&
2170          "DefineImplicitDestructor - missing dtor in class of a data member");
2171      }
2172    }
2173  }
2174  Destructor->setUsed();
2175}
2176
2177void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2178                                          CXXMethodDecl *MethodDecl) {
2179  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2180          MethodDecl->getOverloadedOperator() == OO_Equal &&
2181          !MethodDecl->isUsed()) &&
2182         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2183
2184  CXXRecordDecl *ClassDecl
2185    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2186
2187  // C++[class.copy] p12
2188  // Before the implicitly-declared copy assignment operator for a class is
2189  // implicitly defined, all implicitly-declared copy assignment operators
2190  // for its direct base classes and its nonstatic data members shall have
2191  // been implicitly defined.
2192  bool err = false;
2193  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2194       E = ClassDecl->bases_end(); Base != E; ++Base) {
2195    CXXRecordDecl *BaseClassDecl
2196      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2197    if (CXXMethodDecl *BaseAssignOpMethod =
2198          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2199      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2200  }
2201  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2202       E = ClassDecl->field_end(); Field != E; ++Field) {
2203    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2204    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2205      FieldType = Array->getElementType();
2206    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2207      CXXRecordDecl *FieldClassDecl
2208        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2209      if (CXXMethodDecl *FieldAssignOpMethod =
2210          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2211        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2212    }
2213    else if (FieldType->isReferenceType()) {
2214      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2215      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2216      Diag(Field->getLocation(), diag::note_declared_at);
2217      Diag(CurrentLocation, diag::note_first_required_here);
2218      err = true;
2219    }
2220    else if (FieldType.isConstQualified()) {
2221      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2222      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2223      Diag(Field->getLocation(), diag::note_declared_at);
2224      Diag(CurrentLocation, diag::note_first_required_here);
2225      err = true;
2226    }
2227  }
2228  if (!err)
2229    MethodDecl->setUsed();
2230}
2231
2232CXXMethodDecl *
2233Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2234                              CXXRecordDecl *ClassDecl) {
2235  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2236  QualType RHSType(LHSType);
2237  // If class's assignment operator argument is const/volatile qualified,
2238  // look for operator = (const/volatile B&). Otherwise, look for
2239  // operator = (B&).
2240  if (ParmDecl->getType().isConstQualified())
2241    RHSType.addConst();
2242  if (ParmDecl->getType().isVolatileQualified())
2243    RHSType.addVolatile();
2244  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2245                                                          LHSType,
2246                                                          SourceLocation()));
2247  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2248                                                          RHSType,
2249                                                          SourceLocation()));
2250  Expr *Args[2] = { &*LHS, &*RHS };
2251  OverloadCandidateSet CandidateSet;
2252  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2253                              CandidateSet);
2254  OverloadCandidateSet::iterator Best;
2255  if (BestViableFunction(CandidateSet,
2256                         ClassDecl->getLocation(), Best) == OR_Success)
2257    return cast<CXXMethodDecl>(Best->Function);
2258  assert(false &&
2259         "getAssignOperatorMethod - copy assignment operator method not found");
2260  return 0;
2261}
2262
2263void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2264                                   CXXConstructorDecl *CopyConstructor,
2265                                   unsigned TypeQuals) {
2266  assert((CopyConstructor->isImplicit() &&
2267          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2268          !CopyConstructor->isUsed()) &&
2269         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2270
2271  CXXRecordDecl *ClassDecl
2272    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2273  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2274  // C++ [class.copy] p209
2275  // Before the implicitly-declared copy constructor for a class is
2276  // implicitly defined, all the implicitly-declared copy constructors
2277  // for its base class and its non-static data members shall have been
2278  // implicitly defined.
2279  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2280       Base != ClassDecl->bases_end(); ++Base) {
2281    CXXRecordDecl *BaseClassDecl
2282      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2283    if (CXXConstructorDecl *BaseCopyCtor =
2284        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2285      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2286  }
2287  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2288                                  FieldEnd = ClassDecl->field_end();
2289       Field != FieldEnd; ++Field) {
2290    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2291    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2292      FieldType = Array->getElementType();
2293    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2294      CXXRecordDecl *FieldClassDecl
2295        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2296      if (CXXConstructorDecl *FieldCopyCtor =
2297          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2298        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2299    }
2300  }
2301  CopyConstructor->setUsed();
2302}
2303
2304void Sema::InitializeVarWithConstructor(VarDecl *VD,
2305                                        CXXConstructorDecl *Constructor,
2306                                        QualType DeclInitType,
2307                                        Expr **Exprs, unsigned NumExprs) {
2308  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2309                                        false, Exprs, NumExprs);
2310  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2311  VD->setInit(Context, Temp);
2312}
2313
2314void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2315{
2316  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2317                                  DeclInitType->getAsRecordType()->getDecl());
2318  if (!ClassDecl->hasTrivialDestructor())
2319    if (CXXDestructorDecl *Destructor =
2320        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2321      MarkDeclarationReferenced(Loc, Destructor);
2322}
2323
2324/// AddCXXDirectInitializerToDecl - This action is called immediately after
2325/// ActOnDeclarator, when a C++ direct initializer is present.
