SemaDeclCXX.cpp revision e16da07474c376fbbeda2d4238cf35e2bd664d5a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().MicrosoftExt) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
506  // template has a constexpr specifier then all its declarations shall
507  // contain the constexpr specifier. [Note: An explicit specialization can
508  // differ from the template declaration with respect to the constexpr
509  // specifier. -- end note]
510  //
511  // FIXME: Don't reject changes in constexpr in explicit specializations.
512  if (New->isConstexpr() != Old->isConstexpr()) {
513    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
514      << New << New->isConstexpr();
515    Diag(Old->getLocation(), diag::note_previous_declaration);
516    Invalid = true;
517  }
518
519  if (CheckEquivalentExceptionSpec(Old, New))
520    Invalid = true;
521
522  return Invalid;
523}
524
525/// \brief Merge the exception specifications of two variable declarations.
526///
527/// This is called when there's a redeclaration of a VarDecl. The function
528/// checks if the redeclaration might have an exception specification and
529/// validates compatibility and merges the specs if necessary.
530void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
531  // Shortcut if exceptions are disabled.
532  if (!getLangOptions().CXXExceptions)
533    return;
534
535  assert(Context.hasSameType(New->getType(), Old->getType()) &&
536         "Should only be called if types are otherwise the same.");
537
538  QualType NewType = New->getType();
539  QualType OldType = Old->getType();
540
541  // We're only interested in pointers and references to functions, as well
542  // as pointers to member functions.
543  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
544    NewType = R->getPointeeType();
545    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
546  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
547    NewType = P->getPointeeType();
548    OldType = OldType->getAs<PointerType>()->getPointeeType();
549  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
550    NewType = M->getPointeeType();
551    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
552  }
553
554  if (!NewType->isFunctionProtoType())
555    return;
556
557  // There's lots of special cases for functions. For function pointers, system
558  // libraries are hopefully not as broken so that we don't need these
559  // workarounds.
560  if (CheckEquivalentExceptionSpec(
561        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
562        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
563    New->setInvalidDecl();
564  }
565}
566
567/// CheckCXXDefaultArguments - Verify that the default arguments for a
568/// function declaration are well-formed according to C++
569/// [dcl.fct.default].
570void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
571  unsigned NumParams = FD->getNumParams();
572  unsigned p;
573
574  // Find first parameter with a default argument
575  for (p = 0; p < NumParams; ++p) {
576    ParmVarDecl *Param = FD->getParamDecl(p);
577    if (Param->hasDefaultArg())
578      break;
579  }
580
581  // C++ [dcl.fct.default]p4:
582  //   In a given function declaration, all parameters
583  //   subsequent to a parameter with a default argument shall
584  //   have default arguments supplied in this or previous
585  //   declarations. A default argument shall not be redefined
586  //   by a later declaration (not even to the same value).
587  unsigned LastMissingDefaultArg = 0;
588  for (; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (!Param->hasDefaultArg()) {
591      if (Param->isInvalidDecl())
592        /* We already complained about this parameter. */;
593      else if (Param->getIdentifier())
594        Diag(Param->getLocation(),
595             diag::err_param_default_argument_missing_name)
596          << Param->getIdentifier();
597      else
598        Diag(Param->getLocation(),
599             diag::err_param_default_argument_missing);
600
601      LastMissingDefaultArg = p;
602    }
603  }
604
605  if (LastMissingDefaultArg > 0) {
606    // Some default arguments were missing. Clear out all of the
607    // default arguments up to (and including) the last missing
608    // default argument, so that we leave the function parameters
609    // in a semantically valid state.
610    for (p = 0; p <= LastMissingDefaultArg; ++p) {
611      ParmVarDecl *Param = FD->getParamDecl(p);
612      if (Param->hasDefaultArg()) {
613        Param->setDefaultArg(0);
614      }
615    }
616  }
617}
618
619// CheckConstexprParameterTypes - Check whether a function's parameter types
620// are all literal types. If so, return true. If not, produce a suitable
621// diagnostic depending on @p CCK and return false.
622static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
623                                         Sema::CheckConstexprKind CCK) {
624  unsigned ArgIndex = 0;
625  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
626  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
627       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
628    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
629    SourceLocation ParamLoc = PD->getLocation();
630    if (!(*i)->isDependentType() &&
631        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
632                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
633                                     << ArgIndex+1 << PD->getSourceRange()
634                                     << isa<CXXConstructorDecl>(FD) :
635                                   SemaRef.PDiag(),
636                                   /*AllowIncompleteType*/ true)) {
637      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
638        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
639          << ArgIndex+1 << PD->getSourceRange()
640          << isa<CXXConstructorDecl>(FD) << *i;
641      return false;
642    }
643  }
644  return true;
645}
646
647// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
648// the requirements of a constexpr function declaration or a constexpr
649// constructor declaration. Return true if it does, false if not.
650//
651// This implements C++0x [dcl.constexpr]p3,4, as amended by N3308.
652//
653// \param CCK Specifies whether to produce diagnostics if the function does not
654// satisfy the requirements.
655bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
656                                      CheckConstexprKind CCK) {
657  assert((CCK != CCK_NoteNonConstexprInstantiation ||
658          (NewFD->getTemplateInstantiationPattern() &&
659           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
660         "only constexpr templates can be instantiated non-constexpr");
661
662  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(NewFD)) {
663    // C++0x [dcl.constexpr]p4:
664    //  In the definition of a constexpr constructor, each of the parameter
665    //  types shall be a literal type.
