SemaDeclCXX.cpp revision dc355713be51fcb4ee52d9fd6b4548ceff47fadf
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_range I = Node->children(); I; ++I)
67      IsInvalid |= Visit(*I);
68    return IsInvalid;
69  }
70
71  /// VisitDeclRefExpr - Visit a reference to a declaration, to
72  /// determine whether this declaration can be used in the default
73  /// argument expression.
74  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
75    NamedDecl *Decl = DRE->getDecl();
76    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
77      // C++ [dcl.fct.default]p9
78      //   Default arguments are evaluated each time the function is
79      //   called. The order of evaluation of function arguments is
80      //   unspecified. Consequently, parameters of a function shall not
81      //   be used in default argument expressions, even if they are not
82      //   evaluated. Parameters of a function declared before a default
83      //   argument expression are in scope and can hide namespace and
84      //   class member names.
85      return S->Diag(DRE->getSourceRange().getBegin(),
86                     diag::err_param_default_argument_references_param)
87         << Param->getDeclName() << DefaultArg->getSourceRange();
88    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
89      // C++ [dcl.fct.default]p7
90      //   Local variables shall not be used in default argument
91      //   expressions.
92      if (VDecl->isLocalVarDecl())
93        return S->Diag(DRE->getSourceRange().getBegin(),
94                       diag::err_param_default_argument_references_local)
95          << VDecl->getDeclName() << DefaultArg->getSourceRange();
96    }
97
98    return false;
99  }
100
101  /// VisitCXXThisExpr - Visit a C++ "this" expression.
102  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
103    // C++ [dcl.fct.default]p8:
104    //   The keyword this shall not be used in a default argument of a
105    //   member function.
106    return S->Diag(ThisE->getSourceRange().getBegin(),
107                   diag::err_param_default_argument_references_this)
108               << ThisE->getSourceRange();
109  }
110}
111
112bool
113Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
114                              SourceLocation EqualLoc) {
115  if (RequireCompleteType(Param->getLocation(), Param->getType(),
116                          diag::err_typecheck_decl_incomplete_type)) {
117    Param->setInvalidDecl();
118    return true;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
128                                                                    Param);
129  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
130                                                           EqualLoc);
131  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
132  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
133                                      MultiExprArg(*this, &Arg, 1));
134  if (Result.isInvalid())
135    return true;
136  Arg = Result.takeAs<Expr>();
137
138  CheckImplicitConversions(Arg, EqualLoc);
139  Arg = MaybeCreateExprWithCleanups(Arg);
140
141  // Okay: add the default argument to the parameter
142  Param->setDefaultArg(Arg);
143
144  // We have already instantiated this parameter; provide each of the
145  // instantiations with the uninstantiated default argument.
146  UnparsedDefaultArgInstantiationsMap::iterator InstPos
147    = UnparsedDefaultArgInstantiations.find(Param);
148  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
149    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
150      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
151
152    // We're done tracking this parameter's instantiations.
153    UnparsedDefaultArgInstantiations.erase(InstPos);
154  }
155
156  return false;
157}
158
159/// ActOnParamDefaultArgument - Check whether the default argument
160/// provided for a function parameter is well-formed. If so, attach it
161/// to the parameter declaration.
162void
163Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
164                                Expr *DefaultArg) {
165  if (!param || !DefaultArg)
166    return;
167
168  ParmVarDecl *Param = cast<ParmVarDecl>(param);
169  UnparsedDefaultArgLocs.erase(Param);
170
171  // Default arguments are only permitted in C++
172  if (!getLangOptions().CPlusPlus) {
173    Diag(EqualLoc, diag::err_param_default_argument)
174      << DefaultArg->getSourceRange();
175    Param->setInvalidDecl();
176    return;
177  }
178
179  // Check for unexpanded parameter packs.
180  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
181    Param->setInvalidDecl();
182    return;
183  }
184
185  // Check that the default argument is well-formed
186  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
187  if (DefaultArgChecker.Visit(DefaultArg)) {
188    Param->setInvalidDecl();
189    return;
190  }
191
192  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
193}
194
195/// ActOnParamUnparsedDefaultArgument - We've seen a default
196/// argument for a function parameter, but we can't parse it yet
197/// because we're inside a class definition. Note that this default
198/// argument will be parsed later.
199void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
200                                             SourceLocation EqualLoc,
201                                             SourceLocation ArgLoc) {
202  if (!param)
203    return;
204
205  ParmVarDecl *Param = cast<ParmVarDecl>(param);
206  if (Param)
207    Param->setUnparsedDefaultArg();
208
209  UnparsedDefaultArgLocs[Param] = ArgLoc;
210}
211
212/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
213/// the default argument for the parameter param failed.
214void Sema::ActOnParamDefaultArgumentError(Decl *param) {
215  if (!param)
216    return;
217
218  ParmVarDecl *Param = cast<ParmVarDecl>(param);
219
220  Param->setInvalidDecl();
221
222  UnparsedDefaultArgLocs.erase(Param);
223}
224
225/// CheckExtraCXXDefaultArguments - Check for any extra default
226/// arguments in the declarator, which is not a function declaration
227/// or definition and therefore is not permitted to have default
228/// arguments. This routine should be invoked for every declarator
229/// that is not a function declaration or definition.
230void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
231  // C++ [dcl.fct.default]p3
232  //   A default argument expression shall be specified only in the
233  //   parameter-declaration-clause of a function declaration or in a
234  //   template-parameter (14.1). It shall not be specified for a
235  //   parameter pack. If it is specified in a
236  //   parameter-declaration-clause, it shall not occur within a
237  //   declarator or abstract-declarator of a parameter-declaration.
238  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
239    DeclaratorChunk &chunk = D.getTypeObject(i);
240    if (chunk.Kind == DeclaratorChunk::Function) {
241      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
242        ParmVarDecl *Param =
243          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
244        if (Param->hasUnparsedDefaultArg()) {
245          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
248          delete Toks;
249          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
250        } else if (Param->getDefaultArg()) {
251          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
252            << Param->getDefaultArg()->getSourceRange();
253          Param->setDefaultArg(0);
254        }
255      }
256    }
257  }
258}
259
260// MergeCXXFunctionDecl - Merge two declarations of the same C++
261// function, once we already know that they have the same
262// type. Subroutine of MergeFunctionDecl. Returns true if there was an
263// error, false otherwise.
264bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
265  bool Invalid = false;
266
267  // C++ [dcl.fct.default]p4:
268  //   For non-template functions, default arguments can be added in
269  //   later declarations of a function in the same
270  //   scope. Declarations in different scopes have completely
271  //   distinct sets of default arguments. That is, declarations in
272  //   inner scopes do not acquire default arguments from
273  //   declarations in outer scopes, and vice versa. In a given
274  //   function declaration, all parameters subsequent to a
275  //   parameter with a default argument shall have default
276  //   arguments supplied in this or previous declarations. A
277  //   default argument shall not be redefined by a later
278  //   declaration (not even to the same value).
279  //
280  // C++ [dcl.fct.default]p6:
281  //   Except for member functions of class templates, the default arguments
282  //   in a member function definition that appears outside of the class
283  //   definition are added to the set of default arguments provided by the
284  //   member function declaration in the class definition.
285  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
286    ParmVarDecl *OldParam = Old->getParamDecl(p);
287    ParmVarDecl *NewParam = New->getParamDecl(p);
288
289    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
290      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
291      // hint here. Alternatively, we could walk the type-source information
292      // for NewParam to find the last source location in the type... but it
293      // isn't worth the effort right now. This is the kind of test case that
294      // is hard to get right:
295
296      //   int f(int);
297      //   void g(int (*fp)(int) = f);
298      //   void g(int (*fp)(int) = &f);
299      Diag(NewParam->getLocation(),
300           diag::err_param_default_argument_redefinition)
301        << NewParam->getDefaultArgRange();
302
303      // Look for the function declaration where the default argument was
304      // actually written, which may be a declaration prior to Old.
305      for (FunctionDecl *Older = Old->getPreviousDeclaration();
306           Older; Older = Older->getPreviousDeclaration()) {
307        if (!Older->getParamDecl(p)->hasDefaultArg())
308          break;
309
310        OldParam = Older->getParamDecl(p);
311      }
312
313      Diag(OldParam->getLocation(), diag::note_previous_definition)
314        << OldParam->getDefaultArgRange();
315      Invalid = true;
316    } else if (OldParam->hasDefaultArg()) {
317      // Merge the old default argument into the new parameter.
318      // It's important to use getInit() here;  getDefaultArg()
319      // strips off any top-level ExprWithCleanups.
320      NewParam->setHasInheritedDefaultArg();
321      if (OldParam->hasUninstantiatedDefaultArg())
322        NewParam->setUninstantiatedDefaultArg(
323                                      OldParam->getUninstantiatedDefaultArg());
324      else
325        NewParam->setDefaultArg(OldParam->getInit());
326    } else if (NewParam->hasDefaultArg()) {
327      if (New->getDescribedFunctionTemplate()) {
328        // Paragraph 4, quoted above, only applies to non-template functions.
329        Diag(NewParam->getLocation(),
330             diag::err_param_default_argument_template_redecl)
331          << NewParam->getDefaultArgRange();
332        Diag(Old->getLocation(), diag::note_template_prev_declaration)
333          << false;
334      } else if (New->getTemplateSpecializationKind()
335                   != TSK_ImplicitInstantiation &&
336                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
337        // C++ [temp.expr.spec]p21:
338        //   Default function arguments shall not be specified in a declaration
339        //   or a definition for one of the following explicit specializations:
340        //     - the explicit specialization of a function template;
341        //     - the explicit specialization of a member function template;
342        //     - the explicit specialization of a member function of a class
343        //       template where the class template specialization to which the
344        //       member function specialization belongs is implicitly
345        //       instantiated.
346        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
347          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
348          << New->getDeclName()
349          << NewParam->getDefaultArgRange();
350      } else if (New->getDeclContext()->isDependentContext()) {
351        // C++ [dcl.fct.default]p6 (DR217):
352        //   Default arguments for a member function of a class template shall
353        //   be specified on the initial declaration of the member function
354        //   within the class template.
355        //
356        // Reading the tea leaves a bit in DR217 and its reference to DR205
357        // leads me to the conclusion that one cannot add default function
358        // arguments for an out-of-line definition of a member function of a
359        // dependent type.
360        int WhichKind = 2;
361        if (CXXRecordDecl *Record
362              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
363          if (Record->getDescribedClassTemplate())
364            WhichKind = 0;
365          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
366            WhichKind = 1;
367          else
368            WhichKind = 2;
369        }
370
371        Diag(NewParam->getLocation(),
372             diag::err_param_default_argument_member_template_redecl)
373          << WhichKind
374          << NewParam->getDefaultArgRange();
375      }
376    }
377  }
378
379  if (CheckEquivalentExceptionSpec(Old, New))
380    Invalid = true;
381
382  return Invalid;
383}
384
385/// CheckCXXDefaultArguments - Verify that the default arguments for a
386/// function declaration are well-formed according to C++
387/// [dcl.fct.default].
388void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
389  unsigned NumParams = FD->getNumParams();
390  unsigned p;
391
392  // Find first parameter with a default argument
393  for (p = 0; p < NumParams; ++p) {
394    ParmVarDecl *Param = FD->getParamDecl(p);
395    if (Param->hasDefaultArg())
396      break;
397  }
398
399  // C++ [dcl.fct.default]p4:
400  //   In a given function declaration, all parameters
401  //   subsequent to a parameter with a default argument shall
402  //   have default arguments supplied in this or previous
403  //   declarations. A default argument shall not be redefined
404  //   by a later declaration (not even to the same value).
405  unsigned LastMissingDefaultArg = 0;
406  for (; p < NumParams; ++p) {
407    ParmVarDecl *Param = FD->getParamDecl(p);
408    if (!Param->hasDefaultArg()) {
409      if (Param->isInvalidDecl())
410        /* We already complained about this parameter. */;
411      else if (Param->getIdentifier())
412        Diag(Param->getLocation(),
413             diag::err_param_default_argument_missing_name)
414          << Param->getIdentifier();
415      else
416        Diag(Param->getLocation(),
417             diag::err_param_default_argument_missing);
418
419      LastMissingDefaultArg = p;
420    }
421  }
422
423  if (LastMissingDefaultArg > 0) {
424    // Some default arguments were missing. Clear out all of the
425    // default arguments up to (and including) the last missing
426    // default argument, so that we leave the function parameters
427    // in a semantically valid state.
428    for (p = 0; p <= LastMissingDefaultArg; ++p) {
429      ParmVarDecl *Param = FD->getParamDecl(p);
430      if (Param->hasDefaultArg()) {
431        Param->setDefaultArg(0);
432      }
433    }
434  }
435}
436
437/// isCurrentClassName - Determine whether the identifier II is the
438/// name of the class type currently being defined. In the case of
439/// nested classes, this will only return true if II is the name of
440/// the innermost class.
441bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
442                              const CXXScopeSpec *SS) {
443  assert(getLangOptions().CPlusPlus && "No class names in C!");
444
445  CXXRecordDecl *CurDecl;
446  if (SS && SS->isSet() && !SS->isInvalid()) {
447    DeclContext *DC = computeDeclContext(*SS, true);
448    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
449  } else
450    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
451
452  if (CurDecl && CurDecl->getIdentifier())
453    return &II == CurDecl->getIdentifier();
454  else
455    return false;
456}
457
458/// \brief Check the validity of a C++ base class specifier.
459///
460/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
461/// and returns NULL otherwise.
462CXXBaseSpecifier *
463Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
464                         SourceRange SpecifierRange,
465                         bool Virtual, AccessSpecifier Access,
466                         TypeSourceInfo *TInfo,
467                         SourceLocation EllipsisLoc) {
468  QualType BaseType = TInfo->getType();
469
470  // C++ [class.union]p1:
471  //   A union shall not have base classes.
472  if (Class->isUnion()) {
473    Diag(Class->getLocation(), diag::err_base_clause_on_union)
474      << SpecifierRange;
475    return 0;
476  }
477
478  if (EllipsisLoc.isValid() &&
479      !TInfo->getType()->containsUnexpandedParameterPack()) {
480    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
481      << TInfo->getTypeLoc().getSourceRange();
482    EllipsisLoc = SourceLocation();
483  }
484
485  if (BaseType->isDependentType())
486    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
487                                          Class->getTagKind() == TTK_Class,
488                                          Access, TInfo, EllipsisLoc);
489
490  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
491
492  // Base specifiers must be record types.
493  if (!BaseType->isRecordType()) {
494    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
495    return 0;
496  }
497
498  // C++ [class.union]p1:
499  //   A union shall not be used as a base class.
500  if (BaseType->isUnionType()) {
501    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
502    return 0;
503  }
504
505  // C++ [class.derived]p2:
506  //   The class-name in a base-specifier shall not be an incompletely
507  //   defined class.
508  if (RequireCompleteType(BaseLoc, BaseType,
509                          PDiag(diag::err_incomplete_base_class)
510                            << SpecifierRange)) {
511    Class->setInvalidDecl();
512    return 0;
513  }
514
515  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
516  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
517  assert(BaseDecl && "Record type has no declaration");
518  BaseDecl = BaseDecl->getDefinition();
519  assert(BaseDecl && "Base type is not incomplete, but has no definition");
520  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
521  assert(CXXBaseDecl && "Base type is not a C++ type");
522
523  // C++ [class.derived]p2:
524  //   If a class is marked with the class-virt-specifier final and it appears
525  //   as a base-type-specifier in a base-clause (10 class.derived), the program
526  //   is ill-formed.
527  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
528    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
529      << CXXBaseDecl->getDeclName();
530    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
531      << CXXBaseDecl->getDeclName();
532    return 0;
533  }
534
535  if (BaseDecl->isInvalidDecl())
536    Class->setInvalidDecl();
537
538  // Create the base specifier.
539  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
540                                        Class->getTagKind() == TTK_Class,
541                                        Access, TInfo, EllipsisLoc);
542}
543
544/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
545/// one entry in the base class list of a class specifier, for
546/// example:
547///    class foo : public bar, virtual private baz {
548/// 'public bar' and 'virtual private baz' are each base-specifiers.
549BaseResult
550Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
551                         bool Virtual, AccessSpecifier Access,
552                         ParsedType basetype, SourceLocation BaseLoc,
553                         SourceLocation EllipsisLoc) {
554  if (!classdecl)
555    return true;
556
557  AdjustDeclIfTemplate(classdecl);
558  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
559  if (!Class)
560    return true;
561
562  TypeSourceInfo *TInfo = 0;
563  GetTypeFromParser(basetype, &TInfo);
564
565  if (EllipsisLoc.isInvalid() &&
566      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
567                                      UPPC_BaseType))
568    return true;
569
570  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
571                                                      Virtual, Access, TInfo,
572                                                      EllipsisLoc))
573    return BaseSpec;
574
575  return true;
576}
577
578/// \brief Performs the actual work of attaching the given base class
579/// specifiers to a C++ class.
580bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
581                                unsigned NumBases) {
582 if (NumBases == 0)
583    return false;
584
585  // Used to keep track of which base types we have already seen, so
586  // that we can properly diagnose redundant direct base types. Note
587  // that the key is always the unqualified canonical type of the base
588  // class.
589  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
590
591  // Copy non-redundant base specifiers into permanent storage.
592  unsigned NumGoodBases = 0;
593  bool Invalid = false;
594  for (unsigned idx = 0; idx < NumBases; ++idx) {
595    QualType NewBaseType
596      = Context.getCanonicalType(Bases[idx]->getType());
597    NewBaseType = NewBaseType.getLocalUnqualifiedType();
598    if (!Class->hasObjectMember()) {
599      if (const RecordType *FDTTy =
600            NewBaseType.getTypePtr()->getAs<RecordType>())
601        if (FDTTy->getDecl()->hasObjectMember())
602          Class->setHasObjectMember(true);
603    }
604
605    if (KnownBaseTypes[NewBaseType]) {
606      // C++ [class.mi]p3:
607      //   A class shall not be specified as a direct base class of a
608      //   derived class more than once.
609      Diag(Bases[idx]->getSourceRange().getBegin(),
610           diag::err_duplicate_base_class)
611        << KnownBaseTypes[NewBaseType]->getType()
612        << Bases[idx]->getSourceRange();
613
614      // Delete the duplicate base class specifier; we're going to
615      // overwrite its pointer later.
616      Context.Deallocate(Bases[idx]);
617
618      Invalid = true;
619    } else {
620      // Okay, add this new base class.
621      KnownBaseTypes[NewBaseType] = Bases[idx];
622      Bases[NumGoodBases++] = Bases[idx];
623    }
624  }
625
626  // Attach the remaining base class specifiers to the derived class.
627  Class->setBases(Bases, NumGoodBases);
628
629  // Delete the remaining (good) base class specifiers, since their
630  // data has been copied into the CXXRecordDecl.
631  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
632    Context.Deallocate(Bases[idx]);
633
634  return Invalid;
635}
636
637/// ActOnBaseSpecifiers - Attach the given base specifiers to the
638/// class, after checking whether there are any duplicate base
639/// classes.
640void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
641                               unsigned NumBases) {
642  if (!ClassDecl || !Bases || !NumBases)
643    return;
644
645  AdjustDeclIfTemplate(ClassDecl);
646  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
647                       (CXXBaseSpecifier**)(Bases), NumBases);
648}
649
650static CXXRecordDecl *GetClassForType(QualType T) {
651  if (const RecordType *RT = T->getAs<RecordType>())
652    return cast<CXXRecordDecl>(RT->getDecl());
653  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
654    return ICT->getDecl();
655  else
656    return 0;
657}
658
659/// \brief Determine whether the type \p Derived is a C++ class that is
660/// derived from the type \p Base.
661bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
662  if (!getLangOptions().CPlusPlus)
663    return false;
664
665  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
666  if (!DerivedRD)
667    return false;
668
669  CXXRecordDecl *BaseRD = GetClassForType(Base);
670  if (!BaseRD)
671    return false;
672
673  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
674  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
675}
676
677/// \brief Determine whether the type \p Derived is a C++ class that is
678/// derived from the type \p Base.
679bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
680  if (!getLangOptions().CPlusPlus)
681    return false;
682
683  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
684  if (!DerivedRD)
685    return false;
686
687  CXXRecordDecl *BaseRD = GetClassForType(Base);
688  if (!BaseRD)
689    return false;
690
691  return DerivedRD->isDerivedFrom(BaseRD, Paths);
692}
693
694void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
695                              CXXCastPath &BasePathArray) {
696  assert(BasePathArray.empty() && "Base path array must be empty!");
697  assert(Paths.isRecordingPaths() && "Must record paths!");
698
699  const CXXBasePath &Path = Paths.front();
700
701  // We first go backward and check if we have a virtual base.
702  // FIXME: It would be better if CXXBasePath had the base specifier for
703  // the nearest virtual base.
704  unsigned Start = 0;
705  for (unsigned I = Path.size(); I != 0; --I) {
706    if (Path[I - 1].Base->isVirtual()) {
707      Start = I - 1;
708      break;
709    }
710  }
711
712  // Now add all bases.
713  for (unsigned I = Start, E = Path.size(); I != E; ++I)
714    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
715}
716
717/// \brief Determine whether the given base path includes a virtual
718/// base class.
719bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
720  for (CXXCastPath::const_iterator B = BasePath.begin(),
721                                BEnd = BasePath.end();
722       B != BEnd; ++B)
723    if ((*B)->isVirtual())
724      return true;
725
726  return false;
727}
728
729/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
730/// conversion (where Derived and Base are class types) is
731/// well-formed, meaning that the conversion is unambiguous (and
732/// that all of the base classes are accessible). Returns true
733/// and emits a diagnostic if the code is ill-formed, returns false
734/// otherwise. Loc is the location where this routine should point to
735/// if there is an error, and Range is the source range to highlight
736/// if there is an error.
737bool
738Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
739                                   unsigned InaccessibleBaseID,
740                                   unsigned AmbigiousBaseConvID,
741                                   SourceLocation Loc, SourceRange Range,
742                                   DeclarationName Name,
743                                   CXXCastPath *BasePath) {
744  // First, determine whether the path from Derived to Base is
745  // ambiguous. This is slightly more expensive than checking whether
746  // the Derived to Base conversion exists, because here we need to
747  // explore multiple paths to determine if there is an ambiguity.
748  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
749                     /*DetectVirtual=*/false);
750  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
751  assert(DerivationOkay &&
752         "Can only be used with a derived-to-base conversion");
753  (void)DerivationOkay;
754
755  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
756    if (InaccessibleBaseID) {
757      // Check that the base class can be accessed.
758      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
759                                   InaccessibleBaseID)) {
760        case AR_inaccessible:
761          return true;
762        case AR_accessible:
763        case AR_dependent:
764        case AR_delayed:
765          break;
766      }
767    }
768
769    // Build a base path if necessary.
770    if (BasePath)
771      BuildBasePathArray(Paths, *BasePath);
772    return false;
773  }
774
775  // We know that the derived-to-base conversion is ambiguous, and
776  // we're going to produce a diagnostic. Perform the derived-to-base
777  // search just one more time to compute all of the possible paths so
778  // that we can print them out. This is more expensive than any of
779  // the previous derived-to-base checks we've done, but at this point
780  // performance isn't as much of an issue.
781  Paths.clear();
782  Paths.setRecordingPaths(true);
783  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
784  assert(StillOkay && "Can only be used with a derived-to-base conversion");
785  (void)StillOkay;
786
787  // Build up a textual representation of the ambiguous paths, e.g.,
788  // D -> B -> A, that will be used to illustrate the ambiguous
789  // conversions in the diagnostic. We only print one of the paths
790  // to each base class subobject.
791  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
792
793  Diag(Loc, AmbigiousBaseConvID)
794  << Derived << Base << PathDisplayStr << Range << Name;
795  return true;
796}
797
798bool
799Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
800                                   SourceLocation Loc, SourceRange Range,
801                                   CXXCastPath *BasePath,
802                                   bool IgnoreAccess) {
803  return CheckDerivedToBaseConversion(Derived, Base,
804                                      IgnoreAccess ? 0
805                                       : diag::err_upcast_to_inaccessible_base,
806                                      diag::err_ambiguous_derived_to_base_conv,
807                                      Loc, Range, DeclarationName(),
808                                      BasePath);
809}
810
811
812/// @brief Builds a string representing ambiguous paths from a
813/// specific derived class to different subobjects of the same base
814/// class.
815///
816/// This function builds a string that can be used in error messages
817/// to show the different paths that one can take through the
818/// inheritance hierarchy to go from the derived class to different
819/// subobjects of a base class. The result looks something like this:
820/// @code
821/// struct D -> struct B -> struct A
822/// struct D -> struct C -> struct A
823/// @endcode
824std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
825  std::string PathDisplayStr;
826  std::set<unsigned> DisplayedPaths;
827  for (CXXBasePaths::paths_iterator Path = Paths.begin();
828       Path != Paths.end(); ++Path) {
829    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
830      // We haven't displayed a path to this particular base
831      // class subobject yet.
832      PathDisplayStr += "\n    ";
833      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
834      for (CXXBasePath::const_iterator Element = Path->begin();
835           Element != Path->end(); ++Element)
836        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
837    }
838  }
839
840  return PathDisplayStr;
841}
842
843//===----------------------------------------------------------------------===//
844// C++ class member Handling
845//===----------------------------------------------------------------------===//
846
847/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
848Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
849                                 SourceLocation ASLoc,
850                                 SourceLocation ColonLoc) {
851  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
852  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
853                                                  ASLoc, ColonLoc);
854  CurContext->addHiddenDecl(ASDecl);
855  return ASDecl;
856}
857
858/// CheckOverrideControl - Check C++0x override control semantics.
859void Sema::CheckOverrideControl(const Decl *D) {
860  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
861  if (!MD || !MD->isVirtual())
862    return;
863
864  if (MD->isDependentContext())
865    return;
866
867  // C++0x [class.virtual]p3:
868  //   If a virtual function is marked with the virt-specifier override and does
869  //   not override a member function of a base class,
870  //   the program is ill-formed.
871  bool HasOverriddenMethods =
872    MD->begin_overridden_methods() != MD->end_overridden_methods();
873  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
874    Diag(MD->getLocation(),
875                 diag::err_function_marked_override_not_overriding)
876      << MD->getDeclName();
877    return;
878  }
879
880  // C++0x [class.derived]p8:
881  //   In a class definition marked with the class-virt-specifier explicit,
882  //   if a virtual member function that is neither implicitly-declared nor a
883  //   destructor overrides a member function of a base class and it is not
884  //   marked with the virt-specifier override, the program is ill-formed.
885  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
886      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
887    llvm::SmallVector<const CXXMethodDecl*, 4>
888      OverriddenMethods(MD->begin_overridden_methods(),
889                        MD->end_overridden_methods());
890
891    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
892      << MD->getDeclName()
893      << (unsigned)OverriddenMethods.size();
894
895    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
896      Diag(OverriddenMethods[I]->getLocation(),
897           diag::note_overridden_virtual_function);
898  }
899}
900
901/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
902/// function overrides a virtual member function marked 'final', according to
903/// C++0x [class.virtual]p3.
904bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
905                                                  const CXXMethodDecl *Old) {
906  if (!Old->hasAttr<FinalAttr>())
907    return false;
908
909  Diag(New->getLocation(), diag::err_final_function_overridden)
910    << New->getDeclName();
911  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
912  return true;
913}
914
915/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
916/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
917/// bitfield width if there is one and 'InitExpr' specifies the initializer if
918/// any.
919Decl *
920Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
921                               MultiTemplateParamsArg TemplateParameterLists,
922                               ExprTy *BW, const VirtSpecifiers &VS,
923                               ExprTy *InitExpr, bool IsDefinition,
924                               bool Deleted) {
925  const DeclSpec &DS = D.getDeclSpec();
926  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
927  DeclarationName Name = NameInfo.getName();
928  SourceLocation Loc = NameInfo.getLoc();
929
930  // For anonymous bitfields, the location should point to the type.
931  if (Loc.isInvalid())
932    Loc = D.getSourceRange().getBegin();
933
934  Expr *BitWidth = static_cast<Expr*>(BW);
935  Expr *Init = static_cast<Expr*>(InitExpr);
936
937  assert(isa<CXXRecordDecl>(CurContext));
938  assert(!DS.isFriendSpecified());
939
940  bool isFunc = false;
941  if (D.isFunctionDeclarator())
942    isFunc = true;
943  else if (D.getNumTypeObjects() == 0 &&
944           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
945    QualType TDType = GetTypeFromParser(DS.getRepAsType());
946    isFunc = TDType->isFunctionType();
947  }
948
949  // C++ 9.2p6: A member shall not be declared to have automatic storage
950  // duration (auto, register) or with the extern storage-class-specifier.
951  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
952  // data members and cannot be applied to names declared const or static,
953  // and cannot be applied to reference members.
954  switch (DS.getStorageClassSpec()) {
955    case DeclSpec::SCS_unspecified:
956    case DeclSpec::SCS_typedef:
957    case DeclSpec::SCS_static:
958      // FALL THROUGH.
959      break;
960    case DeclSpec::SCS_mutable:
961      if (isFunc) {
962        if (DS.getStorageClassSpecLoc().isValid())
963          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
964        else
965          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
966
967        // FIXME: It would be nicer if the keyword was ignored only for this
968        // declarator. Otherwise we could get follow-up errors.
969        D.getMutableDeclSpec().ClearStorageClassSpecs();
970      }
971      break;
972    default:
973      if (DS.getStorageClassSpecLoc().isValid())
974        Diag(DS.getStorageClassSpecLoc(),
975             diag::err_storageclass_invalid_for_member);
976      else
977        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
978      D.getMutableDeclSpec().ClearStorageClassSpecs();
979  }
980
981  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
982                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
983                      !isFunc);
984
985  Decl *Member;
986  if (isInstField) {
987    CXXScopeSpec &SS = D.getCXXScopeSpec();
988
989
990    if (SS.isSet() && !SS.isInvalid()) {
991      // The user provided a superfluous scope specifier inside a class
992      // definition:
993      //
994      // class X {
995      //   int X::member;
996      // };
997      DeclContext *DC = 0;
998      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
999        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1000        << Name << FixItHint::CreateRemoval(SS.getRange());
1001      else
1002        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1003          << Name << SS.getRange();
1004
1005      SS.clear();
1006    }
1007
1008    // FIXME: Check for template parameters!