2326/// e.g: "int x(1);"
2327void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2328                                         SourceLocation LParenLoc,
2329                                         MultiExprArg Exprs,
2330                                         SourceLocation *CommaLocs,
2331                                         SourceLocation RParenLoc) {
2332  unsigned NumExprs = Exprs.size();
2333  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2334  Decl *RealDecl = Dcl.getAs<Decl>();
2335
2336  // If there is no declaration, there was an error parsing it.  Just ignore
2337  // the initializer.
2338  if (RealDecl == 0)
2339    return;
2340
2341  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2342  if (!VDecl) {
2343    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2344    RealDecl->setInvalidDecl();
2345    return;
2346  }
2347
2348  // FIXME: Need to handle dependent types and expressions here.
2349
2350  // We will treat direct-initialization as a copy-initialization:
2351  //    int x(1);  -as-> int x = 1;
2352  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2353  //
2354  // Clients that want to distinguish between the two forms, can check for
2355  // direct initializer using VarDecl::hasCXXDirectInitializer().
2356  // A major benefit is that clients that don't particularly care about which
2357  // exactly form was it (like the CodeGen) can handle both cases without
2358  // special case code.
2359
2360  // C++ 8.5p11:
2361  // The form of initialization (using parentheses or '=') is generally
2362  // insignificant, but does matter when the entity being initialized has a
2363  // class type.
2364  QualType DeclInitType = VDecl->getType();
2365  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2366    DeclInitType = Array->getElementType();
2367
2368  // FIXME: This isn't the right place to complete the type.
2369  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2370                          diag::err_typecheck_decl_incomplete_type)) {
2371    VDecl->setInvalidDecl();
2372    return;
2373  }
2374
2375  if (VDecl->getType()->isRecordType()) {
2376    CXXConstructorDecl *Constructor
2377      = PerformInitializationByConstructor(DeclInitType,
2378                                           (Expr **)Exprs.get(), NumExprs,
2379                                           VDecl->getLocation(),
2380                                           SourceRange(VDecl->getLocation(),
2381                                                       RParenLoc),
2382                                           VDecl->getDeclName(),
2383                                           IK_Direct);
2384    if (!Constructor)
2385      RealDecl->setInvalidDecl();
2386    else {
2387      VDecl->setCXXDirectInitializer(true);
2388      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2389                                   (Expr**)Exprs.release(), NumExprs);
2390      // FIXME. Must do all that is needed to destroy the object
2391      // on scope exit. For now, just mark the destructor as used.
2392      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2393    }
2394    return;
2395  }
2396
2397  if (NumExprs > 1) {
2398    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2399      << SourceRange(VDecl->getLocation(), RParenLoc);
2400    RealDecl->setInvalidDecl();
2401    return;
2402  }
2403
2404  // Let clients know that initialization was done with a direct initializer.
2405  VDecl->setCXXDirectInitializer(true);
2406
2407  assert(NumExprs == 1 && "Expected 1 expression");
2408  // Set the init expression, handles conversions.
2409  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2410                       /*DirectInit=*/true);
2411}
2412
2413/// PerformInitializationByConstructor - Perform initialization by
2414/// constructor (C++ [dcl.init]p14), which may occur as part of
2415/// direct-initialization or copy-initialization. We are initializing
2416/// an object of type @p ClassType with the given arguments @p
2417/// Args. @p Loc is the location in the source code where the
2418/// initializer occurs (e.g., a declaration, member initializer,
2419/// functional cast, etc.) while @p Range covers the whole
2420/// initialization. @p InitEntity is the entity being initialized,
2421/// which may by the name of a declaration or a type. @p Kind is the
2422/// kind of initialization we're performing, which affects whether
2423/// explicit constructors will be considered. When successful, returns
2424/// the constructor that will be used to perform the initialization;
2425/// when the initialization fails, emits a diagnostic and returns
2426/// null.
2427CXXConstructorDecl *
2428Sema::PerformInitializationByConstructor(QualType ClassType,
2429                                         Expr **Args, unsigned NumArgs,
2430                                         SourceLocation Loc, SourceRange Range,
2431                                         DeclarationName InitEntity,
2432                                         InitializationKind Kind) {
2433  const RecordType *ClassRec = ClassType->getAsRecordType();
2434  assert(ClassRec && "Can only initialize a class type here");
2435
2436  // C++ [dcl.init]p14:
2437  //
2438  //   If the initialization is direct-initialization, or if it is
2439  //   copy-initialization where the cv-unqualified version of the
2440  //   source type is the same class as, or a derived class of, the
2441  //   class of the destination, constructors are considered. The
2442  //   applicable constructors are enumerated (13.3.1.3), and the
2443  //   best one is chosen through overload resolution (13.3). The
2444  //   constructor so selected is called to initialize the object,
2445  //   with the initializer expression(s) as its argument(s). If no
2446  //   constructor applies, or the overload resolution is ambiguous,
2447  //   the initialization is ill-formed.
2448  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2449  OverloadCandidateSet CandidateSet;
2450
2451  // Add constructors to the overload set.
2452  DeclarationName ConstructorName
2453    = Context.DeclarationNames.getCXXConstructorName(
2454                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2455  DeclContext::lookup_const_iterator Con, ConEnd;
2456  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2457       Con != ConEnd; ++Con) {
2458    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2459    if ((Kind == IK_Direct) ||
2460        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2461        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2462      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2463  }
2464
2465  // FIXME: When we decide not to synthesize the implicitly-declared
2466  // constructors, we'll need to make them appear here.
