SemaDeclCXX.cpp revision dd729fce03899ed03a212a49d7b03e043ce6ed40
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
111  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg.release());
112  QualType ParamType = Param->getType();
113
114  // Default arguments are only permitted in C++
115  if (!getLangOptions().CPlusPlus) {
116    Diag(EqualLoc, diag::err_param_default_argument)
117      << DefaultArg->getSourceRange();
118    Param->setInvalidDecl();
119    return;
120  }
121
122  // C++ [dcl.fct.default]p5
123  //   A default argument expression is implicitly converted (clause
124  //   4) to the parameter type. The default argument expression has
125  //   the same semantic constraints as the initializer expression in
126  //   a declaration of a variable of the parameter type, using the
127  //   copy-initialization semantics (8.5).
128  Expr *DefaultArgPtr = DefaultArg.get();
129  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
130                                                 EqualLoc,
131                                                 Param->getDeclName(),
132                                                 /*DirectInit=*/false);
133  if (DefaultArgPtr != DefaultArg.get()) {
134    DefaultArg.take();
135    DefaultArg.reset(DefaultArgPtr);
136  }
137  if (DefaultInitFailed) {
138    return;
139  }
140
141  // Check that the default argument is well-formed
142  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
143  if (DefaultArgChecker.Visit(DefaultArg.get())) {
144    Param->setInvalidDecl();
145    return;
146  }
147
148  // Okay: add the default argument to the parameter
149  Param->setDefaultArg(DefaultArg.take());
150}
151
152/// ActOnParamUnparsedDefaultArgument - We've seen a default
153/// argument for a function parameter, but we can't parse it yet
154/// because we're inside a class definition. Note that this default
155/// argument will be parsed later.
156void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
157                                             SourceLocation EqualLoc) {
158  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
159  if (Param)
160    Param->setUnparsedDefaultArg();
161}
162
163/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
164/// the default argument for the parameter param failed.
165void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
166  cast<ParmVarDecl>(param.getAs<Decl>())->setInvalidDecl();
167}
168
169/// CheckExtraCXXDefaultArguments - Check for any extra default
170/// arguments in the declarator, which is not a function declaration
171/// or definition and therefore is not permitted to have default
172/// arguments. This routine should be invoked for every declarator
173/// that is not a function declaration or definition.
174void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
175  // C++ [dcl.fct.default]p3
176  //   A default argument expression shall be specified only in the
177  //   parameter-declaration-clause of a function declaration or in a
178  //   template-parameter (14.1). It shall not be specified for a
179  //   parameter pack. If it is specified in a
180  //   parameter-declaration-clause, it shall not occur within a
181  //   declarator or abstract-declarator of a parameter-declaration.
182  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
183    DeclaratorChunk &chunk = D.getTypeObject(i);
184    if (chunk.Kind == DeclaratorChunk::Function) {
185      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
186        ParmVarDecl *Param =
187          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
188        if (Param->hasUnparsedDefaultArg()) {
189          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
190          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
191            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
192          delete Toks;
193          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
194        } else if (Param->getDefaultArg()) {
195          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
196            << Param->getDefaultArg()->getSourceRange();
197          Param->setDefaultArg(0);
198        }
199      }
200    }
201  }
202}
203
204// MergeCXXFunctionDecl - Merge two declarations of the same C++
205// function, once we already know that they have the same
206// type. Subroutine of MergeFunctionDecl. Returns true if there was an
207// error, false otherwise.
208bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
209  bool Invalid = false;
210
211  // C++ [dcl.fct.default]p4:
212  //
213  //   For non-template functions, default arguments can be added in
214  //   later declarations of a function in the same
215  //   scope. Declarations in different scopes have completely
216  //   distinct sets of default arguments. That is, declarations in
217  //   inner scopes do not acquire default arguments from
218  //   declarations in outer scopes, and vice versa. In a given
219  //   function declaration, all parameters subsequent to a
220  //   parameter with a default argument shall have default
221  //   arguments supplied in this or previous declarations. A
222  //   default argument shall not be redefined by a later
223  //   declaration (not even to the same value).
224  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
225    ParmVarDecl *OldParam = Old->getParamDecl(p);
226    ParmVarDecl *NewParam = New->getParamDecl(p);
227
228    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
229      Diag(NewParam->getLocation(),
230           diag::err_param_default_argument_redefinition)
231        << NewParam->getDefaultArg()->getSourceRange();
232      Diag(OldParam->getLocation(), diag::note_previous_definition);
233      Invalid = true;
234    } else if (OldParam->getDefaultArg()) {
235      // Merge the old default argument into the new parameter
236      NewParam->setDefaultArg(OldParam->getDefaultArg());
237    }
238  }
239
240  return Invalid;
241}
242
243/// CheckCXXDefaultArguments - Verify that the default arguments for a
244/// function declaration are well-formed according to C++
245/// [dcl.fct.default].
246void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
247  unsigned NumParams = FD->getNumParams();
248  unsigned p;
249
250  // Find first parameter with a default argument
251  for (p = 0; p < NumParams; ++p) {
252    ParmVarDecl *Param = FD->getParamDecl(p);
253    if (Param->getDefaultArg())
254      break;
255  }
256
257  // C++ [dcl.fct.default]p4:
258  //   In a given function declaration, all parameters
259  //   subsequent to a parameter with a default argument shall
260  //   have default arguments supplied in this or previous
261  //   declarations. A default argument shall not be redefined
262  //   by a later declaration (not even to the same value).
263  unsigned LastMissingDefaultArg = 0;
264  for(; p < NumParams; ++p) {
265    ParmVarDecl *Param = FD->getParamDecl(p);
266    if (!Param->getDefaultArg()) {
267      if (Param->isInvalidDecl())
268        /* We already complained about this parameter. */;
269      else if (Param->getIdentifier())
270        Diag(Param->getLocation(),
271             diag::err_param_default_argument_missing_name)
272          << Param->getIdentifier();
273      else
274        Diag(Param->getLocation(),
275             diag::err_param_default_argument_missing);
276
277      LastMissingDefaultArg = p;
278    }
279  }
280
281  if (LastMissingDefaultArg > 0) {
282    // Some default arguments were missing. Clear out all of the
283    // default arguments up to (and including) the last missing
284    // default argument, so that we leave the function parameters
285    // in a semantically valid state.
286    for (p = 0; p <= LastMissingDefaultArg; ++p) {
287      ParmVarDecl *Param = FD->getParamDecl(p);
288      if (Param->getDefaultArg()) {
289        if (!Param->hasUnparsedDefaultArg())
290          Param->getDefaultArg()->Destroy(Context);
291        Param->setDefaultArg(0);
292      }
293    }
294  }
295}
296
297/// isCurrentClassName - Determine whether the identifier II is the
298/// name of the class type currently being defined. In the case of
299/// nested classes, this will only return true if II is the name of
300/// the innermost class.
301bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
302                              const CXXScopeSpec *SS) {
303  CXXRecordDecl *CurDecl;
304  if (SS && SS->isSet() && !SS->isInvalid()) {
305    DeclContext *DC = computeDeclContext(*SS);
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
307  } else
308    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
309
310  if (CurDecl)
311    return &II == CurDecl->getIdentifier();
312  else
313    return false;
314}
315
316/// \brief Check the validity of a C++ base class specifier.
317///
318/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
319/// and returns NULL otherwise.
320CXXBaseSpecifier *
321Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
322                         SourceRange SpecifierRange,
323                         bool Virtual, AccessSpecifier Access,
324                         QualType BaseType,
325                         SourceLocation BaseLoc) {
326  // C++ [class.union]p1:
327  //   A union shall not have base classes.
328  if (Class->isUnion()) {
329    Diag(Class->getLocation(), diag::err_base_clause_on_union)
330      << SpecifierRange;
331    return 0;
332  }
333
334  if (BaseType->isDependentType())
335    return new CXXBaseSpecifier(SpecifierRange, Virtual,
336                                Class->getTagKind() == RecordDecl::TK_class,
337                                Access, BaseType);
338
339  // Base specifiers must be record types.
340  if (!BaseType->isRecordType()) {
341    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
342    return 0;
343  }
344
345  // C++ [class.union]p1:
346  //   A union shall not be used as a base class.
347  if (BaseType->isUnionType()) {
348    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
349    return 0;
350  }
351
352  // C++ [class.derived]p2:
353  //   The class-name in a base-specifier shall not be an incompletely
354  //   defined class.
355  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
356                          SpecifierRange))
357    return 0;
358
359  // If the base class is polymorphic, the new one is, too.
360  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
361  assert(BaseDecl && "Record type has no declaration");
362  BaseDecl = BaseDecl->getDefinition(Context);
363  assert(BaseDecl && "Base type is not incomplete, but has no definition");
364  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
365    Class->setPolymorphic(true);
366
367  // C++ [dcl.init.aggr]p1:
368  //   An aggregate is [...] a class with [...] no base classes [...].
369  Class->setAggregate(false);
370  Class->setPOD(false);
371
372  // Create the base specifier.
373  // FIXME: Allocate via ASTContext?
374  return new CXXBaseSpecifier(SpecifierRange, Virtual,
375                              Class->getTagKind() == RecordDecl::TK_class,
376                              Access, BaseType);
377}
378
379/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
380/// one entry in the base class list of a class specifier, for
381/// example:
382///    class foo : public bar, virtual private baz {
383/// 'public bar' and 'virtual private baz' are each base-specifiers.
384Sema::BaseResult
385Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
386                         bool Virtual, AccessSpecifier Access,
387                         TypeTy *basetype, SourceLocation BaseLoc) {
388  AdjustDeclIfTemplate(classdecl);
389  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
390  QualType BaseType = QualType::getFromOpaquePtr(basetype);
391  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
392                                                      Virtual, Access,
393                                                      BaseType, BaseLoc))
394    return BaseSpec;
395
396  return true;
397}
398
399/// \brief Performs the actual work of attaching the given base class
400/// specifiers to a C++ class.
401bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
402                                unsigned NumBases) {
403 if (NumBases == 0)
404    return false;
405
406  // Used to keep track of which base types we have already seen, so
407  // that we can properly diagnose redundant direct base types. Note
408  // that the key is always the unqualified canonical type of the base
409  // class.
410  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
411
412  // Copy non-redundant base specifiers into permanent storage.
