SemaDeclCXX.cpp revision dc98cd0cdd2eee8290b624ef69c6d91ce626d85e
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (Field->isUnnamedBitfield())
814    return;
815
816  if (!Inits.count(Field)) {
817    if (!Diagnosed) {
818      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
819      Diagnosed = true;
820    }
821    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
822  } else if (Field->isAnonymousStructOrUnion()) {
823    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
824    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
825         I != E; ++I)
826      // If an anonymous union contains an anonymous struct of which any member
827      // is initialized, all members must be initialized.
828      if (!RD->isUnion() || Inits.count(*I))
829        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
830  }
831}
832
833/// Check the body for the given constexpr function declaration only contains
834/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
835///
836/// \return true if the body is OK, false if we have diagnosed a problem.
837bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
838  if (isa<CXXTryStmt>(Body)) {
839    // C++0x [dcl.constexpr]p3:
840    //  The definition of a constexpr function shall satisfy the following
841    //  constraints: [...]
842    // - its function-body shall be = delete, = default, or a
843    //   compound-statement
844    //
845    // C++0x [dcl.constexpr]p4:
846    //  In the definition of a constexpr constructor, [...]
847    // - its function-body shall not be a function-try-block;
848    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
849      << isa<CXXConstructorDecl>(Dcl);
850    return false;
851  }
852
853  // - its function-body shall be [...] a compound-statement that contains only
854  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
855
856  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
857  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
858         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
859    switch ((*BodyIt)->getStmtClass()) {
860    case Stmt::NullStmtClass:
861      //   - null statements,
862      continue;
863
864    case Stmt::DeclStmtClass:
865      //   - static_assert-declarations
866      //   - using-declarations,
867      //   - using-directives,
868      //   - typedef declarations and alias-declarations that do not define
869      //     classes or enumerations,
870      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
871        return false;
872      continue;
873
874    case Stmt::ReturnStmtClass:
875      //   - and exactly one return statement;
876      if (isa<CXXConstructorDecl>(Dcl))
877        break;
878
879      ReturnStmts.push_back((*BodyIt)->getLocStart());
880      // FIXME
881      // - every constructor call and implicit conversion used in initializing
882      //   the return value shall be one of those allowed in a constant
883      //   expression.
884      // Deal with this as part of a general check that the function can produce
885      // a constant expression (for [dcl.constexpr]p5).
886      continue;
887
888    default:
889      break;
890    }
891
892    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
893      << isa<CXXConstructorDecl>(Dcl);
894    return false;
895  }
896
897  if (const CXXConstructorDecl *Constructor
898        = dyn_cast<CXXConstructorDecl>(Dcl)) {
899    const CXXRecordDecl *RD = Constructor->getParent();
900    // - every non-static data member and base class sub-object shall be
901    //   initialized;
902    if (RD->isUnion()) {
903      // DR1359: Exactly one member of a union shall be initialized.
904      if (Constructor->getNumCtorInitializers() == 0) {
905        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
906        return false;
907      }
908    } else if (!Constructor->isDependentContext() &&
909               !Constructor->isDelegatingConstructor()) {
910      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
911
912      // Skip detailed checking if we have enough initializers, and we would
913      // allow at most one initializer per member.
914      bool AnyAnonStructUnionMembers = false;
915      unsigned Fields = 0;
916      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
917           E = RD->field_end(); I != E; ++I, ++Fields) {
918        if ((*I)->isAnonymousStructOrUnion()) {
919          AnyAnonStructUnionMembers = true;
920          break;
921        }
922      }
923      if (AnyAnonStructUnionMembers ||
924          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
925        // Check initialization of non-static data members. Base classes are
926        // always initialized so do not need to be checked. Dependent bases
927        // might not have initializers in the member initializer list.
928        llvm::SmallSet<Decl*, 16> Inits;
929        for (CXXConstructorDecl::init_const_iterator
930               I = Constructor->init_begin(), E = Constructor->init_end();
931             I != E; ++I) {
932          if (FieldDecl *FD = (*I)->getMember())
933            Inits.insert(FD);
934          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
935            Inits.insert(ID->chain_begin(), ID->chain_end());
936        }
937
938        bool Diagnosed = false;
939        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
940             E = RD->field_end(); I != E; ++I)
941          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
942        if (Diagnosed)
943          return false;
944      }
945    }
946
947    // FIXME
948    // - every constructor involved in initializing non-static data members
949    //   and base class sub-objects shall be a constexpr constructor;
950    // - every assignment-expression that is an initializer-clause appearing
951    //   directly or indirectly within a brace-or-equal-initializer for
952    //   a non-static data member that is not named by a mem-initializer-id
953    //   shall be a constant expression; and
954    // - every implicit conversion used in converting a constructor argument
955    //   to the corresponding parameter type and converting
956    //   a full-expression to the corresponding member type shall be one of
957    //   those allowed in a constant expression.
958    // Deal with these as part of a general check that the function can produce
959    // a constant expression (for [dcl.constexpr]p5).
960  } else {
961    if (ReturnStmts.empty()) {
962      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
963      return false;
964    }
965    if (ReturnStmts.size() > 1) {
966      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
967      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
968        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
969      return false;
970    }
971  }
972
973  return true;
974}
975
976/// isCurrentClassName - Determine whether the identifier II is the
977/// name of the class type currently being defined. In the case of
978/// nested classes, this will only return true if II is the name of
979/// the innermost class.
980bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
981                              const CXXScopeSpec *SS) {
982  assert(getLangOptions().CPlusPlus && "No class names in C!");
983
984  CXXRecordDecl *CurDecl;
985  if (SS && SS->isSet() && !SS->isInvalid()) {
986    DeclContext *DC = computeDeclContext(*SS, true);
987    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
988  } else
989    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
990
991  if (CurDecl && CurDecl->getIdentifier())
992    return &II == CurDecl->getIdentifier();
993  else
994    return false;
995}
996
997/// \brief Check the validity of a C++ base class specifier.
998///
999/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1000/// and returns NULL otherwise.
1001CXXBaseSpecifier *
1002Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1003                         SourceRange SpecifierRange,
1004                         bool Virtual, AccessSpecifier Access,
1005                         TypeSourceInfo *TInfo,
1006                         SourceLocation EllipsisLoc) {
1007  QualType BaseType = TInfo->getType();
1008
1009  // C++ [class.union]p1:
1010  //   A union shall not have base classes.
1011  if (Class->isUnion()) {
1012    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1013      << SpecifierRange;
1014    return 0;
1015  }
1016
1017  if (EllipsisLoc.isValid() &&
1018      !TInfo->getType()->containsUnexpandedParameterPack()) {
1019    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1020      << TInfo->getTypeLoc().getSourceRange();
1021    EllipsisLoc = SourceLocation();
1022  }
1023
1024  if (BaseType->isDependentType())
1025    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1026                                          Class->getTagKind() == TTK_Class,
1027                                          Access, TInfo, EllipsisLoc);
1028
1029  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1030
1031  // Base specifiers must be record types.
1032  if (!BaseType->isRecordType()) {
1033    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1034    return 0;
1035  }
1036
1037  // C++ [class.union]p1:
1038  //   A union shall not be used as a base class.
1039  if (BaseType->isUnionType()) {
1040    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1041    return 0;
1042  }
1043
1044  // C++ [class.derived]p2:
1045  //   The class-name in a base-specifier shall not be an incompletely
1046  //   defined class.
1047  if (RequireCompleteType(BaseLoc, BaseType,
1048                          PDiag(diag::err_incomplete_base_class)
1049                            << SpecifierRange)) {
1050    Class->setInvalidDecl();
1051    return 0;
1052  }
1053
1054  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1055  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1056  assert(BaseDecl && "Record type has no declaration");
1057  BaseDecl = BaseDecl->getDefinition();
1058  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1059  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1060  assert(CXXBaseDecl && "Base type is not a C++ type");
1061
1062  // C++ [class]p3:
1063  //   If a class is marked final and it appears as a base-type-specifier in
1064  //   base-clause, the program is ill-formed.
1065  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1066    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1067      << CXXBaseDecl->getDeclName();
1068    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1069      << CXXBaseDecl->getDeclName();
1070    return 0;
1071  }
1072
1073  if (BaseDecl->isInvalidDecl())
1074    Class->setInvalidDecl();
1075
1076  // Create the base specifier.
1077  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1078                                        Class->getTagKind() == TTK_Class,
1079                                        Access, TInfo, EllipsisLoc);
1080}
1081
1082/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1083/// one entry in the base class list of a class specifier, for
1084/// example:
1085///    class foo : public bar, virtual private baz {
1086/// 'public bar' and 'virtual private baz' are each base-specifiers.
1087BaseResult
1088Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1089                         bool Virtual, AccessSpecifier Access,
1090                         ParsedType basetype, SourceLocation BaseLoc,
1091                         SourceLocation EllipsisLoc) {
1092  if (!classdecl)
1093    return true;
1094
1095  AdjustDeclIfTemplate(classdecl);
1096  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1097  if (!Class)
1098    return true;
1099
1100  TypeSourceInfo *TInfo = 0;
1101  GetTypeFromParser(basetype, &TInfo);
1102
1103  if (EllipsisLoc.isInvalid() &&
1104      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1105                                      UPPC_BaseType))
1106    return true;
1107
1108  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1109                                                      Virtual, Access, TInfo,
1110                                                      EllipsisLoc))
1111    return BaseSpec;
1112
1113  return true;
1114}
1115
1116/// \brief Performs the actual work of attaching the given base class
1117/// specifiers to a C++ class.
1118bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1119                                unsigned NumBases) {
1120 if (NumBases == 0)
1121    return false;
1122
1123  // Used to keep track of which base types we have already seen, so
1124  // that we can properly diagnose redundant direct base types. Note
1125  // that the key is always the unqualified canonical type of the base
1126  // class.
1127  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1128
1129  // Copy non-redundant base specifiers into permanent storage.
1130  unsigned NumGoodBases = 0;
1131  bool Invalid = false;
1132  for (unsigned idx = 0; idx < NumBases; ++idx) {
1133    QualType NewBaseType
1134      = Context.getCanonicalType(Bases[idx]->getType());
1135    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1136    if (KnownBaseTypes[NewBaseType]) {
1137      // C++ [class.mi]p3:
1138      //   A class shall not be specified as a direct base class of a
1139      //   derived class more than once.
1140      Diag(Bases[idx]->getSourceRange().getBegin(),
1141           diag::err_duplicate_base_class)
1142        << KnownBaseTypes[NewBaseType]->getType()
1143        << Bases[idx]->getSourceRange();
1144
1145      // Delete the duplicate base class specifier; we're going to
1146      // overwrite its pointer later.
1147      Context.Deallocate(Bases[idx]);
1148
1149      Invalid = true;
1150    } else {
1151      // Okay, add this new base class.
1152      KnownBaseTypes[NewBaseType] = Bases[idx];
1153      Bases[NumGoodBases++] = Bases[idx];
1154      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1155        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1156          if (RD->hasAttr<WeakAttr>())
1157            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1158    }
1159  }
1160
1161  // Attach the remaining base class specifiers to the derived class.
1162  Class->setBases(Bases, NumGoodBases);
1163
1164  // Delete the remaining (good) base class specifiers, since their
1165  // data has been copied into the CXXRecordDecl.
1166  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1167    Context.Deallocate(Bases[idx]);
1168
1169  return Invalid;
1170}
1171
1172/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1173/// class, after checking whether there are any duplicate base
1174/// classes.
1175void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1176                               unsigned NumBases) {
1177  if (!ClassDecl || !Bases || !NumBases)
1178    return;
1179
1180  AdjustDeclIfTemplate(ClassDecl);
1181  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1182                       (CXXBaseSpecifier**)(Bases), NumBases);
1183}
1184
1185static CXXRecordDecl *GetClassForType(QualType T) {
1186  if (const RecordType *RT = T->getAs<RecordType>())
1187    return cast<CXXRecordDecl>(RT->getDecl());
1188  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1189    return ICT->getDecl();
1190  else
1191    return 0;
1192}
1193
1194/// \brief Determine whether the type \p Derived is a C++ class that is
1195/// derived from the type \p Base.
1196bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1197  if (!getLangOptions().CPlusPlus)
1198    return false;
1199
1200  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1201  if (!DerivedRD)
1202    return false;
1203
1204  CXXRecordDecl *BaseRD = GetClassForType(Base);
1205  if (!BaseRD)
1206    return false;
1207
1208  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1209  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1210}
1211
1212/// \brief Determine whether the type \p Derived is a C++ class that is
1213/// derived from the type \p Base.
1214bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1215  if (!getLangOptions().CPlusPlus)
1216    return false;
1217
1218  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1219  if (!DerivedRD)
1220    return false;
1221
1222  CXXRecordDecl *BaseRD = GetClassForType(Base);
1223  if (!BaseRD)
1224    return false;
1225
1226  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1227}
1228
1229void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1230                              CXXCastPath &BasePathArray) {
1231  assert(BasePathArray.empty() && "Base path array must be empty!");
1232  assert(Paths.isRecordingPaths() && "Must record paths!");
1233
1234  const CXXBasePath &Path = Paths.front();
1235
1236  // We first go backward and check if we have a virtual base.
1237  // FIXME: It would be better if CXXBasePath had the base specifier for
1238  // the nearest virtual base.
1239  unsigned Start = 0;
1240  for (unsigned I = Path.size(); I != 0; --I) {
1241    if (Path[I - 1].Base->isVirtual()) {
1242      Start = I - 1;
1243      break;
1244    }
1245  }
1246
1247  // Now add all bases.
1248  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1249    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1250}
1251
1252/// \brief Determine whether the given base path includes a virtual
1253/// base class.
1254bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1255  for (CXXCastPath::const_iterator B = BasePath.begin(),
1256                                BEnd = BasePath.end();
1257       B != BEnd; ++B)
1258    if ((*B)->isVirtual())
1259      return true;
1260
1261  return false;
1262}
1263
1264/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1265/// conversion (where Derived and Base are class types) is
1266/// well-formed, meaning that the conversion is unambiguous (and
1267/// that all of the base classes are accessible). Returns true
1268/// and emits a diagnostic if the code is ill-formed, returns false
1269/// otherwise. Loc is the location where this routine should point to
1270/// if there is an error, and Range is the source range to highlight
1271/// if there is an error.
1272bool
1273Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1274                                   unsigned InaccessibleBaseID,
1275                                   unsigned AmbigiousBaseConvID,
1276                                   SourceLocation Loc, SourceRange Range,
1277                                   DeclarationName Name,
1278                                   CXXCastPath *BasePath) {
1279  // First, determine whether the path from Derived to Base is
1280  // ambiguous. This is slightly more expensive than checking whether
1281  // the Derived to Base conversion exists, because here we need to
1282  // explore multiple paths to determine if there is an ambiguity.
1283  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1284                     /*DetectVirtual=*/false);
1285  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1286  assert(DerivationOkay &&
1287         "Can only be used with a derived-to-base conversion");
1288  (void)DerivationOkay;
1289
1290  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1291    if (InaccessibleBaseID) {
1292      // Check that the base class can be accessed.
1293      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1294                                   InaccessibleBaseID)) {
1295        case AR_inaccessible:
1296          return true;
1297        case AR_accessible:
1298        case AR_dependent:
1299        case AR_delayed:
1300          break;
1301      }
1302    }
1303
1304    // Build a base path if necessary.
1305    if (BasePath)
1306      BuildBasePathArray(Paths, *BasePath);
1307    return false;
1308  }
1309
1310  // We know that the derived-to-base conversion is ambiguous, and
1311  // we're going to produce a diagnostic. Perform the derived-to-base
1312  // search just one more time to compute all of the possible paths so
1313  // that we can print them out. This is more expensive than any of
1314  // the previous derived-to-base checks we've done, but at this point
1315  // performance isn't as much of an issue.
1316  Paths.clear();
1317  Paths.setRecordingPaths(true);
1318  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1319  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1320  (void)StillOkay;
1321
1322  // Build up a textual representation of the ambiguous paths, e.g.,
1323  // D -> B -> A, that will be used to illustrate the ambiguous
1324  // conversions in the diagnostic. We only print one of the paths
1325  // to each base class subobject.
1326  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1327
1328  Diag(Loc, AmbigiousBaseConvID)
1329  << Derived << Base << PathDisplayStr << Range << Name;
1330  return true;
1331}
1332
1333bool
1334Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1335                                   SourceLocation Loc, SourceRange Range,
1336                                   CXXCastPath *BasePath,
1337                                   bool IgnoreAccess) {
1338  return CheckDerivedToBaseConversion(Derived, Base,
1339                                      IgnoreAccess ? 0
1340                                       : diag::err_upcast_to_inaccessible_base,
1341                                      diag::err_ambiguous_derived_to_base_conv,
1342                                      Loc, Range, DeclarationName(),
1343                                      BasePath);
1344}
1345
1346
1347/// @brief Builds a string representing ambiguous paths from a
1348/// specific derived class to different subobjects of the same base
1349/// class.
1350///
1351/// This function builds a string that can be used in error messages
1352/// to show the different paths that one can take through the
1353/// inheritance hierarchy to go from the derived class to different
1354/// subobjects of a base class. The result looks something like this:
1355/// @code
1356/// struct D -> struct B -> struct A
1357/// struct D -> struct C -> struct A
1358/// @endcode
1359std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1360  std::string PathDisplayStr;
1361  std::set<unsigned> DisplayedPaths;
1362  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1363       Path != Paths.end(); ++Path) {
1364    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1365      // We haven't displayed a path to this particular base
1366      // class subobject yet.
1367      PathDisplayStr += "\n    ";
1368      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1369      for (CXXBasePath::const_iterator Element = Path->begin();
1370           Element != Path->end(); ++Element)
1371        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1372    }
1373  }
1374
1375  return PathDisplayStr;
1376}
1377
1378//===----------------------------------------------------------------------===//
1379// C++ class member Handling
1380//===----------------------------------------------------------------------===//
1381
1382/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1383bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1384                                SourceLocation ASLoc,
1385                                SourceLocation ColonLoc,
1386                                AttributeList *Attrs) {
1387  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1388  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1389                                                  ASLoc, ColonLoc);
1390  CurContext->addHiddenDecl(ASDecl);
1391  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1392}
1393
1394/// CheckOverrideControl - Check C++0x override control semantics.
1395void Sema::CheckOverrideControl(const Decl *D) {
1396  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1397  if (!MD || !MD->isVirtual())
1398    return;
1399
1400  if (MD->isDependentContext())
1401    return;
1402
1403  // C++0x [class.virtual]p3:
1404  //   If a virtual function is marked with the virt-specifier override and does
1405  //   not override a member function of a base class,
1406  //   the program is ill-formed.
1407  bool HasOverriddenMethods =
1408    MD->begin_overridden_methods() != MD->end_overridden_methods();
1409  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1410    Diag(MD->getLocation(),
1411                 diag::err_function_marked_override_not_overriding)
1412      << MD->getDeclName();
1413    return;
1414  }
1415}
1416
1417/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1418/// function overrides a virtual member function marked 'final', according to
1419/// C++0x [class.virtual]p3.
1420bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1421                                                  const CXXMethodDecl *Old) {
1422  if (!Old->hasAttr<FinalAttr>())
1423    return false;
1424
1425  Diag(New->getLocation(), diag::err_final_function_overridden)
1426    << New->getDeclName();
1427  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1428  return true;
1429}
1430
1431/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1432/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1433/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1434/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1435/// present but parsing it has been deferred.
1436Decl *
1437Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1438                               MultiTemplateParamsArg TemplateParameterLists,
1439                               Expr *BW, const VirtSpecifiers &VS,
1440                               bool HasDeferredInit) {
1441  const DeclSpec &DS = D.getDeclSpec();
1442  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1443  DeclarationName Name = NameInfo.getName();
1444  SourceLocation Loc = NameInfo.getLoc();
1445
1446  // For anonymous bitfields, the location should point to the type.
1447  if (Loc.isInvalid())
1448    Loc = D.getSourceRange().getBegin();
1449
1450  Expr *BitWidth = static_cast<Expr*>(BW);
1451
1452  assert(isa<CXXRecordDecl>(CurContext));
1453  assert(!DS.isFriendSpecified());
1454
1455  bool isFunc = D.isDeclarationOfFunction();
1456
1457  // C++ 9.2p6: A member shall not be declared to have automatic storage
1458  // duration (auto, register) or with the extern storage-class-specifier.
1459  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1460  // data members and cannot be applied to names declared const or static,
1461  // and cannot be applied to reference members.
1462  switch (DS.getStorageClassSpec()) {
1463    case DeclSpec::SCS_unspecified:
1464    case DeclSpec::SCS_typedef:
1465    case DeclSpec::SCS_static:
1466      // FALL THROUGH.
1467      break;
1468    case DeclSpec::SCS_mutable:
1469      if (isFunc) {
1470        if (DS.getStorageClassSpecLoc().isValid())
1471          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1472        else
1473          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1474
1475        // FIXME: It would be nicer if the keyword was ignored only for this
1476        // declarator. Otherwise we could get follow-up errors.
1477        D.getMutableDeclSpec().ClearStorageClassSpecs();
1478      }
1479      break;
1480    default:
1481      if (DS.getStorageClassSpecLoc().isValid())
1482        Diag(DS.getStorageClassSpecLoc(),
1483             diag::err_storageclass_invalid_for_member);
1484      else
1485        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1486      D.getMutableDeclSpec().ClearStorageClassSpecs();
1487  }
1488
1489  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1490                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1491                      !isFunc);
1492
1493  Decl *Member;
1494  if (isInstField) {
1495    CXXScopeSpec &SS = D.getCXXScopeSpec();
1496
1497    // Data members must have identifiers for names.
1498    if (Name.getNameKind() != DeclarationName::Identifier) {
1499      Diag(Loc, diag::err_bad_variable_name)
1500        << Name;
1501      return 0;
1502    }
1503
1504    IdentifierInfo *II = Name.getAsIdentifierInfo();
1505
1506    // Member field could not be with "template" keyword.
1507    // So TemplateParameterLists should be empty in this case.
1508    if (TemplateParameterLists.size()) {
1509      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1510      if (TemplateParams->size()) {
1511        // There is no such thing as a member field template.
1512        Diag(D.getIdentifierLoc(), diag::err_template_member)
1513            << II
1514            << SourceRange(TemplateParams->getTemplateLoc(),
1515                TemplateParams->getRAngleLoc());
1516      } else {
1517        // There is an extraneous 'template<>' for this member.
1518        Diag(TemplateParams->getTemplateLoc(),
1519            diag::err_template_member_noparams)
1520            << II
1521            << SourceRange(TemplateParams->getTemplateLoc(),
1522                TemplateParams->getRAngleLoc());
1523      }
1524      return 0;
1525    }
1526
1527    if (SS.isSet() && !SS.isInvalid()) {
1528      // The user provided a superfluous scope specifier inside a class
1529      // definition:
1530      //
1531      // class X {
1532      //   int X::member;
1533      // };
1534      DeclContext *DC = 0;
1535      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1536        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1537          << Name << FixItHint::CreateRemoval(SS.getRange());
1538      else
1539        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1540          << Name << SS.getRange();
1541
1542      SS.clear();
1543    }
1544
1545    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1546                         HasDeferredInit, AS);
1547    assert(Member && "HandleField never returns null");
1548  } else {
1549    assert(!HasDeferredInit);
1550
1551    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1552    if (!Member) {
1553      return 0;
1554    }
1555
1556    // Non-instance-fields can't have a bitfield.
1557    if (BitWidth) {
1558      if (Member->isInvalidDecl()) {
1559        // don't emit another diagnostic.
1560      } else if (isa<VarDecl>(Member)) {
1561        // C++ 9.6p3: A bit-field shall not be a static member.
1562        // "static member 'A' cannot be a bit-field"
1563        Diag(Loc, diag::err_static_not_bitfield)
1564          << Name << BitWidth->getSourceRange();
1565      } else if (isa<TypedefDecl>(Member)) {
1566        // "typedef member 'x' cannot be a bit-field"
1567        Diag(Loc, diag::err_typedef_not_bitfield)
1568          << Name << BitWidth->getSourceRange();
1569      } else {
1570        // A function typedef ("typedef int f(); f a;").
1571        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1572        Diag(Loc, diag::err_not_integral_type_bitfield)
1573          << Name << cast<ValueDecl>(Member)->getType()
1574          << BitWidth->getSourceRange();
1575      }
1576
1577      BitWidth = 0;
1578      Member->setInvalidDecl();
1579    }
1580
1581    Member->setAccess(AS);
1582
1583    // If we have declared a member function template, set the access of the
1584    // templated declaration as well.
1585    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1586      FunTmpl->getTemplatedDecl()->setAccess(AS);
1587  }
1588
1589  if (VS.isOverrideSpecified()) {
1590    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1591    if (!MD || !MD->isVirtual()) {
1592      Diag(Member->getLocStart(),
1593           diag::override_keyword_only_allowed_on_virtual_member_functions)
1594        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1595    } else
1596      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1597  }
1598  if (VS.isFinalSpecified()) {
1599    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1600    if (!MD || !MD->isVirtual()) {
1601      Diag(Member->getLocStart(),
1602           diag::override_keyword_only_allowed_on_virtual_member_functions)
1603      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1604    } else
1605      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1606  }
1607
1608  if (VS.getLastLocation().isValid()) {
1609    // Update the end location of a method that has a virt-specifiers.
1610    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1611      MD->setRangeEnd(VS.getLastLocation());
1612  }
1613
1614  CheckOverrideControl(Member);
1615
1616  assert((Name || isInstField) && "No identifier for non-field ?");
1617
1618  if (isInstField)
1619    FieldCollector->Add(cast<FieldDecl>(Member));
1620  return Member;
1621}
1622
1623/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1624/// in-class initializer for a non-static C++ class member, and after
1625/// instantiating an in-class initializer in a class template. Such actions
1626/// are deferred until the class is complete.
1627void
1628Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1629                                       Expr *InitExpr) {
1630  FieldDecl *FD = cast<FieldDecl>(D);
1631
1632  if (!InitExpr) {
1633    FD->setInvalidDecl();
1634    FD->removeInClassInitializer();
1635    return;
1636  }
1637
1638  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1639    FD->setInvalidDecl();
1640    FD->removeInClassInitializer();
1641    return;
1642  }
1643
1644  ExprResult Init = InitExpr;
1645  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1646    // FIXME: if there is no EqualLoc, this is list-initialization.
1647    Init = PerformCopyInitialization(
1648      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1649    if (Init.isInvalid()) {
1650      FD->setInvalidDecl();
1651      return;
1652    }
1653
1654    CheckImplicitConversions(Init.get(), EqualLoc);
1655  }
1656
1657  // C++0x [class.base.init]p7:
1658  //   The initialization of each base and member constitutes a
1659  //   full-expression.
1660  Init = MaybeCreateExprWithCleanups(Init);
1661  if (Init.isInvalid()) {
1662    FD->setInvalidDecl();
1663    return;
1664  }
1665
1666  InitExpr = Init.release();
1667
1668  FD->setInClassInitializer(InitExpr);
1669}
1670
1671/// \brief Find the direct and/or virtual base specifiers that
1672/// correspond to the given base type, for use in base initialization
1673/// within a constructor.
1674static bool FindBaseInitializer(Sema &SemaRef,
1675                                CXXRecordDecl *ClassDecl,
1676                                QualType BaseType,
1677                                const CXXBaseSpecifier *&DirectBaseSpec,
1678                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1679  // First, check for a direct base class.
1680  DirectBaseSpec = 0;
1681  for (CXXRecordDecl::base_class_const_iterator Base
1682         = ClassDecl->bases_begin();
1683       Base != ClassDecl->bases_end(); ++Base) {
1684    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1685      // We found a direct base of this type. That's what we're
1686      // initializing.
1687      DirectBaseSpec = &*Base;
1688      break;
1689    }
1690  }
1691
1692  // Check for a virtual base class.
1693  // FIXME: We might be able to short-circuit this if we know in advance that
1694  // there are no virtual bases.
1695  VirtualBaseSpec = 0;
1696  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1697    // We haven't found a base yet; search the class hierarchy for a
1698    // virtual base class.
1699    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1700                       /*DetectVirtual=*/false);
1701    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1702                              BaseType, Paths)) {
1703      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1704           Path != Paths.end(); ++Path) {
1705        if (Path->back().Base->isVirtual()) {
1706          VirtualBaseSpec = Path->back().Base;
1707          break;
1708        }
1709      }
1710    }
1711  }
1712
1713  return DirectBaseSpec || VirtualBaseSpec;
1714}
1715
1716/// \brief Handle a C++ member initializer using braced-init-list syntax.
1717MemInitResult
1718Sema::ActOnMemInitializer(Decl *ConstructorD,
1719                          Scope *S,
1720                          CXXScopeSpec &SS,
1721                          IdentifierInfo *MemberOrBase,
1722                          ParsedType TemplateTypeTy,
1723                          SourceLocation IdLoc,
1724                          Expr *InitList,
1725                          SourceLocation EllipsisLoc) {
1726  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1727                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1728}
1729
1730/// \brief Handle a C++ member initializer using parentheses syntax.
1731MemInitResult
1732Sema::ActOnMemInitializer(Decl *ConstructorD,
1733                          Scope *S,
1734                          CXXScopeSpec &SS,
1735                          IdentifierInfo *MemberOrBase,
1736                          ParsedType TemplateTypeTy,
1737                          SourceLocation IdLoc,
1738                          SourceLocation LParenLoc,
1739                          Expr **Args, unsigned NumArgs,
1740                          SourceLocation RParenLoc,
1741                          SourceLocation EllipsisLoc) {
1742  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1743                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1744                                                     RParenLoc),
1745                             EllipsisLoc);
1746}
1747
1748namespace {
1749
1750// Callback to only accept typo corrections that can be a valid C++ member
1751// intializer: either a non-static field member or a base class.
1752class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1753 public:
1754  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1755      : ClassDecl(ClassDecl) {}
1756
1757  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1758    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1759      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1760        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1761      else
1762        return isa<TypeDecl>(ND);
1763    }
1764    return false;
1765  }
1766
1767 private:
1768  CXXRecordDecl *ClassDecl;
1769};
1770
1771}
1772
1773/// \brief Handle a C++ member initializer.
1774MemInitResult
1775Sema::BuildMemInitializer(Decl *ConstructorD,
1776                          Scope *S,
1777                          CXXScopeSpec &SS,
1778                          IdentifierInfo *MemberOrBase,
1779                          ParsedType TemplateTypeTy,
1780                          SourceLocation IdLoc,
1781                          const MultiInitializer &Args,
1782                          SourceLocation EllipsisLoc) {
1783  if (!ConstructorD)
1784    return true;
1785
1786  AdjustDeclIfTemplate(ConstructorD);
1787
1788  CXXConstructorDecl *Constructor
1789    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1790  if (!Constructor) {
1791    // The user wrote a constructor initializer on a function that is
1792    // not a C++ constructor. Ignore the error for now, because we may
1793    // have more member initializers coming; we'll diagnose it just
1794    // once in ActOnMemInitializers.
1795    return true;
1796  }
1797
1798  CXXRecordDecl *ClassDecl = Constructor->getParent();
1799
1800  // C++ [class.base.init]p2:
1801  //   Names in a mem-initializer-id are looked up in the scope of the
1802  //   constructor's class and, if not found in that scope, are looked
1803  //   up in the scope containing the constructor's definition.
1804  //   [Note: if the constructor's class contains a member with the
1805  //   same name as a direct or virtual base class of the class, a
1806  //   mem-initializer-id naming the member or base class and composed
1807  //   of a single identifier refers to the class member. A
1808  //   mem-initializer-id for the hidden base class may be specified
1809  //   using a qualified name. ]
1810  if (!SS.getScopeRep() && !TemplateTypeTy) {
1811    // Look for a member, first.
1812    DeclContext::lookup_result Result
1813      = ClassDecl->lookup(MemberOrBase);
1814    if (Result.first != Result.second) {
1815      ValueDecl *Member;
1816      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1817          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1818        if (EllipsisLoc.isValid())
1819          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1820            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1821
1822        return BuildMemberInitializer(Member, Args, IdLoc);
1823      }
1824    }
1825  }
1826  // It didn't name a member, so see if it names a class.
1827  QualType BaseType;
1828  TypeSourceInfo *TInfo = 0;
1829
1830  if (TemplateTypeTy) {
1831    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1832  } else {
1833    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1834    LookupParsedName(R, S, &SS);
1835
1836    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1837    if (!TyD) {
1838      if (R.isAmbiguous()) return true;
1839
1840      // We don't want access-control diagnostics here.
1841      R.suppressDiagnostics();
1842
1843      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1844        bool NotUnknownSpecialization = false;
1845        DeclContext *DC = computeDeclContext(SS, false);
1846        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1847          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1848
1849        if (!NotUnknownSpecialization) {
1850          // When the scope specifier can refer to a member of an unknown
1851          // specialization, we take it as a type name.
1852          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1853                                       SS.getWithLocInContext(Context),
1854                                       *MemberOrBase, IdLoc);
1855          if (BaseType.isNull())
1856            return true;
1857
1858          R.clear();
1859          R.setLookupName(MemberOrBase);
1860        }
1861      }
1862
1863      // If no results were found, try to correct typos.
1864      TypoCorrection Corr;
1865      MemInitializerValidatorCCC Validator(ClassDecl);
1866      if (R.empty() && BaseType.isNull() &&
1867          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1868                              &Validator, ClassDecl))) {
1869        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1870        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1871        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1872          // We have found a non-static data member with a similar
1873          // name to what was typed; complain and initialize that
1874          // member.
1875          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1876            << MemberOrBase << true << CorrectedQuotedStr
1877            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1878          Diag(Member->getLocation(), diag::note_previous_decl)
1879            << CorrectedQuotedStr;
1880
1881          return BuildMemberInitializer(Member, Args, IdLoc);
1882        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1883          const CXXBaseSpecifier *DirectBaseSpec;
1884          const CXXBaseSpecifier *VirtualBaseSpec;
1885          if (FindBaseInitializer(*this, ClassDecl,
1886                                  Context.getTypeDeclType(Type),
1887                                  DirectBaseSpec, VirtualBaseSpec)) {
1888            // We have found a direct or virtual base class with a
1889            // similar name to what was typed; complain and initialize
1890            // that base class.
1891            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1892              << MemberOrBase << false << CorrectedQuotedStr
1893              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1894
1895            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1896                                                             : VirtualBaseSpec;
1897            Diag(BaseSpec->getSourceRange().getBegin(),
1898                 diag::note_base_class_specified_here)
1899              << BaseSpec->getType()
1900              << BaseSpec->getSourceRange();
1901
1902            TyD = Type;
1903          }
1904        }
1905      }
1906
1907      if (!TyD && BaseType.isNull()) {
1908        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1909          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1910        return true;
1911      }
1912    }
1913
1914    if (BaseType.isNull()) {
1915      BaseType = Context.getTypeDeclType(TyD);
1916      if (SS.isSet()) {
1917        NestedNameSpecifier *Qualifier =
1918          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1919
1920        // FIXME: preserve source range information
1921        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1922      }
1923    }
1924  }
1925
1926  if (!TInfo)
1927    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1928
1929  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1930}
1931
1932/// Checks a member initializer expression for cases where reference (or
1933/// pointer) members are bound to by-value parameters (or their addresses).
1934static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1935                                               Expr *Init,
1936                                               SourceLocation IdLoc) {
1937  QualType MemberTy = Member->getType();
1938
1939  // We only handle pointers and references currently.
1940  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1941  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1942    return;
1943
1944  const bool IsPointer = MemberTy->isPointerType();
1945  if (IsPointer) {
1946    if (const UnaryOperator *Op
1947          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1948      // The only case we're worried about with pointers requires taking the
1949      // address.
1950      if (Op->getOpcode() != UO_AddrOf)
1951        return;
1952
1953      Init = Op->getSubExpr();
1954    } else {
1955      // We only handle address-of expression initializers for pointers.
1956      return;
1957    }
1958  }
1959
1960  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1961    // Taking the address of a temporary will be diagnosed as a hard error.
1962    if (IsPointer)
1963      return;
1964
1965    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1966      << Member << Init->getSourceRange();
1967  } else if (const DeclRefExpr *DRE
1968               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1969    // We only warn when referring to a non-reference parameter declaration.
1970    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1971    if (!Parameter || Parameter->getType()->isReferenceType())
1972      return;
1973
1974    S.Diag(Init->getExprLoc(),
1975           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1976                     : diag::warn_bind_ref_member_to_parameter)
1977      << Member << Parameter << Init->getSourceRange();
1978  } else {
1979    // Other initializers are fine.
1980    return;
1981  }
1982
1983  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1984    << (unsigned)IsPointer;
1985}
1986
1987/// Checks an initializer expression for use of uninitialized fields, such as
1988/// containing the field that is being initialized. Returns true if there is an
1989/// uninitialized field was used an updates the SourceLocation parameter; false
1990/// otherwise.
1991static bool InitExprContainsUninitializedFields(const Stmt *S,
1992                                                const ValueDecl *LhsField,
1993                                                SourceLocation *L) {
1994  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1995
1996  if (isa<CallExpr>(S)) {
1997    // Do not descend into function calls or constructors, as the use
1998    // of an uninitialized field may be valid. One would have to inspect
1999    // the contents of the function/ctor to determine if it is safe or not.
2000    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2001    // may be safe, depending on what the function/ctor does.
2002    return false;
2003  }
2004  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2005    const NamedDecl *RhsField = ME->getMemberDecl();
2006
2007    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2008      // The member expression points to a static data member.
2009      assert(VD->isStaticDataMember() &&
2010             "Member points to non-static data member!");
2011      (void)VD;
2012      return false;
2013    }
2014
2015    if (isa<EnumConstantDecl>(RhsField)) {
2016      // The member expression points to an enum.
2017      return false;
2018    }
2019
2020    if (RhsField == LhsField) {
2021      // Initializing a field with itself. Throw a warning.
2022      // But wait; there are exceptions!
2023      // Exception #1:  The field may not belong to this record.
2024      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2025      const Expr *base = ME->getBase();
2026      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2027        // Even though the field matches, it does not belong to this record.
2028        return false;
2029      }
2030      // None of the exceptions triggered; return true to indicate an
2031      // uninitialized field was used.
2032      *L = ME->getMemberLoc();
2033      return true;
2034    }
2035  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2036    // sizeof/alignof doesn't reference contents, do not warn.
2037    return false;
2038  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2039    // address-of doesn't reference contents (the pointer may be dereferenced
2040    // in the same expression but it would be rare; and weird).
2041    if (UOE->getOpcode() == UO_AddrOf)
2042      return false;
2043  }
2044  for (Stmt::const_child_range it = S->children(); it; ++it) {
2045    if (!*it) {
2046      // An expression such as 'member(arg ?: "")' may trigger this.
2047      continue;
2048    }
2049    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2050      return true;
2051  }
2052  return false;
2053}
2054
2055MemInitResult
2056Sema::BuildMemberInitializer(ValueDecl *Member,
2057                             const MultiInitializer &Args,
2058                             SourceLocation IdLoc) {
2059  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2060  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2061  assert((DirectMember || IndirectMember) &&
2062         "Member must be a FieldDecl or IndirectFieldDecl");
2063
2064  if (Args.DiagnoseUnexpandedParameterPack(*this))
2065    return true;
2066
2067  if (Member->isInvalidDecl())
2068    return true;
2069
2070  // Diagnose value-uses of fields to initialize themselves, e.g.
2071  //   foo(foo)
2072  // where foo is not also a parameter to the constructor.
2073  // TODO: implement -Wuninitialized and fold this into that framework.