666    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
667      return false;
668
669    //  In addition, either its function-body shall be = delete or = default or
670    //  it shall satisfy the following constraints:
671    //  - the class shall not have any virtual base classes;
672    const CXXRecordDecl *RD = CD->getParent();
673    if (RD->getNumVBases()) {
674      // Note, this is still illegal if the body is = default, since the
675      // implicit body does not satisfy the requirements of a constexpr
676      // constructor. We also reject cases where the body is = delete, as
677      // required by N3308.
678      if (CCK != CCK_Instantiation) {
679        Diag(NewFD->getLocation(),
680             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
681                                    : diag::note_constexpr_tmpl_virtual_base)
682          << RD->isStruct() << RD->getNumVBases();
683        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
684               E = RD->vbases_end(); I != E; ++I)
685          Diag(I->getSourceRange().getBegin(),
686               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
687      }
688      return false;
689    }
690  } else {
691    // C++0x [dcl.constexpr]p3:
692    //  The definition of a constexpr function shall satisfy the following
693    //  constraints:
694    // - it shall not be virtual;
695    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
696    if (Method && Method->isVirtual()) {
697      if (CCK != CCK_Instantiation) {
698        Diag(NewFD->getLocation(),
699             CCK == CCK_Declaration ? diag::err_constexpr_virtual
700                                    : diag::note_constexpr_tmpl_virtual);
701
702        // If it's not obvious why this function is virtual, find an overridden
703        // function which uses the 'virtual' keyword.
704        const CXXMethodDecl *WrittenVirtual = Method;
705        while (!WrittenVirtual->isVirtualAsWritten())
706          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
707        if (WrittenVirtual != Method)
708          Diag(WrittenVirtual->getLocation(),
709               diag::note_overridden_virtual_function);
710      }
711      return false;
712    }
713
714    // - its return type shall be a literal type;
715    QualType RT = NewFD->getResultType();
716    if (!RT->isDependentType() &&
717        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
718                           PDiag(diag::err_constexpr_non_literal_return) :
719                           PDiag(),
720                           /*AllowIncompleteType*/ true)) {
721      if (CCK == CCK_NoteNonConstexprInstantiation)
722        Diag(NewFD->getLocation(),
723             diag::note_constexpr_tmpl_non_literal_return) << RT;
724      return false;
725    }
726
727    // - each of its parameter types shall be a literal type;
728    if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
729      return false;
730  }
731
732  return true;
733}
734
735/// Check the given declaration statement is legal within a constexpr function
736/// body. C++0x [dcl.constexpr]p3,p4.
737///
738/// \return true if the body is OK, false if we have diagnosed a problem.
739static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
740                                   DeclStmt *DS) {
741  // C++0x [dcl.constexpr]p3 and p4:
742  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
743  //  contain only
744  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
745         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
746    switch ((*DclIt)->getKind()) {
747    case Decl::StaticAssert:
748    case Decl::Using:
749    case Decl::UsingShadow:
750    case Decl::UsingDirective:
751    case Decl::UnresolvedUsingTypename:
752      //   - static_assert-declarations
753      //   - using-declarations,
754      //   - using-directives,
755      continue;
756
757    case Decl::Typedef:
758    case Decl::TypeAlias: {
759      //   - typedef declarations and alias-declarations that do not define
760      //     classes or enumerations,
761      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
762      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
763        // Don't allow variably-modified types in constexpr functions.
764        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
765        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
766          << TL.getSourceRange() << TL.getType()
767          << isa<CXXConstructorDecl>(Dcl);
768        return false;
769      }
770      continue;
771    }
772
773    case Decl::Enum:
774    case Decl::CXXRecord:
775      // As an extension, we allow the declaration (but not the definition) of
776      // classes and enumerations in all declarations, not just in typedef and
777      // alias declarations.
778      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
779        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
780          << isa<CXXConstructorDecl>(Dcl);
781        return false;
782      }
783      continue;
784
785    case Decl::Var:
786      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
787        << isa<CXXConstructorDecl>(Dcl);
788      return false;
789
790    default:
791      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
792        << isa<CXXConstructorDecl>(Dcl);
793      return false;
794    }
795  }
796
797  return true;
798}
799
800/// Check that the given field is initialized within a constexpr constructor.
801///
802/// \param Dcl The constexpr constructor being checked.
803/// \param Field The field being checked. This may be a member of an anonymous
804///        struct or union nested within the class being checked.
805/// \param Inits All declarations, including anonymous struct/union members and
806///        indirect members, for which any initialization was provided.
807/// \param Diagnosed Set to true if an error is produced.
808static void CheckConstexprCtorInitializer(Sema &SemaRef,
809                                          const FunctionDecl *Dcl,
810                                          FieldDecl *Field,
811                                          llvm::SmallSet<Decl*, 16> &Inits,
812                                          bool &Diagnosed) {
813  if (!Inits.count(Field)) {
814    if (!Diagnosed) {
815      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
816      Diagnosed = true;
817    }
818    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
819  } else if (Field->isAnonymousStructOrUnion()) {
820    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
821    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
822         I != E; ++I)
823      // If an anonymous union contains an anonymous struct of which any member
824      // is initialized, all members must be initialized.
825      if (!RD->isUnion() || Inits.count(*I))
826        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
827  }
828}
829
830/// Check the body for the given constexpr function declaration only contains
831/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
832///
833/// \return true if the body is OK, false if we have diagnosed a problem.
834bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
835  if (isa<CXXTryStmt>(Body)) {
836    // C++0x [dcl.constexpr]p3:
837    //  The definition of a constexpr function shall satisfy the following
838    //  constraints: [...]