1009    // FIXME: Check that the name is an identifier!
1010    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1011                         AS);
1012    assert(Member && "HandleField never returns null");
1013  } else {
1014    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1015    if (!Member) {
1016      return 0;
1017    }
1018
1019    // Non-instance-fields can't have a bitfield.
1020    if (BitWidth) {
1021      if (Member->isInvalidDecl()) {
1022        // don't emit another diagnostic.
1023      } else if (isa<VarDecl>(Member)) {
1024        // C++ 9.6p3: A bit-field shall not be a static member.
1025        // "static member 'A' cannot be a bit-field"
1026        Diag(Loc, diag::err_static_not_bitfield)
1027          << Name << BitWidth->getSourceRange();
1028      } else if (isa<TypedefDecl>(Member)) {
1029        // "typedef member 'x' cannot be a bit-field"
1030        Diag(Loc, diag::err_typedef_not_bitfield)
1031          << Name << BitWidth->getSourceRange();
1032      } else {
1033        // A function typedef ("typedef int f(); f a;").
1034        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1035        Diag(Loc, diag::err_not_integral_type_bitfield)
1036          << Name << cast<ValueDecl>(Member)->getType()
1037          << BitWidth->getSourceRange();
1038      }
1039
1040      BitWidth = 0;
1041      Member->setInvalidDecl();
1042    }
1043
1044    Member->setAccess(AS);
1045
1046    // If we have declared a member function template, set the access of the
1047    // templated declaration as well.
1048    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1049      FunTmpl->getTemplatedDecl()->setAccess(AS);
1050  }
1051
1052  if (VS.isOverrideSpecified()) {
1053    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1054    if (!MD || !MD->isVirtual()) {
1055      Diag(Member->getLocStart(),
1056           diag::override_keyword_only_allowed_on_virtual_member_functions)
1057        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1058    } else
1059      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1060  }
1061  if (VS.isFinalSpecified()) {
1062    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1063    if (!MD || !MD->isVirtual()) {
1064      Diag(Member->getLocStart(),
1065           diag::override_keyword_only_allowed_on_virtual_member_functions)
1066      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1067    } else
1068      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1069  }
1070
1071  CheckOverrideControl(Member);
1072
1073  assert((Name || isInstField) && "No identifier for non-field ?");
1074
1075  if (Init)
1076    AddInitializerToDecl(Member, Init, false,
1077                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1078  if (Deleted) // FIXME: Source location is not very good.
1079    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1080
1081  FinalizeDeclaration(Member);
1082
1083  if (isInstField)
1084    FieldCollector->Add(cast<FieldDecl>(Member));
1085  return Member;
1086}
1087
1088/// \brief Find the direct and/or virtual base specifiers that
1089/// correspond to the given base type, for use in base initialization
1090/// within a constructor.
1091static bool FindBaseInitializer(Sema &SemaRef,
1092                                CXXRecordDecl *ClassDecl,
1093                                QualType BaseType,
1094                                const CXXBaseSpecifier *&DirectBaseSpec,
1095                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1096  // First, check for a direct base class.
1097  DirectBaseSpec = 0;
1098  for (CXXRecordDecl::base_class_const_iterator Base
1099         = ClassDecl->bases_begin();
1100       Base != ClassDecl->bases_end(); ++Base) {
1101    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1102      // We found a direct base of this type. That's what we're
1103      // initializing.
1104      DirectBaseSpec = &*Base;
1105      break;
1106    }
1107  }
1108
1109  // Check for a virtual base class.
1110  // FIXME: We might be able to short-circuit this if we know in advance that
1111  // there are no virtual bases.
1112  VirtualBaseSpec = 0;
1113  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1114    // We haven't found a base yet; search the class hierarchy for a
1115    // virtual base class.
1116    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1117                       /*DetectVirtual=*/false);
1118    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1119                              BaseType, Paths)) {
1120      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1121           Path != Paths.end(); ++Path) {
1122        if (Path->back().Base->isVirtual()) {
1123          VirtualBaseSpec = Path->back().Base;
1124          break;
1125        }
1126      }
1127    }
1128  }
1129
1130  return DirectBaseSpec || VirtualBaseSpec;
1131}
1132
1133/// ActOnMemInitializer - Handle a C++ member initializer.
1134MemInitResult
1135Sema::ActOnMemInitializer(Decl *ConstructorD,
1136                          Scope *S,
1137                          CXXScopeSpec &SS,
1138                          IdentifierInfo *MemberOrBase,
1139                          ParsedType TemplateTypeTy,
1140                          SourceLocation IdLoc,
1141                          SourceLocation LParenLoc,
1142                          ExprTy **Args, unsigned NumArgs,
1143                          SourceLocation RParenLoc,
1144                          SourceLocation EllipsisLoc) {
1145  if (!ConstructorD)
1146    return true;
1147
1148  AdjustDeclIfTemplate(ConstructorD);
1149
1150  CXXConstructorDecl *Constructor
1151    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1152  if (!Constructor) {
1153    // The user wrote a constructor initializer on a function that is
1154    // not a C++ constructor. Ignore the error for now, because we may
1155    // have more member initializers coming; we'll diagnose it just
1156    // once in ActOnMemInitializers.
1157    return true;
1158  }
1159
1160  CXXRecordDecl *ClassDecl = Constructor->getParent();
1161
1162  // C++ [class.base.init]p2:
1163  //   Names in a mem-initializer-id are looked up in the scope of the
1164  //   constructor's class and, if not found in that scope, are looked
1165  //   up in the scope containing the constructor's definition.
1166  //   [Note: if the constructor's class contains a member with the
1167  //   same name as a direct or virtual base class of the class, a
1168  //   mem-initializer-id naming the member or base class and composed
1169  //   of a single identifier refers to the class member. A
1170  //   mem-initializer-id for the hidden base class may be specified
1171  //   using a qualified name. ]
1172  if (!SS.getScopeRep() && !TemplateTypeTy) {
1173    // Look for a member, first.
1174    FieldDecl *Member = 0;
1175    DeclContext::lookup_result Result
1176      = ClassDecl->lookup(MemberOrBase);
1177    if (Result.first != Result.second) {
1178      Member = dyn_cast<FieldDecl>(*Result.first);
1179
1180      if (Member) {
1181        if (EllipsisLoc.isValid())
1182          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1183            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1184
1185        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1186                                    LParenLoc, RParenLoc);
1187      }
1188
1189      // Handle anonymous union case.
1190      if (IndirectFieldDecl* IndirectField
1191            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1192        if (EllipsisLoc.isValid())
1193          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1194            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1195
1196         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1197                                       NumArgs, IdLoc,
1198                                       LParenLoc, RParenLoc);
1199      }
1200    }
1201  }
1202  // It didn't name a member, so see if it names a class.
1203  QualType BaseType;
1204  TypeSourceInfo *TInfo = 0;
1205
1206  if (TemplateTypeTy) {
1207    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1208  } else {
1209    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1210    LookupParsedName(R, S, &SS);
1211
1212    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1213    if (!TyD) {
1214      if (R.isAmbiguous()) return true;
1215
1216      // We don't want access-control diagnostics here.
1217      R.suppressDiagnostics();
1218
1219      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1220        bool NotUnknownSpecialization = false;
1221        DeclContext *DC = computeDeclContext(SS, false);
1222        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1223          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1224
1225        if (!NotUnknownSpecialization) {
1226          // When the scope specifier can refer to a member of an unknown
1227          // specialization, we take it as a type name.
1228          BaseType = CheckTypenameType(ETK_None,
1229                                       (NestedNameSpecifier *)SS.getScopeRep(),
1230                                       *MemberOrBase, SourceLocation(),
1231                                       SS.getRange(), IdLoc);
1232          if (BaseType.isNull())
1233            return true;
1234
1235          R.clear();
1236          R.setLookupName(MemberOrBase);
1237        }
1238      }
1239
1240      // If no results were found, try to correct typos.
1241      if (R.empty() && BaseType.isNull() &&
1242          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1243          R.isSingleResult()) {
1244        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1245          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1246            // We have found a non-static data member with a similar
1247            // name to what was typed; complain and initialize that
1248            // member.
1249            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1250              << MemberOrBase << true << R.getLookupName()
1251              << FixItHint::CreateReplacement(R.getNameLoc(),
1252                                              R.getLookupName().getAsString());
1253            Diag(Member->getLocation(), diag::note_previous_decl)
1254              << Member->getDeclName();
1255
1256            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1257                                          LParenLoc, RParenLoc);
1258          }
1259        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1260          const CXXBaseSpecifier *DirectBaseSpec;
1261          const CXXBaseSpecifier *VirtualBaseSpec;
1262          if (FindBaseInitializer(*this, ClassDecl,
1263                                  Context.getTypeDeclType(Type),
1264                                  DirectBaseSpec, VirtualBaseSpec)) {
1265            // We have found a direct or virtual base class with a
1266            // similar name to what was typed; complain and initialize
1267            // that base class.
1268            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1269              << MemberOrBase << false << R.getLookupName()
1270              << FixItHint::CreateReplacement(R.getNameLoc(),
1271                                              R.getLookupName().getAsString());
1272
1273            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1274                                                             : VirtualBaseSpec;
1275            Diag(BaseSpec->getSourceRange().getBegin(),
1276                 diag::note_base_class_specified_here)
1277              << BaseSpec->getType()
1278              << BaseSpec->getSourceRange();
1279
1280            TyD = Type;
1281          }
1282        }
1283      }
1284
1285      if (!TyD && BaseType.isNull()) {
1286        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1287          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1288        return true;
1289      }
1290    }
1291
1292    if (BaseType.isNull()) {
1293      BaseType = Context.getTypeDeclType(TyD);
1294      if (SS.isSet()) {
1295        NestedNameSpecifier *Qualifier =
1296          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1297
1298        // FIXME: preserve source range information
1299        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1300      }
1301    }
1302  }
1303
1304  if (!TInfo)
1305    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1306
1307  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1308                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1309}
1310
1311/// Checks an initializer expression for use of uninitialized fields, such as
1312/// containing the field that is being initialized. Returns true if there is an
1313/// uninitialized field was used an updates the SourceLocation parameter; false
1314/// otherwise.
1315static bool InitExprContainsUninitializedFields(const Stmt *S,
1316                                                const ValueDecl *LhsField,
1317                                                SourceLocation *L) {
1318  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1319
1320  if (isa<CallExpr>(S)) {
1321    // Do not descend into function calls or constructors, as the use
1322    // of an uninitialized field may be valid. One would have to inspect
1323    // the contents of the function/ctor to determine if it is safe or not.
1324    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1325    // may be safe, depending on what the function/ctor does.
1326    return false;
1327  }
1328  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1329    const NamedDecl *RhsField = ME->getMemberDecl();
1330
1331    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1332      // The member expression points to a static data member.
1333      assert(VD->isStaticDataMember() &&
1334             "Member points to non-static data member!");
1335      (void)VD;
1336      return false;
1337    }
1338
1339    if (isa<EnumConstantDecl>(RhsField)) {
1340      // The member expression points to an enum.
1341      return false;
1342    }
1343
1344    if (RhsField == LhsField) {
1345      // Initializing a field with itself. Throw a warning.
1346      // But wait; there are exceptions!
1347      // Exception #1:  The field may not belong to this record.
1348      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1349      const Expr *base = ME->getBase();
1350      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1351        // Even though the field matches, it does not belong to this record.
1352        return false;
1353      }
1354      // None of the exceptions triggered; return true to indicate an
1355      // uninitialized field was used.
1356      *L = ME->getMemberLoc();
1357      return true;
1358    }
1359  } else if (isa<SizeOfAlignOfExpr>(S)) {
1360    // sizeof/alignof doesn't reference contents, do not warn.
1361    return false;
1362  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1363    // address-of doesn't reference contents (the pointer may be dereferenced
1364    // in the same expression but it would be rare; and weird).
1365    if (UOE->getOpcode() == UO_AddrOf)
1366      return false;
1367  }
1368  for (Stmt::const_child_range it = S->children(); it; ++it) {
1369    if (!*it) {
1370      // An expression such as 'member(arg ?: "")' may trigger this.
1371      continue;
1372    }
1373    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1374      return true;
1375  }
1376  return false;
1377}
1378
1379MemInitResult
1380Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1381                             unsigned NumArgs, SourceLocation IdLoc,
1382                             SourceLocation LParenLoc,
1383                             SourceLocation RParenLoc) {
1384  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1385  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1386  assert((DirectMember || IndirectMember) &&
1387         "Member must be a FieldDecl or IndirectFieldDecl");
1388
1389  if (Member->isInvalidDecl())
1390    return true;
1391
1392  // Diagnose value-uses of fields to initialize themselves, e.g.
1393  //   foo(foo)
1394  // where foo is not also a parameter to the constructor.
1395  // TODO: implement -Wuninitialized and fold this into that framework.
1396  for (unsigned i = 0; i < NumArgs; ++i) {
1397    SourceLocation L;
1398    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1399      // FIXME: Return true in the case when other fields are used before being
1400      // uninitialized. For example, let this field be the i'th field. When
1401      // initializing the i'th field, throw a warning if any of the >= i'th
1402      // fields are used, as they are not yet initialized.
1403      // Right now we are only handling the case where the i'th field uses
1404      // itself in its initializer.
1405      Diag(L, diag::warn_field_is_uninit);
1406    }
1407  }
1408
1409  bool HasDependentArg = false;
1410  for (unsigned i = 0; i < NumArgs; i++)
1411    HasDependentArg |= Args[i]->isTypeDependent();
1412
1413  Expr *Init;
1414  if (Member->getType()->isDependentType() || HasDependentArg) {
1415    // Can't check initialization for a member of dependent type or when
1416    // any of the arguments are type-dependent expressions.
1417    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                       RParenLoc);
1419
1420    // Erase any temporaries within this evaluation context; we're not
1421    // going to track them in the AST, since we'll be rebuilding the
1422    // ASTs during template instantiation.
1423    ExprTemporaries.erase(
1424              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1425                          ExprTemporaries.end());
1426  } else {
1427    // Initialize the member.
1428    InitializedEntity MemberEntity =
1429      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1430                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1431    InitializationKind Kind =
1432      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1433
1434    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1435
1436    ExprResult MemberInit =
1437      InitSeq.Perform(*this, MemberEntity, Kind,
1438                      MultiExprArg(*this, Args, NumArgs), 0);
1439    if (MemberInit.isInvalid())
1440      return true;
1441
1442    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1443
1444    // C++0x [class.base.init]p7:
1445    //   The initialization of each base and member constitutes a
1446    //   full-expression.
1447    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1448    if (MemberInit.isInvalid())
1449      return true;
1450
1451    // If we are in a dependent context, template instantiation will
1452    // perform this type-checking again. Just save the arguments that we
1453    // received in a ParenListExpr.
1454    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1455    // of the information that we have about the member
1456    // initializer. However, deconstructing the ASTs is a dicey process,
1457    // and this approach is far more likely to get the corner cases right.
1458    if (CurContext->isDependentContext())
1459      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1460                                               RParenLoc);
1461    else
1462      Init = MemberInit.get();
1463  }
1464
1465  if (DirectMember) {
1466    return new (Context) CXXCtorInitializer(Context, DirectMember,
1467                                                    IdLoc, LParenLoc, Init,
1468                                                    RParenLoc);
1469  } else {
1470    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1471                                                    IdLoc, LParenLoc, Init,
1472                                                    RParenLoc);
1473  }
1474}
1475
1476MemInitResult
1477Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1478                                 Expr **Args, unsigned NumArgs,
1479                                 SourceLocation LParenLoc,
1480                                 SourceLocation RParenLoc,
1481                                 CXXRecordDecl *ClassDecl,
1482                                 SourceLocation EllipsisLoc) {
1483  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1484  if (!LangOpts.CPlusPlus0x)
1485    return Diag(Loc, diag::err_delegation_0x_only)
1486      << TInfo->getTypeLoc().getLocalSourceRange();
1487
1488  return Diag(Loc, diag::err_delegation_unimplemented)
1489    << TInfo->getTypeLoc().getLocalSourceRange();
1490}
1491
1492MemInitResult
1493Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1494                           Expr **Args, unsigned NumArgs,
1495                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1496                           CXXRecordDecl *ClassDecl,
1497                           SourceLocation EllipsisLoc) {
1498  bool HasDependentArg = false;
1499  for (unsigned i = 0; i < NumArgs; i++)
1500    HasDependentArg |= Args[i]->isTypeDependent();
1501
1502  SourceLocation BaseLoc
1503    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1504
1505  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1506    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1507             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1508
1509  // C++ [class.base.init]p2:
1510  //   [...] Unless the mem-initializer-id names a nonstatic data
1511  //   member of the constructor's class or a direct or virtual base
1512  //   of that class, the mem-initializer is ill-formed. A
1513  //   mem-initializer-list can initialize a base class using any
1514  //   name that denotes that base class type.
1515  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1516
1517  if (EllipsisLoc.isValid()) {
1518    // This is a pack expansion.
1519    if (!BaseType->containsUnexpandedParameterPack())  {
1520      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1521        << SourceRange(BaseLoc, RParenLoc);
1522
1523      EllipsisLoc = SourceLocation();
1524    }
1525  } else {
1526    // Check for any unexpanded parameter packs.
1527    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1528      return true;
1529
1530    for (unsigned I = 0; I != NumArgs; ++I)
1531      if (DiagnoseUnexpandedParameterPack(Args[I]))
1532        return true;
1533  }
1534
1535  // Check for direct and virtual base classes.
1536  const CXXBaseSpecifier *DirectBaseSpec = 0;
1537  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1538  if (!Dependent) {
1539    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1540                                       BaseType))
1541      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1542                                        LParenLoc, RParenLoc, ClassDecl,
1543                                        EllipsisLoc);
1544
1545    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1546                        VirtualBaseSpec);
1547
1548    // C++ [base.class.init]p2:
1549    // Unless the mem-initializer-id names a nonstatic data member of the
1550    // constructor's class or a direct or virtual base of that class, the
1551    // mem-initializer is ill-formed.
1552    if (!DirectBaseSpec && !VirtualBaseSpec) {
1553      // If the class has any dependent bases, then it's possible that
1554      // one of those types will resolve to the same type as
1555      // BaseType. Therefore, just treat this as a dependent base
1556      // class initialization.  FIXME: Should we try to check the
1557      // initialization anyway? It seems odd.
1558      if (ClassDecl->hasAnyDependentBases())
1559        Dependent = true;
1560      else
1561        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1562          << BaseType << Context.getTypeDeclType(ClassDecl)
1563          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1564    }
1565  }
1566
1567  if (Dependent) {
1568    // Can't check initialization for a base of dependent type or when
1569    // any of the arguments are type-dependent expressions.
1570    ExprResult BaseInit
1571      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1572                                          RParenLoc));
1573
1574    // Erase any temporaries within this evaluation context; we're not
1575    // going to track them in the AST, since we'll be rebuilding the
1576    // ASTs during template instantiation.
1577    ExprTemporaries.erase(
1578              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1579                          ExprTemporaries.end());
1580
1581    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1582                                                    /*IsVirtual=*/false,
1583                                                    LParenLoc,
1584                                                    BaseInit.takeAs<Expr>(),
1585                                                    RParenLoc,
1586                                                    EllipsisLoc);
1587  }
1588
1589  // C++ [base.class.init]p2:
1590  //   If a mem-initializer-id is ambiguous because it designates both
1591  //   a direct non-virtual base class and an inherited virtual base
1592  //   class, the mem-initializer is ill-formed.
1593  if (DirectBaseSpec && VirtualBaseSpec)
1594    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1595      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1596
1597  CXXBaseSpecifier *BaseSpec
1598    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1599  if (!BaseSpec)
1600    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1601
1602  // Initialize the base.
1603  InitializedEntity BaseEntity =
1604    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1605  InitializationKind Kind =
1606    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1607
1608  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1609
1610  ExprResult BaseInit =
1611    InitSeq.Perform(*this, BaseEntity, Kind,
1612                    MultiExprArg(*this, Args, NumArgs), 0);
1613  if (BaseInit.isInvalid())
1614    return true;
1615
1616  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1617
1618  // C++0x [class.base.init]p7:
1619  //   The initialization of each base and member constitutes a
1620  //   full-expression.
1621  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1622  if (BaseInit.isInvalid())
1623    return true;
1624
1625  // If we are in a dependent context, template instantiation will
1626  // perform this type-checking again. Just save the arguments that we
1627  // received in a ParenListExpr.
1628  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1629  // of the information that we have about the base
1630  // initializer. However, deconstructing the ASTs is a dicey process,
1631  // and this approach is far more likely to get the corner cases right.
1632  if (CurContext->isDependentContext()) {
1633    ExprResult Init
1634      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1635                                          RParenLoc));
1636    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1637                                                    BaseSpec->isVirtual(),
1638                                                    LParenLoc,
1639                                                    Init.takeAs<Expr>(),
1640                                                    RParenLoc,
1641                                                    EllipsisLoc);
1642  }
1643
1644  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1645                                                  BaseSpec->isVirtual(),
1646                                                  LParenLoc,
1647                                                  BaseInit.takeAs<Expr>(),
1648                                                  RParenLoc,
1649                                                  EllipsisLoc);
1650}
1651
1652/// ImplicitInitializerKind - How an implicit base or member initializer should
1653/// initialize its base or member.
1654enum ImplicitInitializerKind {
1655  IIK_Default,
1656  IIK_Copy,
1657  IIK_Move
1658};
1659
1660static bool
1661BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1662                             ImplicitInitializerKind ImplicitInitKind,
1663                             CXXBaseSpecifier *BaseSpec,
1664                             bool IsInheritedVirtualBase,
1665                             CXXCtorInitializer *&CXXBaseInit) {
1666  InitializedEntity InitEntity
1667    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1668                                        IsInheritedVirtualBase);
1669
1670  ExprResult BaseInit;
1671
1672  switch (ImplicitInitKind) {
1673  case IIK_Default: {
1674    InitializationKind InitKind
1675      = InitializationKind::CreateDefault(Constructor->getLocation());
1676    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1677    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1678                               MultiExprArg(SemaRef, 0, 0));
1679    break;
1680  }
1681
1682  case IIK_Copy: {
1683    ParmVarDecl *Param = Constructor->getParamDecl(0);
1684    QualType ParamType = Param->getType().getNonReferenceType();
1685
1686    Expr *CopyCtorArg =
1687      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1688                          Constructor->getLocation(), ParamType,
1689                          VK_LValue, 0);
1690
1691    // Cast to the base class to avoid ambiguities.
1692    QualType ArgTy =
1693      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1694                                       ParamType.getQualifiers());
1695
1696    CXXCastPath BasePath;
1697    BasePath.push_back(BaseSpec);
1698    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1699                              CK_UncheckedDerivedToBase,
1700                              VK_LValue, &BasePath);
1701
1702    InitializationKind InitKind
1703      = InitializationKind::CreateDirect(Constructor->getLocation(),
1704                                         SourceLocation(), SourceLocation());
1705    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1706                                   &CopyCtorArg, 1);
1707    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1708                               MultiExprArg(&CopyCtorArg, 1));
1709    break;
1710  }
1711
1712  case IIK_Move:
1713    assert(false && "Unhandled initializer kind!");
1714  }
1715
1716  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1717  if (BaseInit.isInvalid())
1718    return true;
1719
1720  CXXBaseInit =
1721    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1722               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1723                                                        SourceLocation()),
1724                                             BaseSpec->isVirtual(),
1725                                             SourceLocation(),
1726                                             BaseInit.takeAs<Expr>(),
1727                                             SourceLocation(),
1728                                             SourceLocation());
1729
1730  return false;
1731}
1732
1733static bool
1734BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1735                               ImplicitInitializerKind ImplicitInitKind,
1736                               FieldDecl *Field,
1737                               CXXCtorInitializer *&CXXMemberInit) {
1738  if (Field->isInvalidDecl())
1739    return true;
1740
1741  SourceLocation Loc = Constructor->getLocation();
1742
1743  if (ImplicitInitKind == IIK_Copy) {
1744    ParmVarDecl *Param = Constructor->getParamDecl(0);
1745    QualType ParamType = Param->getType().getNonReferenceType();
1746
1747    Expr *MemberExprBase =
1748      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1749                          Loc, ParamType, VK_LValue, 0);
1750
1751    // Build a reference to this field within the parameter.
1752    CXXScopeSpec SS;
1753    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1754                              Sema::LookupMemberName);
1755    MemberLookup.addDecl(Field, AS_public);
1756    MemberLookup.resolveKind();
1757    ExprResult CopyCtorArg
1758      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1759                                         ParamType, Loc,
1760                                         /*IsArrow=*/false,
1761                                         SS,
1762                                         /*FirstQualifierInScope=*/0,
1763                                         MemberLookup,
1764                                         /*TemplateArgs=*/0);
1765    if (CopyCtorArg.isInvalid())
1766      return true;
1767
1768    // When the field we are copying is an array, create index variables for
1769    // each dimension of the array. We use these index variables to subscript
1770    // the source array, and other clients (e.g., CodeGen) will perform the
1771    // necessary iteration with these index variables.
1772    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1773    QualType BaseType = Field->getType();
1774    QualType SizeType = SemaRef.Context.getSizeType();
1775    while (const ConstantArrayType *Array
1776                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1777      // Create the iteration variable for this array index.
1778      IdentifierInfo *IterationVarName = 0;
1779      {
1780        llvm::SmallString<8> Str;
1781        llvm::raw_svector_ostream OS(Str);
1782        OS << "__i" << IndexVariables.size();
1783        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1784      }
1785      VarDecl *IterationVar
1786        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1787                          IterationVarName, SizeType,
1788                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1789                          SC_None, SC_None);
1790      IndexVariables.push_back(IterationVar);
1791
1792      // Create a reference to the iteration variable.
1793      ExprResult IterationVarRef
1794        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1795      assert(!IterationVarRef.isInvalid() &&
1796             "Reference to invented variable cannot fail!");
1797
1798      // Subscript the array with this iteration variable.
1799      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1800                                                            Loc,
1801                                                        IterationVarRef.take(),
1802                                                            Loc);
1803      if (CopyCtorArg.isInvalid())
1804        return true;
1805
1806      BaseType = Array->getElementType();
1807    }
1808
1809    // Construct the entity that we will be initializing. For an array, this
1810    // will be first element in the array, which may require several levels
1811    // of array-subscript entities.
1812    llvm::SmallVector<InitializedEntity, 4> Entities;
1813    Entities.reserve(1 + IndexVariables.size());
1814    Entities.push_back(InitializedEntity::InitializeMember(Field));
1815    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1816      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1817                                                              0,
1818                                                              Entities.back()));
1819
1820    // Direct-initialize to use the copy constructor.
1821    InitializationKind InitKind =
1822      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1823
1824    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1825    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1826                                   &CopyCtorArgE, 1);
1827
1828    ExprResult MemberInit
1829      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1830                        MultiExprArg(&CopyCtorArgE, 1));
1831    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1832    if (MemberInit.isInvalid())
1833      return true;
1834
1835    CXXMemberInit
1836      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1837                                           MemberInit.takeAs<Expr>(), Loc,
1838                                           IndexVariables.data(),
1839                                           IndexVariables.size());
1840    return false;
1841  }
1842
1843  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1844
1845  QualType FieldBaseElementType =
1846    SemaRef.Context.getBaseElementType(Field->getType());
1847
1848  if (FieldBaseElementType->isRecordType()) {
1849    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1850    InitializationKind InitKind =
1851      InitializationKind::CreateDefault(Loc);
1852
1853    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1854    ExprResult MemberInit =
1855      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1856
1857    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1858    if (MemberInit.isInvalid())
1859      return true;
1860
1861    CXXMemberInit =
1862      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1863                                                       Field, Loc, Loc,
1864                                                       MemberInit.get(),
1865                                                       Loc);
1866    return false;
1867  }
1868
1869  if (FieldBaseElementType->isReferenceType()) {
1870    SemaRef.Diag(Constructor->getLocation(),
1871                 diag::err_uninitialized_member_in_ctor)
1872    << (int)Constructor->isImplicit()
1873    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1874    << 0 << Field->getDeclName();
1875    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1876    return true;
1877  }
1878
1879  if (FieldBaseElementType.isConstQualified()) {
1880    SemaRef.Diag(Constructor->getLocation(),
1881                 diag::err_uninitialized_member_in_ctor)
1882    << (int)Constructor->isImplicit()
1883    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1884    << 1 << Field->getDeclName();
1885    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1886    return true;
1887  }
1888
1889  // Nothing to initialize.
1890  CXXMemberInit = 0;
1891  return false;
1892}
1893
1894namespace {
1895struct BaseAndFieldInfo {
1896  Sema &S;
1897  CXXConstructorDecl *Ctor;
1898  bool AnyErrorsInInits;
1899  ImplicitInitializerKind IIK;
1900  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1901  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1902
1903  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1904    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1905    // FIXME: Handle implicit move constructors.
1906    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1907      IIK = IIK_Copy;
1908    else
1909      IIK = IIK_Default;
1910  }
1911};
1912}
1913
1914static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1915                                    FieldDecl *Top, FieldDecl *Field) {
1916
1917  // Overwhelmingly common case: we have a direct initializer for this field.
1918  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1919    Info.AllToInit.push_back(Init);
1920    return false;
1921  }
1922
1923  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1924    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1925    assert(FieldClassType && "anonymous struct/union without record type");
1926    CXXRecordDecl *FieldClassDecl
1927      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1928
1929    // Even though union members never have non-trivial default
1930    // constructions in C++03, we still build member initializers for aggregate
1931    // record types which can be union members, and C++0x allows non-trivial
1932    // default constructors for union members, so we ensure that only one
1933    // member is initialized for these.
1934    if (FieldClassDecl->isUnion()) {
1935      // First check for an explicit initializer for one field.
1936      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1937           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1938        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1939          Info.AllToInit.push_back(Init);
1940
1941          // Once we've initialized a field of an anonymous union, the union
1942          // field in the class is also initialized, so exit immediately.