2074  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2075       I != E; ++I) {
2076    SourceLocation L;
2077    Expr *Arg = *I;
2078    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2079      Arg = DIE->getInit();
2080    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2081      // FIXME: Return true in the case when other fields are used before being
2082      // uninitialized. For example, let this field be the i'th field. When
2083      // initializing the i'th field, throw a warning if any of the >= i'th
2084      // fields are used, as they are not yet initialized.
2085      // Right now we are only handling the case where the i'th field uses
2086      // itself in its initializer.
2087      Diag(L, diag::warn_field_is_uninit);
2088    }
2089  }
2090
2091  bool HasDependentArg = Args.isTypeDependent();
2092
2093  Expr *Init;
2094  if (Member->getType()->isDependentType() || HasDependentArg) {
2095    // Can't check initialization for a member of dependent type or when
2096    // any of the arguments are type-dependent expressions.
2097    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2098
2099    DiscardCleanupsInEvaluationContext();
2100  } else {
2101    // Initialize the member.
2102    InitializedEntity MemberEntity =
2103      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2104                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2105    InitializationKind Kind =
2106      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2107                                       Args.getEndLoc());
2108
2109    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2110    if (MemberInit.isInvalid())
2111      return true;
2112
2113    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2114
2115    // C++0x [class.base.init]p7:
2116    //   The initialization of each base and member constitutes a
2117    //   full-expression.
2118    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2119    if (MemberInit.isInvalid())
2120      return true;
2121
2122    // If we are in a dependent context, template instantiation will
2123    // perform this type-checking again. Just save the arguments that we
2124    // received in a ParenListExpr.
2125    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2126    // of the information that we have about the member
2127    // initializer. However, deconstructing the ASTs is a dicey process,
2128    // and this approach is far more likely to get the corner cases right.
2129    if (CurContext->isDependentContext()) {
2130      Init = Args.CreateInitExpr(Context,
2131                                 Member->getType().getNonReferenceType());
2132    } else {
2133      Init = MemberInit.get();
2134      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2135    }
2136  }
2137
2138  if (DirectMember) {
2139    return new (Context) CXXCtorInitializer(Context, DirectMember,
2140                                                    IdLoc, Args.getStartLoc(),
2141                                                    Init, Args.getEndLoc());
2142  } else {
2143    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2144                                                    IdLoc, Args.getStartLoc(),
2145                                                    Init, Args.getEndLoc());
2146  }
2147}
2148
2149MemInitResult
2150Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2151                                 const MultiInitializer &Args,
2152                                 CXXRecordDecl *ClassDecl) {
2153  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2154  if (!LangOpts.CPlusPlus0x)
2155    return Diag(NameLoc, diag::err_delegating_ctor)
2156      << TInfo->getTypeLoc().getLocalSourceRange();
2157  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2158
2159  // Initialize the object.
2160  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2161                                     QualType(ClassDecl->getTypeForDecl(), 0));
2162  InitializationKind Kind =
2163    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2164                                     Args.getEndLoc());
2165
2166  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2167  if (DelegationInit.isInvalid())
2168    return true;
2169
2170  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2171         "Delegating constructor with no target?");
2172
2173  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2174
2175  // C++0x [class.base.init]p7:
2176  //   The initialization of each base and member constitutes a
2177  //   full-expression.
2178  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2179  if (DelegationInit.isInvalid())
2180    return true;
2181
2182  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2183                                          DelegationInit.takeAs<Expr>(),
2184                                          Args.getEndLoc());
2185}
2186
2187MemInitResult
2188Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2189                           const MultiInitializer &Args,
2190                           CXXRecordDecl *ClassDecl,
2191                           SourceLocation EllipsisLoc) {
2192  bool HasDependentArg = Args.isTypeDependent();
2193
2194  SourceLocation BaseLoc
2195    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2196
2197  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2198    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2199             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2200
2201  // C++ [class.base.init]p2:
2202  //   [...] Unless the mem-initializer-id names a nonstatic data
2203  //   member of the constructor's class or a direct or virtual base
2204  //   of that class, the mem-initializer is ill-formed. A
2205  //   mem-initializer-list can initialize a base class using any
2206  //   name that denotes that base class type.
2207  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2208
2209  if (EllipsisLoc.isValid()) {
2210    // This is a pack expansion.
2211    if (!BaseType->containsUnexpandedParameterPack())  {
2212      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2213        << SourceRange(BaseLoc, Args.getEndLoc());
2214
2215      EllipsisLoc = SourceLocation();
2216    }
2217  } else {
2218    // Check for any unexpanded parameter packs.
2219    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2220      return true;
2221
2222    if (Args.DiagnoseUnexpandedParameterPack(*this))
2223      return true;
2224  }
2225
2226  // Check for direct and virtual base classes.
2227  const CXXBaseSpecifier *DirectBaseSpec = 0;
2228  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2229  if (!Dependent) {
2230    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2231                                       BaseType))
2232      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2233
2234    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2235                        VirtualBaseSpec);
2236
2237    // C++ [base.class.init]p2:
2238    // Unless the mem-initializer-id names a nonstatic data member of the
2239    // constructor's class or a direct or virtual base of that class, the
2240    // mem-initializer is ill-formed.
2241    if (!DirectBaseSpec && !VirtualBaseSpec) {
2242      // If the class has any dependent bases, then it's possible that
2243      // one of those types will resolve to the same type as
2244      // BaseType. Therefore, just treat this as a dependent base
2245      // class initialization.  FIXME: Should we try to check the
2246      // initialization anyway? It seems odd.
2247      if (ClassDecl->hasAnyDependentBases())
2248        Dependent = true;
2249      else
2250        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2251          << BaseType << Context.getTypeDeclType(ClassDecl)
2252          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2253    }
2254  }
2255
2256  if (Dependent) {
2257    // Can't check initialization for a base of dependent type or when
2258    // any of the arguments are type-dependent expressions.
2259    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2260
2261    DiscardCleanupsInEvaluationContext();
2262
2263    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2264                                            /*IsVirtual=*/false,
2265                                            Args.getStartLoc(), BaseInit,
2266                                            Args.getEndLoc(), EllipsisLoc);
2267  }
2268
2269  // C++ [base.class.init]p2:
2270  //   If a mem-initializer-id is ambiguous because it designates both
2271  //   a direct non-virtual base class and an inherited virtual base
2272  //   class, the mem-initializer is ill-formed.
2273  if (DirectBaseSpec && VirtualBaseSpec)
2274    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2275      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2276
2277  CXXBaseSpecifier *BaseSpec
2278    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2279  if (!BaseSpec)
2280    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2281
2282  // Initialize the base.
2283  InitializedEntity BaseEntity =
2284    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2285  InitializationKind Kind =
2286    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2287                                     Args.getEndLoc());
2288
2289  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2290  if (BaseInit.isInvalid())
2291    return true;
2292
2293  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2294
2295  // C++0x [class.base.init]p7:
2296  //   The initialization of each base and member constitutes a
2297  //   full-expression.
2298  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2299  if (BaseInit.isInvalid())
2300    return true;
2301
2302  // If we are in a dependent context, template instantiation will
2303  // perform this type-checking again. Just save the arguments that we
2304  // received in a ParenListExpr.
2305  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2306  // of the information that we have about the base
2307  // initializer. However, deconstructing the ASTs is a dicey process,
2308  // and this approach is far more likely to get the corner cases right.
2309  if (CurContext->isDependentContext())
2310    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2311
2312  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2313                                          BaseSpec->isVirtual(),
2314                                          Args.getStartLoc(),
2315                                          BaseInit.takeAs<Expr>(),
2316                                          Args.getEndLoc(), EllipsisLoc);
2317}
2318
2319// Create a static_cast\<T&&>(expr).
2320static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2321  QualType ExprType = E->getType();
2322  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2323  SourceLocation ExprLoc = E->getLocStart();
2324  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2325      TargetType, ExprLoc);
2326
2327  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2328                                   SourceRange(ExprLoc, ExprLoc),
2329                                   E->getSourceRange()).take();
2330}
2331
2332/// ImplicitInitializerKind - How an implicit base or member initializer should
2333/// initialize its base or member.
2334enum ImplicitInitializerKind {
2335  IIK_Default,
2336  IIK_Copy,
2337  IIK_Move
2338};
2339
2340static bool
2341BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2342                             ImplicitInitializerKind ImplicitInitKind,
2343                             CXXBaseSpecifier *BaseSpec,
2344                             bool IsInheritedVirtualBase,
2345                             CXXCtorInitializer *&CXXBaseInit) {
2346  InitializedEntity InitEntity
2347    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2348                                        IsInheritedVirtualBase);
2349
2350  ExprResult BaseInit;
2351
2352  switch (ImplicitInitKind) {
2353  case IIK_Default: {
2354    InitializationKind InitKind
2355      = InitializationKind::CreateDefault(Constructor->getLocation());
2356    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2357    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2358                               MultiExprArg(SemaRef, 0, 0));
2359    break;
2360  }
2361
2362  case IIK_Move:
2363  case IIK_Copy: {
2364    bool Moving = ImplicitInitKind == IIK_Move;
2365    ParmVarDecl *Param = Constructor->getParamDecl(0);
2366    QualType ParamType = Param->getType().getNonReferenceType();
2367
2368    Expr *CopyCtorArg =
2369      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2370                          Constructor->getLocation(), ParamType,
2371                          VK_LValue, 0);
2372
2373    // Cast to the base class to avoid ambiguities.
2374    QualType ArgTy =
2375      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2376                                       ParamType.getQualifiers());
2377
2378    if (Moving) {
2379      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2380    }
2381
2382    CXXCastPath BasePath;
2383    BasePath.push_back(BaseSpec);
2384    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2385                                            CK_UncheckedDerivedToBase,
2386                                            Moving ? VK_XValue : VK_LValue,
2387                                            &BasePath).take();
2388
2389    InitializationKind InitKind
2390      = InitializationKind::CreateDirect(Constructor->getLocation(),
2391                                         SourceLocation(), SourceLocation());
2392    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2393                                   &CopyCtorArg, 1);
2394    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2395                               MultiExprArg(&CopyCtorArg, 1));
2396    break;
2397  }
2398  }
2399
2400  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2401  if (BaseInit.isInvalid())
2402    return true;
2403
2404  CXXBaseInit =
2405    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2406               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2407                                                        SourceLocation()),
2408                                             BaseSpec->isVirtual(),
2409                                             SourceLocation(),
2410                                             BaseInit.takeAs<Expr>(),
2411                                             SourceLocation(),
2412                                             SourceLocation());
2413
2414  return false;
2415}
2416
2417static bool RefersToRValueRef(Expr *MemRef) {
2418  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2419  return Referenced->getType()->isRValueReferenceType();
2420}
2421
2422static bool
2423BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2424                               ImplicitInitializerKind ImplicitInitKind,
2425                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2426                               CXXCtorInitializer *&CXXMemberInit) {
2427  if (Field->isInvalidDecl())
2428    return true;
2429
2430  SourceLocation Loc = Constructor->getLocation();
2431
2432  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2433    bool Moving = ImplicitInitKind == IIK_Move;
2434    ParmVarDecl *Param = Constructor->getParamDecl(0);
2435    QualType ParamType = Param->getType().getNonReferenceType();
2436
2437    // Suppress copying zero-width bitfields.
2438    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2439      return false;
2440
2441    Expr *MemberExprBase =
2442      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2443                          Loc, ParamType, VK_LValue, 0);
2444
2445    if (Moving) {
2446      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2447    }
2448
2449    // Build a reference to this field within the parameter.
2450    CXXScopeSpec SS;
2451    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2452                              Sema::LookupMemberName);
2453    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2454                                  : cast<ValueDecl>(Field), AS_public);
2455    MemberLookup.resolveKind();
2456    ExprResult CtorArg
2457      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2458                                         ParamType, Loc,
2459                                         /*IsArrow=*/false,
2460                                         SS,
2461                                         /*FirstQualifierInScope=*/0,
2462                                         MemberLookup,
2463                                         /*TemplateArgs=*/0);
2464    if (CtorArg.isInvalid())
2465      return true;
2466
2467    // C++11 [class.copy]p15:
2468    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2469    //     with static_cast<T&&>(x.m);
2470    if (RefersToRValueRef(CtorArg.get())) {
2471      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2472    }
2473
2474    // When the field we are copying is an array, create index variables for
2475    // each dimension of the array. We use these index variables to subscript
2476    // the source array, and other clients (e.g., CodeGen) will perform the
2477    // necessary iteration with these index variables.
2478    SmallVector<VarDecl *, 4> IndexVariables;
2479    QualType BaseType = Field->getType();
2480    QualType SizeType = SemaRef.Context.getSizeType();
2481    bool InitializingArray = false;
2482    while (const ConstantArrayType *Array
2483                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2484      InitializingArray = true;
2485      // Create the iteration variable for this array index.
2486      IdentifierInfo *IterationVarName = 0;
2487      {
2488        llvm::SmallString<8> Str;
2489        llvm::raw_svector_ostream OS(Str);
2490        OS << "__i" << IndexVariables.size();
2491        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2492      }
2493      VarDecl *IterationVar
2494        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2495                          IterationVarName, SizeType,
2496                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2497                          SC_None, SC_None);
2498      IndexVariables.push_back(IterationVar);
2499
2500      // Create a reference to the iteration variable.
2501      ExprResult IterationVarRef
2502        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2503      assert(!IterationVarRef.isInvalid() &&
2504             "Reference to invented variable cannot fail!");
2505
2506      // Subscript the array with this iteration variable.
2507      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2508                                                        IterationVarRef.take(),
2509                                                        Loc);
2510      if (CtorArg.isInvalid())
2511        return true;
2512
2513      BaseType = Array->getElementType();
2514    }
2515
2516    // The array subscript expression is an lvalue, which is wrong for moving.
2517    if (Moving && InitializingArray)
2518      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2519
2520    // Construct the entity that we will be initializing. For an array, this
2521    // will be first element in the array, which may require several levels
2522    // of array-subscript entities.
2523    SmallVector<InitializedEntity, 4> Entities;
2524    Entities.reserve(1 + IndexVariables.size());
2525    if (Indirect)
2526      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2527    else
2528      Entities.push_back(InitializedEntity::InitializeMember(Field));
2529    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2530      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2531                                                              0,
2532                                                              Entities.back()));
2533
2534    // Direct-initialize to use the copy constructor.
2535    InitializationKind InitKind =
2536      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2537
2538    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2539    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2540                                   &CtorArgE, 1);
2541
2542    ExprResult MemberInit
2543      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2544                        MultiExprArg(&CtorArgE, 1));
2545    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2546    if (MemberInit.isInvalid())
2547      return true;
2548
2549    if (Indirect) {
2550      assert(IndexVariables.size() == 0 &&
2551             "Indirect field improperly initialized");
2552      CXXMemberInit
2553        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2554                                                   Loc, Loc,
2555                                                   MemberInit.takeAs<Expr>(),
2556                                                   Loc);
2557    } else
2558      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2559                                                 Loc, MemberInit.takeAs<Expr>(),
2560                                                 Loc,
2561                                                 IndexVariables.data(),
2562                                                 IndexVariables.size());
2563    return false;
2564  }
2565
2566  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2567
2568  QualType FieldBaseElementType =
2569    SemaRef.Context.getBaseElementType(Field->getType());
2570
2571  if (FieldBaseElementType->isRecordType()) {
2572    InitializedEntity InitEntity
2573      = Indirect? InitializedEntity::InitializeMember(Indirect)
2574                : InitializedEntity::InitializeMember(Field);
2575    InitializationKind InitKind =
2576      InitializationKind::CreateDefault(Loc);
2577
2578    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2579    ExprResult MemberInit =
2580      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2581
2582    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2583    if (MemberInit.isInvalid())
2584      return true;
2585
2586    if (Indirect)
2587      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2588                                                               Indirect, Loc,
2589                                                               Loc,
2590                                                               MemberInit.get(),
2591                                                               Loc);
2592    else
2593      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2594                                                               Field, Loc, Loc,
2595                                                               MemberInit.get(),
2596                                                               Loc);
2597    return false;
2598  }
2599
2600  if (!Field->getParent()->isUnion()) {
2601    if (FieldBaseElementType->isReferenceType()) {
2602      SemaRef.Diag(Constructor->getLocation(),
2603                   diag::err_uninitialized_member_in_ctor)
2604      << (int)Constructor->isImplicit()
2605      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2606      << 0 << Field->getDeclName();
2607      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2608      return true;
2609    }
2610
2611    if (FieldBaseElementType.isConstQualified()) {
2612      SemaRef.Diag(Constructor->getLocation(),
2613                   diag::err_uninitialized_member_in_ctor)
2614      << (int)Constructor->isImplicit()
2615      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2616      << 1 << Field->getDeclName();
2617      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2618      return true;
2619    }
2620  }
2621
2622  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2623      FieldBaseElementType->isObjCRetainableType() &&
2624      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2625      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2626    // Instant objects:
2627    //   Default-initialize Objective-C pointers to NULL.
2628    CXXMemberInit
2629      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2630                                                 Loc, Loc,
2631                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2632                                                 Loc);
2633    return false;
2634  }
2635
2636  // Nothing to initialize.
2637  CXXMemberInit = 0;
2638  return false;
2639}
2640
2641namespace {
2642struct BaseAndFieldInfo {
2643  Sema &S;
2644  CXXConstructorDecl *Ctor;
2645  bool AnyErrorsInInits;
2646  ImplicitInitializerKind IIK;
2647  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2648  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2649
2650  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2651    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2652    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2653    if (Generated && Ctor->isCopyConstructor())
2654      IIK = IIK_Copy;
2655    else if (Generated && Ctor->isMoveConstructor())
2656      IIK = IIK_Move;
2657    else
2658      IIK = IIK_Default;
2659  }
2660
2661  bool isImplicitCopyOrMove() const {
2662    switch (IIK) {
2663    case IIK_Copy:
2664    case IIK_Move:
2665      return true;
2666
2667    case IIK_Default:
2668      return false;
2669    }
2670
2671    return false;
2672  }
2673};
2674}
2675
2676/// \brief Determine whether the given indirect field declaration is somewhere
2677/// within an anonymous union.
2678static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2679  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2680                                      CEnd = F->chain_end();
2681       C != CEnd; ++C)
2682    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2683      if (Record->isUnion())
2684        return true;
2685
2686  return false;
2687}
2688
2689/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2690/// array type.
2691static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2692  if (T->isIncompleteArrayType())
2693    return true;
2694
2695  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2696    if (!ArrayT->getSize())
2697      return true;
2698
2699    T = ArrayT->getElementType();
2700  }
2701
2702  return false;
2703}
2704
2705static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2706                                    FieldDecl *Field,
2707                                    IndirectFieldDecl *Indirect = 0) {
2708
2709  // Overwhelmingly common case: we have a direct initializer for this field.
2710  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2711    Info.AllToInit.push_back(Init);
2712    return false;
2713  }
2714
2715  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2716  // has a brace-or-equal-initializer, the entity is initialized as specified
2717  // in [dcl.init].
2718  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2719    CXXCtorInitializer *Init;
2720    if (Indirect)
2721      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2722                                                      SourceLocation(),
2723                                                      SourceLocation(), 0,
2724                                                      SourceLocation());
2725    else
2726      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2727                                                      SourceLocation(),
2728                                                      SourceLocation(), 0,
2729                                                      SourceLocation());
2730    Info.AllToInit.push_back(Init);
2731    return false;
2732  }
2733
2734  // Don't build an implicit initializer for union members if none was
2735  // explicitly specified.
2736  if (Field->getParent()->isUnion() ||
2737      (Indirect && isWithinAnonymousUnion(Indirect)))
2738    return false;
2739
2740  // Don't initialize incomplete or zero-length arrays.
2741  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2742    return false;
2743
2744  // Don't try to build an implicit initializer if there were semantic
2745  // errors in any of the initializers (and therefore we might be
2746  // missing some that the user actually wrote).
2747  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2748    return false;
2749
2750  CXXCtorInitializer *Init = 0;
2751  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2752                                     Indirect, Init))
2753    return true;
2754
2755  if (Init)
2756    Info.AllToInit.push_back(Init);
2757
2758  return false;
2759}
2760
2761bool
2762Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2763                               CXXCtorInitializer *Initializer) {
2764  assert(Initializer->isDelegatingInitializer());
2765  Constructor->setNumCtorInitializers(1);
2766  CXXCtorInitializer **initializer =
2767    new (Context) CXXCtorInitializer*[1];
2768  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2769  Constructor->setCtorInitializers(initializer);
2770
2771  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2772    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2773    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2774  }
2775
2776  DelegatingCtorDecls.push_back(Constructor);
2777
2778  return false;
2779}
2780
2781bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2782                               CXXCtorInitializer **Initializers,
2783                               unsigned NumInitializers,
2784                               bool AnyErrors) {
2785  if (Constructor->isDependentContext()) {
2786    // Just store the initializers as written, they will be checked during
2787    // instantiation.
2788    if (NumInitializers > 0) {
2789      Constructor->setNumCtorInitializers(NumInitializers);
2790      CXXCtorInitializer **baseOrMemberInitializers =
2791        new (Context) CXXCtorInitializer*[NumInitializers];
2792      memcpy(baseOrMemberInitializers, Initializers,
2793             NumInitializers * sizeof(CXXCtorInitializer*));
2794      Constructor->setCtorInitializers(baseOrMemberInitializers);
2795    }
2796
2797    return false;
2798  }
2799
2800  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2801
2802  // We need to build the initializer AST according to order of construction
2803  // and not what user specified in the Initializers list.
2804  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2805  if (!ClassDecl)
2806    return true;
2807
2808  bool HadError = false;
2809
2810  for (unsigned i = 0; i < NumInitializers; i++) {
2811    CXXCtorInitializer *Member = Initializers[i];
2812
2813    if (Member->isBaseInitializer())
2814      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2815    else
2816      Info.AllBaseFields[Member->getAnyMember()] = Member;
2817  }
2818
2819  // Keep track of the direct virtual bases.
2820  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2821  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2822       E = ClassDecl->bases_end(); I != E; ++I) {
2823    if (I->isVirtual())
2824      DirectVBases.insert(I);
2825  }
2826
2827  // Push virtual bases before others.
2828  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2829       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2830
2831    if (CXXCtorInitializer *Value
2832        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2833      Info.AllToInit.push_back(Value);
2834    } else if (!AnyErrors) {
2835      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2836      CXXCtorInitializer *CXXBaseInit;
2837      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2838                                       VBase, IsInheritedVirtualBase,
2839                                       CXXBaseInit)) {
2840        HadError = true;
2841        continue;
2842      }
2843
2844      Info.AllToInit.push_back(CXXBaseInit);
2845    }
2846  }
2847
2848  // Non-virtual bases.
2849  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2850       E = ClassDecl->bases_end(); Base != E; ++Base) {
2851    // Virtuals are in the virtual base list and already constructed.
2852    if (Base->isVirtual())
2853      continue;
2854
2855    if (CXXCtorInitializer *Value
2856          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2857      Info.AllToInit.push_back(Value);
2858    } else if (!AnyErrors) {
2859      CXXCtorInitializer *CXXBaseInit;
2860      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2861                                       Base, /*IsInheritedVirtualBase=*/false,
2862                                       CXXBaseInit)) {
2863        HadError = true;
2864        continue;
2865      }
2866
2867      Info.AllToInit.push_back(CXXBaseInit);
2868    }
2869  }
2870
2871  // Fields.
2872  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2873                               MemEnd = ClassDecl->decls_end();
2874       Mem != MemEnd; ++Mem) {
2875    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2876      // C++ [class.bit]p2:
2877      //   A declaration for a bit-field that omits the identifier declares an
2878      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2879      //   initialized.
2880      if (F->isUnnamedBitfield())
2881        continue;
2882
2883      // If we're not generating the implicit copy/move constructor, then we'll
2884      // handle anonymous struct/union fields based on their individual
2885      // indirect fields.
2886      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2887        continue;
2888
2889      if (CollectFieldInitializer(*this, Info, F))
2890        HadError = true;
2891      continue;
2892    }
2893
2894    // Beyond this point, we only consider default initialization.
2895    if (Info.IIK != IIK_Default)
2896      continue;
2897
2898    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2899      if (F->getType()->isIncompleteArrayType()) {
2900        assert(ClassDecl->hasFlexibleArrayMember() &&
2901               "Incomplete array type is not valid");
2902        continue;
2903      }
2904
2905      // Initialize each field of an anonymous struct individually.
2906      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2907        HadError = true;
2908
2909      continue;
2910    }
2911  }
2912
2913  NumInitializers = Info.AllToInit.size();
2914  if (NumInitializers > 0) {
2915    Constructor->setNumCtorInitializers(NumInitializers);
2916    CXXCtorInitializer **baseOrMemberInitializers =
2917      new (Context) CXXCtorInitializer*[NumInitializers];
2918    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2919           NumInitializers * sizeof(CXXCtorInitializer*));
2920    Constructor->setCtorInitializers(baseOrMemberInitializers);
2921
2922    // Constructors implicitly reference the base and member
2923    // destructors.
2924    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2925                                           Constructor->getParent());
2926  }
2927
2928  return HadError;
2929}
2930
2931static void *GetKeyForTopLevelField(FieldDecl *Field) {
2932  // For anonymous unions, use the class declaration as the key.
2933  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2934    if (RT->getDecl()->isAnonymousStructOrUnion())
2935      return static_cast<void *>(RT->getDecl());
2936  }
2937  return static_cast<void *>(Field);
2938}
2939
2940static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2941  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2942}
2943
2944static void *GetKeyForMember(ASTContext &Context,
2945                             CXXCtorInitializer *Member) {
2946  if (!Member->isAnyMemberInitializer())
2947    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2948
2949  // For fields injected into the class via declaration of an anonymous union,
2950  // use its anonymous union class declaration as the unique key.
2951  FieldDecl *Field = Member->getAnyMember();
2952
2953  // If the field is a member of an anonymous struct or union, our key
2954  // is the anonymous record decl that's a direct child of the class.
2955  RecordDecl *RD = Field->getParent();
2956  if (RD->isAnonymousStructOrUnion()) {
2957    while (true) {
2958      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2959      if (Parent->isAnonymousStructOrUnion())
2960        RD = Parent;
2961      else
2962        break;
2963    }
2964
2965    return static_cast<void *>(RD);
2966  }
2967
2968  return static_cast<void *>(Field);
2969}
2970
2971static void
2972DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2973                                  const CXXConstructorDecl *Constructor,
2974                                  CXXCtorInitializer **Inits,
2975                                  unsigned NumInits) {
2976  if (Constructor->getDeclContext()->isDependentContext())
2977    return;
2978
2979  // Don't check initializers order unless the warning is enabled at the
2980  // location of at least one initializer.
2981  bool ShouldCheckOrder = false;
2982  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2983    CXXCtorInitializer *Init = Inits[InitIndex];
2984    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2985                                         Init->getSourceLocation())
2986          != DiagnosticsEngine::Ignored) {
2987      ShouldCheckOrder = true;
2988      break;
2989    }
2990  }
2991  if (!ShouldCheckOrder)
2992    return;
2993
2994  // Build the list of bases and members in the order that they'll
2995  // actually be initialized.  The explicit initializers should be in
2996  // this same order but may be missing things.
2997  SmallVector<const void*, 32> IdealInitKeys;
2998
2999  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3000
3001  // 1. Virtual bases.
3002  for (CXXRecordDecl::base_class_const_iterator VBase =
3003       ClassDecl->vbases_begin(),
3004       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3005    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3006
3007  // 2. Non-virtual bases.
3008  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3009       E = ClassDecl->bases_end(); Base != E; ++Base) {
3010    if (Base->isVirtual())
3011      continue;
3012    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3013  }
3014
3015  // 3. Direct fields.
3016  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3017       E = ClassDecl->field_end(); Field != E; ++Field) {
3018    if (Field->isUnnamedBitfield())
3019      continue;
3020
3021    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3022  }
3023
3024  unsigned NumIdealInits = IdealInitKeys.size();
3025  unsigned IdealIndex = 0;
3026
3027  CXXCtorInitializer *PrevInit = 0;
3028  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3029    CXXCtorInitializer *Init = Inits[InitIndex];
3030    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3031
3032    // Scan forward to try to find this initializer in the idealized
3033    // initializers list.
3034    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3035      if (InitKey == IdealInitKeys[IdealIndex])
3036        break;
3037
3038    // If we didn't find this initializer, it must be because we
3039    // scanned past it on a previous iteration.  That can only
3040    // happen if we're out of order;  emit a warning.
3041    if (IdealIndex == NumIdealInits && PrevInit) {
3042      Sema::SemaDiagnosticBuilder D =
3043        SemaRef.Diag(PrevInit->getSourceLocation(),
3044                     diag::warn_initializer_out_of_order);
3045
3046      if (PrevInit->isAnyMemberInitializer())
3047        D << 0 << PrevInit->getAnyMember()->getDeclName();
3048      else
3049        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3050
3051      if (Init->isAnyMemberInitializer())
3052        D << 0 << Init->getAnyMember()->getDeclName();
3053      else
3054        D << 1 << Init->getTypeSourceInfo()->getType();
3055
3056      // Move back to the initializer's location in the ideal list.
3057      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3058        if (InitKey == IdealInitKeys[IdealIndex])
3059          break;
3060
3061      assert(IdealIndex != NumIdealInits &&
3062             "initializer not found in initializer list");
3063    }
3064
3065    PrevInit = Init;
3066  }
3067}
3068
3069namespace {
3070bool CheckRedundantInit(Sema &S,
3071                        CXXCtorInitializer *Init,
3072                        CXXCtorInitializer *&PrevInit) {
3073  if (!PrevInit) {
3074    PrevInit = Init;
3075    return false;
3076  }
3077
3078  if (FieldDecl *Field = Init->getMember())
3079    S.Diag(Init->getSourceLocation(),
3080           diag::err_multiple_mem_initialization)
3081      << Field->getDeclName()
3082      << Init->getSourceRange();
3083  else {
3084    const Type *BaseClass = Init->getBaseClass();
3085    assert(BaseClass && "neither field nor base");
3086    S.Diag(Init->getSourceLocation(),
3087           diag::err_multiple_base_initialization)
3088      << QualType(BaseClass, 0)
3089      << Init->getSourceRange();
3090  }
3091  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3092    << 0 << PrevInit->getSourceRange();
3093
3094  return true;
3095}
3096
3097typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3098typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3099
3100bool CheckRedundantUnionInit(Sema &S,
3101                             CXXCtorInitializer *Init,
3102                             RedundantUnionMap &Unions) {
3103  FieldDecl *Field = Init->getAnyMember();
3104  RecordDecl *Parent = Field->getParent();
3105  NamedDecl *Child = Field;
3106
3107  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3108    if (Parent->isUnion()) {
3109      UnionEntry &En = Unions[Parent];
3110      if (En.first && En.first != Child) {
3111        S.Diag(Init->getSourceLocation(),
3112               diag::err_multiple_mem_union_initialization)
3113          << Field->getDeclName()
3114          << Init->getSourceRange();
3115        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3116          << 0 << En.second->getSourceRange();
3117        return true;
3118      }
3119      if (!En.first) {
3120        En.first = Child;
3121        En.second = Init;
3122      }
3123      if (!Parent->isAnonymousStructOrUnion())
3124        return false;
3125    }
3126
3127    Child = Parent;
3128    Parent = cast<RecordDecl>(Parent->getDeclContext());
3129  }
3130
3131  return false;
3132}
3133}
3134
3135/// ActOnMemInitializers - Handle the member initializers for a constructor.
3136void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3137                                SourceLocation ColonLoc,
3138                                CXXCtorInitializer **meminits,
3139                                unsigned NumMemInits,
3140                                bool AnyErrors) {
3141  if (!ConstructorDecl)
3142    return;
3143
3144  AdjustDeclIfTemplate(ConstructorDecl);
3145
3146  CXXConstructorDecl *Constructor
3147    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3148
3149  if (!Constructor) {
3150    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3151    return;
3152  }
3153
3154  CXXCtorInitializer **MemInits =
3155    reinterpret_cast<CXXCtorInitializer **>(meminits);
3156
3157  // Mapping for the duplicate initializers check.
3158  // For member initializers, this is keyed with a FieldDecl*.
3159  // For base initializers, this is keyed with a Type*.
3160  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3161
3162  // Mapping for the inconsistent anonymous-union initializers check.
3163  RedundantUnionMap MemberUnions;
3164
3165  bool HadError = false;
3166  for (unsigned i = 0; i < NumMemInits; i++) {
3167    CXXCtorInitializer *Init = MemInits[i];
3168
3169    // Set the source order index.
3170    Init->setSourceOrder(i);
3171
3172    if (Init->isAnyMemberInitializer()) {
3173      FieldDecl *Field = Init->getAnyMember();
3174      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3175          CheckRedundantUnionInit(*this, Init, MemberUnions))
3176        HadError = true;
3177    } else if (Init->isBaseInitializer()) {
3178      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3179      if (CheckRedundantInit(*this, Init, Members[Key]))
3180        HadError = true;
3181    } else {
3182      assert(Init->isDelegatingInitializer());
3183      // This must be the only initializer
3184      if (i != 0 || NumMemInits > 1) {
3185        Diag(MemInits[0]->getSourceLocation(),
3186             diag::err_delegating_initializer_alone)
3187          << MemInits[0]->getSourceRange();
3188        HadError = true;
3189        // We will treat this as being the only initializer.
3190      }
3191      SetDelegatingInitializer(Constructor, MemInits[i]);
3192      // Return immediately as the initializer is set.
3193      return;
3194    }
3195  }
3196
3197  if (HadError)
3198    return;
3199
3200  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3201
3202  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3203}
3204
3205void
3206Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3207                                             CXXRecordDecl *ClassDecl) {
3208  // Ignore dependent contexts. Also ignore unions, since their members never
3209  // have destructors implicitly called.
3210  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3211    return;
3212
3213  // FIXME: all the access-control diagnostics are positioned on the
3214  // field/base declaration.  That's probably good; that said, the
3215  // user might reasonably want to know why the destructor is being
3216  // emitted, and we currently don't say.
3217
3218  // Non-static data members.
3219  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3220       E = ClassDecl->field_end(); I != E; ++I) {
3221    FieldDecl *Field = *I;
3222    if (Field->isInvalidDecl())
3223      continue;
3224
3225    // Don't destroy incomplete or zero-length arrays.
3226    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3227      continue;
3228
3229    QualType FieldType = Context.getBaseElementType(Field->getType());
3230
3231    const RecordType* RT = FieldType->getAs<RecordType>();
3232    if (!RT)
3233      continue;
3234
3235    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3236    if (FieldClassDecl->isInvalidDecl())
3237      continue;
3238    if (FieldClassDecl->hasTrivialDestructor())
3239      continue;
3240
3241    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3242    assert(Dtor && "No dtor found for FieldClassDecl!");
3243    CheckDestructorAccess(Field->getLocation(), Dtor,
3244                          PDiag(diag::err_access_dtor_field)
3245                            << Field->getDeclName()
3246                            << FieldType);
3247
3248    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3249  }
3250
3251  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3252
3253  // Bases.
3254  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3255       E = ClassDecl->bases_end(); Base != E; ++Base) {
3256    // Bases are always records in a well-formed non-dependent class.
3257    const RecordType *RT = Base->getType()->getAs<RecordType>();
3258
3259    // Remember direct virtual bases.
3260    if (Base->isVirtual())
3261      DirectVirtualBases.insert(RT);
3262
3263    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3264    // If our base class is invalid, we probably can't get its dtor anyway.
3265    if (BaseClassDecl->isInvalidDecl())
3266      continue;
3267    // Ignore trivial destructors.
3268    if (BaseClassDecl->hasTrivialDestructor())
3269      continue;
3270
3271    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3272    assert(Dtor && "No dtor found for BaseClassDecl!");
3273
3274    // FIXME: caret should be on the start of the class name
3275    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3276                          PDiag(diag::err_access_dtor_base)
3277                            << Base->getType()
3278                            << Base->getSourceRange());
3279
3280    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3281  }
3282
3283  // Virtual bases.
3284  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3285       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3286
3287    // Bases are always records in a well-formed non-dependent class.
3288    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3289
3290    // Ignore direct virtual bases.
3291    if (DirectVirtualBases.count(RT))
3292      continue;
3293
3294    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3295    // If our base class is invalid, we probably can't get its dtor anyway.
3296    if (BaseClassDecl->isInvalidDecl())
3297      continue;
3298    // Ignore trivial destructors.
3299    if (BaseClassDecl->hasTrivialDestructor())
3300      continue;
3301
3302    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3303    assert(Dtor && "No dtor found for BaseClassDecl!");
3304    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3305                          PDiag(diag::err_access_dtor_vbase)
3306                            << VBase->getType());
3307
3308    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3309  }
3310}
3311
3312void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3313  if (!CDtorDecl)
3314    return;
3315
3316  if (CXXConstructorDecl *Constructor
3317      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3318    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3319}
3320
3321bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3322                                  unsigned DiagID, AbstractDiagSelID SelID) {
3323  if (SelID == -1)
3324    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3325  else
3326    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3327}
3328
3329bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3330                                  const PartialDiagnostic &PD) {
3331  if (!getLangOptions().CPlusPlus)
3332    return false;
3333
3334  if (const ArrayType *AT = Context.getAsArrayType(T))
3335    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3336
3337  if (const PointerType *PT = T->getAs<PointerType>()) {
3338    // Find the innermost pointer type.
3339    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3340      PT = T;
3341
3342    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3343      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3344  }
3345
3346  const RecordType *RT = T->getAs<RecordType>();
3347  if (!RT)
3348    return false;
3349
3350  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3351
3352  // We can't answer whether something is abstract until it has a
3353  // definition.  If it's currently being defined, we'll walk back
3354  // over all the declarations when we have a full definition.
3355  const CXXRecordDecl *Def = RD->getDefinition();
3356  if (!Def || Def->isBeingDefined())
3357    return false;
3358
3359  if (!RD->isAbstract())
3360    return false;
3361
3362  Diag(Loc, PD) << RD->getDeclName();
3363  DiagnoseAbstractType(RD);
3364
3365  return true;
3366}
3367
3368void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3369  // Check if we've already emitted the list of pure virtual functions
3370  // for this class.
3371  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3372    return;
3373
3374  CXXFinalOverriderMap FinalOverriders;
3375  RD->getFinalOverriders(FinalOverriders);
3376
3377  // Keep a set of seen pure methods so we won't diagnose the same method
3378  // more than once.
3379  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3380
3381  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3382                                   MEnd = FinalOverriders.end();
3383       M != MEnd;
3384       ++M) {
3385    for (OverridingMethods::iterator SO = M->second.begin(),
3386                                  SOEnd = M->second.end();
3387         SO != SOEnd; ++SO) {
3388      // C++ [class.abstract]p4:
3389      //   A class is abstract if it contains or inherits at least one
3390      //   pure virtual function for which the final overrider is pure
3391      //   virtual.