2467
2468  OverloadCandidateSet::iterator Best;
2469  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2470  case OR_Success:
2471    // We found a constructor. Return it.
2472    return cast<CXXConstructorDecl>(Best->Function);
2473
2474  case OR_No_Viable_Function:
2475    if (InitEntity)
2476      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2477        << InitEntity << Range;
2478    else
2479      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2480        << ClassType << Range;
2481    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2482    return 0;
2483
2484  case OR_Ambiguous:
2485    if (InitEntity)
2486      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2487    else
2488      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2489    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2490    return 0;
2491
2492  case OR_Deleted:
2493    if (InitEntity)
2494      Diag(Loc, diag::err_ovl_deleted_init)
2495        << Best->Function->isDeleted()
2496        << InitEntity << Range;
2497    else
2498      Diag(Loc, diag::err_ovl_deleted_init)
2499        << Best->Function->isDeleted()
2500        << InitEntity << Range;
2501    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2502    return 0;
2503  }
2504
2505  return 0;
2506}
2507
2508/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2509/// determine whether they are reference-related,
2510/// reference-compatible, reference-compatible with added
2511/// qualification, or incompatible, for use in C++ initialization by
2512/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2513/// type, and the first type (T1) is the pointee type of the reference
2514/// type being initialized.
2515Sema::ReferenceCompareResult
2516Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2517                                   bool& DerivedToBase) {
2518  assert(!T1->isReferenceType() &&
2519    "T1 must be the pointee type of the reference type");
2520  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2521
2522  T1 = Context.getCanonicalType(T1);
2523  T2 = Context.getCanonicalType(T2);
2524  QualType UnqualT1 = T1.getUnqualifiedType();
2525  QualType UnqualT2 = T2.getUnqualifiedType();
2526
2527  // C++ [dcl.init.ref]p4:
2528  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2529  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2530  //   T1 is a base class of T2.
2531  if (UnqualT1 == UnqualT2)
2532    DerivedToBase = false;
2533  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2534    DerivedToBase = true;
2535  else
2536    return Ref_Incompatible;
2537
2538  // At this point, we know that T1 and T2 are reference-related (at
2539  // least).
2540
2541  // C++ [dcl.init.ref]p4:
2542  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2543  //   reference-related to T2 and cv1 is the same cv-qualification
2544  //   as, or greater cv-qualification than, cv2. For purposes of
2545  //   overload resolution, cases for which cv1 is greater
2546  //   cv-qualification than cv2 are identified as
2547  //   reference-compatible with added qualification (see 13.3.3.2).
2548  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2549    return Ref_Compatible;
2550  else if (T1.isMoreQualifiedThan(T2))
2551    return Ref_Compatible_With_Added_Qualification;
2552  else
2553    return Ref_Related;
2554}
2555
2556/// CheckReferenceInit - Check the initialization of a reference
2557/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2558/// the initializer (either a simple initializer or an initializer
2559/// list), and DeclType is the type of the declaration. When ICS is
2560/// non-null, this routine will compute the implicit conversion
2561/// sequence according to C++ [over.ics.ref] and will not produce any
2562/// diagnostics; when ICS is null, it will emit diagnostics when any
2563/// errors are found. Either way, a return value of true indicates
2564/// that there was a failure, a return value of false indicates that
2565/// the reference initialization succeeded.
2566///
2567/// When @p SuppressUserConversions, user-defined conversions are
2568/// suppressed.
2569/// When @p AllowExplicit, we also permit explicit user-defined
2570/// conversion functions.
2571/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2572bool
2573Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2574                         ImplicitConversionSequence *ICS,
2575                         bool SuppressUserConversions,
2576                         bool AllowExplicit, bool ForceRValue) {
2577  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2578
2579  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2580  QualType T2 = Init->getType();
2581
2582  // If the initializer is the address of an overloaded function, try
2583  // to resolve the overloaded function. If all goes well, T2 is the
2584  // type of the resulting function.
2585  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2586    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2587                                                          ICS != 0);
2588    if (Fn) {
2589      // Since we're performing this reference-initialization for
2590      // real, update the initializer with the resulting function.
2591      if (!ICS) {
2592        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2593          return true;
2594
2595        FixOverloadedFunctionReference(Init, Fn);
2596      }
2597
2598      T2 = Fn->getType();
2599    }
2600  }
2601
2602  // Compute some basic properties of the types and the initializer.
2603  bool isRValRef = DeclType->isRValueReferenceType();
2604  bool DerivedToBase = false;
2605  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2606                                                  Init->isLvalue(Context);
2607  ReferenceCompareResult RefRelationship
2608    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2609
2610  // Most paths end in a failed conversion.
2611  if (ICS)
2612    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2613
2614  // C++ [dcl.init.ref]p5:
2615  //   A reference to type “cv1 T1” is initialized by an expression
2616  //   of type “cv2 T2” as follows:
2617
2618  //     -- If the initializer expression
2619
2620  // Rvalue references cannot bind to lvalues (N2812).