839    // - its function-body shall be = delete, = default, or a
840    //   compound-statement
841    //
842    // C++0x [dcl.constexpr]p4:
843    //  In the definition of a constexpr constructor, [...]
844    // - its function-body shall not be a function-try-block;
845    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
846      << isa<CXXConstructorDecl>(Dcl);
847    return false;
848  }
849
850  // - its function-body shall be [...] a compound-statement that contains only
851  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
852
853  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
854  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
855         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
856    switch ((*BodyIt)->getStmtClass()) {
857    case Stmt::NullStmtClass:
858      //   - null statements,
859      continue;
860
861    case Stmt::DeclStmtClass:
862      //   - static_assert-declarations
863      //   - using-declarations,
864      //   - using-directives,
865      //   - typedef declarations and alias-declarations that do not define
866      //     classes or enumerations,
867      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
868        return false;
869      continue;
870
871    case Stmt::ReturnStmtClass:
872      //   - and exactly one return statement;
873      if (isa<CXXConstructorDecl>(Dcl))
874        break;
875
876      ReturnStmts.push_back((*BodyIt)->getLocStart());
877      // FIXME
878      // - every constructor call and implicit conversion used in initializing
879      //   the return value shall be one of those allowed in a constant
880      //   expression.
881      // Deal with this as part of a general check that the function can produce
882      // a constant expression (for [dcl.constexpr]p5).
883      continue;
884
885    default:
886      break;
887    }
888
889    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
890      << isa<CXXConstructorDecl>(Dcl);
891    return false;
892  }
893
894  if (const CXXConstructorDecl *Constructor
895        = dyn_cast<CXXConstructorDecl>(Dcl)) {
896    const CXXRecordDecl *RD = Constructor->getParent();
897    // - every non-static data member and base class sub-object shall be
898    //   initialized;
899    if (RD->isUnion()) {
900      // DR1359: Exactly one member of a union shall be initialized.
901      if (Constructor->getNumCtorInitializers() == 0) {
902        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
903        return false;
904      }
905    } else if (!Constructor->isDelegatingConstructor()) {
906      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
907
908      // Skip detailed checking if we have enough initializers, and we would
909      // allow at most one initializer per member.
910      bool AnyAnonStructUnionMembers = false;
911      unsigned Fields = 0;
912      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
913           E = RD->field_end(); I != E; ++I, ++Fields) {
914        if ((*I)->isAnonymousStructOrUnion()) {
915          AnyAnonStructUnionMembers = true;
916          break;
917        }
918      }
919      if (AnyAnonStructUnionMembers ||
920          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
921        // Check initialization of non-static data members. Base classes are
922        // always initialized so do not need to be checked. Dependent bases
923        // might not have initializers in the member initializer list.
924        llvm::SmallSet<Decl*, 16> Inits;
925        for (CXXConstructorDecl::init_const_iterator
926               I = Constructor->init_begin(), E = Constructor->init_end();
927             I != E; ++I) {
928          if (FieldDecl *FD = (*I)->getMember())
929            Inits.insert(FD);
930          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
931            Inits.insert(ID->chain_begin(), ID->chain_end());
932        }
933
934        bool Diagnosed = false;
935        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936             E = RD->field_end(); I != E; ++I)
937          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
938        if (Diagnosed)
939          return false;
940      }
941    }
942
943    // FIXME
944    // - every constructor involved in initializing non-static data members
945    //   and base class sub-objects shall be a constexpr constructor;
946    // - every assignment-expression that is an initializer-clause appearing
947    //   directly or indirectly within a brace-or-equal-initializer for
948    //   a non-static data member that is not named by a mem-initializer-id
949    //   shall be a constant expression; and
950    // - every implicit conversion used in converting a constructor argument
951    //   to the corresponding parameter type and converting
952    //   a full-expression to the corresponding member type shall be one of
953    //   those allowed in a constant expression.
954    // Deal with these as part of a general check that the function can produce
955    // a constant expression (for [dcl.constexpr]p5).
956  } else {
957    if (ReturnStmts.empty()) {
958      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
959      return false;
960    }
961    if (ReturnStmts.size() > 1) {
962      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
963      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
964        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
965      return false;
966    }
967  }
968
969  return true;
970}
971
972/// isCurrentClassName - Determine whether the identifier II is the
973/// name of the class type currently being defined. In the case of
974/// nested classes, this will only return true if II is the name of
975/// the innermost class.
976bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
977                              const CXXScopeSpec *SS) {
978  assert(getLangOptions().CPlusPlus && "No class names in C!");
979
980  CXXRecordDecl *CurDecl;
981  if (SS && SS->isSet() && !SS->isInvalid()) {
982    DeclContext *DC = computeDeclContext(*SS, true);
983    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
984  } else
985    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
986
987  if (CurDecl && CurDecl->getIdentifier())
988    return &II == CurDecl->getIdentifier();
989  else
990    return false;
991}
992
993/// \brief Check the validity of a C++ base class specifier.
994///
995/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
996/// and returns NULL otherwise.
997CXXBaseSpecifier *
998Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
999                         SourceRange SpecifierRange,
1000                         bool Virtual, AccessSpecifier Access,
1001                         TypeSourceInfo *TInfo,
1002                         SourceLocation EllipsisLoc) {
1003  QualType BaseType = TInfo->getType();
1004
1005  // C++ [class.union]p1:
1006  //   A union shall not have base classes.