3392
3393      //
3394      if (SO->second.size() != 1)
3395        continue;
3396
3397      if (!SO->second.front().Method->isPure())
3398        continue;
3399
3400      if (!SeenPureMethods.insert(SO->second.front().Method))
3401        continue;
3402
3403      Diag(SO->second.front().Method->getLocation(),
3404           diag::note_pure_virtual_function)
3405        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3406    }
3407  }
3408
3409  if (!PureVirtualClassDiagSet)
3410    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3411  PureVirtualClassDiagSet->insert(RD);
3412}
3413
3414namespace {
3415struct AbstractUsageInfo {
3416  Sema &S;
3417  CXXRecordDecl *Record;
3418  CanQualType AbstractType;
3419  bool Invalid;
3420
3421  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3422    : S(S), Record(Record),
3423      AbstractType(S.Context.getCanonicalType(
3424                   S.Context.getTypeDeclType(Record))),
3425      Invalid(false) {}
3426
3427  void DiagnoseAbstractType() {
3428    if (Invalid) return;
3429    S.DiagnoseAbstractType(Record);
3430    Invalid = true;
3431  }
3432
3433  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3434};
3435
3436struct CheckAbstractUsage {
3437  AbstractUsageInfo &Info;
3438  const NamedDecl *Ctx;
3439
3440  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3441    : Info(Info), Ctx(Ctx) {}
3442
3443  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3444    switch (TL.getTypeLocClass()) {
3445#define ABSTRACT_TYPELOC(CLASS, PARENT)
3446#define TYPELOC(CLASS, PARENT) \
3447    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3448#include "clang/AST/TypeLocNodes.def"
3449    }
3450  }
3451
3452  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3453    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3454    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3455      if (!TL.getArg(I))
3456        continue;
3457
3458      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3459      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3460    }
3461  }
3462
3463  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3464    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3465  }
3466
3467  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3468    // Visit the type parameters from a permissive context.
3469    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3470      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3471      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3472        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3473          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3474      // TODO: other template argument types?
3475    }
3476  }
3477
3478  // Visit pointee types from a permissive context.
3479#define CheckPolymorphic(Type) \
3480  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3481    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3482  }
3483  CheckPolymorphic(PointerTypeLoc)
3484  CheckPolymorphic(ReferenceTypeLoc)
3485  CheckPolymorphic(MemberPointerTypeLoc)
3486  CheckPolymorphic(BlockPointerTypeLoc)
3487  CheckPolymorphic(AtomicTypeLoc)
3488
3489  /// Handle all the types we haven't given a more specific
3490  /// implementation for above.
3491  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3492    // Every other kind of type that we haven't called out already
3493    // that has an inner type is either (1) sugar or (2) contains that
3494    // inner type in some way as a subobject.
3495    if (TypeLoc Next = TL.getNextTypeLoc())
3496      return Visit(Next, Sel);
3497
3498    // If there's no inner type and we're in a permissive context,
3499    // don't diagnose.
3500    if (Sel == Sema::AbstractNone) return;
3501
3502    // Check whether the type matches the abstract type.
3503    QualType T = TL.getType();
3504    if (T->isArrayType()) {
3505      Sel = Sema::AbstractArrayType;
3506      T = Info.S.Context.getBaseElementType(T);
3507    }
3508    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3509    if (CT != Info.AbstractType) return;
3510
3511    // It matched; do some magic.
3512    if (Sel == Sema::AbstractArrayType) {
3513      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3514        << T << TL.getSourceRange();
3515    } else {
3516      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3517        << Sel << T << TL.getSourceRange();
3518    }
3519    Info.DiagnoseAbstractType();
3520  }
3521};
3522
3523void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3524                                  Sema::AbstractDiagSelID Sel) {
3525  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3526}
3527
3528}
3529
3530/// Check for invalid uses of an abstract type in a method declaration.
3531static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3532                                    CXXMethodDecl *MD) {
3533  // No need to do the check on definitions, which require that
3534  // the return/param types be complete.
3535  if (MD->doesThisDeclarationHaveABody())
3536    return;
3537
3538  // For safety's sake, just ignore it if we don't have type source
3539  // information.  This should never happen for non-implicit methods,
3540  // but...
3541  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3542    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3543}
3544
3545/// Check for invalid uses of an abstract type within a class definition.
3546static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3547                                    CXXRecordDecl *RD) {
3548  for (CXXRecordDecl::decl_iterator
3549         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3550    Decl *D = *I;
3551    if (D->isImplicit()) continue;
3552
3553    // Methods and method templates.
3554    if (isa<CXXMethodDecl>(D)) {
3555      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3556    } else if (isa<FunctionTemplateDecl>(D)) {
3557      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3558      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3559
3560    // Fields and static variables.
3561    } else if (isa<FieldDecl>(D)) {
3562      FieldDecl *FD = cast<FieldDecl>(D);
3563      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3564        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3565    } else if (isa<VarDecl>(D)) {
3566      VarDecl *VD = cast<VarDecl>(D);
3567      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3568        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3569
3570    // Nested classes and class templates.
3571    } else if (isa<CXXRecordDecl>(D)) {
3572      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3573    } else if (isa<ClassTemplateDecl>(D)) {
3574      CheckAbstractClassUsage(Info,
3575                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3576    }
3577  }
3578}
3579
3580/// \brief Perform semantic checks on a class definition that has been
3581/// completing, introducing implicitly-declared members, checking for
3582/// abstract types, etc.
3583void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3584  if (!Record)
3585    return;
3586
3587  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3588    AbstractUsageInfo Info(*this, Record);
3589    CheckAbstractClassUsage(Info, Record);
3590  }
3591
3592  // If this is not an aggregate type and has no user-declared constructor,
3593  // complain about any non-static data members of reference or const scalar
3594  // type, since they will never get initializers.
3595  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3596      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3597    bool Complained = false;
3598    for (RecordDecl::field_iterator F = Record->field_begin(),
3599                                 FEnd = Record->field_end();
3600         F != FEnd; ++F) {
3601      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3602        continue;
3603
3604      if (F->getType()->isReferenceType() ||
3605          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3606        if (!Complained) {
3607          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3608            << Record->getTagKind() << Record;
3609          Complained = true;
3610        }
3611
3612        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3613          << F->getType()->isReferenceType()
3614          << F->getDeclName();
3615      }
3616    }
3617  }
3618
3619  if (Record->isDynamicClass() && !Record->isDependentType())
3620    DynamicClasses.push_back(Record);
3621
3622  if (Record->getIdentifier()) {
3623    // C++ [class.mem]p13:
3624    //   If T is the name of a class, then each of the following shall have a
3625    //   name different from T:
3626    //     - every member of every anonymous union that is a member of class T.
3627    //
3628    // C++ [class.mem]p14:
3629    //   In addition, if class T has a user-declared constructor (12.1), every
3630    //   non-static data member of class T shall have a name different from T.
3631    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3632         R.first != R.second; ++R.first) {
3633      NamedDecl *D = *R.first;
3634      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3635          isa<IndirectFieldDecl>(D)) {
3636        Diag(D->getLocation(), diag::err_member_name_of_class)
3637          << D->getDeclName();
3638        break;
3639      }
3640    }
3641  }
3642
3643  // Warn if the class has virtual methods but non-virtual public destructor.
3644  if (Record->isPolymorphic() && !Record->isDependentType()) {
3645    CXXDestructorDecl *dtor = Record->getDestructor();
3646    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3647      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3648           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3649  }
3650
3651  // See if a method overloads virtual methods in a base
3652  /// class without overriding any.
3653  if (!Record->isDependentType()) {
3654    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3655                                     MEnd = Record->method_end();
3656         M != MEnd; ++M) {
3657      if (!(*M)->isStatic())
3658        DiagnoseHiddenVirtualMethods(Record, *M);
3659    }
3660  }
3661
3662  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3663  // function that is not a constructor declares that member function to be
3664  // const. [...] The class of which that function is a member shall be
3665  // a literal type.
3666  //
3667  // It's fine to diagnose constructors here too: such constructors cannot
3668  // produce a constant expression, so are ill-formed (no diagnostic required).
3669  //
3670  // If the class has virtual bases, any constexpr members will already have
3671  // been diagnosed by the checks performed on the member declaration, so
3672  // suppress this (less useful) diagnostic.
3673  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3674      !Record->isLiteral() && !Record->getNumVBases()) {
3675    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3676                                     MEnd = Record->method_end();
3677         M != MEnd; ++M) {
3678      if ((*M)->isConstexpr()) {
3679        switch (Record->getTemplateSpecializationKind()) {
3680        case TSK_ImplicitInstantiation:
3681        case TSK_ExplicitInstantiationDeclaration:
3682        case TSK_ExplicitInstantiationDefinition:
3683          // If a template instantiates to a non-literal type, but its members
3684          // instantiate to constexpr functions, the template is technically
3685          // ill-formed, but we allow it for sanity. Such members are treated as
3686          // non-constexpr.
3687          (*M)->setConstexpr(false);
3688          continue;
3689
3690        case TSK_Undeclared:
3691        case TSK_ExplicitSpecialization:
3692          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3693                             PDiag(diag::err_constexpr_method_non_literal));
3694          break;
3695        }
3696
3697        // Only produce one error per class.
3698        break;
3699      }
3700    }
3701  }
3702
3703  // Declare inherited constructors. We do this eagerly here because:
3704  // - The standard requires an eager diagnostic for conflicting inherited
3705  //   constructors from different classes.
3706  // - The lazy declaration of the other implicit constructors is so as to not
3707  //   waste space and performance on classes that are not meant to be
3708  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3709  //   have inherited constructors.
3710  DeclareInheritedConstructors(Record);
3711
3712  if (!Record->isDependentType())
3713    CheckExplicitlyDefaultedMethods(Record);
3714}
3715
3716void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3717  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3718                                      ME = Record->method_end();
3719       MI != ME; ++MI) {
3720    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3721      switch (getSpecialMember(*MI)) {
3722      case CXXDefaultConstructor:
3723        CheckExplicitlyDefaultedDefaultConstructor(
3724                                                  cast<CXXConstructorDecl>(*MI));
3725        break;
3726
3727      case CXXDestructor:
3728        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3729        break;
3730
3731      case CXXCopyConstructor:
3732        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3733        break;
3734
3735      case CXXCopyAssignment:
3736        CheckExplicitlyDefaultedCopyAssignment(*MI);
3737        break;
3738
3739      case CXXMoveConstructor:
3740        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3741        break;
3742
3743      case CXXMoveAssignment:
3744        CheckExplicitlyDefaultedMoveAssignment(*MI);
3745        break;
3746
3747      case CXXInvalid:
3748        llvm_unreachable("non-special member explicitly defaulted!");
3749      }
3750    }
3751  }
3752
3753}
3754
3755void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3756  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3757
3758  // Whether this was the first-declared instance of the constructor.
3759  // This affects whether we implicitly add an exception spec (and, eventually,
3760  // constexpr). It is also ill-formed to explicitly default a constructor such
3761  // that it would be deleted. (C++0x [decl.fct.def.default])
3762  bool First = CD == CD->getCanonicalDecl();
3763
3764  bool HadError = false;
3765  if (CD->getNumParams() != 0) {
3766    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3767      << CD->getSourceRange();
3768    HadError = true;
3769  }
3770
3771  ImplicitExceptionSpecification Spec
3772    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3773  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3774  if (EPI.ExceptionSpecType == EST_Delayed) {
3775    // Exception specification depends on some deferred part of the class. We'll
3776    // try again when the class's definition has been fully processed.
3777    return;
3778  }
3779  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3780                          *ExceptionType = Context.getFunctionType(
3781                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3782
3783  // C++11 [dcl.fct.def.default]p2:
3784  //   An explicitly-defaulted function may be declared constexpr only if it
3785  //   would have been implicitly declared as constexpr,
3786  if (CD->isConstexpr()) {
3787    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3788      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3789        << CXXDefaultConstructor;
3790      HadError = true;
3791    }
3792  }
3793  //   and may have an explicit exception-specification only if it is compatible
3794  //   with the exception-specification on the implicit declaration.
3795  if (CtorType->hasExceptionSpec()) {
3796    if (CheckEquivalentExceptionSpec(
3797          PDiag(diag::err_incorrect_defaulted_exception_spec)
3798            << CXXDefaultConstructor,
3799          PDiag(),
3800          ExceptionType, SourceLocation(),
3801          CtorType, CD->getLocation())) {
3802      HadError = true;
3803    }
3804  }
3805
3806  //   If a function is explicitly defaulted on its first declaration,
3807  if (First) {
3808    //  -- it is implicitly considered to be constexpr if the implicit
3809    //     definition would be,
3810    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3811
3812    //  -- it is implicitly considered to have the same
3813    //     exception-specification as if it had been implicitly declared
3814    //
3815    // FIXME: a compatible, but different, explicit exception specification
3816    // will be silently overridden. We should issue a warning if this happens.
3817    EPI.ExtInfo = CtorType->getExtInfo();
3818  }
3819
3820  if (HadError) {
3821    CD->setInvalidDecl();
3822    return;
3823  }
3824
3825  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3826    if (First) {
3827      CD->setDeletedAsWritten();
3828    } else {
3829      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3830        << CXXDefaultConstructor;
3831      CD->setInvalidDecl();
3832    }
3833  }
3834}
3835
3836void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3837  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3838
3839  // Whether this was the first-declared instance of the constructor.
3840  bool First = CD == CD->getCanonicalDecl();
3841
3842  bool HadError = false;
3843  if (CD->getNumParams() != 1) {
3844    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3845      << CD->getSourceRange();
3846    HadError = true;
3847  }
3848
3849  ImplicitExceptionSpecification Spec(Context);
3850  bool Const;
3851  llvm::tie(Spec, Const) =
3852    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3853
3854  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3855  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3856                          *ExceptionType = Context.getFunctionType(
3857                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3858
3859  // Check for parameter type matching.
3860  // This is a copy ctor so we know it's a cv-qualified reference to T.
3861  QualType ArgType = CtorType->getArgType(0);
3862  if (ArgType->getPointeeType().isVolatileQualified()) {
3863    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3864    HadError = true;
3865  }
3866  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3867    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3868    HadError = true;
3869  }
3870
3871  // C++11 [dcl.fct.def.default]p2:
3872  //   An explicitly-defaulted function may be declared constexpr only if it
3873  //   would have been implicitly declared as constexpr,
3874  if (CD->isConstexpr()) {
3875    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3876      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3877        << CXXCopyConstructor;
3878      HadError = true;
3879    }
3880  }
3881  //   and may have an explicit exception-specification only if it is compatible
3882  //   with the exception-specification on the implicit declaration.
3883  if (CtorType->hasExceptionSpec()) {
3884    if (CheckEquivalentExceptionSpec(
3885          PDiag(diag::err_incorrect_defaulted_exception_spec)
3886            << CXXCopyConstructor,
3887          PDiag(),
3888          ExceptionType, SourceLocation(),
3889          CtorType, CD->getLocation())) {
3890      HadError = true;
3891    }
3892  }
3893
3894  //   If a function is explicitly defaulted on its first declaration,
3895  if (First) {
3896    //  -- it is implicitly considered to be constexpr if the implicit
3897    //     definition would be,
3898    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3899
3900    //  -- it is implicitly considered to have the same
3901    //     exception-specification as if it had been implicitly declared, and
3902    //
3903    // FIXME: a compatible, but different, explicit exception specification
3904    // will be silently overridden. We should issue a warning if this happens.
3905    EPI.ExtInfo = CtorType->getExtInfo();
3906
3907    //  -- [...] it shall have the same parameter type as if it had been
3908    //     implicitly declared.
3909    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3910  }
3911
3912  if (HadError) {
3913    CD->setInvalidDecl();
3914    return;
3915  }
3916
3917  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3918    if (First) {
3919      CD->setDeletedAsWritten();
3920    } else {
3921      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3922        << CXXCopyConstructor;
3923      CD->setInvalidDecl();
3924    }
3925  }
3926}
3927
3928void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3929  assert(MD->isExplicitlyDefaulted());
3930
3931  // Whether this was the first-declared instance of the operator
3932  bool First = MD == MD->getCanonicalDecl();
3933
3934  bool HadError = false;
3935  if (MD->getNumParams() != 1) {
3936    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3937      << MD->getSourceRange();
3938    HadError = true;
3939  }
3940
3941  QualType ReturnType =
3942    MD->getType()->getAs<FunctionType>()->getResultType();
3943  if (!ReturnType->isLValueReferenceType() ||
3944      !Context.hasSameType(
3945        Context.getCanonicalType(ReturnType->getPointeeType()),
3946        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3947    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3948    HadError = true;
3949  }
3950
3951  ImplicitExceptionSpecification Spec(Context);
3952  bool Const;
3953  llvm::tie(Spec, Const) =
3954    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3955
3956  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3957  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3958                          *ExceptionType = Context.getFunctionType(
3959                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3960
3961  QualType ArgType = OperType->getArgType(0);
3962  if (!ArgType->isLValueReferenceType()) {
3963    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3964    HadError = true;
3965  } else {
3966    if (ArgType->getPointeeType().isVolatileQualified()) {
3967      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3968      HadError = true;
3969    }
3970    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3971      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3972      HadError = true;
3973    }
3974  }
3975
3976  if (OperType->getTypeQuals()) {
3977    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3978    HadError = true;
3979  }
3980
3981  if (OperType->hasExceptionSpec()) {
3982    if (CheckEquivalentExceptionSpec(
3983          PDiag(diag::err_incorrect_defaulted_exception_spec)
3984            << CXXCopyAssignment,
3985          PDiag(),
3986          ExceptionType, SourceLocation(),
3987          OperType, MD->getLocation())) {
3988      HadError = true;
3989    }
3990  }
3991  if (First) {
3992    // We set the declaration to have the computed exception spec here.
3993    // We duplicate the one parameter type.
3994    EPI.RefQualifier = OperType->getRefQualifier();
3995    EPI.ExtInfo = OperType->getExtInfo();
3996    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3997  }
3998
3999  if (HadError) {
4000    MD->setInvalidDecl();
4001    return;
4002  }
4003
4004  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4005    if (First) {
4006      MD->setDeletedAsWritten();
4007    } else {
4008      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4009        << CXXCopyAssignment;
4010      MD->setInvalidDecl();
4011    }
4012  }
4013}
4014
4015void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4016  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4017
4018  // Whether this was the first-declared instance of the constructor.
4019  bool First = CD == CD->getCanonicalDecl();
4020
4021  bool HadError = false;
4022  if (CD->getNumParams() != 1) {
4023    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4024      << CD->getSourceRange();
4025    HadError = true;
4026  }
4027
4028  ImplicitExceptionSpecification Spec(
4029      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4030
4031  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4032  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4033                          *ExceptionType = Context.getFunctionType(
4034                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4035
4036  // Check for parameter type matching.
4037  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4038  QualType ArgType = CtorType->getArgType(0);
4039  if (ArgType->getPointeeType().isVolatileQualified()) {
4040    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4041    HadError = true;
4042  }
4043  if (ArgType->getPointeeType().isConstQualified()) {
4044    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4045    HadError = true;
4046  }
4047
4048  // C++11 [dcl.fct.def.default]p2:
4049  //   An explicitly-defaulted function may be declared constexpr only if it
4050  //   would have been implicitly declared as constexpr,
4051  if (CD->isConstexpr()) {
4052    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4053      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4054        << CXXMoveConstructor;
4055      HadError = true;
4056    }
4057  }
4058  //   and may have an explicit exception-specification only if it is compatible
4059  //   with the exception-specification on the implicit declaration.
4060  if (CtorType->hasExceptionSpec()) {
4061    if (CheckEquivalentExceptionSpec(
4062          PDiag(diag::err_incorrect_defaulted_exception_spec)
4063            << CXXMoveConstructor,
4064          PDiag(),
4065          ExceptionType, SourceLocation(),
4066          CtorType, CD->getLocation())) {
4067      HadError = true;
4068    }
4069  }
4070
4071  //   If a function is explicitly defaulted on its first declaration,
4072  if (First) {
4073    //  -- it is implicitly considered to be constexpr if the implicit
4074    //     definition would be,
4075    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4076
4077    //  -- it is implicitly considered to have the same
4078    //     exception-specification as if it had been implicitly declared, and
4079    //
4080    // FIXME: a compatible, but different, explicit exception specification
4081    // will be silently overridden. We should issue a warning if this happens.
4082    EPI.ExtInfo = CtorType->getExtInfo();
4083
4084    //  -- [...] it shall have the same parameter type as if it had been
4085    //     implicitly declared.
4086    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4087  }
4088
4089  if (HadError) {
4090    CD->setInvalidDecl();
4091    return;
4092  }
4093
4094  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4095    if (First) {
4096      CD->setDeletedAsWritten();
4097    } else {
4098      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4099        << CXXMoveConstructor;
4100      CD->setInvalidDecl();
4101    }
4102  }
4103}
4104
4105void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4106  assert(MD->isExplicitlyDefaulted());
4107
4108  // Whether this was the first-declared instance of the operator
4109  bool First = MD == MD->getCanonicalDecl();
4110
4111  bool HadError = false;
4112  if (MD->getNumParams() != 1) {
4113    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4114      << MD->getSourceRange();
4115    HadError = true;
4116  }
4117
4118  QualType ReturnType =
4119    MD->getType()->getAs<FunctionType>()->getResultType();
4120  if (!ReturnType->isLValueReferenceType() ||
4121      !Context.hasSameType(
4122        Context.getCanonicalType(ReturnType->getPointeeType()),
4123        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4124    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4125    HadError = true;
4126  }
4127
4128  ImplicitExceptionSpecification Spec(
4129      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4130
4131  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4132  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4133                          *ExceptionType = Context.getFunctionType(
4134                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4135
4136  QualType ArgType = OperType->getArgType(0);
4137  if (!ArgType->isRValueReferenceType()) {
4138    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4139    HadError = true;
4140  } else {
4141    if (ArgType->getPointeeType().isVolatileQualified()) {
4142      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4143      HadError = true;
4144    }
4145    if (ArgType->getPointeeType().isConstQualified()) {
4146      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4147      HadError = true;
4148    }
4149  }
4150
4151  if (OperType->getTypeQuals()) {
4152    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4153    HadError = true;
4154  }
4155
4156  if (OperType->hasExceptionSpec()) {
4157    if (CheckEquivalentExceptionSpec(
4158          PDiag(diag::err_incorrect_defaulted_exception_spec)
4159            << CXXMoveAssignment,
4160          PDiag(),
4161          ExceptionType, SourceLocation(),
4162          OperType, MD->getLocation())) {
4163      HadError = true;
4164    }
4165  }
4166  if (First) {
4167    // We set the declaration to have the computed exception spec here.
4168    // We duplicate the one parameter type.
4169    EPI.RefQualifier = OperType->getRefQualifier();
4170    EPI.ExtInfo = OperType->getExtInfo();
4171    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4172  }
4173
4174  if (HadError) {
4175    MD->setInvalidDecl();
4176    return;
4177  }
4178
4179  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4180    if (First) {
4181      MD->setDeletedAsWritten();
4182    } else {
4183      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4184        << CXXMoveAssignment;
4185      MD->setInvalidDecl();
4186    }
4187  }
4188}
4189
4190void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4191  assert(DD->isExplicitlyDefaulted());
4192
4193  // Whether this was the first-declared instance of the destructor.
4194  bool First = DD == DD->getCanonicalDecl();
4195
4196  ImplicitExceptionSpecification Spec
4197    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4198  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4199  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4200                          *ExceptionType = Context.getFunctionType(
4201                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4202
4203  if (DtorType->hasExceptionSpec()) {
4204    if (CheckEquivalentExceptionSpec(
4205          PDiag(diag::err_incorrect_defaulted_exception_spec)
4206            << CXXDestructor,
4207          PDiag(),
4208          ExceptionType, SourceLocation(),
4209          DtorType, DD->getLocation())) {
4210      DD->setInvalidDecl();
4211      return;
4212    }
4213  }
4214  if (First) {
4215    // We set the declaration to have the computed exception spec here.
4216    // There are no parameters.
4217    EPI.ExtInfo = DtorType->getExtInfo();
4218    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4219  }
4220
4221  if (ShouldDeleteDestructor(DD)) {
4222    if (First) {
4223      DD->setDeletedAsWritten();
4224    } else {
4225      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4226        << CXXDestructor;
4227      DD->setInvalidDecl();
4228    }
4229  }
4230}
4231
4232/// This function implements the following C++0x paragraphs:
4233///  - [class.ctor]/5
4234///  - [class.copy]/11
4235bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4236  assert(!MD->isInvalidDecl());
4237  CXXRecordDecl *RD = MD->getParent();
4238  assert(!RD->isDependentType() && "do deletion after instantiation");
4239  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4240    return false;
4241
4242  bool IsUnion = RD->isUnion();
4243  bool IsConstructor = false;
4244  bool IsAssignment = false;
4245  bool IsMove = false;
4246
4247  bool ConstArg = false;
4248
4249  switch (CSM) {
4250  case CXXDefaultConstructor:
4251    IsConstructor = true;
4252    break;
4253  case CXXCopyConstructor:
4254    IsConstructor = true;
4255    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4256    break;
4257  case CXXMoveConstructor:
4258    IsConstructor = true;
4259    IsMove = true;
4260    break;
4261  default:
4262    llvm_unreachable("function only currently implemented for default ctors");
4263  }
4264
4265  SourceLocation Loc = MD->getLocation();
4266
4267  // Do access control from the special member function
4268  ContextRAII MethodContext(*this, MD);
4269
4270  bool AllConst = true;
4271
4272  // We do this because we should never actually use an anonymous
4273  // union's constructor.
4274  if (IsUnion && RD->isAnonymousStructOrUnion())
4275    return false;
4276
4277  // FIXME: We should put some diagnostic logic right into this function.
4278
4279  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4280                                          BE = RD->bases_end();
4281       BI != BE; ++BI) {
4282    // We'll handle this one later
4283    if (BI->isVirtual())
4284      continue;
4285
4286    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4287    assert(BaseDecl && "base isn't a CXXRecordDecl");
4288
4289    // Unless we have an assignment operator, the base's destructor must
4290    // be accessible and not deleted.
4291    if (!IsAssignment) {
4292      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4293      if (BaseDtor->isDeleted())
4294        return true;
4295      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4296          AR_accessible)
4297        return true;
4298    }
4299
4300    // Finding the corresponding member in the base should lead to a
4301    // unique, accessible, non-deleted function. If we are doing
4302    // a destructor, we have already checked this case.
4303    if (CSM != CXXDestructor) {
4304      SpecialMemberOverloadResult *SMOR =
4305        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4306                            false);
4307      if (!SMOR->hasSuccess())
4308        return true;
4309      CXXMethodDecl *BaseMember = SMOR->getMethod();
4310      if (IsConstructor) {
4311        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4312        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4313                                   PDiag()) != AR_accessible)
4314          return true;
4315
4316        // For a move operation, the corresponding operation must actually
4317        // be a move operation (and not a copy selected by overload
4318        // resolution) unless we are working on a trivially copyable class.
4319        if (IsMove && !BaseCtor->isMoveConstructor() &&
4320            !BaseDecl->isTriviallyCopyable())
4321          return true;
4322      }
4323    }
4324  }
4325
4326  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4327                                          BE = RD->vbases_end();
4328       BI != BE; ++BI) {
4329    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4330    assert(BaseDecl && "base isn't a CXXRecordDecl");
4331
4332    // Unless we have an assignment operator, the base's destructor must
4333    // be accessible and not deleted.
4334    if (!IsAssignment) {
4335      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4336      if (BaseDtor->isDeleted())
4337        return true;
4338      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4339          AR_accessible)
4340        return true;
4341    }
4342
4343    // Finding the corresponding member in the base should lead to a
4344    // unique, accessible, non-deleted function.
4345    if (CSM != CXXDestructor) {
4346      SpecialMemberOverloadResult *SMOR =
4347        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4348                            false);
4349      if (!SMOR->hasSuccess())
4350        return true;
4351      CXXMethodDecl *BaseMember = SMOR->getMethod();
4352      if (IsConstructor) {
4353        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4354        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4355                                   PDiag()) != AR_accessible)
4356          return true;
4357
4358        // For a move operation, the corresponding operation must actually
4359        // be a move operation (and not a copy selected by overload
4360        // resolution) unless we are working on a trivially copyable class.
4361        if (IsMove && !BaseCtor->isMoveConstructor() &&
4362            !BaseDecl->isTriviallyCopyable())
4363          return true;
4364      }
4365    }
4366  }
4367
4368  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4369                                     FE = RD->field_end();
4370       FI != FE; ++FI) {
4371    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4372      continue;
4373
4374    QualType FieldType = Context.getBaseElementType(FI->getType());
4375    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4376
4377    // For a default constructor, all references must be initialized in-class
4378    // and, if a union, it must have a non-const member.
4379    if (CSM == CXXDefaultConstructor) {
4380      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4381        return true;
4382
4383      if (IsUnion && !FieldType.isConstQualified())
4384        AllConst = false;
4385    // For a copy constructor, data members must not be of rvalue reference
4386    // type.
4387    } else if (CSM == CXXCopyConstructor) {
4388      if (FieldType->isRValueReferenceType())
4389        return true;
4390    }
4391
4392    if (FieldRecord) {
4393      // For a default constructor, a const member must have a user-provided
4394      // default constructor or else be explicitly initialized.
4395      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4396          !FI->hasInClassInitializer() &&
4397          !FieldRecord->hasUserProvidedDefaultConstructor())
4398        return true;
4399
4400      // Some additional restrictions exist on the variant members.
4401      if (!IsUnion && FieldRecord->isUnion() &&
4402          FieldRecord->isAnonymousStructOrUnion()) {
4403        // We're okay to reuse AllConst here since we only care about the
4404        // value otherwise if we're in a union.
4405        AllConst = true;
4406
4407        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4408                                           UE = FieldRecord->field_end();
4409             UI != UE; ++UI) {
4410          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4411          CXXRecordDecl *UnionFieldRecord =
4412            UnionFieldType->getAsCXXRecordDecl();
4413
4414          if (!UnionFieldType.isConstQualified())
4415            AllConst = false;
4416
4417          if (UnionFieldRecord) {
4418            // FIXME: Checking for accessibility and validity of this
4419            //        destructor is technically going beyond the
4420            //        standard, but this is believed to be a defect.
4421            if (!IsAssignment) {
4422              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4423              if (FieldDtor->isDeleted())
4424                return true;
4425              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4426                  AR_accessible)
4427                return true;
4428              if (!FieldDtor->isTrivial())
4429                return true;
4430            }
4431
4432            if (CSM != CXXDestructor) {
4433              SpecialMemberOverloadResult *SMOR =
4434                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4435                                    false, false, false);
4436              // FIXME: Checking for accessibility and validity of this
4437              //        corresponding member is technically going beyond the
4438              //        standard, but this is believed to be a defect.
4439              if (!SMOR->hasSuccess())
4440                return true;
4441
4442              CXXMethodDecl *FieldMember = SMOR->getMethod();
4443              // A member of a union must have a trivial corresponding
4444              // constructor.
4445              if (!FieldMember->isTrivial())
4446                return true;
4447
4448              if (IsConstructor) {
4449                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4450                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4451                                           PDiag()) != AR_accessible)
4452                return true;
4453              }
4454            }
4455          }
4456        }
4457
4458        // At least one member in each anonymous union must be non-const
4459        if (CSM == CXXDefaultConstructor && AllConst)
4460          return true;
4461
4462        // Don't try to initialize the anonymous union
4463        // This is technically non-conformant, but sanity demands it.
4464        continue;
4465      }
4466
4467      // Unless we're doing assignment, the field's destructor must be
4468      // accessible and not deleted.
4469      if (!IsAssignment) {
4470        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4471        if (FieldDtor->isDeleted())
4472          return true;
4473        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4474            AR_accessible)
4475          return true;
4476      }
4477
4478      // Check that the corresponding member of the field is accessible,
4479      // unique, and non-deleted. We don't do this if it has an explicit
4480      // initialization when default-constructing.
4481      if (CSM != CXXDestructor &&
4482          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4483        SpecialMemberOverloadResult *SMOR =
4484          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4485                              false);
4486        if (!SMOR->hasSuccess())
4487          return true;
4488
4489        CXXMethodDecl *FieldMember = SMOR->getMethod();
4490        if (IsConstructor) {
4491          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4492          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4493                                     PDiag()) != AR_accessible)
4494          return true;
4495
4496          // For a move operation, the corresponding operation must actually
4497          // be a move operation (and not a copy selected by overload
4498          // resolution) unless we are working on a trivially copyable class.
4499          if (IsMove && !FieldCtor->isMoveConstructor() &&
4500              !FieldRecord->isTriviallyCopyable())
4501            return true;
4502        }
4503
4504        // We need the corresponding member of a union to be trivial so that
4505        // we can safely copy them all simultaneously.
4506        // FIXME: Note that performing the check here (where we rely on the lack
4507        // of an in-class initializer) is technically ill-formed. However, this
4508        // seems most obviously to be a bug in the standard.
4509        if (IsUnion && !FieldMember->isTrivial())
4510          return true;
4511      }
4512    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4513               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4514      // We can't initialize a const member of non-class type to any value.
4515      return true;
4516    }
4517  }
4518
4519  // We can't have all const members in a union when default-constructing,
4520  // or else they're all nonsensical garbage values that can't be changed.
4521  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4522    return true;
4523
4524  return false;
4525}
4526
4527bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4528  CXXRecordDecl *RD = MD->getParent();
4529  assert(!RD->isDependentType() && "do deletion after instantiation");
4530  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4531    return false;
4532
4533  SourceLocation Loc = MD->getLocation();
4534
4535  // Do access control from the constructor
4536  ContextRAII MethodContext(*this, MD);
4537
4538  bool Union = RD->isUnion();
4539
4540  unsigned ArgQuals =
4541    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4542      Qualifiers::Const : 0;
4543
4544  // We do this because we should never actually use an anonymous
4545  // union's constructor.
4546  if (Union && RD->isAnonymousStructOrUnion())
4547    return false;
4548
4549  // FIXME: We should put some diagnostic logic right into this function.
4550
4551  // C++0x [class.copy]/20
4552  //    A defaulted [copy] assignment operator for class X is defined as deleted
4553  //    if X has:
4554
4555  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4556                                          BE = RD->bases_end();
4557       BI != BE; ++BI) {
4558    // We'll handle this one later
4559    if (BI->isVirtual())
4560      continue;
4561
4562    QualType BaseType = BI->getType();
4563    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4564    assert(BaseDecl && "base isn't a CXXRecordDecl");
4565
4566    // -- a [direct base class] B that cannot be [copied] because overload
4567    //    resolution, as applied to B's [copy] assignment operator, results in
4568    //    an ambiguity or a function that is deleted or inaccessible from the
4569    //    assignment operator
4570    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4571                                                      0);
4572    if (!CopyOper || CopyOper->isDeleted())
4573      return true;
4574    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4575      return true;
4576  }
4577
4578  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4579                                          BE = RD->vbases_end();
4580       BI != BE; ++BI) {
4581    QualType BaseType = BI->getType();
4582    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4583    assert(BaseDecl && "base isn't a CXXRecordDecl");
4584
4585    // -- a [virtual base class] B that cannot be [copied] because overload
4586    //    resolution, as applied to B's [copy] assignment operator, results in
4587    //    an ambiguity or a function that is deleted or inaccessible from the
4588    //    assignment operator
4589    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4590                                                      0);
4591    if (!CopyOper || CopyOper->isDeleted())
4592      return true;
4593    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4594      return true;
4595  }
4596
4597  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4598                                     FE = RD->field_end();
4599       FI != FE; ++FI) {
4600    if (FI->isUnnamedBitfield())
4601      continue;
4602
4603    QualType FieldType = Context.getBaseElementType(FI->getType());
4604
4605    // -- a non-static data member of reference type
4606    if (FieldType->isReferenceType())
4607      return true;
4608
4609    // -- a non-static data member of const non-class type (or array thereof)
4610    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4611      return true;
4612
4613    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4614
4615    if (FieldRecord) {
4616      // This is an anonymous union
4617      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4618        // Anonymous unions inside unions do not variant members create
4619        if (!Union) {
4620          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4621                                             UE = FieldRecord->field_end();
4622               UI != UE; ++UI) {
4623            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4624            CXXRecordDecl *UnionFieldRecord =
4625              UnionFieldType->getAsCXXRecordDecl();
4626
4627            // -- a variant member with a non-trivial [copy] assignment operator
4628            //    and X is a union-like class
4629            if (UnionFieldRecord &&
4630                !UnionFieldRecord->hasTrivialCopyAssignment())
4631              return true;
4632          }
4633        }
4634
4635        // Don't try to initalize an anonymous union
4636        continue;
4637      // -- a variant member with a non-trivial [copy] assignment operator
4638      //    and X is a union-like class
4639      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4640          return true;
4641      }
4642
4643      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4644                                                        false, 0);
4645      if (!CopyOper || CopyOper->isDeleted())
4646        return true;
4647      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4648        return true;
4649    }
4650  }
4651
4652  return false;
4653}
4654
4655bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4656  CXXRecordDecl *RD = MD->getParent();
4657  assert(!RD->isDependentType() && "do deletion after instantiation");
4658  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4659    return false;
4660
4661  SourceLocation Loc = MD->getLocation();
4662
4663  // Do access control from the constructor
4664  ContextRAII MethodContext(*this, MD);
4665
4666  bool Union = RD->isUnion();
4667
4668  // We do this because we should never actually use an anonymous
4669  // union's constructor.
4670  if (Union && RD->isAnonymousStructOrUnion())
4671    return false;
4672
4673  // C++0x [class.copy]/20
4674  //    A defaulted [move] assignment operator for class X is defined as deleted
4675  //    if X has:
4676
4677  //    -- for the move constructor, [...] any direct or indirect virtual base
4678  //       class.
4679  if (RD->getNumVBases() != 0)
4680    return true;
4681
4682  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4683                                          BE = RD->bases_end();
4684       BI != BE; ++BI) {
4685
4686    QualType BaseType = BI->getType();
4687    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4688    assert(BaseDecl && "base isn't a CXXRecordDecl");
4689
4690    // -- a [direct base class] B that cannot be [moved] because overload
4691    //    resolution, as applied to B's [move] assignment operator, results in
4692    //    an ambiguity or a function that is deleted or inaccessible from the
4693    //    assignment operator
4694    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4695    if (!MoveOper || MoveOper->isDeleted())
4696      return true;
4697    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4698      return true;
4699
4700    // -- for the move assignment operator, a [direct base class] with a type
4701    //    that does not have a move assignment operator and is not trivially
4702    //    copyable.
4703    if (!MoveOper->isMoveAssignmentOperator() &&
4704        !BaseDecl->isTriviallyCopyable())
4705      return true;
4706  }
4707
4708  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4709                                     FE = RD->field_end();
4710       FI != FE; ++FI) {
4711    if (FI->isUnnamedBitfield())
4712      continue;
4713
4714    QualType FieldType = Context.getBaseElementType(FI->getType());
4715
4716    // -- a non-static data member of reference type
4717    if (FieldType->isReferenceType())
4718      return true;
4719
4720    // -- a non-static data member of const non-class type (or array thereof)
4721    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4722      return true;
4723
4724    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4725
4726    if (FieldRecord) {
4727      // This is an anonymous union
4728      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4729        // Anonymous unions inside unions do not variant members create
4730        if (!Union) {
4731          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4732                                             UE = FieldRecord->field_end();
4733               UI != UE; ++UI) {
4734            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4735            CXXRecordDecl *UnionFieldRecord =
4736              UnionFieldType->getAsCXXRecordDecl();
4737
4738            // -- a variant member with a non-trivial [move] assignment operator
4739            //    and X is a union-like class
4740            if (UnionFieldRecord &&
4741                !UnionFieldRecord->hasTrivialMoveAssignment())
4742              return true;
4743          }
4744        }
4745
4746        // Don't try to initalize an anonymous union
4747        continue;
4748      // -- a variant member with a non-trivial [move] assignment operator
4749      //    and X is a union-like class
4750      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4751          return true;
4752      }
4753
4754      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4755      if (!MoveOper || MoveOper->isDeleted())
4756        return true;
4757      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4758        return true;
4759
4760      // -- for the move assignment operator, a [non-static data member] with a
4761      //    type that does not have a move assignment operator and is not
4762      //    trivially copyable.