2621  // There is absolutely no situation where they can. In particular, note that
2622  // this is ill-formed, even if B has a user-defined conversion to A&&:
2623  //   B b;
2624  //   A&& r = b;
2625  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2626    if (!ICS)
2627      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2628        << Init->getSourceRange();
2629    return true;
2630  }
2631
2632  bool BindsDirectly = false;
2633  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2634  //          reference-compatible with “cv2 T2,” or
2635  //
2636  // Note that the bit-field check is skipped if we are just computing
2637  // the implicit conversion sequence (C++ [over.best.ics]p2).
2638  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2639      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2640    BindsDirectly = true;
2641
2642    if (ICS) {
2643      // C++ [over.ics.ref]p1:
2644      //   When a parameter of reference type binds directly (8.5.3)
2645      //   to an argument expression, the implicit conversion sequence
2646      //   is the identity conversion, unless the argument expression
2647      //   has a type that is a derived class of the parameter type,
2648      //   in which case the implicit conversion sequence is a
2649      //   derived-to-base Conversion (13.3.3.1).
2650      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2651      ICS->Standard.First = ICK_Identity;
2652      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2653      ICS->Standard.Third = ICK_Identity;
2654      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2655      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2656      ICS->Standard.ReferenceBinding = true;
2657      ICS->Standard.DirectBinding = true;
2658      ICS->Standard.RRefBinding = false;
2659      ICS->Standard.CopyConstructor = 0;
2660
2661      // Nothing more to do: the inaccessibility/ambiguity check for
2662      // derived-to-base conversions is suppressed when we're
2663      // computing the implicit conversion sequence (C++
2664      // [over.best.ics]p2).
2665      return false;
2666    } else {
2667      // Perform the conversion.
2668      // FIXME: Binding to a subobject of the lvalue is going to require more
2669      // AST annotation than this.
2670      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2671    }
2672  }
2673
2674  //       -- has a class type (i.e., T2 is a class type) and can be
2675  //          implicitly converted to an lvalue of type “cv3 T3,”
2676  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2677  //          92) (this conversion is selected by enumerating the
2678  //          applicable conversion functions (13.3.1.6) and choosing
2679  //          the best one through overload resolution (13.3)),
2680  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2681    // FIXME: Look for conversions in base classes!
2682    CXXRecordDecl *T2RecordDecl
2683      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2684
2685    OverloadCandidateSet CandidateSet;
2686    OverloadedFunctionDecl *Conversions
2687      = T2RecordDecl->getConversionFunctions();
2688    for (OverloadedFunctionDecl::function_iterator Func
2689           = Conversions->function_begin();
2690         Func != Conversions->function_end(); ++Func) {
2691      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2692
2693      // If the conversion function doesn't return a reference type,
2694      // it can't be considered for this conversion.
2695      if (Conv->getConversionType()->isLValueReferenceType() &&
2696          (AllowExplicit || !Conv->isExplicit()))
2697        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2698    }
2699
2700    OverloadCandidateSet::iterator Best;
2701    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2702    case OR_Success:
2703      // This is a direct binding.
2704      BindsDirectly = true;
2705
2706      if (ICS) {
2707        // C++ [over.ics.ref]p1:
2708        //
2709        //   [...] If the parameter binds directly to the result of
2710        //   applying a conversion function to the argument
2711        //   expression, the implicit conversion sequence is a
2712        //   user-defined conversion sequence (13.3.3.1.2), with the
2713        //   second standard conversion sequence either an identity
2714        //   conversion or, if the conversion function returns an
2715        //   entity of a type that is a derived class of the parameter
2716        //   type, a derived-to-base Conversion.
2717        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2718        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2719        ICS->UserDefined.After = Best->FinalConversion;
2720        ICS->UserDefined.ConversionFunction = Best->Function;
2721        assert(ICS->UserDefined.After.ReferenceBinding &&
2722               ICS->UserDefined.After.DirectBinding &&
2723               "Expected a direct reference binding!");
2724        return false;
2725      } else {
2726        // Perform the conversion.
2727        // FIXME: Binding to a subobject of the lvalue is going to require more
2728        // AST annotation than this.
2729        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2730      }
2731      break;
2732
2733    case OR_Ambiguous:
2734      assert(false && "Ambiguous reference binding conversions not implemented.");
2735      return true;
2736
2737    case OR_No_Viable_Function:
2738    case OR_Deleted:
2739      // There was no suitable conversion, or we found a deleted
2740      // conversion; continue with other checks.
2741      break;
2742    }
2743  }
2744
2745  if (BindsDirectly) {
2746    // C++ [dcl.init.ref]p4:
2747    //   [...] In all cases where the reference-related or
2748    //   reference-compatible relationship of two types is used to
2749    //   establish the validity of a reference binding, and T1 is a
2750    //   base class of T2, a program that necessitates such a binding
2751    //   is ill-formed if T1 is an inaccessible (clause 11) or
2752    //   ambiguous (10.2) base class of T2.
2753    //
2754    // Note that we only check this condition when we're allowed to
2755    // complain about errors, because we should not be checking for
2756    // ambiguity (or inaccessibility) unless the reference binding
2757    // actually happens.
2758    if (DerivedToBase)
2759      return CheckDerivedToBaseConversion(T2, T1,
2760                                          Init->getSourceRange().getBegin(),
2761                                          Init->getSourceRange());
2762    else
2763      return false;
2764  }
2765
2766  //     -- Otherwise, the reference shall be to a non-volatile const
2767  //        type (i.e., cv1 shall be const), or the reference shall be an
2768  //        rvalue reference and the initializer expression shall be an rvalue.