1007  if (Class->isUnion()) {
1008    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1009      << SpecifierRange;
1010    return 0;
1011  }
1012
1013  if (EllipsisLoc.isValid() &&
1014      !TInfo->getType()->containsUnexpandedParameterPack()) {
1015    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1016      << TInfo->getTypeLoc().getSourceRange();
1017    EllipsisLoc = SourceLocation();
1018  }
1019
1020  if (BaseType->isDependentType())
1021    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1022                                          Class->getTagKind() == TTK_Class,
1023                                          Access, TInfo, EllipsisLoc);
1024
1025  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1026
1027  // Base specifiers must be record types.
1028  if (!BaseType->isRecordType()) {
1029    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1030    return 0;
1031  }
1032
1033  // C++ [class.union]p1:
1034  //   A union shall not be used as a base class.
1035  if (BaseType->isUnionType()) {
1036    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1037    return 0;
1038  }
1039
1040  // C++ [class.derived]p2:
1041  //   The class-name in a base-specifier shall not be an incompletely
1042  //   defined class.
1043  if (RequireCompleteType(BaseLoc, BaseType,
1044                          PDiag(diag::err_incomplete_base_class)
1045                            << SpecifierRange)) {
1046    Class->setInvalidDecl();
1047    return 0;
1048  }
1049
1050  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1051  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1052  assert(BaseDecl && "Record type has no declaration");
1053  BaseDecl = BaseDecl->getDefinition();
1054  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1055  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1056  assert(CXXBaseDecl && "Base type is not a C++ type");
1057
1058  // C++ [class]p3:
1059  //   If a class is marked final and it appears as a base-type-specifier in
1060  //   base-clause, the program is ill-formed.
1061  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1062    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1063      << CXXBaseDecl->getDeclName();
1064    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1065      << CXXBaseDecl->getDeclName();
1066    return 0;
1067  }
1068
1069  if (BaseDecl->isInvalidDecl())
1070    Class->setInvalidDecl();
1071
1072  // Create the base specifier.
1073  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1074                                        Class->getTagKind() == TTK_Class,
1075                                        Access, TInfo, EllipsisLoc);
1076}
1077
1078/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1079/// one entry in the base class list of a class specifier, for
1080/// example:
1081///    class foo : public bar, virtual private baz {
1082/// 'public bar' and 'virtual private baz' are each base-specifiers.
1083BaseResult
1084Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1085                         bool Virtual, AccessSpecifier Access,
1086                         ParsedType basetype, SourceLocation BaseLoc,
1087                         SourceLocation EllipsisLoc) {
1088  if (!classdecl)
1089    return true;
1090
1091  AdjustDeclIfTemplate(classdecl);
1092  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1093  if (!Class)
1094    return true;
1095
1096  TypeSourceInfo *TInfo = 0;
1097  GetTypeFromParser(basetype, &TInfo);
1098
1099  if (EllipsisLoc.isInvalid() &&
1100      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1101                                      UPPC_BaseType))
1102    return true;
1103
1104  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1105                                                      Virtual, Access, TInfo,
1106                                                      EllipsisLoc))
1107    return BaseSpec;
1108
1109  return true;
1110}
1111
1112/// \brief Performs the actual work of attaching the given base class
1113/// specifiers to a C++ class.
1114bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1115                                unsigned NumBases) {
1116 if (NumBases == 0)
1117    return false;
1118
1119  // Used to keep track of which base types we have already seen, so
1120  // that we can properly diagnose redundant direct base types. Note
1121  // that the key is always the unqualified canonical type of the base
1122  // class.
1123  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1124
1125  // Copy non-redundant base specifiers into permanent storage.
1126  unsigned NumGoodBases = 0;
1127  bool Invalid = false;
1128  for (unsigned idx = 0; idx < NumBases; ++idx) {
1129    QualType NewBaseType
1130      = Context.getCanonicalType(Bases[idx]->getType());
1131    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1132    if (KnownBaseTypes[NewBaseType]) {
1133      // C++ [class.mi]p3:
1134      //   A class shall not be specified as a direct base class of a
1135      //   derived class more than once.
1136      Diag(Bases[idx]->getSourceRange().getBegin(),
1137           diag::err_duplicate_base_class)
1138        << KnownBaseTypes[NewBaseType]->getType()
1139        << Bases[idx]->getSourceRange();
1140
1141      // Delete the duplicate base class specifier; we're going to
1142      // overwrite its pointer later.
1143      Context.Deallocate(Bases[idx]);
1144
1145      Invalid = true;
1146    } else {
1147      // Okay, add this new base class.
1148      KnownBaseTypes[NewBaseType] = Bases[idx];
1149      Bases[NumGoodBases++] = Bases[idx];
1150    }
1151  }
1152
1153  // Attach the remaining base class specifiers to the derived class.
1154  Class->setBases(Bases, NumGoodBases);
1155
1156  // Delete the remaining (good) base class specifiers, since their
1157  // data has been copied into the CXXRecordDecl.
1158  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1159    Context.Deallocate(Bases[idx]);
1160
1161  return Invalid;
1162}
1163
1164/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1165/// class, after checking whether there are any duplicate base
1166/// classes.
1167void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1168                               unsigned NumBases) {
1169  if (!ClassDecl || !Bases || !NumBases)
1170    return;
1171
1172  AdjustDeclIfTemplate(ClassDecl);
1173  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1174                       (CXXBaseSpecifier**)(Bases), NumBases);
1175}
1176
1177static CXXRecordDecl *GetClassForType(QualType T) {
1178  if (const RecordType *RT = T->getAs<RecordType>())
1179    return cast<CXXRecordDecl>(RT->getDecl());
1180  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1181    return ICT->getDecl();
1182  else
1183    return 0;
1184}
1185
1186/// \brief Determine whether the type \p Derived is a C++ class that is
1187/// derived from the type \p Base.