4763      if (!MoveOper->isMoveAssignmentOperator() &&
4764          !FieldRecord->isTriviallyCopyable())
4765        return true;
4766    }
4767  }
4768
4769  return false;
4770}
4771
4772bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4773  CXXRecordDecl *RD = DD->getParent();
4774  assert(!RD->isDependentType() && "do deletion after instantiation");
4775  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4776    return false;
4777
4778  SourceLocation Loc = DD->getLocation();
4779
4780  // Do access control from the destructor
4781  ContextRAII CtorContext(*this, DD);
4782
4783  bool Union = RD->isUnion();
4784
4785  // We do this because we should never actually use an anonymous
4786  // union's destructor.
4787  if (Union && RD->isAnonymousStructOrUnion())
4788    return false;
4789
4790  // C++0x [class.dtor]p5
4791  //    A defaulted destructor for a class X is defined as deleted if:
4792  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4793                                          BE = RD->bases_end();
4794       BI != BE; ++BI) {
4795    // We'll handle this one later
4796    if (BI->isVirtual())
4797      continue;
4798
4799    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4800    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4801    assert(BaseDtor && "base has no destructor");
4802
4803    // -- any direct or virtual base class has a deleted destructor or
4804    //    a destructor that is inaccessible from the defaulted destructor
4805    if (BaseDtor->isDeleted())
4806      return true;
4807    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4808        AR_accessible)
4809      return true;
4810  }
4811
4812  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4813                                          BE = RD->vbases_end();
4814       BI != BE; ++BI) {
4815    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4816    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4817    assert(BaseDtor && "base has no destructor");
4818
4819    // -- any direct or virtual base class has a deleted destructor or
4820    //    a destructor that is inaccessible from the defaulted destructor
4821    if (BaseDtor->isDeleted())
4822      return true;
4823    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4824        AR_accessible)
4825      return true;
4826  }
4827
4828  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4829                                     FE = RD->field_end();
4830       FI != FE; ++FI) {
4831    QualType FieldType = Context.getBaseElementType(FI->getType());
4832    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4833    if (FieldRecord) {
4834      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4835         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4836                                            UE = FieldRecord->field_end();
4837              UI != UE; ++UI) {
4838           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4839           CXXRecordDecl *UnionFieldRecord =
4840             UnionFieldType->getAsCXXRecordDecl();
4841
4842           // -- X is a union-like class that has a variant member with a non-
4843           //    trivial destructor.
4844           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4845             return true;
4846         }
4847      // Technically we are supposed to do this next check unconditionally.
4848      // But that makes absolutely no sense.
4849      } else {
4850        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4851
4852        // -- any of the non-static data members has class type M (or array
4853        //    thereof) and M has a deleted destructor or a destructor that is
4854        //    inaccessible from the defaulted destructor
4855        if (FieldDtor->isDeleted())
4856          return true;
4857        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4858          AR_accessible)
4859        return true;
4860
4861        // -- X is a union-like class that has a variant member with a non-
4862        //    trivial destructor.
4863        if (Union && !FieldDtor->isTrivial())
4864          return true;
4865      }
4866    }
4867  }
4868
4869  if (DD->isVirtual()) {
4870    FunctionDecl *OperatorDelete = 0;
4871    DeclarationName Name =
4872      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4873    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4874          false))
4875      return true;
4876  }
4877
4878
4879  return false;
4880}
4881
4882/// \brief Data used with FindHiddenVirtualMethod
4883namespace {
4884  struct FindHiddenVirtualMethodData {
4885    Sema *S;
4886    CXXMethodDecl *Method;
4887    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4888    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4889  };
4890}
4891
4892/// \brief Member lookup function that determines whether a given C++
4893/// method overloads virtual methods in a base class without overriding any,
4894/// to be used with CXXRecordDecl::lookupInBases().
4895static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4896                                    CXXBasePath &Path,
4897                                    void *UserData) {
4898  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4899
4900  FindHiddenVirtualMethodData &Data
4901    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4902
4903  DeclarationName Name = Data.Method->getDeclName();
4904  assert(Name.getNameKind() == DeclarationName::Identifier);
4905
4906  bool foundSameNameMethod = false;
4907  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4908  for (Path.Decls = BaseRecord->lookup(Name);
4909       Path.Decls.first != Path.Decls.second;
4910       ++Path.Decls.first) {
4911    NamedDecl *D = *Path.Decls.first;
4912    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4913      MD = MD->getCanonicalDecl();
4914      foundSameNameMethod = true;
4915      // Interested only in hidden virtual methods.
4916      if (!MD->isVirtual())
4917        continue;
4918      // If the method we are checking overrides a method from its base
4919      // don't warn about the other overloaded methods.
4920      if (!Data.S->IsOverload(Data.Method, MD, false))
4921        return true;
4922      // Collect the overload only if its hidden.
4923      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4924        overloadedMethods.push_back(MD);
4925    }
4926  }
4927
4928  if (foundSameNameMethod)
4929    Data.OverloadedMethods.append(overloadedMethods.begin(),
4930                                   overloadedMethods.end());
4931  return foundSameNameMethod;
4932}
4933
4934/// \brief See if a method overloads virtual methods in a base class without
4935/// overriding any.
4936void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4937  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4938                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4939    return;
4940  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4941    return;
4942
4943  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4944                     /*bool RecordPaths=*/false,
4945                     /*bool DetectVirtual=*/false);
4946  FindHiddenVirtualMethodData Data;
4947  Data.Method = MD;
4948  Data.S = this;
4949
4950  // Keep the base methods that were overriden or introduced in the subclass
4951  // by 'using' in a set. A base method not in this set is hidden.
4952  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4953       res.first != res.second; ++res.first) {
4954    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4955      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4956                                          E = MD->end_overridden_methods();
4957           I != E; ++I)
4958        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4959    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4960      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4961        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4962  }
4963
4964  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4965      !Data.OverloadedMethods.empty()) {
4966    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4967      << MD << (Data.OverloadedMethods.size() > 1);
4968
4969    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4970      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4971      Diag(overloadedMD->getLocation(),
4972           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4973    }
4974  }
4975}
4976
4977void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4978                                             Decl *TagDecl,
4979                                             SourceLocation LBrac,
4980                                             SourceLocation RBrac,
4981                                             AttributeList *AttrList) {
4982  if (!TagDecl)
4983    return;
4984
4985  AdjustDeclIfTemplate(TagDecl);
4986
4987  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4988              // strict aliasing violation!
4989              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4990              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4991
4992  CheckCompletedCXXClass(
4993                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4994}
4995
4996/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4997/// special functions, such as the default constructor, copy
4998/// constructor, or destructor, to the given C++ class (C++
4999/// [special]p1).  This routine can only be executed just before the
5000/// definition of the class is complete.
5001void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5002  if (!ClassDecl->hasUserDeclaredConstructor())
5003    ++ASTContext::NumImplicitDefaultConstructors;
5004
5005  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5006    ++ASTContext::NumImplicitCopyConstructors;
5007
5008  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5009    ++ASTContext::NumImplicitMoveConstructors;
5010
5011  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5012    ++ASTContext::NumImplicitCopyAssignmentOperators;
5013
5014    // If we have a dynamic class, then the copy assignment operator may be
5015    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5016    // it shows up in the right place in the vtable and that we diagnose
5017    // problems with the implicit exception specification.
5018    if (ClassDecl->isDynamicClass())
5019      DeclareImplicitCopyAssignment(ClassDecl);
5020  }
5021
5022  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5023    ++ASTContext::NumImplicitMoveAssignmentOperators;
5024
5025    // Likewise for the move assignment operator.
5026    if (ClassDecl->isDynamicClass())
5027      DeclareImplicitMoveAssignment(ClassDecl);
5028  }
5029
5030  if (!ClassDecl->hasUserDeclaredDestructor()) {
5031    ++ASTContext::NumImplicitDestructors;
5032
5033    // If we have a dynamic class, then the destructor may be virtual, so we
5034    // have to declare the destructor immediately. This ensures that, e.g., it
5035    // shows up in the right place in the vtable and that we diagnose problems
5036    // with the implicit exception specification.
5037    if (ClassDecl->isDynamicClass())
5038      DeclareImplicitDestructor(ClassDecl);
5039  }
5040}
5041
5042void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5043  if (!D)
5044    return;
5045
5046  int NumParamList = D->getNumTemplateParameterLists();
5047  for (int i = 0; i < NumParamList; i++) {
5048    TemplateParameterList* Params = D->getTemplateParameterList(i);
5049    for (TemplateParameterList::iterator Param = Params->begin(),
5050                                      ParamEnd = Params->end();
5051          Param != ParamEnd; ++Param) {
5052      NamedDecl *Named = cast<NamedDecl>(*Param);
5053      if (Named->getDeclName()) {
5054        S->AddDecl(Named);
5055        IdResolver.AddDecl(Named);
5056      }
5057    }
5058  }
5059}
5060
5061void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5062  if (!D)
5063    return;
5064
5065  TemplateParameterList *Params = 0;
5066  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5067    Params = Template->getTemplateParameters();
5068  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5069           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5070    Params = PartialSpec->getTemplateParameters();
5071  else
5072    return;
5073
5074  for (TemplateParameterList::iterator Param = Params->begin(),
5075                                    ParamEnd = Params->end();
5076       Param != ParamEnd; ++Param) {
5077    NamedDecl *Named = cast<NamedDecl>(*Param);
5078    if (Named->getDeclName()) {
5079      S->AddDecl(Named);
5080      IdResolver.AddDecl(Named);
5081    }
5082  }
5083}
5084
5085void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5086  if (!RecordD) return;
5087  AdjustDeclIfTemplate(RecordD);
5088  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5089  PushDeclContext(S, Record);
5090}
5091
5092void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5093  if (!RecordD) return;
5094  PopDeclContext();
5095}
5096
5097/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5098/// parsing a top-level (non-nested) C++ class, and we are now
5099/// parsing those parts of the given Method declaration that could
5100/// not be parsed earlier (C++ [class.mem]p2), such as default
5101/// arguments. This action should enter the scope of the given
5102/// Method declaration as if we had just parsed the qualified method
5103/// name. However, it should not bring the parameters into scope;
5104/// that will be performed by ActOnDelayedCXXMethodParameter.
5105void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5106}
5107
5108/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5109/// C++ method declaration. We're (re-)introducing the given
5110/// function parameter into scope for use in parsing later parts of
5111/// the method declaration. For example, we could see an
5112/// ActOnParamDefaultArgument event for this parameter.
5113void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5114  if (!ParamD)
5115    return;
5116
5117  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5118
5119  // If this parameter has an unparsed default argument, clear it out
5120  // to make way for the parsed default argument.
5121  if (Param->hasUnparsedDefaultArg())
5122    Param->setDefaultArg(0);
5123
5124  S->AddDecl(Param);
5125  if (Param->getDeclName())
5126    IdResolver.AddDecl(Param);
5127}
5128
5129/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5130/// processing the delayed method declaration for Method. The method
5131/// declaration is now considered finished. There may be a separate
5132/// ActOnStartOfFunctionDef action later (not necessarily
5133/// immediately!) for this method, if it was also defined inside the
5134/// class body.
5135void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5136  if (!MethodD)
5137    return;
5138
5139  AdjustDeclIfTemplate(MethodD);
5140
5141  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5142
5143  // Now that we have our default arguments, check the constructor
5144  // again. It could produce additional diagnostics or affect whether
5145  // the class has implicitly-declared destructors, among other
5146  // things.
5147  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5148    CheckConstructor(Constructor);
5149
5150  // Check the default arguments, which we may have added.
5151  if (!Method->isInvalidDecl())
5152    CheckCXXDefaultArguments(Method);
5153}
5154
5155/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5156/// the well-formedness of the constructor declarator @p D with type @p
5157/// R. If there are any errors in the declarator, this routine will
5158/// emit diagnostics and set the invalid bit to true.  In any case, the type
5159/// will be updated to reflect a well-formed type for the constructor and
5160/// returned.
5161QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5162                                          StorageClass &SC) {
5163  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5164
5165  // C++ [class.ctor]p3:
5166  //   A constructor shall not be virtual (10.3) or static (9.4). A
5167  //   constructor can be invoked for a const, volatile or const
5168  //   volatile object. A constructor shall not be declared const,
5169  //   volatile, or const volatile (9.3.2).
5170  if (isVirtual) {
5171    if (!D.isInvalidType())
5172      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5173        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5174        << SourceRange(D.getIdentifierLoc());
5175    D.setInvalidType();
5176  }
5177  if (SC == SC_Static) {
5178    if (!D.isInvalidType())
5179      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5180        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5181        << SourceRange(D.getIdentifierLoc());
5182    D.setInvalidType();
5183    SC = SC_None;
5184  }
5185
5186  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5187  if (FTI.TypeQuals != 0) {
5188    if (FTI.TypeQuals & Qualifiers::Const)
5189      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5190        << "const" << SourceRange(D.getIdentifierLoc());
5191    if (FTI.TypeQuals & Qualifiers::Volatile)
5192      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5193        << "volatile" << SourceRange(D.getIdentifierLoc());
5194    if (FTI.TypeQuals & Qualifiers::Restrict)
5195      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5196        << "restrict" << SourceRange(D.getIdentifierLoc());
5197    D.setInvalidType();
5198  }
5199
5200  // C++0x [class.ctor]p4:
5201  //   A constructor shall not be declared with a ref-qualifier.
5202  if (FTI.hasRefQualifier()) {
5203    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5204      << FTI.RefQualifierIsLValueRef
5205      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5206    D.setInvalidType();
5207  }
5208
5209  // Rebuild the function type "R" without any type qualifiers (in
5210  // case any of the errors above fired) and with "void" as the
5211  // return type, since constructors don't have return types.
5212  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5213  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5214    return R;
5215
5216  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5217  EPI.TypeQuals = 0;
5218  EPI.RefQualifier = RQ_None;
5219
5220  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5221                                 Proto->getNumArgs(), EPI);
5222}
5223
5224/// CheckConstructor - Checks a fully-formed constructor for
5225/// well-formedness, issuing any diagnostics required. Returns true if
5226/// the constructor declarator is invalid.
5227void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5228  CXXRecordDecl *ClassDecl
5229    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5230  if (!ClassDecl)
5231    return Constructor->setInvalidDecl();
5232
5233  // C++ [class.copy]p3:
5234  //   A declaration of a constructor for a class X is ill-formed if
5235  //   its first parameter is of type (optionally cv-qualified) X and
5236  //   either there are no other parameters or else all other
5237  //   parameters have default arguments.
5238  if (!Constructor->isInvalidDecl() &&
5239      ((Constructor->getNumParams() == 1) ||
5240       (Constructor->getNumParams() > 1 &&
5241        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5242      Constructor->getTemplateSpecializationKind()
5243                                              != TSK_ImplicitInstantiation) {
5244    QualType ParamType = Constructor->getParamDecl(0)->getType();
5245    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5246    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5247      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5248      const char *ConstRef
5249        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5250                                                        : " const &";
5251      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5252        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5253
5254      // FIXME: Rather that making the constructor invalid, we should endeavor
5255      // to fix the type.
5256      Constructor->setInvalidDecl();
5257    }
5258  }
5259}
5260
5261/// CheckDestructor - Checks a fully-formed destructor definition for
5262/// well-formedness, issuing any diagnostics required.  Returns true
5263/// on error.
5264bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5265  CXXRecordDecl *RD = Destructor->getParent();
5266
5267  if (Destructor->isVirtual()) {
5268    SourceLocation Loc;
5269
5270    if (!Destructor->isImplicit())
5271      Loc = Destructor->getLocation();
5272    else
5273      Loc = RD->getLocation();
5274
5275    // If we have a virtual destructor, look up the deallocation function
5276    FunctionDecl *OperatorDelete = 0;
5277    DeclarationName Name =
5278    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5279    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5280      return true;
5281
5282    MarkDeclarationReferenced(Loc, OperatorDelete);
5283
5284    Destructor->setOperatorDelete(OperatorDelete);
5285  }
5286
5287  return false;
5288}
5289
5290static inline bool
5291FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5292  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5293          FTI.ArgInfo[0].Param &&
5294          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5295}
5296
5297/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5298/// the well-formednes of the destructor declarator @p D with type @p
5299/// R. If there are any errors in the declarator, this routine will
5300/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5301/// will be updated to reflect a well-formed type for the destructor and
5302/// returned.
5303QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5304                                         StorageClass& SC) {
5305  // C++ [class.dtor]p1:
5306  //   [...] A typedef-name that names a class is a class-name
5307  //   (7.1.3); however, a typedef-name that names a class shall not
5308  //   be used as the identifier in the declarator for a destructor
5309  //   declaration.
5310  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5311  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5312    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5313      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5314  else if (const TemplateSpecializationType *TST =
5315             DeclaratorType->getAs<TemplateSpecializationType>())
5316    if (TST->isTypeAlias())
5317      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5318        << DeclaratorType << 1;
5319
5320  // C++ [class.dtor]p2:
5321  //   A destructor is used to destroy objects of its class type. A
5322  //   destructor takes no parameters, and no return type can be
5323  //   specified for it (not even void). The address of a destructor
5324  //   shall not be taken. A destructor shall not be static. A
5325  //   destructor can be invoked for a const, volatile or const
5326  //   volatile object. A destructor shall not be declared const,
5327  //   volatile or const volatile (9.3.2).
5328  if (SC == SC_Static) {
5329    if (!D.isInvalidType())
5330      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5331        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5332        << SourceRange(D.getIdentifierLoc())
5333        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5334
5335    SC = SC_None;
5336  }
5337  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5338    // Destructors don't have return types, but the parser will
5339    // happily parse something like:
5340    //
5341    //   class X {
5342    //     float ~X();
5343    //   };
5344    //
5345    // The return type will be eliminated later.
5346    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5347      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5348      << SourceRange(D.getIdentifierLoc());
5349  }
5350
5351  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5352  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5353    if (FTI.TypeQuals & Qualifiers::Const)
5354      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5355        << "const" << SourceRange(D.getIdentifierLoc());
5356    if (FTI.TypeQuals & Qualifiers::Volatile)
5357      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5358        << "volatile" << SourceRange(D.getIdentifierLoc());
5359    if (FTI.TypeQuals & Qualifiers::Restrict)
5360      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5361        << "restrict" << SourceRange(D.getIdentifierLoc());
5362    D.setInvalidType();
5363  }
5364
5365  // C++0x [class.dtor]p2:
5366  //   A destructor shall not be declared with a ref-qualifier.
5367  if (FTI.hasRefQualifier()) {
5368    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5369      << FTI.RefQualifierIsLValueRef
5370      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5371    D.setInvalidType();
5372  }
5373
5374  // Make sure we don't have any parameters.
5375  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5376    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5377
5378    // Delete the parameters.
5379    FTI.freeArgs();
5380    D.setInvalidType();
5381  }
5382
5383  // Make sure the destructor isn't variadic.
5384  if (FTI.isVariadic) {
5385    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5386    D.setInvalidType();
5387  }
5388
5389  // Rebuild the function type "R" without any type qualifiers or
5390  // parameters (in case any of the errors above fired) and with
5391  // "void" as the return type, since destructors don't have return
5392  // types.
5393  if (!D.isInvalidType())
5394    return R;
5395
5396  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5397  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5398  EPI.Variadic = false;
5399  EPI.TypeQuals = 0;
5400  EPI.RefQualifier = RQ_None;
5401  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5402}
5403
5404/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5405/// well-formednes of the conversion function declarator @p D with
5406/// type @p R. If there are any errors in the declarator, this routine
5407/// will emit diagnostics and return true. Otherwise, it will return
5408/// false. Either way, the type @p R will be updated to reflect a
5409/// well-formed type for the conversion operator.
5410void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5411                                     StorageClass& SC) {
5412  // C++ [class.conv.fct]p1:
5413  //   Neither parameter types nor return type can be specified. The
5414  //   type of a conversion function (8.3.5) is "function taking no
5415  //   parameter returning conversion-type-id."
5416  if (SC == SC_Static) {
5417    if (!D.isInvalidType())
5418      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5419        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5420        << SourceRange(D.getIdentifierLoc());
5421    D.setInvalidType();
5422    SC = SC_None;
5423  }
5424
5425  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5426
5427  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5428    // Conversion functions don't have return types, but the parser will
5429    // happily parse something like:
5430    //
5431    //   class X {
5432    //     float operator bool();
5433    //   };
5434    //
5435    // The return type will be changed later anyway.
5436    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5437      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5438      << SourceRange(D.getIdentifierLoc());
5439    D.setInvalidType();
5440  }
5441
5442  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5443
5444  // Make sure we don't have any parameters.
5445  if (Proto->getNumArgs() > 0) {
5446    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5447
5448    // Delete the parameters.
5449    D.getFunctionTypeInfo().freeArgs();
5450    D.setInvalidType();
5451  } else if (Proto->isVariadic()) {
5452    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5453    D.setInvalidType();
5454  }
5455
5456  // Diagnose "&operator bool()" and other such nonsense.  This
5457  // is actually a gcc extension which we don't support.
5458  if (Proto->getResultType() != ConvType) {
5459    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5460      << Proto->getResultType();
5461    D.setInvalidType();
5462    ConvType = Proto->getResultType();
5463  }
5464
5465  // C++ [class.conv.fct]p4:
5466  //   The conversion-type-id shall not represent a function type nor
5467  //   an array type.
5468  if (ConvType->isArrayType()) {
5469    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5470    ConvType = Context.getPointerType(ConvType);
5471    D.setInvalidType();
5472  } else if (ConvType->isFunctionType()) {
5473    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5474    ConvType = Context.getPointerType(ConvType);
5475    D.setInvalidType();
5476  }
5477
5478  // Rebuild the function type "R" without any parameters (in case any
5479  // of the errors above fired) and with the conversion type as the
5480  // return type.
5481  if (D.isInvalidType())
5482    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5483
5484  // C++0x explicit conversion operators.
5485  if (D.getDeclSpec().isExplicitSpecified())
5486    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5487         getLangOptions().CPlusPlus0x ?
5488           diag::warn_cxx98_compat_explicit_conversion_functions :
5489           diag::ext_explicit_conversion_functions)
5490      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5491}
5492
5493/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5494/// the declaration of the given C++ conversion function. This routine
5495/// is responsible for recording the conversion function in the C++
5496/// class, if possible.
5497Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5498  assert(Conversion && "Expected to receive a conversion function declaration");
5499
5500  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5501
5502  // Make sure we aren't redeclaring the conversion function.
5503  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5504
5505  // C++ [class.conv.fct]p1:
5506  //   [...] A conversion function is never used to convert a
5507  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5508  //   same object type (or a reference to it), to a (possibly
5509  //   cv-qualified) base class of that type (or a reference to it),
5510  //   or to (possibly cv-qualified) void.
5511  // FIXME: Suppress this warning if the conversion function ends up being a
5512  // virtual function that overrides a virtual function in a base class.
5513  QualType ClassType
5514    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5515  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5516    ConvType = ConvTypeRef->getPointeeType();
5517  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5518      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5519    /* Suppress diagnostics for instantiations. */;
5520  else if (ConvType->isRecordType()) {
5521    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5522    if (ConvType == ClassType)
5523      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5524        << ClassType;
5525    else if (IsDerivedFrom(ClassType, ConvType))
5526      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5527        <<  ClassType << ConvType;
5528  } else if (ConvType->isVoidType()) {
5529    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5530      << ClassType << ConvType;
5531  }
5532
5533  if (FunctionTemplateDecl *ConversionTemplate
5534                                = Conversion->getDescribedFunctionTemplate())
5535    return ConversionTemplate;
5536
5537  return Conversion;
5538}
5539
5540//===----------------------------------------------------------------------===//
5541// Namespace Handling
5542//===----------------------------------------------------------------------===//
5543
5544
5545
5546/// ActOnStartNamespaceDef - This is called at the start of a namespace
5547/// definition.
5548Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5549                                   SourceLocation InlineLoc,
5550                                   SourceLocation NamespaceLoc,
5551                                   SourceLocation IdentLoc,
5552                                   IdentifierInfo *II,
5553                                   SourceLocation LBrace,
5554                                   AttributeList *AttrList) {
5555  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5556  // For anonymous namespace, take the location of the left brace.
5557  SourceLocation Loc = II ? IdentLoc : LBrace;
5558  bool IsInline = InlineLoc.isValid();
5559  bool IsInvalid = false;
5560  bool IsStd = false;
5561  bool AddToKnown = false;
5562  Scope *DeclRegionScope = NamespcScope->getParent();
5563
5564  NamespaceDecl *PrevNS = 0;
5565  if (II) {
5566    // C++ [namespace.def]p2:
5567    //   The identifier in an original-namespace-definition shall not
5568    //   have been previously defined in the declarative region in
5569    //   which the original-namespace-definition appears. The
5570    //   identifier in an original-namespace-definition is the name of
5571    //   the namespace. Subsequently in that declarative region, it is
5572    //   treated as an original-namespace-name.
5573    //
5574    // Since namespace names are unique in their scope, and we don't
5575    // look through using directives, just look for any ordinary names.
5576
5577    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5578    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5579    Decl::IDNS_Namespace;
5580    NamedDecl *PrevDecl = 0;
5581    for (DeclContext::lookup_result R
5582         = CurContext->getRedeclContext()->lookup(II);
5583         R.first != R.second; ++R.first) {
5584      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5585        PrevDecl = *R.first;
5586        break;
5587      }
5588    }
5589
5590    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5591
5592    if (PrevNS) {
5593      // This is an extended namespace definition.
5594      if (IsInline != PrevNS->isInline()) {
5595        // inline-ness must match
5596        if (PrevNS->isInline()) {
5597          // The user probably just forgot the 'inline', so suggest that it
5598          // be added back.
5599          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5600            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5601        } else {
5602          Diag(Loc, diag::err_inline_namespace_mismatch)
5603            << IsInline;
5604        }
5605        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5606
5607        IsInline = PrevNS->isInline();
5608      }
5609    } else if (PrevDecl) {
5610      // This is an invalid name redefinition.
5611      Diag(Loc, diag::err_redefinition_different_kind)
5612        << II;
5613      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5614      IsInvalid = true;
5615      // Continue on to push Namespc as current DeclContext and return it.
5616    } else if (II->isStr("std") &&
5617               CurContext->getRedeclContext()->isTranslationUnit()) {
5618      // This is the first "real" definition of the namespace "std", so update
5619      // our cache of the "std" namespace to point at this definition.
5620      PrevNS = getStdNamespace();
5621      IsStd = true;
5622      AddToKnown = !IsInline;
5623    } else {
5624      // We've seen this namespace for the first time.
5625      AddToKnown = !IsInline;
5626    }
5627  } else {
5628    // Anonymous namespaces.
5629
5630    // Determine whether the parent already has an anonymous namespace.
5631    DeclContext *Parent = CurContext->getRedeclContext();
5632    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5633      PrevNS = TU->getAnonymousNamespace();
5634    } else {
5635      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5636      PrevNS = ND->getAnonymousNamespace();
5637    }
5638
5639    if (PrevNS && IsInline != PrevNS->isInline()) {
5640      // inline-ness must match
5641      Diag(Loc, diag::err_inline_namespace_mismatch)
5642        << IsInline;
5643      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5644
5645      // Recover by ignoring the new namespace's inline status.
5646      IsInline = PrevNS->isInline();
5647    }
5648  }
5649
5650  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5651                                                 StartLoc, Loc, II, PrevNS);
5652  if (IsInvalid)
5653    Namespc->setInvalidDecl();
5654
5655  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5656
5657  // FIXME: Should we be merging attributes?
5658  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5659    PushNamespaceVisibilityAttr(Attr);
5660
5661  if (IsStd)
5662    StdNamespace = Namespc;
5663  if (AddToKnown)
5664    KnownNamespaces[Namespc] = false;
5665
5666  if (II) {
5667    PushOnScopeChains(Namespc, DeclRegionScope);
5668  } else {
5669    // Link the anonymous namespace into its parent.
5670    DeclContext *Parent = CurContext->getRedeclContext();
5671    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5672      TU->setAnonymousNamespace(Namespc);
5673    } else {
5674      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5675    }
5676
5677    CurContext->addDecl(Namespc);
5678
5679    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5680    //   behaves as if it were replaced by
5681    //     namespace unique { /* empty body */ }
5682    //     using namespace unique;
5683    //     namespace unique { namespace-body }
5684    //   where all occurrences of 'unique' in a translation unit are
5685    //   replaced by the same identifier and this identifier differs
5686    //   from all other identifiers in the entire program.
5687
5688    // We just create the namespace with an empty name and then add an
5689    // implicit using declaration, just like the standard suggests.
5690    //
5691    // CodeGen enforces the "universally unique" aspect by giving all
5692    // declarations semantically contained within an anonymous
5693    // namespace internal linkage.
5694
5695    if (!PrevNS) {
5696      UsingDirectiveDecl* UD
5697        = UsingDirectiveDecl::Create(Context, CurContext,
5698                                     /* 'using' */ LBrace,
5699                                     /* 'namespace' */ SourceLocation(),
5700                                     /* qualifier */ NestedNameSpecifierLoc(),
5701                                     /* identifier */ SourceLocation(),
5702                                     Namespc,
5703                                     /* Ancestor */ CurContext);
5704      UD->setImplicit();
5705      CurContext->addDecl(UD);
5706    }
5707  }
5708
5709  // Although we could have an invalid decl (i.e. the namespace name is a
5710  // redefinition), push it as current DeclContext and try to continue parsing.
5711  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5712  // for the namespace has the declarations that showed up in that particular
5713  // namespace definition.
5714  PushDeclContext(NamespcScope, Namespc);
5715  return Namespc;
5716}
5717
5718/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5719/// is a namespace alias, returns the namespace it points to.
5720static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5721  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5722    return AD->getNamespace();
5723  return dyn_cast_or_null<NamespaceDecl>(D);
5724}
5725
5726/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5727/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5728void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5729  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5730  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5731  Namespc->setRBraceLoc(RBrace);
5732  PopDeclContext();
5733  if (Namespc->hasAttr<VisibilityAttr>())
5734    PopPragmaVisibility();
5735}
5736
5737CXXRecordDecl *Sema::getStdBadAlloc() const {
5738  return cast_or_null<CXXRecordDecl>(
5739                                  StdBadAlloc.get(Context.getExternalSource()));
5740}
5741
5742NamespaceDecl *Sema::getStdNamespace() const {
5743  return cast_or_null<NamespaceDecl>(
5744                                 StdNamespace.get(Context.getExternalSource()));
5745}
5746
5747/// \brief Retrieve the special "std" namespace, which may require us to
5748/// implicitly define the namespace.
5749NamespaceDecl *Sema::getOrCreateStdNamespace() {
5750  if (!StdNamespace) {
5751    // The "std" namespace has not yet been defined, so build one implicitly.
5752    StdNamespace = NamespaceDecl::Create(Context,
5753                                         Context.getTranslationUnitDecl(),
5754                                         /*Inline=*/false,
5755                                         SourceLocation(), SourceLocation(),
5756                                         &PP.getIdentifierTable().get("std"),
5757                                         /*PrevDecl=*/0);
5758    getStdNamespace()->setImplicit(true);
5759  }
5760
5761  return getStdNamespace();
5762}
5763
5764/// \brief Determine whether a using statement is in a context where it will be
5765/// apply in all contexts.
5766static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5767  switch (CurContext->getDeclKind()) {
5768    case Decl::TranslationUnit:
5769      return true;
5770    case Decl::LinkageSpec:
5771      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5772    default:
5773      return false;
5774  }
5775}
5776
5777namespace {
5778
5779// Callback to only accept typo corrections that are namespaces.
5780class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5781 public:
5782  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5783    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5784      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5785    }
5786    return false;
5787  }
5788};
5789
5790}
5791
5792static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5793                                       CXXScopeSpec &SS,
5794                                       SourceLocation IdentLoc,
5795                                       IdentifierInfo *Ident) {
5796  NamespaceValidatorCCC Validator;
5797  R.clear();
5798  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5799                                               R.getLookupKind(), Sc, &SS,
5800                                               &Validator)) {
5801    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5802    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5803    if (DeclContext *DC = S.computeDeclContext(SS, false))
5804      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5805        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5806        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5807    else
5808      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5809        << Ident << CorrectedQuotedStr
5810        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5811
5812    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5813         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5814
5815    Ident = Corrected.getCorrectionAsIdentifierInfo();
5816    R.addDecl(Corrected.getCorrectionDecl());
5817    return true;
5818  }
5819  return false;
5820}
5821
5822Decl *Sema::ActOnUsingDirective(Scope *S,
5823                                          SourceLocation UsingLoc,
5824                                          SourceLocation NamespcLoc,
5825                                          CXXScopeSpec &SS,
5826                                          SourceLocation IdentLoc,
5827                                          IdentifierInfo *NamespcName,
5828                                          AttributeList *AttrList) {
5829  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5830  assert(NamespcName && "Invalid NamespcName.");
5831  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5832
5833  // This can only happen along a recovery path.
5834  while (S->getFlags() & Scope::TemplateParamScope)
5835    S = S->getParent();
5836  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5837
5838  UsingDirectiveDecl *UDir = 0;
5839  NestedNameSpecifier *Qualifier = 0;
5840  if (SS.isSet())
5841    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5842
5843  // Lookup namespace name.
5844  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5845  LookupParsedName(R, S, &SS);
5846  if (R.isAmbiguous())
5847    return 0;
5848
5849  if (R.empty()) {
5850    R.clear();
5851    // Allow "using namespace std;" or "using namespace ::std;" even if
5852    // "std" hasn't been defined yet, for GCC compatibility.
5853    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5854        NamespcName->isStr("std")) {
5855      Diag(IdentLoc, diag::ext_using_undefined_std);
5856      R.addDecl(getOrCreateStdNamespace());
5857      R.resolveKind();
5858    }
5859    // Otherwise, attempt typo correction.
5860    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5861  }
5862
5863  if (!R.empty()) {
5864    NamedDecl *Named = R.getFoundDecl();
5865    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5866        && "expected namespace decl");
5867    // C++ [namespace.udir]p1:
5868    //   A using-directive specifies that the names in the nominated
5869    //   namespace can be used in the scope in which the
5870    //   using-directive appears after the using-directive. During
5871    //   unqualified name lookup (3.4.1), the names appear as if they
5872    //   were declared in the nearest enclosing namespace which
5873    //   contains both the using-directive and the nominated
5874    //   namespace. [Note: in this context, "contains" means "contains
5875    //   directly or indirectly". ]
5876
5877    // Find enclosing context containing both using-directive and
5878    // nominated namespace.
5879    NamespaceDecl *NS = getNamespaceDecl(Named);
5880    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5881    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5882      CommonAncestor = CommonAncestor->getParent();
5883
5884    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5885                                      SS.getWithLocInContext(Context),
5886                                      IdentLoc, Named, CommonAncestor);
5887
5888    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5889        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5890      Diag(IdentLoc, diag::warn_using_directive_in_header);
5891    }
5892
5893    PushUsingDirective(S, UDir);
5894  } else {
5895    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5896  }
5897
5898  // FIXME: We ignore attributes for now.
5899  return UDir;
5900}
5901
5902void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5903  // If scope has associated entity, then using directive is at namespace
5904  // or translation unit scope. We add UsingDirectiveDecls, into
5905  // it's lookup structure.
5906  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5907    Ctx->addDecl(UDir);
5908  else
5909    // Otherwise it is block-sope. using-directives will affect lookup
5910    // only to the end of scope.
5911    S->PushUsingDirective(UDir);
5912}
5913
5914
5915Decl *Sema::ActOnUsingDeclaration(Scope *S,
5916                                  AccessSpecifier AS,
5917                                  bool HasUsingKeyword,
5918                                  SourceLocation UsingLoc,
5919                                  CXXScopeSpec &SS,
5920                                  UnqualifiedId &Name,
5921                                  AttributeList *AttrList,
5922                                  bool IsTypeName,
5923                                  SourceLocation TypenameLoc) {
5924  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5925
5926  switch (Name.getKind()) {
5927  case UnqualifiedId::IK_ImplicitSelfParam:
5928  case UnqualifiedId::IK_Identifier:
5929  case UnqualifiedId::IK_OperatorFunctionId:
5930  case UnqualifiedId::IK_LiteralOperatorId:
5931  case UnqualifiedId::IK_ConversionFunctionId:
5932    break;
5933
5934  case UnqualifiedId::IK_ConstructorName:
5935  case UnqualifiedId::IK_ConstructorTemplateId:
5936    // C++0x inherited constructors.
5937    Diag(Name.getSourceRange().getBegin(),
5938         getLangOptions().CPlusPlus0x ?
5939           diag::warn_cxx98_compat_using_decl_constructor :
5940           diag::err_using_decl_constructor)
5941      << SS.getRange();
5942
5943    if (getLangOptions().CPlusPlus0x) break;
5944
5945    return 0;
5946
5947  case UnqualifiedId::IK_DestructorName:
5948    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5949      << SS.getRange();
5950    return 0;
5951
5952  case UnqualifiedId::IK_TemplateId:
5953    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5954      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5955    return 0;
5956  }
5957
5958  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5959  DeclarationName TargetName = TargetNameInfo.getName();
5960  if (!TargetName)
5961    return 0;
5962
5963  // Warn about using declarations.
5964  // TODO: store that the declaration was written without 'using' and
5965  // talk about access decls instead of using decls in the
5966  // diagnostics.
5967  if (!HasUsingKeyword) {
5968    UsingLoc = Name.getSourceRange().getBegin();
5969
5970    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5971      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5972  }
5973
5974  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5975      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5976    return 0;
5977
5978  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5979                                        TargetNameInfo, AttrList,
5980                                        /* IsInstantiation */ false,
5981                                        IsTypeName, TypenameLoc);
5982  if (UD)
5983    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5984
5985  return UD;
5986}
5987
5988/// \brief Determine whether a using declaration considers the given
5989/// declarations as "equivalent", e.g., if they are redeclarations of
5990/// the same entity or are both typedefs of the same type.
5991static bool
5992IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5993                         bool &SuppressRedeclaration) {
5994  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5995    SuppressRedeclaration = false;
5996    return true;
5997  }
5998
5999  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6000    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6001      SuppressRedeclaration = true;
6002      return Context.hasSameType(TD1->getUnderlyingType(),
6003                                 TD2->getUnderlyingType());
6004    }
6005
6006  return false;
6007}
6008
6009
6010/// Determines whether to create a using shadow decl for a particular
6011/// decl, given the set of decls existing prior to this using lookup.
6012bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6013                                const LookupResult &Previous) {
6014  // Diagnose finding a decl which is not from a base class of the
6015  // current class.  We do this now because there are cases where this
6016  // function will silently decide not to build a shadow decl, which
6017  // will pre-empt further diagnostics.
6018  //
6019  // We don't need to do this in C++0x because we do the check once on
6020  // the qualifier.
6021  //
6022  // FIXME: diagnose the following if we care enough:
6023  //   struct A { int foo; };
6024  //   struct B : A { using A::foo; };
6025  //   template <class T> struct C : A {};
6026  //   template <class T> struct D : C<T> { using B::foo; } // <---
6027  // This is invalid (during instantiation) in C++03 because B::foo
6028  // resolves to the using decl in B, which is not a base class of D<T>.
6029  // We can't diagnose it immediately because C<T> is an unknown
6030  // specialization.  The UsingShadowDecl in D<T> then points directly
6031  // to A::foo, which will look well-formed when we instantiate.
6032  // The right solution is to not collapse the shadow-decl chain.
6033  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6034    DeclContext *OrigDC = Orig->getDeclContext();
6035
6036    // Handle enums and anonymous structs.