2769  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2770    if (!ICS)
2771      Diag(Init->getSourceRange().getBegin(),
2772           diag::err_not_reference_to_const_init)
2773        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2774        << T2 << Init->getSourceRange();
2775    return true;
2776  }
2777
2778  //       -- If the initializer expression is an rvalue, with T2 a
2779  //          class type, and “cv1 T1” is reference-compatible with
2780  //          “cv2 T2,” the reference is bound in one of the
2781  //          following ways (the choice is implementation-defined):
2782  //
2783  //          -- The reference is bound to the object represented by
2784  //             the rvalue (see 3.10) or to a sub-object within that
2785  //             object.
2786  //
2787  //          -- A temporary of type “cv1 T2” [sic] is created, and
2788  //             a constructor is called to copy the entire rvalue
2789  //             object into the temporary. The reference is bound to
2790  //             the temporary or to a sub-object within the
2791  //             temporary.
2792  //
2793  //          The constructor that would be used to make the copy
2794  //          shall be callable whether or not the copy is actually
2795  //          done.
2796  //
2797  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2798  // freedom, so we will always take the first option and never build
2799  // a temporary in this case. FIXME: We will, however, have to check
2800  // for the presence of a copy constructor in C++98/03 mode.
2801  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2802      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2803    if (ICS) {
2804      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2805      ICS->Standard.First = ICK_Identity;
2806      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2807      ICS->Standard.Third = ICK_Identity;
2808      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2809      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2810      ICS->Standard.ReferenceBinding = true;
2811      ICS->Standard.DirectBinding = false;
2812      ICS->Standard.RRefBinding = isRValRef;
2813      ICS->Standard.CopyConstructor = 0;
2814    } else {
2815      // FIXME: Binding to a subobject of the rvalue is going to require more
2816      // AST annotation than this.
2817      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2818    }
2819    return false;
2820  }
2821
2822  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2823  //          initialized from the initializer expression using the
2824  //          rules for a non-reference copy initialization (8.5). The
2825  //          reference is then bound to the temporary. If T1 is
2826  //          reference-related to T2, cv1 must be the same
2827  //          cv-qualification as, or greater cv-qualification than,
2828  //          cv2; otherwise, the program is ill-formed.
2829  if (RefRelationship == Ref_Related) {
2830    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2831    // we would be reference-compatible or reference-compatible with
2832    // added qualification. But that wasn't the case, so the reference
2833    // initialization fails.
2834    if (!ICS)
2835      Diag(Init->getSourceRange().getBegin(),
2836           diag::err_reference_init_drops_quals)
2837        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2838        << T2 << Init->getSourceRange();
2839    return true;
2840  }
2841
2842  // If at least one of the types is a class type, the types are not
2843  // related, and we aren't allowed any user conversions, the
2844  // reference binding fails. This case is important for breaking
2845  // recursion, since TryImplicitConversion below will attempt to
2846  // create a temporary through the use of a copy constructor.
2847  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2848      (T1->isRecordType() || T2->isRecordType())) {
2849    if (!ICS)
2850      Diag(Init->getSourceRange().getBegin(),
2851           diag::err_typecheck_convert_incompatible)
2852        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2853    return true;
2854  }
2855
2856  // Actually try to convert the initializer to T1.
2857  if (ICS) {
2858    // C++ [over.ics.ref]p2:
2859    //
2860    //   When a parameter of reference type is not bound directly to
2861    //   an argument expression, the conversion sequence is the one
2862    //   required to convert the argument expression to the
2863    //   underlying type of the reference according to
2864    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2865    //   to copy-initializing a temporary of the underlying type with
2866    //   the argument expression. Any difference in top-level
2867    //   cv-qualification is subsumed by the initialization itself
2868    //   and does not constitute a conversion.
2869    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2870    // Of course, that's still a reference binding.
2871    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2872      ICS->Standard.ReferenceBinding = true;
2873      ICS->Standard.RRefBinding = isRValRef;
2874    } else if(ICS->ConversionKind ==
2875              ImplicitConversionSequence::UserDefinedConversion) {
2876      ICS->UserDefined.After.ReferenceBinding = true;
2877      ICS->UserDefined.After.RRefBinding = isRValRef;
2878    }
2879    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2880  } else {
2881    return PerformImplicitConversion(Init, T1, "initializing");
2882  }
2883}
2884
2885/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2886/// of this overloaded operator is well-formed. If so, returns false;
2887/// otherwise, emits appropriate diagnostics and returns true.
2888bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2889  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2890         "Expected an overloaded operator declaration");
2891
2892  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2893
2894  // C++ [over.oper]p5:
2895  //   The allocation and deallocation functions, operator new,
2896  //   operator new[], operator delete and operator delete[], are
2897  //   described completely in 3.7.3. The attributes and restrictions
2898  //   found in the rest of this subclause do not apply to them unless
2899  //   explicitly stated in 3.7.3.
2900  // FIXME: Write a separate routine for checking this. For now, just allow it.
2901  if (Op == OO_New || Op == OO_Array_New ||
2902      Op == OO_Delete || Op == OO_Array_Delete)
2903    return false;
2904
2905  // C++ [over.oper]p6:
2906  //   An operator function shall either be a non-static member
2907  //   function or be a non-member function and have at least one
2908  //   parameter whose type is a class, a reference to a class, an
2909  //   enumeration, or a reference to an enumeration.