1943          return false;
1944        } else if ((*FA)->isAnonymousStructOrUnion()) {
1945          if (CollectFieldInitializer(Info, Top, *FA))
1946            return true;
1947        }
1948      }
1949
1950      // Fallthrough and construct a default initializer for the union as
1951      // a whole, which can call its default constructor if such a thing exists
1952      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1953      // behavior going forward with C++0x, when anonymous unions there are
1954      // finalized, we should revisit this.
1955    } else {
1956      // For structs, we simply descend through to initialize all members where
1957      // necessary.
1958      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1959           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1960        if (CollectFieldInitializer(Info, Top, *FA))
1961          return true;
1962      }
1963    }
1964  }
1965
1966  // Don't try to build an implicit initializer if there were semantic
1967  // errors in any of the initializers (and therefore we might be
1968  // missing some that the user actually wrote).
1969  if (Info.AnyErrorsInInits)
1970    return false;
1971
1972  CXXCtorInitializer *Init = 0;
1973  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1974    return true;
1975
1976  if (Init)
1977    Info.AllToInit.push_back(Init);
1978
1979  return false;
1980}
1981
1982bool
1983Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1984                                  CXXCtorInitializer **Initializers,
1985                                  unsigned NumInitializers,
1986                                  bool AnyErrors) {
1987  if (Constructor->getDeclContext()->isDependentContext()) {
1988    // Just store the initializers as written, they will be checked during
1989    // instantiation.
1990    if (NumInitializers > 0) {
1991      Constructor->setNumCtorInitializers(NumInitializers);
1992      CXXCtorInitializer **baseOrMemberInitializers =
1993        new (Context) CXXCtorInitializer*[NumInitializers];
1994      memcpy(baseOrMemberInitializers, Initializers,
1995             NumInitializers * sizeof(CXXCtorInitializer*));
1996      Constructor->setCtorInitializers(baseOrMemberInitializers);
1997    }
1998
1999    return false;
2000  }
2001
2002  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2003
2004  // We need to build the initializer AST according to order of construction
2005  // and not what user specified in the Initializers list.
2006  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2007  if (!ClassDecl)
2008    return true;
2009
2010  bool HadError = false;
2011
2012  for (unsigned i = 0; i < NumInitializers; i++) {
2013    CXXCtorInitializer *Member = Initializers[i];
2014
2015    if (Member->isBaseInitializer())
2016      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2017    else
2018      Info.AllBaseFields[Member->getAnyMember()] = Member;
2019  }
2020
2021  // Keep track of the direct virtual bases.
2022  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2023  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2024       E = ClassDecl->bases_end(); I != E; ++I) {
2025    if (I->isVirtual())
2026      DirectVBases.insert(I);
2027  }
2028
2029  // Push virtual bases before others.
2030  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2031       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2032
2033    if (CXXCtorInitializer *Value
2034        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2035      Info.AllToInit.push_back(Value);
2036    } else if (!AnyErrors) {
2037      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2038      CXXCtorInitializer *CXXBaseInit;
2039      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2040                                       VBase, IsInheritedVirtualBase,
2041                                       CXXBaseInit)) {
2042        HadError = true;
2043        continue;
2044      }
2045
2046      Info.AllToInit.push_back(CXXBaseInit);
2047    }
2048  }
2049
2050  // Non-virtual bases.
2051  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2052       E = ClassDecl->bases_end(); Base != E; ++Base) {
2053    // Virtuals are in the virtual base list and already constructed.
2054    if (Base->isVirtual())
2055      continue;
2056
2057    if (CXXCtorInitializer *Value
2058          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2059      Info.AllToInit.push_back(Value);
2060    } else if (!AnyErrors) {
2061      CXXCtorInitializer *CXXBaseInit;
2062      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2063                                       Base, /*IsInheritedVirtualBase=*/false,
2064                                       CXXBaseInit)) {
2065        HadError = true;
2066        continue;
2067      }
2068
2069      Info.AllToInit.push_back(CXXBaseInit);
2070    }
2071  }
2072
2073  // Fields.
2074  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2075       E = ClassDecl->field_end(); Field != E; ++Field) {
2076    if ((*Field)->getType()->isIncompleteArrayType()) {
2077      assert(ClassDecl->hasFlexibleArrayMember() &&
2078             "Incomplete array type is not valid");
2079      continue;
2080    }
2081    if (CollectFieldInitializer(Info, *Field, *Field))
2082      HadError = true;
2083  }
2084
2085  NumInitializers = Info.AllToInit.size();
2086  if (NumInitializers > 0) {
2087    Constructor->setNumCtorInitializers(NumInitializers);
2088    CXXCtorInitializer **baseOrMemberInitializers =
2089      new (Context) CXXCtorInitializer*[NumInitializers];
2090    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2091           NumInitializers * sizeof(CXXCtorInitializer*));
2092    Constructor->setCtorInitializers(baseOrMemberInitializers);
2093
2094    // Constructors implicitly reference the base and member
2095    // destructors.
2096    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2097                                           Constructor->getParent());
2098  }
2099
2100  return HadError;
2101}
2102
2103static void *GetKeyForTopLevelField(FieldDecl *Field) {
2104  // For anonymous unions, use the class declaration as the key.
2105  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2106    if (RT->getDecl()->isAnonymousStructOrUnion())
2107      return static_cast<void *>(RT->getDecl());
2108  }
2109  return static_cast<void *>(Field);
2110}
2111
2112static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2113  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2114}
2115
2116static void *GetKeyForMember(ASTContext &Context,
2117                             CXXCtorInitializer *Member) {
2118  if (!Member->isAnyMemberInitializer())
2119    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2120
2121  // For fields injected into the class via declaration of an anonymous union,
2122  // use its anonymous union class declaration as the unique key.
2123  FieldDecl *Field = Member->getAnyMember();
2124
2125  // If the field is a member of an anonymous struct or union, our key
2126  // is the anonymous record decl that's a direct child of the class.
2127  RecordDecl *RD = Field->getParent();
2128  if (RD->isAnonymousStructOrUnion()) {
2129    while (true) {
2130      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2131      if (Parent->isAnonymousStructOrUnion())
2132        RD = Parent;
2133      else
2134        break;
2135    }
2136
2137    return static_cast<void *>(RD);
2138  }
2139
2140  return static_cast<void *>(Field);
2141}
2142
2143static void
2144DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2145                                  const CXXConstructorDecl *Constructor,
2146                                  CXXCtorInitializer **Inits,
2147                                  unsigned NumInits) {
2148  if (Constructor->getDeclContext()->isDependentContext())
2149    return;
2150
2151  // Don't check initializers order unless the warning is enabled at the
2152  // location of at least one initializer.
2153  bool ShouldCheckOrder = false;
2154  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2155    CXXCtorInitializer *Init = Inits[InitIndex];
2156    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2157                                         Init->getSourceLocation())
2158          != Diagnostic::Ignored) {
2159      ShouldCheckOrder = true;
2160      break;
2161    }
2162  }
2163  if (!ShouldCheckOrder)
2164    return;
2165
2166  // Build the list of bases and members in the order that they'll
2167  // actually be initialized.  The explicit initializers should be in
2168  // this same order but may be missing things.
2169  llvm::SmallVector<const void*, 32> IdealInitKeys;
2170
2171  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2172
2173  // 1. Virtual bases.
2174  for (CXXRecordDecl::base_class_const_iterator VBase =
2175       ClassDecl->vbases_begin(),
2176       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2177    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2178
2179  // 2. Non-virtual bases.
2180  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2181       E = ClassDecl->bases_end(); Base != E; ++Base) {
2182    if (Base->isVirtual())
2183      continue;
2184    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2185  }
2186
2187  // 3. Direct fields.
2188  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2189       E = ClassDecl->field_end(); Field != E; ++Field)
2190    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2191
2192  unsigned NumIdealInits = IdealInitKeys.size();
2193  unsigned IdealIndex = 0;
2194
2195  CXXCtorInitializer *PrevInit = 0;
2196  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2197    CXXCtorInitializer *Init = Inits[InitIndex];
2198    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2199
2200    // Scan forward to try to find this initializer in the idealized
2201    // initializers list.
2202    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2203      if (InitKey == IdealInitKeys[IdealIndex])
2204        break;
2205
2206    // If we didn't find this initializer, it must be because we
2207    // scanned past it on a previous iteration.  That can only
2208    // happen if we're out of order;  emit a warning.
2209    if (IdealIndex == NumIdealInits && PrevInit) {
2210      Sema::SemaDiagnosticBuilder D =
2211        SemaRef.Diag(PrevInit->getSourceLocation(),
2212                     diag::warn_initializer_out_of_order);
2213
2214      if (PrevInit->isAnyMemberInitializer())
2215        D << 0 << PrevInit->getAnyMember()->getDeclName();
2216      else
2217        D << 1 << PrevInit->getBaseClassInfo()->getType();
2218
2219      if (Init->isAnyMemberInitializer())
2220        D << 0 << Init->getAnyMember()->getDeclName();
2221      else
2222        D << 1 << Init->getBaseClassInfo()->getType();
2223
2224      // Move back to the initializer's location in the ideal list.
2225      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2226        if (InitKey == IdealInitKeys[IdealIndex])
2227          break;
2228
2229      assert(IdealIndex != NumIdealInits &&
2230             "initializer not found in initializer list");
2231    }
2232
2233    PrevInit = Init;
2234  }
2235}
2236
2237namespace {
2238bool CheckRedundantInit(Sema &S,
2239                        CXXCtorInitializer *Init,
2240                        CXXCtorInitializer *&PrevInit) {
2241  if (!PrevInit) {
2242    PrevInit = Init;
2243    return false;
2244  }
2245
2246  if (FieldDecl *Field = Init->getMember())
2247    S.Diag(Init->getSourceLocation(),
2248           diag::err_multiple_mem_initialization)
2249      << Field->getDeclName()
2250      << Init->getSourceRange();
2251  else {
2252    const Type *BaseClass = Init->getBaseClass();
2253    assert(BaseClass && "neither field nor base");
2254    S.Diag(Init->getSourceLocation(),
2255           diag::err_multiple_base_initialization)
2256      << QualType(BaseClass, 0)
2257      << Init->getSourceRange();
2258  }
2259  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2260    << 0 << PrevInit->getSourceRange();
2261
2262  return true;
2263}
2264
2265typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2266typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2267
2268bool CheckRedundantUnionInit(Sema &S,
2269                             CXXCtorInitializer *Init,
2270                             RedundantUnionMap &Unions) {
2271  FieldDecl *Field = Init->getAnyMember();
2272  RecordDecl *Parent = Field->getParent();
2273  if (!Parent->isAnonymousStructOrUnion())
2274    return false;
2275
2276  NamedDecl *Child = Field;
2277  do {
2278    if (Parent->isUnion()) {
2279      UnionEntry &En = Unions[Parent];
2280      if (En.first && En.first != Child) {
2281        S.Diag(Init->getSourceLocation(),
2282               diag::err_multiple_mem_union_initialization)
2283          << Field->getDeclName()
2284          << Init->getSourceRange();
2285        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2286          << 0 << En.second->getSourceRange();
2287        return true;
2288      } else if (!En.first) {
2289        En.first = Child;
2290        En.second = Init;
2291      }
2292    }
2293
2294    Child = Parent;
2295    Parent = cast<RecordDecl>(Parent->getDeclContext());
2296  } while (Parent->isAnonymousStructOrUnion());
2297
2298  return false;
2299}
2300}
2301
2302/// ActOnMemInitializers - Handle the member initializers for a constructor.
2303void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2304                                SourceLocation ColonLoc,
2305                                MemInitTy **meminits, unsigned NumMemInits,
2306                                bool AnyErrors) {
2307  if (!ConstructorDecl)
2308    return;
2309
2310  AdjustDeclIfTemplate(ConstructorDecl);
2311
2312  CXXConstructorDecl *Constructor
2313    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2314
2315  if (!Constructor) {
2316    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2317    return;
2318  }
2319
2320  CXXCtorInitializer **MemInits =
2321    reinterpret_cast<CXXCtorInitializer **>(meminits);
2322
2323  // Mapping for the duplicate initializers check.
2324  // For member initializers, this is keyed with a FieldDecl*.
2325  // For base initializers, this is keyed with a Type*.
2326  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2327
2328  // Mapping for the inconsistent anonymous-union initializers check.
2329  RedundantUnionMap MemberUnions;
2330
2331  bool HadError = false;
2332  for (unsigned i = 0; i < NumMemInits; i++) {
2333    CXXCtorInitializer *Init = MemInits[i];
2334
2335    // Set the source order index.
2336    Init->setSourceOrder(i);
2337
2338    if (Init->isAnyMemberInitializer()) {
2339      FieldDecl *Field = Init->getAnyMember();
2340      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2341          CheckRedundantUnionInit(*this, Init, MemberUnions))
2342        HadError = true;
2343    } else {
2344      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2345      if (CheckRedundantInit(*this, Init, Members[Key]))
2346        HadError = true;
2347    }
2348  }
2349
2350  if (HadError)
2351    return;
2352
2353  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2354
2355  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2356}
2357
2358void
2359Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2360                                             CXXRecordDecl *ClassDecl) {
2361  // Ignore dependent contexts.
2362  if (ClassDecl->isDependentContext())
2363    return;
2364
2365  // FIXME: all the access-control diagnostics are positioned on the
2366  // field/base declaration.  That's probably good; that said, the
2367  // user might reasonably want to know why the destructor is being
2368  // emitted, and we currently don't say.
2369
2370  // Non-static data members.
2371  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2372       E = ClassDecl->field_end(); I != E; ++I) {
2373    FieldDecl *Field = *I;
2374    if (Field->isInvalidDecl())
2375      continue;
2376    QualType FieldType = Context.getBaseElementType(Field->getType());
2377
2378    const RecordType* RT = FieldType->getAs<RecordType>();
2379    if (!RT)
2380      continue;
2381
2382    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2383    if (FieldClassDecl->hasTrivialDestructor())
2384      continue;
2385
2386    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2387    CheckDestructorAccess(Field->getLocation(), Dtor,
2388                          PDiag(diag::err_access_dtor_field)
2389                            << Field->getDeclName()
2390                            << FieldType);
2391
2392    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2393  }
2394
2395  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2396
2397  // Bases.
2398  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2399       E = ClassDecl->bases_end(); Base != E; ++Base) {
2400    // Bases are always records in a well-formed non-dependent class.
2401    const RecordType *RT = Base->getType()->getAs<RecordType>();
2402
2403    // Remember direct virtual bases.
2404    if (Base->isVirtual())
2405      DirectVirtualBases.insert(RT);
2406
2407    // Ignore trivial destructors.
2408    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2409    if (BaseClassDecl->hasTrivialDestructor())
2410      continue;
2411
2412    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2413
2414    // FIXME: caret should be on the start of the class name
2415    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2416                          PDiag(diag::err_access_dtor_base)
2417                            << Base->getType()
2418                            << Base->getSourceRange());
2419
2420    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2421  }
2422
2423  // Virtual bases.
2424  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2425       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2426
2427    // Bases are always records in a well-formed non-dependent class.
2428    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2429
2430    // Ignore direct virtual bases.
2431    if (DirectVirtualBases.count(RT))
2432      continue;
2433
2434    // Ignore trivial destructors.
2435    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2436    if (BaseClassDecl->hasTrivialDestructor())
2437      continue;
2438
2439    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2440    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2441                          PDiag(diag::err_access_dtor_vbase)
2442                            << VBase->getType());
2443
2444    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2445  }
2446}
2447
2448void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2449  if (!CDtorDecl)
2450    return;
2451
2452  if (CXXConstructorDecl *Constructor
2453      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2454    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2455}
2456
2457bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2458                                  unsigned DiagID, AbstractDiagSelID SelID) {
2459  if (SelID == -1)
2460    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2461  else
2462    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2463}
2464
2465bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2466                                  const PartialDiagnostic &PD) {
2467  if (!getLangOptions().CPlusPlus)
2468    return false;
2469
2470  if (const ArrayType *AT = Context.getAsArrayType(T))
2471    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2472
2473  if (const PointerType *PT = T->getAs<PointerType>()) {
2474    // Find the innermost pointer type.
2475    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2476      PT = T;
2477
2478    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2479      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2480  }
2481
2482  const RecordType *RT = T->getAs<RecordType>();
2483  if (!RT)
2484    return false;
2485
2486  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2487
2488  // We can't answer whether something is abstract until it has a
2489  // definition.  If it's currently being defined, we'll walk back
2490  // over all the declarations when we have a full definition.
2491  const CXXRecordDecl *Def = RD->getDefinition();
2492  if (!Def || Def->isBeingDefined())
2493    return false;
2494
2495  if (!RD->isAbstract())
2496    return false;
2497
2498  Diag(Loc, PD) << RD->getDeclName();
2499  DiagnoseAbstractType(RD);
2500
2501  return true;
2502}
2503
2504void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2505  // Check if we've already emitted the list of pure virtual functions
2506  // for this class.
2507  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2508    return;
2509
2510  CXXFinalOverriderMap FinalOverriders;
2511  RD->getFinalOverriders(FinalOverriders);
2512
2513  // Keep a set of seen pure methods so we won't diagnose the same method
2514  // more than once.
2515  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2516
2517  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2518                                   MEnd = FinalOverriders.end();
2519       M != MEnd;
2520       ++M) {
2521    for (OverridingMethods::iterator SO = M->second.begin(),
2522                                  SOEnd = M->second.end();
2523         SO != SOEnd; ++SO) {
2524      // C++ [class.abstract]p4:
2525      //   A class is abstract if it contains or inherits at least one
2526      //   pure virtual function for which the final overrider is pure
2527      //   virtual.
2528
2529      //
2530      if (SO->second.size() != 1)
2531        continue;
2532
2533      if (!SO->second.front().Method->isPure())
2534        continue;
2535
2536      if (!SeenPureMethods.insert(SO->second.front().Method))
2537        continue;
2538
2539      Diag(SO->second.front().Method->getLocation(),
2540           diag::note_pure_virtual_function)
2541        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2542    }
2543  }
2544
2545  if (!PureVirtualClassDiagSet)
2546    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2547  PureVirtualClassDiagSet->insert(RD);
2548}
2549
2550namespace {
2551struct AbstractUsageInfo {
2552  Sema &S;
2553  CXXRecordDecl *Record;
2554  CanQualType AbstractType;
2555  bool Invalid;
2556
2557  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2558    : S(S), Record(Record),
2559      AbstractType(S.Context.getCanonicalType(
2560                   S.Context.getTypeDeclType(Record))),
2561      Invalid(false) {}
2562
2563  void DiagnoseAbstractType() {
2564    if (Invalid) return;
2565    S.DiagnoseAbstractType(Record);
2566    Invalid = true;
2567  }
2568
2569  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2570};
2571
2572struct CheckAbstractUsage {
2573  AbstractUsageInfo &Info;
2574  const NamedDecl *Ctx;
2575
2576  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2577    : Info(Info), Ctx(Ctx) {}
2578
2579  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2580    switch (TL.getTypeLocClass()) {
2581#define ABSTRACT_TYPELOC(CLASS, PARENT)
2582#define TYPELOC(CLASS, PARENT) \
2583    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2584#include "clang/AST/TypeLocNodes.def"
2585    }
2586  }
2587
2588  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2589    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2590    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2591      if (!TL.getArg(I))
2592        continue;
2593
2594      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2595      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2596    }
2597  }
2598
2599  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2600    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2601  }
2602
2603  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2604    // Visit the type parameters from a permissive context.
2605    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2606      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2607      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2608        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2609          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2610      // TODO: other template argument types?
2611    }
2612  }
2613
2614  // Visit pointee types from a permissive context.
2615#define CheckPolymorphic(Type) \
2616  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2617    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2618  }
2619  CheckPolymorphic(PointerTypeLoc)
2620  CheckPolymorphic(ReferenceTypeLoc)
2621  CheckPolymorphic(MemberPointerTypeLoc)
2622  CheckPolymorphic(BlockPointerTypeLoc)
2623
2624  /// Handle all the types we haven't given a more specific
2625  /// implementation for above.
2626  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2627    // Every other kind of type that we haven't called out already
2628    // that has an inner type is either (1) sugar or (2) contains that
2629    // inner type in some way as a subobject.
2630    if (TypeLoc Next = TL.getNextTypeLoc())
2631      return Visit(Next, Sel);
2632
2633    // If there's no inner type and we're in a permissive context,
2634    // don't diagnose.
2635    if (Sel == Sema::AbstractNone) return;
2636
2637    // Check whether the type matches the abstract type.
2638    QualType T = TL.getType();
2639    if (T->isArrayType()) {
2640      Sel = Sema::AbstractArrayType;
2641      T = Info.S.Context.getBaseElementType(T);
2642    }
2643    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2644    if (CT != Info.AbstractType) return;
2645
2646    // It matched; do some magic.
2647    if (Sel == Sema::AbstractArrayType) {
2648      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2649        << T << TL.getSourceRange();
2650    } else {
2651      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2652        << Sel << T << TL.getSourceRange();
2653    }
2654    Info.DiagnoseAbstractType();
2655  }
2656};
2657
2658void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2659                                  Sema::AbstractDiagSelID Sel) {
2660  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2661}
2662
2663}
2664
2665/// Check for invalid uses of an abstract type in a method declaration.
2666static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2667                                    CXXMethodDecl *MD) {
2668  // No need to do the check on definitions, which require that
2669  // the return/param types be complete.
2670  if (MD->isThisDeclarationADefinition())
2671    return;
2672
2673  // For safety's sake, just ignore it if we don't have type source
2674  // information.  This should never happen for non-implicit methods,
2675  // but...
2676  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2677    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2678}
2679
2680/// Check for invalid uses of an abstract type within a class definition.
2681static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2682                                    CXXRecordDecl *RD) {
2683  for (CXXRecordDecl::decl_iterator
2684         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2685    Decl *D = *I;
2686    if (D->isImplicit()) continue;
2687
2688    // Methods and method templates.
2689    if (isa<CXXMethodDecl>(D)) {
2690      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2691    } else if (isa<FunctionTemplateDecl>(D)) {
2692      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2693      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2694
2695    // Fields and static variables.
2696    } else if (isa<FieldDecl>(D)) {
2697      FieldDecl *FD = cast<FieldDecl>(D);
2698      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2699        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2700    } else if (isa<VarDecl>(D)) {
2701      VarDecl *VD = cast<VarDecl>(D);
2702      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2703        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2704
2705    // Nested classes and class templates.
2706    } else if (isa<CXXRecordDecl>(D)) {
2707      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2708    } else if (isa<ClassTemplateDecl>(D)) {
2709      CheckAbstractClassUsage(Info,
2710                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2711    }
2712  }
2713}
2714
2715/// \brief Perform semantic checks on a class definition that has been
2716/// completing, introducing implicitly-declared members, checking for
2717/// abstract types, etc.
2718void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2719  if (!Record)
2720    return;
2721
2722  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2723    AbstractUsageInfo Info(*this, Record);
2724    CheckAbstractClassUsage(Info, Record);
2725  }
2726
2727  // If this is not an aggregate type and has no user-declared constructor,
2728  // complain about any non-static data members of reference or const scalar
2729  // type, since they will never get initializers.
2730  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2731      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2732    bool Complained = false;
2733    for (RecordDecl::field_iterator F = Record->field_begin(),
2734                                 FEnd = Record->field_end();
2735         F != FEnd; ++F) {
2736      if (F->getType()->isReferenceType() ||
2737          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2738        if (!Complained) {
2739          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2740            << Record->getTagKind() << Record;
2741          Complained = true;
2742        }
2743
2744        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2745          << F->getType()->isReferenceType()
2746          << F->getDeclName();
2747      }
2748    }
2749  }
2750
2751  if (Record->isDynamicClass() && !Record->isDependentType())
2752    DynamicClasses.push_back(Record);
2753
2754  if (Record->getIdentifier()) {
2755    // C++ [class.mem]p13:
2756    //   If T is the name of a class, then each of the following shall have a
2757    //   name different from T:
2758    //     - every member of every anonymous union that is a member of class T.
2759    //
2760    // C++ [class.mem]p14:
2761    //   In addition, if class T has a user-declared constructor (12.1), every
2762    //   non-static data member of class T shall have a name different from T.
2763    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2764         R.first != R.second; ++R.first) {
2765      NamedDecl *D = *R.first;
2766      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2767          isa<IndirectFieldDecl>(D)) {
2768        Diag(D->getLocation(), diag::err_member_name_of_class)
2769          << D->getDeclName();
2770        break;
2771      }
2772    }
2773  }
2774
2775  // Warn if the class has virtual methods but non-virtual public destructor.
2776  if (Record->isPolymorphic() && !Record->isDependentType()) {
2777    CXXDestructorDecl *dtor = Record->getDestructor();
2778    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2779      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2780           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2781  }
2782
2783  // See if a method overloads virtual methods in a base
2784  /// class without overriding any.
2785  if (!Record->isDependentType()) {
2786    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2787                                     MEnd = Record->method_end();
2788         M != MEnd; ++M) {
2789      DiagnoseHiddenVirtualMethods(Record, *M);
2790    }
2791  }
2792
2793  // Declare inherited constructors. We do this eagerly here because:
2794  // - The standard requires an eager diagnostic for conflicting inherited
2795  //   constructors from different classes.
2796  // - The lazy declaration of the other implicit constructors is so as to not
2797  //   waste space and performance on classes that are not meant to be
2798  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2799  //   have inherited constructors.
2800  DeclareInheritedConstructors(Record);
2801}
2802
2803/// \brief Data used with FindHiddenVirtualMethod
2804struct FindHiddenVirtualMethodData {
2805  Sema *S;
2806  CXXMethodDecl *Method;
2807  llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2808  llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2809};
2810
2811/// \brief Member lookup function that determines whether a given C++
2812/// method overloads virtual methods in a base class without overriding any,
2813/// to be used with CXXRecordDecl::lookupInBases().
2814static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2815                                    CXXBasePath &Path,
2816                                    void *UserData) {
2817  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2818
2819  FindHiddenVirtualMethodData &Data
2820    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2821
2822  DeclarationName Name = Data.Method->getDeclName();
2823  assert(Name.getNameKind() == DeclarationName::Identifier);
2824
2825  bool foundSameNameMethod = false;
2826  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2827  for (Path.Decls = BaseRecord->lookup(Name);
2828       Path.Decls.first != Path.Decls.second;
2829       ++Path.Decls.first) {
2830    NamedDecl *D = *Path.Decls.first;
2831    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2832      MD = MD->getCanonicalDecl();
2833      foundSameNameMethod = true;
2834      // Interested only in hidden virtual methods.
2835      if (!MD->isVirtual())
2836        continue;
2837      // If the method we are checking overrides a method from its base
2838      // don't warn about the other overloaded methods.
2839      if (!Data.S->IsOverload(Data.Method, MD, false))
2840        return true;
2841      // Collect the overload only if its hidden.
2842      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2843        overloadedMethods.push_back(MD);
2844    }
2845  }
2846
2847  if (foundSameNameMethod)
2848    Data.OverloadedMethods.append(overloadedMethods.begin(),
2849                                   overloadedMethods.end());
2850  return foundSameNameMethod;
2851}
2852
2853/// \brief See if a method overloads virtual methods in a base class without
2854/// overriding any.
2855void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2856  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2857                               MD->getLocation()) == Diagnostic::Ignored)
2858    return;
2859  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2860    return;
2861
2862  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2863                     /*bool RecordPaths=*/false,
2864                     /*bool DetectVirtual=*/false);
2865  FindHiddenVirtualMethodData Data;
2866  Data.Method = MD;
2867  Data.S = this;
2868
2869  // Keep the base methods that were overriden or introduced in the subclass
2870  // by 'using' in a set. A base method not in this set is hidden.
2871  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2872       res.first != res.second; ++res.first) {
2873    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2874      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2875                                          E = MD->end_overridden_methods();
2876           I != E; ++I)
2877        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2878    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2879      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2880        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2881  }
2882
2883  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2884      !Data.OverloadedMethods.empty()) {
2885    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2886      << MD << (Data.OverloadedMethods.size() > 1);
2887
2888    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2889      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2890      Diag(overloadedMD->getLocation(),
2891           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2892    }
2893  }
2894}
2895
2896void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2897                                             Decl *TagDecl,
2898                                             SourceLocation LBrac,
2899                                             SourceLocation RBrac,
2900                                             AttributeList *AttrList) {
2901  if (!TagDecl)
2902    return;
2903
2904  AdjustDeclIfTemplate(TagDecl);
2905
2906  ActOnFields(S, RLoc, TagDecl,
2907              // strict aliasing violation!
2908              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2909              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2910
2911  CheckCompletedCXXClass(
2912                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2913}
2914
2915namespace {
2916  /// \brief Helper class that collects exception specifications for
2917  /// implicitly-declared special member functions.
2918  class ImplicitExceptionSpecification {
2919    ASTContext &Context;
2920    bool AllowsAllExceptions;
2921    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2922    llvm::SmallVector<QualType, 4> Exceptions;
2923
2924  public:
2925    explicit ImplicitExceptionSpecification(ASTContext &Context)
2926      : Context(Context), AllowsAllExceptions(false) { }
2927
2928    /// \brief Whether the special member function should have any
2929    /// exception specification at all.
2930    bool hasExceptionSpecification() const {
2931      return !AllowsAllExceptions;
2932    }
2933
2934    /// \brief Whether the special member function should have a
2935    /// throw(...) exception specification (a Microsoft extension).
2936    bool hasAnyExceptionSpecification() const {
2937      return false;
2938    }
2939
2940    /// \brief The number of exceptions in the exception specification.
2941    unsigned size() const { return Exceptions.size(); }
2942
2943    /// \brief The set of exceptions in the exception specification.
2944    const QualType *data() const { return Exceptions.data(); }
2945
2946    /// \brief Note that
2947    void CalledDecl(CXXMethodDecl *Method) {
2948      // If we already know that we allow all exceptions, do nothing.
2949      if (AllowsAllExceptions || !Method)
2950        return;
2951
2952      const FunctionProtoType *Proto
2953        = Method->getType()->getAs<FunctionProtoType>();
2954
2955      // If this function can throw any exceptions, make a note of that.