6037    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6038    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6039    while (OrigRec->isAnonymousStructOrUnion())
6040      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6041
6042    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6043      if (OrigDC == CurContext) {
6044        Diag(Using->getLocation(),
6045             diag::err_using_decl_nested_name_specifier_is_current_class)
6046          << Using->getQualifierLoc().getSourceRange();
6047        Diag(Orig->getLocation(), diag::note_using_decl_target);
6048        return true;
6049      }
6050
6051      Diag(Using->getQualifierLoc().getBeginLoc(),
6052           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6053        << Using->getQualifier()
6054        << cast<CXXRecordDecl>(CurContext)
6055        << Using->getQualifierLoc().getSourceRange();
6056      Diag(Orig->getLocation(), diag::note_using_decl_target);
6057      return true;
6058    }
6059  }
6060
6061  if (Previous.empty()) return false;
6062
6063  NamedDecl *Target = Orig;
6064  if (isa<UsingShadowDecl>(Target))
6065    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6066
6067  // If the target happens to be one of the previous declarations, we
6068  // don't have a conflict.
6069  //
6070  // FIXME: but we might be increasing its access, in which case we
6071  // should redeclare it.
6072  NamedDecl *NonTag = 0, *Tag = 0;
6073  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6074         I != E; ++I) {
6075    NamedDecl *D = (*I)->getUnderlyingDecl();
6076    bool Result;
6077    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6078      return Result;
6079
6080    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6081  }
6082
6083  if (Target->isFunctionOrFunctionTemplate()) {
6084    FunctionDecl *FD;
6085    if (isa<FunctionTemplateDecl>(Target))
6086      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6087    else
6088      FD = cast<FunctionDecl>(Target);
6089
6090    NamedDecl *OldDecl = 0;
6091    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6092    case Ovl_Overload:
6093      return false;
6094
6095    case Ovl_NonFunction:
6096      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6097      break;
6098
6099    // We found a decl with the exact signature.
6100    case Ovl_Match:
6101      // If we're in a record, we want to hide the target, so we
6102      // return true (without a diagnostic) to tell the caller not to
6103      // build a shadow decl.
6104      if (CurContext->isRecord())
6105        return true;
6106
6107      // If we're not in a record, this is an error.
6108      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6109      break;
6110    }
6111
6112    Diag(Target->getLocation(), diag::note_using_decl_target);
6113    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6114    return true;
6115  }
6116
6117  // Target is not a function.
6118
6119  if (isa<TagDecl>(Target)) {
6120    // No conflict between a tag and a non-tag.
6121    if (!Tag) return false;
6122
6123    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6124    Diag(Target->getLocation(), diag::note_using_decl_target);
6125    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6126    return true;
6127  }
6128
6129  // No conflict between a tag and a non-tag.
6130  if (!NonTag) return false;
6131
6132  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6133  Diag(Target->getLocation(), diag::note_using_decl_target);
6134  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6135  return true;
6136}
6137
6138/// Builds a shadow declaration corresponding to a 'using' declaration.
6139UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6140                                            UsingDecl *UD,
6141                                            NamedDecl *Orig) {
6142
6143  // If we resolved to another shadow declaration, just coalesce them.
6144  NamedDecl *Target = Orig;
6145  if (isa<UsingShadowDecl>(Target)) {
6146    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6147    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6148  }
6149
6150  UsingShadowDecl *Shadow
6151    = UsingShadowDecl::Create(Context, CurContext,
6152                              UD->getLocation(), UD, Target);
6153  UD->addShadowDecl(Shadow);
6154
6155  Shadow->setAccess(UD->getAccess());
6156  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6157    Shadow->setInvalidDecl();
6158
6159  if (S)
6160    PushOnScopeChains(Shadow, S);
6161  else
6162    CurContext->addDecl(Shadow);
6163
6164
6165  return Shadow;
6166}
6167
6168/// Hides a using shadow declaration.  This is required by the current
6169/// using-decl implementation when a resolvable using declaration in a
6170/// class is followed by a declaration which would hide or override
6171/// one or more of the using decl's targets; for example:
6172///
6173///   struct Base { void foo(int); };
6174///   struct Derived : Base {
6175///     using Base::foo;
6176///     void foo(int);
6177///   };
6178///
6179/// The governing language is C++03 [namespace.udecl]p12:
6180///
6181///   When a using-declaration brings names from a base class into a
6182///   derived class scope, member functions in the derived class
6183///   override and/or hide member functions with the same name and
6184///   parameter types in a base class (rather than conflicting).
6185///
6186/// There are two ways to implement this:
6187///   (1) optimistically create shadow decls when they're not hidden
6188///       by existing declarations, or
6189///   (2) don't create any shadow decls (or at least don't make them
6190///       visible) until we've fully parsed/instantiated the class.
6191/// The problem with (1) is that we might have to retroactively remove
6192/// a shadow decl, which requires several O(n) operations because the
6193/// decl structures are (very reasonably) not designed for removal.
6194/// (2) avoids this but is very fiddly and phase-dependent.
6195void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6196  if (Shadow->getDeclName().getNameKind() ==
6197        DeclarationName::CXXConversionFunctionName)
6198    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6199
6200  // Remove it from the DeclContext...
6201  Shadow->getDeclContext()->removeDecl(Shadow);
6202
6203  // ...and the scope, if applicable...
6204  if (S) {
6205    S->RemoveDecl(Shadow);
6206    IdResolver.RemoveDecl(Shadow);
6207  }
6208
6209  // ...and the using decl.
6210  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6211
6212  // TODO: complain somehow if Shadow was used.  It shouldn't
6213  // be possible for this to happen, because...?
6214}
6215
6216/// Builds a using declaration.
6217///
6218/// \param IsInstantiation - Whether this call arises from an
6219///   instantiation of an unresolved using declaration.  We treat
6220///   the lookup differently for these declarations.
6221NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6222                                       SourceLocation UsingLoc,
6223                                       CXXScopeSpec &SS,
6224                                       const DeclarationNameInfo &NameInfo,
6225                                       AttributeList *AttrList,
6226                                       bool IsInstantiation,
6227                                       bool IsTypeName,
6228                                       SourceLocation TypenameLoc) {
6229  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6230  SourceLocation IdentLoc = NameInfo.getLoc();
6231  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6232
6233  // FIXME: We ignore attributes for now.
6234
6235  if (SS.isEmpty()) {
6236    Diag(IdentLoc, diag::err_using_requires_qualname);
6237    return 0;
6238  }
6239
6240  // Do the redeclaration lookup in the current scope.
6241  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6242                        ForRedeclaration);
6243  Previous.setHideTags(false);
6244  if (S) {
6245    LookupName(Previous, S);
6246
6247    // It is really dumb that we have to do this.
6248    LookupResult::Filter F = Previous.makeFilter();
6249    while (F.hasNext()) {
6250      NamedDecl *D = F.next();
6251      if (!isDeclInScope(D, CurContext, S))
6252        F.erase();
6253    }
6254    F.done();
6255  } else {
6256    assert(IsInstantiation && "no scope in non-instantiation");
6257    assert(CurContext->isRecord() && "scope not record in instantiation");
6258    LookupQualifiedName(Previous, CurContext);
6259  }
6260
6261  // Check for invalid redeclarations.
6262  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6263    return 0;
6264
6265  // Check for bad qualifiers.
6266  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6267    return 0;
6268
6269  DeclContext *LookupContext = computeDeclContext(SS);
6270  NamedDecl *D;
6271  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6272  if (!LookupContext) {
6273    if (IsTypeName) {
6274      // FIXME: not all declaration name kinds are legal here
6275      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6276                                              UsingLoc, TypenameLoc,
6277                                              QualifierLoc,
6278                                              IdentLoc, NameInfo.getName());
6279    } else {
6280      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6281                                           QualifierLoc, NameInfo);
6282    }
6283  } else {
6284    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6285                          NameInfo, IsTypeName);
6286  }
6287  D->setAccess(AS);
6288  CurContext->addDecl(D);
6289
6290  if (!LookupContext) return D;
6291  UsingDecl *UD = cast<UsingDecl>(D);
6292
6293  if (RequireCompleteDeclContext(SS, LookupContext)) {
6294    UD->setInvalidDecl();
6295    return UD;
6296  }
6297
6298  // Constructor inheriting using decls get special treatment.
6299  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6300    if (CheckInheritedConstructorUsingDecl(UD))
6301      UD->setInvalidDecl();
6302    return UD;
6303  }
6304
6305  // Otherwise, look up the target name.
6306
6307  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6308
6309  // Unlike most lookups, we don't always want to hide tag
6310  // declarations: tag names are visible through the using declaration
6311  // even if hidden by ordinary names, *except* in a dependent context
6312  // where it's important for the sanity of two-phase lookup.
6313  if (!IsInstantiation)
6314    R.setHideTags(false);
6315
6316  LookupQualifiedName(R, LookupContext);
6317
6318  if (R.empty()) {
6319    Diag(IdentLoc, diag::err_no_member)
6320      << NameInfo.getName() << LookupContext << SS.getRange();
6321    UD->setInvalidDecl();
6322    return UD;
6323  }
6324
6325  if (R.isAmbiguous()) {
6326    UD->setInvalidDecl();
6327    return UD;
6328  }
6329
6330  if (IsTypeName) {
6331    // If we asked for a typename and got a non-type decl, error out.
6332    if (!R.getAsSingle<TypeDecl>()) {
6333      Diag(IdentLoc, diag::err_using_typename_non_type);
6334      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6335        Diag((*I)->getUnderlyingDecl()->getLocation(),
6336             diag::note_using_decl_target);
6337      UD->setInvalidDecl();
6338      return UD;
6339    }
6340  } else {
6341    // If we asked for a non-typename and we got a type, error out,
6342    // but only if this is an instantiation of an unresolved using
6343    // decl.  Otherwise just silently find the type name.
6344    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6345      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6346      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6347      UD->setInvalidDecl();
6348      return UD;
6349    }
6350  }
6351
6352  // C++0x N2914 [namespace.udecl]p6:
6353  // A using-declaration shall not name a namespace.
6354  if (R.getAsSingle<NamespaceDecl>()) {
6355    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6356      << SS.getRange();
6357    UD->setInvalidDecl();
6358    return UD;
6359  }
6360
6361  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6362    if (!CheckUsingShadowDecl(UD, *I, Previous))
6363      BuildUsingShadowDecl(S, UD, *I);
6364  }
6365
6366  return UD;
6367}
6368
6369/// Additional checks for a using declaration referring to a constructor name.
6370bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6371  if (UD->isTypeName()) {
6372    // FIXME: Cannot specify typename when specifying constructor
6373    return true;
6374  }
6375
6376  const Type *SourceType = UD->getQualifier()->getAsType();
6377  assert(SourceType &&
6378         "Using decl naming constructor doesn't have type in scope spec.");
6379  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6380
6381  // Check whether the named type is a direct base class.
6382  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6383  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6384  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6385       BaseIt != BaseE; ++BaseIt) {
6386    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6387    if (CanonicalSourceType == BaseType)
6388      break;
6389  }
6390
6391  if (BaseIt == BaseE) {
6392    // Did not find SourceType in the bases.
6393    Diag(UD->getUsingLocation(),
6394         diag::err_using_decl_constructor_not_in_direct_base)
6395      << UD->getNameInfo().getSourceRange()
6396      << QualType(SourceType, 0) << TargetClass;
6397    return true;
6398  }
6399
6400  BaseIt->setInheritConstructors();
6401
6402  return false;
6403}
6404
6405/// Checks that the given using declaration is not an invalid
6406/// redeclaration.  Note that this is checking only for the using decl
6407/// itself, not for any ill-formedness among the UsingShadowDecls.
6408bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6409                                       bool isTypeName,
6410                                       const CXXScopeSpec &SS,
6411                                       SourceLocation NameLoc,
6412                                       const LookupResult &Prev) {
6413  // C++03 [namespace.udecl]p8:
6414  // C++0x [namespace.udecl]p10:
6415  //   A using-declaration is a declaration and can therefore be used
6416  //   repeatedly where (and only where) multiple declarations are
6417  //   allowed.
6418  //
6419  // That's in non-member contexts.
6420  if (!CurContext->getRedeclContext()->isRecord())
6421    return false;
6422
6423  NestedNameSpecifier *Qual
6424    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6425
6426  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6427    NamedDecl *D = *I;
6428
6429    bool DTypename;
6430    NestedNameSpecifier *DQual;
6431    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6432      DTypename = UD->isTypeName();
6433      DQual = UD->getQualifier();
6434    } else if (UnresolvedUsingValueDecl *UD
6435                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6436      DTypename = false;
6437      DQual = UD->getQualifier();
6438    } else if (UnresolvedUsingTypenameDecl *UD
6439                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6440      DTypename = true;
6441      DQual = UD->getQualifier();
6442    } else continue;
6443
6444    // using decls differ if one says 'typename' and the other doesn't.
6445    // FIXME: non-dependent using decls?
6446    if (isTypeName != DTypename) continue;
6447
6448    // using decls differ if they name different scopes (but note that
6449    // template instantiation can cause this check to trigger when it
6450    // didn't before instantiation).
6451    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6452        Context.getCanonicalNestedNameSpecifier(DQual))
6453      continue;
6454
6455    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6456    Diag(D->getLocation(), diag::note_using_decl) << 1;
6457    return true;
6458  }
6459
6460  return false;
6461}
6462
6463
6464/// Checks that the given nested-name qualifier used in a using decl
6465/// in the current context is appropriately related to the current
6466/// scope.  If an error is found, diagnoses it and returns true.
6467bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6468                                   const CXXScopeSpec &SS,
6469                                   SourceLocation NameLoc) {
6470  DeclContext *NamedContext = computeDeclContext(SS);
6471
6472  if (!CurContext->isRecord()) {
6473    // C++03 [namespace.udecl]p3:
6474    // C++0x [namespace.udecl]p8:
6475    //   A using-declaration for a class member shall be a member-declaration.
6476
6477    // If we weren't able to compute a valid scope, it must be a
6478    // dependent class scope.
6479    if (!NamedContext || NamedContext->isRecord()) {
6480      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6481        << SS.getRange();
6482      return true;
6483    }
6484
6485    // Otherwise, everything is known to be fine.
6486    return false;
6487  }
6488
6489  // The current scope is a record.
6490
6491  // If the named context is dependent, we can't decide much.
6492  if (!NamedContext) {
6493    // FIXME: in C++0x, we can diagnose if we can prove that the
6494    // nested-name-specifier does not refer to a base class, which is
6495    // still possible in some cases.
6496
6497    // Otherwise we have to conservatively report that things might be
6498    // okay.
6499    return false;
6500  }
6501
6502  if (!NamedContext->isRecord()) {
6503    // Ideally this would point at the last name in the specifier,
6504    // but we don't have that level of source info.
6505    Diag(SS.getRange().getBegin(),
6506         diag::err_using_decl_nested_name_specifier_is_not_class)
6507      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6508    return true;
6509  }
6510
6511  if (!NamedContext->isDependentContext() &&
6512      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6513    return true;
6514
6515  if (getLangOptions().CPlusPlus0x) {
6516    // C++0x [namespace.udecl]p3:
6517    //   In a using-declaration used as a member-declaration, the
6518    //   nested-name-specifier shall name a base class of the class
6519    //   being defined.
6520
6521    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6522                                 cast<CXXRecordDecl>(NamedContext))) {
6523      if (CurContext == NamedContext) {
6524        Diag(NameLoc,
6525             diag::err_using_decl_nested_name_specifier_is_current_class)
6526          << SS.getRange();
6527        return true;
6528      }
6529
6530      Diag(SS.getRange().getBegin(),
6531           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6532        << (NestedNameSpecifier*) SS.getScopeRep()
6533        << cast<CXXRecordDecl>(CurContext)
6534        << SS.getRange();
6535      return true;
6536    }
6537
6538    return false;
6539  }
6540
6541  // C++03 [namespace.udecl]p4:
6542  //   A using-declaration used as a member-declaration shall refer
6543  //   to a member of a base class of the class being defined [etc.].
6544
6545  // Salient point: SS doesn't have to name a base class as long as
6546  // lookup only finds members from base classes.  Therefore we can
6547  // diagnose here only if we can prove that that can't happen,
6548  // i.e. if the class hierarchies provably don't intersect.
6549
6550  // TODO: it would be nice if "definitely valid" results were cached
6551  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6552  // need to be repeated.
6553
6554  struct UserData {
6555    llvm::DenseSet<const CXXRecordDecl*> Bases;
6556
6557    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6558      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6559      Data->Bases.insert(Base);
6560      return true;
6561    }
6562
6563    bool hasDependentBases(const CXXRecordDecl *Class) {
6564      return !Class->forallBases(collect, this);
6565    }
6566
6567    /// Returns true if the base is dependent or is one of the
6568    /// accumulated base classes.
6569    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6570      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6571      return !Data->Bases.count(Base);
6572    }
6573
6574    bool mightShareBases(const CXXRecordDecl *Class) {
6575      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6576    }
6577  };
6578
6579  UserData Data;
6580
6581  // Returns false if we find a dependent base.
6582  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6583    return false;
6584
6585  // Returns false if the class has a dependent base or if it or one
6586  // of its bases is present in the base set of the current context.
6587  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6588    return false;
6589
6590  Diag(SS.getRange().getBegin(),
6591       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6592    << (NestedNameSpecifier*) SS.getScopeRep()
6593    << cast<CXXRecordDecl>(CurContext)
6594    << SS.getRange();
6595
6596  return true;
6597}
6598
6599Decl *Sema::ActOnAliasDeclaration(Scope *S,
6600                                  AccessSpecifier AS,
6601                                  MultiTemplateParamsArg TemplateParamLists,
6602                                  SourceLocation UsingLoc,
6603                                  UnqualifiedId &Name,
6604                                  TypeResult Type) {
6605  // Skip up to the relevant declaration scope.
6606  while (S->getFlags() & Scope::TemplateParamScope)
6607    S = S->getParent();
6608  assert((S->getFlags() & Scope::DeclScope) &&
6609         "got alias-declaration outside of declaration scope");
6610
6611  if (Type.isInvalid())
6612    return 0;
6613
6614  bool Invalid = false;
6615  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6616  TypeSourceInfo *TInfo = 0;
6617  GetTypeFromParser(Type.get(), &TInfo);
6618
6619  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6620    return 0;
6621
6622  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6623                                      UPPC_DeclarationType)) {
6624    Invalid = true;
6625    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6626                                             TInfo->getTypeLoc().getBeginLoc());
6627  }
6628
6629  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6630  LookupName(Previous, S);
6631
6632  // Warn about shadowing the name of a template parameter.
6633  if (Previous.isSingleResult() &&
6634      Previous.getFoundDecl()->isTemplateParameter()) {
6635    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6636    Previous.clear();
6637  }
6638
6639  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6640         "name in alias declaration must be an identifier");
6641  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6642                                               Name.StartLocation,
6643                                               Name.Identifier, TInfo);
6644
6645  NewTD->setAccess(AS);
6646
6647  if (Invalid)
6648    NewTD->setInvalidDecl();
6649
6650  CheckTypedefForVariablyModifiedType(S, NewTD);
6651  Invalid |= NewTD->isInvalidDecl();
6652
6653  bool Redeclaration = false;
6654
6655  NamedDecl *NewND;
6656  if (TemplateParamLists.size()) {
6657    TypeAliasTemplateDecl *OldDecl = 0;
6658    TemplateParameterList *OldTemplateParams = 0;
6659
6660    if (TemplateParamLists.size() != 1) {
6661      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6662        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6663         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6664    }
6665    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6666
6667    // Only consider previous declarations in the same scope.
6668    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6669                         /*ExplicitInstantiationOrSpecialization*/false);
6670    if (!Previous.empty()) {
6671      Redeclaration = true;
6672
6673      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6674      if (!OldDecl && !Invalid) {
6675        Diag(UsingLoc, diag::err_redefinition_different_kind)
6676          << Name.Identifier;
6677
6678        NamedDecl *OldD = Previous.getRepresentativeDecl();
6679        if (OldD->getLocation().isValid())
6680          Diag(OldD->getLocation(), diag::note_previous_definition);
6681
6682        Invalid = true;
6683      }
6684
6685      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6686        if (TemplateParameterListsAreEqual(TemplateParams,
6687                                           OldDecl->getTemplateParameters(),
6688                                           /*Complain=*/true,
6689                                           TPL_TemplateMatch))
6690          OldTemplateParams = OldDecl->getTemplateParameters();
6691        else
6692          Invalid = true;
6693
6694        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6695        if (!Invalid &&
6696            !Context.hasSameType(OldTD->getUnderlyingType(),
6697                                 NewTD->getUnderlyingType())) {
6698          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6699          // but we can't reasonably accept it.
6700          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6701            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6702          if (OldTD->getLocation().isValid())
6703            Diag(OldTD->getLocation(), diag::note_previous_definition);
6704          Invalid = true;
6705        }
6706      }
6707    }
6708
6709    // Merge any previous default template arguments into our parameters,
6710    // and check the parameter list.
6711    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6712                                   TPC_TypeAliasTemplate))
6713      return 0;
6714
6715    TypeAliasTemplateDecl *NewDecl =
6716      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6717                                    Name.Identifier, TemplateParams,
6718                                    NewTD);
6719
6720    NewDecl->setAccess(AS);
6721
6722    if (Invalid)
6723      NewDecl->setInvalidDecl();
6724    else if (OldDecl)
6725      NewDecl->setPreviousDeclaration(OldDecl);
6726
6727    NewND = NewDecl;
6728  } else {
6729    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6730    NewND = NewTD;
6731  }
6732
6733  if (!Redeclaration)
6734    PushOnScopeChains(NewND, S);
6735
6736  return NewND;
6737}
6738
6739Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6740                                             SourceLocation NamespaceLoc,
6741                                             SourceLocation AliasLoc,
6742                                             IdentifierInfo *Alias,
6743                                             CXXScopeSpec &SS,
6744                                             SourceLocation IdentLoc,
6745                                             IdentifierInfo *Ident) {
6746
6747  // Lookup the namespace name.
6748  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6749  LookupParsedName(R, S, &SS);
6750
6751  // Check if we have a previous declaration with the same name.
6752  NamedDecl *PrevDecl
6753    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6754                       ForRedeclaration);
6755  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6756    PrevDecl = 0;
6757
6758  if (PrevDecl) {
6759    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6760      // We already have an alias with the same name that points to the same
6761      // namespace, so don't create a new one.
6762      // FIXME: At some point, we'll want to create the (redundant)
6763      // declaration to maintain better source information.
6764      if (!R.isAmbiguous() && !R.empty() &&
6765          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6766        return 0;
6767    }
6768
6769    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6770      diag::err_redefinition_different_kind;
6771    Diag(AliasLoc, DiagID) << Alias;
6772    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6773    return 0;
6774  }
6775
6776  if (R.isAmbiguous())
6777    return 0;
6778
6779  if (R.empty()) {
6780    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6781      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6782      return 0;
6783    }
6784  }
6785
6786  NamespaceAliasDecl *AliasDecl =
6787    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6788                               Alias, SS.getWithLocInContext(Context),
6789                               IdentLoc, R.getFoundDecl());
6790
6791  PushOnScopeChains(AliasDecl, S);
6792  return AliasDecl;
6793}
6794
6795namespace {
6796  /// \brief Scoped object used to handle the state changes required in Sema
6797  /// to implicitly define the body of a C++ member function;
6798  class ImplicitlyDefinedFunctionScope {
6799    Sema &S;
6800    Sema::ContextRAII SavedContext;
6801
6802  public:
6803    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6804      : S(S), SavedContext(S, Method)
6805    {
6806      S.PushFunctionScope();
6807      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6808    }
6809
6810    ~ImplicitlyDefinedFunctionScope() {
6811      S.PopExpressionEvaluationContext();
6812      S.PopFunctionScopeInfo();
6813    }
6814  };
6815}
6816
6817Sema::ImplicitExceptionSpecification
6818Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6819  // C++ [except.spec]p14:
6820  //   An implicitly declared special member function (Clause 12) shall have an
6821  //   exception-specification. [...]
6822  ImplicitExceptionSpecification ExceptSpec(Context);
6823  if (ClassDecl->isInvalidDecl())
6824    return ExceptSpec;
6825
6826  // Direct base-class constructors.
6827  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6828                                       BEnd = ClassDecl->bases_end();
6829       B != BEnd; ++B) {
6830    if (B->isVirtual()) // Handled below.
6831      continue;
6832
6833    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6834      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6835      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6836      // If this is a deleted function, add it anyway. This might be conformant
6837      // with the standard. This might not. I'm not sure. It might not matter.
6838      if (Constructor)
6839        ExceptSpec.CalledDecl(Constructor);
6840    }
6841  }
6842
6843  // Virtual base-class constructors.
6844  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6845                                       BEnd = ClassDecl->vbases_end();
6846       B != BEnd; ++B) {
6847    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6848      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6849      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6850      // If this is a deleted function, add it anyway. This might be conformant
6851      // with the standard. This might not. I'm not sure. It might not matter.
6852      if (Constructor)
6853        ExceptSpec.CalledDecl(Constructor);
6854    }
6855  }
6856
6857  // Field constructors.
6858  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6859                               FEnd = ClassDecl->field_end();
6860       F != FEnd; ++F) {
6861    if (F->hasInClassInitializer()) {
6862      if (Expr *E = F->getInClassInitializer())
6863        ExceptSpec.CalledExpr(E);
6864      else if (!F->isInvalidDecl())
6865        ExceptSpec.SetDelayed();
6866    } else if (const RecordType *RecordTy
6867              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6868      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6869      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6870      // If this is a deleted function, add it anyway. This might be conformant
6871      // with the standard. This might not. I'm not sure. It might not matter.
6872      // In particular, the problem is that this function never gets called. It
6873      // might just be ill-formed because this function attempts to refer to
6874      // a deleted function here.
6875      if (Constructor)
6876        ExceptSpec.CalledDecl(Constructor);
6877    }
6878  }
6879
6880  return ExceptSpec;
6881}
6882
6883CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6884                                                     CXXRecordDecl *ClassDecl) {
6885  // C++ [class.ctor]p5:
6886  //   A default constructor for a class X is a constructor of class X
6887  //   that can be called without an argument. If there is no
6888  //   user-declared constructor for class X, a default constructor is
6889  //   implicitly declared. An implicitly-declared default constructor
6890  //   is an inline public member of its class.
6891  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6892         "Should not build implicit default constructor!");
6893
6894  ImplicitExceptionSpecification Spec =
6895    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6896  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6897
6898  // Create the actual constructor declaration.
6899  CanQualType ClassType
6900    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6901  SourceLocation ClassLoc = ClassDecl->getLocation();
6902  DeclarationName Name
6903    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6904  DeclarationNameInfo NameInfo(Name, ClassLoc);
6905  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6906      Context, ClassDecl, ClassLoc, NameInfo,
6907      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6908      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6909      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6910        getLangOptions().CPlusPlus0x);
6911  DefaultCon->setAccess(AS_public);
6912  DefaultCon->setDefaulted();
6913  DefaultCon->setImplicit();
6914  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6915
6916  // Note that we have declared this constructor.
6917  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6918
6919  if (Scope *S = getScopeForContext(ClassDecl))
6920    PushOnScopeChains(DefaultCon, S, false);
6921  ClassDecl->addDecl(DefaultCon);
6922
6923  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6924    DefaultCon->setDeletedAsWritten();
6925
6926  return DefaultCon;
6927}
6928
6929void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6930                                            CXXConstructorDecl *Constructor) {
6931  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6932          !Constructor->doesThisDeclarationHaveABody() &&
6933          !Constructor->isDeleted()) &&
6934    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6935
6936  CXXRecordDecl *ClassDecl = Constructor->getParent();
6937  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6938
6939  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6940  DiagnosticErrorTrap Trap(Diags);
6941  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6942      Trap.hasErrorOccurred()) {
6943    Diag(CurrentLocation, diag::note_member_synthesized_at)
6944      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6945    Constructor->setInvalidDecl();
6946    return;
6947  }
6948
6949  SourceLocation Loc = Constructor->getLocation();
6950  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6951
6952  Constructor->setUsed();
6953  MarkVTableUsed(CurrentLocation, ClassDecl);
6954
6955  if (ASTMutationListener *L = getASTMutationListener()) {
6956    L->CompletedImplicitDefinition(Constructor);
6957  }
6958}
6959
6960/// Get any existing defaulted default constructor for the given class. Do not
6961/// implicitly define one if it does not exist.
6962static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6963                                                             CXXRecordDecl *D) {
6964  ASTContext &Context = Self.Context;
6965  QualType ClassType = Context.getTypeDeclType(D);
6966  DeclarationName ConstructorName
6967    = Context.DeclarationNames.getCXXConstructorName(
6968                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6969
6970  DeclContext::lookup_const_iterator Con, ConEnd;
6971  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6972       Con != ConEnd; ++Con) {
6973    // A function template cannot be defaulted.
6974    if (isa<FunctionTemplateDecl>(*Con))
6975      continue;
6976
6977    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6978    if (Constructor->isDefaultConstructor())
6979      return Constructor->isDefaulted() ? Constructor : 0;
6980  }
6981  return 0;
6982}
6983
6984void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6985  if (!D) return;
6986  AdjustDeclIfTemplate(D);
6987
6988  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6989  CXXConstructorDecl *CtorDecl
6990    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6991
6992  if (!CtorDecl) return;
6993
6994  // Compute the exception specification for the default constructor.
6995  const FunctionProtoType *CtorTy =
6996    CtorDecl->getType()->castAs<FunctionProtoType>();
6997  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6998    ImplicitExceptionSpecification Spec =
6999      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7000    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7001    assert(EPI.ExceptionSpecType != EST_Delayed);
7002
7003    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7004  }
7005
7006  // If the default constructor is explicitly defaulted, checking the exception
7007  // specification is deferred until now.
7008  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7009      !ClassDecl->isDependentType())
7010    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7011}
7012
7013void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7014  // We start with an initial pass over the base classes to collect those that
7015  // inherit constructors from. If there are none, we can forgo all further
7016  // processing.
7017  typedef SmallVector<const RecordType *, 4> BasesVector;
7018  BasesVector BasesToInheritFrom;
7019  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7020                                          BaseE = ClassDecl->bases_end();
7021         BaseIt != BaseE; ++BaseIt) {
7022    if (BaseIt->getInheritConstructors()) {
7023      QualType Base = BaseIt->getType();
7024      if (Base->isDependentType()) {
7025        // If we inherit constructors from anything that is dependent, just
7026        // abort processing altogether. We'll get another chance for the
7027        // instantiations.
7028        return;
7029      }
7030      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7031    }
7032  }
7033  if (BasesToInheritFrom.empty())
7034    return;
7035
7036  // Now collect the constructors that we already have in the current class.
7037  // Those take precedence over inherited constructors.
7038  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7039  //   unless there is a user-declared constructor with the same signature in
7040  //   the class where the using-declaration appears.
7041  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7042  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7043                                    CtorE = ClassDecl->ctor_end();
7044       CtorIt != CtorE; ++CtorIt) {
7045    ExistingConstructors.insert(
7046        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7047  }
7048
7049  Scope *S = getScopeForContext(ClassDecl);
7050  DeclarationName CreatedCtorName =
7051      Context.DeclarationNames.getCXXConstructorName(
7052          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7053
7054  // Now comes the true work.
7055  // First, we keep a map from constructor types to the base that introduced
7056  // them. Needed for finding conflicting constructors. We also keep the
7057  // actually inserted declarations in there, for pretty diagnostics.
7058  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7059  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7060  ConstructorToSourceMap InheritedConstructors;
7061  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7062                             BaseE = BasesToInheritFrom.end();
7063       BaseIt != BaseE; ++BaseIt) {
7064    const RecordType *Base = *BaseIt;
7065    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7066    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7067    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7068                                      CtorE = BaseDecl->ctor_end();
7069         CtorIt != CtorE; ++CtorIt) {
7070      // Find the using declaration for inheriting this base's constructors.
7071      DeclarationName Name =
7072          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7073      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7074          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7075      SourceLocation UsingLoc = UD ? UD->getLocation() :
7076                                     ClassDecl->getLocation();
7077
7078      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7079      //   from the class X named in the using-declaration consists of actual
7080      //   constructors and notional constructors that result from the
7081      //   transformation of defaulted parameters as follows:
7082      //   - all non-template default constructors of X, and
7083      //   - for each non-template constructor of X that has at least one
7084      //     parameter with a default argument, the set of constructors that
7085      //     results from omitting any ellipsis parameter specification and
7086      //     successively omitting parameters with a default argument from the
7087      //     end of the parameter-type-list.
7088      CXXConstructorDecl *BaseCtor = *CtorIt;
7089      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7090      const FunctionProtoType *BaseCtorType =
7091          BaseCtor->getType()->getAs<FunctionProtoType>();
7092
7093      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7094                    maxParams = BaseCtor->getNumParams();
7095           params <= maxParams; ++params) {
7096        // Skip default constructors. They're never inherited.
7097        if (params == 0)
7098          continue;
7099        // Skip copy and move constructors for the same reason.
7100        if (CanBeCopyOrMove && params == 1)
7101          continue;
7102
7103        // Build up a function type for this particular constructor.
7104        // FIXME: The working paper does not consider that the exception spec
7105        // for the inheriting constructor might be larger than that of the
7106        // source. This code doesn't yet, either. When it does, this code will
7107        // need to be delayed until after exception specifications and in-class
7108        // member initializers are attached.
7109        const Type *NewCtorType;
7110        if (params == maxParams)
7111          NewCtorType = BaseCtorType;
7112        else {
7113          SmallVector<QualType, 16> Args;
7114          for (unsigned i = 0; i < params; ++i) {
7115            Args.push_back(BaseCtorType->getArgType(i));
7116          }
7117          FunctionProtoType::ExtProtoInfo ExtInfo =
7118              BaseCtorType->getExtProtoInfo();
7119          ExtInfo.Variadic = false;
7120          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7121                                                Args.data(), params, ExtInfo)
7122                       .getTypePtr();
7123        }
7124        const Type *CanonicalNewCtorType =
7125            Context.getCanonicalType(NewCtorType);
7126
7127        // Now that we have the type, first check if the class already has a
7128        // constructor with this signature.
7129        if (ExistingConstructors.count(CanonicalNewCtorType))
7130          continue;
7131
7132        // Then we check if we have already declared an inherited constructor
7133        // with this signature.
7134        std::pair<ConstructorToSourceMap::iterator, bool> result =
7135            InheritedConstructors.insert(std::make_pair(
7136                CanonicalNewCtorType,
7137                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7138        if (!result.second) {
7139          // Already in the map. If it came from a different class, that's an
7140          // error. Not if it's from the same.
7141          CanQualType PreviousBase = result.first->second.first;
7142          if (CanonicalBase != PreviousBase) {
7143            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7144            const CXXConstructorDecl *PrevBaseCtor =
7145                PrevCtor->getInheritedConstructor();
7146            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7147
7148            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7149            Diag(BaseCtor->getLocation(),
7150                 diag::note_using_decl_constructor_conflict_current_ctor);
7151            Diag(PrevBaseCtor->getLocation(),
7152                 diag::note_using_decl_constructor_conflict_previous_ctor);
7153            Diag(PrevCtor->getLocation(),
7154                 diag::note_using_decl_constructor_conflict_previous_using);
7155          }
7156          continue;
7157        }
7158
7159        // OK, we're there, now add the constructor.
7160        // C++0x [class.inhctor]p8: [...] that would be performed by a
7161        //   user-written inline constructor [...]
7162        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7163        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7164            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7165            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7166            /*ImplicitlyDeclared=*/true,
7167            // FIXME: Due to a defect in the standard, we treat inherited
7168            // constructors as constexpr even if that makes them ill-formed.
7169            /*Constexpr=*/BaseCtor->isConstexpr());
7170        NewCtor->setAccess(BaseCtor->getAccess());
7171
7172        // Build up the parameter decls and add them.
7173        SmallVector<ParmVarDecl *, 16> ParamDecls;
7174        for (unsigned i = 0; i < params; ++i) {
7175          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7176                                                   UsingLoc, UsingLoc,
7177                                                   /*IdentifierInfo=*/0,
7178                                                   BaseCtorType->getArgType(i),
7179                                                   /*TInfo=*/0, SC_None,
7180                                                   SC_None, /*DefaultArg=*/0));
7181        }
7182        NewCtor->setParams(ParamDecls);
7183        NewCtor->setInheritedConstructor(BaseCtor);
7184
7185        PushOnScopeChains(NewCtor, S, false);
7186        ClassDecl->addDecl(NewCtor);
7187        result.first->second.second = NewCtor;
7188      }
7189    }
7190  }
7191}
7192
7193Sema::ImplicitExceptionSpecification
7194Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7195  // C++ [except.spec]p14:
7196  //   An implicitly declared special member function (Clause 12) shall have
7197  //   an exception-specification.
7198  ImplicitExceptionSpecification ExceptSpec(Context);
7199  if (ClassDecl->isInvalidDecl())
7200    return ExceptSpec;
7201
7202  // Direct base-class destructors.
7203  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7204                                       BEnd = ClassDecl->bases_end();
7205       B != BEnd; ++B) {
7206    if (B->isVirtual()) // Handled below.
7207      continue;
7208
7209    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7210      ExceptSpec.CalledDecl(
7211                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7212  }
7213
7214  // Virtual base-class destructors.
7215  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7216                                       BEnd = ClassDecl->vbases_end();
7217       B != BEnd; ++B) {
7218    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7219      ExceptSpec.CalledDecl(
7220                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7221  }
7222
7223  // Field destructors.
7224  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7225                               FEnd = ClassDecl->field_end();
7226       F != FEnd; ++F) {
7227    if (const RecordType *RecordTy
7228        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7229      ExceptSpec.CalledDecl(
7230                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7231  }
7232
7233  return ExceptSpec;
7234}
7235
7236CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7237  // C++ [class.dtor]p2:
7238  //   If a class has no user-declared destructor, a destructor is
7239  //   declared implicitly. An implicitly-declared destructor is an
7240  //   inline public member of its class.
7241
7242  ImplicitExceptionSpecification Spec =
7243      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7244  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7245
7246  // Create the actual destructor declaration.
7247  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7248
7249  CanQualType ClassType
7250    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7251  SourceLocation ClassLoc = ClassDecl->getLocation();
7252  DeclarationName Name
7253    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7254  DeclarationNameInfo NameInfo(Name, ClassLoc);
7255  CXXDestructorDecl *Destructor
7256      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7257                                  /*isInline=*/true,
7258                                  /*isImplicitlyDeclared=*/true);
7259  Destructor->setAccess(AS_public);
7260  Destructor->setDefaulted();
7261  Destructor->setImplicit();
7262  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7263
7264  // Note that we have declared this destructor.
7265  ++ASTContext::NumImplicitDestructorsDeclared;
7266
7267  // Introduce this destructor into its scope.
7268  if (Scope *S = getScopeForContext(ClassDecl))
7269    PushOnScopeChains(Destructor, S, false);
7270  ClassDecl->addDecl(Destructor);
7271
7272  // This could be uniqued if it ever proves significant.
7273  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7274
7275  if (ShouldDeleteDestructor(Destructor))
7276    Destructor->setDeletedAsWritten();
7277
7278  AddOverriddenMethods(ClassDecl, Destructor);
7279
7280  return Destructor;
7281}
7282
7283void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7284                                    CXXDestructorDecl *Destructor) {
7285  assert((Destructor->isDefaulted() &&
7286          !Destructor->doesThisDeclarationHaveABody()) &&
7287         "DefineImplicitDestructor - call it for implicit default dtor");
7288  CXXRecordDecl *ClassDecl = Destructor->getParent();
7289  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7290
7291  if (Destructor->isInvalidDecl())
7292    return;
7293
7294  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7295
7296  DiagnosticErrorTrap Trap(Diags);
7297  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7298                                         Destructor->getParent());
7299
7300  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7301    Diag(CurrentLocation, diag::note_member_synthesized_at)
7302      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7303
7304    Destructor->setInvalidDecl();
7305    return;
7306  }
7307
7308  SourceLocation Loc = Destructor->getLocation();
7309  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7310  Destructor->setImplicitlyDefined(true);
7311  Destructor->setUsed();
7312  MarkVTableUsed(CurrentLocation, ClassDecl);
7313
7314  if (ASTMutationListener *L = getASTMutationListener()) {
7315    L->CompletedImplicitDefinition(Destructor);
7316  }
7317}
7318
7319void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7320                                         CXXDestructorDecl *destructor) {
7321  // C++11 [class.dtor]p3:
7322  //   A declaration of a destructor that does not have an exception-
7323  //   specification is implicitly considered to have the same exception-
7324  //   specification as an implicit declaration.