2910  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2911    if (MethodDecl->isStatic())
2912      return Diag(FnDecl->getLocation(),
2913                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2914  } else {
2915    bool ClassOrEnumParam = false;
2916    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2917                                   ParamEnd = FnDecl->param_end();
2918         Param != ParamEnd; ++Param) {
2919      QualType ParamType = (*Param)->getType().getNonReferenceType();
2920      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2921          ParamType->isEnumeralType()) {
2922        ClassOrEnumParam = true;
2923        break;
2924      }
2925    }
2926
2927    if (!ClassOrEnumParam)
2928      return Diag(FnDecl->getLocation(),
2929                  diag::err_operator_overload_needs_class_or_enum)
2930        << FnDecl->getDeclName();
2931  }
2932
2933  // C++ [over.oper]p8:
2934  //   An operator function cannot have default arguments (8.3.6),
2935  //   except where explicitly stated below.
2936  //
2937  // Only the function-call operator allows default arguments
2938  // (C++ [over.call]p1).
2939  if (Op != OO_Call) {
2940    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2941         Param != FnDecl->param_end(); ++Param) {
2942      if ((*Param)->hasUnparsedDefaultArg())
2943        return Diag((*Param)->getLocation(),
2944                    diag::err_operator_overload_default_arg)
2945          << FnDecl->getDeclName();
2946      else if (Expr *DefArg = (*Param)->getDefaultArg())
2947        return Diag((*Param)->getLocation(),
2948                    diag::err_operator_overload_default_arg)
2949          << FnDecl->getDeclName() << DefArg->getSourceRange();
2950    }
2951  }
2952
2953  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2954    { false, false, false }
2955#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2956    , { Unary, Binary, MemberOnly }
2957#include "clang/Basic/OperatorKinds.def"
2958  };
2959
2960  bool CanBeUnaryOperator = OperatorUses[Op][0];
2961  bool CanBeBinaryOperator = OperatorUses[Op][1];
2962  bool MustBeMemberOperator = OperatorUses[Op][2];
2963
2964  // C++ [over.oper]p8:
2965  //   [...] Operator functions cannot have more or fewer parameters
2966  //   than the number required for the corresponding operator, as
2967  //   described in the rest of this subclause.
2968  unsigned NumParams = FnDecl->getNumParams()
2969                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2970  if (Op != OO_Call &&
2971      ((NumParams == 1 && !CanBeUnaryOperator) ||
2972       (NumParams == 2 && !CanBeBinaryOperator) ||
2973       (NumParams < 1) || (NumParams > 2))) {
2974    // We have the wrong number of parameters.
2975    unsigned ErrorKind;
2976    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2977      ErrorKind = 2;  // 2 -> unary or binary.
2978    } else if (CanBeUnaryOperator) {
2979      ErrorKind = 0;  // 0 -> unary
2980    } else {
2981      assert(CanBeBinaryOperator &&
2982             "All non-call overloaded operators are unary or binary!");
2983      ErrorKind = 1;  // 1 -> binary
2984    }
2985
2986    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2987      << FnDecl->getDeclName() << NumParams << ErrorKind;
2988  }
2989
2990  // Overloaded operators other than operator() cannot be variadic.
2991  if (Op != OO_Call &&
2992      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2993    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2994      << FnDecl->getDeclName();
2995  }
2996
2997  // Some operators must be non-static member functions.
2998  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2999    return Diag(FnDecl->getLocation(),
3000                diag::err_operator_overload_must_be_member)
3001      << FnDecl->getDeclName();
3002  }
3003
3004  // C++ [over.inc]p1:
3005  //   The user-defined function called operator++ implements the
3006  //   prefix and postfix ++ operator. If this function is a member
3007  //   function with no parameters, or a non-member function with one
3008  //   parameter of class or enumeration type, it defines the prefix
3009  //   increment operator ++ for objects of that type. If the function
3010  //   is a member function with one parameter (which shall be of type
3011  //   int) or a non-member function with two parameters (the second
3012  //   of which shall be of type int), it defines the postfix
3013  //   increment operator ++ for objects of that type.
3014  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3015    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3016    bool ParamIsInt = false;
3017    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3018      ParamIsInt = BT->getKind() == BuiltinType::Int;
3019
3020    if (!ParamIsInt)
3021      return Diag(LastParam->getLocation(),
3022                  diag::err_operator_overload_post_incdec_must_be_int)
3023        << LastParam->getType() << (Op == OO_MinusMinus);
3024  }
3025
3026  // Notify the class if it got an assignment operator.
3027  if (Op == OO_Equal) {
3028    // Would have returned earlier otherwise.
3029    assert(isa<CXXMethodDecl>(FnDecl) &&
3030      "Overloaded = not member, but not filtered.");
3031    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3032    Method->getParent()->addedAssignmentOperator(Context, Method);
3033  }
3034
3035  return false;
3036}
3037
3038/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3039/// linkage specification, including the language and (if present)
3040/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3041/// the location of the language string literal, which is provided
3042/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3043/// the '{' brace. Otherwise, this linkage specification does not
3044/// have any braces.