1188bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1189  if (!getLangOptions().CPlusPlus)
1190    return false;
1191
1192  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1193  if (!DerivedRD)
1194    return false;
1195
1196  CXXRecordDecl *BaseRD = GetClassForType(Base);
1197  if (!BaseRD)
1198    return false;
1199
1200  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1201  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1202}
1203
1204/// \brief Determine whether the type \p Derived is a C++ class that is
1205/// derived from the type \p Base.
1206bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1207  if (!getLangOptions().CPlusPlus)
1208    return false;
1209
1210  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1211  if (!DerivedRD)
1212    return false;
1213
1214  CXXRecordDecl *BaseRD = GetClassForType(Base);
1215  if (!BaseRD)
1216    return false;
1217
1218  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1219}
1220
1221void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1222                              CXXCastPath &BasePathArray) {
1223  assert(BasePathArray.empty() && "Base path array must be empty!");
1224  assert(Paths.isRecordingPaths() && "Must record paths!");
1225
1226  const CXXBasePath &Path = Paths.front();
1227
1228  // We first go backward and check if we have a virtual base.
1229  // FIXME: It would be better if CXXBasePath had the base specifier for
1230  // the nearest virtual base.
1231  unsigned Start = 0;
1232  for (unsigned I = Path.size(); I != 0; --I) {
1233    if (Path[I - 1].Base->isVirtual()) {
1234      Start = I - 1;
1235      break;
1236    }
1237  }
1238
1239  // Now add all bases.
1240  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1241    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1242}
1243
1244/// \brief Determine whether the given base path includes a virtual
1245/// base class.
1246bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1247  for (CXXCastPath::const_iterator B = BasePath.begin(),
1248                                BEnd = BasePath.end();
1249       B != BEnd; ++B)
1250    if ((*B)->isVirtual())
1251      return true;
1252
1253  return false;
1254}
1255
1256/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1257/// conversion (where Derived and Base are class types) is
1258/// well-formed, meaning that the conversion is unambiguous (and
1259/// that all of the base classes are accessible). Returns true
1260/// and emits a diagnostic if the code is ill-formed, returns false
1261/// otherwise. Loc is the location where this routine should point to
1262/// if there is an error, and Range is the source range to highlight
1263/// if there is an error.
1264bool
1265Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1266                                   unsigned InaccessibleBaseID,
1267                                   unsigned AmbigiousBaseConvID,
1268                                   SourceLocation Loc, SourceRange Range,
1269                                   DeclarationName Name,
1270                                   CXXCastPath *BasePath) {
1271  // First, determine whether the path from Derived to Base is
1272  // ambiguous. This is slightly more expensive than checking whether
1273  // the Derived to Base conversion exists, because here we need to
1274  // explore multiple paths to determine if there is an ambiguity.
1275  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1276                     /*DetectVirtual=*/false);
1277  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1278  assert(DerivationOkay &&
1279         "Can only be used with a derived-to-base conversion");
1280  (void)DerivationOkay;
1281
1282  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1283    if (InaccessibleBaseID) {
1284      // Check that the base class can be accessed.
1285      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1286                                   InaccessibleBaseID)) {
1287        case AR_inaccessible:
1288          return true;
1289        case AR_accessible:
1290        case AR_dependent:
1291        case AR_delayed:
1292          break;
1293      }
1294    }
1295
1296    // Build a base path if necessary.
1297    if (BasePath)
1298      BuildBasePathArray(Paths, *BasePath);
1299    return false;
1300  }
1301
1302  // We know that the derived-to-base conversion is ambiguous, and
1303  // we're going to produce a diagnostic. Perform the derived-to-base
1304  // search just one more time to compute all of the possible paths so
1305  // that we can print them out. This is more expensive than any of
1306  // the previous derived-to-base checks we've done, but at this point
1307  // performance isn't as much of an issue.
1308  Paths.clear();
1309  Paths.setRecordingPaths(true);
1310  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1311  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1312  (void)StillOkay;
1313
1314  // Build up a textual representation of the ambiguous paths, e.g.,
1315  // D -> B -> A, that will be used to illustrate the ambiguous
1316  // conversions in the diagnostic. We only print one of the paths
1317  // to each base class subobject.
1318  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1319
1320  Diag(Loc, AmbigiousBaseConvID)
1321  << Derived << Base << PathDisplayStr << Range << Name;
1322  return true;
1323}
1324
1325bool
1326Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1327                                   SourceLocation Loc, SourceRange Range,
1328                                   CXXCastPath *BasePath,
1329                                   bool IgnoreAccess) {
1330  return CheckDerivedToBaseConversion(Derived, Base,
1331                                      IgnoreAccess ? 0
1332                                       : diag::err_upcast_to_inaccessible_base,
1333                                      diag::err_ambiguous_derived_to_base_conv,
1334                                      Loc, Range, DeclarationName(),
1335                                      BasePath);
1336}
1337
1338
1339/// @brief Builds a string representing ambiguous paths from a
1340/// specific derived class to different subobjects of the same base
1341/// class.