7325  const FunctionProtoType *dtorType = destructor->getType()->
7326                                        getAs<FunctionProtoType>();
7327  if (dtorType->hasExceptionSpec())
7328    return;
7329
7330  ImplicitExceptionSpecification exceptSpec =
7331      ComputeDefaultedDtorExceptionSpec(classDecl);
7332
7333  // Replace the destructor's type, building off the existing one. Fortunately,
7334  // the only thing of interest in the destructor type is its extended info.
7335  // The return and arguments are fixed.
7336  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7337  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7338  epi.NumExceptions = exceptSpec.size();
7339  epi.Exceptions = exceptSpec.data();
7340  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7341
7342  destructor->setType(ty);
7343
7344  // FIXME: If the destructor has a body that could throw, and the newly created
7345  // spec doesn't allow exceptions, we should emit a warning, because this
7346  // change in behavior can break conforming C++03 programs at runtime.
7347  // However, we don't have a body yet, so it needs to be done somewhere else.
7348}
7349
7350/// \brief Builds a statement that copies/moves the given entity from \p From to
7351/// \c To.
7352///
7353/// This routine is used to copy/move the members of a class with an
7354/// implicitly-declared copy/move assignment operator. When the entities being
7355/// copied are arrays, this routine builds for loops to copy them.
7356///
7357/// \param S The Sema object used for type-checking.
7358///
7359/// \param Loc The location where the implicit copy/move is being generated.
7360///
7361/// \param T The type of the expressions being copied/moved. Both expressions
7362/// must have this type.
7363///
7364/// \param To The expression we are copying/moving to.
7365///
7366/// \param From The expression we are copying/moving from.
7367///
7368/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7369/// Otherwise, it's a non-static member subobject.
7370///
7371/// \param Copying Whether we're copying or moving.
7372///
7373/// \param Depth Internal parameter recording the depth of the recursion.
7374///
7375/// \returns A statement or a loop that copies the expressions.
7376static StmtResult
7377BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7378                      Expr *To, Expr *From,
7379                      bool CopyingBaseSubobject, bool Copying,
7380                      unsigned Depth = 0) {
7381  // C++0x [class.copy]p28:
7382  //   Each subobject is assigned in the manner appropriate to its type:
7383  //
7384  //     - if the subobject is of class type, as if by a call to operator= with
7385  //       the subobject as the object expression and the corresponding
7386  //       subobject of x as a single function argument (as if by explicit
7387  //       qualification; that is, ignoring any possible virtual overriding
7388  //       functions in more derived classes);
7389  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7390    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7391
7392    // Look for operator=.
7393    DeclarationName Name
7394      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7395    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7396    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7397
7398    // Filter out any result that isn't a copy/move-assignment operator.
7399    LookupResult::Filter F = OpLookup.makeFilter();
7400    while (F.hasNext()) {
7401      NamedDecl *D = F.next();
7402      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7403        if (Copying ? Method->isCopyAssignmentOperator() :
7404                      Method->isMoveAssignmentOperator())
7405          continue;
7406
7407      F.erase();
7408    }
7409    F.done();
7410
7411    // Suppress the protected check (C++ [class.protected]) for each of the
7412    // assignment operators we found. This strange dance is required when
7413    // we're assigning via a base classes's copy-assignment operator. To
7414    // ensure that we're getting the right base class subobject (without
7415    // ambiguities), we need to cast "this" to that subobject type; to
7416    // ensure that we don't go through the virtual call mechanism, we need
7417    // to qualify the operator= name with the base class (see below). However,
7418    // this means that if the base class has a protected copy assignment
7419    // operator, the protected member access check will fail. So, we
7420    // rewrite "protected" access to "public" access in this case, since we
7421    // know by construction that we're calling from a derived class.
7422    if (CopyingBaseSubobject) {
7423      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7424           L != LEnd; ++L) {
7425        if (L.getAccess() == AS_protected)
7426          L.setAccess(AS_public);
7427      }
7428    }
7429
7430    // Create the nested-name-specifier that will be used to qualify the
7431    // reference to operator=; this is required to suppress the virtual
7432    // call mechanism.
7433    CXXScopeSpec SS;
7434    SS.MakeTrivial(S.Context,
7435                   NestedNameSpecifier::Create(S.Context, 0, false,
7436                                               T.getTypePtr()),
7437                   Loc);
7438
7439    // Create the reference to operator=.
7440    ExprResult OpEqualRef
7441      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7442                                   /*FirstQualifierInScope=*/0, OpLookup,
7443                                   /*TemplateArgs=*/0,
7444                                   /*SuppressQualifierCheck=*/true);
7445    if (OpEqualRef.isInvalid())
7446      return StmtError();
7447
7448    // Build the call to the assignment operator.
7449
7450    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7451                                                  OpEqualRef.takeAs<Expr>(),
7452                                                  Loc, &From, 1, Loc);
7453    if (Call.isInvalid())
7454      return StmtError();
7455
7456    return S.Owned(Call.takeAs<Stmt>());
7457  }
7458
7459  //     - if the subobject is of scalar type, the built-in assignment
7460  //       operator is used.
7461  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7462  if (!ArrayTy) {
7463    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7464    if (Assignment.isInvalid())
7465      return StmtError();
7466
7467    return S.Owned(Assignment.takeAs<Stmt>());
7468  }
7469
7470  //     - if the subobject is an array, each element is assigned, in the
7471  //       manner appropriate to the element type;
7472
7473  // Construct a loop over the array bounds, e.g.,
7474  //
7475  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7476  //
7477  // that will copy each of the array elements.
7478  QualType SizeType = S.Context.getSizeType();
7479
7480  // Create the iteration variable.
7481  IdentifierInfo *IterationVarName = 0;
7482  {
7483    llvm::SmallString<8> Str;
7484    llvm::raw_svector_ostream OS(Str);
7485    OS << "__i" << Depth;
7486    IterationVarName = &S.Context.Idents.get(OS.str());
7487  }
7488  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7489                                          IterationVarName, SizeType,
7490                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7491                                          SC_None, SC_None);
7492
7493  // Initialize the iteration variable to zero.
7494  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7495  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7496
7497  // Create a reference to the iteration variable; we'll use this several
7498  // times throughout.
7499  Expr *IterationVarRef
7500    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7501  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7502
7503  // Create the DeclStmt that holds the iteration variable.
7504  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7505
7506  // Create the comparison against the array bound.
7507  llvm::APInt Upper
7508    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7509  Expr *Comparison
7510    = new (S.Context) BinaryOperator(IterationVarRef,
7511                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7512                                     BO_NE, S.Context.BoolTy,
7513                                     VK_RValue, OK_Ordinary, Loc);
7514
7515  // Create the pre-increment of the iteration variable.
7516  Expr *Increment
7517    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7518                                    VK_LValue, OK_Ordinary, Loc);
7519
7520  // Subscript the "from" and "to" expressions with the iteration variable.
7521  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7522                                                         IterationVarRef, Loc));
7523  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7524                                                       IterationVarRef, Loc));
7525  if (!Copying) // Cast to rvalue
7526    From = CastForMoving(S, From);
7527
7528  // Build the copy/move for an individual element of the array.
7529  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7530                                          To, From, CopyingBaseSubobject,
7531                                          Copying, Depth + 1);
7532  if (Copy.isInvalid())
7533    return StmtError();
7534
7535  // Construct the loop that copies all elements of this array.
7536  return S.ActOnForStmt(Loc, Loc, InitStmt,
7537                        S.MakeFullExpr(Comparison),
7538                        0, S.MakeFullExpr(Increment),
7539                        Loc, Copy.take());
7540}
7541
7542std::pair<Sema::ImplicitExceptionSpecification, bool>
7543Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7544                                                   CXXRecordDecl *ClassDecl) {
7545  if (ClassDecl->isInvalidDecl())
7546    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7547
7548  // C++ [class.copy]p10:
7549  //   If the class definition does not explicitly declare a copy
7550  //   assignment operator, one is declared implicitly.
7551  //   The implicitly-defined copy assignment operator for a class X
7552  //   will have the form
7553  //
7554  //       X& X::operator=(const X&)
7555  //
7556  //   if
7557  bool HasConstCopyAssignment = true;
7558
7559  //       -- each direct base class B of X has a copy assignment operator
7560  //          whose parameter is of type const B&, const volatile B& or B,
7561  //          and
7562  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7563                                       BaseEnd = ClassDecl->bases_end();
7564       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7565    // We'll handle this below
7566    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7567      continue;
7568
7569    assert(!Base->getType()->isDependentType() &&
7570           "Cannot generate implicit members for class with dependent bases.");
7571    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7572    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7573                            &HasConstCopyAssignment);
7574  }
7575
7576  // In C++11, the above citation has "or virtual" added
7577  if (LangOpts.CPlusPlus0x) {
7578    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7579                                         BaseEnd = ClassDecl->vbases_end();
7580         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7581      assert(!Base->getType()->isDependentType() &&
7582             "Cannot generate implicit members for class with dependent bases.");
7583      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7584      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7585                              &HasConstCopyAssignment);
7586    }
7587  }
7588
7589  //       -- for all the nonstatic data members of X that are of a class
7590  //          type M (or array thereof), each such class type has a copy
7591  //          assignment operator whose parameter is of type const M&,
7592  //          const volatile M& or M.
7593  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7594                                  FieldEnd = ClassDecl->field_end();
7595       HasConstCopyAssignment && Field != FieldEnd;
7596       ++Field) {
7597    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7598    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7599      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7600                              &HasConstCopyAssignment);
7601    }
7602  }
7603
7604  //   Otherwise, the implicitly declared copy assignment operator will
7605  //   have the form
7606  //
7607  //       X& X::operator=(X&)
7608
7609  // C++ [except.spec]p14:
7610  //   An implicitly declared special member function (Clause 12) shall have an
7611  //   exception-specification. [...]
7612
7613  // It is unspecified whether or not an implicit copy assignment operator
7614  // attempts to deduplicate calls to assignment operators of virtual bases are
7615  // made. As such, this exception specification is effectively unspecified.
7616  // Based on a similar decision made for constness in C++0x, we're erring on
7617  // the side of assuming such calls to be made regardless of whether they
7618  // actually happen.
7619  ImplicitExceptionSpecification ExceptSpec(Context);
7620  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7621  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7622                                       BaseEnd = ClassDecl->bases_end();
7623       Base != BaseEnd; ++Base) {
7624    if (Base->isVirtual())
7625      continue;
7626
7627    CXXRecordDecl *BaseClassDecl
7628      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7629    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7630                                                            ArgQuals, false, 0))
7631      ExceptSpec.CalledDecl(CopyAssign);
7632  }
7633
7634  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7635                                       BaseEnd = ClassDecl->vbases_end();
7636       Base != BaseEnd; ++Base) {
7637    CXXRecordDecl *BaseClassDecl
7638      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7639    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7640                                                            ArgQuals, false, 0))
7641      ExceptSpec.CalledDecl(CopyAssign);
7642  }
7643
7644  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7645                                  FieldEnd = ClassDecl->field_end();
7646       Field != FieldEnd;
7647       ++Field) {
7648    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7649    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7650      if (CXXMethodDecl *CopyAssign =
7651          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7652        ExceptSpec.CalledDecl(CopyAssign);
7653    }
7654  }
7655
7656  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7657}
7658
7659CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7660  // Note: The following rules are largely analoguous to the copy
7661  // constructor rules. Note that virtual bases are not taken into account
7662  // for determining the argument type of the operator. Note also that
7663  // operators taking an object instead of a reference are allowed.
7664
7665  ImplicitExceptionSpecification Spec(Context);
7666  bool Const;
7667  llvm::tie(Spec, Const) =
7668    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7669
7670  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7671  QualType RetType = Context.getLValueReferenceType(ArgType);
7672  if (Const)
7673    ArgType = ArgType.withConst();
7674  ArgType = Context.getLValueReferenceType(ArgType);
7675
7676  //   An implicitly-declared copy assignment operator is an inline public
7677  //   member of its class.
7678  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7679  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7680  SourceLocation ClassLoc = ClassDecl->getLocation();
7681  DeclarationNameInfo NameInfo(Name, ClassLoc);
7682  CXXMethodDecl *CopyAssignment
7683    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7684                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7685                            /*TInfo=*/0, /*isStatic=*/false,
7686                            /*StorageClassAsWritten=*/SC_None,
7687                            /*isInline=*/true, /*isConstexpr=*/false,
7688                            SourceLocation());
7689  CopyAssignment->setAccess(AS_public);
7690  CopyAssignment->setDefaulted();
7691  CopyAssignment->setImplicit();
7692  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7693
7694  // Add the parameter to the operator.
7695  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7696                                               ClassLoc, ClassLoc, /*Id=*/0,
7697                                               ArgType, /*TInfo=*/0,
7698                                               SC_None,
7699                                               SC_None, 0);
7700  CopyAssignment->setParams(FromParam);
7701
7702  // Note that we have added this copy-assignment operator.
7703  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7704
7705  if (Scope *S = getScopeForContext(ClassDecl))
7706    PushOnScopeChains(CopyAssignment, S, false);
7707  ClassDecl->addDecl(CopyAssignment);
7708
7709  // C++0x [class.copy]p18:
7710  //   ... If the class definition declares a move constructor or move
7711  //   assignment operator, the implicitly declared copy assignment operator is
7712  //   defined as deleted; ...
7713  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7714      ClassDecl->hasUserDeclaredMoveAssignment() ||
7715      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7716    CopyAssignment->setDeletedAsWritten();
7717
7718  AddOverriddenMethods(ClassDecl, CopyAssignment);
7719  return CopyAssignment;
7720}
7721
7722void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7723                                        CXXMethodDecl *CopyAssignOperator) {
7724  assert((CopyAssignOperator->isDefaulted() &&
7725          CopyAssignOperator->isOverloadedOperator() &&
7726          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7727          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7728         "DefineImplicitCopyAssignment called for wrong function");
7729
7730  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7731
7732  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7733    CopyAssignOperator->setInvalidDecl();
7734    return;
7735  }
7736
7737  CopyAssignOperator->setUsed();
7738
7739  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7740  DiagnosticErrorTrap Trap(Diags);
7741
7742  // C++0x [class.copy]p30:
7743  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7744  //   for a non-union class X performs memberwise copy assignment of its
7745  //   subobjects. The direct base classes of X are assigned first, in the
7746  //   order of their declaration in the base-specifier-list, and then the
7747  //   immediate non-static data members of X are assigned, in the order in
7748  //   which they were declared in the class definition.
7749
7750  // The statements that form the synthesized function body.
7751  ASTOwningVector<Stmt*> Statements(*this);
7752
7753  // The parameter for the "other" object, which we are copying from.
7754  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7755  Qualifiers OtherQuals = Other->getType().getQualifiers();
7756  QualType OtherRefType = Other->getType();
7757  if (const LValueReferenceType *OtherRef
7758                                = OtherRefType->getAs<LValueReferenceType>()) {
7759    OtherRefType = OtherRef->getPointeeType();
7760    OtherQuals = OtherRefType.getQualifiers();
7761  }
7762
7763  // Our location for everything implicitly-generated.
7764  SourceLocation Loc = CopyAssignOperator->getLocation();
7765
7766  // Construct a reference to the "other" object. We'll be using this
7767  // throughout the generated ASTs.
7768  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7769  assert(OtherRef && "Reference to parameter cannot fail!");
7770
7771  // Construct the "this" pointer. We'll be using this throughout the generated
7772  // ASTs.
7773  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7774  assert(This && "Reference to this cannot fail!");
7775
7776  // Assign base classes.
7777  bool Invalid = false;
7778  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7779       E = ClassDecl->bases_end(); Base != E; ++Base) {
7780    // Form the assignment:
7781    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7782    QualType BaseType = Base->getType().getUnqualifiedType();
7783    if (!BaseType->isRecordType()) {
7784      Invalid = true;
7785      continue;
7786    }
7787
7788    CXXCastPath BasePath;
7789    BasePath.push_back(Base);
7790
7791    // Construct the "from" expression, which is an implicit cast to the
7792    // appropriately-qualified base type.
7793    Expr *From = OtherRef;
7794    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7795                             CK_UncheckedDerivedToBase,
7796                             VK_LValue, &BasePath).take();
7797
7798    // Dereference "this".
7799    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7800
7801    // Implicitly cast "this" to the appropriately-qualified base type.
7802    To = ImpCastExprToType(To.take(),
7803                           Context.getCVRQualifiedType(BaseType,
7804                                     CopyAssignOperator->getTypeQualifiers()),
7805                           CK_UncheckedDerivedToBase,
7806                           VK_LValue, &BasePath);
7807
7808    // Build the copy.
7809    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7810                                            To.get(), From,
7811                                            /*CopyingBaseSubobject=*/true,
7812                                            /*Copying=*/true);
7813    if (Copy.isInvalid()) {
7814      Diag(CurrentLocation, diag::note_member_synthesized_at)
7815        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7816      CopyAssignOperator->setInvalidDecl();
7817      return;
7818    }
7819
7820    // Success! Record the copy.
7821    Statements.push_back(Copy.takeAs<Expr>());
7822  }
7823
7824  // \brief Reference to the __builtin_memcpy function.
7825  Expr *BuiltinMemCpyRef = 0;
7826  // \brief Reference to the __builtin_objc_memmove_collectable function.
7827  Expr *CollectableMemCpyRef = 0;
7828
7829  // Assign non-static members.
7830  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7831                                  FieldEnd = ClassDecl->field_end();
7832       Field != FieldEnd; ++Field) {
7833    if (Field->isUnnamedBitfield())
7834      continue;
7835
7836    // Check for members of reference type; we can't copy those.
7837    if (Field->getType()->isReferenceType()) {
7838      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7839        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7840      Diag(Field->getLocation(), diag::note_declared_at);
7841      Diag(CurrentLocation, diag::note_member_synthesized_at)
7842        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7843      Invalid = true;
7844      continue;
7845    }
7846
7847    // Check for members of const-qualified, non-class type.
7848    QualType BaseType = Context.getBaseElementType(Field->getType());
7849    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7850      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7851        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7852      Diag(Field->getLocation(), diag::note_declared_at);
7853      Diag(CurrentLocation, diag::note_member_synthesized_at)
7854        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7855      Invalid = true;
7856      continue;
7857    }
7858
7859    // Suppress assigning zero-width bitfields.
7860    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7861      continue;
7862
7863    QualType FieldType = Field->getType().getNonReferenceType();
7864    if (FieldType->isIncompleteArrayType()) {
7865      assert(ClassDecl->hasFlexibleArrayMember() &&
7866             "Incomplete array type is not valid");
7867      continue;
7868    }
7869
7870    // Build references to the field in the object we're copying from and to.
7871    CXXScopeSpec SS; // Intentionally empty
7872    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7873                              LookupMemberName);
7874    MemberLookup.addDecl(*Field);
7875    MemberLookup.resolveKind();
7876    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7877                                               Loc, /*IsArrow=*/false,
7878                                               SS, 0, MemberLookup, 0);
7879    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7880                                             Loc, /*IsArrow=*/true,
7881                                             SS, 0, MemberLookup, 0);
7882    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7883    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7884
7885    // If the field should be copied with __builtin_memcpy rather than via
7886    // explicit assignments, do so. This optimization only applies for arrays
7887    // of scalars and arrays of class type with trivial copy-assignment
7888    // operators.
7889    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7890        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7891      // Compute the size of the memory buffer to be copied.
7892      QualType SizeType = Context.getSizeType();
7893      llvm::APInt Size(Context.getTypeSize(SizeType),
7894                       Context.getTypeSizeInChars(BaseType).getQuantity());
7895      for (const ConstantArrayType *Array
7896              = Context.getAsConstantArrayType(FieldType);
7897           Array;
7898           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7899        llvm::APInt ArraySize
7900          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7901        Size *= ArraySize;
7902      }
7903
7904      // Take the address of the field references for "from" and "to".
7905      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7906      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7907
7908      bool NeedsCollectableMemCpy =
7909          (BaseType->isRecordType() &&
7910           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7911
7912      if (NeedsCollectableMemCpy) {
7913        if (!CollectableMemCpyRef) {
7914          // Create a reference to the __builtin_objc_memmove_collectable function.
7915          LookupResult R(*this,
7916                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7917                         Loc, LookupOrdinaryName);
7918          LookupName(R, TUScope, true);
7919
7920          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7921          if (!CollectableMemCpy) {
7922            // Something went horribly wrong earlier, and we will have
7923            // complained about it.
7924            Invalid = true;
7925            continue;
7926          }
7927
7928          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7929                                                  CollectableMemCpy->getType(),
7930                                                  VK_LValue, Loc, 0).take();
7931          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7932        }
7933      }
7934      // Create a reference to the __builtin_memcpy builtin function.
7935      else if (!BuiltinMemCpyRef) {
7936        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7937                       LookupOrdinaryName);
7938        LookupName(R, TUScope, true);
7939
7940        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7941        if (!BuiltinMemCpy) {
7942          // Something went horribly wrong earlier, and we will have complained
7943          // about it.
7944          Invalid = true;
7945          continue;
7946        }
7947
7948        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7949                                            BuiltinMemCpy->getType(),
7950                                            VK_LValue, Loc, 0).take();
7951        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7952      }
7953
7954      ASTOwningVector<Expr*> CallArgs(*this);
7955      CallArgs.push_back(To.takeAs<Expr>());
7956      CallArgs.push_back(From.takeAs<Expr>());
7957      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7958      ExprResult Call = ExprError();
7959      if (NeedsCollectableMemCpy)
7960        Call = ActOnCallExpr(/*Scope=*/0,
7961                             CollectableMemCpyRef,
7962                             Loc, move_arg(CallArgs),
7963                             Loc);
7964      else
7965        Call = ActOnCallExpr(/*Scope=*/0,
7966                             BuiltinMemCpyRef,
7967                             Loc, move_arg(CallArgs),
7968                             Loc);
7969
7970      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7971      Statements.push_back(Call.takeAs<Expr>());
7972      continue;
7973    }
7974
7975    // Build the copy of this field.
7976    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7977                                            To.get(), From.get(),
7978                                            /*CopyingBaseSubobject=*/false,
7979                                            /*Copying=*/true);
7980    if (Copy.isInvalid()) {
7981      Diag(CurrentLocation, diag::note_member_synthesized_at)
7982        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7983      CopyAssignOperator->setInvalidDecl();
7984      return;
7985    }
7986
7987    // Success! Record the copy.
7988    Statements.push_back(Copy.takeAs<Stmt>());
7989  }
7990
7991  if (!Invalid) {
7992    // Add a "return *this;"
7993    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7994
7995    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7996    if (Return.isInvalid())
7997      Invalid = true;
7998    else {
7999      Statements.push_back(Return.takeAs<Stmt>());
8000
8001      if (Trap.hasErrorOccurred()) {
8002        Diag(CurrentLocation, diag::note_member_synthesized_at)
8003          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8004        Invalid = true;
8005      }
8006    }
8007  }
8008
8009  if (Invalid) {
8010    CopyAssignOperator->setInvalidDecl();
8011    return;
8012  }
8013
8014  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8015                                            /*isStmtExpr=*/false);
8016  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8017  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8018
8019  if (ASTMutationListener *L = getASTMutationListener()) {
8020    L->CompletedImplicitDefinition(CopyAssignOperator);
8021  }
8022}
8023
8024Sema::ImplicitExceptionSpecification
8025Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8026  ImplicitExceptionSpecification ExceptSpec(Context);
8027
8028  if (ClassDecl->isInvalidDecl())
8029    return ExceptSpec;
8030
8031  // C++0x [except.spec]p14:
8032  //   An implicitly declared special member function (Clause 12) shall have an
8033  //   exception-specification. [...]
8034
8035  // It is unspecified whether or not an implicit move assignment operator
8036  // attempts to deduplicate calls to assignment operators of virtual bases are
8037  // made. As such, this exception specification is effectively unspecified.
8038  // Based on a similar decision made for constness in C++0x, we're erring on
8039  // the side of assuming such calls to be made regardless of whether they
8040  // actually happen.
8041  // Note that a move constructor is not implicitly declared when there are
8042  // virtual bases, but it can still be user-declared and explicitly defaulted.
8043  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8044                                       BaseEnd = ClassDecl->bases_end();
8045       Base != BaseEnd; ++Base) {
8046    if (Base->isVirtual())
8047      continue;
8048
8049    CXXRecordDecl *BaseClassDecl
8050      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8051    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8052                                                           false, 0))
8053      ExceptSpec.CalledDecl(MoveAssign);
8054  }
8055
8056  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8057                                       BaseEnd = ClassDecl->vbases_end();
8058       Base != BaseEnd; ++Base) {
8059    CXXRecordDecl *BaseClassDecl
8060      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8061    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8062                                                           false, 0))
8063      ExceptSpec.CalledDecl(MoveAssign);
8064  }
8065
8066  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8067                                  FieldEnd = ClassDecl->field_end();
8068       Field != FieldEnd;
8069       ++Field) {
8070    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8071    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8072      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8073                                                             false, 0))
8074        ExceptSpec.CalledDecl(MoveAssign);
8075    }
8076  }
8077
8078  return ExceptSpec;
8079}
8080
8081CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8082  // Note: The following rules are largely analoguous to the move
8083  // constructor rules.
8084
8085  ImplicitExceptionSpecification Spec(
8086      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8087
8088  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8089  QualType RetType = Context.getLValueReferenceType(ArgType);
8090  ArgType = Context.getRValueReferenceType(ArgType);
8091
8092  //   An implicitly-declared move assignment operator is an inline public
8093  //   member of its class.
8094  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8095  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8096  SourceLocation ClassLoc = ClassDecl->getLocation();
8097  DeclarationNameInfo NameInfo(Name, ClassLoc);
8098  CXXMethodDecl *MoveAssignment
8099    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8100                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8101                            /*TInfo=*/0, /*isStatic=*/false,
8102                            /*StorageClassAsWritten=*/SC_None,
8103                            /*isInline=*/true,
8104                            /*isConstexpr=*/false,
8105                            SourceLocation());
8106  MoveAssignment->setAccess(AS_public);
8107  MoveAssignment->setDefaulted();
8108  MoveAssignment->setImplicit();
8109  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8110
8111  // Add the parameter to the operator.
8112  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8113                                               ClassLoc, ClassLoc, /*Id=*/0,
8114                                               ArgType, /*TInfo=*/0,
8115                                               SC_None,
8116                                               SC_None, 0);
8117  MoveAssignment->setParams(FromParam);
8118
8119  // Note that we have added this copy-assignment operator.
8120  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8121
8122  // C++0x [class.copy]p9:
8123  //   If the definition of a class X does not explicitly declare a move
8124  //   assignment operator, one will be implicitly declared as defaulted if and
8125  //   only if:
8126  //   [...]
8127  //   - the move assignment operator would not be implicitly defined as
8128  //     deleted.
8129  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8130    // Cache this result so that we don't try to generate this over and over
8131    // on every lookup, leaking memory and wasting time.
8132    ClassDecl->setFailedImplicitMoveAssignment();
8133    return 0;
8134  }
8135
8136  if (Scope *S = getScopeForContext(ClassDecl))
8137    PushOnScopeChains(MoveAssignment, S, false);
8138  ClassDecl->addDecl(MoveAssignment);
8139
8140  AddOverriddenMethods(ClassDecl, MoveAssignment);
8141  return MoveAssignment;
8142}
8143
8144void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8145                                        CXXMethodDecl *MoveAssignOperator) {
8146  assert((MoveAssignOperator->isDefaulted() &&
8147          MoveAssignOperator->isOverloadedOperator() &&
8148          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8149          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8150         "DefineImplicitMoveAssignment called for wrong function");
8151
8152  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8153
8154  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8155    MoveAssignOperator->setInvalidDecl();
8156    return;
8157  }
8158
8159  MoveAssignOperator->setUsed();
8160
8161  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8162  DiagnosticErrorTrap Trap(Diags);
8163
8164  // C++0x [class.copy]p28:
8165  //   The implicitly-defined or move assignment operator for a non-union class
8166  //   X performs memberwise move assignment of its subobjects. The direct base
8167  //   classes of X are assigned first, in the order of their declaration in the
8168  //   base-specifier-list, and then the immediate non-static data members of X
8169  //   are assigned, in the order in which they were declared in the class
8170  //   definition.
8171
8172  // The statements that form the synthesized function body.
8173  ASTOwningVector<Stmt*> Statements(*this);
8174
8175  // The parameter for the "other" object, which we are move from.
8176  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8177  QualType OtherRefType = Other->getType()->
8178      getAs<RValueReferenceType>()->getPointeeType();
8179  assert(OtherRefType.getQualifiers() == 0 &&
8180         "Bad argument type of defaulted move assignment");
8181
8182  // Our location for everything implicitly-generated.
8183  SourceLocation Loc = MoveAssignOperator->getLocation();
8184
8185  // Construct a reference to the "other" object. We'll be using this
8186  // throughout the generated ASTs.
8187  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8188  assert(OtherRef && "Reference to parameter cannot fail!");
8189  // Cast to rvalue.
8190  OtherRef = CastForMoving(*this, OtherRef);
8191
8192  // Construct the "this" pointer. We'll be using this throughout the generated
8193  // ASTs.
8194  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8195  assert(This && "Reference to this cannot fail!");
8196
8197  // Assign base classes.
8198  bool Invalid = false;
8199  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8200       E = ClassDecl->bases_end(); Base != E; ++Base) {
8201    // Form the assignment:
8202    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8203    QualType BaseType = Base->getType().getUnqualifiedType();
8204    if (!BaseType->isRecordType()) {
8205      Invalid = true;
8206      continue;
8207    }
8208
8209    CXXCastPath BasePath;
8210    BasePath.push_back(Base);
8211
8212    // Construct the "from" expression, which is an implicit cast to the
8213    // appropriately-qualified base type.
8214    Expr *From = OtherRef;
8215    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8216                             VK_XValue, &BasePath).take();
8217
8218    // Dereference "this".
8219    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8220
8221    // Implicitly cast "this" to the appropriately-qualified base type.
8222    To = ImpCastExprToType(To.take(),
8223                           Context.getCVRQualifiedType(BaseType,
8224                                     MoveAssignOperator->getTypeQualifiers()),
8225                           CK_UncheckedDerivedToBase,
8226                           VK_LValue, &BasePath);
8227
8228    // Build the move.
8229    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8230                                            To.get(), From,
8231                                            /*CopyingBaseSubobject=*/true,
8232                                            /*Copying=*/false);
8233    if (Move.isInvalid()) {
8234      Diag(CurrentLocation, diag::note_member_synthesized_at)
8235        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8236      MoveAssignOperator->setInvalidDecl();
8237      return;
8238    }
8239
8240    // Success! Record the move.
8241    Statements.push_back(Move.takeAs<Expr>());
8242  }
8243
8244  // \brief Reference to the __builtin_memcpy function.
8245  Expr *BuiltinMemCpyRef = 0;
8246  // \brief Reference to the __builtin_objc_memmove_collectable function.
8247  Expr *CollectableMemCpyRef = 0;
8248
8249  // Assign non-static members.
8250  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8251                                  FieldEnd = ClassDecl->field_end();
8252       Field != FieldEnd; ++Field) {
8253    if (Field->isUnnamedBitfield())
8254      continue;
8255
8256    // Check for members of reference type; we can't move those.
8257    if (Field->getType()->isReferenceType()) {
8258      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8259        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8260      Diag(Field->getLocation(), diag::note_declared_at);
8261      Diag(CurrentLocation, diag::note_member_synthesized_at)
8262        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8263      Invalid = true;
8264      continue;
8265    }
8266
8267    // Check for members of const-qualified, non-class type.
8268    QualType BaseType = Context.getBaseElementType(Field->getType());
8269    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8270      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8271        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8272      Diag(Field->getLocation(), diag::note_declared_at);
8273      Diag(CurrentLocation, diag::note_member_synthesized_at)
8274        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8275      Invalid = true;
8276      continue;
8277    }
8278
8279    // Suppress assigning zero-width bitfields.
8280    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8281      continue;
8282
8283    QualType FieldType = Field->getType().getNonReferenceType();
8284    if (FieldType->isIncompleteArrayType()) {
8285      assert(ClassDecl->hasFlexibleArrayMember() &&
8286             "Incomplete array type is not valid");
8287      continue;
8288    }
8289
8290    // Build references to the field in the object we're copying from and to.
8291    CXXScopeSpec SS; // Intentionally empty
8292    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8293                              LookupMemberName);
8294    MemberLookup.addDecl(*Field);
8295    MemberLookup.resolveKind();
8296    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8297                                               Loc, /*IsArrow=*/false,
8298                                               SS, 0, MemberLookup, 0);
8299    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8300                                             Loc, /*IsArrow=*/true,
8301                                             SS, 0, MemberLookup, 0);
8302    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8303    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8304
8305    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8306        "Member reference with rvalue base must be rvalue except for reference "
8307        "members, which aren't allowed for move assignment.");
8308
8309    // If the field should be copied with __builtin_memcpy rather than via
8310    // explicit assignments, do so. This optimization only applies for arrays
8311    // of scalars and arrays of class type with trivial move-assignment
8312    // operators.
8313    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8314        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8315      // Compute the size of the memory buffer to be copied.
8316      QualType SizeType = Context.getSizeType();
8317      llvm::APInt Size(Context.getTypeSize(SizeType),
8318                       Context.getTypeSizeInChars(BaseType).getQuantity());
8319      for (const ConstantArrayType *Array
8320              = Context.getAsConstantArrayType(FieldType);
8321           Array;
8322           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8323        llvm::APInt ArraySize
8324          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8325        Size *= ArraySize;
8326      }
8327
8328      // Take the address of the field references for "from" and "to". We
8329      // directly construct UnaryOperators here because semantic analysis
8330      // does not permit us to take the address of an xvalue.
8331      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8332                             Context.getPointerType(From.get()->getType()),
8333                             VK_RValue, OK_Ordinary, Loc);
8334      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8335                           Context.getPointerType(To.get()->getType()),
8336                           VK_RValue, OK_Ordinary, Loc);
8337
8338      bool NeedsCollectableMemCpy =
8339          (BaseType->isRecordType() &&
8340           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8341
8342      if (NeedsCollectableMemCpy) {
8343        if (!CollectableMemCpyRef) {
8344          // Create a reference to the __builtin_objc_memmove_collectable function.
8345          LookupResult R(*this,
8346                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8347                         Loc, LookupOrdinaryName);
8348          LookupName(R, TUScope, true);
8349
8350          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8351          if (!CollectableMemCpy) {
8352            // Something went horribly wrong earlier, and we will have
8353            // complained about it.
8354            Invalid = true;
8355            continue;
8356          }
8357
8358          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8359                                                  CollectableMemCpy->getType(),
8360                                                  VK_LValue, Loc, 0).take();
8361          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8362        }
8363      }
8364      // Create a reference to the __builtin_memcpy builtin function.
8365      else if (!BuiltinMemCpyRef) {
8366        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8367                       LookupOrdinaryName);
8368        LookupName(R, TUScope, true);
8369
8370        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8371        if (!BuiltinMemCpy) {
8372          // Something went horribly wrong earlier, and we will have complained
8373          // about it.
8374          Invalid = true;
8375          continue;
8376        }
8377
8378        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8379                                            BuiltinMemCpy->getType(),
8380                                            VK_LValue, Loc, 0).take();
8381        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8382      }
8383
8384      ASTOwningVector<Expr*> CallArgs(*this);
8385      CallArgs.push_back(To.takeAs<Expr>());
8386      CallArgs.push_back(From.takeAs<Expr>());
8387      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8388      ExprResult Call = ExprError();
8389      if (NeedsCollectableMemCpy)
8390        Call = ActOnCallExpr(/*Scope=*/0,
8391                             CollectableMemCpyRef,
8392                             Loc, move_arg(CallArgs),
8393                             Loc);
8394      else
8395        Call = ActOnCallExpr(/*Scope=*/0,
8396                             BuiltinMemCpyRef,
8397                             Loc, move_arg(CallArgs),
8398                             Loc);
8399
8400      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8401      Statements.push_back(Call.takeAs<Expr>());
8402      continue;
8403    }
8404
8405    // Build the move of this field.
8406    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8407                                            To.get(), From.get(),
8408                                            /*CopyingBaseSubobject=*/false,
8409                                            /*Copying=*/false);
8410    if (Move.isInvalid()) {
8411      Diag(CurrentLocation, diag::note_member_synthesized_at)
8412        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8413      MoveAssignOperator->setInvalidDecl();
8414      return;
8415    }
8416
8417    // Success! Record the copy.
8418    Statements.push_back(Move.takeAs<Stmt>());
8419  }
8420
8421  if (!Invalid) {
8422    // Add a "return *this;"
8423    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8424
8425    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8426    if (Return.isInvalid())
8427      Invalid = true;
8428    else {
8429      Statements.push_back(Return.takeAs<Stmt>());
8430
8431      if (Trap.hasErrorOccurred()) {
8432        Diag(CurrentLocation, diag::note_member_synthesized_at)
8433          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8434        Invalid = true;
8435      }
8436    }
8437  }
8438
8439  if (Invalid) {
8440    MoveAssignOperator->setInvalidDecl();
8441    return;
8442  }
8443
8444  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8445                                            /*isStmtExpr=*/false);
8446  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8447  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8448
8449  if (ASTMutationListener *L = getASTMutationListener()) {
8450    L->CompletedImplicitDefinition(MoveAssignOperator);
8451  }
8452}
8453
8454std::pair<Sema::ImplicitExceptionSpecification, bool>
8455Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8456  if (ClassDecl->isInvalidDecl())
8457    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8458
8459  // C++ [class.copy]p5:
8460  //   The implicitly-declared copy constructor for a class X will
8461  //   have the form
8462  //
8463  //       X::X(const X&)
8464  //
8465  //   if
8466  // FIXME: It ought to be possible to store this on the record.
8467  bool HasConstCopyConstructor = true;
8468
8469  //     -- each direct or virtual base class B of X has a copy
8470  //        constructor whose first parameter is of type const B& or
8471  //        const volatile B&, and
8472  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8473                                       BaseEnd = ClassDecl->bases_end();
8474       HasConstCopyConstructor && Base != BaseEnd;
8475       ++Base) {
8476    // Virtual bases are handled below.
8477    if (Base->isVirtual())
8478      continue;
8479
8480    CXXRecordDecl *BaseClassDecl
8481      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8482    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8483                             &HasConstCopyConstructor);
8484  }
8485
8486  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8487                                       BaseEnd = ClassDecl->vbases_end();
8488       HasConstCopyConstructor && Base != BaseEnd;
8489       ++Base) {
8490    CXXRecordDecl *BaseClassDecl
8491      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8492    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8493                             &HasConstCopyConstructor);
8494  }
8495
8496  //     -- for all the nonstatic data members of X that are of a
8497  //        class type M (or array thereof), each such class type
8498  //        has a copy constructor whose first parameter is of type
8499  //        const M& or const volatile M&.