3045Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3046                                                     SourceLocation ExternLoc,
3047                                                     SourceLocation LangLoc,
3048                                                     const char *Lang,
3049                                                     unsigned StrSize,
3050                                                     SourceLocation LBraceLoc) {
3051  LinkageSpecDecl::LanguageIDs Language;
3052  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3053    Language = LinkageSpecDecl::lang_c;
3054  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3055    Language = LinkageSpecDecl::lang_cxx;
3056  else {
3057    Diag(LangLoc, diag::err_bad_language);
3058    return DeclPtrTy();
3059  }
3060
3061  // FIXME: Add all the various semantics of linkage specifications
3062
3063  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3064                                               LangLoc, Language,
3065                                               LBraceLoc.isValid());
3066  CurContext->addDecl(D);
3067  PushDeclContext(S, D);
3068  return DeclPtrTy::make(D);
3069}
3070
3071/// ActOnFinishLinkageSpecification - Completely the definition of
3072/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3073/// valid, it's the position of the closing '}' brace in a linkage
3074/// specification that uses braces.
3075Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3076                                                      DeclPtrTy LinkageSpec,
3077                                                      SourceLocation RBraceLoc) {
3078  if (LinkageSpec)
3079    PopDeclContext();
3080  return LinkageSpec;
3081}
3082
3083/// \brief Perform semantic analysis for the variable declaration that
3084/// occurs within a C++ catch clause, returning the newly-created
3085/// variable.
3086VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3087                                         IdentifierInfo *Name,
3088                                         SourceLocation Loc,
3089                                         SourceRange Range) {
3090  bool Invalid = false;
3091
3092  // Arrays and functions decay.
3093  if (ExDeclType->isArrayType())
3094    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3095  else if (ExDeclType->isFunctionType())
3096    ExDeclType = Context.getPointerType(ExDeclType);
3097
3098  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3099  // The exception-declaration shall not denote a pointer or reference to an
3100  // incomplete type, other than [cv] void*.
3101  // N2844 forbids rvalue references.
3102  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3103    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3104    Invalid = true;
3105  }
3106
3107  QualType BaseType = ExDeclType;
3108  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3109  unsigned DK = diag::err_catch_incomplete;
3110  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3111    BaseType = Ptr->getPointeeType();
3112    Mode = 1;
3113    DK = diag::err_catch_incomplete_ptr;
3114  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3115    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3116    BaseType = Ref->getPointeeType();
3117    Mode = 2;
3118    DK = diag::err_catch_incomplete_ref;
3119  }
3120  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3121      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3122    Invalid = true;
3123
3124  if (!Invalid && !ExDeclType->isDependentType() &&
3125      RequireNonAbstractType(Loc, ExDeclType,
3126                             diag::err_abstract_type_in_decl,
3127                             AbstractVariableType))
3128    Invalid = true;
3129
3130  // FIXME: Need to test for ability to copy-construct and destroy the
3131  // exception variable.
3132
3133  // FIXME: Need to check for abstract classes.
3134
3135  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3136                                    Name, ExDeclType, VarDecl::None,
3137                                    Range.getBegin());
3138
3139  if (Invalid)
3140    ExDecl->setInvalidDecl();
3141
3142  return ExDecl;
3143}
3144
3145/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3146/// handler.
3147Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3148  QualType ExDeclType = GetTypeForDeclarator(D, S);
3149
3150  bool Invalid = D.isInvalidType();
3151  IdentifierInfo *II = D.getIdentifier();
3152  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3153    // The scope should be freshly made just for us. There is just no way
3154    // it contains any previous declaration.
3155    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3156    if (PrevDecl->isTemplateParameter()) {
3157      // Maybe we will complain about the shadowed template parameter.
3158      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3159    }
3160  }
3161
3162  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3163    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3164      << D.getCXXScopeSpec().getRange();
3165    Invalid = true;
3166  }
3167
3168  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3169                                              D.getIdentifier(),
3170                                              D.getIdentifierLoc(),
3171                                            D.getDeclSpec().getSourceRange());
3172
3173  if (Invalid)
3174    ExDecl->setInvalidDecl();
3175
3176  // Add the exception declaration into this scope.
3177  if (II)
3178    PushOnScopeChains(ExDecl, S);
3179  else
3180    CurContext->addDecl(ExDecl);
3181
3182  ProcessDeclAttributes(S, ExDecl, D);
3183  return DeclPtrTy::make(ExDecl);
3184}
3185
3186Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3187                                                   ExprArg assertexpr,
3188                                                   ExprArg assertmessageexpr) {
3189  Expr *AssertExpr = (Expr *)assertexpr.get();
3190  StringLiteral *AssertMessage =
3191    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3192
3193  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3194    llvm::APSInt Value(32);
3195    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3196      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3197        AssertExpr->getSourceRange();
3198      return DeclPtrTy();
3199    }
3200
3201    if (Value == 0) {
3202      std::string str(AssertMessage->getStrData(),
3203                      AssertMessage->getByteLength());
3204      Diag(AssertLoc, diag::err_static_assert_failed)
3205        << str << AssertExpr->getSourceRange();
3206    }
3207  }
3208
3209  assertexpr.release();
3210  assertmessageexpr.release();
3211  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3212                                        AssertExpr, AssertMessage);
3213
3214  CurContext->addDecl(Decl);
3215  return DeclPtrTy::make(Decl);
3216}
3217
3218bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3219  if (!(S->getFlags() & Scope::ClassScope)) {
3220    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3221    return true;
3222  }
3223
3224  return false;
3225}
3226
3227void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3228  Decl *Dcl = dcl.getAs<Decl>();
3229  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3230  if (!Fn) {
3231    Diag(DelLoc, diag::err_deleted_non_function);
3232    return;
3233  }
3234  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3235    Diag(DelLoc, diag::err_deleted_decl_not_first);
3236    Diag(Prev->getLocation(), diag::note_previous_declaration);
3237    // If the declaration wasn't the first, we delete the function anyway for
3238    // recovery.