413  unsigned NumGoodBases = 0;
414  bool Invalid = false;
415  for (unsigned idx = 0; idx < NumBases; ++idx) {
416    QualType NewBaseType
417      = Context.getCanonicalType(Bases[idx]->getType());
418    NewBaseType = NewBaseType.getUnqualifiedType();
419
420    if (KnownBaseTypes[NewBaseType]) {
421      // C++ [class.mi]p3:
422      //   A class shall not be specified as a direct base class of a
423      //   derived class more than once.
424      Diag(Bases[idx]->getSourceRange().getBegin(),
425           diag::err_duplicate_base_class)
426        << KnownBaseTypes[NewBaseType]->getType()
427        << Bases[idx]->getSourceRange();
428
429      // Delete the duplicate base class specifier; we're going to
430      // overwrite its pointer later.
431      delete Bases[idx];
432
433      Invalid = true;
434    } else {
435      // Okay, add this new base class.
436      KnownBaseTypes[NewBaseType] = Bases[idx];
437      Bases[NumGoodBases++] = Bases[idx];
438    }
439  }
440
441  // Attach the remaining base class specifiers to the derived class.
442  Class->setBases(Bases, NumGoodBases);
443
444  // Delete the remaining (good) base class specifiers, since their
445  // data has been copied into the CXXRecordDecl.
446  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
447    delete Bases[idx];
448
449  return Invalid;
450}
451
452/// ActOnBaseSpecifiers - Attach the given base specifiers to the
453/// class, after checking whether there are any duplicate base
454/// classes.
455void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
456                               unsigned NumBases) {
457  if (!ClassDecl || !Bases || !NumBases)
458    return;
459
460  AdjustDeclIfTemplate(ClassDecl);
461  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
462                       (CXXBaseSpecifier**)(Bases), NumBases);
463}
464
465//===----------------------------------------------------------------------===//
466// C++ class member Handling
467//===----------------------------------------------------------------------===//
468
469/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
470/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
471/// bitfield width if there is one and 'InitExpr' specifies the initializer if
472/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
473/// declarators on it.
474Sema::DeclPtrTy
475Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
476                               ExprTy *BW, ExprTy *InitExpr,
477                               DeclPtrTy LastInGroup) {
478  const DeclSpec &DS = D.getDeclSpec();
479  DeclarationName Name = GetNameForDeclarator(D);
480  Expr *BitWidth = static_cast<Expr*>(BW);
481  Expr *Init = static_cast<Expr*>(InitExpr);
482  SourceLocation Loc = D.getIdentifierLoc();
483
484  bool isFunc = D.isFunctionDeclarator();
485
486  // C++ 9.2p6: A member shall not be declared to have automatic storage
487  // duration (auto, register) or with the extern storage-class-specifier.
488  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
489  // data members and cannot be applied to names declared const or static,
490  // and cannot be applied to reference members.
491  switch (DS.getStorageClassSpec()) {
492    case DeclSpec::SCS_unspecified:
493    case DeclSpec::SCS_typedef:
494    case DeclSpec::SCS_static:
495      // FALL THROUGH.
496      break;
497    case DeclSpec::SCS_mutable:
498      if (isFunc) {
499        if (DS.getStorageClassSpecLoc().isValid())
500          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
501        else
502          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
503
504        // FIXME: It would be nicer if the keyword was ignored only for this
505        // declarator. Otherwise we could get follow-up errors.
506        D.getMutableDeclSpec().ClearStorageClassSpecs();
507      } else {
508        QualType T = GetTypeForDeclarator(D, S);
509        diag::kind err = static_cast<diag::kind>(0);
510        if (T->isReferenceType())
511          err = diag::err_mutable_reference;
512        else if (T.isConstQualified())
513          err = diag::err_mutable_const;
514        if (err != 0) {
515          if (DS.getStorageClassSpecLoc().isValid())
516            Diag(DS.getStorageClassSpecLoc(), err);
517          else
518            Diag(DS.getThreadSpecLoc(), err);
519          // FIXME: It would be nicer if the keyword was ignored only for this
520          // declarator. Otherwise we could get follow-up errors.
521          D.getMutableDeclSpec().ClearStorageClassSpecs();
522        }
523      }
524      break;
525    default:
526      if (DS.getStorageClassSpecLoc().isValid())
527        Diag(DS.getStorageClassSpecLoc(),
528             diag::err_storageclass_invalid_for_member);
529      else
530        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
531      D.getMutableDeclSpec().ClearStorageClassSpecs();
532  }
533
534  if (!isFunc &&
535      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
536      D.getNumTypeObjects() == 0) {
537    // Check also for this case:
538    //
539    // typedef int f();
540    // f a;
541    //
542    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
543    isFunc = TDType->isFunctionType();
544  }
545
546  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
547                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
548                      !isFunc);
549
550  Decl *Member;
551  if (isInstField) {
552    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
553                         AS);
554    assert(Member && "HandleField never returns null");
555  } else {
556    Member = ActOnDeclarator(S, D, LastInGroup).getAs<Decl>();
557    if (!Member) {
558      if (BitWidth) DeleteExpr(BitWidth);
559      return LastInGroup;
560    }
561
562    // Non-instance-fields can't have a bitfield.
563    if (BitWidth) {
564      if (Member->isInvalidDecl()) {
565        // don't emit another diagnostic.
566      } else if (isa<VarDecl>(Member)) {
567        // C++ 9.6p3: A bit-field shall not be a static member.
568        // "static member 'A' cannot be a bit-field"
569        Diag(Loc, diag::err_static_not_bitfield)
570          << Name << BitWidth->getSourceRange();
571      } else if (isa<TypedefDecl>(Member)) {
572        // "typedef member 'x' cannot be a bit-field"
573        Diag(Loc, diag::err_typedef_not_bitfield)
574          << Name << BitWidth->getSourceRange();
575      } else {
576        // A function typedef ("typedef int f(); f a;").
577        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
578        Diag(Loc, diag::err_not_integral_type_bitfield)
579          << Name << cast<ValueDecl>(Member)->getType()
580          << BitWidth->getSourceRange();
581      }
582
583      DeleteExpr(BitWidth);
584      BitWidth = 0;
585      Member->setInvalidDecl();
586    }
587
588    Member->setAccess(AS);
589  }
590
591  assert((Name || isInstField) && "No identifier for non-field ?");
592
593  if (Init)
594    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
595
596  if (isInstField) {
597    FieldCollector->Add(cast<FieldDecl>(Member));
598    return LastInGroup;
599  }
600  return DeclPtrTy::make(Member);
601}
602
603/// ActOnMemInitializer - Handle a C++ member initializer.
604Sema::MemInitResult
605Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
606                          Scope *S,
607                          IdentifierInfo *MemberOrBase,
608                          SourceLocation IdLoc,
609                          SourceLocation LParenLoc,
610                          ExprTy **Args, unsigned NumArgs,
611                          SourceLocation *CommaLocs,
612                          SourceLocation RParenLoc) {
613  CXXConstructorDecl *Constructor
614    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
615  if (!Constructor) {
616    // The user wrote a constructor initializer on a function that is
617    // not a C++ constructor. Ignore the error for now, because we may
618    // have more member initializers coming; we'll diagnose it just
619    // once in ActOnMemInitializers.
620    return true;
621  }
622
623  CXXRecordDecl *ClassDecl = Constructor->getParent();
624
625  // C++ [class.base.init]p2:
626  //   Names in a mem-initializer-id are looked up in the scope of the
627  //   constructor’s class and, if not found in that scope, are looked
628  //   up in the scope containing the constructor’s
629  //   definition. [Note: if the constructor’s class contains a member
630  //   with the same name as a direct or virtual base class of the
631  //   class, a mem-initializer-id naming the member or base class and
632  //   composed of a single identifier refers to the class member. A
633  //   mem-initializer-id for the hidden base class may be specified
634  //   using a qualified name. ]
635  // Look for a member, first.
636  FieldDecl *Member = 0;
637  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
638  if (Result.first != Result.second)
639    Member = dyn_cast<FieldDecl>(*Result.first);
640
641  // FIXME: Handle members of an anonymous union.
642
643  if (Member) {
644    // FIXME: Perform direct initialization of the member.
645    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
646  }
647
648  // It didn't name a member, so see if it names a class.
649  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
650  if (!BaseTy)
651    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
652      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
653
654  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
655  if (!BaseType->isRecordType())
656    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
657      << BaseType << SourceRange(IdLoc, RParenLoc);
658
659  // C++ [class.base.init]p2:
660  //   [...] Unless the mem-initializer-id names a nonstatic data
661  //   member of the constructor’s class or a direct or virtual base
662  //   of that class, the mem-initializer is ill-formed. A
663  //   mem-initializer-list can initialize a base class using any
664  //   name that denotes that base class type.
665
666  // First, check for a direct base class.
667  const CXXBaseSpecifier *DirectBaseSpec = 0;
668  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
669       Base != ClassDecl->bases_end(); ++Base) {
670    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
671        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
672      // We found a direct base of this type. That's what we're
673      // initializing.
674      DirectBaseSpec = &*Base;
675      break;
676    }
677  }
678
679  // Check for a virtual base class.
680  // FIXME: We might be able to short-circuit this if we know in
681  // advance that there are no virtual bases.
682  const CXXBaseSpecifier *VirtualBaseSpec = 0;
683  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
684    // We haven't found a base yet; search the class hierarchy for a
685    // virtual base class.
686    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
687                    /*DetectVirtual=*/false);
688    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
689      for (BasePaths::paths_iterator Path = Paths.begin();
690           Path != Paths.end(); ++Path) {
691        if (Path->back().Base->isVirtual()) {
692          VirtualBaseSpec = Path->back().Base;
693          break;
694        }
695      }
696    }
697  }
698
699  // C++ [base.class.init]p2:
700  //   If a mem-initializer-id is ambiguous because it designates both
701  //   a direct non-virtual base class and an inherited virtual base
702  //   class, the mem-initializer is ill-formed.
703  if (DirectBaseSpec && VirtualBaseSpec)
704    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
705      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
706
707  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
708}
709
710void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
711                                SourceLocation ColonLoc,
712                                MemInitTy **MemInits, unsigned NumMemInits) {
713  CXXConstructorDecl *Constructor =
714  dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
715
716  if (!Constructor) {
717    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
718    return;
719  }
720}
721
722namespace {
723  /// PureVirtualMethodCollector - traverses a class and its superclasses
724  /// and determines if it has any pure virtual methods.
725  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
726    ASTContext &Context;
727
728  public:
729    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
730
731  private:
732    MethodList Methods;
733
734    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
735
736  public:
737    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
738      : Context(Ctx) {
739
740      MethodList List;
741      Collect(RD, List);
742
743      // Copy the temporary list to methods, and make sure to ignore any
744      // null entries.