8500  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8501                                  FieldEnd = ClassDecl->field_end();
8502       HasConstCopyConstructor && Field != FieldEnd;
8503       ++Field) {
8504    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8505    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8506      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8507                               &HasConstCopyConstructor);
8508    }
8509  }
8510  //   Otherwise, the implicitly declared copy constructor will have
8511  //   the form
8512  //
8513  //       X::X(X&)
8514
8515  // C++ [except.spec]p14:
8516  //   An implicitly declared special member function (Clause 12) shall have an
8517  //   exception-specification. [...]
8518  ImplicitExceptionSpecification ExceptSpec(Context);
8519  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8520  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8521                                       BaseEnd = ClassDecl->bases_end();
8522       Base != BaseEnd;
8523       ++Base) {
8524    // Virtual bases are handled below.
8525    if (Base->isVirtual())
8526      continue;
8527
8528    CXXRecordDecl *BaseClassDecl
8529      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8530    if (CXXConstructorDecl *CopyConstructor =
8531          LookupCopyingConstructor(BaseClassDecl, Quals))
8532      ExceptSpec.CalledDecl(CopyConstructor);
8533  }
8534  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8535                                       BaseEnd = ClassDecl->vbases_end();
8536       Base != BaseEnd;
8537       ++Base) {
8538    CXXRecordDecl *BaseClassDecl
8539      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8540    if (CXXConstructorDecl *CopyConstructor =
8541          LookupCopyingConstructor(BaseClassDecl, Quals))
8542      ExceptSpec.CalledDecl(CopyConstructor);
8543  }
8544  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8545                                  FieldEnd = ClassDecl->field_end();
8546       Field != FieldEnd;
8547       ++Field) {
8548    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8549    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8550      if (CXXConstructorDecl *CopyConstructor =
8551        LookupCopyingConstructor(FieldClassDecl, Quals))
8552      ExceptSpec.CalledDecl(CopyConstructor);
8553    }
8554  }
8555
8556  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8557}
8558
8559CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8560                                                    CXXRecordDecl *ClassDecl) {
8561  // C++ [class.copy]p4:
8562  //   If the class definition does not explicitly declare a copy
8563  //   constructor, one is declared implicitly.
8564
8565  ImplicitExceptionSpecification Spec(Context);
8566  bool Const;
8567  llvm::tie(Spec, Const) =
8568    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8569
8570  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8571  QualType ArgType = ClassType;
8572  if (Const)
8573    ArgType = ArgType.withConst();
8574  ArgType = Context.getLValueReferenceType(ArgType);
8575
8576  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8577
8578  DeclarationName Name
8579    = Context.DeclarationNames.getCXXConstructorName(
8580                                           Context.getCanonicalType(ClassType));
8581  SourceLocation ClassLoc = ClassDecl->getLocation();
8582  DeclarationNameInfo NameInfo(Name, ClassLoc);
8583
8584  //   An implicitly-declared copy constructor is an inline public
8585  //   member of its class.
8586  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8587      Context, ClassDecl, ClassLoc, NameInfo,
8588      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8589      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8590      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8591        getLangOptions().CPlusPlus0x);
8592  CopyConstructor->setAccess(AS_public);
8593  CopyConstructor->setDefaulted();
8594  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8595
8596  // Note that we have declared this constructor.
8597  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8598
8599  // Add the parameter to the constructor.
8600  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8601                                               ClassLoc, ClassLoc,
8602                                               /*IdentifierInfo=*/0,
8603                                               ArgType, /*TInfo=*/0,
8604                                               SC_None,
8605                                               SC_None, 0);
8606  CopyConstructor->setParams(FromParam);
8607
8608  if (Scope *S = getScopeForContext(ClassDecl))
8609    PushOnScopeChains(CopyConstructor, S, false);
8610  ClassDecl->addDecl(CopyConstructor);
8611
8612  // C++0x [class.copy]p7:
8613  //   ... If the class definition declares a move constructor or move
8614  //   assignment operator, the implicitly declared constructor is defined as
8615  //   deleted; ...
8616  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8617      ClassDecl->hasUserDeclaredMoveAssignment() ||
8618      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8619    CopyConstructor->setDeletedAsWritten();
8620
8621  return CopyConstructor;
8622}
8623
8624void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8625                                   CXXConstructorDecl *CopyConstructor) {
8626  assert((CopyConstructor->isDefaulted() &&
8627          CopyConstructor->isCopyConstructor() &&
8628          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8629         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8630
8631  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8632  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8633
8634  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8635  DiagnosticErrorTrap Trap(Diags);
8636
8637  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8638      Trap.hasErrorOccurred()) {
8639    Diag(CurrentLocation, diag::note_member_synthesized_at)
8640      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8641    CopyConstructor->setInvalidDecl();
8642  }  else {
8643    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8644                                               CopyConstructor->getLocation(),
8645                                               MultiStmtArg(*this, 0, 0),
8646                                               /*isStmtExpr=*/false)
8647                                                              .takeAs<Stmt>());
8648    CopyConstructor->setImplicitlyDefined(true);
8649  }
8650
8651  CopyConstructor->setUsed();
8652  if (ASTMutationListener *L = getASTMutationListener()) {
8653    L->CompletedImplicitDefinition(CopyConstructor);
8654  }
8655}
8656
8657Sema::ImplicitExceptionSpecification
8658Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8659  // C++ [except.spec]p14:
8660  //   An implicitly declared special member function (Clause 12) shall have an
8661  //   exception-specification. [...]
8662  ImplicitExceptionSpecification ExceptSpec(Context);
8663  if (ClassDecl->isInvalidDecl())
8664    return ExceptSpec;
8665
8666  // Direct base-class constructors.
8667  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8668                                       BEnd = ClassDecl->bases_end();
8669       B != BEnd; ++B) {
8670    if (B->isVirtual()) // Handled below.
8671      continue;
8672
8673    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8674      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8675      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8676      // If this is a deleted function, add it anyway. This might be conformant
8677      // with the standard. This might not. I'm not sure. It might not matter.
8678      if (Constructor)
8679        ExceptSpec.CalledDecl(Constructor);
8680    }
8681  }
8682
8683  // Virtual base-class constructors.
8684  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8685                                       BEnd = ClassDecl->vbases_end();
8686       B != BEnd; ++B) {
8687    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8688      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8689      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8690      // If this is a deleted function, add it anyway. This might be conformant
8691      // with the standard. This might not. I'm not sure. It might not matter.
8692      if (Constructor)
8693        ExceptSpec.CalledDecl(Constructor);
8694    }
8695  }
8696
8697  // Field constructors.
8698  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8699                               FEnd = ClassDecl->field_end();
8700       F != FEnd; ++F) {
8701    if (const RecordType *RecordTy
8702              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8703      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8704      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8705      // If this is a deleted function, add it anyway. This might be conformant
8706      // with the standard. This might not. I'm not sure. It might not matter.
8707      // In particular, the problem is that this function never gets called. It
8708      // might just be ill-formed because this function attempts to refer to
8709      // a deleted function here.
8710      if (Constructor)
8711        ExceptSpec.CalledDecl(Constructor);
8712    }
8713  }
8714
8715  return ExceptSpec;
8716}
8717
8718CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8719                                                    CXXRecordDecl *ClassDecl) {
8720  ImplicitExceptionSpecification Spec(
8721      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8722
8723  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8724  QualType ArgType = Context.getRValueReferenceType(ClassType);
8725
8726  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8727
8728  DeclarationName Name
8729    = Context.DeclarationNames.getCXXConstructorName(
8730                                           Context.getCanonicalType(ClassType));
8731  SourceLocation ClassLoc = ClassDecl->getLocation();
8732  DeclarationNameInfo NameInfo(Name, ClassLoc);
8733
8734  // C++0x [class.copy]p11:
8735  //   An implicitly-declared copy/move constructor is an inline public
8736  //   member of its class.
8737  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8738      Context, ClassDecl, ClassLoc, NameInfo,
8739      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8740      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8741      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8742        getLangOptions().CPlusPlus0x);
8743  MoveConstructor->setAccess(AS_public);
8744  MoveConstructor->setDefaulted();
8745  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8746
8747  // Add the parameter to the constructor.
8748  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8749                                               ClassLoc, ClassLoc,
8750                                               /*IdentifierInfo=*/0,
8751                                               ArgType, /*TInfo=*/0,
8752                                               SC_None,
8753                                               SC_None, 0);
8754  MoveConstructor->setParams(FromParam);
8755
8756  // C++0x [class.copy]p9:
8757  //   If the definition of a class X does not explicitly declare a move
8758  //   constructor, one will be implicitly declared as defaulted if and only if:
8759  //   [...]
8760  //   - the move constructor would not be implicitly defined as deleted.
8761  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8762    // Cache this result so that we don't try to generate this over and over
8763    // on every lookup, leaking memory and wasting time.
8764    ClassDecl->setFailedImplicitMoveConstructor();
8765    return 0;
8766  }
8767
8768  // Note that we have declared this constructor.
8769  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8770
8771  if (Scope *S = getScopeForContext(ClassDecl))
8772    PushOnScopeChains(MoveConstructor, S, false);
8773  ClassDecl->addDecl(MoveConstructor);
8774
8775  return MoveConstructor;
8776}
8777
8778void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8779                                   CXXConstructorDecl *MoveConstructor) {
8780  assert((MoveConstructor->isDefaulted() &&
8781          MoveConstructor->isMoveConstructor() &&
8782          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8783         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8784
8785  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8786  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8787
8788  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8789  DiagnosticErrorTrap Trap(Diags);
8790
8791  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8792      Trap.hasErrorOccurred()) {
8793    Diag(CurrentLocation, diag::note_member_synthesized_at)
8794      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8795    MoveConstructor->setInvalidDecl();
8796  }  else {
8797    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8798                                               MoveConstructor->getLocation(),
8799                                               MultiStmtArg(*this, 0, 0),
8800                                               /*isStmtExpr=*/false)
8801                                                              .takeAs<Stmt>());
8802    MoveConstructor->setImplicitlyDefined(true);
8803  }
8804
8805  MoveConstructor->setUsed();
8806
8807  if (ASTMutationListener *L = getASTMutationListener()) {
8808    L->CompletedImplicitDefinition(MoveConstructor);
8809  }
8810}
8811
8812ExprResult
8813Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8814                            CXXConstructorDecl *Constructor,
8815                            MultiExprArg ExprArgs,
8816                            bool HadMultipleCandidates,
8817                            bool RequiresZeroInit,
8818                            unsigned ConstructKind,
8819                            SourceRange ParenRange) {
8820  bool Elidable = false;
8821
8822  // C++0x [class.copy]p34:
8823  //   When certain criteria are met, an implementation is allowed to
8824  //   omit the copy/move construction of a class object, even if the
8825  //   copy/move constructor and/or destructor for the object have
8826  //   side effects. [...]
8827  //     - when a temporary class object that has not been bound to a
8828  //       reference (12.2) would be copied/moved to a class object
8829  //       with the same cv-unqualified type, the copy/move operation
8830  //       can be omitted by constructing the temporary object
8831  //       directly into the target of the omitted copy/move
8832  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8833      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8834    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8835    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8836  }
8837
8838  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8839                               Elidable, move(ExprArgs), HadMultipleCandidates,
8840                               RequiresZeroInit, ConstructKind, ParenRange);
8841}
8842
8843/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8844/// including handling of its default argument expressions.
8845ExprResult
8846Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8847                            CXXConstructorDecl *Constructor, bool Elidable,
8848                            MultiExprArg ExprArgs,
8849                            bool HadMultipleCandidates,
8850                            bool RequiresZeroInit,
8851                            unsigned ConstructKind,
8852                            SourceRange ParenRange) {
8853  unsigned NumExprs = ExprArgs.size();
8854  Expr **Exprs = (Expr **)ExprArgs.release();
8855
8856  for (specific_attr_iterator<NonNullAttr>
8857           i = Constructor->specific_attr_begin<NonNullAttr>(),
8858           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8859    const NonNullAttr *NonNull = *i;
8860    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8861  }
8862
8863  MarkDeclarationReferenced(ConstructLoc, Constructor);
8864  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8865                                        Constructor, Elidable, Exprs, NumExprs,
8866                                        HadMultipleCandidates, RequiresZeroInit,
8867              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8868                                        ParenRange));
8869}
8870
8871bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8872                                        CXXConstructorDecl *Constructor,
8873                                        MultiExprArg Exprs,
8874                                        bool HadMultipleCandidates) {
8875  // FIXME: Provide the correct paren SourceRange when available.
8876  ExprResult TempResult =
8877    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8878                          move(Exprs), HadMultipleCandidates, false,
8879                          CXXConstructExpr::CK_Complete, SourceRange());
8880  if (TempResult.isInvalid())
8881    return true;
8882
8883  Expr *Temp = TempResult.takeAs<Expr>();
8884  CheckImplicitConversions(Temp, VD->getLocation());
8885  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8886  Temp = MaybeCreateExprWithCleanups(Temp);
8887  VD->setInit(Temp);
8888
8889  return false;
8890}
8891
8892void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8893  if (VD->isInvalidDecl()) return;
8894
8895  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8896  if (ClassDecl->isInvalidDecl()) return;
8897  if (ClassDecl->hasTrivialDestructor()) return;
8898  if (ClassDecl->isDependentContext()) return;
8899
8900  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8901  MarkDeclarationReferenced(VD->getLocation(), Destructor);
8902  CheckDestructorAccess(VD->getLocation(), Destructor,
8903                        PDiag(diag::err_access_dtor_var)
8904                        << VD->getDeclName()
8905                        << VD->getType());
8906
8907  if (!VD->hasGlobalStorage()) return;
8908
8909  // Emit warning for non-trivial dtor in global scope (a real global,
8910  // class-static, function-static).
8911  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8912
8913  // TODO: this should be re-enabled for static locals by !CXAAtExit
8914  if (!VD->isStaticLocal())
8915    Diag(VD->getLocation(), diag::warn_global_destructor);
8916}
8917
8918/// AddCXXDirectInitializerToDecl - This action is called immediately after
8919/// ActOnDeclarator, when a C++ direct initializer is present.
8920/// e.g: "int x(1);"
8921void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
8922                                         SourceLocation LParenLoc,
8923                                         MultiExprArg Exprs,
8924                                         SourceLocation RParenLoc,
8925                                         bool TypeMayContainAuto) {
8926  // If there is no declaration, there was an error parsing it.  Just ignore
8927  // the initializer.
8928  if (RealDecl == 0)
8929    return;
8930
8931  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8932  if (!VDecl) {
8933    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8934    RealDecl->setInvalidDecl();
8935    return;
8936  }
8937
8938  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8939  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
8940    if (Exprs.size() == 0) {
8941      // It isn't possible to write this directly, but it is possible to
8942      // end up in this situation with "auto x(some_pack...);"
8943      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
8944        << VDecl->getDeclName() << VDecl->getType()
8945        << VDecl->getSourceRange();
8946      RealDecl->setInvalidDecl();
8947      return;
8948    }
8949
8950    if (Exprs.size() > 1) {
8951      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
8952           diag::err_auto_var_init_multiple_expressions)
8953        << VDecl->getDeclName() << VDecl->getType()
8954        << VDecl->getSourceRange();
8955      RealDecl->setInvalidDecl();
8956      return;
8957    }
8958
8959    Expr *Init = Exprs.get()[0];
8960    TypeSourceInfo *DeducedType = 0;
8961    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
8962      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
8963        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
8964        << Init->getSourceRange();
8965    if (!DeducedType) {
8966      RealDecl->setInvalidDecl();
8967      return;
8968    }
8969    VDecl->setTypeSourceInfo(DeducedType);
8970    VDecl->setType(DeducedType->getType());
8971
8972    // In ARC, infer lifetime.
8973    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8974      VDecl->setInvalidDecl();
8975
8976    // If this is a redeclaration, check that the type we just deduced matches
8977    // the previously declared type.
8978    if (VarDecl *Old = VDecl->getPreviousDeclaration())
8979      MergeVarDeclTypes(VDecl, Old);
8980  }
8981
8982  // We will represent direct-initialization similarly to copy-initialization:
8983  //    int x(1);  -as-> int x = 1;
8984  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8985  //
8986  // Clients that want to distinguish between the two forms, can check for
8987  // direct initializer using VarDecl::hasCXXDirectInitializer().
8988  // A major benefit is that clients that don't particularly care about which
8989  // exactly form was it (like the CodeGen) can handle both cases without
8990  // special case code.
8991
8992  // C++ 8.5p11:
8993  // The form of initialization (using parentheses or '=') is generally
8994  // insignificant, but does matter when the entity being initialized has a
8995  // class type.
8996
8997  if (!VDecl->getType()->isDependentType() &&
8998      !VDecl->getType()->isIncompleteArrayType() &&
8999      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9000                          diag::err_typecheck_decl_incomplete_type)) {
9001    VDecl->setInvalidDecl();
9002    return;
9003  }
9004
9005  // The variable can not have an abstract class type.
9006  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9007                             diag::err_abstract_type_in_decl,
9008                             AbstractVariableType))
9009    VDecl->setInvalidDecl();
9010
9011  const VarDecl *Def;
9012  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9013    Diag(VDecl->getLocation(), diag::err_redefinition)
9014    << VDecl->getDeclName();
9015    Diag(Def->getLocation(), diag::note_previous_definition);
9016    VDecl->setInvalidDecl();
9017    return;
9018  }
9019
9020  // C++ [class.static.data]p4
9021  //   If a static data member is of const integral or const
9022  //   enumeration type, its declaration in the class definition can
9023  //   specify a constant-initializer which shall be an integral
9024  //   constant expression (5.19). In that case, the member can appear
9025  //   in integral constant expressions. The member shall still be
9026  //   defined in a namespace scope if it is used in the program and the
9027  //   namespace scope definition shall not contain an initializer.
9028  //
9029  // We already performed a redefinition check above, but for static
9030  // data members we also need to check whether there was an in-class
9031  // declaration with an initializer.
9032  const VarDecl* PrevInit = 0;
9033  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9034    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9035    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9036    return;
9037  }
9038
9039  bool IsDependent = false;
9040  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9041    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9042      VDecl->setInvalidDecl();
9043      return;
9044    }
9045
9046    if (Exprs.get()[I]->isTypeDependent())
9047      IsDependent = true;
9048  }
9049
9050  // If either the declaration has a dependent type or if any of the
9051  // expressions is type-dependent, we represent the initialization
9052  // via a ParenListExpr for later use during template instantiation.
9053  if (VDecl->getType()->isDependentType() || IsDependent) {
9054    // Let clients know that initialization was done with a direct initializer.
9055    VDecl->setCXXDirectInitializer(true);
9056
9057    // Store the initialization expressions as a ParenListExpr.
9058    unsigned NumExprs = Exprs.size();
9059    VDecl->setInit(new (Context) ParenListExpr(
9060        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9061        VDecl->getType().getNonReferenceType()));
9062    return;
9063  }
9064
9065  // Capture the variable that is being initialized and the style of
9066  // initialization.
9067  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9068
9069  // FIXME: Poor source location information.
9070  InitializationKind Kind
9071    = InitializationKind::CreateDirect(VDecl->getLocation(),
9072                                       LParenLoc, RParenLoc);
9073
9074  QualType T = VDecl->getType();
9075  InitializationSequence InitSeq(*this, Entity, Kind,
9076                                 Exprs.get(), Exprs.size());
9077  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9078  if (Result.isInvalid()) {
9079    VDecl->setInvalidDecl();
9080    return;
9081  } else if (T != VDecl->getType()) {
9082    VDecl->setType(T);
9083    Result.get()->setType(T);
9084  }
9085
9086
9087  Expr *Init = Result.get();
9088  CheckImplicitConversions(Init, LParenLoc);
9089
9090  Init = MaybeCreateExprWithCleanups(Init);
9091  VDecl->setInit(Init);
9092  VDecl->setCXXDirectInitializer(true);
9093
9094  CheckCompleteVariableDeclaration(VDecl);
9095}
9096
9097/// \brief Given a constructor and the set of arguments provided for the
9098/// constructor, convert the arguments and add any required default arguments
9099/// to form a proper call to this constructor.
9100///
9101/// \returns true if an error occurred, false otherwise.
9102bool
9103Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9104                              MultiExprArg ArgsPtr,
9105                              SourceLocation Loc,
9106                              ASTOwningVector<Expr*> &ConvertedArgs) {
9107  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9108  unsigned NumArgs = ArgsPtr.size();
9109  Expr **Args = (Expr **)ArgsPtr.get();
9110
9111  const FunctionProtoType *Proto
9112    = Constructor->getType()->getAs<FunctionProtoType>();
9113  assert(Proto && "Constructor without a prototype?");
9114  unsigned NumArgsInProto = Proto->getNumArgs();
9115
9116  // If too few arguments are available, we'll fill in the rest with defaults.
9117  if (NumArgs < NumArgsInProto)
9118    ConvertedArgs.reserve(NumArgsInProto);
9119  else
9120    ConvertedArgs.reserve(NumArgs);
9121
9122  VariadicCallType CallType =
9123    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9124  SmallVector<Expr *, 8> AllArgs;
9125  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9126                                        Proto, 0, Args, NumArgs, AllArgs,
9127                                        CallType);
9128  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9129    ConvertedArgs.push_back(AllArgs[i]);
9130  return Invalid;
9131}
9132
9133static inline bool
9134CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9135                                       const FunctionDecl *FnDecl) {
9136  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9137  if (isa<NamespaceDecl>(DC)) {
9138    return SemaRef.Diag(FnDecl->getLocation(),
9139                        diag::err_operator_new_delete_declared_in_namespace)
9140      << FnDecl->getDeclName();
9141  }
9142
9143  if (isa<TranslationUnitDecl>(DC) &&
9144      FnDecl->getStorageClass() == SC_Static) {
9145    return SemaRef.Diag(FnDecl->getLocation(),
9146                        diag::err_operator_new_delete_declared_static)
9147      << FnDecl->getDeclName();
9148  }
9149
9150  return false;
9151}
9152
9153static inline bool
9154CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9155                            CanQualType ExpectedResultType,
9156                            CanQualType ExpectedFirstParamType,
9157                            unsigned DependentParamTypeDiag,
9158                            unsigned InvalidParamTypeDiag) {
9159  QualType ResultType =
9160    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9161
9162  // Check that the result type is not dependent.
9163  if (ResultType->isDependentType())
9164    return SemaRef.Diag(FnDecl->getLocation(),
9165                        diag::err_operator_new_delete_dependent_result_type)
9166    << FnDecl->getDeclName() << ExpectedResultType;
9167
9168  // Check that the result type is what we expect.
9169  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9170    return SemaRef.Diag(FnDecl->getLocation(),
9171                        diag::err_operator_new_delete_invalid_result_type)
9172    << FnDecl->getDeclName() << ExpectedResultType;
9173
9174  // A function template must have at least 2 parameters.
9175  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9176    return SemaRef.Diag(FnDecl->getLocation(),
9177                      diag::err_operator_new_delete_template_too_few_parameters)
9178        << FnDecl->getDeclName();
9179
9180  // The function decl must have at least 1 parameter.
9181  if (FnDecl->getNumParams() == 0)
9182    return SemaRef.Diag(FnDecl->getLocation(),
9183                        diag::err_operator_new_delete_too_few_parameters)
9184      << FnDecl->getDeclName();
9185
9186  // Check the the first parameter type is not dependent.
9187  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9188  if (FirstParamType->isDependentType())
9189    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9190      << FnDecl->getDeclName() << ExpectedFirstParamType;
9191
9192  // Check that the first parameter type is what we expect.
9193  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9194      ExpectedFirstParamType)
9195    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9196    << FnDecl->getDeclName() << ExpectedFirstParamType;
9197
9198  return false;
9199}
9200
9201static bool
9202CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9203  // C++ [basic.stc.dynamic.allocation]p1:
9204  //   A program is ill-formed if an allocation function is declared in a
9205  //   namespace scope other than global scope or declared static in global
9206  //   scope.
9207  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9208    return true;
9209
9210  CanQualType SizeTy =
9211    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9212
9213  // C++ [basic.stc.dynamic.allocation]p1:
9214  //  The return type shall be void*. The first parameter shall have type
9215  //  std::size_t.
9216  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9217                                  SizeTy,
9218                                  diag::err_operator_new_dependent_param_type,
9219                                  diag::err_operator_new_param_type))
9220    return true;
9221
9222  // C++ [basic.stc.dynamic.allocation]p1:
9223  //  The first parameter shall not have an associated default argument.
9224  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9225    return SemaRef.Diag(FnDecl->getLocation(),
9226                        diag::err_operator_new_default_arg)
9227      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9228
9229  return false;
9230}
9231
9232static bool
9233CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9234  // C++ [basic.stc.dynamic.deallocation]p1:
9235  //   A program is ill-formed if deallocation functions are declared in a
9236  //   namespace scope other than global scope or declared static in global
9237  //   scope.
9238  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9239    return true;
9240
9241  // C++ [basic.stc.dynamic.deallocation]p2:
9242  //   Each deallocation function shall return void and its first parameter
9243  //   shall be void*.
9244  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9245                                  SemaRef.Context.VoidPtrTy,
9246                                 diag::err_operator_delete_dependent_param_type,
9247                                 diag::err_operator_delete_param_type))
9248    return true;
9249
9250  return false;
9251}
9252
9253/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9254/// of this overloaded operator is well-formed. If so, returns false;
9255/// otherwise, emits appropriate diagnostics and returns true.
9256bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9257  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9258         "Expected an overloaded operator declaration");
9259
9260  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9261
9262  // C++ [over.oper]p5:
9263  //   The allocation and deallocation functions, operator new,
9264  //   operator new[], operator delete and operator delete[], are
9265  //   described completely in 3.7.3. The attributes and restrictions
9266  //   found in the rest of this subclause do not apply to them unless
9267  //   explicitly stated in 3.7.3.
9268  if (Op == OO_Delete || Op == OO_Array_Delete)
9269    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9270
9271  if (Op == OO_New || Op == OO_Array_New)
9272    return CheckOperatorNewDeclaration(*this, FnDecl);
9273
9274  // C++ [over.oper]p6:
9275  //   An operator function shall either be a non-static member
9276  //   function or be a non-member function and have at least one
9277  //   parameter whose type is a class, a reference to a class, an
9278  //   enumeration, or a reference to an enumeration.
9279  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9280    if (MethodDecl->isStatic())
9281      return Diag(FnDecl->getLocation(),
9282                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9283  } else {
9284    bool ClassOrEnumParam = false;
9285    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9286                                   ParamEnd = FnDecl->param_end();
9287         Param != ParamEnd; ++Param) {
9288      QualType ParamType = (*Param)->getType().getNonReferenceType();
9289      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9290          ParamType->isEnumeralType()) {
9291        ClassOrEnumParam = true;
9292        break;
9293      }
9294    }
9295
9296    if (!ClassOrEnumParam)
9297      return Diag(FnDecl->getLocation(),
9298                  diag::err_operator_overload_needs_class_or_enum)
9299        << FnDecl->getDeclName();
9300  }
9301
9302  // C++ [over.oper]p8:
9303  //   An operator function cannot have default arguments (8.3.6),
9304  //   except where explicitly stated below.
9305  //
9306  // Only the function-call operator allows default arguments
9307  // (C++ [over.call]p1).
9308  if (Op != OO_Call) {
9309    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9310         Param != FnDecl->param_end(); ++Param) {
9311      if ((*Param)->hasDefaultArg())
9312        return Diag((*Param)->getLocation(),
9313                    diag::err_operator_overload_default_arg)
9314          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9315    }
9316  }
9317
9318  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9319    { false, false, false }
9320#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9321    , { Unary, Binary, MemberOnly }
9322#include "clang/Basic/OperatorKinds.def"
9323  };
9324
9325  bool CanBeUnaryOperator = OperatorUses[Op][0];
9326  bool CanBeBinaryOperator = OperatorUses[Op][1];
9327  bool MustBeMemberOperator = OperatorUses[Op][2];
9328
9329  // C++ [over.oper]p8:
9330  //   [...] Operator functions cannot have more or fewer parameters
9331  //   than the number required for the corresponding operator, as
9332  //   described in the rest of this subclause.
9333  unsigned NumParams = FnDecl->getNumParams()
9334                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9335  if (Op != OO_Call &&
9336      ((NumParams == 1 && !CanBeUnaryOperator) ||
9337       (NumParams == 2 && !CanBeBinaryOperator) ||
9338       (NumParams < 1) || (NumParams > 2))) {
9339    // We have the wrong number of parameters.
9340    unsigned ErrorKind;
9341    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9342      ErrorKind = 2;  // 2 -> unary or binary.
9343    } else if (CanBeUnaryOperator) {
9344      ErrorKind = 0;  // 0 -> unary
9345    } else {
9346      assert(CanBeBinaryOperator &&
9347             "All non-call overloaded operators are unary or binary!");
9348      ErrorKind = 1;  // 1 -> binary
9349    }
9350
9351    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9352      << FnDecl->getDeclName() << NumParams << ErrorKind;
9353  }
9354
9355  // Overloaded operators other than operator() cannot be variadic.
9356  if (Op != OO_Call &&
9357      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9358    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9359      << FnDecl->getDeclName();
9360  }
9361
9362  // Some operators must be non-static member functions.
9363  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9364    return Diag(FnDecl->getLocation(),
9365                diag::err_operator_overload_must_be_member)
9366      << FnDecl->getDeclName();
9367  }
9368
9369  // C++ [over.inc]p1:
9370  //   The user-defined function called operator++ implements the
9371  //   prefix and postfix ++ operator. If this function is a member
9372  //   function with no parameters, or a non-member function with one
9373  //   parameter of class or enumeration type, it defines the prefix
9374  //   increment operator ++ for objects of that type. If the function
9375  //   is a member function with one parameter (which shall be of type
9376  //   int) or a non-member function with two parameters (the second
9377  //   of which shall be of type int), it defines the postfix
9378  //   increment operator ++ for objects of that type.
9379  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9380    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9381    bool ParamIsInt = false;
9382    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9383      ParamIsInt = BT->getKind() == BuiltinType::Int;
9384
9385    if (!ParamIsInt)
9386      return Diag(LastParam->getLocation(),
9387                  diag::err_operator_overload_post_incdec_must_be_int)
9388        << LastParam->getType() << (Op == OO_MinusMinus);
9389  }
9390
9391  return false;
9392}
9393
9394/// CheckLiteralOperatorDeclaration - Check whether the declaration
9395/// of this literal operator function is well-formed. If so, returns
9396/// false; otherwise, emits appropriate diagnostics and returns true.
9397bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9398  DeclContext *DC = FnDecl->getDeclContext();
9399  Decl::Kind Kind = DC->getDeclKind();
9400  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9401      Kind != Decl::LinkageSpec) {
9402    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9403      << FnDecl->getDeclName();
9404    return true;
9405  }
9406
9407  bool Valid = false;
9408
9409  // template <char...> type operator "" name() is the only valid template
9410  // signature, and the only valid signature with no parameters.
9411  if (FnDecl->param_size() == 0) {
9412    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9413      // Must have only one template parameter
9414      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9415      if (Params->size() == 1) {
9416        NonTypeTemplateParmDecl *PmDecl =
9417          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9418
9419        // The template parameter must be a char parameter pack.
9420        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9421            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9422          Valid = true;
9423      }
9424    }
9425  } else {
9426    // Check the first parameter
9427    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9428
9429    QualType T = (*Param)->getType();
9430
9431    // unsigned long long int, long double, and any character type are allowed
9432    // as the only parameters.
9433    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9434        Context.hasSameType(T, Context.LongDoubleTy) ||
9435        Context.hasSameType(T, Context.CharTy) ||
9436        Context.hasSameType(T, Context.WCharTy) ||
9437        Context.hasSameType(T, Context.Char16Ty) ||
9438        Context.hasSameType(T, Context.Char32Ty)) {
9439      if (++Param == FnDecl->param_end())
9440        Valid = true;
9441      goto FinishedParams;
9442    }
9443
9444    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9445    const PointerType *PT = T->getAs<PointerType>();
9446    if (!PT)
9447      goto FinishedParams;
9448    T = PT->getPointeeType();
9449    if (!T.isConstQualified())
9450      goto FinishedParams;
9451    T = T.getUnqualifiedType();
9452
9453    // Move on to the second parameter;
9454    ++Param;
9455
9456    // If there is no second parameter, the first must be a const char *
9457    if (Param == FnDecl->param_end()) {
9458      if (Context.hasSameType(T, Context.CharTy))
9459        Valid = true;
9460      goto FinishedParams;
9461    }
9462
9463    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9464    // are allowed as the first parameter to a two-parameter function
9465    if (!(Context.hasSameType(T, Context.CharTy) ||
9466          Context.hasSameType(T, Context.WCharTy) ||
9467          Context.hasSameType(T, Context.Char16Ty) ||
9468          Context.hasSameType(T, Context.Char32Ty)))
9469      goto FinishedParams;
9470
9471    // The second and final parameter must be an std::size_t
9472    T = (*Param)->getType().getUnqualifiedType();
9473    if (Context.hasSameType(T, Context.getSizeType()) &&
9474        ++Param == FnDecl->param_end())
9475      Valid = true;
9476  }
9477
9478  // FIXME: This diagnostic is absolutely terrible.
9479FinishedParams:
9480  if (!Valid) {
9481    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9482      << FnDecl->getDeclName();
9483    return true;
9484  }
9485
9486  StringRef LiteralName
9487    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9488  if (LiteralName[0] != '_') {
9489    // C++0x [usrlit.suffix]p1:
9490    //   Literal suffix identifiers that do not start with an underscore are
9491    //   reserved for future standardization.
9492    bool IsHexFloat = true;
9493    if (LiteralName.size() > 1 &&
9494        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9495      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9496        if (!isdigit(LiteralName[I])) {
9497          IsHexFloat = false;
9498          break;
9499        }
9500      }
9501    }
9502
9503    if (IsHexFloat)
9504      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9505        << LiteralName;
9506    else
9507      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9508  }
9509
9510  return false;
9511}
9512
9513/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9514/// linkage specification, including the language and (if present)
9515/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9516/// the location of the language string literal, which is provided
9517/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9518/// the '{' brace. Otherwise, this linkage specification does not
9519/// have any braces.
9520Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9521                                           SourceLocation LangLoc,
9522                                           StringRef Lang,
9523                                           SourceLocation LBraceLoc) {
9524  LinkageSpecDecl::LanguageIDs Language;
9525  if (Lang == "\"C\"")
9526    Language = LinkageSpecDecl::lang_c;
9527  else if (Lang == "\"C++\"")
9528    Language = LinkageSpecDecl::lang_cxx;
9529  else {
9530    Diag(LangLoc, diag::err_bad_language);
9531    return 0;
9532  }
9533
9534  // FIXME: Add all the various semantics of linkage specifications
9535
9536  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9537                                               ExternLoc, LangLoc, Language);
9538  CurContext->addDecl(D);
9539  PushDeclContext(S, D);
9540  return D;
9541}
9542
9543/// ActOnFinishLinkageSpecification - Complete the definition of
9544/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9545/// valid, it's the position of the closing '}' brace in a linkage
9546/// specification that uses braces.
9547Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9548                                            Decl *LinkageSpec,
9549                                            SourceLocation RBraceLoc) {
9550  if (LinkageSpec) {
9551    if (RBraceLoc.isValid()) {
9552      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9553      LSDecl->setRBraceLoc(RBraceLoc);
9554    }
9555    PopDeclContext();
9556  }
9557  return LinkageSpec;
9558}
9559
9560/// \brief Perform semantic analysis for the variable declaration that
9561/// occurs within a C++ catch clause, returning the newly-created
9562/// variable.
9563VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9564                                         TypeSourceInfo *TInfo,
9565                                         SourceLocation StartLoc,
9566                                         SourceLocation Loc,
9567                                         IdentifierInfo *Name) {
9568  bool Invalid = false;
9569  QualType ExDeclType = TInfo->getType();
9570
9571  // Arrays and functions decay.
9572  if (ExDeclType->isArrayType())
9573    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9574  else if (ExDeclType->isFunctionType())
9575    ExDeclType = Context.getPointerType(ExDeclType);
9576
9577  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9578  // The exception-declaration shall not denote a pointer or reference to an
9579  // incomplete type, other than [cv] void*.
9580  // N2844 forbids rvalue references.
9581  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9582    Diag(Loc, diag::err_catch_rvalue_ref);
9583    Invalid = true;
9584  }
9585
9586  // GCC allows catching pointers and references to incomplete types
9587  // as an extension; so do we, but we warn by default.
9588
9589  QualType BaseType = ExDeclType;
9590  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9591  unsigned DK = diag::err_catch_incomplete;
9592  bool IncompleteCatchIsInvalid = true;
9593  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9594    BaseType = Ptr->getPointeeType();
9595    Mode = 1;
9596    DK = diag::ext_catch_incomplete_ptr;
9597    IncompleteCatchIsInvalid = false;
9598  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9599    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9600    BaseType = Ref->getPointeeType();
9601    Mode = 2;
9602    DK = diag::ext_catch_incomplete_ref;
9603    IncompleteCatchIsInvalid = false;
9604  }
9605  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9606      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9607      IncompleteCatchIsInvalid)
9608    Invalid = true;
9609
9610  if (!Invalid && !ExDeclType->isDependentType() &&
9611      RequireNonAbstractType(Loc, ExDeclType,
9612                             diag::err_abstract_type_in_decl,
9613                             AbstractVariableType))
9614    Invalid = true;
9615
9616  // Only the non-fragile NeXT runtime currently supports C++ catches
9617  // of ObjC types, and no runtime supports catching ObjC types by value.
9618  if (!Invalid && getLangOptions().ObjC1) {
9619    QualType T = ExDeclType;
9620    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9621      T = RT->getPointeeType();
9622
9623    if (T->isObjCObjectType()) {
9624      Diag(Loc, diag::err_objc_object_catch);
9625      Invalid = true;
9626    } else if (T->isObjCObjectPointerType()) {
9627      if (!getLangOptions().ObjCNonFragileABI)
9628        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9629    }
9630  }
9631
9632  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9633                                    ExDeclType, TInfo, SC_None, SC_None);
9634  ExDecl->setExceptionVariable(true);
9635
9636  // In ARC, infer 'retaining' for variables of retainable type.
9637  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9638    Invalid = true;
9639
9640  if (!Invalid && !ExDeclType->isDependentType()) {
9641    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9642      // C++ [except.handle]p16:
9643      //   The object declared in an exception-declaration or, if the
9644      //   exception-declaration does not specify a name, a temporary (12.2) is
9645      //   copy-initialized (8.5) from the exception object. [...]
9646      //   The object is destroyed when the handler exits, after the destruction
9647      //   of any automatic objects initialized within the handler.
9648      //
9649      // We just pretend to initialize the object with itself, then make sure
9650      // it can be destroyed later.
9651      QualType initType = ExDeclType;
9652
9653      InitializedEntity entity =
9654        InitializedEntity::InitializeVariable(ExDecl);
9655      InitializationKind initKind =
9656        InitializationKind::CreateCopy(Loc, SourceLocation());
9657
9658      Expr *opaqueValue =
9659        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9660      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9661      ExprResult result = sequence.Perform(*this, entity, initKind,
9662                                           MultiExprArg(&opaqueValue, 1));
9663      if (result.isInvalid())
9664        Invalid = true;
9665      else {
9666        // If the constructor used was non-trivial, set this as the
9667        // "initializer".
9668        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9669        if (!construct->getConstructor()->isTrivial()) {
9670          Expr *init = MaybeCreateExprWithCleanups(construct);
9671          ExDecl->setInit(init);
9672        }
9673
9674        // And make sure it's destructable.
9675        FinalizeVarWithDestructor(ExDecl, recordType);
9676      }
9677    }
9678  }
9679
9680  if (Invalid)
9681    ExDecl->setInvalidDecl();
9682
9683  return ExDecl;
9684}
9685
9686/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9687/// handler.