2956      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2957        AllowsAllExceptions = true;
2958        ExceptionsSeen.clear();
2959        Exceptions.clear();
2960        return;
2961      }
2962
2963      // Record the exceptions in this function's exception specification.
2964      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2965                                              EEnd = Proto->exception_end();
2966           E != EEnd; ++E)
2967        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2968          Exceptions.push_back(*E);
2969    }
2970  };
2971}
2972
2973
2974/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2975/// special functions, such as the default constructor, copy
2976/// constructor, or destructor, to the given C++ class (C++
2977/// [special]p1).  This routine can only be executed just before the
2978/// definition of the class is complete.
2979void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2980  if (!ClassDecl->hasUserDeclaredConstructor())
2981    ++ASTContext::NumImplicitDefaultConstructors;
2982
2983  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2984    ++ASTContext::NumImplicitCopyConstructors;
2985
2986  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2987    ++ASTContext::NumImplicitCopyAssignmentOperators;
2988
2989    // If we have a dynamic class, then the copy assignment operator may be
2990    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2991    // it shows up in the right place in the vtable and that we diagnose
2992    // problems with the implicit exception specification.
2993    if (ClassDecl->isDynamicClass())
2994      DeclareImplicitCopyAssignment(ClassDecl);
2995  }
2996
2997  if (!ClassDecl->hasUserDeclaredDestructor()) {
2998    ++ASTContext::NumImplicitDestructors;
2999
3000    // If we have a dynamic class, then the destructor may be virtual, so we
3001    // have to declare the destructor immediately. This ensures that, e.g., it
3002    // shows up in the right place in the vtable and that we diagnose problems
3003    // with the implicit exception specification.
3004    if (ClassDecl->isDynamicClass())
3005      DeclareImplicitDestructor(ClassDecl);
3006  }
3007}
3008
3009void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3010  if (!D)
3011    return;
3012
3013  TemplateParameterList *Params = 0;
3014  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3015    Params = Template->getTemplateParameters();
3016  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3017           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3018    Params = PartialSpec->getTemplateParameters();
3019  else
3020    return;
3021
3022  for (TemplateParameterList::iterator Param = Params->begin(),
3023                                    ParamEnd = Params->end();
3024       Param != ParamEnd; ++Param) {
3025    NamedDecl *Named = cast<NamedDecl>(*Param);
3026    if (Named->getDeclName()) {
3027      S->AddDecl(Named);
3028      IdResolver.AddDecl(Named);
3029    }
3030  }
3031}
3032
3033void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3034  if (!RecordD) return;
3035  AdjustDeclIfTemplate(RecordD);
3036  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3037  PushDeclContext(S, Record);
3038}
3039
3040void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3041  if (!RecordD) return;
3042  PopDeclContext();
3043}
3044
3045/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3046/// parsing a top-level (non-nested) C++ class, and we are now
3047/// parsing those parts of the given Method declaration that could
3048/// not be parsed earlier (C++ [class.mem]p2), such as default
3049/// arguments. This action should enter the scope of the given
3050/// Method declaration as if we had just parsed the qualified method
3051/// name. However, it should not bring the parameters into scope;
3052/// that will be performed by ActOnDelayedCXXMethodParameter.
3053void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3054}
3055
3056/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3057/// C++ method declaration. We're (re-)introducing the given
3058/// function parameter into scope for use in parsing later parts of
3059/// the method declaration. For example, we could see an
3060/// ActOnParamDefaultArgument event for this parameter.
3061void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3062  if (!ParamD)
3063    return;
3064
3065  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3066
3067  // If this parameter has an unparsed default argument, clear it out
3068  // to make way for the parsed default argument.
3069  if (Param->hasUnparsedDefaultArg())
3070    Param->setDefaultArg(0);
3071
3072  S->AddDecl(Param);
3073  if (Param->getDeclName())
3074    IdResolver.AddDecl(Param);
3075}
3076
3077/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3078/// processing the delayed method declaration for Method. The method
3079/// declaration is now considered finished. There may be a separate
3080/// ActOnStartOfFunctionDef action later (not necessarily
3081/// immediately!) for this method, if it was also defined inside the
3082/// class body.
3083void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3084  if (!MethodD)
3085    return;
3086
3087  AdjustDeclIfTemplate(MethodD);
3088
3089  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3090
3091  // Now that we have our default arguments, check the constructor
3092  // again. It could produce additional diagnostics or affect whether
3093  // the class has implicitly-declared destructors, among other
3094  // things.
3095  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3096    CheckConstructor(Constructor);
3097
3098  // Check the default arguments, which we may have added.
3099  if (!Method->isInvalidDecl())
3100    CheckCXXDefaultArguments(Method);
3101}
3102
3103/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3104/// the well-formedness of the constructor declarator @p D with type @p
3105/// R. If there are any errors in the declarator, this routine will
3106/// emit diagnostics and set the invalid bit to true.  In any case, the type
3107/// will be updated to reflect a well-formed type for the constructor and
3108/// returned.
3109QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3110                                          StorageClass &SC) {
3111  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3112
3113  // C++ [class.ctor]p3:
3114  //   A constructor shall not be virtual (10.3) or static (9.4). A
3115  //   constructor can be invoked for a const, volatile or const
3116  //   volatile object. A constructor shall not be declared const,
3117  //   volatile, or const volatile (9.3.2).
3118  if (isVirtual) {
3119    if (!D.isInvalidType())
3120      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3121        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3122        << SourceRange(D.getIdentifierLoc());
3123    D.setInvalidType();
3124  }
3125  if (SC == SC_Static) {
3126    if (!D.isInvalidType())
3127      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3128        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3129        << SourceRange(D.getIdentifierLoc());
3130    D.setInvalidType();
3131    SC = SC_None;
3132  }
3133
3134  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3135  if (FTI.TypeQuals != 0) {
3136    if (FTI.TypeQuals & Qualifiers::Const)
3137      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3138        << "const" << SourceRange(D.getIdentifierLoc());
3139    if (FTI.TypeQuals & Qualifiers::Volatile)
3140      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3141        << "volatile" << SourceRange(D.getIdentifierLoc());
3142    if (FTI.TypeQuals & Qualifiers::Restrict)
3143      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3144        << "restrict" << SourceRange(D.getIdentifierLoc());
3145    D.setInvalidType();
3146  }
3147
3148  // C++0x [class.ctor]p4:
3149  //   A constructor shall not be declared with a ref-qualifier.
3150  if (FTI.hasRefQualifier()) {
3151    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3152      << FTI.RefQualifierIsLValueRef
3153      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3154    D.setInvalidType();
3155  }
3156
3157  // Rebuild the function type "R" without any type qualifiers (in
3158  // case any of the errors above fired) and with "void" as the
3159  // return type, since constructors don't have return types.
3160  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3161  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3162    return R;
3163
3164  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3165  EPI.TypeQuals = 0;
3166  EPI.RefQualifier = RQ_None;
3167
3168  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3169                                 Proto->getNumArgs(), EPI);
3170}
3171
3172/// CheckConstructor - Checks a fully-formed constructor for
3173/// well-formedness, issuing any diagnostics required. Returns true if
3174/// the constructor declarator is invalid.
3175void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3176  CXXRecordDecl *ClassDecl
3177    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3178  if (!ClassDecl)
3179    return Constructor->setInvalidDecl();
3180
3181  // C++ [class.copy]p3:
3182  //   A declaration of a constructor for a class X is ill-formed if
3183  //   its first parameter is of type (optionally cv-qualified) X and
3184  //   either there are no other parameters or else all other
3185  //   parameters have default arguments.
3186  if (!Constructor->isInvalidDecl() &&
3187      ((Constructor->getNumParams() == 1) ||
3188       (Constructor->getNumParams() > 1 &&
3189        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3190      Constructor->getTemplateSpecializationKind()
3191                                              != TSK_ImplicitInstantiation) {
3192    QualType ParamType = Constructor->getParamDecl(0)->getType();
3193    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3194    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3195      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3196      const char *ConstRef
3197        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3198                                                        : " const &";
3199      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3200        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3201
3202      // FIXME: Rather that making the constructor invalid, we should endeavor
3203      // to fix the type.
3204      Constructor->setInvalidDecl();
3205    }
3206  }
3207}
3208
3209/// CheckDestructor - Checks a fully-formed destructor definition for
3210/// well-formedness, issuing any diagnostics required.  Returns true
3211/// on error.
3212bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3213  CXXRecordDecl *RD = Destructor->getParent();
3214
3215  if (Destructor->isVirtual()) {
3216    SourceLocation Loc;
3217
3218    if (!Destructor->isImplicit())
3219      Loc = Destructor->getLocation();
3220    else
3221      Loc = RD->getLocation();
3222
3223    // If we have a virtual destructor, look up the deallocation function
3224    FunctionDecl *OperatorDelete = 0;
3225    DeclarationName Name =
3226    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3227    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3228      return true;
3229
3230    MarkDeclarationReferenced(Loc, OperatorDelete);
3231
3232    Destructor->setOperatorDelete(OperatorDelete);
3233  }
3234
3235  return false;
3236}
3237
3238static inline bool
3239FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3240  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3241          FTI.ArgInfo[0].Param &&
3242          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3243}
3244
3245/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3246/// the well-formednes of the destructor declarator @p D with type @p
3247/// R. If there are any errors in the declarator, this routine will
3248/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3249/// will be updated to reflect a well-formed type for the destructor and
3250/// returned.
3251QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3252                                         StorageClass& SC) {
3253  // C++ [class.dtor]p1:
3254  //   [...] A typedef-name that names a class is a class-name
3255  //   (7.1.3); however, a typedef-name that names a class shall not
3256  //   be used as the identifier in the declarator for a destructor
3257  //   declaration.
3258  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3259  if (isa<TypedefType>(DeclaratorType))
3260    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3261      << DeclaratorType;
3262
3263  // C++ [class.dtor]p2:
3264  //   A destructor is used to destroy objects of its class type. A
3265  //   destructor takes no parameters, and no return type can be
3266  //   specified for it (not even void). The address of a destructor
3267  //   shall not be taken. A destructor shall not be static. A
3268  //   destructor can be invoked for a const, volatile or const
3269  //   volatile object. A destructor shall not be declared const,
3270  //   volatile or const volatile (9.3.2).
3271  if (SC == SC_Static) {
3272    if (!D.isInvalidType())
3273      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3274        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3275        << SourceRange(D.getIdentifierLoc())
3276        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3277
3278    SC = SC_None;
3279  }
3280  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3281    // Destructors don't have return types, but the parser will
3282    // happily parse something like:
3283    //
3284    //   class X {
3285    //     float ~X();
3286    //   };
3287    //
3288    // The return type will be eliminated later.
3289    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3290      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3291      << SourceRange(D.getIdentifierLoc());
3292  }
3293
3294  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3295  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3296    if (FTI.TypeQuals & Qualifiers::Const)
3297      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3298        << "const" << SourceRange(D.getIdentifierLoc());
3299    if (FTI.TypeQuals & Qualifiers::Volatile)
3300      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3301        << "volatile" << SourceRange(D.getIdentifierLoc());
3302    if (FTI.TypeQuals & Qualifiers::Restrict)
3303      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3304        << "restrict" << SourceRange(D.getIdentifierLoc());
3305    D.setInvalidType();
3306  }
3307
3308  // C++0x [class.dtor]p2:
3309  //   A destructor shall not be declared with a ref-qualifier.
3310  if (FTI.hasRefQualifier()) {
3311    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3312      << FTI.RefQualifierIsLValueRef
3313      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3314    D.setInvalidType();
3315  }
3316
3317  // Make sure we don't have any parameters.
3318  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3319    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3320
3321    // Delete the parameters.
3322    FTI.freeArgs();
3323    D.setInvalidType();
3324  }
3325
3326  // Make sure the destructor isn't variadic.
3327  if (FTI.isVariadic) {
3328    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3329    D.setInvalidType();
3330  }
3331
3332  // Rebuild the function type "R" without any type qualifiers or
3333  // parameters (in case any of the errors above fired) and with
3334  // "void" as the return type, since destructors don't have return
3335  // types.
3336  if (!D.isInvalidType())
3337    return R;
3338
3339  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3340  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3341  EPI.Variadic = false;
3342  EPI.TypeQuals = 0;
3343  EPI.RefQualifier = RQ_None;
3344  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3345}
3346
3347/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3348/// well-formednes of the conversion function declarator @p D with
3349/// type @p R. If there are any errors in the declarator, this routine
3350/// will emit diagnostics and return true. Otherwise, it will return
3351/// false. Either way, the type @p R will be updated to reflect a
3352/// well-formed type for the conversion operator.
3353void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3354                                     StorageClass& SC) {
3355  // C++ [class.conv.fct]p1:
3356  //   Neither parameter types nor return type can be specified. The
3357  //   type of a conversion function (8.3.5) is "function taking no
3358  //   parameter returning conversion-type-id."
3359  if (SC == SC_Static) {
3360    if (!D.isInvalidType())
3361      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3362        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3363        << SourceRange(D.getIdentifierLoc());
3364    D.setInvalidType();
3365    SC = SC_None;
3366  }
3367
3368  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3369
3370  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3371    // Conversion functions don't have return types, but the parser will
3372    // happily parse something like:
3373    //
3374    //   class X {
3375    //     float operator bool();
3376    //   };
3377    //
3378    // The return type will be changed later anyway.
3379    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3380      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3381      << SourceRange(D.getIdentifierLoc());
3382    D.setInvalidType();
3383  }
3384
3385  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3386
3387  // Make sure we don't have any parameters.
3388  if (Proto->getNumArgs() > 0) {
3389    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3390
3391    // Delete the parameters.
3392    D.getFunctionTypeInfo().freeArgs();
3393    D.setInvalidType();
3394  } else if (Proto->isVariadic()) {
3395    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3396    D.setInvalidType();
3397  }
3398
3399  // Diagnose "&operator bool()" and other such nonsense.  This
3400  // is actually a gcc extension which we don't support.
3401  if (Proto->getResultType() != ConvType) {
3402    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3403      << Proto->getResultType();
3404    D.setInvalidType();
3405    ConvType = Proto->getResultType();
3406  }
3407
3408  // C++ [class.conv.fct]p4:
3409  //   The conversion-type-id shall not represent a function type nor
3410  //   an array type.
3411  if (ConvType->isArrayType()) {
3412    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3413    ConvType = Context.getPointerType(ConvType);
3414    D.setInvalidType();
3415  } else if (ConvType->isFunctionType()) {
3416    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3417    ConvType = Context.getPointerType(ConvType);
3418    D.setInvalidType();
3419  }
3420
3421  // Rebuild the function type "R" without any parameters (in case any
3422  // of the errors above fired) and with the conversion type as the
3423  // return type.
3424  if (D.isInvalidType())
3425    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3426
3427  // C++0x explicit conversion operators.
3428  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3429    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3430         diag::warn_explicit_conversion_functions)
3431      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3432}
3433
3434/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3435/// the declaration of the given C++ conversion function. This routine
3436/// is responsible for recording the conversion function in the C++
3437/// class, if possible.
3438Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3439  assert(Conversion && "Expected to receive a conversion function declaration");
3440
3441  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3442
3443  // Make sure we aren't redeclaring the conversion function.
3444  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3445
3446  // C++ [class.conv.fct]p1:
3447  //   [...] A conversion function is never used to convert a
3448  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3449  //   same object type (or a reference to it), to a (possibly
3450  //   cv-qualified) base class of that type (or a reference to it),
3451  //   or to (possibly cv-qualified) void.
3452  // FIXME: Suppress this warning if the conversion function ends up being a
3453  // virtual function that overrides a virtual function in a base class.
3454  QualType ClassType
3455    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3456  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3457    ConvType = ConvTypeRef->getPointeeType();
3458  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3459      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3460    /* Suppress diagnostics for instantiations. */;
3461  else if (ConvType->isRecordType()) {
3462    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3463    if (ConvType == ClassType)
3464      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3465        << ClassType;
3466    else if (IsDerivedFrom(ClassType, ConvType))
3467      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3468        <<  ClassType << ConvType;
3469  } else if (ConvType->isVoidType()) {
3470    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3471      << ClassType << ConvType;
3472  }
3473
3474  if (FunctionTemplateDecl *ConversionTemplate
3475                                = Conversion->getDescribedFunctionTemplate())
3476    return ConversionTemplate;
3477
3478  return Conversion;
3479}
3480
3481//===----------------------------------------------------------------------===//
3482// Namespace Handling
3483//===----------------------------------------------------------------------===//
3484
3485
3486
3487/// ActOnStartNamespaceDef - This is called at the start of a namespace
3488/// definition.
3489Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3490                                   SourceLocation InlineLoc,
3491                                   SourceLocation IdentLoc,
3492                                   IdentifierInfo *II,
3493                                   SourceLocation LBrace,
3494                                   AttributeList *AttrList) {
3495  // anonymous namespace starts at its left brace
3496  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3497    (II ? IdentLoc : LBrace) , II);
3498  Namespc->setLBracLoc(LBrace);
3499  Namespc->setInline(InlineLoc.isValid());
3500
3501  Scope *DeclRegionScope = NamespcScope->getParent();
3502
3503  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3504
3505  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3506    PushNamespaceVisibilityAttr(Attr);
3507
3508  if (II) {
3509    // C++ [namespace.def]p2:
3510    //   The identifier in an original-namespace-definition shall not
3511    //   have been previously defined in the declarative region in
3512    //   which the original-namespace-definition appears. The
3513    //   identifier in an original-namespace-definition is the name of
3514    //   the namespace. Subsequently in that declarative region, it is
3515    //   treated as an original-namespace-name.
3516    //
3517    // Since namespace names are unique in their scope, and we don't
3518    // look through using directives, just
3519    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3520    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3521
3522    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3523      // This is an extended namespace definition.
3524      if (Namespc->isInline() != OrigNS->isInline()) {
3525        // inline-ness must match
3526        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3527          << Namespc->isInline();
3528        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3529        Namespc->setInvalidDecl();
3530        // Recover by ignoring the new namespace's inline status.
3531        Namespc->setInline(OrigNS->isInline());
3532      }
3533
3534      // Attach this namespace decl to the chain of extended namespace
3535      // definitions.
3536      OrigNS->setNextNamespace(Namespc);
3537      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3538
3539      // Remove the previous declaration from the scope.
3540      if (DeclRegionScope->isDeclScope(OrigNS)) {
3541        IdResolver.RemoveDecl(OrigNS);
3542        DeclRegionScope->RemoveDecl(OrigNS);
3543      }
3544    } else if (PrevDecl) {
3545      // This is an invalid name redefinition.
3546      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3547       << Namespc->getDeclName();
3548      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3549      Namespc->setInvalidDecl();
3550      // Continue on to push Namespc as current DeclContext and return it.
3551    } else if (II->isStr("std") &&
3552               CurContext->getRedeclContext()->isTranslationUnit()) {
3553      // This is the first "real" definition of the namespace "std", so update
3554      // our cache of the "std" namespace to point at this definition.
3555      if (NamespaceDecl *StdNS = getStdNamespace()) {
3556        // We had already defined a dummy namespace "std". Link this new
3557        // namespace definition to the dummy namespace "std".
3558        StdNS->setNextNamespace(Namespc);
3559        StdNS->setLocation(IdentLoc);
3560        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3561      }
3562
3563      // Make our StdNamespace cache point at the first real definition of the
3564      // "std" namespace.
3565      StdNamespace = Namespc;
3566    }
3567
3568    PushOnScopeChains(Namespc, DeclRegionScope);
3569  } else {
3570    // Anonymous namespaces.
3571    assert(Namespc->isAnonymousNamespace());
3572
3573    // Link the anonymous namespace into its parent.
3574    NamespaceDecl *PrevDecl;
3575    DeclContext *Parent = CurContext->getRedeclContext();
3576    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3577      PrevDecl = TU->getAnonymousNamespace();
3578      TU->setAnonymousNamespace(Namespc);
3579    } else {
3580      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3581      PrevDecl = ND->getAnonymousNamespace();
3582      ND->setAnonymousNamespace(Namespc);
3583    }
3584
3585    // Link the anonymous namespace with its previous declaration.
3586    if (PrevDecl) {
3587      assert(PrevDecl->isAnonymousNamespace());
3588      assert(!PrevDecl->getNextNamespace());
3589      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3590      PrevDecl->setNextNamespace(Namespc);
3591
3592      if (Namespc->isInline() != PrevDecl->isInline()) {
3593        // inline-ness must match
3594        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3595          << Namespc->isInline();
3596        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3597        Namespc->setInvalidDecl();
3598        // Recover by ignoring the new namespace's inline status.
3599        Namespc->setInline(PrevDecl->isInline());
3600      }
3601    }
3602
3603    CurContext->addDecl(Namespc);
3604
3605    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3606    //   behaves as if it were replaced by
3607    //     namespace unique { /* empty body */ }
3608    //     using namespace unique;
3609    //     namespace unique { namespace-body }
3610    //   where all occurrences of 'unique' in a translation unit are
3611    //   replaced by the same identifier and this identifier differs
3612    //   from all other identifiers in the entire program.
3613
3614    // We just create the namespace with an empty name and then add an
3615    // implicit using declaration, just like the standard suggests.
3616    //
3617    // CodeGen enforces the "universally unique" aspect by giving all
3618    // declarations semantically contained within an anonymous
3619    // namespace internal linkage.
3620
3621    if (!PrevDecl) {
3622      UsingDirectiveDecl* UD
3623        = UsingDirectiveDecl::Create(Context, CurContext,
3624                                     /* 'using' */ LBrace,
3625                                     /* 'namespace' */ SourceLocation(),
3626                                     /* qualifier */ SourceRange(),
3627                                     /* NNS */ NULL,
3628                                     /* identifier */ SourceLocation(),
3629                                     Namespc,
3630                                     /* Ancestor */ CurContext);
3631      UD->setImplicit();
3632      CurContext->addDecl(UD);
3633    }
3634  }
3635
3636  // Although we could have an invalid decl (i.e. the namespace name is a
3637  // redefinition), push it as current DeclContext and try to continue parsing.
3638  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3639  // for the namespace has the declarations that showed up in that particular
3640  // namespace definition.
3641  PushDeclContext(NamespcScope, Namespc);
3642  return Namespc;
3643}
3644
3645/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3646/// is a namespace alias, returns the namespace it points to.
3647static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3648  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3649    return AD->getNamespace();
3650  return dyn_cast_or_null<NamespaceDecl>(D);
3651}
3652
3653/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3654/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3655void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3656  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3657  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3658  Namespc->setRBracLoc(RBrace);
3659  PopDeclContext();
3660  if (Namespc->hasAttr<VisibilityAttr>())
3661    PopPragmaVisibility();
3662}
3663
3664CXXRecordDecl *Sema::getStdBadAlloc() const {
3665  return cast_or_null<CXXRecordDecl>(
3666                                  StdBadAlloc.get(Context.getExternalSource()));
3667}
3668
3669NamespaceDecl *Sema::getStdNamespace() const {
3670  return cast_or_null<NamespaceDecl>(
3671                                 StdNamespace.get(Context.getExternalSource()));
3672}
3673
3674/// \brief Retrieve the special "std" namespace, which may require us to
3675/// implicitly define the namespace.
3676NamespaceDecl *Sema::getOrCreateStdNamespace() {
3677  if (!StdNamespace) {
3678    // The "std" namespace has not yet been defined, so build one implicitly.
3679    StdNamespace = NamespaceDecl::Create(Context,
3680                                         Context.getTranslationUnitDecl(),
3681                                         SourceLocation(),
3682                                         &PP.getIdentifierTable().get("std"));
3683    getStdNamespace()->setImplicit(true);
3684  }
3685
3686  return getStdNamespace();
3687}
3688
3689Decl *Sema::ActOnUsingDirective(Scope *S,
3690                                          SourceLocation UsingLoc,
3691                                          SourceLocation NamespcLoc,
3692                                          CXXScopeSpec &SS,
3693                                          SourceLocation IdentLoc,
3694                                          IdentifierInfo *NamespcName,
3695                                          AttributeList *AttrList) {
3696  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3697  assert(NamespcName && "Invalid NamespcName.");
3698  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3699
3700  // This can only happen along a recovery path.
3701  while (S->getFlags() & Scope::TemplateParamScope)
3702    S = S->getParent();
3703  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3704
3705  UsingDirectiveDecl *UDir = 0;
3706  NestedNameSpecifier *Qualifier = 0;
3707  if (SS.isSet())
3708    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3709
3710  // Lookup namespace name.
3711  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3712  LookupParsedName(R, S, &SS);
3713  if (R.isAmbiguous())
3714    return 0;
3715
3716  if (R.empty()) {
3717    // Allow "using namespace std;" or "using namespace ::std;" even if
3718    // "std" hasn't been defined yet, for GCC compatibility.
3719    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3720        NamespcName->isStr("std")) {
3721      Diag(IdentLoc, diag::ext_using_undefined_std);
3722      R.addDecl(getOrCreateStdNamespace());
3723      R.resolveKind();
3724    }
3725    // Otherwise, attempt typo correction.
3726    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3727                                                       CTC_NoKeywords, 0)) {
3728      if (R.getAsSingle<NamespaceDecl>() ||
3729          R.getAsSingle<NamespaceAliasDecl>()) {
3730        if (DeclContext *DC = computeDeclContext(SS, false))
3731          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3732            << NamespcName << DC << Corrected << SS.getRange()
3733            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3734        else
3735          Diag(IdentLoc, diag::err_using_directive_suggest)
3736            << NamespcName << Corrected
3737            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3738        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3739          << Corrected;
3740
3741        NamespcName = Corrected.getAsIdentifierInfo();
3742      } else {
3743        R.clear();
3744        R.setLookupName(NamespcName);
3745      }
3746    }
3747  }
3748
3749  if (!R.empty()) {
3750    NamedDecl *Named = R.getFoundDecl();
3751    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3752        && "expected namespace decl");
3753    // C++ [namespace.udir]p1:
3754    //   A using-directive specifies that the names in the nominated
3755    //   namespace can be used in the scope in which the
3756    //   using-directive appears after the using-directive. During
3757    //   unqualified name lookup (3.4.1), the names appear as if they
3758    //   were declared in the nearest enclosing namespace which
3759    //   contains both the using-directive and the nominated
3760    //   namespace. [Note: in this context, "contains" means "contains
3761    //   directly or indirectly". ]
3762
3763    // Find enclosing context containing both using-directive and
3764    // nominated namespace.
3765    NamespaceDecl *NS = getNamespaceDecl(Named);
3766    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3767    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3768      CommonAncestor = CommonAncestor->getParent();
3769
3770    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3771                                      SS.getRange(),
3772                                      (NestedNameSpecifier *)SS.getScopeRep(),
3773                                      IdentLoc, Named, CommonAncestor);
3774    PushUsingDirective(S, UDir);
3775  } else {
3776    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3777  }
3778
3779  // FIXME: We ignore attributes for now.
3780  return UDir;
3781}
3782
3783void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3784  // If scope has associated entity, then using directive is at namespace
3785  // or translation unit scope. We add UsingDirectiveDecls, into
3786  // it's lookup structure.
3787  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3788    Ctx->addDecl(UDir);
3789  else
3790    // Otherwise it is block-sope. using-directives will affect lookup
3791    // only to the end of scope.
3792    S->PushUsingDirective(UDir);
3793}
3794
3795
3796Decl *Sema::ActOnUsingDeclaration(Scope *S,
3797                                  AccessSpecifier AS,
3798                                  bool HasUsingKeyword,
3799                                  SourceLocation UsingLoc,
3800                                  CXXScopeSpec &SS,
3801                                  UnqualifiedId &Name,
3802                                  AttributeList *AttrList,
3803                                  bool IsTypeName,
3804                                  SourceLocation TypenameLoc) {
3805  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3806
3807  switch (Name.getKind()) {
3808  case UnqualifiedId::IK_Identifier:
3809  case UnqualifiedId::IK_OperatorFunctionId:
3810  case UnqualifiedId::IK_LiteralOperatorId:
3811  case UnqualifiedId::IK_ConversionFunctionId:
3812    break;
3813
3814  case UnqualifiedId::IK_ConstructorName:
3815  case UnqualifiedId::IK_ConstructorTemplateId:
3816    // C++0x inherited constructors.
3817    if (getLangOptions().CPlusPlus0x) break;
3818
3819    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3820      << SS.getRange();
3821    return 0;
3822
3823  case UnqualifiedId::IK_DestructorName:
3824    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3825      << SS.getRange();
3826    return 0;
3827
3828  case UnqualifiedId::IK_TemplateId:
3829    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3830      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3831    return 0;
3832  }
3833
3834  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3835  DeclarationName TargetName = TargetNameInfo.getName();
3836  if (!TargetName)
3837    return 0;
3838
3839  // Warn about using declarations.
3840  // TODO: store that the declaration was written without 'using' and
3841  // talk about access decls instead of using decls in the
3842  // diagnostics.
3843  if (!HasUsingKeyword) {
3844    UsingLoc = Name.getSourceRange().getBegin();
3845
3846    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3847      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3848  }
3849
3850  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3851      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3852    return 0;
3853
3854  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3855                                        TargetNameInfo, AttrList,
3856                                        /* IsInstantiation */ false,
3857                                        IsTypeName, TypenameLoc);
3858  if (UD)
3859    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3860
3861  return UD;
3862}
3863
3864/// \brief Determine whether a using declaration considers the given
3865/// declarations as "equivalent", e.g., if they are redeclarations of
3866/// the same entity or are both typedefs of the same type.
3867static bool
3868IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3869                         bool &SuppressRedeclaration) {
3870  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3871    SuppressRedeclaration = false;
3872    return true;
3873  }
3874
3875  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3876    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3877      SuppressRedeclaration = true;
3878      return Context.hasSameType(TD1->getUnderlyingType(),
3879                                 TD2->getUnderlyingType());
3880    }
3881
3882  return false;
3883}
3884
3885
3886/// Determines whether to create a using shadow decl for a particular
3887/// decl, given the set of decls existing prior to this using lookup.
3888bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3889                                const LookupResult &Previous) {
3890  // Diagnose finding a decl which is not from a base class of the
3891  // current class.  We do this now because there are cases where this
3892  // function will silently decide not to build a shadow decl, which
3893  // will pre-empt further diagnostics.
3894  //
3895  // We don't need to do this in C++0x because we do the check once on
3896  // the qualifier.