745      for (size_t i = 0, e = List.size(); i != e; ++i) {
746        if (List[i])
747          Methods.push_back(List[i]);
748      }
749    }
750
751    bool empty() const { return Methods.empty(); }
752
753    MethodList::const_iterator methods_begin() { return Methods.begin(); }
754    MethodList::const_iterator methods_end() { return Methods.end(); }
755  };
756
757  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
758                                           MethodList& Methods) {
759    // First, collect the pure virtual methods for the base classes.
760    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
761         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
762      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
763        const CXXRecordDecl *BaseDecl
764          = cast<CXXRecordDecl>(RT->getDecl());
765        if (BaseDecl && BaseDecl->isAbstract())
766          Collect(BaseDecl, Methods);
767      }
768    }
769
770    // Next, zero out any pure virtual methods that this class overrides.
771    for (size_t i = 0, e = Methods.size(); i != e; ++i) {
772      const CXXMethodDecl *VMD = dyn_cast_or_null<CXXMethodDecl>(Methods[i]);
773      if (!VMD)
774        continue;
775
776      DeclContext::lookup_const_iterator I, E;
777      for (llvm::tie(I, E) = RD->lookup(VMD->getDeclName()); I != E; ++I) {
778        if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*I)) {
779          if (Context.getCanonicalType(MD->getType()) ==
780              Context.getCanonicalType(VMD->getType())) {
781            // We did find a matching method, which means that this is not a
782            // pure virtual method in the current class. Zero it out.
783            Methods[i] = 0;
784          }
785        }
786      }
787    }
788
789    // Finally, add pure virtual methods from this class.
790    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
791         i != e; ++i) {
792      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
793        if (MD->isPure())
794          Methods.push_back(MD);
795      }
796    }
797  }
798}
799
800bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
801                                  unsigned DiagID, AbstractDiagSelID SelID,
802                                  const CXXRecordDecl *CurrentRD) {
803
804  if (!getLangOptions().CPlusPlus)
805    return false;
806
807  if (const ArrayType *AT = Context.getAsArrayType(T))
808    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
809                                  CurrentRD);
810
811  if (const PointerType *PT = T->getAsPointerType()) {
812    // Find the innermost pointer type.
813    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
814      PT = T;
815
816    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
817      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
818                                    CurrentRD);
819  }
820
821  const RecordType *RT = T->getAsRecordType();
822  if (!RT)
823    return false;
824
825  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
826  if (!RD)
827    return false;
828
829  if (CurrentRD && CurrentRD != RD)
830    return false;
831
832  if (!RD->isAbstract())
833    return false;
834
835  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
836
837  // Check if we've already emitted the list of pure virtual functions for this
838  // class.
839  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
840    return true;
841
842  PureVirtualMethodCollector Collector(Context, RD);
843
844  for (PureVirtualMethodCollector::MethodList::const_iterator I =
845       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
846    const CXXMethodDecl *MD = *I;
847
848    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
849      MD->getDeclName();
850  }
851
852  if (!PureVirtualClassDiagSet)
853    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
854  PureVirtualClassDiagSet->insert(RD);
855
856  return true;
857}
858
859namespace {
860  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
861    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
862    Sema &SemaRef;
863    CXXRecordDecl *AbstractClass;
864
865    bool VisitDeclContext(const DeclContext *DC) {
866      bool Invalid = false;
867
868      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
869           E = DC->decls_end(); I != E; ++I)
870        Invalid |= Visit(*I);
871
872      return Invalid;
873    }
874
875  public:
876    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
877      : SemaRef(SemaRef), AbstractClass(ac) {
878        Visit(SemaRef.Context.getTranslationUnitDecl());
879    }
880
881    bool VisitFunctionDecl(const FunctionDecl *FD) {
882      if (FD->isThisDeclarationADefinition()) {
883        // No need to do the check if we're in a definition, because it requires
884        // that the return/param types are complete.
885        // because that requires
886        return VisitDeclContext(FD);
887      }
888
889      // Check the return type.
890      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
891      bool Invalid =
892        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
893                                       diag::err_abstract_type_in_decl,
894                                       Sema::AbstractReturnType,
895                                       AbstractClass);
896
897      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
898           E = FD->param_end(); I != E; ++I) {
899        const ParmVarDecl *VD = *I;
900        Invalid |=
901          SemaRef.RequireNonAbstractType(VD->getLocation(),
902                                         VD->getOriginalType(),
903                                         diag::err_abstract_type_in_decl,
904                                         Sema::AbstractParamType,
905                                         AbstractClass);
906      }
907
908      return Invalid;
909    }
910
911    bool VisitDecl(const Decl* D) {
912      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
913        return VisitDeclContext(DC);
914
915      return false;
916    }
917  };
918}
919
920void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
921                                             DeclPtrTy TagDecl,
922                                             SourceLocation LBrac,
923                                             SourceLocation RBrac) {
924  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
925  ActOnFields(S, RLoc, TagDecl,
926              (DeclPtrTy*)FieldCollector->getCurFields(),
927              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
928
929  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
930  if (!RD->isAbstract()) {
931    // Collect all the pure virtual methods and see if this is an abstract
932    // class after all.
933    PureVirtualMethodCollector Collector(Context, RD);
934    if (!Collector.empty())
935      RD->setAbstract(true);
936  }
937
938  if (RD->isAbstract())
939    AbstractClassUsageDiagnoser(*this, RD);
940
941  if (!Template)
942    AddImplicitlyDeclaredMembersToClass(RD);
943}
944
945/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
946/// special functions, such as the default constructor, copy
947/// constructor, or destructor, to the given C++ class (C++
948/// [special]p1).  This routine can only be executed just before the
949/// definition of the class is complete.
950void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
951  QualType ClassType = Context.getTypeDeclType(ClassDecl);
952  ClassType = Context.getCanonicalType(ClassType);
953
954  if (!ClassDecl->hasUserDeclaredConstructor()) {
955    // C++ [class.ctor]p5:
956    //   A default constructor for a class X is a constructor of class X
957    //   that can be called without an argument. If there is no
958    //   user-declared constructor for class X, a default constructor is
959    //   implicitly declared. An implicitly-declared default constructor
960    //   is an inline public member of its class.
961    DeclarationName Name
962      = Context.DeclarationNames.getCXXConstructorName(ClassType);
963    CXXConstructorDecl *DefaultCon =
964      CXXConstructorDecl::Create(Context, ClassDecl,
965                                 ClassDecl->getLocation(), Name,
966                                 Context.getFunctionType(Context.VoidTy,
967                                                         0, 0, false, 0),
968                                 /*isExplicit=*/false,
969                                 /*isInline=*/true,
970                                 /*isImplicitlyDeclared=*/true);
971    DefaultCon->setAccess(AS_public);
972    DefaultCon->setImplicit();
973    ClassDecl->addDecl(DefaultCon);
974
975    // Notify the class that we've added a constructor.
976    ClassDecl->addedConstructor(Context, DefaultCon);
977  }
978
979  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
980    // C++ [class.copy]p4:
981    //   If the class definition does not explicitly declare a copy
982    //   constructor, one is declared implicitly.
983
984    // C++ [class.copy]p5:
985    //   The implicitly-declared copy constructor for a class X will
986    //   have the form
987    //
988    //       X::X(const X&)
989    //
990    //   if
991    bool HasConstCopyConstructor = true;
992
993    //     -- each direct or virtual base class B of X has a copy
994    //        constructor whose first parameter is of type const B& or
995    //        const volatile B&, and
996    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
997         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
998      const CXXRecordDecl *BaseClassDecl
999        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1000      HasConstCopyConstructor
1001        = BaseClassDecl->hasConstCopyConstructor(Context);
1002    }
1003
1004    //     -- for all the nonstatic data members of X that are of a
1005    //        class type M (or array thereof), each such class type
1006    //        has a copy constructor whose first parameter is of type
1007    //        const M& or const volatile M&.
1008    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1009         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
1010      QualType FieldType = (*Field)->getType();
1011      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1012        FieldType = Array->getElementType();
1013      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1014        const CXXRecordDecl *FieldClassDecl
1015          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1016        HasConstCopyConstructor
1017          = FieldClassDecl->hasConstCopyConstructor(Context);
1018      }
1019    }
1020
1021    //   Otherwise, the implicitly declared copy constructor will have
1022    //   the form
1023    //
1024    //       X::X(X&)
1025    QualType ArgType = ClassType;
1026    if (HasConstCopyConstructor)
1027      ArgType = ArgType.withConst();
1028    ArgType = Context.getLValueReferenceType(ArgType);
1029
1030    //   An implicitly-declared copy constructor is an inline public
1031    //   member of its class.
1032    DeclarationName Name
1033      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1034    CXXConstructorDecl *CopyConstructor
1035      = CXXConstructorDecl::Create(Context, ClassDecl,
1036                                   ClassDecl->getLocation(), Name,
1037                                   Context.getFunctionType(Context.VoidTy,
1038                                                           &ArgType, 1,
1039                                                           false, 0),
1040                                   /*isExplicit=*/false,
1041                                   /*isInline=*/true,
1042                                   /*isImplicitlyDeclared=*/true);
1043    CopyConstructor->setAccess(AS_public);
1044    CopyConstructor->setImplicit();
1045
1046    // Add the parameter to the constructor.
1047    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1048                                                 ClassDecl->getLocation(),
1049                                                 /*IdentifierInfo=*/0,
1050                                                 ArgType, VarDecl::None, 0);
1051    CopyConstructor->setParams(Context, &FromParam, 1);
1052
1053    ClassDecl->addedConstructor(Context, CopyConstructor);
1054    ClassDecl->addDecl(CopyConstructor);
1055  }
1056
1057  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1058    // Note: The following rules are largely analoguous to the copy
1059    // constructor rules. Note that virtual bases are not taken into account
1060    // for determining the argument type of the operator. Note also that
1061    // operators taking an object instead of a reference are allowed.
1062    //
1063    // C++ [class.copy]p10:
1064    //   If the class definition does not explicitly declare a copy
1065    //   assignment operator, one is declared implicitly.