9688Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9689  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9690  bool Invalid = D.isInvalidType();
9691
9692  // Check for unexpanded parameter packs.
9693  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9694                                               UPPC_ExceptionType)) {
9695    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9696                                             D.getIdentifierLoc());
9697    Invalid = true;
9698  }
9699
9700  IdentifierInfo *II = D.getIdentifier();
9701  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9702                                             LookupOrdinaryName,
9703                                             ForRedeclaration)) {
9704    // The scope should be freshly made just for us. There is just no way
9705    // it contains any previous declaration.
9706    assert(!S->isDeclScope(PrevDecl));
9707    if (PrevDecl->isTemplateParameter()) {
9708      // Maybe we will complain about the shadowed template parameter.
9709      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9710      PrevDecl = 0;
9711    }
9712  }
9713
9714  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9715    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9716      << D.getCXXScopeSpec().getRange();
9717    Invalid = true;
9718  }
9719
9720  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9721                                              D.getSourceRange().getBegin(),
9722                                              D.getIdentifierLoc(),
9723                                              D.getIdentifier());
9724  if (Invalid)
9725    ExDecl->setInvalidDecl();
9726
9727  // Add the exception declaration into this scope.
9728  if (II)
9729    PushOnScopeChains(ExDecl, S);
9730  else
9731    CurContext->addDecl(ExDecl);
9732
9733  ProcessDeclAttributes(S, ExDecl, D);
9734  return ExDecl;
9735}
9736
9737Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9738                                         Expr *AssertExpr,
9739                                         Expr *AssertMessageExpr_,
9740                                         SourceLocation RParenLoc) {
9741  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9742
9743  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9744    llvm::APSInt Cond;
9745    if (VerifyIntegerConstantExpression(AssertExpr, &Cond,
9746                             diag::err_static_assert_expression_is_not_constant,
9747                                        /*AllowFold=*/false))
9748      return 0;
9749
9750    if (!Cond)
9751      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9752        << AssertMessage->getString() << AssertExpr->getSourceRange();
9753  }
9754
9755  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9756    return 0;
9757
9758  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9759                                        AssertExpr, AssertMessage, RParenLoc);
9760
9761  CurContext->addDecl(Decl);
9762  return Decl;
9763}
9764
9765/// \brief Perform semantic analysis of the given friend type declaration.
9766///
9767/// \returns A friend declaration that.
9768FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9769                                      SourceLocation FriendLoc,
9770                                      TypeSourceInfo *TSInfo) {
9771  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9772
9773  QualType T = TSInfo->getType();
9774  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9775
9776  // C++03 [class.friend]p2:
9777  //   An elaborated-type-specifier shall be used in a friend declaration
9778  //   for a class.*
9779  //
9780  //   * The class-key of the elaborated-type-specifier is required.
9781  if (!ActiveTemplateInstantiations.empty()) {
9782    // Do not complain about the form of friend template types during
9783    // template instantiation; we will already have complained when the
9784    // template was declared.
9785  } else if (!T->isElaboratedTypeSpecifier()) {
9786    // If we evaluated the type to a record type, suggest putting
9787    // a tag in front.
9788    if (const RecordType *RT = T->getAs<RecordType>()) {
9789      RecordDecl *RD = RT->getDecl();
9790
9791      std::string InsertionText = std::string(" ") + RD->getKindName();
9792
9793      Diag(TypeRange.getBegin(),
9794           getLangOptions().CPlusPlus0x ?
9795             diag::warn_cxx98_compat_unelaborated_friend_type :
9796             diag::ext_unelaborated_friend_type)
9797        << (unsigned) RD->getTagKind()
9798        << T
9799        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9800                                      InsertionText);
9801    } else {
9802      Diag(FriendLoc,
9803           getLangOptions().CPlusPlus0x ?
9804             diag::warn_cxx98_compat_nonclass_type_friend :
9805             diag::ext_nonclass_type_friend)
9806        << T
9807        << SourceRange(FriendLoc, TypeRange.getEnd());
9808    }
9809  } else if (T->getAs<EnumType>()) {
9810    Diag(FriendLoc,
9811         getLangOptions().CPlusPlus0x ?
9812           diag::warn_cxx98_compat_enum_friend :
9813           diag::ext_enum_friend)
9814      << T
9815      << SourceRange(FriendLoc, TypeRange.getEnd());
9816  }
9817
9818  // C++0x [class.friend]p3:
9819  //   If the type specifier in a friend declaration designates a (possibly
9820  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9821  //   the friend declaration is ignored.
9822
9823  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9824  // in [class.friend]p3 that we do not implement.
9825
9826  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9827}
9828
9829/// Handle a friend tag declaration where the scope specifier was
9830/// templated.
9831Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9832                                    unsigned TagSpec, SourceLocation TagLoc,
9833                                    CXXScopeSpec &SS,
9834                                    IdentifierInfo *Name, SourceLocation NameLoc,
9835                                    AttributeList *Attr,
9836                                    MultiTemplateParamsArg TempParamLists) {
9837  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9838
9839  bool isExplicitSpecialization = false;
9840  bool Invalid = false;
9841
9842  if (TemplateParameterList *TemplateParams
9843        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9844                                                  TempParamLists.get(),
9845                                                  TempParamLists.size(),
9846                                                  /*friend*/ true,
9847                                                  isExplicitSpecialization,
9848                                                  Invalid)) {
9849    if (TemplateParams->size() > 0) {
9850      // This is a declaration of a class template.
9851      if (Invalid)
9852        return 0;
9853
9854      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9855                                SS, Name, NameLoc, Attr,
9856                                TemplateParams, AS_public,
9857                                /*ModulePrivateLoc=*/SourceLocation(),
9858                                TempParamLists.size() - 1,
9859                   (TemplateParameterList**) TempParamLists.release()).take();
9860    } else {
9861      // The "template<>" header is extraneous.
9862      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9863        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9864      isExplicitSpecialization = true;
9865    }
9866  }
9867
9868  if (Invalid) return 0;
9869
9870  bool isAllExplicitSpecializations = true;
9871  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9872    if (TempParamLists.get()[I]->size()) {
9873      isAllExplicitSpecializations = false;
9874      break;
9875    }
9876  }
9877
9878  // FIXME: don't ignore attributes.
9879
9880  // If it's explicit specializations all the way down, just forget
9881  // about the template header and build an appropriate non-templated
9882  // friend.  TODO: for source fidelity, remember the headers.
9883  if (isAllExplicitSpecializations) {
9884    if (SS.isEmpty()) {
9885      bool Owned = false;
9886      bool IsDependent = false;
9887      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9888                      Attr, AS_public,
9889                      /*ModulePrivateLoc=*/SourceLocation(),
9890                      MultiTemplateParamsArg(), Owned, IsDependent,
9891                      /*ScopedEnumKWLoc=*/SourceLocation(),
9892                      /*ScopedEnumUsesClassTag=*/false,
9893                      /*UnderlyingType=*/TypeResult());
9894    }
9895
9896    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9897    ElaboratedTypeKeyword Keyword
9898      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9899    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9900                                   *Name, NameLoc);
9901    if (T.isNull())
9902      return 0;
9903
9904    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9905    if (isa<DependentNameType>(T)) {
9906      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9907      TL.setKeywordLoc(TagLoc);
9908      TL.setQualifierLoc(QualifierLoc);
9909      TL.setNameLoc(NameLoc);
9910    } else {
9911      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9912      TL.setKeywordLoc(TagLoc);
9913      TL.setQualifierLoc(QualifierLoc);
9914      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9915    }
9916
9917    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9918                                            TSI, FriendLoc);
9919    Friend->setAccess(AS_public);
9920    CurContext->addDecl(Friend);
9921    return Friend;
9922  }
9923
9924  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9925
9926
9927
9928  // Handle the case of a templated-scope friend class.  e.g.
9929  //   template <class T> class A<T>::B;
9930  // FIXME: we don't support these right now.
9931  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9932  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9933  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9934  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9935  TL.setKeywordLoc(TagLoc);
9936  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9937  TL.setNameLoc(NameLoc);
9938
9939  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9940                                          TSI, FriendLoc);
9941  Friend->setAccess(AS_public);
9942  Friend->setUnsupportedFriend(true);
9943  CurContext->addDecl(Friend);
9944  return Friend;
9945}
9946
9947
9948/// Handle a friend type declaration.  This works in tandem with
9949/// ActOnTag.
9950///
9951/// Notes on friend class templates:
9952///
9953/// We generally treat friend class declarations as if they were
9954/// declaring a class.  So, for example, the elaborated type specifier
9955/// in a friend declaration is required to obey the restrictions of a
9956/// class-head (i.e. no typedefs in the scope chain), template
9957/// parameters are required to match up with simple template-ids, &c.
9958/// However, unlike when declaring a template specialization, it's
9959/// okay to refer to a template specialization without an empty
9960/// template parameter declaration, e.g.
9961///   friend class A<T>::B<unsigned>;
9962/// We permit this as a special case; if there are any template
9963/// parameters present at all, require proper matching, i.e.
9964///   template <> template <class T> friend class A<int>::B;
9965Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9966                                MultiTemplateParamsArg TempParams) {
9967  SourceLocation Loc = DS.getSourceRange().getBegin();
9968
9969  assert(DS.isFriendSpecified());
9970  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9971
9972  // Try to convert the decl specifier to a type.  This works for
9973  // friend templates because ActOnTag never produces a ClassTemplateDecl
9974  // for a TUK_Friend.
9975  Declarator TheDeclarator(DS, Declarator::MemberContext);
9976  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9977  QualType T = TSI->getType();
9978  if (TheDeclarator.isInvalidType())
9979    return 0;
9980
9981  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9982    return 0;
9983
9984  // This is definitely an error in C++98.  It's probably meant to
9985  // be forbidden in C++0x, too, but the specification is just
9986  // poorly written.
9987  //
9988  // The problem is with declarations like the following:
9989  //   template <T> friend A<T>::foo;
9990  // where deciding whether a class C is a friend or not now hinges
9991  // on whether there exists an instantiation of A that causes
9992  // 'foo' to equal C.  There are restrictions on class-heads
9993  // (which we declare (by fiat) elaborated friend declarations to
9994  // be) that makes this tractable.
9995  //
9996  // FIXME: handle "template <> friend class A<T>;", which
9997  // is possibly well-formed?  Who even knows?
9998  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9999    Diag(Loc, diag::err_tagless_friend_type_template)
10000      << DS.getSourceRange();
10001    return 0;
10002  }
10003
10004  // C++98 [class.friend]p1: A friend of a class is a function
10005  //   or class that is not a member of the class . . .
10006  // This is fixed in DR77, which just barely didn't make the C++03
10007  // deadline.  It's also a very silly restriction that seriously
10008  // affects inner classes and which nobody else seems to implement;
10009  // thus we never diagnose it, not even in -pedantic.
10010  //
10011  // But note that we could warn about it: it's always useless to
10012  // friend one of your own members (it's not, however, worthless to
10013  // friend a member of an arbitrary specialization of your template).
10014
10015  Decl *D;
10016  if (unsigned NumTempParamLists = TempParams.size())
10017    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10018                                   NumTempParamLists,
10019                                   TempParams.release(),
10020                                   TSI,
10021                                   DS.getFriendSpecLoc());
10022  else
10023    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10024
10025  if (!D)
10026    return 0;
10027
10028  D->setAccess(AS_public);
10029  CurContext->addDecl(D);
10030
10031  return D;
10032}
10033
10034Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10035                                    MultiTemplateParamsArg TemplateParams) {
10036  const DeclSpec &DS = D.getDeclSpec();
10037
10038  assert(DS.isFriendSpecified());
10039  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10040
10041  SourceLocation Loc = D.getIdentifierLoc();
10042  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10043
10044  // C++ [class.friend]p1
10045  //   A friend of a class is a function or class....
10046  // Note that this sees through typedefs, which is intended.
10047  // It *doesn't* see through dependent types, which is correct
10048  // according to [temp.arg.type]p3:
10049  //   If a declaration acquires a function type through a
10050  //   type dependent on a template-parameter and this causes
10051  //   a declaration that does not use the syntactic form of a
10052  //   function declarator to have a function type, the program
10053  //   is ill-formed.
10054  if (!TInfo->getType()->isFunctionType()) {
10055    Diag(Loc, diag::err_unexpected_friend);
10056
10057    // It might be worthwhile to try to recover by creating an
10058    // appropriate declaration.
10059    return 0;
10060  }
10061
10062  // C++ [namespace.memdef]p3
10063  //  - If a friend declaration in a non-local class first declares a
10064  //    class or function, the friend class or function is a member
10065  //    of the innermost enclosing namespace.
10066  //  - The name of the friend is not found by simple name lookup
10067  //    until a matching declaration is provided in that namespace
10068  //    scope (either before or after the class declaration granting
10069  //    friendship).
10070  //  - If a friend function is called, its name may be found by the
10071  //    name lookup that considers functions from namespaces and
10072  //    classes associated with the types of the function arguments.
10073  //  - When looking for a prior declaration of a class or a function
10074  //    declared as a friend, scopes outside the innermost enclosing
10075  //    namespace scope are not considered.
10076
10077  CXXScopeSpec &SS = D.getCXXScopeSpec();
10078  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10079  DeclarationName Name = NameInfo.getName();
10080  assert(Name);
10081
10082  // Check for unexpanded parameter packs.
10083  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10084      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10085      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10086    return 0;
10087
10088  // The context we found the declaration in, or in which we should
10089  // create the declaration.
10090  DeclContext *DC;
10091  Scope *DCScope = S;
10092  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10093                        ForRedeclaration);
10094
10095  // FIXME: there are different rules in local classes
10096
10097  // There are four cases here.
10098  //   - There's no scope specifier, in which case we just go to the
10099  //     appropriate scope and look for a function or function template
10100  //     there as appropriate.
10101  // Recover from invalid scope qualifiers as if they just weren't there.
10102  if (SS.isInvalid() || !SS.isSet()) {
10103    // C++0x [namespace.memdef]p3:
10104    //   If the name in a friend declaration is neither qualified nor
10105    //   a template-id and the declaration is a function or an
10106    //   elaborated-type-specifier, the lookup to determine whether
10107    //   the entity has been previously declared shall not consider
10108    //   any scopes outside the innermost enclosing namespace.
10109    // C++0x [class.friend]p11:
10110    //   If a friend declaration appears in a local class and the name
10111    //   specified is an unqualified name, a prior declaration is
10112    //   looked up without considering scopes that are outside the
10113    //   innermost enclosing non-class scope. For a friend function
10114    //   declaration, if there is no prior declaration, the program is
10115    //   ill-formed.
10116    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10117    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10118
10119    // Find the appropriate context according to the above.
10120    DC = CurContext;
10121    while (true) {
10122      // Skip class contexts.  If someone can cite chapter and verse
10123      // for this behavior, that would be nice --- it's what GCC and
10124      // EDG do, and it seems like a reasonable intent, but the spec
10125      // really only says that checks for unqualified existing
10126      // declarations should stop at the nearest enclosing namespace,
10127      // not that they should only consider the nearest enclosing
10128      // namespace.
10129      while (DC->isRecord())
10130        DC = DC->getParent();
10131
10132      LookupQualifiedName(Previous, DC);
10133
10134      // TODO: decide what we think about using declarations.
10135      if (isLocal || !Previous.empty())
10136        break;
10137
10138      if (isTemplateId) {
10139        if (isa<TranslationUnitDecl>(DC)) break;
10140      } else {
10141        if (DC->isFileContext()) break;
10142      }
10143      DC = DC->getParent();
10144    }
10145
10146    // C++ [class.friend]p1: A friend of a class is a function or
10147    //   class that is not a member of the class . . .
10148    // C++11 changes this for both friend types and functions.
10149    // Most C++ 98 compilers do seem to give an error here, so
10150    // we do, too.
10151    if (!Previous.empty() && DC->Equals(CurContext))
10152      Diag(DS.getFriendSpecLoc(),
10153           getLangOptions().CPlusPlus0x ?
10154             diag::warn_cxx98_compat_friend_is_member :
10155             diag::err_friend_is_member);
10156
10157    DCScope = getScopeForDeclContext(S, DC);
10158
10159    // C++ [class.friend]p6:
10160    //   A function can be defined in a friend declaration of a class if and
10161    //   only if the class is a non-local class (9.8), the function name is
10162    //   unqualified, and the function has namespace scope.
10163    if (isLocal && D.isFunctionDefinition()) {
10164      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10165    }
10166
10167  //   - There's a non-dependent scope specifier, in which case we
10168  //     compute it and do a previous lookup there for a function
10169  //     or function template.
10170  } else if (!SS.getScopeRep()->isDependent()) {
10171    DC = computeDeclContext(SS);
10172    if (!DC) return 0;
10173
10174    if (RequireCompleteDeclContext(SS, DC)) return 0;
10175
10176    LookupQualifiedName(Previous, DC);
10177
10178    // Ignore things found implicitly in the wrong scope.
10179    // TODO: better diagnostics for this case.  Suggesting the right
10180    // qualified scope would be nice...
10181    LookupResult::Filter F = Previous.makeFilter();
10182    while (F.hasNext()) {
10183      NamedDecl *D = F.next();
10184      if (!DC->InEnclosingNamespaceSetOf(
10185              D->getDeclContext()->getRedeclContext()))
10186        F.erase();
10187    }
10188    F.done();
10189
10190    if (Previous.empty()) {
10191      D.setInvalidType();
10192      Diag(Loc, diag::err_qualified_friend_not_found)
10193          << Name << TInfo->getType();
10194      return 0;
10195    }
10196
10197    // C++ [class.friend]p1: A friend of a class is a function or
10198    //   class that is not a member of the class . . .
10199    if (DC->Equals(CurContext))
10200      Diag(DS.getFriendSpecLoc(),
10201           getLangOptions().CPlusPlus0x ?
10202             diag::warn_cxx98_compat_friend_is_member :
10203             diag::err_friend_is_member);
10204
10205    if (D.isFunctionDefinition()) {
10206      // C++ [class.friend]p6:
10207      //   A function can be defined in a friend declaration of a class if and
10208      //   only if the class is a non-local class (9.8), the function name is
10209      //   unqualified, and the function has namespace scope.
10210      SemaDiagnosticBuilder DB
10211        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10212
10213      DB << SS.getScopeRep();
10214      if (DC->isFileContext())
10215        DB << FixItHint::CreateRemoval(SS.getRange());
10216      SS.clear();
10217    }
10218
10219  //   - There's a scope specifier that does not match any template
10220  //     parameter lists, in which case we use some arbitrary context,
10221  //     create a method or method template, and wait for instantiation.
10222  //   - There's a scope specifier that does match some template
10223  //     parameter lists, which we don't handle right now.
10224  } else {
10225    if (D.isFunctionDefinition()) {
10226      // C++ [class.friend]p6:
10227      //   A function can be defined in a friend declaration of a class if and
10228      //   only if the class is a non-local class (9.8), the function name is
10229      //   unqualified, and the function has namespace scope.
10230      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10231        << SS.getScopeRep();
10232    }
10233
10234    DC = CurContext;
10235    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10236  }
10237
10238  if (!DC->isRecord()) {
10239    // This implies that it has to be an operator or function.
10240    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10241        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10242        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10243      Diag(Loc, diag::err_introducing_special_friend) <<
10244        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10245         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10246      return 0;
10247    }
10248  }
10249
10250  // FIXME: This is an egregious hack to cope with cases where the scope stack
10251  // does not contain the declaration context, i.e., in an out-of-line
10252  // definition of a class.
10253  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10254  if (!DCScope) {
10255    FakeDCScope.setEntity(DC);
10256    DCScope = &FakeDCScope;
10257  }
10258
10259  bool AddToScope = true;
10260  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10261                                          move(TemplateParams), AddToScope);
10262  if (!ND) return 0;
10263
10264  assert(ND->getDeclContext() == DC);
10265  assert(ND->getLexicalDeclContext() == CurContext);
10266
10267  // Add the function declaration to the appropriate lookup tables,
10268  // adjusting the redeclarations list as necessary.  We don't
10269  // want to do this yet if the friending class is dependent.
10270  //
10271  // Also update the scope-based lookup if the target context's
10272  // lookup context is in lexical scope.
10273  if (!CurContext->isDependentContext()) {
10274    DC = DC->getRedeclContext();
10275    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10276    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10277      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10278  }
10279
10280  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10281                                       D.getIdentifierLoc(), ND,
10282                                       DS.getFriendSpecLoc());
10283  FrD->setAccess(AS_public);
10284  CurContext->addDecl(FrD);
10285
10286  if (ND->isInvalidDecl())
10287    FrD->setInvalidDecl();
10288  else {
10289    FunctionDecl *FD;
10290    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10291      FD = FTD->getTemplatedDecl();
10292    else
10293      FD = cast<FunctionDecl>(ND);
10294
10295    // Mark templated-scope function declarations as unsupported.
10296    if (FD->getNumTemplateParameterLists())
10297      FrD->setUnsupportedFriend(true);
10298  }
10299
10300  return ND;
10301}
10302
10303void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10304  AdjustDeclIfTemplate(Dcl);
10305
10306  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10307  if (!Fn) {
10308    Diag(DelLoc, diag::err_deleted_non_function);
10309    return;
10310  }
10311  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10312    Diag(DelLoc, diag::err_deleted_decl_not_first);
10313    Diag(Prev->getLocation(), diag::note_previous_declaration);
10314    // If the declaration wasn't the first, we delete the function anyway for
10315    // recovery.
10316  }
10317  Fn->setDeletedAsWritten();
10318}
10319
10320void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10321  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10322
10323  if (MD) {
10324    if (MD->getParent()->isDependentType()) {
10325      MD->setDefaulted();
10326      MD->setExplicitlyDefaulted();
10327      return;
10328    }
10329
10330    CXXSpecialMember Member = getSpecialMember(MD);
10331    if (Member == CXXInvalid) {
10332      Diag(DefaultLoc, diag::err_default_special_members);
10333      return;
10334    }
10335
10336    MD->setDefaulted();
10337    MD->setExplicitlyDefaulted();
10338
10339    // If this definition appears within the record, do the checking when
10340    // the record is complete.
10341    const FunctionDecl *Primary = MD;
10342    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10343      // Find the uninstantiated declaration that actually had the '= default'
10344      // on it.
10345      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10346
10347    if (Primary == Primary->getCanonicalDecl())
10348      return;
10349
10350    switch (Member) {
10351    case CXXDefaultConstructor: {
10352      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10353      CheckExplicitlyDefaultedDefaultConstructor(CD);
10354      if (!CD->isInvalidDecl())
10355        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10356      break;
10357    }
10358
10359    case CXXCopyConstructor: {
10360      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10361      CheckExplicitlyDefaultedCopyConstructor(CD);
10362      if (!CD->isInvalidDecl())
10363        DefineImplicitCopyConstructor(DefaultLoc, CD);
10364      break;
10365    }
10366
10367    case CXXCopyAssignment: {
10368      CheckExplicitlyDefaultedCopyAssignment(MD);
10369      if (!MD->isInvalidDecl())
10370        DefineImplicitCopyAssignment(DefaultLoc, MD);
10371      break;
10372    }
10373
10374    case CXXDestructor: {
10375      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10376      CheckExplicitlyDefaultedDestructor(DD);
10377      if (!DD->isInvalidDecl())
10378        DefineImplicitDestructor(DefaultLoc, DD);
10379      break;
10380    }
10381
10382    case CXXMoveConstructor: {
10383      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10384      CheckExplicitlyDefaultedMoveConstructor(CD);
10385      if (!CD->isInvalidDecl())
10386        DefineImplicitMoveConstructor(DefaultLoc, CD);
10387      break;
10388    }
10389
10390    case CXXMoveAssignment: {
10391      CheckExplicitlyDefaultedMoveAssignment(MD);
10392      if (!MD->isInvalidDecl())
10393        DefineImplicitMoveAssignment(DefaultLoc, MD);
10394      break;
10395    }
10396
10397    case CXXInvalid:
10398      llvm_unreachable("Invalid special member.");
10399    }
10400  } else {
10401    Diag(DefaultLoc, diag::err_default_special_members);
10402  }
10403}
10404
10405static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10406  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10407    Stmt *SubStmt = *CI;
10408    if (!SubStmt)
10409      continue;
10410    if (isa<ReturnStmt>(SubStmt))
10411      Self.Diag(SubStmt->getSourceRange().getBegin(),
10412           diag::err_return_in_constructor_handler);
10413    if (!isa<Expr>(SubStmt))
10414      SearchForReturnInStmt(Self, SubStmt);
10415  }
10416}
10417
10418void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10419  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10420    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10421    SearchForReturnInStmt(*this, Handler);
10422  }
10423}
10424
10425bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10426                                             const CXXMethodDecl *Old) {
10427  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10428  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10429
10430  if (Context.hasSameType(NewTy, OldTy) ||
10431      NewTy->isDependentType() || OldTy->isDependentType())
10432    return false;
10433
10434  // Check if the return types are covariant
10435  QualType NewClassTy, OldClassTy;
10436
10437  /// Both types must be pointers or references to classes.
10438  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10439    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10440      NewClassTy = NewPT->getPointeeType();
10441      OldClassTy = OldPT->getPointeeType();
10442    }
10443  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10444    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10445      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10446        NewClassTy = NewRT->getPointeeType();
10447        OldClassTy = OldRT->getPointeeType();
10448      }
10449    }
10450  }
10451
10452  // The return types aren't either both pointers or references to a class type.
10453  if (NewClassTy.isNull()) {
10454    Diag(New->getLocation(),
10455         diag::err_different_return_type_for_overriding_virtual_function)
10456      << New->getDeclName() << NewTy << OldTy;
10457    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10458
10459    return true;
10460  }
10461
10462  // C++ [class.virtual]p6:
10463  //   If the return type of D::f differs from the return type of B::f, the
10464  //   class type in the return type of D::f shall be complete at the point of
10465  //   declaration of D::f or shall be the class type D.
10466  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10467    if (!RT->isBeingDefined() &&
10468        RequireCompleteType(New->getLocation(), NewClassTy,
10469                            PDiag(diag::err_covariant_return_incomplete)
10470                              << New->getDeclName()))
10471    return true;
10472  }
10473
10474  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10475    // Check if the new class derives from the old class.
10476    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10477      Diag(New->getLocation(),
10478           diag::err_covariant_return_not_derived)
10479      << New->getDeclName() << NewTy << OldTy;
10480      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10481      return true;
10482    }
10483
10484    // Check if we the conversion from derived to base is valid.
10485    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10486                    diag::err_covariant_return_inaccessible_base,
10487                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10488                    // FIXME: Should this point to the return type?
10489                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10490      // FIXME: this note won't trigger for delayed access control
10491      // diagnostics, and it's impossible to get an undelayed error
10492      // here from access control during the original parse because
10493      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10494      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10495      return true;
10496    }
10497  }
10498
10499  // The qualifiers of the return types must be the same.
10500  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10501    Diag(New->getLocation(),
10502         diag::err_covariant_return_type_different_qualifications)
10503    << New->getDeclName() << NewTy << OldTy;
10504    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10505    return true;
10506  };
10507
10508
10509  // The new class type must have the same or less qualifiers as the old type.
10510  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10511    Diag(New->getLocation(),
10512         diag::err_covariant_return_type_class_type_more_qualified)
10513    << New->getDeclName() << NewTy << OldTy;
10514    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10515    return true;
10516  };
10517
10518  return false;
10519}
10520
10521/// \brief Mark the given method pure.
10522///
10523/// \param Method the method to be marked pure.
10524///
10525/// \param InitRange the source range that covers the "0" initializer.
10526bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10527  SourceLocation EndLoc = InitRange.getEnd();
10528  if (EndLoc.isValid())
10529    Method->setRangeEnd(EndLoc);
10530
10531  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10532    Method->setPure();
10533    return false;
10534  }
10535
10536  if (!Method->isInvalidDecl())
10537    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10538      << Method->getDeclName() << InitRange;
10539  return true;
10540}
10541
10542/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10543/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10544/// is a fresh scope pushed for just this purpose.
10545///
10546/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10547/// static data member of class X, names should be looked up in the scope of
10548/// class X.
10549void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10550  // If there is no declaration, there was an error parsing it.
10551  if (D == 0 || D->isInvalidDecl()) return;
10552
10553  // We should only get called for declarations with scope specifiers, like:
10554  //   int foo::bar;
10555  assert(D->isOutOfLine());
10556  EnterDeclaratorContext(S, D->getDeclContext());
10557}
10558
10559/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10560/// initializer for the out-of-line declaration 'D'.
10561void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10562  // If there is no declaration, there was an error parsing it.
10563  if (D == 0 || D->isInvalidDecl()) return;
10564
10565  assert(D->isOutOfLine());
10566  ExitDeclaratorContext(S);
10567}
10568
10569/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10570/// C++ if/switch/while/for statement.
10571/// e.g: "if (int x = f()) {...}"
10572DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10573  // C++ 6.4p2:
10574  // The declarator shall not specify a function or an array.
10575  // The type-specifier-seq shall not contain typedef and shall not declare a
10576  // new class or enumeration.
10577  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10578         "Parser allowed 'typedef' as storage class of condition decl.");
10579
10580  Decl *Dcl = ActOnDeclarator(S, D);
10581  if (!Dcl)
10582    return true;
10583
10584  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10585    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10586      << D.getSourceRange();
10587    return true;
10588  }
10589
10590  return Dcl;
10591}
10592
10593void Sema::LoadExternalVTableUses() {
10594  if (!ExternalSource)
10595    return;
10596
10597  SmallVector<ExternalVTableUse, 4> VTables;
10598  ExternalSource->ReadUsedVTables(VTables);
10599  SmallVector<VTableUse, 4> NewUses;
10600  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10601    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10602      = VTablesUsed.find(VTables[I].Record);
10603    // Even if a definition wasn't required before, it may be required now.
10604    if (Pos != VTablesUsed.end()) {
10605      if (!Pos->second && VTables[I].DefinitionRequired)
10606        Pos->second = true;
10607      continue;
10608    }
10609
10610    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10611    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10612  }
10613
10614  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10615}
10616
10617void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10618                          bool DefinitionRequired) {
10619  // Ignore any vtable uses in unevaluated operands or for classes that do
10620  // not have a vtable.
10621  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10622      CurContext->isDependentContext() ||
10623      ExprEvalContexts.back().Context == Unevaluated ||
10624      ExprEvalContexts.back().Context == ConstantEvaluated)
10625    return;
10626
10627  // Try to insert this class into the map.
10628  LoadExternalVTableUses();
10629  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10630  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10631    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10632  if (!Pos.second) {
10633    // If we already had an entry, check to see if we are promoting this vtable
10634    // to required a definition. If so, we need to reappend to the VTableUses
10635    // list, since we may have already processed the first entry.
10636    if (DefinitionRequired && !Pos.first->second) {
10637      Pos.first->second = true;
10638    } else {
10639      // Otherwise, we can early exit.
10640      return;
10641    }
10642  }
10643
10644  // Local classes need to have their virtual members marked
10645  // immediately. For all other classes, we mark their virtual members
10646  // at the end of the translation unit.
10647  if (Class->isLocalClass())
10648    MarkVirtualMembersReferenced(Loc, Class);
10649  else
10650    VTableUses.push_back(std::make_pair(Class, Loc));
10651}
10652
10653bool Sema::DefineUsedVTables() {
10654  LoadExternalVTableUses();
10655  if (VTableUses.empty())
10656    return false;
10657
10658  // Note: The VTableUses vector could grow as a result of marking
10659  // the members of a class as "used", so we check the size each
10660  // time through the loop and prefer indices (with are stable) to
10661  // iterators (which are not).
10662  bool DefinedAnything = false;
10663  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10664    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10665    if (!Class)
10666      continue;
10667
10668    SourceLocation Loc = VTableUses[I].second;
10669
10670    // If this class has a key function, but that key function is
10671    // defined in another translation unit, we don't need to emit the
10672    // vtable even though we're using it.
10673    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10674    if (KeyFunction && !KeyFunction->hasBody()) {
10675      switch (KeyFunction->getTemplateSpecializationKind()) {
10676      case TSK_Undeclared:
10677      case TSK_ExplicitSpecialization:
10678      case TSK_ExplicitInstantiationDeclaration:
10679        // The key function is in another translation unit.
10680        continue;
10681
10682      case TSK_ExplicitInstantiationDefinition:
10683      case TSK_ImplicitInstantiation:
10684        // We will be instantiating the key function.
10685        break;
10686      }
10687    } else if (!KeyFunction) {
10688      // If we have a class with no key function that is the subject
10689      // of an explicit instantiation declaration, suppress the
10690      // vtable; it will live with the explicit instantiation
10691      // definition.
10692      bool IsExplicitInstantiationDeclaration
10693        = Class->getTemplateSpecializationKind()
10694                                      == TSK_ExplicitInstantiationDeclaration;
10695      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10696                                 REnd = Class->redecls_end();
10697           R != REnd; ++R) {
10698        TemplateSpecializationKind TSK
10699          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10700        if (TSK == TSK_ExplicitInstantiationDeclaration)
10701          IsExplicitInstantiationDeclaration = true;
10702        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10703          IsExplicitInstantiationDeclaration = false;
10704          break;
10705        }
10706      }
10707
10708      if (IsExplicitInstantiationDeclaration)
10709        continue;
10710    }
10711
10712    // Mark all of the virtual members of this class as referenced, so
10713    // that we can build a vtable. Then, tell the AST consumer that a
10714    // vtable for this class is required.
10715    DefinedAnything = true;
10716    MarkVirtualMembersReferenced(Loc, Class);
10717    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10718    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10719
10720    // Optionally warn if we're emitting a weak vtable.
10721    if (Class->getLinkage() == ExternalLinkage &&
10722        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10723      const FunctionDecl *KeyFunctionDef = 0;
10724      if (!KeyFunction ||
10725          (KeyFunction->hasBody(KeyFunctionDef) &&
10726           KeyFunctionDef->isInlined()))
10727        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10728             TSK_ExplicitInstantiationDefinition
10729             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10730          << Class;
10731    }
10732  }
10733  VTableUses.clear();
10734
10735  return DefinedAnything;
10736}
10737
10738void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10739                                        const CXXRecordDecl *RD) {
10740  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10741       e = RD->method_end(); i != e; ++i) {
10742    CXXMethodDecl *MD = *i;
10743
10744    // C++ [basic.def.odr]p2:
10745    //   [...] A virtual member function is used if it is not pure. [...]
10746    if (MD->isVirtual() && !MD->isPure())
10747      MarkDeclarationReferenced(Loc, MD);
10748  }
10749
10750  // Only classes that have virtual bases need a VTT.
10751  if (RD->getNumVBases() == 0)
10752    return;
10753
10754  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10755           e = RD->bases_end(); i != e; ++i) {
10756    const CXXRecordDecl *Base =
10757        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10758    if (Base->getNumVBases() == 0)
10759      continue;
10760    MarkVirtualMembersReferenced(Loc, Base);
10761  }
10762}
10763
10764/// SetIvarInitializers - This routine builds initialization ASTs for the
10765/// Objective-C implementation whose ivars need be initialized.
10766void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10767  if (!getLangOptions().CPlusPlus)
10768    return;
10769  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10770    SmallVector<ObjCIvarDecl*, 8> ivars;
10771    CollectIvarsToConstructOrDestruct(OID, ivars);
10772    if (ivars.empty())
10773      return;
10774    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10775    for (unsigned i = 0; i < ivars.size(); i++) {
10776      FieldDecl *Field = ivars[i];
10777      if (Field->isInvalidDecl())
10778        continue;
10779
10780      CXXCtorInitializer *Member;
10781      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10782      InitializationKind InitKind =
10783        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10784
10785      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10786      ExprResult MemberInit =
10787        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10788      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10789      // Note, MemberInit could actually come back empty if no initialization
10790      // is required (e.g., because it would call a trivial default constructor)
10791      if (!MemberInit.get() || MemberInit.isInvalid())
10792        continue;
10793
10794      Member =
10795        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10796                                         SourceLocation(),
10797                                         MemberInit.takeAs<Expr>(),
10798                                         SourceLocation());
10799      AllToInit.push_back(Member);
10800
10801      // Be sure that the destructor is accessible and is marked as referenced.
10802      if (const RecordType *RecordTy
10803                  = Context.getBaseElementType(Field->getType())
10804                                                        ->getAs<RecordType>()) {
10805                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10806        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10807          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10808          CheckDestructorAccess(Field->getLocation(), Destructor,
10809                            PDiag(diag::err_access_dtor_ivar)
10810                              << Context.getBaseElementType(Field->getType()));
10811        }
10812      }
10813    }
10814    ObjCImplementation->setIvarInitializers(Context,
10815                                            AllToInit.data(), AllToInit.size());
10816  }
10817}
10818
10819static
10820void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10821                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10822                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10823                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10824                           Sema &S) {
10825  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10826                                                   CE = Current.end();
10827  if (Ctor->isInvalidDecl())
10828    return;
10829
10830  const FunctionDecl *FNTarget = 0;
10831  CXXConstructorDecl *Target;
10832
10833  // We ignore the result here since if we don't have a body, Target will be
10834  // null below.
10835  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10836  Target
10837= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10838
10839  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10840                     // Avoid dereferencing a null pointer here.
10841                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10842
10843  if (!Current.insert(Canonical))
10844    return;
10845
10846  // We know that beyond here, we aren't chaining into a cycle.
10847  if (!Target || !Target->isDelegatingConstructor() ||
10848      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10849    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10850      Valid.insert(*CI);
10851    Current.clear();
10852  // We've hit a cycle.
10853  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10854             Current.count(TCanonical)) {
10855    // If we haven't diagnosed this cycle yet, do so now.
10856    if (!Invalid.count(TCanonical)) {
10857      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10858             diag::warn_delegating_ctor_cycle)
10859        << Ctor;
10860
10861      // Don't add a note for a function delegating directo to itself.
10862      if (TCanonical != Canonical)
10863        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10864
10865      CXXConstructorDecl *C = Target;
10866      while (C->getCanonicalDecl() != Canonical) {
10867        (void)C->getTargetConstructor()->hasBody(FNTarget);
10868        assert(FNTarget && "Ctor cycle through bodiless function");
10869
10870        C
10871       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10872        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10873      }
10874    }
10875
10876    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10877      Invalid.insert(*CI);
10878    Current.clear();
10879  } else {
10880    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10881  }
10882}
10883
10884
10885void Sema::CheckDelegatingCtorCycles() {
10886  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10887
10888  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10889                                                   CE = Current.end();
10890
10891  for (DelegatingCtorDeclsType::iterator
10892         I = DelegatingCtorDecls.begin(ExternalSource),
10893         E = DelegatingCtorDecls.end();
10894       I != E; ++I) {
10895   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10896  }
10897
10898  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10899    (*CI)->setInvalidDecl();
10900}
10901
10902/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10903Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10904  // Implicitly declared functions (e.g. copy constructors) are
10905  // __host__ __device__
10906  if (D->isImplicit())
10907    return CFT_HostDevice;
10908
10909  if (D->hasAttr<CUDAGlobalAttr>())
10910    return CFT_Global;
10911
10912  if (D->hasAttr<CUDADeviceAttr>()) {
10913    if (D->hasAttr<CUDAHostAttr>())
10914      return CFT_HostDevice;
10915    else
10916      return CFT_Device;
10917  }
10918
10919  return CFT_Host;
10920}
10921
10922bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10923                           CUDAFunctionTarget CalleeTarget) {
10924  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10925  // Callable from the device only."
10926  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10927    return true;
10928
10929  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10930  // Callable from the host only."
10931  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10932  // Callable from the host only."
10933  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10934      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10935    return true;
10936
10937  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10938    return true;
10939
10940  return false;
10941}
10942