3897  //
3898  // FIXME: diagnose the following if we care enough:
3899  //   struct A { int foo; };
3900  //   struct B : A { using A::foo; };
3901  //   template <class T> struct C : A {};
3902  //   template <class T> struct D : C<T> { using B::foo; } // <---
3903  // This is invalid (during instantiation) in C++03 because B::foo
3904  // resolves to the using decl in B, which is not a base class of D<T>.
3905  // We can't diagnose it immediately because C<T> is an unknown
3906  // specialization.  The UsingShadowDecl in D<T> then points directly
3907  // to A::foo, which will look well-formed when we instantiate.
3908  // The right solution is to not collapse the shadow-decl chain.
3909  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3910    DeclContext *OrigDC = Orig->getDeclContext();
3911
3912    // Handle enums and anonymous structs.
3913    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3914    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3915    while (OrigRec->isAnonymousStructOrUnion())
3916      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3917
3918    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3919      if (OrigDC == CurContext) {
3920        Diag(Using->getLocation(),
3921             diag::err_using_decl_nested_name_specifier_is_current_class)
3922          << Using->getQualifierLoc().getSourceRange();
3923        Diag(Orig->getLocation(), diag::note_using_decl_target);
3924        return true;
3925      }
3926
3927      Diag(Using->getQualifierLoc().getBeginLoc(),
3928           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3929        << Using->getQualifier()
3930        << cast<CXXRecordDecl>(CurContext)
3931        << Using->getQualifierLoc().getSourceRange();
3932      Diag(Orig->getLocation(), diag::note_using_decl_target);
3933      return true;
3934    }
3935  }
3936
3937  if (Previous.empty()) return false;
3938
3939  NamedDecl *Target = Orig;
3940  if (isa<UsingShadowDecl>(Target))
3941    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3942
3943  // If the target happens to be one of the previous declarations, we
3944  // don't have a conflict.
3945  //
3946  // FIXME: but we might be increasing its access, in which case we
3947  // should redeclare it.
3948  NamedDecl *NonTag = 0, *Tag = 0;
3949  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3950         I != E; ++I) {
3951    NamedDecl *D = (*I)->getUnderlyingDecl();
3952    bool Result;
3953    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3954      return Result;
3955
3956    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3957  }
3958
3959  if (Target->isFunctionOrFunctionTemplate()) {
3960    FunctionDecl *FD;
3961    if (isa<FunctionTemplateDecl>(Target))
3962      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3963    else
3964      FD = cast<FunctionDecl>(Target);
3965
3966    NamedDecl *OldDecl = 0;
3967    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3968    case Ovl_Overload:
3969      return false;
3970
3971    case Ovl_NonFunction:
3972      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3973      break;
3974
3975    // We found a decl with the exact signature.
3976    case Ovl_Match:
3977      // If we're in a record, we want to hide the target, so we
3978      // return true (without a diagnostic) to tell the caller not to
3979      // build a shadow decl.
3980      if (CurContext->isRecord())
3981        return true;
3982
3983      // If we're not in a record, this is an error.
3984      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3985      break;
3986    }
3987
3988    Diag(Target->getLocation(), diag::note_using_decl_target);
3989    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3990    return true;
3991  }
3992
3993  // Target is not a function.
3994
3995  if (isa<TagDecl>(Target)) {
3996    // No conflict between a tag and a non-tag.
3997    if (!Tag) return false;
3998
3999    Diag(Using->getLocation(), diag::err_using_decl_conflict);
4000    Diag(Target->getLocation(), diag::note_using_decl_target);
4001    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
4002    return true;
4003  }
4004
4005  // No conflict between a tag and a non-tag.
4006  if (!NonTag) return false;
4007
4008  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4009  Diag(Target->getLocation(), diag::note_using_decl_target);
4010  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4011  return true;
4012}
4013
4014/// Builds a shadow declaration corresponding to a 'using' declaration.
4015UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4016                                            UsingDecl *UD,
4017                                            NamedDecl *Orig) {
4018
4019  // If we resolved to another shadow declaration, just coalesce them.
4020  NamedDecl *Target = Orig;
4021  if (isa<UsingShadowDecl>(Target)) {
4022    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4023    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4024  }
4025
4026  UsingShadowDecl *Shadow
4027    = UsingShadowDecl::Create(Context, CurContext,
4028                              UD->getLocation(), UD, Target);
4029  UD->addShadowDecl(Shadow);
4030
4031  Shadow->setAccess(UD->getAccess());
4032  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4033    Shadow->setInvalidDecl();
4034
4035  if (S)
4036    PushOnScopeChains(Shadow, S);
4037  else
4038    CurContext->addDecl(Shadow);
4039
4040
4041  return Shadow;
4042}
4043
4044/// Hides a using shadow declaration.  This is required by the current
4045/// using-decl implementation when a resolvable using declaration in a
4046/// class is followed by a declaration which would hide or override
4047/// one or more of the using decl's targets; for example:
4048///
4049///   struct Base { void foo(int); };
4050///   struct Derived : Base {
4051///     using Base::foo;
4052///     void foo(int);
4053///   };
4054///
4055/// The governing language is C++03 [namespace.udecl]p12:
4056///
4057///   When a using-declaration brings names from a base class into a
4058///   derived class scope, member functions in the derived class
4059///   override and/or hide member functions with the same name and
4060///   parameter types in a base class (rather than conflicting).
4061///
4062/// There are two ways to implement this:
4063///   (1) optimistically create shadow decls when they're not hidden
4064///       by existing declarations, or
4065///   (2) don't create any shadow decls (or at least don't make them
4066///       visible) until we've fully parsed/instantiated the class.
4067/// The problem with (1) is that we might have to retroactively remove
4068/// a shadow decl, which requires several O(n) operations because the
4069/// decl structures are (very reasonably) not designed for removal.
4070/// (2) avoids this but is very fiddly and phase-dependent.
4071void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4072  if (Shadow->getDeclName().getNameKind() ==
4073        DeclarationName::CXXConversionFunctionName)
4074    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4075
4076  // Remove it from the DeclContext...
4077  Shadow->getDeclContext()->removeDecl(Shadow);
4078
4079  // ...and the scope, if applicable...
4080  if (S) {
4081    S->RemoveDecl(Shadow);
4082    IdResolver.RemoveDecl(Shadow);
4083  }
4084
4085  // ...and the using decl.
4086  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4087
4088  // TODO: complain somehow if Shadow was used.  It shouldn't
4089  // be possible for this to happen, because...?
4090}
4091
4092/// Builds a using declaration.
4093///
4094/// \param IsInstantiation - Whether this call arises from an
4095///   instantiation of an unresolved using declaration.  We treat
4096///   the lookup differently for these declarations.
4097NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4098                                       SourceLocation UsingLoc,
4099                                       CXXScopeSpec &SS,
4100                                       const DeclarationNameInfo &NameInfo,
4101                                       AttributeList *AttrList,
4102                                       bool IsInstantiation,
4103                                       bool IsTypeName,
4104                                       SourceLocation TypenameLoc) {
4105  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4106  SourceLocation IdentLoc = NameInfo.getLoc();
4107  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4108
4109  // FIXME: We ignore attributes for now.
4110
4111  if (SS.isEmpty()) {
4112    Diag(IdentLoc, diag::err_using_requires_qualname);
4113    return 0;
4114  }
4115
4116  // Do the redeclaration lookup in the current scope.
4117  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4118                        ForRedeclaration);
4119  Previous.setHideTags(false);
4120  if (S) {
4121    LookupName(Previous, S);
4122
4123    // It is really dumb that we have to do this.
4124    LookupResult::Filter F = Previous.makeFilter();
4125    while (F.hasNext()) {
4126      NamedDecl *D = F.next();
4127      if (!isDeclInScope(D, CurContext, S))
4128        F.erase();
4129    }
4130    F.done();
4131  } else {
4132    assert(IsInstantiation && "no scope in non-instantiation");
4133    assert(CurContext->isRecord() && "scope not record in instantiation");
4134    LookupQualifiedName(Previous, CurContext);
4135  }
4136
4137  // Check for invalid redeclarations.
4138  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4139    return 0;
4140
4141  // Check for bad qualifiers.
4142  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4143    return 0;
4144
4145  DeclContext *LookupContext = computeDeclContext(SS);
4146  NamedDecl *D;
4147  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
4148  if (!LookupContext) {
4149    if (IsTypeName) {
4150      // FIXME: not all declaration name kinds are legal here
4151      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4152                                              UsingLoc, TypenameLoc,
4153                                              QualifierLoc,
4154                                              IdentLoc, NameInfo.getName());
4155    } else {
4156      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
4157                                           QualifierLoc, NameInfo);
4158    }
4159  } else {
4160    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
4161                          NameInfo, IsTypeName);
4162  }
4163  D->setAccess(AS);
4164  CurContext->addDecl(D);
4165
4166  if (!LookupContext) return D;
4167  UsingDecl *UD = cast<UsingDecl>(D);
4168
4169  if (RequireCompleteDeclContext(SS, LookupContext)) {
4170    UD->setInvalidDecl();
4171    return UD;
4172  }
4173
4174  // Constructor inheriting using decls get special treatment.
4175  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4176    if (CheckInheritedConstructorUsingDecl(UD))
4177      UD->setInvalidDecl();
4178    return UD;
4179  }
4180
4181  // Otherwise, look up the target name.
4182
4183  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4184
4185  // Unlike most lookups, we don't always want to hide tag
4186  // declarations: tag names are visible through the using declaration
4187  // even if hidden by ordinary names, *except* in a dependent context
4188  // where it's important for the sanity of two-phase lookup.
4189  if (!IsInstantiation)
4190    R.setHideTags(false);
4191
4192  LookupQualifiedName(R, LookupContext);
4193
4194  if (R.empty()) {
4195    Diag(IdentLoc, diag::err_no_member)
4196      << NameInfo.getName() << LookupContext << SS.getRange();
4197    UD->setInvalidDecl();
4198    return UD;
4199  }
4200
4201  if (R.isAmbiguous()) {
4202    UD->setInvalidDecl();
4203    return UD;
4204  }
4205
4206  if (IsTypeName) {
4207    // If we asked for a typename and got a non-type decl, error out.
4208    if (!R.getAsSingle<TypeDecl>()) {
4209      Diag(IdentLoc, diag::err_using_typename_non_type);
4210      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4211        Diag((*I)->getUnderlyingDecl()->getLocation(),
4212             diag::note_using_decl_target);
4213      UD->setInvalidDecl();
4214      return UD;
4215    }
4216  } else {
4217    // If we asked for a non-typename and we got a type, error out,
4218    // but only if this is an instantiation of an unresolved using
4219    // decl.  Otherwise just silently find the type name.
4220    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4221      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4222      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4223      UD->setInvalidDecl();
4224      return UD;
4225    }
4226  }
4227
4228  // C++0x N2914 [namespace.udecl]p6:
4229  // A using-declaration shall not name a namespace.
4230  if (R.getAsSingle<NamespaceDecl>()) {
4231    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4232      << SS.getRange();
4233    UD->setInvalidDecl();
4234    return UD;
4235  }
4236
4237  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4238    if (!CheckUsingShadowDecl(UD, *I, Previous))
4239      BuildUsingShadowDecl(S, UD, *I);
4240  }
4241
4242  return UD;
4243}
4244
4245/// Additional checks for a using declaration referring to a constructor name.
4246bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4247  if (UD->isTypeName()) {
4248    // FIXME: Cannot specify typename when specifying constructor
4249    return true;
4250  }
4251
4252  const Type *SourceType = UD->getQualifier()->getAsType();
4253  assert(SourceType &&
4254         "Using decl naming constructor doesn't have type in scope spec.");
4255  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4256
4257  // Check whether the named type is a direct base class.
4258  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4259  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4260  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4261       BaseIt != BaseE; ++BaseIt) {
4262    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4263    if (CanonicalSourceType == BaseType)
4264      break;
4265  }
4266
4267  if (BaseIt == BaseE) {
4268    // Did not find SourceType in the bases.
4269    Diag(UD->getUsingLocation(),
4270         diag::err_using_decl_constructor_not_in_direct_base)
4271      << UD->getNameInfo().getSourceRange()
4272      << QualType(SourceType, 0) << TargetClass;
4273    return true;
4274  }
4275
4276  BaseIt->setInheritConstructors();
4277
4278  return false;
4279}
4280
4281/// Checks that the given using declaration is not an invalid
4282/// redeclaration.  Note that this is checking only for the using decl
4283/// itself, not for any ill-formedness among the UsingShadowDecls.
4284bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4285                                       bool isTypeName,
4286                                       const CXXScopeSpec &SS,
4287                                       SourceLocation NameLoc,
4288                                       const LookupResult &Prev) {
4289  // C++03 [namespace.udecl]p8:
4290  // C++0x [namespace.udecl]p10:
4291  //   A using-declaration is a declaration and can therefore be used
4292  //   repeatedly where (and only where) multiple declarations are
4293  //   allowed.
4294  //
4295  // That's in non-member contexts.
4296  if (!CurContext->getRedeclContext()->isRecord())
4297    return false;
4298
4299  NestedNameSpecifier *Qual
4300    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4301
4302  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4303    NamedDecl *D = *I;
4304
4305    bool DTypename;
4306    NestedNameSpecifier *DQual;
4307    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4308      DTypename = UD->isTypeName();
4309      DQual = UD->getQualifier();
4310    } else if (UnresolvedUsingValueDecl *UD
4311                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4312      DTypename = false;
4313      DQual = UD->getQualifier();
4314    } else if (UnresolvedUsingTypenameDecl *UD
4315                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4316      DTypename = true;
4317      DQual = UD->getQualifier();
4318    } else continue;
4319
4320    // using decls differ if one says 'typename' and the other doesn't.
4321    // FIXME: non-dependent using decls?
4322    if (isTypeName != DTypename) continue;
4323
4324    // using decls differ if they name different scopes (but note that
4325    // template instantiation can cause this check to trigger when it
4326    // didn't before instantiation).
4327    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4328        Context.getCanonicalNestedNameSpecifier(DQual))
4329      continue;
4330
4331    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4332    Diag(D->getLocation(), diag::note_using_decl) << 1;
4333    return true;
4334  }
4335
4336  return false;
4337}
4338
4339
4340/// Checks that the given nested-name qualifier used in a using decl
4341/// in the current context is appropriately related to the current
4342/// scope.  If an error is found, diagnoses it and returns true.
4343bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4344                                   const CXXScopeSpec &SS,
4345                                   SourceLocation NameLoc) {
4346  DeclContext *NamedContext = computeDeclContext(SS);
4347
4348  if (!CurContext->isRecord()) {
4349    // C++03 [namespace.udecl]p3:
4350    // C++0x [namespace.udecl]p8:
4351    //   A using-declaration for a class member shall be a member-declaration.
4352
4353    // If we weren't able to compute a valid scope, it must be a
4354    // dependent class scope.
4355    if (!NamedContext || NamedContext->isRecord()) {
4356      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4357        << SS.getRange();
4358      return true;
4359    }
4360
4361    // Otherwise, everything is known to be fine.
4362    return false;
4363  }
4364
4365  // The current scope is a record.
4366
4367  // If the named context is dependent, we can't decide much.
4368  if (!NamedContext) {
4369    // FIXME: in C++0x, we can diagnose if we can prove that the
4370    // nested-name-specifier does not refer to a base class, which is
4371    // still possible in some cases.
4372
4373    // Otherwise we have to conservatively report that things might be
4374    // okay.
4375    return false;
4376  }
4377
4378  if (!NamedContext->isRecord()) {
4379    // Ideally this would point at the last name in the specifier,
4380    // but we don't have that level of source info.
4381    Diag(SS.getRange().getBegin(),
4382         diag::err_using_decl_nested_name_specifier_is_not_class)
4383      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4384    return true;
4385  }
4386
4387  if (!NamedContext->isDependentContext() &&
4388      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4389    return true;
4390
4391  if (getLangOptions().CPlusPlus0x) {
4392    // C++0x [namespace.udecl]p3:
4393    //   In a using-declaration used as a member-declaration, the
4394    //   nested-name-specifier shall name a base class of the class
4395    //   being defined.
4396
4397    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4398                                 cast<CXXRecordDecl>(NamedContext))) {
4399      if (CurContext == NamedContext) {
4400        Diag(NameLoc,
4401             diag::err_using_decl_nested_name_specifier_is_current_class)
4402          << SS.getRange();
4403        return true;
4404      }
4405
4406      Diag(SS.getRange().getBegin(),
4407           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4408        << (NestedNameSpecifier*) SS.getScopeRep()
4409        << cast<CXXRecordDecl>(CurContext)
4410        << SS.getRange();
4411      return true;
4412    }
4413
4414    return false;
4415  }
4416
4417  // C++03 [namespace.udecl]p4:
4418  //   A using-declaration used as a member-declaration shall refer
4419  //   to a member of a base class of the class being defined [etc.].
4420
4421  // Salient point: SS doesn't have to name a base class as long as
4422  // lookup only finds members from base classes.  Therefore we can
4423  // diagnose here only if we can prove that that can't happen,
4424  // i.e. if the class hierarchies provably don't intersect.
4425
4426  // TODO: it would be nice if "definitely valid" results were cached
4427  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4428  // need to be repeated.
4429
4430  struct UserData {
4431    llvm::DenseSet<const CXXRecordDecl*> Bases;
4432
4433    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4434      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4435      Data->Bases.insert(Base);
4436      return true;
4437    }
4438
4439    bool hasDependentBases(const CXXRecordDecl *Class) {
4440      return !Class->forallBases(collect, this);
4441    }
4442
4443    /// Returns true if the base is dependent or is one of the
4444    /// accumulated base classes.
4445    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4446      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4447      return !Data->Bases.count(Base);
4448    }
4449
4450    bool mightShareBases(const CXXRecordDecl *Class) {
4451      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4452    }
4453  };
4454
4455  UserData Data;
4456
4457  // Returns false if we find a dependent base.
4458  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4459    return false;
4460
4461  // Returns false if the class has a dependent base or if it or one
4462  // of its bases is present in the base set of the current context.
4463  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4464    return false;
4465
4466  Diag(SS.getRange().getBegin(),
4467       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4468    << (NestedNameSpecifier*) SS.getScopeRep()
4469    << cast<CXXRecordDecl>(CurContext)
4470    << SS.getRange();
4471
4472  return true;
4473}
4474
4475Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4476                                             SourceLocation NamespaceLoc,
4477                                             SourceLocation AliasLoc,
4478                                             IdentifierInfo *Alias,
4479                                             CXXScopeSpec &SS,
4480                                             SourceLocation IdentLoc,
4481                                             IdentifierInfo *Ident) {
4482
4483  // Lookup the namespace name.
4484  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4485  LookupParsedName(R, S, &SS);
4486
4487  // Check if we have a previous declaration with the same name.
4488  NamedDecl *PrevDecl
4489    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4490                       ForRedeclaration);
4491  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4492    PrevDecl = 0;
4493
4494  if (PrevDecl) {
4495    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4496      // We already have an alias with the same name that points to the same
4497      // namespace, so don't create a new one.
4498      // FIXME: At some point, we'll want to create the (redundant)
4499      // declaration to maintain better source information.
4500      if (!R.isAmbiguous() && !R.empty() &&
4501          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4502        return 0;
4503    }
4504
4505    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4506      diag::err_redefinition_different_kind;
4507    Diag(AliasLoc, DiagID) << Alias;
4508    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4509    return 0;
4510  }
4511
4512  if (R.isAmbiguous())
4513    return 0;
4514
4515  if (R.empty()) {
4516    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4517                                                CTC_NoKeywords, 0)) {
4518      if (R.getAsSingle<NamespaceDecl>() ||
4519          R.getAsSingle<NamespaceAliasDecl>()) {
4520        if (DeclContext *DC = computeDeclContext(SS, false))
4521          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4522            << Ident << DC << Corrected << SS.getRange()
4523            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4524        else
4525          Diag(IdentLoc, diag::err_using_directive_suggest)
4526            << Ident << Corrected
4527            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4528
4529        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4530          << Corrected;
4531
4532        Ident = Corrected.getAsIdentifierInfo();
4533      } else {
4534        R.clear();
4535        R.setLookupName(Ident);
4536      }
4537    }
4538
4539    if (R.empty()) {
4540      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4541      return 0;
4542    }
4543  }
4544
4545  NamespaceAliasDecl *AliasDecl =
4546    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4547                               Alias, SS.getRange(),
4548                               (NestedNameSpecifier *)SS.getScopeRep(),
4549                               IdentLoc, R.getFoundDecl());
4550
4551  PushOnScopeChains(AliasDecl, S);
4552  return AliasDecl;
4553}
4554
4555namespace {
4556  /// \brief Scoped object used to handle the state changes required in Sema
4557  /// to implicitly define the body of a C++ member function;
4558  class ImplicitlyDefinedFunctionScope {
4559    Sema &S;
4560    Sema::ContextRAII SavedContext;
4561
4562  public:
4563    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4564      : S(S), SavedContext(S, Method)
4565    {
4566      S.PushFunctionScope();
4567      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4568    }
4569
4570    ~ImplicitlyDefinedFunctionScope() {
4571      S.PopExpressionEvaluationContext();
4572      S.PopFunctionOrBlockScope();
4573    }
4574  };
4575}
4576
4577static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4578                                                       CXXRecordDecl *D) {
4579  ASTContext &Context = Self.Context;
4580  QualType ClassType = Context.getTypeDeclType(D);
4581  DeclarationName ConstructorName
4582    = Context.DeclarationNames.getCXXConstructorName(
4583                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4584
4585  DeclContext::lookup_const_iterator Con, ConEnd;
4586  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4587       Con != ConEnd; ++Con) {
4588    // FIXME: In C++0x, a constructor template can be a default constructor.
4589    if (isa<FunctionTemplateDecl>(*Con))
4590      continue;
4591
4592    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4593    if (Constructor->isDefaultConstructor())
4594      return Constructor;
4595  }
4596  return 0;
4597}
4598
4599CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4600                                                     CXXRecordDecl *ClassDecl) {
4601  // C++ [class.ctor]p5:
4602  //   A default constructor for a class X is a constructor of class X
4603  //   that can be called without an argument. If there is no
4604  //   user-declared constructor for class X, a default constructor is
4605  //   implicitly declared. An implicitly-declared default constructor
4606  //   is an inline public member of its class.
4607  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4608         "Should not build implicit default constructor!");
4609
4610  // C++ [except.spec]p14:
4611  //   An implicitly declared special member function (Clause 12) shall have an
4612  //   exception-specification. [...]
4613  ImplicitExceptionSpecification ExceptSpec(Context);
4614
4615  // Direct base-class destructors.
4616  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4617                                       BEnd = ClassDecl->bases_end();
4618       B != BEnd; ++B) {
4619    if (B->isVirtual()) // Handled below.
4620      continue;
4621
4622    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4623      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4624      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4625        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4626      else if (CXXConstructorDecl *Constructor
4627                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4628        ExceptSpec.CalledDecl(Constructor);
4629    }
4630  }
4631
4632  // Virtual base-class destructors.
4633  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4634                                       BEnd = ClassDecl->vbases_end();
4635       B != BEnd; ++B) {
4636    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4637      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4638      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4639        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4640      else if (CXXConstructorDecl *Constructor
4641                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4642        ExceptSpec.CalledDecl(Constructor);
4643    }
4644  }
4645
4646  // Field destructors.
4647  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4648                               FEnd = ClassDecl->field_end();
4649       F != FEnd; ++F) {
4650    if (const RecordType *RecordTy
4651              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4652      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4653      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4654        ExceptSpec.CalledDecl(
4655                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4656      else if (CXXConstructorDecl *Constructor
4657                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4658        ExceptSpec.CalledDecl(Constructor);
4659    }
4660  }
4661
4662  FunctionProtoType::ExtProtoInfo EPI;
4663  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4664  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4665  EPI.NumExceptions = ExceptSpec.size();
4666  EPI.Exceptions = ExceptSpec.data();
4667
4668  // Create the actual constructor declaration.
4669  CanQualType ClassType
4670    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4671  DeclarationName Name
4672    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4673  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4674  CXXConstructorDecl *DefaultCon
4675    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4676                                 Context.getFunctionType(Context.VoidTy,
4677                                                         0, 0, EPI),
4678                                 /*TInfo=*/0,
4679                                 /*isExplicit=*/false,
4680                                 /*isInline=*/true,
4681                                 /*isImplicitlyDeclared=*/true);
4682  DefaultCon->setAccess(AS_public);
4683  DefaultCon->setImplicit();
4684  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4685
4686  // Note that we have declared this constructor.
4687  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4688
4689  if (Scope *S = getScopeForContext(ClassDecl))
4690    PushOnScopeChains(DefaultCon, S, false);
4691  ClassDecl->addDecl(DefaultCon);
4692
4693  return DefaultCon;
4694}
4695
4696void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4697                                            CXXConstructorDecl *Constructor) {
4698  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4699          !Constructor->isUsed(false)) &&
4700    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4701
4702  CXXRecordDecl *ClassDecl = Constructor->getParent();
4703  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4704
4705  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4706  DiagnosticErrorTrap Trap(Diags);
4707  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4708      Trap.hasErrorOccurred()) {
4709    Diag(CurrentLocation, diag::note_member_synthesized_at)
4710      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4711    Constructor->setInvalidDecl();
4712    return;
4713  }
4714
4715  SourceLocation Loc = Constructor->getLocation();
4716  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4717
4718  Constructor->setUsed();
4719  MarkVTableUsed(CurrentLocation, ClassDecl);
4720}
4721
4722void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4723  // We start with an initial pass over the base classes to collect those that
4724  // inherit constructors from. If there are none, we can forgo all further
4725  // processing.
4726  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4727  BasesVector BasesToInheritFrom;
4728  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4729                                          BaseE = ClassDecl->bases_end();
4730         BaseIt != BaseE; ++BaseIt) {
4731    if (BaseIt->getInheritConstructors()) {
4732      QualType Base = BaseIt->getType();
4733      if (Base->isDependentType()) {
4734        // If we inherit constructors from anything that is dependent, just
4735        // abort processing altogether. We'll get another chance for the
4736        // instantiations.
4737        return;
4738      }
4739      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4740    }
4741  }
4742  if (BasesToInheritFrom.empty())
4743    return;
4744
4745  // Now collect the constructors that we already have in the current class.
4746  // Those take precedence over inherited constructors.
4747  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4748  //   unless there is a user-declared constructor with the same signature in
4749  //   the class where the using-declaration appears.
4750  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4751  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4752                                    CtorE = ClassDecl->ctor_end();
4753       CtorIt != CtorE; ++CtorIt) {
4754    ExistingConstructors.insert(
4755        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4756  }
4757
4758  Scope *S = getScopeForContext(ClassDecl);
4759  DeclarationName CreatedCtorName =
4760      Context.DeclarationNames.getCXXConstructorName(
4761          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4762
4763  // Now comes the true work.
4764  // First, we keep a map from constructor types to the base that introduced
4765  // them. Needed for finding conflicting constructors. We also keep the
4766  // actually inserted declarations in there, for pretty diagnostics.
4767  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4768  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4769  ConstructorToSourceMap InheritedConstructors;
4770  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4771                             BaseE = BasesToInheritFrom.end();
4772       BaseIt != BaseE; ++BaseIt) {
4773    const RecordType *Base = *BaseIt;
4774    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4775    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4776    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4777                                      CtorE = BaseDecl->ctor_end();
4778         CtorIt != CtorE; ++CtorIt) {
4779      // Find the using declaration for inheriting this base's constructors.
4780      DeclarationName Name =
4781          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4782      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4783          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4784      SourceLocation UsingLoc = UD ? UD->getLocation() :
4785                                     ClassDecl->getLocation();
4786
4787      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4788      //   from the class X named in the using-declaration consists of actual
4789      //   constructors and notional constructors that result from the
4790      //   transformation of defaulted parameters as follows:
4791      //   - all non-template default constructors of X, and
4792      //   - for each non-template constructor of X that has at least one
4793      //     parameter with a default argument, the set of constructors that
4794      //     results from omitting any ellipsis parameter specification and
4795      //     successively omitting parameters with a default argument from the
4796      //     end of the parameter-type-list.
4797      CXXConstructorDecl *BaseCtor = *CtorIt;
4798      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4799      const FunctionProtoType *BaseCtorType =
4800          BaseCtor->getType()->getAs<FunctionProtoType>();
4801
4802      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4803                    maxParams = BaseCtor->getNumParams();
4804           params <= maxParams; ++params) {
4805        // Skip default constructors. They're never inherited.
4806        if (params == 0)
4807          continue;
4808        // Skip copy and move constructors for the same reason.
4809        if (CanBeCopyOrMove && params == 1)
4810          continue;
4811
4812        // Build up a function type for this particular constructor.
4813        // FIXME: The working paper does not consider that the exception spec
4814        // for the inheriting constructor might be larger than that of the
4815        // source. This code doesn't yet, either.
4816        const Type *NewCtorType;
4817        if (params == maxParams)
4818          NewCtorType = BaseCtorType;
4819        else {
4820          llvm::SmallVector<QualType, 16> Args;
4821          for (unsigned i = 0; i < params; ++i) {
4822            Args.push_back(BaseCtorType->getArgType(i));
4823          }
4824          FunctionProtoType::ExtProtoInfo ExtInfo =
4825              BaseCtorType->getExtProtoInfo();
4826          ExtInfo.Variadic = false;
4827          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4828                                                Args.data(), params, ExtInfo)
4829                       .getTypePtr();
4830        }
4831        const Type *CanonicalNewCtorType =
4832            Context.getCanonicalType(NewCtorType);
4833
4834        // Now that we have the type, first check if the class already has a
4835        // constructor with this signature.
4836        if (ExistingConstructors.count(CanonicalNewCtorType))
4837          continue;
4838
4839        // Then we check if we have already declared an inherited constructor
4840        // with this signature.
4841        std::pair<ConstructorToSourceMap::iterator, bool> result =
4842            InheritedConstructors.insert(std::make_pair(
4843                CanonicalNewCtorType,
4844                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
4845        if (!result.second) {
4846          // Already in the map. If it came from a different class, that's an
4847          // error. Not if it's from the same.