1066    //   The implicitly-defined copy assignment operator for a class X
1067    //   will have the form
1068    //
1069    //       X& X::operator=(const X&)
1070    //
1071    //   if
1072    bool HasConstCopyAssignment = true;
1073
1074    //       -- each direct base class B of X has a copy assignment operator
1075    //          whose parameter is of type const B&, const volatile B& or B,
1076    //          and
1077    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1078         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1079      const CXXRecordDecl *BaseClassDecl
1080        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1081      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1082    }
1083
1084    //       -- for all the nonstatic data members of X that are of a class
1085    //          type M (or array thereof), each such class type has a copy
1086    //          assignment operator whose parameter is of type const M&,
1087    //          const volatile M& or M.
1088    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1089         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
1090      QualType FieldType = (*Field)->getType();
1091      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1092        FieldType = Array->getElementType();
1093      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1094        const CXXRecordDecl *FieldClassDecl
1095          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1096        HasConstCopyAssignment
1097          = FieldClassDecl->hasConstCopyAssignment(Context);
1098      }
1099    }
1100
1101    //   Otherwise, the implicitly declared copy assignment operator will
1102    //   have the form
1103    //
1104    //       X& X::operator=(X&)
1105    QualType ArgType = ClassType;
1106    QualType RetType = Context.getLValueReferenceType(ArgType);
1107    if (HasConstCopyAssignment)
1108      ArgType = ArgType.withConst();
1109    ArgType = Context.getLValueReferenceType(ArgType);
1110
1111    //   An implicitly-declared copy assignment operator is an inline public
1112    //   member of its class.
1113    DeclarationName Name =
1114      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1115    CXXMethodDecl *CopyAssignment =
1116      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1117                            Context.getFunctionType(RetType, &ArgType, 1,
1118                                                    false, 0),
1119                            /*isStatic=*/false, /*isInline=*/true);
1120    CopyAssignment->setAccess(AS_public);
1121    CopyAssignment->setImplicit();
1122
1123    // Add the parameter to the operator.
1124    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1125                                                 ClassDecl->getLocation(),
1126                                                 /*IdentifierInfo=*/0,
1127                                                 ArgType, VarDecl::None, 0);
1128    CopyAssignment->setParams(Context, &FromParam, 1);
1129
1130    // Don't call addedAssignmentOperator. There is no way to distinguish an
1131    // implicit from an explicit assignment operator.
1132    ClassDecl->addDecl(CopyAssignment);
1133  }
1134
1135  if (!ClassDecl->hasUserDeclaredDestructor()) {
1136    // C++ [class.dtor]p2:
1137    //   If a class has no user-declared destructor, a destructor is
1138    //   declared implicitly. An implicitly-declared destructor is an
1139    //   inline public member of its class.
1140    DeclarationName Name
1141      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1142    CXXDestructorDecl *Destructor
1143      = CXXDestructorDecl::Create(Context, ClassDecl,
1144                                  ClassDecl->getLocation(), Name,
1145                                  Context.getFunctionType(Context.VoidTy,
1146                                                          0, 0, false, 0),
1147                                  /*isInline=*/true,
1148                                  /*isImplicitlyDeclared=*/true);
1149    Destructor->setAccess(AS_public);
1150    Destructor->setImplicit();
1151    ClassDecl->addDecl(Destructor);
1152  }
1153}
1154
1155/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1156/// parsing a top-level (non-nested) C++ class, and we are now
1157/// parsing those parts of the given Method declaration that could
1158/// not be parsed earlier (C++ [class.mem]p2), such as default
1159/// arguments. This action should enter the scope of the given
1160/// Method declaration as if we had just parsed the qualified method
1161/// name. However, it should not bring the parameters into scope;
1162/// that will be performed by ActOnDelayedCXXMethodParameter.
1163void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1164  CXXScopeSpec SS;
1165  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1166  QualType ClassTy
1167    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1168  SS.setScopeRep(
1169    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1170  ActOnCXXEnterDeclaratorScope(S, SS);
1171}
1172
1173/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1174/// C++ method declaration. We're (re-)introducing the given
1175/// function parameter into scope for use in parsing later parts of
1176/// the method declaration. For example, we could see an
1177/// ActOnParamDefaultArgument event for this parameter.
1178void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1179  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1180
1181  // If this parameter has an unparsed default argument, clear it out
1182  // to make way for the parsed default argument.
1183  if (Param->hasUnparsedDefaultArg())
1184    Param->setDefaultArg(0);
1185
1186  S->AddDecl(DeclPtrTy::make(Param));
1187  if (Param->getDeclName())
1188    IdResolver.AddDecl(Param);
1189}
1190
1191/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1192/// processing the delayed method declaration for Method. The method
1193/// declaration is now considered finished. There may be a separate
1194/// ActOnStartOfFunctionDef action later (not necessarily
1195/// immediately!) for this method, if it was also defined inside the
1196/// class body.
1197void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1198  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1199  CXXScopeSpec SS;
1200  QualType ClassTy
1201    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1202  SS.setScopeRep(
1203    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1204  ActOnCXXExitDeclaratorScope(S, SS);
1205
1206  // Now that we have our default arguments, check the constructor
1207  // again. It could produce additional diagnostics or affect whether
1208  // the class has implicitly-declared destructors, among other
1209  // things.
1210  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
1211    if (CheckConstructor(Constructor))
1212      Constructor->setInvalidDecl();
1213  }
1214
1215  // Check the default arguments, which we may have added.
1216  if (!Method->isInvalidDecl())
1217    CheckCXXDefaultArguments(Method);
1218}
1219
1220/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1221/// the well-formedness of the constructor declarator @p D with type @p
1222/// R. If there are any errors in the declarator, this routine will
1223/// emit diagnostics and return true. Otherwise, it will return
1224/// false. Either way, the type @p R will be updated to reflect a
1225/// well-formed type for the constructor.
1226bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
1227                                      FunctionDecl::StorageClass& SC) {
1228  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1229  bool isInvalid = false;
1230
1231  // C++ [class.ctor]p3:
1232  //   A constructor shall not be virtual (10.3) or static (9.4). A
1233  //   constructor can be invoked for a const, volatile or const
1234  //   volatile object. A constructor shall not be declared const,
1235  //   volatile, or const volatile (9.3.2).
1236  if (isVirtual) {
1237    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1238      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1239      << SourceRange(D.getIdentifierLoc());
1240    isInvalid = true;
1241  }
1242  if (SC == FunctionDecl::Static) {
1243    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1244      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1245      << SourceRange(D.getIdentifierLoc());
1246    isInvalid = true;
1247    SC = FunctionDecl::None;
1248  }
1249  if (D.getDeclSpec().hasTypeSpecifier()) {
1250    // Constructors don't have return types, but the parser will
1251    // happily parse something like:
1252    //
1253    //   class X {
1254    //     float X(float);
1255    //   };
1256    //
1257    // The return type will be eliminated later.
1258    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1259      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1260      << SourceRange(D.getIdentifierLoc());
1261  }
1262  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1263    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1264    if (FTI.TypeQuals & QualType::Const)
1265      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1266        << "const" << SourceRange(D.getIdentifierLoc());
1267    if (FTI.TypeQuals & QualType::Volatile)
1268      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1269        << "volatile" << SourceRange(D.getIdentifierLoc());
1270    if (FTI.TypeQuals & QualType::Restrict)
1271      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1272        << "restrict" << SourceRange(D.getIdentifierLoc());
1273  }
1274
1275  // Rebuild the function type "R" without any type qualifiers (in
1276  // case any of the errors above fired) and with "void" as the
1277  // return type, since constructors don't have return types. We
1278  // *always* have to do this, because GetTypeForDeclarator will
1279  // put in a result type of "int" when none was specified.
1280  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1281  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1282                              Proto->getNumArgs(),
1283                              Proto->isVariadic(),
1284                              0);
1285
1286  return isInvalid;
1287}
1288
1289/// CheckConstructor - Checks a fully-formed constructor for
1290/// well-formedness, issuing any diagnostics required. Returns true if
1291/// the constructor declarator is invalid.
1292bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1293  CXXRecordDecl *ClassDecl
1294    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1295  if (!ClassDecl)
1296    return true;
1297
1298  bool Invalid = Constructor->isInvalidDecl();
1299
1300  // C++ [class.copy]p3:
1301  //   A declaration of a constructor for a class X is ill-formed if
1302  //   its first parameter is of type (optionally cv-qualified) X and
1303  //   either there are no other parameters or else all other
1304  //   parameters have default arguments.
1305  if (!Constructor->isInvalidDecl() &&
1306      ((Constructor->getNumParams() == 1) ||
1307       (Constructor->getNumParams() > 1 &&
1308        Constructor->getParamDecl(1)->getDefaultArg() != 0))) {
1309    QualType ParamType = Constructor->getParamDecl(0)->getType();
1310    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1311    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1312      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1313        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1314      Invalid = true;
1315    }
1316  }
1317
1318  // Notify the class that we've added a constructor.
1319  ClassDecl->addedConstructor(Context, Constructor);
1320
1321  return Invalid;
1322}
1323
1324/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1325/// the well-formednes of the destructor declarator @p D with type @p
1326/// R. If there are any errors in the declarator, this routine will
1327/// emit diagnostics and return true. Otherwise, it will return
1328/// false. Either way, the type @p R will be updated to reflect a
1329/// well-formed type for the destructor.
1330bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1331                                     FunctionDecl::StorageClass& SC) {
1332  bool isInvalid = false;
1333
1334  // C++ [class.dtor]p1:
1335  //   [...] A typedef-name that names a class is a class-name
1336  //   (7.1.3); however, a typedef-name that names a class shall not
1337  //   be used as the identifier in the declarator for a destructor
1338  //   declaration.
1339  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1340  if (DeclaratorType->getAsTypedefType()) {
1341    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1342      << DeclaratorType;
1343    isInvalid = true;
1344  }
1345
1346  // C++ [class.dtor]p2:
1347  //   A destructor is used to destroy objects of its class type. A
1348  //   destructor takes no parameters, and no return type can be
1349  //   specified for it (not even void). The address of a destructor
1350  //   shall not be taken. A destructor shall not be static. A
1351  //   destructor can be invoked for a const, volatile or const
1352  //   volatile object. A destructor shall not be declared const,
1353  //   volatile or const volatile (9.3.2).
1354  if (SC == FunctionDecl::Static) {
1355    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1356      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1357      << SourceRange(D.getIdentifierLoc());
1358    isInvalid = true;
1359    SC = FunctionDecl::None;
1360  }
1361  if (D.getDeclSpec().hasTypeSpecifier()) {
1362    // Destructors don't have return types, but the parser will
1363    // happily parse something like:
1364    //
1365    //   class X {
1366    //     float ~X();
1367    //   };
1368    //
1369    // The return type will be eliminated later.