1342///
1343/// This function builds a string that can be used in error messages
1344/// to show the different paths that one can take through the
1345/// inheritance hierarchy to go from the derived class to different
1346/// subobjects of a base class. The result looks something like this:
1347/// @code
1348/// struct D -> struct B -> struct A
1349/// struct D -> struct C -> struct A
1350/// @endcode
1351std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1352  std::string PathDisplayStr;
1353  std::set<unsigned> DisplayedPaths;
1354  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1355       Path != Paths.end(); ++Path) {
1356    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1357      // We haven't displayed a path to this particular base
1358      // class subobject yet.
1359      PathDisplayStr += "\n    ";
1360      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1361      for (CXXBasePath::const_iterator Element = Path->begin();
1362           Element != Path->end(); ++Element)
1363        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1364    }
1365  }
1366
1367  return PathDisplayStr;
1368}
1369
1370//===----------------------------------------------------------------------===//
1371// C++ class member Handling
1372//===----------------------------------------------------------------------===//
1373
1374/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1375Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1376                                 SourceLocation ASLoc,
1377                                 SourceLocation ColonLoc) {
1378  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1379  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1380                                                  ASLoc, ColonLoc);
1381  CurContext->addHiddenDecl(ASDecl);
1382  return ASDecl;
1383}
1384
1385/// CheckOverrideControl - Check C++0x override control semantics.
1386void Sema::CheckOverrideControl(const Decl *D) {
1387  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1388  if (!MD || !MD->isVirtual())
1389    return;
1390
1391  if (MD->isDependentContext())
1392    return;
1393
1394  // C++0x [class.virtual]p3:
1395  //   If a virtual function is marked with the virt-specifier override and does
1396  //   not override a member function of a base class,
1397  //   the program is ill-formed.
1398  bool HasOverriddenMethods =
1399    MD->begin_overridden_methods() != MD->end_overridden_methods();
1400  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1401    Diag(MD->getLocation(),
1402                 diag::err_function_marked_override_not_overriding)
1403      << MD->getDeclName();
1404    return;
1405  }
1406}
1407
1408/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1409/// function overrides a virtual member function marked 'final', according to
1410/// C++0x [class.virtual]p3.
1411bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1412                                                  const CXXMethodDecl *Old) {
1413  if (!Old->hasAttr<FinalAttr>())
1414    return false;
1415
1416  Diag(New->getLocation(), diag::err_final_function_overridden)
1417    << New->getDeclName();
1418  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1419  return true;
1420}
1421
1422/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1423/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1424/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1425/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1426/// present but parsing it has been deferred.
1427Decl *
1428Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1429                               MultiTemplateParamsArg TemplateParameterLists,
1430                               Expr *BW, const VirtSpecifiers &VS,
1431                               Expr *InitExpr, bool HasDeferredInit,
1432                               bool IsDefinition) {
1433  const DeclSpec &DS = D.getDeclSpec();
1434  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1435  DeclarationName Name = NameInfo.getName();
1436  SourceLocation Loc = NameInfo.getLoc();
1437
1438  // For anonymous bitfields, the location should point to the type.
1439  if (Loc.isInvalid())
1440    Loc = D.getSourceRange().getBegin();
1441
1442  Expr *BitWidth = static_cast<Expr*>(BW);
1443  Expr *Init = static_cast<Expr*>(InitExpr);
1444
1445  assert(isa<CXXRecordDecl>(CurContext));
1446  assert(!DS.isFriendSpecified());
1447  assert(!Init || !HasDeferredInit);
1448
1449  bool isFunc = D.isDeclarationOfFunction();
1450
1451  // C++ 9.2p6: A member shall not be declared to have automatic storage
1452  // duration (auto, register) or with the extern storage-class-specifier.
1453  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1454  // data members and cannot be applied to names declared const or static,
1455  // and cannot be applied to reference members.
1456  switch (DS.getStorageClassSpec()) {
1457    case DeclSpec::SCS_unspecified:
1458    case DeclSpec::SCS_typedef:
1459    case DeclSpec::SCS_static:
1460      // FALL THROUGH.
1461      break;
1462    case DeclSpec::SCS_mutable:
1463      if (isFunc) {
1464        if (DS.getStorageClassSpecLoc().isValid())
1465          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1466        else
1467          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1468
1469        // FIXME: It would be nicer if the keyword was ignored only for this
1470        // declarator. Otherwise we could get follow-up errors.
1471        D.getMutableDeclSpec().ClearStorageClassSpecs();
1472      }
1473      break;
1474    default:
1475      if (DS.getStorageClassSpecLoc().isValid())
1476        Diag(DS.getStorageClassSpecLoc(),
1477             diag::err_storageclass_invalid_for_member);
1478      else
1479        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1480      D.getMutableDeclSpec().ClearStorageClassSpecs();
1481  }
1482
1483  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1484                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1485                      !isFunc);
1486
1487  Decl *Member;
1488  if (isInstField) {
1489    CXXScopeSpec &SS = D.getCXXScopeSpec();
1490
1491    // Data members must have identifiers for names.
1492    if (Name.getNameKind() != DeclarationName::Identifier) {
1493      Diag(Loc, diag::err_bad_variable_name)
1494        << Name;
1495      return 0;
1496    }
1497
1498    IdentifierInfo *II = Name.getAsIdentifierInfo();
1499
1500    // Member field could not be with "template" keyword.
1501    // So TemplateParameterLists should be empty in this case.
1502    if (TemplateParameterLists.size()) {
1503      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1504      if (TemplateParams->size()) {
1505        // There is no such thing as a member field template.
1506        Diag(D.getIdentifierLoc(), diag::err_template_member)
1507            << II
1508            << SourceRange(TemplateParams->getTemplateLoc(),
1509                TemplateParams->getRAngleLoc());
1510      } else {
1511        // There is an extraneous 'template<>' for this member.