4848          CanQualType PreviousBase = result.first->second.first;
4849          if (CanonicalBase != PreviousBase) {
4850            const CXXConstructorDecl *PrevCtor = result.first->second.second;
4851            const CXXConstructorDecl *PrevBaseCtor =
4852                PrevCtor->getInheritedConstructor();
4853            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
4854
4855            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
4856            Diag(BaseCtor->getLocation(),
4857                 diag::note_using_decl_constructor_conflict_current_ctor);
4858            Diag(PrevBaseCtor->getLocation(),
4859                 diag::note_using_decl_constructor_conflict_previous_ctor);
4860            Diag(PrevCtor->getLocation(),
4861                 diag::note_using_decl_constructor_conflict_previous_using);
4862          }
4863          continue;
4864        }
4865
4866        // OK, we're there, now add the constructor.
4867        // C++0x [class.inhctor]p8: [...] that would be performed by a
4868        //   user-writtern inline constructor [...]
4869        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
4870        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
4871            Context, ClassDecl, DNI, QualType(NewCtorType, 0), /*TInfo=*/0,
4872            BaseCtor->isExplicit(), /*Inline=*/true,
4873            /*ImplicitlyDeclared=*/true);
4874        NewCtor->setAccess(BaseCtor->getAccess());
4875
4876        // Build up the parameter decls and add them.
4877        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
4878        for (unsigned i = 0; i < params; ++i) {
4879          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, UsingLoc,
4880                                                   /*IdentifierInfo=*/0,
4881                                                   BaseCtorType->getArgType(i),
4882                                                   /*TInfo=*/0, SC_None,
4883                                                   SC_None, /*DefaultArg=*/0));
4884        }
4885        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
4886        NewCtor->setInheritedConstructor(BaseCtor);
4887
4888        PushOnScopeChains(NewCtor, S, false);
4889        ClassDecl->addDecl(NewCtor);
4890        result.first->second.second = NewCtor;
4891      }
4892    }
4893  }
4894}
4895
4896CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4897  // C++ [class.dtor]p2:
4898  //   If a class has no user-declared destructor, a destructor is
4899  //   declared implicitly. An implicitly-declared destructor is an
4900  //   inline public member of its class.
4901
4902  // C++ [except.spec]p14:
4903  //   An implicitly declared special member function (Clause 12) shall have
4904  //   an exception-specification.
4905  ImplicitExceptionSpecification ExceptSpec(Context);
4906
4907  // Direct base-class destructors.
4908  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4909                                       BEnd = ClassDecl->bases_end();
4910       B != BEnd; ++B) {
4911    if (B->isVirtual()) // Handled below.
4912      continue;
4913
4914    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4915      ExceptSpec.CalledDecl(
4916                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4917  }
4918
4919  // Virtual base-class destructors.
4920  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4921                                       BEnd = ClassDecl->vbases_end();
4922       B != BEnd; ++B) {
4923    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4924      ExceptSpec.CalledDecl(
4925                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4926  }
4927
4928  // Field destructors.
4929  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4930                               FEnd = ClassDecl->field_end();
4931       F != FEnd; ++F) {
4932    if (const RecordType *RecordTy
4933        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4934      ExceptSpec.CalledDecl(
4935                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4936  }
4937
4938  // Create the actual destructor declaration.
4939  FunctionProtoType::ExtProtoInfo EPI;
4940  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4941  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4942  EPI.NumExceptions = ExceptSpec.size();
4943  EPI.Exceptions = ExceptSpec.data();
4944  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4945
4946  CanQualType ClassType
4947    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4948  DeclarationName Name
4949    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4950  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4951  CXXDestructorDecl *Destructor
4952      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4953                                /*isInline=*/true,
4954                                /*isImplicitlyDeclared=*/true);
4955  Destructor->setAccess(AS_public);
4956  Destructor->setImplicit();
4957  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4958
4959  // Note that we have declared this destructor.
4960  ++ASTContext::NumImplicitDestructorsDeclared;
4961
4962  // Introduce this destructor into its scope.
4963  if (Scope *S = getScopeForContext(ClassDecl))
4964    PushOnScopeChains(Destructor, S, false);
4965  ClassDecl->addDecl(Destructor);
4966
4967  // This could be uniqued if it ever proves significant.
4968  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4969
4970  AddOverriddenMethods(ClassDecl, Destructor);
4971
4972  return Destructor;
4973}
4974
4975void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4976                                    CXXDestructorDecl *Destructor) {
4977  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4978         "DefineImplicitDestructor - call it for implicit default dtor");
4979  CXXRecordDecl *ClassDecl = Destructor->getParent();
4980  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4981
4982  if (Destructor->isInvalidDecl())
4983    return;
4984
4985  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4986
4987  DiagnosticErrorTrap Trap(Diags);
4988  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4989                                         Destructor->getParent());
4990
4991  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4992    Diag(CurrentLocation, diag::note_member_synthesized_at)
4993      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4994
4995    Destructor->setInvalidDecl();
4996    return;
4997  }
4998
4999  SourceLocation Loc = Destructor->getLocation();
5000  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5001
5002  Destructor->setUsed();
5003  MarkVTableUsed(CurrentLocation, ClassDecl);
5004}
5005
5006/// \brief Builds a statement that copies the given entity from \p From to
5007/// \c To.
5008///
5009/// This routine is used to copy the members of a class with an
5010/// implicitly-declared copy assignment operator. When the entities being
5011/// copied are arrays, this routine builds for loops to copy them.
5012///
5013/// \param S The Sema object used for type-checking.
5014///
5015/// \param Loc The location where the implicit copy is being generated.
5016///
5017/// \param T The type of the expressions being copied. Both expressions must
5018/// have this type.
5019///
5020/// \param To The expression we are copying to.
5021///
5022/// \param From The expression we are copying from.
5023///
5024/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5025/// Otherwise, it's a non-static member subobject.
5026///
5027/// \param Depth Internal parameter recording the depth of the recursion.
5028///
5029/// \returns A statement or a loop that copies the expressions.
5030static StmtResult
5031BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5032                      Expr *To, Expr *From,
5033                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5034  // C++0x [class.copy]p30:
5035  //   Each subobject is assigned in the manner appropriate to its type:
5036  //
5037  //     - if the subobject is of class type, the copy assignment operator
5038  //       for the class is used (as if by explicit qualification; that is,
5039  //       ignoring any possible virtual overriding functions in more derived
5040  //       classes);
5041  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5042    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5043
5044    // Look for operator=.
5045    DeclarationName Name
5046      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5047    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5048    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5049
5050    // Filter out any result that isn't a copy-assignment operator.
5051    LookupResult::Filter F = OpLookup.makeFilter();
5052    while (F.hasNext()) {
5053      NamedDecl *D = F.next();
5054      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5055        if (Method->isCopyAssignmentOperator())
5056          continue;
5057
5058      F.erase();
5059    }
5060    F.done();
5061
5062    // Suppress the protected check (C++ [class.protected]) for each of the
5063    // assignment operators we found. This strange dance is required when
5064    // we're assigning via a base classes's copy-assignment operator. To
5065    // ensure that we're getting the right base class subobject (without
5066    // ambiguities), we need to cast "this" to that subobject type; to
5067    // ensure that we don't go through the virtual call mechanism, we need
5068    // to qualify the operator= name with the base class (see below). However,
5069    // this means that if the base class has a protected copy assignment
5070    // operator, the protected member access check will fail. So, we
5071    // rewrite "protected" access to "public" access in this case, since we
5072    // know by construction that we're calling from a derived class.
5073    if (CopyingBaseSubobject) {
5074      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5075           L != LEnd; ++L) {
5076        if (L.getAccess() == AS_protected)
5077          L.setAccess(AS_public);
5078      }
5079    }
5080
5081    // Create the nested-name-specifier that will be used to qualify the
5082    // reference to operator=; this is required to suppress the virtual
5083    // call mechanism.
5084    CXXScopeSpec SS;
5085    SS.MakeTrivial(S.Context,
5086                   NestedNameSpecifier::Create(S.Context, 0, false,
5087                                               T.getTypePtr()),
5088                   Loc);
5089
5090    // Create the reference to operator=.
5091    ExprResult OpEqualRef
5092      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5093                                   /*FirstQualifierInScope=*/0, OpLookup,
5094                                   /*TemplateArgs=*/0,
5095                                   /*SuppressQualifierCheck=*/true);
5096    if (OpEqualRef.isInvalid())
5097      return StmtError();
5098
5099    // Build the call to the assignment operator.
5100
5101    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5102                                                  OpEqualRef.takeAs<Expr>(),
5103                                                  Loc, &From, 1, Loc);
5104    if (Call.isInvalid())
5105      return StmtError();
5106
5107    return S.Owned(Call.takeAs<Stmt>());
5108  }
5109
5110  //     - if the subobject is of scalar type, the built-in assignment
5111  //       operator is used.
5112  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5113  if (!ArrayTy) {
5114    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5115    if (Assignment.isInvalid())
5116      return StmtError();
5117
5118    return S.Owned(Assignment.takeAs<Stmt>());
5119  }
5120
5121  //     - if the subobject is an array, each element is assigned, in the
5122  //       manner appropriate to the element type;
5123
5124  // Construct a loop over the array bounds, e.g.,
5125  //
5126  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5127  //
5128  // that will copy each of the array elements.
5129  QualType SizeType = S.Context.getSizeType();
5130
5131  // Create the iteration variable.
5132  IdentifierInfo *IterationVarName = 0;
5133  {
5134    llvm::SmallString<8> Str;
5135    llvm::raw_svector_ostream OS(Str);
5136    OS << "__i" << Depth;
5137    IterationVarName = &S.Context.Idents.get(OS.str());
5138  }
5139  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
5140                                          IterationVarName, SizeType,
5141                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5142                                          SC_None, SC_None);
5143
5144  // Initialize the iteration variable to zero.
5145  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5146  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5147
5148  // Create a reference to the iteration variable; we'll use this several
5149  // times throughout.
5150  Expr *IterationVarRef
5151    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5152  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5153
5154  // Create the DeclStmt that holds the iteration variable.
5155  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5156
5157  // Create the comparison against the array bound.
5158  llvm::APInt Upper
5159    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5160  Expr *Comparison
5161    = new (S.Context) BinaryOperator(IterationVarRef,
5162                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5163                                     BO_NE, S.Context.BoolTy,
5164                                     VK_RValue, OK_Ordinary, Loc);
5165
5166  // Create the pre-increment of the iteration variable.
5167  Expr *Increment
5168    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5169                                    VK_LValue, OK_Ordinary, Loc);
5170
5171  // Subscript the "from" and "to" expressions with the iteration variable.
5172  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5173                                                         IterationVarRef, Loc));
5174  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5175                                                       IterationVarRef, Loc));
5176
5177  // Build the copy for an individual element of the array.
5178  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5179                                          To, From, CopyingBaseSubobject,
5180                                          Depth + 1);
5181  if (Copy.isInvalid())
5182    return StmtError();
5183
5184  // Construct the loop that copies all elements of this array.
5185  return S.ActOnForStmt(Loc, Loc, InitStmt,
5186                        S.MakeFullExpr(Comparison),
5187                        0, S.MakeFullExpr(Increment),
5188                        Loc, Copy.take());
5189}
5190
5191/// \brief Determine whether the given class has a copy assignment operator
5192/// that accepts a const-qualified argument.
5193static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5194  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5195
5196  if (!Class->hasDeclaredCopyAssignment())
5197    S.DeclareImplicitCopyAssignment(Class);
5198
5199  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5200  DeclarationName OpName
5201    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5202
5203  DeclContext::lookup_const_iterator Op, OpEnd;
5204  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5205    // C++ [class.copy]p9:
5206    //   A user-declared copy assignment operator is a non-static non-template
5207    //   member function of class X with exactly one parameter of type X, X&,
5208    //   const X&, volatile X& or const volatile X&.
5209    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5210    if (!Method)
5211      continue;
5212
5213    if (Method->isStatic())
5214      continue;
5215    if (Method->getPrimaryTemplate())
5216      continue;
5217    const FunctionProtoType *FnType =
5218    Method->getType()->getAs<FunctionProtoType>();
5219    assert(FnType && "Overloaded operator has no prototype.");
5220    // Don't assert on this; an invalid decl might have been left in the AST.
5221    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5222      continue;
5223    bool AcceptsConst = true;
5224    QualType ArgType = FnType->getArgType(0);
5225    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5226      ArgType = Ref->getPointeeType();
5227      // Is it a non-const lvalue reference?
5228      if (!ArgType.isConstQualified())
5229        AcceptsConst = false;
5230    }
5231    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5232      continue;
5233
5234    // We have a single argument of type cv X or cv X&, i.e. we've found the
5235    // copy assignment operator. Return whether it accepts const arguments.
5236    return AcceptsConst;
5237  }
5238  assert(Class->isInvalidDecl() &&
5239         "No copy assignment operator declared in valid code.");
5240  return false;
5241}
5242
5243CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5244  // Note: The following rules are largely analoguous to the copy
5245  // constructor rules. Note that virtual bases are not taken into account
5246  // for determining the argument type of the operator. Note also that
5247  // operators taking an object instead of a reference are allowed.
5248
5249
5250  // C++ [class.copy]p10:
5251  //   If the class definition does not explicitly declare a copy
5252  //   assignment operator, one is declared implicitly.
5253  //   The implicitly-defined copy assignment operator for a class X
5254  //   will have the form
5255  //
5256  //       X& X::operator=(const X&)
5257  //
5258  //   if
5259  bool HasConstCopyAssignment = true;
5260
5261  //       -- each direct base class B of X has a copy assignment operator
5262  //          whose parameter is of type const B&, const volatile B& or B,
5263  //          and
5264  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5265                                       BaseEnd = ClassDecl->bases_end();
5266       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5267    assert(!Base->getType()->isDependentType() &&
5268           "Cannot generate implicit members for class with dependent bases.");
5269    const CXXRecordDecl *BaseClassDecl
5270      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5271    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5272  }
5273
5274  //       -- for all the nonstatic data members of X that are of a class
5275  //          type M (or array thereof), each such class type has a copy
5276  //          assignment operator whose parameter is of type const M&,
5277  //          const volatile M& or M.
5278  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5279                                  FieldEnd = ClassDecl->field_end();
5280       HasConstCopyAssignment && Field != FieldEnd;
5281       ++Field) {
5282    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5283    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5284      const CXXRecordDecl *FieldClassDecl
5285        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5286      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5287    }
5288  }
5289
5290  //   Otherwise, the implicitly declared copy assignment operator will
5291  //   have the form
5292  //
5293  //       X& X::operator=(X&)
5294  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5295  QualType RetType = Context.getLValueReferenceType(ArgType);
5296  if (HasConstCopyAssignment)
5297    ArgType = ArgType.withConst();
5298  ArgType = Context.getLValueReferenceType(ArgType);
5299
5300  // C++ [except.spec]p14:
5301  //   An implicitly declared special member function (Clause 12) shall have an
5302  //   exception-specification. [...]
5303  ImplicitExceptionSpecification ExceptSpec(Context);
5304  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5305                                       BaseEnd = ClassDecl->bases_end();
5306       Base != BaseEnd; ++Base) {
5307    CXXRecordDecl *BaseClassDecl
5308      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5309
5310    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5311      DeclareImplicitCopyAssignment(BaseClassDecl);
5312
5313    if (CXXMethodDecl *CopyAssign
5314           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5315      ExceptSpec.CalledDecl(CopyAssign);
5316  }
5317  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5318                                  FieldEnd = ClassDecl->field_end();
5319       Field != FieldEnd;
5320       ++Field) {
5321    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5322    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5323      CXXRecordDecl *FieldClassDecl
5324        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5325
5326      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5327        DeclareImplicitCopyAssignment(FieldClassDecl);
5328
5329      if (CXXMethodDecl *CopyAssign
5330            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5331        ExceptSpec.CalledDecl(CopyAssign);
5332    }
5333  }
5334
5335  //   An implicitly-declared copy assignment operator is an inline public
5336  //   member of its class.
5337  FunctionProtoType::ExtProtoInfo EPI;
5338  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5339  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5340  EPI.NumExceptions = ExceptSpec.size();
5341  EPI.Exceptions = ExceptSpec.data();
5342  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5343  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5344  CXXMethodDecl *CopyAssignment
5345    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
5346                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5347                            /*TInfo=*/0, /*isStatic=*/false,
5348                            /*StorageClassAsWritten=*/SC_None,
5349                            /*isInline=*/true);
5350  CopyAssignment->setAccess(AS_public);
5351  CopyAssignment->setImplicit();
5352  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5353
5354  // Add the parameter to the operator.
5355  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5356                                               ClassDecl->getLocation(),
5357                                               /*Id=*/0,
5358                                               ArgType, /*TInfo=*/0,
5359                                               SC_None,
5360                                               SC_None, 0);
5361  CopyAssignment->setParams(&FromParam, 1);
5362
5363  // Note that we have added this copy-assignment operator.
5364  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5365
5366  if (Scope *S = getScopeForContext(ClassDecl))
5367    PushOnScopeChains(CopyAssignment, S, false);
5368  ClassDecl->addDecl(CopyAssignment);
5369
5370  AddOverriddenMethods(ClassDecl, CopyAssignment);
5371  return CopyAssignment;
5372}
5373
5374void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5375                                        CXXMethodDecl *CopyAssignOperator) {
5376  assert((CopyAssignOperator->isImplicit() &&
5377          CopyAssignOperator->isOverloadedOperator() &&
5378          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5379          !CopyAssignOperator->isUsed(false)) &&
5380         "DefineImplicitCopyAssignment called for wrong function");
5381
5382  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5383
5384  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5385    CopyAssignOperator->setInvalidDecl();
5386    return;
5387  }
5388
5389  CopyAssignOperator->setUsed();
5390
5391  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5392  DiagnosticErrorTrap Trap(Diags);
5393
5394  // C++0x [class.copy]p30:
5395  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5396  //   for a non-union class X performs memberwise copy assignment of its
5397  //   subobjects. The direct base classes of X are assigned first, in the
5398  //   order of their declaration in the base-specifier-list, and then the
5399  //   immediate non-static data members of X are assigned, in the order in
5400  //   which they were declared in the class definition.
5401
5402  // The statements that form the synthesized function body.
5403  ASTOwningVector<Stmt*> Statements(*this);
5404
5405  // The parameter for the "other" object, which we are copying from.
5406  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5407  Qualifiers OtherQuals = Other->getType().getQualifiers();
5408  QualType OtherRefType = Other->getType();
5409  if (const LValueReferenceType *OtherRef
5410                                = OtherRefType->getAs<LValueReferenceType>()) {
5411    OtherRefType = OtherRef->getPointeeType();
5412    OtherQuals = OtherRefType.getQualifiers();
5413  }
5414
5415  // Our location for everything implicitly-generated.
5416  SourceLocation Loc = CopyAssignOperator->getLocation();
5417
5418  // Construct a reference to the "other" object. We'll be using this
5419  // throughout the generated ASTs.
5420  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5421  assert(OtherRef && "Reference to parameter cannot fail!");
5422
5423  // Construct the "this" pointer. We'll be using this throughout the generated
5424  // ASTs.
5425  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5426  assert(This && "Reference to this cannot fail!");
5427
5428  // Assign base classes.
5429  bool Invalid = false;
5430  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5431       E = ClassDecl->bases_end(); Base != E; ++Base) {
5432    // Form the assignment:
5433    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5434    QualType BaseType = Base->getType().getUnqualifiedType();
5435    if (!BaseType->isRecordType()) {
5436      Invalid = true;
5437      continue;
5438    }
5439
5440    CXXCastPath BasePath;
5441    BasePath.push_back(Base);
5442
5443    // Construct the "from" expression, which is an implicit cast to the
5444    // appropriately-qualified base type.
5445    Expr *From = OtherRef;
5446    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5447                      CK_UncheckedDerivedToBase,
5448                      VK_LValue, &BasePath);
5449
5450    // Dereference "this".
5451    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5452
5453    // Implicitly cast "this" to the appropriately-qualified base type.
5454    Expr *ToE = To.takeAs<Expr>();
5455    ImpCastExprToType(ToE,
5456                      Context.getCVRQualifiedType(BaseType,
5457                                      CopyAssignOperator->getTypeQualifiers()),
5458                      CK_UncheckedDerivedToBase,
5459                      VK_LValue, &BasePath);
5460    To = Owned(ToE);
5461
5462    // Build the copy.
5463    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5464                                            To.get(), From,
5465                                            /*CopyingBaseSubobject=*/true);
5466    if (Copy.isInvalid()) {
5467      Diag(CurrentLocation, diag::note_member_synthesized_at)
5468        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5469      CopyAssignOperator->setInvalidDecl();
5470      return;
5471    }
5472
5473    // Success! Record the copy.
5474    Statements.push_back(Copy.takeAs<Expr>());
5475  }
5476
5477  // \brief Reference to the __builtin_memcpy function.
5478  Expr *BuiltinMemCpyRef = 0;
5479  // \brief Reference to the __builtin_objc_memmove_collectable function.
5480  Expr *CollectableMemCpyRef = 0;
5481
5482  // Assign non-static members.
5483  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5484                                  FieldEnd = ClassDecl->field_end();
5485       Field != FieldEnd; ++Field) {
5486    // Check for members of reference type; we can't copy those.
5487    if (Field->getType()->isReferenceType()) {
5488      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5489        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5490      Diag(Field->getLocation(), diag::note_declared_at);
5491      Diag(CurrentLocation, diag::note_member_synthesized_at)
5492        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5493      Invalid = true;
5494      continue;
5495    }
5496
5497    // Check for members of const-qualified, non-class type.
5498    QualType BaseType = Context.getBaseElementType(Field->getType());
5499    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5500      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5501        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5502      Diag(Field->getLocation(), diag::note_declared_at);
5503      Diag(CurrentLocation, diag::note_member_synthesized_at)
5504        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5505      Invalid = true;
5506      continue;
5507    }
5508
5509    QualType FieldType = Field->getType().getNonReferenceType();
5510    if (FieldType->isIncompleteArrayType()) {
5511      assert(ClassDecl->hasFlexibleArrayMember() &&
5512             "Incomplete array type is not valid");
5513      continue;
5514    }
5515
5516    // Build references to the field in the object we're copying from and to.
5517    CXXScopeSpec SS; // Intentionally empty
5518    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5519                              LookupMemberName);
5520    MemberLookup.addDecl(*Field);
5521    MemberLookup.resolveKind();
5522    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5523                                               Loc, /*IsArrow=*/false,
5524                                               SS, 0, MemberLookup, 0);
5525    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5526                                             Loc, /*IsArrow=*/true,
5527                                             SS, 0, MemberLookup, 0);
5528    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5529    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5530
5531    // If the field should be copied with __builtin_memcpy rather than via
5532    // explicit assignments, do so. This optimization only applies for arrays
5533    // of scalars and arrays of class type with trivial copy-assignment
5534    // operators.
5535    if (FieldType->isArrayType() &&
5536        (!BaseType->isRecordType() ||
5537         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5538           ->hasTrivialCopyAssignment())) {
5539      // Compute the size of the memory buffer to be copied.
5540      QualType SizeType = Context.getSizeType();
5541      llvm::APInt Size(Context.getTypeSize(SizeType),
5542                       Context.getTypeSizeInChars(BaseType).getQuantity());
5543      for (const ConstantArrayType *Array
5544              = Context.getAsConstantArrayType(FieldType);
5545           Array;
5546           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5547        llvm::APInt ArraySize
5548          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5549        Size *= ArraySize;
5550      }
5551
5552      // Take the address of the field references for "from" and "to".
5553      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5554      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5555
5556      bool NeedsCollectableMemCpy =
5557          (BaseType->isRecordType() &&
5558           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5559
5560      if (NeedsCollectableMemCpy) {
5561        if (!CollectableMemCpyRef) {
5562          // Create a reference to the __builtin_objc_memmove_collectable function.
5563          LookupResult R(*this,
5564                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5565                         Loc, LookupOrdinaryName);
5566          LookupName(R, TUScope, true);
5567
5568          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5569          if (!CollectableMemCpy) {
5570            // Something went horribly wrong earlier, and we will have
5571            // complained about it.
5572            Invalid = true;
5573            continue;
5574          }
5575
5576          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5577                                                  CollectableMemCpy->getType(),
5578                                                  VK_LValue, Loc, 0).take();
5579          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5580        }
5581      }
5582      // Create a reference to the __builtin_memcpy builtin function.
5583      else if (!BuiltinMemCpyRef) {
5584        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5585                       LookupOrdinaryName);
5586        LookupName(R, TUScope, true);
5587
5588        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5589        if (!BuiltinMemCpy) {
5590          // Something went horribly wrong earlier, and we will have complained
5591          // about it.
5592          Invalid = true;
5593          continue;
5594        }
5595
5596        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5597                                            BuiltinMemCpy->getType(),
5598                                            VK_LValue, Loc, 0).take();
5599        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5600      }
5601
5602      ASTOwningVector<Expr*> CallArgs(*this);
5603      CallArgs.push_back(To.takeAs<Expr>());
5604      CallArgs.push_back(From.takeAs<Expr>());
5605      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5606      ExprResult Call = ExprError();
5607      if (NeedsCollectableMemCpy)
5608        Call = ActOnCallExpr(/*Scope=*/0,
5609                             CollectableMemCpyRef,
5610                             Loc, move_arg(CallArgs),
5611                             Loc);
5612      else
5613        Call = ActOnCallExpr(/*Scope=*/0,
5614                             BuiltinMemCpyRef,
5615                             Loc, move_arg(CallArgs),
5616                             Loc);
5617
5618      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5619      Statements.push_back(Call.takeAs<Expr>());
5620      continue;
5621    }
5622
5623    // Build the copy of this field.
5624    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5625                                                  To.get(), From.get(),
5626                                              /*CopyingBaseSubobject=*/false);
5627    if (Copy.isInvalid()) {
5628      Diag(CurrentLocation, diag::note_member_synthesized_at)
5629        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5630      CopyAssignOperator->setInvalidDecl();
5631      return;
5632    }
5633
5634    // Success! Record the copy.
5635    Statements.push_back(Copy.takeAs<Stmt>());
5636  }
5637
5638  if (!Invalid) {
5639    // Add a "return *this;"
5640    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5641
5642    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5643    if (Return.isInvalid())
5644      Invalid = true;
5645    else {
5646      Statements.push_back(Return.takeAs<Stmt>());
5647
5648      if (Trap.hasErrorOccurred()) {
5649        Diag(CurrentLocation, diag::note_member_synthesized_at)
5650          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5651        Invalid = true;
5652      }
5653    }
5654  }
5655
5656  if (Invalid) {
5657    CopyAssignOperator->setInvalidDecl();
5658    return;
5659  }
5660
5661  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5662                                            /*isStmtExpr=*/false);
5663  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5664  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5665}
5666
5667CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5668                                                    CXXRecordDecl *ClassDecl) {
5669  // C++ [class.copy]p4:
5670  //   If the class definition does not explicitly declare a copy
5671  //   constructor, one is declared implicitly.
5672
5673  // C++ [class.copy]p5:
5674  //   The implicitly-declared copy constructor for a class X will
5675  //   have the form
5676  //
5677  //       X::X(const X&)
5678  //
5679  //   if
5680  bool HasConstCopyConstructor = true;
5681
5682  //     -- each direct or virtual base class B of X has a copy
5683  //        constructor whose first parameter is of type const B& or
5684  //        const volatile B&, and
5685  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5686                                       BaseEnd = ClassDecl->bases_end();
5687       HasConstCopyConstructor && Base != BaseEnd;
5688       ++Base) {
5689    // Virtual bases are handled below.
5690    if (Base->isVirtual())
5691      continue;
5692
5693    CXXRecordDecl *BaseClassDecl
5694      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5695    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5696      DeclareImplicitCopyConstructor(BaseClassDecl);
5697
5698    HasConstCopyConstructor
5699      = BaseClassDecl->hasConstCopyConstructor(Context);
5700  }
5701
5702  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5703                                       BaseEnd = ClassDecl->vbases_end();
5704       HasConstCopyConstructor && Base != BaseEnd;
5705       ++Base) {
5706    CXXRecordDecl *BaseClassDecl
5707      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5708    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5709      DeclareImplicitCopyConstructor(BaseClassDecl);
5710
5711    HasConstCopyConstructor
5712      = BaseClassDecl->hasConstCopyConstructor(Context);
5713  }
5714
5715  //     -- for all the nonstatic data members of X that are of a
5716  //        class type M (or array thereof), each such class type
5717  //        has a copy constructor whose first parameter is of type
5718  //        const M& or const volatile M&.
5719  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5720                                  FieldEnd = ClassDecl->field_end();
5721       HasConstCopyConstructor && Field != FieldEnd;
5722       ++Field) {
5723    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5724    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5725      CXXRecordDecl *FieldClassDecl
5726        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5727      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5728        DeclareImplicitCopyConstructor(FieldClassDecl);
5729
5730      HasConstCopyConstructor
5731        = FieldClassDecl->hasConstCopyConstructor(Context);
5732    }
5733  }
5734
5735  //   Otherwise, the implicitly declared copy constructor will have
5736  //   the form
5737  //
5738  //       X::X(X&)
5739  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5740  QualType ArgType = ClassType;
5741  if (HasConstCopyConstructor)
5742    ArgType = ArgType.withConst();
5743  ArgType = Context.getLValueReferenceType(ArgType);
5744
5745  // C++ [except.spec]p14:
5746  //   An implicitly declared special member function (Clause 12) shall have an
5747  //   exception-specification. [...]
5748  ImplicitExceptionSpecification ExceptSpec(Context);
5749  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5750  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5751                                       BaseEnd = ClassDecl->bases_end();
5752       Base != BaseEnd;
5753       ++Base) {
5754    // Virtual bases are handled below.