3239  }
3240  Fn->setDeleted();
3241}
3242
3243static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3244  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3245       ++CI) {
3246    Stmt *SubStmt = *CI;
3247    if (!SubStmt)
3248      continue;
3249    if (isa<ReturnStmt>(SubStmt))
3250      Self.Diag(SubStmt->getSourceRange().getBegin(),
3251           diag::err_return_in_constructor_handler);
3252    if (!isa<Expr>(SubStmt))
3253      SearchForReturnInStmt(Self, SubStmt);
3254  }
3255}
3256
3257void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3258  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3259    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3260    SearchForReturnInStmt(*this, Handler);
3261  }
3262}
3263
3264bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3265                                             const CXXMethodDecl *Old) {
3266  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3267  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3268
3269  QualType CNewTy = Context.getCanonicalType(NewTy);
3270  QualType COldTy = Context.getCanonicalType(OldTy);
3271
3272  if (CNewTy == COldTy &&
3273      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3274    return false;
3275
3276  // Check if the return types are covariant
3277  QualType NewClassTy, OldClassTy;
3278
3279  /// Both types must be pointers or references to classes.
3280  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3281    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3282      NewClassTy = NewPT->getPointeeType();
3283      OldClassTy = OldPT->getPointeeType();
3284    }
3285  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3286    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3287      NewClassTy = NewRT->getPointeeType();
3288      OldClassTy = OldRT->getPointeeType();
3289    }
3290  }
3291
3292  // The return types aren't either both pointers or references to a class type.
3293  if (NewClassTy.isNull()) {
3294    Diag(New->getLocation(),
3295         diag::err_different_return_type_for_overriding_virtual_function)
3296      << New->getDeclName() << NewTy << OldTy;
3297    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3298
3299    return true;
3300  }
3301
3302  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3303    // Check if the new class derives from the old class.
3304    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3305      Diag(New->getLocation(),
3306           diag::err_covariant_return_not_derived)
3307      << New->getDeclName() << NewTy << OldTy;
3308      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3309      return true;
3310    }
3311
3312    // Check if we the conversion from derived to base is valid.
3313    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3314                      diag::err_covariant_return_inaccessible_base,
3315                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3316                      // FIXME: Should this point to the return type?
3317                      New->getLocation(), SourceRange(), New->getDeclName())) {
3318      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3319      return true;
3320    }
3321  }
3322
3323  // The qualifiers of the return types must be the same.
3324  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3325    Diag(New->getLocation(),
3326         diag::err_covariant_return_type_different_qualifications)
3327    << New->getDeclName() << NewTy << OldTy;
3328    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3329    return true;
3330  };
3331
3332
3333  // The new class type must have the same or less qualifiers as the old type.
3334  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3335    Diag(New->getLocation(),
3336         diag::err_covariant_return_type_class_type_more_qualified)
3337    << New->getDeclName() << NewTy << OldTy;
3338    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3339    return true;
3340  };
3341
3342  return false;
3343}
3344
3345bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3346                                                const CXXMethodDecl *Old)
3347{
3348  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3349                                  diag::note_overridden_virtual_function,
3350                                  Old->getType()->getAsFunctionProtoType(),
3351                                  Old->getLocation(),
3352                                  New->getType()->getAsFunctionProtoType(),
3353                                  New->getLocation());
3354}
3355
3356/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3357/// initializer for the declaration 'Dcl'.
3358/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3359/// static data member of class X, names should be looked up in the scope of
3360/// class X.
3361void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3362  Decl *D = Dcl.getAs<Decl>();
3363  // If there is no declaration, there was an error parsing it.
3364  if (D == 0)
3365    return;
3366
3367  // Check whether it is a declaration with a nested name specifier like
3368  // int foo::bar;
3369  if (!D->isOutOfLine())
3370    return;
3371
3372  // C++ [basic.lookup.unqual]p13
3373  //
3374  // A name used in the definition of a static data member of class X
3375  // (after the qualified-id of the static member) is looked up as if the name
3376  // was used in a member function of X.
3377
3378  // Change current context into the context of the initializing declaration.
3379  EnterDeclaratorContext(S, D->getDeclContext());
3380}
3381
3382/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3383/// initializer for the declaration 'Dcl'.
3384void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3385  Decl *D = Dcl.getAs<Decl>();
3386  // If there is no declaration, there was an error parsing it.
3387  if (D == 0)
3388    return;
3389
3390  // Check whether it is a declaration with a nested name specifier like
3391  // int foo::bar;
3392  if (!D->isOutOfLine())
3393    return;
3394
3395  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3396  ExitDeclaratorContext(S);
3397}
3398