1370    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1371      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1372      << SourceRange(D.getIdentifierLoc());
1373  }
1374  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1375    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1376    if (FTI.TypeQuals & QualType::Const)
1377      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1378        << "const" << SourceRange(D.getIdentifierLoc());
1379    if (FTI.TypeQuals & QualType::Volatile)
1380      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1381        << "volatile" << SourceRange(D.getIdentifierLoc());
1382    if (FTI.TypeQuals & QualType::Restrict)
1383      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1384        << "restrict" << SourceRange(D.getIdentifierLoc());
1385  }
1386
1387  // Make sure we don't have any parameters.
1388  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1389    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1390
1391    // Delete the parameters.
1392    D.getTypeObject(0).Fun.freeArgs();
1393  }
1394
1395  // Make sure the destructor isn't variadic.
1396  if (R->getAsFunctionProtoType()->isVariadic())
1397    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1398
1399  // Rebuild the function type "R" without any type qualifiers or
1400  // parameters (in case any of the errors above fired) and with
1401  // "void" as the return type, since destructors don't have return
1402  // types. We *always* have to do this, because GetTypeForDeclarator
1403  // will put in a result type of "int" when none was specified.
1404  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1405
1406  return isInvalid;
1407}
1408
1409/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1410/// well-formednes of the conversion function declarator @p D with
1411/// type @p R. If there are any errors in the declarator, this routine
1412/// will emit diagnostics and return true. Otherwise, it will return
1413/// false. Either way, the type @p R will be updated to reflect a
1414/// well-formed type for the conversion operator.
1415bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1416                                     FunctionDecl::StorageClass& SC) {
1417  bool isInvalid = false;
1418
1419  // C++ [class.conv.fct]p1:
1420  //   Neither parameter types nor return type can be specified. The
1421  //   type of a conversion function (8.3.5) is “function taking no
1422  //   parameter returning conversion-type-id.”
1423  if (SC == FunctionDecl::Static) {
1424    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1425      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1426      << SourceRange(D.getIdentifierLoc());
1427    isInvalid = true;
1428    SC = FunctionDecl::None;
1429  }
1430  if (D.getDeclSpec().hasTypeSpecifier()) {
1431    // Conversion functions don't have return types, but the parser will
1432    // happily parse something like:
1433    //
1434    //   class X {
1435    //     float operator bool();
1436    //   };
1437    //
1438    // The return type will be changed later anyway.
1439    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1440      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1441      << SourceRange(D.getIdentifierLoc());
1442  }
1443
1444  // Make sure we don't have any parameters.
1445  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1446    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1447
1448    // Delete the parameters.
1449    D.getTypeObject(0).Fun.freeArgs();
1450  }
1451
1452  // Make sure the conversion function isn't variadic.
1453  if (R->getAsFunctionProtoType()->isVariadic())
1454    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1455
1456  // C++ [class.conv.fct]p4:
1457  //   The conversion-type-id shall not represent a function type nor
1458  //   an array type.
1459  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1460  if (ConvType->isArrayType()) {
1461    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1462    ConvType = Context.getPointerType(ConvType);
1463  } else if (ConvType->isFunctionType()) {
1464    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1465    ConvType = Context.getPointerType(ConvType);
1466  }
1467
1468  // Rebuild the function type "R" without any parameters (in case any
1469  // of the errors above fired) and with the conversion type as the
1470  // return type.
1471  R = Context.getFunctionType(ConvType, 0, 0, false,
1472                              R->getAsFunctionProtoType()->getTypeQuals());
1473
1474  // C++0x explicit conversion operators.
1475  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1476    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1477         diag::warn_explicit_conversion_functions)
1478      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1479
1480  return isInvalid;
1481}
1482
1483/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1484/// the declaration of the given C++ conversion function. This routine
1485/// is responsible for recording the conversion function in the C++
1486/// class, if possible.
1487Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1488  assert(Conversion && "Expected to receive a conversion function declaration");
1489
1490  // Set the lexical context of this conversion function
1491  Conversion->setLexicalDeclContext(CurContext);
1492
1493  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1494
1495  // Make sure we aren't redeclaring the conversion function.
1496  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1497
1498  // C++ [class.conv.fct]p1:
1499  //   [...] A conversion function is never used to convert a
1500  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1501  //   same object type (or a reference to it), to a (possibly
1502  //   cv-qualified) base class of that type (or a reference to it),
1503  //   or to (possibly cv-qualified) void.
1504  // FIXME: Suppress this warning if the conversion function ends up
1505  // being a virtual function that overrides a virtual function in a
1506  // base class.
1507  QualType ClassType
1508    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1509  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1510    ConvType = ConvTypeRef->getPointeeType();
1511  if (ConvType->isRecordType()) {
1512    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1513    if (ConvType == ClassType)
1514      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1515        << ClassType;
1516    else if (IsDerivedFrom(ClassType, ConvType))
1517      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1518        <<  ClassType << ConvType;
1519  } else if (ConvType->isVoidType()) {
1520    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1521      << ClassType << ConvType;
1522  }
1523
1524  if (Conversion->getPreviousDeclaration()) {
1525    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1526    for (OverloadedFunctionDecl::function_iterator
1527           Conv = Conversions->function_begin(),
1528           ConvEnd = Conversions->function_end();
1529         Conv != ConvEnd; ++Conv) {
1530      if (*Conv == Conversion->getPreviousDeclaration()) {
1531        *Conv = Conversion;
1532        return DeclPtrTy::make(Conversion);
1533      }
1534    }
1535    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1536  } else
1537    ClassDecl->addConversionFunction(Context, Conversion);
1538
1539  return DeclPtrTy::make(Conversion);
1540}
1541
1542//===----------------------------------------------------------------------===//
1543// Namespace Handling
1544//===----------------------------------------------------------------------===//
1545
1546/// ActOnStartNamespaceDef - This is called at the start of a namespace
1547/// definition.
1548Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1549                                             SourceLocation IdentLoc,
1550                                             IdentifierInfo *II,
1551                                             SourceLocation LBrace) {
1552  NamespaceDecl *Namespc =
1553      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1554  Namespc->setLBracLoc(LBrace);
1555
1556  Scope *DeclRegionScope = NamespcScope->getParent();
1557
1558  if (II) {
1559    // C++ [namespace.def]p2:
1560    // The identifier in an original-namespace-definition shall not have been
1561    // previously defined in the declarative region in which the
1562    // original-namespace-definition appears. The identifier in an
1563    // original-namespace-definition is the name of the namespace. Subsequently
1564    // in that declarative region, it is treated as an original-namespace-name.
1565
1566    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1567                                     true);
1568
1569    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1570      // This is an extended namespace definition.
1571      // Attach this namespace decl to the chain of extended namespace
1572      // definitions.
1573      OrigNS->setNextNamespace(Namespc);
1574      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1575
1576      // Remove the previous declaration from the scope.
1577      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1578        IdResolver.RemoveDecl(OrigNS);
1579        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1580      }
1581    } else if (PrevDecl) {
1582      // This is an invalid name redefinition.
1583      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1584       << Namespc->getDeclName();
1585      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1586      Namespc->setInvalidDecl();
1587      // Continue on to push Namespc as current DeclContext and return it.
1588    }
1589
1590    PushOnScopeChains(Namespc, DeclRegionScope);
1591  } else {
1592    // FIXME: Handle anonymous namespaces
1593  }
1594
1595  // Although we could have an invalid decl (i.e. the namespace name is a
1596  // redefinition), push it as current DeclContext and try to continue parsing.
1597  // FIXME: We should be able to push Namespc here, so that the
1598  // each DeclContext for the namespace has the declarations
1599  // that showed up in that particular namespace definition.
1600  PushDeclContext(NamespcScope, Namespc);
1601  return DeclPtrTy::make(Namespc);
1602}
1603
1604/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1605/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1606void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1607  Decl *Dcl = D.getAs<Decl>();
1608  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1609  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1610  Namespc->setRBracLoc(RBrace);
1611  PopDeclContext();
1612}
1613
1614Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1615                                          SourceLocation UsingLoc,
1616                                          SourceLocation NamespcLoc,
1617                                          const CXXScopeSpec &SS,
1618                                          SourceLocation IdentLoc,
1619                                          IdentifierInfo *NamespcName,
1620                                          AttributeList *AttrList) {
1621  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1622  assert(NamespcName && "Invalid NamespcName.");
1623  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1624  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1625
1626  UsingDirectiveDecl *UDir = 0;
1627
1628  // Lookup namespace name.
1629  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1630                                    LookupNamespaceName, false);
1631  if (R.isAmbiguous()) {
1632    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1633    return DeclPtrTy();
1634  }
1635  if (NamedDecl *NS = R) {
1636    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1637    // C++ [namespace.udir]p1:
1638    //   A using-directive specifies that the names in the nominated
1639    //   namespace can be used in the scope in which the
1640    //   using-directive appears after the using-directive. During
1641    //   unqualified name lookup (3.4.1), the names appear as if they
1642    //   were declared in the nearest enclosing namespace which
1643    //   contains both the using-directive and the nominated
1644    //   namespace. [Note: in this context, “contains” means “contains
1645    //   directly or indirectly”. ]
1646
1647    // Find enclosing context containing both using-directive and
1648    // nominated namespace.
1649    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1650    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1651      CommonAncestor = CommonAncestor->getParent();
1652
1653    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1654                                      NamespcLoc, IdentLoc,
1655                                      cast<NamespaceDecl>(NS),
1656                                      CommonAncestor);
1657    PushUsingDirective(S, UDir);
1658  } else {
1659    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1660  }
1661
1662  // FIXME: We ignore attributes for now.
1663  delete AttrList;
1664  return DeclPtrTy::make(UDir);
1665}
1666
1667void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1668  // If scope has associated entity, then using directive is at namespace
1669  // or translation unit scope. We add UsingDirectiveDecls, into
1670  // it's lookup structure.
1671  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1672    Ctx->addDecl(UDir);
1673  else
1674    // Otherwise it is block-sope. using-directives will affect lookup
1675    // only to the end of scope.
1676    S->PushUsingDirective(DeclPtrTy::make(UDir));
1677}
1678
1679Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1680                                             SourceLocation NamespaceLoc,
1681                                             SourceLocation AliasLoc,
1682                                             IdentifierInfo *Alias,
1683                                             const CXXScopeSpec &SS,
1684                                             SourceLocation IdentLoc,
1685                                             IdentifierInfo *Ident) {
1686
1687  // Check if we have a previous declaration with the same name.