5755    if (Base->isVirtual())
5756      continue;
5757
5758    CXXRecordDecl *BaseClassDecl
5759      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5760    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5761      DeclareImplicitCopyConstructor(BaseClassDecl);
5762
5763    if (CXXConstructorDecl *CopyConstructor
5764                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5765      ExceptSpec.CalledDecl(CopyConstructor);
5766  }
5767  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5768                                       BaseEnd = ClassDecl->vbases_end();
5769       Base != BaseEnd;
5770       ++Base) {
5771    CXXRecordDecl *BaseClassDecl
5772      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5773    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5774      DeclareImplicitCopyConstructor(BaseClassDecl);
5775
5776    if (CXXConstructorDecl *CopyConstructor
5777                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5778      ExceptSpec.CalledDecl(CopyConstructor);
5779  }
5780  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5781                                  FieldEnd = ClassDecl->field_end();
5782       Field != FieldEnd;
5783       ++Field) {
5784    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5785    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5786      CXXRecordDecl *FieldClassDecl
5787        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5788      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5789        DeclareImplicitCopyConstructor(FieldClassDecl);
5790
5791      if (CXXConstructorDecl *CopyConstructor
5792                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5793        ExceptSpec.CalledDecl(CopyConstructor);
5794    }
5795  }
5796
5797  //   An implicitly-declared copy constructor is an inline public
5798  //   member of its class.
5799  FunctionProtoType::ExtProtoInfo EPI;
5800  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5801  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5802  EPI.NumExceptions = ExceptSpec.size();
5803  EPI.Exceptions = ExceptSpec.data();
5804  DeclarationName Name
5805    = Context.DeclarationNames.getCXXConstructorName(
5806                                           Context.getCanonicalType(ClassType));
5807  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5808  CXXConstructorDecl *CopyConstructor
5809    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5810                                 Context.getFunctionType(Context.VoidTy,
5811                                                         &ArgType, 1, EPI),
5812                                 /*TInfo=*/0,
5813                                 /*isExplicit=*/false,
5814                                 /*isInline=*/true,
5815                                 /*isImplicitlyDeclared=*/true);
5816  CopyConstructor->setAccess(AS_public);
5817  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5818
5819  // Note that we have declared this constructor.
5820  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5821
5822  // Add the parameter to the constructor.
5823  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5824                                               ClassDecl->getLocation(),
5825                                               /*IdentifierInfo=*/0,
5826                                               ArgType, /*TInfo=*/0,
5827                                               SC_None,
5828                                               SC_None, 0);
5829  CopyConstructor->setParams(&FromParam, 1);
5830  if (Scope *S = getScopeForContext(ClassDecl))
5831    PushOnScopeChains(CopyConstructor, S, false);
5832  ClassDecl->addDecl(CopyConstructor);
5833
5834  return CopyConstructor;
5835}
5836
5837void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5838                                   CXXConstructorDecl *CopyConstructor,
5839                                   unsigned TypeQuals) {
5840  assert((CopyConstructor->isImplicit() &&
5841          CopyConstructor->isCopyConstructor(TypeQuals) &&
5842          !CopyConstructor->isUsed(false)) &&
5843         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5844
5845  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5846  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5847
5848  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5849  DiagnosticErrorTrap Trap(Diags);
5850
5851  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5852      Trap.hasErrorOccurred()) {
5853    Diag(CurrentLocation, diag::note_member_synthesized_at)
5854      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5855    CopyConstructor->setInvalidDecl();
5856  }  else {
5857    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5858                                               CopyConstructor->getLocation(),
5859                                               MultiStmtArg(*this, 0, 0),
5860                                               /*isStmtExpr=*/false)
5861                                                              .takeAs<Stmt>());
5862  }
5863
5864  CopyConstructor->setUsed();
5865}
5866
5867ExprResult
5868Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5869                            CXXConstructorDecl *Constructor,
5870                            MultiExprArg ExprArgs,
5871                            bool RequiresZeroInit,
5872                            unsigned ConstructKind,
5873                            SourceRange ParenRange) {
5874  bool Elidable = false;
5875
5876  // C++0x [class.copy]p34:
5877  //   When certain criteria are met, an implementation is allowed to
5878  //   omit the copy/move construction of a class object, even if the
5879  //   copy/move constructor and/or destructor for the object have
5880  //   side effects. [...]
5881  //     - when a temporary class object that has not been bound to a
5882  //       reference (12.2) would be copied/moved to a class object
5883  //       with the same cv-unqualified type, the copy/move operation
5884  //       can be omitted by constructing the temporary object
5885  //       directly into the target of the omitted copy/move
5886  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5887      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
5888    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5889    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5890  }
5891
5892  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5893                               Elidable, move(ExprArgs), RequiresZeroInit,
5894                               ConstructKind, ParenRange);
5895}
5896
5897/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5898/// including handling of its default argument expressions.
5899ExprResult
5900Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5901                            CXXConstructorDecl *Constructor, bool Elidable,
5902                            MultiExprArg ExprArgs,
5903                            bool RequiresZeroInit,
5904                            unsigned ConstructKind,
5905                            SourceRange ParenRange) {
5906  unsigned NumExprs = ExprArgs.size();
5907  Expr **Exprs = (Expr **)ExprArgs.release();
5908
5909  MarkDeclarationReferenced(ConstructLoc, Constructor);
5910  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5911                                        Constructor, Elidable, Exprs, NumExprs,
5912                                        RequiresZeroInit,
5913              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5914                                        ParenRange));
5915}
5916
5917bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5918                                        CXXConstructorDecl *Constructor,
5919                                        MultiExprArg Exprs) {
5920  // FIXME: Provide the correct paren SourceRange when available.
5921  ExprResult TempResult =
5922    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5923                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5924                          SourceRange());
5925  if (TempResult.isInvalid())
5926    return true;
5927
5928  Expr *Temp = TempResult.takeAs<Expr>();
5929  CheckImplicitConversions(Temp, VD->getLocation());
5930  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5931  Temp = MaybeCreateExprWithCleanups(Temp);
5932  VD->setInit(Temp);
5933
5934  return false;
5935}
5936
5937void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5938  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5939  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5940      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5941    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5942    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5943    CheckDestructorAccess(VD->getLocation(), Destructor,
5944                          PDiag(diag::err_access_dtor_var)
5945                            << VD->getDeclName()
5946                            << VD->getType());
5947
5948    // TODO: this should be re-enabled for static locals by !CXAAtExit
5949    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5950      Diag(VD->getLocation(), diag::warn_global_destructor);
5951  }
5952}
5953
5954/// AddCXXDirectInitializerToDecl - This action is called immediately after
5955/// ActOnDeclarator, when a C++ direct initializer is present.
5956/// e.g: "int x(1);"
5957void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5958                                         SourceLocation LParenLoc,
5959                                         MultiExprArg Exprs,
5960                                         SourceLocation RParenLoc,
5961                                         bool TypeMayContainAuto) {
5962  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5963
5964  // If there is no declaration, there was an error parsing it.  Just ignore
5965  // the initializer.
5966  if (RealDecl == 0)
5967    return;
5968
5969  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5970  if (!VDecl) {
5971    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5972    RealDecl->setInvalidDecl();
5973    return;
5974  }
5975
5976  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5977  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5978    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
5979    if (Exprs.size() > 1) {
5980      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
5981           diag::err_auto_var_init_multiple_expressions)
5982        << VDecl->getDeclName() << VDecl->getType()
5983        << VDecl->getSourceRange();
5984      RealDecl->setInvalidDecl();
5985      return;
5986    }
5987
5988    Expr *Init = Exprs.get()[0];
5989    QualType DeducedType;
5990    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
5991      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5992        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5993        << Init->getSourceRange();
5994      RealDecl->setInvalidDecl();
5995      return;
5996    }
5997    VDecl->setType(DeducedType);
5998
5999    // If this is a redeclaration, check that the type we just deduced matches
6000    // the previously declared type.
6001    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6002      MergeVarDeclTypes(VDecl, Old);
6003  }
6004
6005  // We will represent direct-initialization similarly to copy-initialization:
6006  //    int x(1);  -as-> int x = 1;
6007  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6008  //
6009  // Clients that want to distinguish between the two forms, can check for
6010  // direct initializer using VarDecl::hasCXXDirectInitializer().
6011  // A major benefit is that clients that don't particularly care about which
6012  // exactly form was it (like the CodeGen) can handle both cases without
6013  // special case code.
6014
6015  // C++ 8.5p11:
6016  // The form of initialization (using parentheses or '=') is generally
6017  // insignificant, but does matter when the entity being initialized has a
6018  // class type.
6019
6020  if (!VDecl->getType()->isDependentType() &&
6021      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6022                          diag::err_typecheck_decl_incomplete_type)) {
6023    VDecl->setInvalidDecl();
6024    return;
6025  }
6026
6027  // The variable can not have an abstract class type.
6028  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6029                             diag::err_abstract_type_in_decl,
6030                             AbstractVariableType))
6031    VDecl->setInvalidDecl();
6032
6033  const VarDecl *Def;
6034  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6035    Diag(VDecl->getLocation(), diag::err_redefinition)
6036    << VDecl->getDeclName();
6037    Diag(Def->getLocation(), diag::note_previous_definition);
6038    VDecl->setInvalidDecl();
6039    return;
6040  }
6041
6042  // C++ [class.static.data]p4
6043  //   If a static data member is of const integral or const
6044  //   enumeration type, its declaration in the class definition can
6045  //   specify a constant-initializer which shall be an integral
6046  //   constant expression (5.19). In that case, the member can appear
6047  //   in integral constant expressions. The member shall still be
6048  //   defined in a namespace scope if it is used in the program and the
6049  //   namespace scope definition shall not contain an initializer.
6050  //
6051  // We already performed a redefinition check above, but for static
6052  // data members we also need to check whether there was an in-class
6053  // declaration with an initializer.
6054  const VarDecl* PrevInit = 0;
6055  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6056    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6057    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6058    return;
6059  }
6060
6061  bool IsDependent = false;
6062  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6063    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6064      VDecl->setInvalidDecl();
6065      return;
6066    }
6067
6068    if (Exprs.get()[I]->isTypeDependent())
6069      IsDependent = true;
6070  }
6071
6072  // If either the declaration has a dependent type or if any of the
6073  // expressions is type-dependent, we represent the initialization
6074  // via a ParenListExpr for later use during template instantiation.
6075  if (VDecl->getType()->isDependentType() || IsDependent) {
6076    // Let clients know that initialization was done with a direct initializer.
6077    VDecl->setCXXDirectInitializer(true);
6078
6079    // Store the initialization expressions as a ParenListExpr.
6080    unsigned NumExprs = Exprs.size();
6081    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6082                                               (Expr **)Exprs.release(),
6083                                               NumExprs, RParenLoc));
6084    return;
6085  }
6086
6087  // Capture the variable that is being initialized and the style of
6088  // initialization.
6089  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6090
6091  // FIXME: Poor source location information.
6092  InitializationKind Kind
6093    = InitializationKind::CreateDirect(VDecl->getLocation(),
6094                                       LParenLoc, RParenLoc);
6095
6096  InitializationSequence InitSeq(*this, Entity, Kind,
6097                                 Exprs.get(), Exprs.size());
6098  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6099  if (Result.isInvalid()) {
6100    VDecl->setInvalidDecl();
6101    return;
6102  }
6103
6104  CheckImplicitConversions(Result.get(), LParenLoc);
6105
6106  Result = MaybeCreateExprWithCleanups(Result);
6107  VDecl->setInit(Result.takeAs<Expr>());
6108  VDecl->setCXXDirectInitializer(true);
6109
6110  CheckCompleteVariableDeclaration(VDecl);
6111}
6112
6113/// \brief Given a constructor and the set of arguments provided for the
6114/// constructor, convert the arguments and add any required default arguments
6115/// to form a proper call to this constructor.
6116///
6117/// \returns true if an error occurred, false otherwise.
6118bool
6119Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6120                              MultiExprArg ArgsPtr,
6121                              SourceLocation Loc,
6122                              ASTOwningVector<Expr*> &ConvertedArgs) {
6123  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6124  unsigned NumArgs = ArgsPtr.size();
6125  Expr **Args = (Expr **)ArgsPtr.get();
6126
6127  const FunctionProtoType *Proto
6128    = Constructor->getType()->getAs<FunctionProtoType>();
6129  assert(Proto && "Constructor without a prototype?");
6130  unsigned NumArgsInProto = Proto->getNumArgs();
6131
6132  // If too few arguments are available, we'll fill in the rest with defaults.
6133  if (NumArgs < NumArgsInProto)
6134    ConvertedArgs.reserve(NumArgsInProto);
6135  else
6136    ConvertedArgs.reserve(NumArgs);
6137
6138  VariadicCallType CallType =
6139    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6140  llvm::SmallVector<Expr *, 8> AllArgs;
6141  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6142                                        Proto, 0, Args, NumArgs, AllArgs,
6143                                        CallType);
6144  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6145    ConvertedArgs.push_back(AllArgs[i]);
6146  return Invalid;
6147}
6148
6149static inline bool
6150CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6151                                       const FunctionDecl *FnDecl) {
6152  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6153  if (isa<NamespaceDecl>(DC)) {
6154    return SemaRef.Diag(FnDecl->getLocation(),
6155                        diag::err_operator_new_delete_declared_in_namespace)
6156      << FnDecl->getDeclName();
6157  }
6158
6159  if (isa<TranslationUnitDecl>(DC) &&
6160      FnDecl->getStorageClass() == SC_Static) {
6161    return SemaRef.Diag(FnDecl->getLocation(),
6162                        diag::err_operator_new_delete_declared_static)
6163      << FnDecl->getDeclName();
6164  }
6165
6166  return false;
6167}
6168
6169static inline bool
6170CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6171                            CanQualType ExpectedResultType,
6172                            CanQualType ExpectedFirstParamType,
6173                            unsigned DependentParamTypeDiag,
6174                            unsigned InvalidParamTypeDiag) {
6175  QualType ResultType =
6176    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6177
6178  // Check that the result type is not dependent.
6179  if (ResultType->isDependentType())
6180    return SemaRef.Diag(FnDecl->getLocation(),
6181                        diag::err_operator_new_delete_dependent_result_type)
6182    << FnDecl->getDeclName() << ExpectedResultType;
6183
6184  // Check that the result type is what we expect.
6185  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6186    return SemaRef.Diag(FnDecl->getLocation(),
6187                        diag::err_operator_new_delete_invalid_result_type)
6188    << FnDecl->getDeclName() << ExpectedResultType;
6189
6190  // A function template must have at least 2 parameters.
6191  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6192    return SemaRef.Diag(FnDecl->getLocation(),
6193                      diag::err_operator_new_delete_template_too_few_parameters)
6194        << FnDecl->getDeclName();
6195
6196  // The function decl must have at least 1 parameter.
6197  if (FnDecl->getNumParams() == 0)
6198    return SemaRef.Diag(FnDecl->getLocation(),
6199                        diag::err_operator_new_delete_too_few_parameters)
6200      << FnDecl->getDeclName();
6201
6202  // Check the the first parameter type is not dependent.
6203  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6204  if (FirstParamType->isDependentType())
6205    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6206      << FnDecl->getDeclName() << ExpectedFirstParamType;
6207
6208  // Check that the first parameter type is what we expect.
6209  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6210      ExpectedFirstParamType)
6211    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6212    << FnDecl->getDeclName() << ExpectedFirstParamType;
6213
6214  return false;
6215}
6216
6217static bool
6218CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6219  // C++ [basic.stc.dynamic.allocation]p1:
6220  //   A program is ill-formed if an allocation function is declared in a
6221  //   namespace scope other than global scope or declared static in global
6222  //   scope.
6223  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6224    return true;
6225
6226  CanQualType SizeTy =
6227    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6228
6229  // C++ [basic.stc.dynamic.allocation]p1:
6230  //  The return type shall be void*. The first parameter shall have type
6231  //  std::size_t.
6232  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6233                                  SizeTy,
6234                                  diag::err_operator_new_dependent_param_type,
6235                                  diag::err_operator_new_param_type))
6236    return true;
6237
6238  // C++ [basic.stc.dynamic.allocation]p1:
6239  //  The first parameter shall not have an associated default argument.
6240  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6241    return SemaRef.Diag(FnDecl->getLocation(),
6242                        diag::err_operator_new_default_arg)
6243      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6244
6245  return false;
6246}
6247
6248static bool
6249CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6250  // C++ [basic.stc.dynamic.deallocation]p1:
6251  //   A program is ill-formed if deallocation functions are declared in a
6252  //   namespace scope other than global scope or declared static in global
6253  //   scope.
6254  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6255    return true;
6256
6257  // C++ [basic.stc.dynamic.deallocation]p2:
6258  //   Each deallocation function shall return void and its first parameter
6259  //   shall be void*.
6260  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6261                                  SemaRef.Context.VoidPtrTy,
6262                                 diag::err_operator_delete_dependent_param_type,
6263                                 diag::err_operator_delete_param_type))
6264    return true;
6265
6266  return false;
6267}
6268
6269/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6270/// of this overloaded operator is well-formed. If so, returns false;
6271/// otherwise, emits appropriate diagnostics and returns true.
6272bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6273  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6274         "Expected an overloaded operator declaration");
6275
6276  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6277
6278  // C++ [over.oper]p5:
6279  //   The allocation and deallocation functions, operator new,
6280  //   operator new[], operator delete and operator delete[], are
6281  //   described completely in 3.7.3. The attributes and restrictions
6282  //   found in the rest of this subclause do not apply to them unless
6283  //   explicitly stated in 3.7.3.
6284  if (Op == OO_Delete || Op == OO_Array_Delete)
6285    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6286
6287  if (Op == OO_New || Op == OO_Array_New)
6288    return CheckOperatorNewDeclaration(*this, FnDecl);
6289
6290  // C++ [over.oper]p6:
6291  //   An operator function shall either be a non-static member
6292  //   function or be a non-member function and have at least one
6293  //   parameter whose type is a class, a reference to a class, an
6294  //   enumeration, or a reference to an enumeration.
6295  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6296    if (MethodDecl->isStatic())
6297      return Diag(FnDecl->getLocation(),
6298                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6299  } else {
6300    bool ClassOrEnumParam = false;
6301    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6302                                   ParamEnd = FnDecl->param_end();
6303         Param != ParamEnd; ++Param) {
6304      QualType ParamType = (*Param)->getType().getNonReferenceType();
6305      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6306          ParamType->isEnumeralType()) {
6307        ClassOrEnumParam = true;
6308        break;
6309      }
6310    }
6311
6312    if (!ClassOrEnumParam)
6313      return Diag(FnDecl->getLocation(),
6314                  diag::err_operator_overload_needs_class_or_enum)
6315        << FnDecl->getDeclName();
6316  }
6317
6318  // C++ [over.oper]p8:
6319  //   An operator function cannot have default arguments (8.3.6),
6320  //   except where explicitly stated below.
6321  //
6322  // Only the function-call operator allows default arguments
6323  // (C++ [over.call]p1).
6324  if (Op != OO_Call) {
6325    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6326         Param != FnDecl->param_end(); ++Param) {
6327      if ((*Param)->hasDefaultArg())
6328        return Diag((*Param)->getLocation(),
6329                    diag::err_operator_overload_default_arg)
6330          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6331    }
6332  }
6333
6334  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6335    { false, false, false }
6336#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6337    , { Unary, Binary, MemberOnly }
6338#include "clang/Basic/OperatorKinds.def"
6339  };
6340
6341  bool CanBeUnaryOperator = OperatorUses[Op][0];
6342  bool CanBeBinaryOperator = OperatorUses[Op][1];
6343  bool MustBeMemberOperator = OperatorUses[Op][2];
6344
6345  // C++ [over.oper]p8:
6346  //   [...] Operator functions cannot have more or fewer parameters
6347  //   than the number required for the corresponding operator, as
6348  //   described in the rest of this subclause.
6349  unsigned NumParams = FnDecl->getNumParams()
6350                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6351  if (Op != OO_Call &&
6352      ((NumParams == 1 && !CanBeUnaryOperator) ||
6353       (NumParams == 2 && !CanBeBinaryOperator) ||
6354       (NumParams < 1) || (NumParams > 2))) {
6355    // We have the wrong number of parameters.
6356    unsigned ErrorKind;
6357    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6358      ErrorKind = 2;  // 2 -> unary or binary.
6359    } else if (CanBeUnaryOperator) {
6360      ErrorKind = 0;  // 0 -> unary
6361    } else {
6362      assert(CanBeBinaryOperator &&
6363             "All non-call overloaded operators are unary or binary!");
6364      ErrorKind = 1;  // 1 -> binary
6365    }
6366
6367    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6368      << FnDecl->getDeclName() << NumParams << ErrorKind;
6369  }
6370
6371  // Overloaded operators other than operator() cannot be variadic.
6372  if (Op != OO_Call &&
6373      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6374    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6375      << FnDecl->getDeclName();
6376  }
6377
6378  // Some operators must be non-static member functions.
6379  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6380    return Diag(FnDecl->getLocation(),
6381                diag::err_operator_overload_must_be_member)
6382      << FnDecl->getDeclName();
6383  }
6384
6385  // C++ [over.inc]p1:
6386  //   The user-defined function called operator++ implements the
6387  //   prefix and postfix ++ operator. If this function is a member
6388  //   function with no parameters, or a non-member function with one
6389  //   parameter of class or enumeration type, it defines the prefix
6390  //   increment operator ++ for objects of that type. If the function
6391  //   is a member function with one parameter (which shall be of type
6392  //   int) or a non-member function with two parameters (the second
6393  //   of which shall be of type int), it defines the postfix
6394  //   increment operator ++ for objects of that type.
6395  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6396    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6397    bool ParamIsInt = false;
6398    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6399      ParamIsInt = BT->getKind() == BuiltinType::Int;
6400
6401    if (!ParamIsInt)
6402      return Diag(LastParam->getLocation(),
6403                  diag::err_operator_overload_post_incdec_must_be_int)
6404        << LastParam->getType() << (Op == OO_MinusMinus);
6405  }
6406
6407  return false;
6408}
6409
6410/// CheckLiteralOperatorDeclaration - Check whether the declaration
6411/// of this literal operator function is well-formed. If so, returns
6412/// false; otherwise, emits appropriate diagnostics and returns true.
6413bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6414  DeclContext *DC = FnDecl->getDeclContext();
6415  Decl::Kind Kind = DC->getDeclKind();
6416  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6417      Kind != Decl::LinkageSpec) {
6418    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6419      << FnDecl->getDeclName();
6420    return true;
6421  }
6422
6423  bool Valid = false;
6424
6425  // template <char...> type operator "" name() is the only valid template
6426  // signature, and the only valid signature with no parameters.
6427  if (FnDecl->param_size() == 0) {
6428    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6429      // Must have only one template parameter
6430      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6431      if (Params->size() == 1) {
6432        NonTypeTemplateParmDecl *PmDecl =
6433          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6434
6435        // The template parameter must be a char parameter pack.
6436        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6437            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6438          Valid = true;
6439      }
6440    }
6441  } else {
6442    // Check the first parameter
6443    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6444
6445    QualType T = (*Param)->getType();
6446
6447    // unsigned long long int, long double, and any character type are allowed
6448    // as the only parameters.
6449    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6450        Context.hasSameType(T, Context.LongDoubleTy) ||
6451        Context.hasSameType(T, Context.CharTy) ||
6452        Context.hasSameType(T, Context.WCharTy) ||
6453        Context.hasSameType(T, Context.Char16Ty) ||
6454        Context.hasSameType(T, Context.Char32Ty)) {
6455      if (++Param == FnDecl->param_end())
6456        Valid = true;
6457      goto FinishedParams;
6458    }
6459
6460    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6461    const PointerType *PT = T->getAs<PointerType>();
6462    if (!PT)
6463      goto FinishedParams;
6464    T = PT->getPointeeType();
6465    if (!T.isConstQualified())
6466      goto FinishedParams;
6467    T = T.getUnqualifiedType();
6468
6469    // Move on to the second parameter;
6470    ++Param;
6471
6472    // If there is no second parameter, the first must be a const char *
6473    if (Param == FnDecl->param_end()) {
6474      if (Context.hasSameType(T, Context.CharTy))
6475        Valid = true;
6476      goto FinishedParams;
6477    }
6478
6479    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6480    // are allowed as the first parameter to a two-parameter function
6481    if (!(Context.hasSameType(T, Context.CharTy) ||
6482          Context.hasSameType(T, Context.WCharTy) ||
6483          Context.hasSameType(T, Context.Char16Ty) ||
6484          Context.hasSameType(T, Context.Char32Ty)))
6485      goto FinishedParams;
6486
6487    // The second and final parameter must be an std::size_t
6488    T = (*Param)->getType().getUnqualifiedType();
6489    if (Context.hasSameType(T, Context.getSizeType()) &&
6490        ++Param == FnDecl->param_end())
6491      Valid = true;
6492  }
6493
6494  // FIXME: This diagnostic is absolutely terrible.
6495FinishedParams:
6496  if (!Valid) {
6497    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6498      << FnDecl->getDeclName();
6499    return true;
6500  }
6501
6502  return false;
6503}
6504
6505/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6506/// linkage specification, including the language and (if present)
6507/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6508/// the location of the language string literal, which is provided
6509/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6510/// the '{' brace. Otherwise, this linkage specification does not
6511/// have any braces.
6512Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6513                                           SourceLocation LangLoc,
6514                                           llvm::StringRef Lang,
6515                                           SourceLocation LBraceLoc) {
6516  LinkageSpecDecl::LanguageIDs Language;
6517  if (Lang == "\"C\"")
6518    Language = LinkageSpecDecl::lang_c;
6519  else if (Lang == "\"C++\"")
6520    Language = LinkageSpecDecl::lang_cxx;
6521  else {
6522    Diag(LangLoc, diag::err_bad_language);
6523    return 0;
6524  }
6525
6526  // FIXME: Add all the various semantics of linkage specifications
6527
6528  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6529                                               LangLoc, Language,
6530                                               LBraceLoc.isValid());
6531  CurContext->addDecl(D);
6532  PushDeclContext(S, D);
6533  return D;
6534}
6535
6536/// ActOnFinishLinkageSpecification - Complete the definition of
6537/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6538/// valid, it's the position of the closing '}' brace in a linkage
6539/// specification that uses braces.
6540Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6541                                                      Decl *LinkageSpec,
6542                                                      SourceLocation RBraceLoc) {
6543  if (LinkageSpec)
6544    PopDeclContext();
6545  return LinkageSpec;
6546}
6547
6548/// \brief Perform semantic analysis for the variable declaration that
6549/// occurs within a C++ catch clause, returning the newly-created
6550/// variable.
6551VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6552                                         TypeSourceInfo *TInfo,
6553                                         IdentifierInfo *Name,
6554                                         SourceLocation Loc) {
6555  bool Invalid = false;
6556  QualType ExDeclType = TInfo->getType();
6557
6558  // Arrays and functions decay.
6559  if (ExDeclType->isArrayType())
6560    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6561  else if (ExDeclType->isFunctionType())
6562    ExDeclType = Context.getPointerType(ExDeclType);
6563
6564  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6565  // The exception-declaration shall not denote a pointer or reference to an
6566  // incomplete type, other than [cv] void*.
6567  // N2844 forbids rvalue references.
6568  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6569    Diag(Loc, diag::err_catch_rvalue_ref);
6570    Invalid = true;
6571  }
6572
6573  // GCC allows catching pointers and references to incomplete types
6574  // as an extension; so do we, but we warn by default.
6575
6576  QualType BaseType = ExDeclType;
6577  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6578  unsigned DK = diag::err_catch_incomplete;
6579  bool IncompleteCatchIsInvalid = true;
6580  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6581    BaseType = Ptr->getPointeeType();
6582    Mode = 1;
6583    DK = diag::ext_catch_incomplete_ptr;
6584    IncompleteCatchIsInvalid = false;
6585  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6586    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6587    BaseType = Ref->getPointeeType();
6588    Mode = 2;
6589    DK = diag::ext_catch_incomplete_ref;
6590    IncompleteCatchIsInvalid = false;
6591  }
6592  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6593      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6594      IncompleteCatchIsInvalid)
6595    Invalid = true;
6596
6597  if (!Invalid && !ExDeclType->isDependentType() &&
6598      RequireNonAbstractType(Loc, ExDeclType,
6599                             diag::err_abstract_type_in_decl,
6600                             AbstractVariableType))
6601    Invalid = true;
6602
6603  // Only the non-fragile NeXT runtime currently supports C++ catches
6604  // of ObjC types, and no runtime supports catching ObjC types by value.
6605  if (!Invalid && getLangOptions().ObjC1) {
6606    QualType T = ExDeclType;
6607    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6608      T = RT->getPointeeType();
6609
6610    if (T->isObjCObjectType()) {
6611      Diag(Loc, diag::err_objc_object_catch);
6612      Invalid = true;
6613    } else if (T->isObjCObjectPointerType()) {
6614      if (!getLangOptions().NeXTRuntime) {
6615        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6616        Invalid = true;
6617      } else if (!getLangOptions().ObjCNonFragileABI) {
6618        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6619        Invalid = true;
6620      }
6621    }
6622  }
6623
6624  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6625                                    Name, ExDeclType, TInfo, SC_None,
6626                                    SC_None);
6627  ExDecl->setExceptionVariable(true);
6628
6629  if (!Invalid) {
6630    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6631      // C++ [except.handle]p16:
6632      //   The object declared in an exception-declaration or, if the
6633      //   exception-declaration does not specify a name, a temporary (12.2) is
6634      //   copy-initialized (8.5) from the exception object. [...]
6635      //   The object is destroyed when the handler exits, after the destruction
6636      //   of any automatic objects initialized within the handler.
6637      //
6638      // We just pretend to initialize the object with itself, then make sure
6639      // it can be destroyed later.
6640      QualType initType = ExDeclType;
6641
6642      InitializedEntity entity =
6643        InitializedEntity::InitializeVariable(ExDecl);
6644      InitializationKind initKind =
6645        InitializationKind::CreateCopy(Loc, SourceLocation());
6646
6647      Expr *opaqueValue =
6648        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6649      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6650      ExprResult result = sequence.Perform(*this, entity, initKind,
6651                                           MultiExprArg(&opaqueValue, 1));
6652      if (result.isInvalid())
6653        Invalid = true;
6654      else {
6655        // If the constructor used was non-trivial, set this as the
6656        // "initializer".
6657        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6658        if (!construct->getConstructor()->isTrivial()) {
6659          Expr *init = MaybeCreateExprWithCleanups(construct);
6660          ExDecl->setInit(init);
6661        }
6662
6663        // And make sure it's destructable.