1512        Diag(TemplateParams->getTemplateLoc(),
1513            diag::err_template_member_noparams)
1514            << II
1515            << SourceRange(TemplateParams->getTemplateLoc(),
1516                TemplateParams->getRAngleLoc());
1517      }
1518      return 0;
1519    }
1520
1521    if (SS.isSet() && !SS.isInvalid()) {
1522      // The user provided a superfluous scope specifier inside a class
1523      // definition:
1524      //
1525      // class X {
1526      //   int X::member;
1527      // };
1528      DeclContext *DC = 0;
1529      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1530        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1531        << Name << FixItHint::CreateRemoval(SS.getRange());
1532      else
1533        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1534          << Name << SS.getRange();
1535
1536      SS.clear();
1537    }
1538
1539    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1540                         HasDeferredInit, AS);
1541    assert(Member && "HandleField never returns null");
1542  } else {
1543    assert(!HasDeferredInit);
1544
1545    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1546    if (!Member) {
1547      return 0;
1548    }
1549
1550    // Non-instance-fields can't have a bitfield.
1551    if (BitWidth) {
1552      if (Member->isInvalidDecl()) {
1553        // don't emit another diagnostic.
1554      } else if (isa<VarDecl>(Member)) {
1555        // C++ 9.6p3: A bit-field shall not be a static member.
1556        // "static member 'A' cannot be a bit-field"
1557        Diag(Loc, diag::err_static_not_bitfield)
1558          << Name << BitWidth->getSourceRange();
1559      } else if (isa<TypedefDecl>(Member)) {
1560        // "typedef member 'x' cannot be a bit-field"
1561        Diag(Loc, diag::err_typedef_not_bitfield)
1562          << Name << BitWidth->getSourceRange();
1563      } else {
1564        // A function typedef ("typedef int f(); f a;").
1565        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1566        Diag(Loc, diag::err_not_integral_type_bitfield)
1567          << Name << cast<ValueDecl>(Member)->getType()
1568          << BitWidth->getSourceRange();
1569      }
1570
1571      BitWidth = 0;
1572      Member->setInvalidDecl();
1573    }
1574
1575    Member->setAccess(AS);
1576
1577    // If we have declared a member function template, set the access of the
1578    // templated declaration as well.
1579    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1580      FunTmpl->getTemplatedDecl()->setAccess(AS);
1581  }
1582
1583  if (VS.isOverrideSpecified()) {
1584    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1585    if (!MD || !MD->isVirtual()) {
1586      Diag(Member->getLocStart(),
1587           diag::override_keyword_only_allowed_on_virtual_member_functions)
1588        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1589    } else
1590      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1591  }
1592  if (VS.isFinalSpecified()) {
1593    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1594    if (!MD || !MD->isVirtual()) {
1595      Diag(Member->getLocStart(),
1596           diag::override_keyword_only_allowed_on_virtual_member_functions)
1597      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1598    } else
1599      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1600  }
1601
1602  if (VS.getLastLocation().isValid()) {
1603    // Update the end location of a method that has a virt-specifiers.
1604    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1605      MD->setRangeEnd(VS.getLastLocation());
1606  }
1607
1608  CheckOverrideControl(Member);
1609
1610  assert((Name || isInstField) && "No identifier for non-field ?");
1611
1612  if (Init)
1613    AddInitializerToDecl(Member, Init, false,
1614                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1615  else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1616    ActOnUninitializedDecl(Member, DS.getTypeSpecType() == DeclSpec::TST_auto);
1617
1618  FinalizeDeclaration(Member);
1619
1620  if (isInstField)
1621    FieldCollector->Add(cast<FieldDecl>(Member));
1622  return Member;
1623}
1624
1625/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1626/// in-class initializer for a non-static C++ class member, and after
1627/// instantiating an in-class initializer in a class template. Such actions
1628/// are deferred until the class is complete.
1629void
1630Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1631                                       Expr *InitExpr) {
1632  FieldDecl *FD = cast<FieldDecl>(D);
1633
1634  if (!InitExpr) {
1635    FD->setInvalidDecl();
1636    FD->removeInClassInitializer();
1637    return;
1638  }
1639
1640  ExprResult Init = InitExpr;
1641  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1642    // FIXME: if there is no EqualLoc, this is list-initialization.
1643    Init = PerformCopyInitialization(
1644      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1645    if (Init.isInvalid()) {
1646      FD->setInvalidDecl();
1647      return;
1648    }
1649
1650    CheckImplicitConversions(Init.get(), EqualLoc);
1651  }
1652
1653  // C++0x [class.base.init]p7:
1654  //   The initialization of each base and member constitutes a
1655  //   full-expression.
1656  Init = MaybeCreateExprWithCleanups(Init);
1657  if (Init.isInvalid()) {
1658    FD->setInvalidDecl();
1659    return;
1660  }
1661
1662  InitExpr = Init.release();
1663
1664  FD->setInClassInitializer(InitExpr);
1665}
1666
1667/// \brief Find the direct and/or virtual base specifiers that
1668/// correspond to the given base type, for use in base initialization
1669/// within a constructor.
1670static bool FindBaseInitializer(Sema &SemaRef,
1671                                CXXRecordDecl *ClassDecl,
1672                                QualType BaseType,
1673                                const CXXBaseSpecifier *&DirectBaseSpec,
1674                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1675  // First, check for a direct base class.
1676  DirectBaseSpec = 0;
1677  for (CXXRecordDecl::base_class_const_iterator Base
1678         = ClassDecl->bases_begin();
1679       Base != ClassDecl->bases_end(); ++Base) {
1680    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1681      // We found a direct base of this type. That's what we're
1682      // initializing.