1688  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
1689    // FIXME: If this is a namespace alias decl, and it points to the same
1690    // namespace, we shouldn't warn.
1691    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
1692      diag::err_redefinition_different_kind;
1693    Diag(AliasLoc, DiagID) << Alias;
1694    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1695    return DeclPtrTy();
1696  }
1697
1698  // Lookup the namespace name.
1699  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
1700  if (R.isAmbiguous()) {
1701    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
1702    return DeclPtrTy();
1703  }
1704
1705  if (!R) {
1706    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
1707    return DeclPtrTy();
1708  }
1709
1710  NamespaceAliasDecl *AliasDecl =
1711    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, Alias,
1712                               IdentLoc, R);
1713
1714  CurContext->addDecl(AliasDecl);
1715  return DeclPtrTy::make(AliasDecl);
1716}
1717
1718/// AddCXXDirectInitializerToDecl - This action is called immediately after
1719/// ActOnDeclarator, when a C++ direct initializer is present.
1720/// e.g: "int x(1);"
1721void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
1722                                         SourceLocation LParenLoc,
1723                                         MultiExprArg Exprs,
1724                                         SourceLocation *CommaLocs,
1725                                         SourceLocation RParenLoc) {
1726  unsigned NumExprs = Exprs.size();
1727  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
1728  Decl *RealDecl = Dcl.getAs<Decl>();
1729
1730  // If there is no declaration, there was an error parsing it.  Just ignore
1731  // the initializer.
1732  if (RealDecl == 0)
1733    return;
1734
1735  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1736  if (!VDecl) {
1737    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1738    RealDecl->setInvalidDecl();
1739    return;
1740  }
1741
1742  // FIXME: Need to handle dependent types and expressions here.
1743
1744  // We will treat direct-initialization as a copy-initialization:
1745  //    int x(1);  -as-> int x = 1;
1746  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1747  //
1748  // Clients that want to distinguish between the two forms, can check for
1749  // direct initializer using VarDecl::hasCXXDirectInitializer().
1750  // A major benefit is that clients that don't particularly care about which
1751  // exactly form was it (like the CodeGen) can handle both cases without
1752  // special case code.
1753
1754  // C++ 8.5p11:
1755  // The form of initialization (using parentheses or '=') is generally
1756  // insignificant, but does matter when the entity being initialized has a
1757  // class type.
1758  QualType DeclInitType = VDecl->getType();
1759  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1760    DeclInitType = Array->getElementType();
1761
1762  // FIXME: This isn't the right place to complete the type.
1763  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
1764                          diag::err_typecheck_decl_incomplete_type)) {
1765    VDecl->setInvalidDecl();
1766    return;
1767  }
1768
1769  if (VDecl->getType()->isRecordType()) {
1770    CXXConstructorDecl *Constructor
1771      = PerformInitializationByConstructor(DeclInitType,
1772                                           (Expr **)Exprs.get(), NumExprs,
1773                                           VDecl->getLocation(),
1774                                           SourceRange(VDecl->getLocation(),
1775                                                       RParenLoc),
1776                                           VDecl->getDeclName(),
1777                                           IK_Direct);
1778    if (!Constructor)
1779      RealDecl->setInvalidDecl();
1780    else
1781      Exprs.release();
1782
1783    // Let clients know that initialization was done with a direct
1784    // initializer.
1785    VDecl->setCXXDirectInitializer(true);
1786
1787    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1788    // the initializer.
1789    return;
1790  }
1791
1792  if (NumExprs > 1) {
1793    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1794      << SourceRange(VDecl->getLocation(), RParenLoc);
1795    RealDecl->setInvalidDecl();
1796    return;
1797  }
1798
1799  // Let clients know that initialization was done with a direct initializer.
1800  VDecl->setCXXDirectInitializer(true);
1801
1802  assert(NumExprs == 1 && "Expected 1 expression");
1803  // Set the init expression, handles conversions.
1804  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
1805                       /*DirectInit=*/true);
1806}
1807
1808/// PerformInitializationByConstructor - Perform initialization by
1809/// constructor (C++ [dcl.init]p14), which may occur as part of
1810/// direct-initialization or copy-initialization. We are initializing
1811/// an object of type @p ClassType with the given arguments @p
1812/// Args. @p Loc is the location in the source code where the
1813/// initializer occurs (e.g., a declaration, member initializer,
1814/// functional cast, etc.) while @p Range covers the whole
1815/// initialization. @p InitEntity is the entity being initialized,
1816/// which may by the name of a declaration or a type. @p Kind is the
1817/// kind of initialization we're performing, which affects whether
1818/// explicit constructors will be considered. When successful, returns
1819/// the constructor that will be used to perform the initialization;
1820/// when the initialization fails, emits a diagnostic and returns
1821/// null.
1822CXXConstructorDecl *
1823Sema::PerformInitializationByConstructor(QualType ClassType,
1824                                         Expr **Args, unsigned NumArgs,
1825                                         SourceLocation Loc, SourceRange Range,
1826                                         DeclarationName InitEntity,
1827                                         InitializationKind Kind) {
1828  const RecordType *ClassRec = ClassType->getAsRecordType();
1829  assert(ClassRec && "Can only initialize a class type here");
1830
1831  // C++ [dcl.init]p14:
1832  //
1833  //   If the initialization is direct-initialization, or if it is
1834  //   copy-initialization where the cv-unqualified version of the
1835  //   source type is the same class as, or a derived class of, the
1836  //   class of the destination, constructors are considered. The
1837  //   applicable constructors are enumerated (13.3.1.3), and the
1838  //   best one is chosen through overload resolution (13.3). The
1839  //   constructor so selected is called to initialize the object,
1840  //   with the initializer expression(s) as its argument(s). If no
1841  //   constructor applies, or the overload resolution is ambiguous,
1842  //   the initialization is ill-formed.
1843  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1844  OverloadCandidateSet CandidateSet;
1845
1846  // Add constructors to the overload set.
1847  DeclarationName ConstructorName
1848    = Context.DeclarationNames.getCXXConstructorName(
1849                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1850  DeclContext::lookup_const_iterator Con, ConEnd;
1851  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1852       Con != ConEnd; ++Con) {
1853    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1854    if ((Kind == IK_Direct) ||
1855        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1856        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1857      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1858  }
1859
1860  // FIXME: When we decide not to synthesize the implicitly-declared
1861  // constructors, we'll need to make them appear here.
1862
1863  OverloadCandidateSet::iterator Best;
1864  switch (BestViableFunction(CandidateSet, Best)) {
1865  case OR_Success:
1866    // We found a constructor. Return it.
1867    return cast<CXXConstructorDecl>(Best->Function);
1868
1869  case OR_No_Viable_Function:
1870    if (InitEntity)
1871      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1872        << InitEntity << Range;
1873    else
1874      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1875        << ClassType << Range;
1876    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1877    return 0;
1878
1879  case OR_Ambiguous:
1880    if (InitEntity)
1881      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1882    else
1883      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1884    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1885    return 0;
1886
1887  case OR_Deleted:
1888    if (InitEntity)
1889      Diag(Loc, diag::err_ovl_deleted_init)
1890        << Best->Function->isDeleted()
1891        << InitEntity << Range;
1892    else
1893      Diag(Loc, diag::err_ovl_deleted_init)
1894        << Best->Function->isDeleted()
1895        << InitEntity << Range;
1896    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1897    return 0;
1898  }
1899
1900  return 0;
1901}
1902
1903/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1904/// determine whether they are reference-related,
1905/// reference-compatible, reference-compatible with added
1906/// qualification, or incompatible, for use in C++ initialization by
1907/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1908/// type, and the first type (T1) is the pointee type of the reference
1909/// type being initialized.
1910Sema::ReferenceCompareResult
1911Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1912                                   bool& DerivedToBase) {
1913  assert(!T1->isReferenceType() &&
1914    "T1 must be the pointee type of the reference type");
1915  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1916
1917  T1 = Context.getCanonicalType(T1);
1918  T2 = Context.getCanonicalType(T2);
1919  QualType UnqualT1 = T1.getUnqualifiedType();
1920  QualType UnqualT2 = T2.getUnqualifiedType();
1921
1922  // C++ [dcl.init.ref]p4:
1923  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1924  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1925  //   T1 is a base class of T2.
1926  if (UnqualT1 == UnqualT2)
1927    DerivedToBase = false;
1928  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1929    DerivedToBase = true;
1930  else
1931    return Ref_Incompatible;
1932
1933  // At this point, we know that T1 and T2 are reference-related (at
1934  // least).
1935
1936  // C++ [dcl.init.ref]p4:
1937  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1938  //   reference-related to T2 and cv1 is the same cv-qualification
1939  //   as, or greater cv-qualification than, cv2. For purposes of
1940  //   overload resolution, cases for which cv1 is greater
1941  //   cv-qualification than cv2 are identified as
1942  //   reference-compatible with added qualification (see 13.3.3.2).
1943  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1944    return Ref_Compatible;
1945  else if (T1.isMoreQualifiedThan(T2))
1946    return Ref_Compatible_With_Added_Qualification;
1947  else
1948    return Ref_Related;
1949}
1950
1951/// CheckReferenceInit - Check the initialization of a reference
1952/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1953/// the initializer (either a simple initializer or an initializer
1954/// list), and DeclType is the type of the declaration. When ICS is
1955/// non-null, this routine will compute the implicit conversion
1956/// sequence according to C++ [over.ics.ref] and will not produce any
1957/// diagnostics; when ICS is null, it will emit diagnostics when any
1958/// errors are found. Either way, a return value of true indicates
1959/// that there was a failure, a return value of false indicates that
1960/// the reference initialization succeeded.
1961///
1962/// When @p SuppressUserConversions, user-defined conversions are
1963/// suppressed.
1964/// When @p AllowExplicit, we also permit explicit user-defined
1965/// conversion functions.
1966bool
1967Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1968                         ImplicitConversionSequence *ICS,
1969                         bool SuppressUserConversions,
1970                         bool AllowExplicit) {
1971  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1972
1973  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1974  QualType T2 = Init->getType();
1975
1976  // If the initializer is the address of an overloaded function, try
1977  // to resolve the overloaded function. If all goes well, T2 is the
1978  // type of the resulting function.
1979  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
1980    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1981                                                          ICS != 0);
1982    if (Fn) {
1983      // Since we're performing this reference-initialization for
1984      // real, update the initializer with the resulting function.