6664        FinalizeVarWithDestructor(ExDecl, recordType);
6665      }
6666    }
6667  }
6668
6669  if (Invalid)
6670    ExDecl->setInvalidDecl();
6671
6672  return ExDecl;
6673}
6674
6675/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6676/// handler.
6677Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6678  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6679  bool Invalid = D.isInvalidType();
6680
6681  // Check for unexpanded parameter packs.
6682  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6683                                               UPPC_ExceptionType)) {
6684    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6685                                             D.getIdentifierLoc());
6686    Invalid = true;
6687  }
6688
6689  IdentifierInfo *II = D.getIdentifier();
6690  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6691                                             LookupOrdinaryName,
6692                                             ForRedeclaration)) {
6693    // The scope should be freshly made just for us. There is just no way
6694    // it contains any previous declaration.
6695    assert(!S->isDeclScope(PrevDecl));
6696    if (PrevDecl->isTemplateParameter()) {
6697      // Maybe we will complain about the shadowed template parameter.
6698      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6699    }
6700  }
6701
6702  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6703    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6704      << D.getCXXScopeSpec().getRange();
6705    Invalid = true;
6706  }
6707
6708  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6709                                              D.getIdentifier(),
6710                                              D.getIdentifierLoc());
6711
6712  if (Invalid)
6713    ExDecl->setInvalidDecl();
6714
6715  // Add the exception declaration into this scope.
6716  if (II)
6717    PushOnScopeChains(ExDecl, S);
6718  else
6719    CurContext->addDecl(ExDecl);
6720
6721  ProcessDeclAttributes(S, ExDecl, D);
6722  return ExDecl;
6723}
6724
6725Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6726                                         Expr *AssertExpr,
6727                                         Expr *AssertMessageExpr_) {
6728  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6729
6730  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6731    llvm::APSInt Value(32);
6732    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6733      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6734        AssertExpr->getSourceRange();
6735      return 0;
6736    }
6737
6738    if (Value == 0) {
6739      Diag(AssertLoc, diag::err_static_assert_failed)
6740        << AssertMessage->getString() << AssertExpr->getSourceRange();
6741    }
6742  }
6743
6744  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6745    return 0;
6746
6747  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6748                                        AssertExpr, AssertMessage);
6749
6750  CurContext->addDecl(Decl);
6751  return Decl;
6752}
6753
6754/// \brief Perform semantic analysis of the given friend type declaration.
6755///
6756/// \returns A friend declaration that.
6757FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6758                                      TypeSourceInfo *TSInfo) {
6759  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6760
6761  QualType T = TSInfo->getType();
6762  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6763
6764  if (!getLangOptions().CPlusPlus0x) {
6765    // C++03 [class.friend]p2:
6766    //   An elaborated-type-specifier shall be used in a friend declaration
6767    //   for a class.*
6768    //
6769    //   * The class-key of the elaborated-type-specifier is required.
6770    if (!ActiveTemplateInstantiations.empty()) {
6771      // Do not complain about the form of friend template types during
6772      // template instantiation; we will already have complained when the
6773      // template was declared.
6774    } else if (!T->isElaboratedTypeSpecifier()) {
6775      // If we evaluated the type to a record type, suggest putting
6776      // a tag in front.
6777      if (const RecordType *RT = T->getAs<RecordType>()) {
6778        RecordDecl *RD = RT->getDecl();
6779
6780        std::string InsertionText = std::string(" ") + RD->getKindName();
6781
6782        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6783          << (unsigned) RD->getTagKind()
6784          << T
6785          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6786                                        InsertionText);
6787      } else {
6788        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6789          << T
6790          << SourceRange(FriendLoc, TypeRange.getEnd());
6791      }
6792    } else if (T->getAs<EnumType>()) {
6793      Diag(FriendLoc, diag::ext_enum_friend)
6794        << T
6795        << SourceRange(FriendLoc, TypeRange.getEnd());
6796    }
6797  }
6798
6799  // C++0x [class.friend]p3:
6800  //   If the type specifier in a friend declaration designates a (possibly
6801  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6802  //   the friend declaration is ignored.
6803
6804  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6805  // in [class.friend]p3 that we do not implement.
6806
6807  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6808}
6809
6810/// Handle a friend tag declaration where the scope specifier was
6811/// templated.
6812Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6813                                    unsigned TagSpec, SourceLocation TagLoc,
6814                                    CXXScopeSpec &SS,
6815                                    IdentifierInfo *Name, SourceLocation NameLoc,
6816                                    AttributeList *Attr,
6817                                    MultiTemplateParamsArg TempParamLists) {
6818  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6819
6820  bool isExplicitSpecialization = false;
6821  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6822  bool Invalid = false;
6823
6824  if (TemplateParameterList *TemplateParams
6825        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6826                                                  TempParamLists.get(),
6827                                                  TempParamLists.size(),
6828                                                  /*friend*/ true,
6829                                                  isExplicitSpecialization,
6830                                                  Invalid)) {
6831    --NumMatchedTemplateParamLists;
6832
6833    if (TemplateParams->size() > 0) {
6834      // This is a declaration of a class template.
6835      if (Invalid)
6836        return 0;
6837
6838      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6839                                SS, Name, NameLoc, Attr,
6840                                TemplateParams, AS_public).take();
6841    } else {
6842      // The "template<>" header is extraneous.
6843      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6844        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6845      isExplicitSpecialization = true;
6846    }
6847  }
6848
6849  if (Invalid) return 0;
6850
6851  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6852
6853  bool isAllExplicitSpecializations = true;
6854  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6855    if (TempParamLists.get()[I]->size()) {
6856      isAllExplicitSpecializations = false;
6857      break;
6858    }
6859  }
6860
6861  // FIXME: don't ignore attributes.
6862
6863  // If it's explicit specializations all the way down, just forget
6864  // about the template header and build an appropriate non-templated
6865  // friend.  TODO: for source fidelity, remember the headers.
6866  if (isAllExplicitSpecializations) {
6867    ElaboratedTypeKeyword Keyword
6868      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6869    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6870                                   TagLoc, SS.getRange(), NameLoc);
6871    if (T.isNull())
6872      return 0;
6873
6874    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6875    if (isa<DependentNameType>(T)) {
6876      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6877      TL.setKeywordLoc(TagLoc);
6878      TL.setQualifierRange(SS.getRange());
6879      TL.setNameLoc(NameLoc);
6880    } else {
6881      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6882      TL.setKeywordLoc(TagLoc);
6883      TL.setQualifierRange(SS.getRange());
6884      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6885    }
6886
6887    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6888                                            TSI, FriendLoc);
6889    Friend->setAccess(AS_public);
6890    CurContext->addDecl(Friend);
6891    return Friend;
6892  }
6893
6894  // Handle the case of a templated-scope friend class.  e.g.
6895  //   template <class T> class A<T>::B;
6896  // FIXME: we don't support these right now.
6897  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6898  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6899  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6900  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6901  TL.setKeywordLoc(TagLoc);
6902  TL.setQualifierRange(SS.getRange());
6903  TL.setNameLoc(NameLoc);
6904
6905  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6906                                          TSI, FriendLoc);
6907  Friend->setAccess(AS_public);
6908  Friend->setUnsupportedFriend(true);
6909  CurContext->addDecl(Friend);
6910  return Friend;
6911}
6912
6913
6914/// Handle a friend type declaration.  This works in tandem with
6915/// ActOnTag.
6916///
6917/// Notes on friend class templates:
6918///
6919/// We generally treat friend class declarations as if they were
6920/// declaring a class.  So, for example, the elaborated type specifier
6921/// in a friend declaration is required to obey the restrictions of a
6922/// class-head (i.e. no typedefs in the scope chain), template
6923/// parameters are required to match up with simple template-ids, &c.
6924/// However, unlike when declaring a template specialization, it's
6925/// okay to refer to a template specialization without an empty
6926/// template parameter declaration, e.g.
6927///   friend class A<T>::B<unsigned>;
6928/// We permit this as a special case; if there are any template
6929/// parameters present at all, require proper matching, i.e.
6930///   template <> template <class T> friend class A<int>::B;
6931Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6932                                MultiTemplateParamsArg TempParams) {
6933  SourceLocation Loc = DS.getSourceRange().getBegin();
6934
6935  assert(DS.isFriendSpecified());
6936  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6937
6938  // Try to convert the decl specifier to a type.  This works for
6939  // friend templates because ActOnTag never produces a ClassTemplateDecl
6940  // for a TUK_Friend.
6941  Declarator TheDeclarator(DS, Declarator::MemberContext);
6942  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6943  QualType T = TSI->getType();
6944  if (TheDeclarator.isInvalidType())
6945    return 0;
6946
6947  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6948    return 0;
6949
6950  // This is definitely an error in C++98.  It's probably meant to
6951  // be forbidden in C++0x, too, but the specification is just
6952  // poorly written.
6953  //
6954  // The problem is with declarations like the following:
6955  //   template <T> friend A<T>::foo;
6956  // where deciding whether a class C is a friend or not now hinges
6957  // on whether there exists an instantiation of A that causes
6958  // 'foo' to equal C.  There are restrictions on class-heads
6959  // (which we declare (by fiat) elaborated friend declarations to
6960  // be) that makes this tractable.
6961  //
6962  // FIXME: handle "template <> friend class A<T>;", which
6963  // is possibly well-formed?  Who even knows?
6964  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6965    Diag(Loc, diag::err_tagless_friend_type_template)
6966      << DS.getSourceRange();
6967    return 0;
6968  }
6969
6970  // C++98 [class.friend]p1: A friend of a class is a function
6971  //   or class that is not a member of the class . . .
6972  // This is fixed in DR77, which just barely didn't make the C++03
6973  // deadline.  It's also a very silly restriction that seriously
6974  // affects inner classes and which nobody else seems to implement;
6975  // thus we never diagnose it, not even in -pedantic.
6976  //
6977  // But note that we could warn about it: it's always useless to
6978  // friend one of your own members (it's not, however, worthless to
6979  // friend a member of an arbitrary specialization of your template).
6980
6981  Decl *D;
6982  if (unsigned NumTempParamLists = TempParams.size())
6983    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6984                                   NumTempParamLists,
6985                                   TempParams.release(),
6986                                   TSI,
6987                                   DS.getFriendSpecLoc());
6988  else
6989    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6990
6991  if (!D)
6992    return 0;
6993
6994  D->setAccess(AS_public);
6995  CurContext->addDecl(D);
6996
6997  return D;
6998}
6999
7000Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7001                                    MultiTemplateParamsArg TemplateParams) {
7002  const DeclSpec &DS = D.getDeclSpec();
7003
7004  assert(DS.isFriendSpecified());
7005  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7006
7007  SourceLocation Loc = D.getIdentifierLoc();
7008  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7009  QualType T = TInfo->getType();
7010
7011  // C++ [class.friend]p1
7012  //   A friend of a class is a function or class....
7013  // Note that this sees through typedefs, which is intended.
7014  // It *doesn't* see through dependent types, which is correct
7015  // according to [temp.arg.type]p3:
7016  //   If a declaration acquires a function type through a
7017  //   type dependent on a template-parameter and this causes
7018  //   a declaration that does not use the syntactic form of a
7019  //   function declarator to have a function type, the program
7020  //   is ill-formed.
7021  if (!T->isFunctionType()) {
7022    Diag(Loc, diag::err_unexpected_friend);
7023
7024    // It might be worthwhile to try to recover by creating an
7025    // appropriate declaration.
7026    return 0;
7027  }
7028
7029  // C++ [namespace.memdef]p3
7030  //  - If a friend declaration in a non-local class first declares a
7031  //    class or function, the friend class or function is a member
7032  //    of the innermost enclosing namespace.
7033  //  - The name of the friend is not found by simple name lookup
7034  //    until a matching declaration is provided in that namespace
7035  //    scope (either before or after the class declaration granting
7036  //    friendship).
7037  //  - If a friend function is called, its name may be found by the
7038  //    name lookup that considers functions from namespaces and
7039  //    classes associated with the types of the function arguments.
7040  //  - When looking for a prior declaration of a class or a function
7041  //    declared as a friend, scopes outside the innermost enclosing
7042  //    namespace scope are not considered.
7043
7044  CXXScopeSpec &SS = D.getCXXScopeSpec();
7045  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7046  DeclarationName Name = NameInfo.getName();
7047  assert(Name);
7048
7049  // Check for unexpanded parameter packs.
7050  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7051      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7052      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7053    return 0;
7054
7055  // The context we found the declaration in, or in which we should
7056  // create the declaration.
7057  DeclContext *DC;
7058  Scope *DCScope = S;
7059  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7060                        ForRedeclaration);
7061
7062  // FIXME: there are different rules in local classes
7063
7064  // There are four cases here.
7065  //   - There's no scope specifier, in which case we just go to the
7066  //     appropriate scope and look for a function or function template
7067  //     there as appropriate.
7068  // Recover from invalid scope qualifiers as if they just weren't there.
7069  if (SS.isInvalid() || !SS.isSet()) {
7070    // C++0x [namespace.memdef]p3:
7071    //   If the name in a friend declaration is neither qualified nor
7072    //   a template-id and the declaration is a function or an
7073    //   elaborated-type-specifier, the lookup to determine whether
7074    //   the entity has been previously declared shall not consider
7075    //   any scopes outside the innermost enclosing namespace.
7076    // C++0x [class.friend]p11:
7077    //   If a friend declaration appears in a local class and the name
7078    //   specified is an unqualified name, a prior declaration is
7079    //   looked up without considering scopes that are outside the
7080    //   innermost enclosing non-class scope. For a friend function
7081    //   declaration, if there is no prior declaration, the program is
7082    //   ill-formed.
7083    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7084    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7085
7086    // Find the appropriate context according to the above.
7087    DC = CurContext;
7088    while (true) {
7089      // Skip class contexts.  If someone can cite chapter and verse
7090      // for this behavior, that would be nice --- it's what GCC and
7091      // EDG do, and it seems like a reasonable intent, but the spec
7092      // really only says that checks for unqualified existing
7093      // declarations should stop at the nearest enclosing namespace,
7094      // not that they should only consider the nearest enclosing
7095      // namespace.
7096      while (DC->isRecord())
7097        DC = DC->getParent();
7098
7099      LookupQualifiedName(Previous, DC);
7100
7101      // TODO: decide what we think about using declarations.
7102      if (isLocal || !Previous.empty())
7103        break;
7104
7105      if (isTemplateId) {
7106        if (isa<TranslationUnitDecl>(DC)) break;
7107      } else {
7108        if (DC->isFileContext()) break;
7109      }
7110      DC = DC->getParent();
7111    }
7112
7113    // C++ [class.friend]p1: A friend of a class is a function or
7114    //   class that is not a member of the class . . .
7115    // C++0x changes this for both friend types and functions.
7116    // Most C++ 98 compilers do seem to give an error here, so
7117    // we do, too.
7118    if (!Previous.empty() && DC->Equals(CurContext)
7119        && !getLangOptions().CPlusPlus0x)
7120      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7121
7122    DCScope = getScopeForDeclContext(S, DC);
7123
7124  //   - There's a non-dependent scope specifier, in which case we
7125  //     compute it and do a previous lookup there for a function
7126  //     or function template.
7127  } else if (!SS.getScopeRep()->isDependent()) {
7128    DC = computeDeclContext(SS);
7129    if (!DC) return 0;
7130
7131    if (RequireCompleteDeclContext(SS, DC)) return 0;
7132
7133    LookupQualifiedName(Previous, DC);
7134
7135    // Ignore things found implicitly in the wrong scope.
7136    // TODO: better diagnostics for this case.  Suggesting the right
7137    // qualified scope would be nice...
7138    LookupResult::Filter F = Previous.makeFilter();
7139    while (F.hasNext()) {
7140      NamedDecl *D = F.next();
7141      if (!DC->InEnclosingNamespaceSetOf(
7142              D->getDeclContext()->getRedeclContext()))
7143        F.erase();
7144    }
7145    F.done();
7146
7147    if (Previous.empty()) {
7148      D.setInvalidType();
7149      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7150      return 0;
7151    }
7152
7153    // C++ [class.friend]p1: A friend of a class is a function or
7154    //   class that is not a member of the class . . .
7155    if (DC->Equals(CurContext))
7156      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7157
7158  //   - There's a scope specifier that does not match any template
7159  //     parameter lists, in which case we use some arbitrary context,
7160  //     create a method or method template, and wait for instantiation.
7161  //   - There's a scope specifier that does match some template
7162  //     parameter lists, which we don't handle right now.
7163  } else {
7164    DC = CurContext;
7165    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7166  }
7167
7168  if (!DC->isRecord()) {
7169    // This implies that it has to be an operator or function.
7170    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7171        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7172        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7173      Diag(Loc, diag::err_introducing_special_friend) <<
7174        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7175         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7176      return 0;
7177    }
7178  }
7179
7180  bool Redeclaration = false;
7181  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7182                                          move(TemplateParams),
7183                                          IsDefinition,
7184                                          Redeclaration);
7185  if (!ND) return 0;
7186
7187  assert(ND->getDeclContext() == DC);
7188  assert(ND->getLexicalDeclContext() == CurContext);
7189
7190  // Add the function declaration to the appropriate lookup tables,
7191  // adjusting the redeclarations list as necessary.  We don't
7192  // want to do this yet if the friending class is dependent.
7193  //
7194  // Also update the scope-based lookup if the target context's
7195  // lookup context is in lexical scope.
7196  if (!CurContext->isDependentContext()) {
7197    DC = DC->getRedeclContext();
7198    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7199    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7200      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7201  }
7202
7203  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7204                                       D.getIdentifierLoc(), ND,
7205                                       DS.getFriendSpecLoc());
7206  FrD->setAccess(AS_public);
7207  CurContext->addDecl(FrD);
7208
7209  if (ND->isInvalidDecl())
7210    FrD->setInvalidDecl();
7211  else {
7212    FunctionDecl *FD;
7213    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7214      FD = FTD->getTemplatedDecl();
7215    else
7216      FD = cast<FunctionDecl>(ND);
7217
7218    // Mark templated-scope function declarations as unsupported.
7219    if (FD->getNumTemplateParameterLists())
7220      FrD->setUnsupportedFriend(true);
7221  }
7222
7223  return ND;
7224}
7225
7226void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7227  AdjustDeclIfTemplate(Dcl);
7228
7229  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7230  if (!Fn) {
7231    Diag(DelLoc, diag::err_deleted_non_function);
7232    return;
7233  }
7234  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7235    Diag(DelLoc, diag::err_deleted_decl_not_first);
7236    Diag(Prev->getLocation(), diag::note_previous_declaration);
7237    // If the declaration wasn't the first, we delete the function anyway for
7238    // recovery.
7239  }
7240  Fn->setDeleted();
7241}
7242
7243static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7244  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7245    Stmt *SubStmt = *CI;
7246    if (!SubStmt)
7247      continue;
7248    if (isa<ReturnStmt>(SubStmt))
7249      Self.Diag(SubStmt->getSourceRange().getBegin(),
7250           diag::err_return_in_constructor_handler);
7251    if (!isa<Expr>(SubStmt))
7252      SearchForReturnInStmt(Self, SubStmt);
7253  }
7254}
7255
7256void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7257  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7258    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7259    SearchForReturnInStmt(*this, Handler);
7260  }
7261}
7262
7263bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7264                                             const CXXMethodDecl *Old) {
7265  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7266  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7267
7268  if (Context.hasSameType(NewTy, OldTy) ||
7269      NewTy->isDependentType() || OldTy->isDependentType())
7270    return false;
7271
7272  // Check if the return types are covariant
7273  QualType NewClassTy, OldClassTy;
7274
7275  /// Both types must be pointers or references to classes.
7276  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7277    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7278      NewClassTy = NewPT->getPointeeType();
7279      OldClassTy = OldPT->getPointeeType();
7280    }
7281  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7282    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7283      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7284        NewClassTy = NewRT->getPointeeType();
7285        OldClassTy = OldRT->getPointeeType();
7286      }
7287    }
7288  }
7289
7290  // The return types aren't either both pointers or references to a class type.
7291  if (NewClassTy.isNull()) {
7292    Diag(New->getLocation(),
7293         diag::err_different_return_type_for_overriding_virtual_function)
7294      << New->getDeclName() << NewTy << OldTy;
7295    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7296
7297    return true;
7298  }
7299
7300  // C++ [class.virtual]p6:
7301  //   If the return type of D::f differs from the return type of B::f, the
7302  //   class type in the return type of D::f shall be complete at the point of
7303  //   declaration of D::f or shall be the class type D.
7304  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7305    if (!RT->isBeingDefined() &&
7306        RequireCompleteType(New->getLocation(), NewClassTy,
7307                            PDiag(diag::err_covariant_return_incomplete)
7308                              << New->getDeclName()))
7309    return true;
7310  }
7311
7312  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7313    // Check if the new class derives from the old class.
7314    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7315      Diag(New->getLocation(),
7316           diag::err_covariant_return_not_derived)
7317      << New->getDeclName() << NewTy << OldTy;
7318      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7319      return true;
7320    }
7321
7322    // Check if we the conversion from derived to base is valid.
7323    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7324                    diag::err_covariant_return_inaccessible_base,
7325                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7326                    // FIXME: Should this point to the return type?
7327                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7328      // FIXME: this note won't trigger for delayed access control
7329      // diagnostics, and it's impossible to get an undelayed error
7330      // here from access control during the original parse because
7331      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7332      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7333      return true;
7334    }
7335  }
7336
7337  // The qualifiers of the return types must be the same.
7338  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7339    Diag(New->getLocation(),
7340         diag::err_covariant_return_type_different_qualifications)
7341    << New->getDeclName() << NewTy << OldTy;
7342    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7343    return true;
7344  };
7345
7346
7347  // The new class type must have the same or less qualifiers as the old type.
7348  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7349    Diag(New->getLocation(),
7350         diag::err_covariant_return_type_class_type_more_qualified)
7351    << New->getDeclName() << NewTy << OldTy;
7352    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7353    return true;
7354  };
7355
7356  return false;
7357}
7358
7359/// \brief Mark the given method pure.
7360///
7361/// \param Method the method to be marked pure.
7362///
7363/// \param InitRange the source range that covers the "0" initializer.
7364bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7365  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7366    Method->setPure();
7367    return false;
7368  }
7369
7370  if (!Method->isInvalidDecl())
7371    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7372      << Method->getDeclName() << InitRange;
7373  return true;
7374}
7375
7376/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7377/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7378/// is a fresh scope pushed for just this purpose.
7379///
7380/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7381/// static data member of class X, names should be looked up in the scope of
7382/// class X.
7383void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7384  // If there is no declaration, there was an error parsing it.
7385  if (D == 0) return;
7386
7387  // We should only get called for declarations with scope specifiers, like:
7388  //   int foo::bar;
7389  assert(D->isOutOfLine());
7390  EnterDeclaratorContext(S, D->getDeclContext());
7391}
7392
7393/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7394/// initializer for the out-of-line declaration 'D'.
7395void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7396  // If there is no declaration, there was an error parsing it.
7397  if (D == 0) return;
7398
7399  assert(D->isOutOfLine());
7400  ExitDeclaratorContext(S);
7401}
7402
7403/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7404/// C++ if/switch/while/for statement.
7405/// e.g: "if (int x = f()) {...}"
7406DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7407  // C++ 6.4p2:
7408  // The declarator shall not specify a function or an array.
7409  // The type-specifier-seq shall not contain typedef and shall not declare a
7410  // new class or enumeration.
7411  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7412         "Parser allowed 'typedef' as storage class of condition decl.");
7413
7414  TagDecl *OwnedTag = 0;
7415  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7416  QualType Ty = TInfo->getType();
7417
7418  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7419                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7420                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7421    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7422      << D.getSourceRange();
7423    return DeclResult();
7424  } else if (OwnedTag && OwnedTag->isDefinition()) {
7425    // The type-specifier-seq shall not declare a new class or enumeration.
7426    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7427  }
7428
7429  Decl *Dcl = ActOnDeclarator(S, D);
7430  if (!Dcl)
7431    return DeclResult();
7432
7433  return Dcl;
7434}
7435
7436void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7437                          bool DefinitionRequired) {
7438  // Ignore any vtable uses in unevaluated operands or for classes that do
7439  // not have a vtable.
7440  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7441      CurContext->isDependentContext() ||
7442      ExprEvalContexts.back().Context == Unevaluated)
7443    return;
7444
7445  // Try to insert this class into the map.
7446  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7447  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7448    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7449  if (!Pos.second) {
7450    // If we already had an entry, check to see if we are promoting this vtable
7451    // to required a definition. If so, we need to reappend to the VTableUses
7452    // list, since we may have already processed the first entry.
7453    if (DefinitionRequired && !Pos.first->second) {
7454      Pos.first->second = true;
7455    } else {
7456      // Otherwise, we can early exit.
7457      return;
7458    }
7459  }
7460
7461  // Local classes need to have their virtual members marked
7462  // immediately. For all other classes, we mark their virtual members
7463  // at the end of the translation unit.
7464  if (Class->isLocalClass())
7465    MarkVirtualMembersReferenced(Loc, Class);
7466  else
7467    VTableUses.push_back(std::make_pair(Class, Loc));
7468}
7469
7470bool Sema::DefineUsedVTables() {
7471  if (VTableUses.empty())
7472    return false;
7473
7474  // Note: The VTableUses vector could grow as a result of marking
7475  // the members of a class as "used", so we check the size each
7476  // time through the loop and prefer indices (with are stable) to
7477  // iterators (which are not).
7478  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7479    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7480    if (!Class)
7481      continue;
7482
7483    SourceLocation Loc = VTableUses[I].second;
7484
7485    // If this class has a key function, but that key function is
7486    // defined in another translation unit, we don't need to emit the
7487    // vtable even though we're using it.
7488    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7489    if (KeyFunction && !KeyFunction->hasBody()) {
7490      switch (KeyFunction->getTemplateSpecializationKind()) {
7491      case TSK_Undeclared:
7492      case TSK_ExplicitSpecialization:
7493      case TSK_ExplicitInstantiationDeclaration:
7494        // The key function is in another translation unit.
7495        continue;
7496
7497      case TSK_ExplicitInstantiationDefinition:
7498      case TSK_ImplicitInstantiation:
7499        // We will be instantiating the key function.
7500        break;
7501      }
7502    } else if (!KeyFunction) {
7503      // If we have a class with no key function that is the subject
7504      // of an explicit instantiation declaration, suppress the
7505      // vtable; it will live with the explicit instantiation
7506      // definition.
7507      bool IsExplicitInstantiationDeclaration
7508        = Class->getTemplateSpecializationKind()
7509                                      == TSK_ExplicitInstantiationDeclaration;
7510      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7511                                 REnd = Class->redecls_end();
7512           R != REnd; ++R) {
7513        TemplateSpecializationKind TSK
7514          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7515        if (TSK == TSK_ExplicitInstantiationDeclaration)
7516          IsExplicitInstantiationDeclaration = true;
7517        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7518          IsExplicitInstantiationDeclaration = false;
7519          break;
7520        }
7521      }
7522
7523      if (IsExplicitInstantiationDeclaration)
7524        continue;
7525    }
7526
7527    // Mark all of the virtual members of this class as referenced, so
7528    // that we can build a vtable. Then, tell the AST consumer that a
7529    // vtable for this class is required.
7530    MarkVirtualMembersReferenced(Loc, Class);
7531    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7532    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7533
7534    // Optionally warn if we're emitting a weak vtable.
7535    if (Class->getLinkage() == ExternalLinkage &&
7536        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7537      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7538        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7539    }
7540  }
7541  VTableUses.clear();
7542
7543  return true;
7544}
7545
7546void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7547                                        const CXXRecordDecl *RD) {
7548  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7549       e = RD->method_end(); i != e; ++i) {
7550    CXXMethodDecl *MD = *i;
7551
7552    // C++ [basic.def.odr]p2:
7553    //   [...] A virtual member function is used if it is not pure. [...]
7554    if (MD->isVirtual() && !MD->isPure())
7555      MarkDeclarationReferenced(Loc, MD);
7556  }
7557
7558  // Only classes that have virtual bases need a VTT.
7559  if (RD->getNumVBases() == 0)
7560    return;
7561
7562  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7563           e = RD->bases_end(); i != e; ++i) {
7564    const CXXRecordDecl *Base =
7565        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7566    if (Base->getNumVBases() == 0)
7567      continue;
7568    MarkVirtualMembersReferenced(Loc, Base);
7569  }
7570}
7571
7572/// SetIvarInitializers - This routine builds initialization ASTs for the
7573/// Objective-C implementation whose ivars need be initialized.
7574void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7575  if (!getLangOptions().CPlusPlus)
7576    return;
7577  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7578    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7579    CollectIvarsToConstructOrDestruct(OID, ivars);
7580    if (ivars.empty())
7581      return;
7582    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7583    for (unsigned i = 0; i < ivars.size(); i++) {
7584      FieldDecl *Field = ivars[i];
7585      if (Field->isInvalidDecl())
7586        continue;
7587
7588      CXXCtorInitializer *Member;
7589      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7590      InitializationKind InitKind =
7591        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7592
7593      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7594      ExprResult MemberInit =
7595        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7596      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7597      // Note, MemberInit could actually come back empty if no initialization
7598      // is required (e.g., because it would call a trivial default constructor)
7599      if (!MemberInit.get() || MemberInit.isInvalid())
7600        continue;
7601
7602      Member =
7603        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7604                                         SourceLocation(),
7605                                         MemberInit.takeAs<Expr>(),
7606                                         SourceLocation());
7607      AllToInit.push_back(Member);
7608
7609      // Be sure that the destructor is accessible and is marked as referenced.
7610      if (const RecordType *RecordTy
7611                  = Context.getBaseElementType(Field->getType())
7612                                                        ->getAs<RecordType>()) {
7613                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7614        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7615          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7616          CheckDestructorAccess(Field->getLocation(), Destructor,
7617                            PDiag(diag::err_access_dtor_ivar)
7618                              << Context.getBaseElementType(Field->getType()));
7619        }
7620      }
7621    }
7622    ObjCImplementation->setIvarInitializers(Context,
7623                                            AllToInit.data(), AllToInit.size());
7624  }
7625}
7626