1985      if (!ICS) {
1986        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1987          return true;
1988
1989        FixOverloadedFunctionReference(Init, Fn);
1990      }
1991
1992      T2 = Fn->getType();
1993    }
1994  }
1995
1996  // Compute some basic properties of the types and the initializer.
1997  bool isRValRef = DeclType->isRValueReferenceType();
1998  bool DerivedToBase = false;
1999  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
2000  ReferenceCompareResult RefRelationship
2001    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2002
2003  // Most paths end in a failed conversion.
2004  if (ICS)
2005    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2006
2007  // C++ [dcl.init.ref]p5:
2008  //   A reference to type “cv1 T1” is initialized by an expression
2009  //   of type “cv2 T2” as follows:
2010
2011  //     -- If the initializer expression
2012
2013  bool BindsDirectly = false;
2014  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2015  //          reference-compatible with “cv2 T2,” or
2016  //
2017  // Note that the bit-field check is skipped if we are just computing
2018  // the implicit conversion sequence (C++ [over.best.ics]p2).
2019  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
2020      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2021    BindsDirectly = true;
2022
2023    // Rvalue references cannot bind to lvalues (N2812).
2024    if (isRValRef) {
2025      if (!ICS)
2026        Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2027          << Init->getSourceRange();
2028      return true;
2029    }
2030
2031    if (ICS) {
2032      // C++ [over.ics.ref]p1:
2033      //   When a parameter of reference type binds directly (8.5.3)
2034      //   to an argument expression, the implicit conversion sequence
2035      //   is the identity conversion, unless the argument expression
2036      //   has a type that is a derived class of the parameter type,
2037      //   in which case the implicit conversion sequence is a
2038      //   derived-to-base Conversion (13.3.3.1).
2039      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2040      ICS->Standard.First = ICK_Identity;
2041      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2042      ICS->Standard.Third = ICK_Identity;
2043      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2044      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2045      ICS->Standard.ReferenceBinding = true;
2046      ICS->Standard.DirectBinding = true;
2047
2048      // Nothing more to do: the inaccessibility/ambiguity check for
2049      // derived-to-base conversions is suppressed when we're
2050      // computing the implicit conversion sequence (C++
2051      // [over.best.ics]p2).
2052      return false;
2053    } else {
2054      // Perform the conversion.
2055      // FIXME: Binding to a subobject of the lvalue is going to require
2056      // more AST annotation than this.
2057      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2058    }
2059  }
2060
2061  //       -- has a class type (i.e., T2 is a class type) and can be
2062  //          implicitly converted to an lvalue of type “cv3 T3,”
2063  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2064  //          92) (this conversion is selected by enumerating the
2065  //          applicable conversion functions (13.3.1.6) and choosing
2066  //          the best one through overload resolution (13.3)),
2067  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2068    // FIXME: Look for conversions in base classes!
2069    CXXRecordDecl *T2RecordDecl
2070      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2071
2072    OverloadCandidateSet CandidateSet;
2073    OverloadedFunctionDecl *Conversions
2074      = T2RecordDecl->getConversionFunctions();
2075    for (OverloadedFunctionDecl::function_iterator Func
2076           = Conversions->function_begin();
2077         Func != Conversions->function_end(); ++Func) {
2078      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2079
2080      // If the conversion function doesn't return a reference type,
2081      // it can't be considered for this conversion.
2082      if (Conv->getConversionType()->isLValueReferenceType() &&
2083          (AllowExplicit || !Conv->isExplicit()))
2084        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2085    }
2086
2087    OverloadCandidateSet::iterator Best;
2088    switch (BestViableFunction(CandidateSet, Best)) {
2089    case OR_Success:
2090      // This is a direct binding.
2091      BindsDirectly = true;
2092
2093      if (ICS) {
2094        // C++ [over.ics.ref]p1:
2095        //
2096        //   [...] If the parameter binds directly to the result of
2097        //   applying a conversion function to the argument
2098        //   expression, the implicit conversion sequence is a
2099        //   user-defined conversion sequence (13.3.3.1.2), with the
2100        //   second standard conversion sequence either an identity
2101        //   conversion or, if the conversion function returns an
2102        //   entity of a type that is a derived class of the parameter
2103        //   type, a derived-to-base Conversion.
2104        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2105        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2106        ICS->UserDefined.After = Best->FinalConversion;
2107        ICS->UserDefined.ConversionFunction = Best->Function;
2108        assert(ICS->UserDefined.After.ReferenceBinding &&
2109               ICS->UserDefined.After.DirectBinding &&
2110               "Expected a direct reference binding!");
2111        return false;
2112      } else {
2113        // Perform the conversion.
2114        // FIXME: Binding to a subobject of the lvalue is going to require
2115        // more AST annotation than this.
2116        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2117      }
2118      break;
2119
2120    case OR_Ambiguous:
2121      assert(false && "Ambiguous reference binding conversions not implemented.");
2122      return true;
2123
2124    case OR_No_Viable_Function:
2125    case OR_Deleted:
2126      // There was no suitable conversion, or we found a deleted
2127      // conversion; continue with other checks.
2128      break;
2129    }
2130  }
2131
2132  if (BindsDirectly) {
2133    // C++ [dcl.init.ref]p4:
2134    //   [...] In all cases where the reference-related or
2135    //   reference-compatible relationship of two types is used to
2136    //   establish the validity of a reference binding, and T1 is a
2137    //   base class of T2, a program that necessitates such a binding
2138    //   is ill-formed if T1 is an inaccessible (clause 11) or
2139    //   ambiguous (10.2) base class of T2.
2140    //
2141    // Note that we only check this condition when we're allowed to
2142    // complain about errors, because we should not be checking for
2143    // ambiguity (or inaccessibility) unless the reference binding
2144    // actually happens.
2145    if (DerivedToBase)
2146      return CheckDerivedToBaseConversion(T2, T1,
2147                                          Init->getSourceRange().getBegin(),
2148                                          Init->getSourceRange());
2149    else
2150      return false;
2151  }
2152
2153  //     -- Otherwise, the reference shall be to a non-volatile const
2154  //        type (i.e., cv1 shall be const), or shall be an rvalue reference.
2155  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2156    if (!ICS)
2157      Diag(Init->getSourceRange().getBegin(),
2158           diag::err_not_reference_to_const_init)
2159        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2160        << T2 << Init->getSourceRange();
2161    return true;
2162  }
2163
2164  //       -- If the initializer expression is an rvalue, with T2 a
2165  //          class type, and “cv1 T1” is reference-compatible with
2166  //          “cv2 T2,” the reference is bound in one of the
2167  //          following ways (the choice is implementation-defined):
2168  //
2169  //          -- The reference is bound to the object represented by
2170  //             the rvalue (see 3.10) or to a sub-object within that
2171  //             object.
2172  //
2173  //          -- A temporary of type “cv1 T2” [sic] is created, and
2174  //             a constructor is called to copy the entire rvalue
2175  //             object into the temporary. The reference is bound to
2176  //             the temporary or to a sub-object within the
2177  //             temporary.
2178  //
2179  //          The constructor that would be used to make the copy
2180  //          shall be callable whether or not the copy is actually
2181  //          done.
2182  //
2183  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
2184  // freedom, so we will always take the first option and never build
2185  // a temporary in this case. FIXME: We will, however, have to check
2186  // for the presence of a copy constructor in C++98/03 mode.
2187  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2188      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2189    if (ICS) {
2190      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2191      ICS->Standard.First = ICK_Identity;
2192      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2193      ICS->Standard.Third = ICK_Identity;
2194      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2195      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2196      ICS->Standard.ReferenceBinding = true;
2197      ICS->Standard.DirectBinding = false;
2198    } else {
2199      // FIXME: Binding to a subobject of the rvalue is going to require
2200      // more AST annotation than this.
2201      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2202    }
2203    return false;
2204  }
2205
2206  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2207  //          initialized from the initializer expression using the
2208  //          rules for a non-reference copy initialization (8.5). The
2209  //          reference is then bound to the temporary. If T1 is
2210  //          reference-related to T2, cv1 must be the same
2211  //          cv-qualification as, or greater cv-qualification than,
2212  //          cv2; otherwise, the program is ill-formed.
2213  if (RefRelationship == Ref_Related) {
2214    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2215    // we would be reference-compatible or reference-compatible with
2216    // added qualification. But that wasn't the case, so the reference
2217    // initialization fails.
2218    if (!ICS)
2219      Diag(Init->getSourceRange().getBegin(),
2220           diag::err_reference_init_drops_quals)
2221        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2222        << T2 << Init->getSourceRange();
2223    return true;
2224  }
2225
2226  // If at least one of the types is a class type, the types are not
2227  // related, and we aren't allowed any user conversions, the
2228  // reference binding fails. This case is important for breaking
2229  // recursion, since TryImplicitConversion below will attempt to
2230  // create a temporary through the use of a copy constructor.
2231  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2232      (T1->isRecordType() || T2->isRecordType())) {
2233    if (!ICS)
2234      Diag(Init->getSourceRange().getBegin(),
2235           diag::err_typecheck_convert_incompatible)
2236        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2237    return true;
2238  }
2239
2240  // Actually try to convert the initializer to T1.
2241  if (ICS) {
2242    /// C++ [over.ics.ref]p2:
2243    ///
2244    ///   When a parameter of reference type is not bound directly to
2245    ///   an argument expression, the conversion sequence is the one
2246    ///   required to convert the argument expression to the
2247    ///   underlying type of the reference according to
2248    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
2249    ///   to copy-initializing a temporary of the underlying type with
2250    ///   the argument expression. Any difference in top-level
2251    ///   cv-qualification is subsumed by the initialization itself
2252    ///   and does not constitute a conversion.
2253    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2254    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2255  } else {
2256    return PerformImplicitConversion(Init, T1, "initializing");
2257  }
2258}
2259
2260/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2261/// of this overloaded operator is well-formed. If so, returns false;
2262/// otherwise, emits appropriate diagnostics and returns true.
2263bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2264  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2265         "Expected an overloaded operator declaration");
2266
2267  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2268
2269  // C++ [over.oper]p5:
2270  //   The allocation and deallocation functions, operator new,
2271  //   operator new[], operator delete and operator delete[], are
2272  //   described completely in 3.7.3. The attributes and restrictions
2273  //   found in the rest of this subclause do not apply to them unless
2274  //   explicitly stated in 3.7.3.
2275  // FIXME: Write a separate routine for checking this. For now, just
2276  // allow it.
2277  if (Op == OO_New || Op == OO_Array_New ||
2278      Op == OO_Delete || Op == OO_Array_Delete)
2279    return false;
2280
2281  // C++ [over.oper]p6:
2282  //   An operator function shall either be a non-static member
2283  //   function or be a non-member function and have at least one
2284  //   parameter whose type is a class, a reference to a class, an
2285  //   enumeration, or a reference to an enumeration.
2286  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2287    if (MethodDecl->isStatic())
2288      return Diag(FnDecl->getLocation(),
2289                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2290  } else {
2291    bool ClassOrEnumParam = false;
2292    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2293                                   ParamEnd = FnDecl->param_end();
2294         Param != ParamEnd; ++Param) {
2295      QualType ParamType = (*Param)->getType().getNonReferenceType();
2296      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2297        ClassOrEnumParam = true;
2298        break;
2299      }
2300    }
2301
2302    if (!ClassOrEnumParam)
2303      return Diag(FnDecl->getLocation(),
2304                  diag::err_operator_overload_needs_class_or_enum)
2305        << FnDecl->getDeclName();
2306  }
2307
2308  // C++ [over.oper]p8:
2309  //   An operator function cannot have default arguments (8.3.6),
2310  //   except where explicitly stated below.
2311  //
2312  // Only the function-call operator allows default arguments
2313  // (C++ [over.call]p1).
2314  if (Op != OO_Call) {
2315    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2316         Param != FnDecl->param_end(); ++Param) {
2317      if ((*Param)->hasUnparsedDefaultArg())
2318        return Diag((*Param)->getLocation(),
2319                    diag::err_operator_overload_default_arg)
2320          << FnDecl->getDeclName();
2321      else if (Expr *DefArg = (*Param)->getDefaultArg())
2322        return Diag((*Param)->getLocation(),
2323                    diag::err_operator_overload_default_arg)
2324          << FnDecl->getDeclName() << DefArg->getSourceRange();
2325    }
2326  }
2327
2328  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2329    { false, false, false }
2330#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2331    , { Unary, Binary, MemberOnly }
2332#include "clang/Basic/OperatorKinds.def"
2333  };
2334
2335  bool CanBeUnaryOperator = OperatorUses[Op][0];
2336  bool CanBeBinaryOperator = OperatorUses[Op][1];
2337  bool MustBeMemberOperator = OperatorUses[Op][2];
2338
2339  // C++ [over.oper]p8:
2340  //   [...] Operator functions cannot have more or fewer parameters
2341  //   than the number required for the corresponding operator, as
2342  //   described in the rest of this subclause.
2343  unsigned NumParams = FnDecl->getNumParams()
2344                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2345  if (Op != OO_Call &&
2346      ((NumParams == 1 && !CanBeUnaryOperator) ||
2347       (NumParams == 2 && !CanBeBinaryOperator) ||
2348       (NumParams < 1) || (NumParams > 2))) {
2349    // We have the wrong number of parameters.
2350    unsigned ErrorKind;
2351    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2352      ErrorKind = 2;  // 2 -> unary or binary.
2353    } else if (CanBeUnaryOperator) {
2354      ErrorKind = 0;  // 0 -> unary
2355    } else {
2356      assert(CanBeBinaryOperator &&
2357             "All non-call overloaded operators are unary or binary!");
2358      ErrorKind = 1;  // 1 -> binary
2359    }
2360
2361    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2362      << FnDecl->getDeclName() << NumParams << ErrorKind;
2363  }
2364
2365  // Overloaded operators other than operator() cannot be variadic.
2366  if (Op != OO_Call &&
2367      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2368    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2369      << FnDecl->getDeclName();
2370  }
2371
2372  // Some operators must be non-static member functions.
2373  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2374    return Diag(FnDecl->getLocation(),
2375                diag::err_operator_overload_must_be_member)
2376      << FnDecl->getDeclName();
2377  }
2378
2379  // C++ [over.inc]p1:
2380  //   The user-defined function called operator++ implements the
2381  //   prefix and postfix ++ operator. If this function is a member
2382  //   function with no parameters, or a non-member function with one
2383  //   parameter of class or enumeration type, it defines the prefix
2384  //   increment operator ++ for objects of that type. If the function
2385  //   is a member function with one parameter (which shall be of type
2386  //   int) or a non-member function with two parameters (the second
2387  //   of which shall be of type int), it defines the postfix
2388  //   increment operator ++ for objects of that type.
2389  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2390    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2391    bool ParamIsInt = false;
2392    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2393      ParamIsInt = BT->getKind() == BuiltinType::Int;
2394
2395    if (!ParamIsInt)
2396      return Diag(LastParam->getLocation(),
2397                  diag::err_operator_overload_post_incdec_must_be_int)
2398        << LastParam->getType() << (Op == OO_MinusMinus);
2399  }
2400
2401  // Notify the class if it got an assignment operator.
2402  if (Op == OO_Equal) {
2403    // Would have returned earlier otherwise.
2404    assert(isa<CXXMethodDecl>(FnDecl) &&
2405      "Overloaded = not member, but not filtered.");
2406    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2407    Method->getParent()->addedAssignmentOperator(Context, Method);
2408  }
2409
2410  return false;
2411}
2412
2413/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2414/// linkage specification, including the language and (if present)
2415/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2416/// the location of the language string literal, which is provided
2417/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2418/// the '{' brace. Otherwise, this linkage specification does not
2419/// have any braces.
2420Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
2421                                                     SourceLocation ExternLoc,
2422                                                     SourceLocation LangLoc,
2423                                                     const char *Lang,
2424                                                     unsigned StrSize,
2425                                                     SourceLocation LBraceLoc) {
2426  LinkageSpecDecl::LanguageIDs Language;
2427  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2428    Language = LinkageSpecDecl::lang_c;
2429  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2430    Language = LinkageSpecDecl::lang_cxx;
2431  else {
2432    Diag(LangLoc, diag::err_bad_language);
2433    return DeclPtrTy();
2434  }
2435
2436  // FIXME: Add all the various semantics of linkage specifications
2437
2438  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2439                                               LangLoc, Language,
2440                                               LBraceLoc.isValid());
2441  CurContext->addDecl(D);
2442  PushDeclContext(S, D);
2443  return DeclPtrTy::make(D);
2444}
2445
2446/// ActOnFinishLinkageSpecification - Completely the definition of
2447/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2448/// valid, it's the position of the closing '}' brace in a linkage
2449/// specification that uses braces.
2450Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
2451                                                      DeclPtrTy LinkageSpec,
2452                                                      SourceLocation RBraceLoc) {
2453  if (LinkageSpec)
2454    PopDeclContext();
2455  return LinkageSpec;
2456}
2457
2458/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2459/// handler.
2460Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
2461  QualType ExDeclType = GetTypeForDeclarator(D, S);
2462  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2463
2464  bool Invalid = false;
2465
2466  // Arrays and functions decay.
2467  if (ExDeclType->isArrayType())
2468    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2469  else if (ExDeclType->isFunctionType())
2470    ExDeclType = Context.getPointerType(ExDeclType);
2471
2472  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2473  // The exception-declaration shall not denote a pointer or reference to an
2474  // incomplete type, other than [cv] void*.
2475  // N2844 forbids rvalue references.
2476  if(ExDeclType->isRValueReferenceType()) {
2477    Diag(Begin, diag::err_catch_rvalue_ref) << D.getSourceRange();
2478    Invalid = true;
2479  }
2480  QualType BaseType = ExDeclType;
2481  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2482  unsigned DK = diag::err_catch_incomplete;
2483  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2484    BaseType = Ptr->getPointeeType();
2485    Mode = 1;
2486    DK = diag::err_catch_incomplete_ptr;
2487  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2488    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
2489    BaseType = Ref->getPointeeType();
2490    Mode = 2;
2491    DK = diag::err_catch_incomplete_ref;
2492  }
2493  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
2494      RequireCompleteType(Begin, BaseType, DK))
2495    Invalid = true;
2496
2497  // FIXME: Need to test for ability to copy-construct and destroy the
2498  // exception variable.
2499  // FIXME: Need to check for abstract classes.
2500
2501  IdentifierInfo *II = D.getIdentifier();
2502  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2503    // The scope should be freshly made just for us. There is just no way
2504    // it contains any previous declaration.
2505    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
2506    if (PrevDecl->isTemplateParameter()) {
2507      // Maybe we will complain about the shadowed template parameter.
2508      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2509    }
2510  }
2511
2512  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2513                                    II, ExDeclType, VarDecl::None, Begin);
2514  if (D.getInvalidType() || Invalid)
2515    ExDecl->setInvalidDecl();
2516
2517  if (D.getCXXScopeSpec().isSet()) {
2518    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2519      << D.getCXXScopeSpec().getRange();
2520    ExDecl->setInvalidDecl();
2521  }
2522
2523  // Add the exception declaration into this scope.
2524  S->AddDecl(DeclPtrTy::make(ExDecl));
2525  if (II)
2526    IdResolver.AddDecl(ExDecl);
2527
2528  ProcessDeclAttributes(ExDecl, D);
2529  return DeclPtrTy::make(ExDecl);
2530}
2531
2532Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2533                                                   ExprArg assertexpr,
2534                                                   ExprArg assertmessageexpr) {
2535  Expr *AssertExpr = (Expr *)assertexpr.get();
2536  StringLiteral *AssertMessage =
2537    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2538
2539  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
2540    llvm::APSInt Value(32);
2541    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2542      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2543        AssertExpr->getSourceRange();
2544      return DeclPtrTy();
2545    }
2546
2547    if (Value == 0) {
2548      std::string str(AssertMessage->getStrData(),
2549                      AssertMessage->getByteLength());
2550      Diag(AssertLoc, diag::err_static_assert_failed)
2551        << str << AssertExpr->getSourceRange();
2552    }
2553  }
2554
2555  assertexpr.release();
2556  assertmessageexpr.release();
2557  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2558                                        AssertExpr, AssertMessage);
2559
2560  CurContext->addDecl(Decl);
2561  return DeclPtrTy::make(Decl);
2562}
2563
2564void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
2565  Decl *Dcl = dcl.getAs<Decl>();
2566  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
2567  if (!Fn) {
2568    Diag(DelLoc, diag::err_deleted_non_function);
2569    return;
2570  }
2571  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
2572    Diag(DelLoc, diag::err_deleted_decl_not_first);
2573    Diag(Prev->getLocation(), diag::note_previous_declaration);
2574    // If the declaration wasn't the first, we delete the function anyway for
2575    // recovery.
2576  }
2577  Fn->setDeleted();
2578}
2579