1683      DirectBaseSpec = &*Base;
1684      break;
1685    }
1686  }
1687
1688  // Check for a virtual base class.
1689  // FIXME: We might be able to short-circuit this if we know in advance that
1690  // there are no virtual bases.
1691  VirtualBaseSpec = 0;
1692  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1693    // We haven't found a base yet; search the class hierarchy for a
1694    // virtual base class.
1695    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1696                       /*DetectVirtual=*/false);
1697    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1698                              BaseType, Paths)) {
1699      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1700           Path != Paths.end(); ++Path) {
1701        if (Path->back().Base->isVirtual()) {
1702          VirtualBaseSpec = Path->back().Base;
1703          break;
1704        }
1705      }
1706    }
1707  }
1708
1709  return DirectBaseSpec || VirtualBaseSpec;
1710}
1711
1712/// \brief Handle a C++ member initializer using braced-init-list syntax.
1713MemInitResult
1714Sema::ActOnMemInitializer(Decl *ConstructorD,
1715                          Scope *S,
1716                          CXXScopeSpec &SS,
1717                          IdentifierInfo *MemberOrBase,
1718                          ParsedType TemplateTypeTy,
1719                          SourceLocation IdLoc,
1720                          Expr *InitList,
1721                          SourceLocation EllipsisLoc) {
1722  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1723                             IdLoc, MultiInitializer(InitList), EllipsisLoc);
1724}
1725
1726/// \brief Handle a C++ member initializer using parentheses syntax.
1727MemInitResult
1728Sema::ActOnMemInitializer(Decl *ConstructorD,
1729                          Scope *S,
1730                          CXXScopeSpec &SS,
1731                          IdentifierInfo *MemberOrBase,
1732                          ParsedType TemplateTypeTy,
1733                          SourceLocation IdLoc,
1734                          SourceLocation LParenLoc,
1735                          Expr **Args, unsigned NumArgs,
1736                          SourceLocation RParenLoc,
1737                          SourceLocation EllipsisLoc) {
1738  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1739                             IdLoc, MultiInitializer(LParenLoc, Args, NumArgs,
1740                                                     RParenLoc),
1741                             EllipsisLoc);
1742}
1743
1744/// \brief Handle a C++ member initializer.
1745MemInitResult
1746Sema::BuildMemInitializer(Decl *ConstructorD,
1747                          Scope *S,
1748                          CXXScopeSpec &SS,
1749                          IdentifierInfo *MemberOrBase,
1750                          ParsedType TemplateTypeTy,
1751                          SourceLocation IdLoc,
1752                          const MultiInitializer &Args,
1753                          SourceLocation EllipsisLoc) {
1754  if (!ConstructorD)
1755    return true;
1756
1757  AdjustDeclIfTemplate(ConstructorD);
1758
1759  CXXConstructorDecl *Constructor
1760    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1761  if (!Constructor) {
1762    // The user wrote a constructor initializer on a function that is
1763    // not a C++ constructor. Ignore the error for now, because we may
1764    // have more member initializers coming; we'll diagnose it just
1765    // once in ActOnMemInitializers.
1766    return true;
1767  }
1768
1769  CXXRecordDecl *ClassDecl = Constructor->getParent();
1770
1771  // C++ [class.base.init]p2:
1772  //   Names in a mem-initializer-id are looked up in the scope of the
1773  //   constructor's class and, if not found in that scope, are looked
1774  //   up in the scope containing the constructor's definition.
1775  //   [Note: if the constructor's class contains a member with the
1776  //   same name as a direct or virtual base class of the class, a
1777  //   mem-initializer-id naming the member or base class and composed
1778  //   of a single identifier refers to the class member. A
1779  //   mem-initializer-id for the hidden base class may be specified
1780  //   using a qualified name. ]
1781  if (!SS.getScopeRep() && !TemplateTypeTy) {
1782    // Look for a member, first.
1783    FieldDecl *Member = 0;
1784    DeclContext::lookup_result Result
1785      = ClassDecl->lookup(MemberOrBase);
1786    if (Result.first != Result.second) {
1787      Member = dyn_cast<FieldDecl>(*Result.first);
1788
1789      if (Member) {
1790        if (EllipsisLoc.isValid())
1791          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1792            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1793
1794        return BuildMemberInitializer(Member, Args, IdLoc);
1795      }
1796
1797      // Handle anonymous union case.
1798      if (IndirectFieldDecl* IndirectField
1799            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1800        if (EllipsisLoc.isValid())
1801          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1802            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1803
1804         return BuildMemberInitializer(IndirectField, Args, IdLoc);
1805      }
1806    }
1807  }
1808  // It didn't name a member, so see if it names a class.
1809  QualType BaseType;
1810  TypeSourceInfo *TInfo = 0;
1811
1812  if (TemplateTypeTy) {
1813    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1814  } else {
1815    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1816    LookupParsedName(R, S, &SS);
1817
1818    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1819    if (!TyD) {
1820      if (R.isAmbiguous()) return true;
1821
1822      // We don't want access-control diagnostics here.
1823      R.suppressDiagnostics();
1824
1825      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1826        bool NotUnknownSpecialization = false;
1827        DeclContext *DC = computeDeclContext(SS, false);
1828        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1829          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1830
1831        if (!NotUnknownSpecialization) {
1832          // When the scope specifier can refer to a member of an unknown
1833          // specialization, we take it as a type name.
1834          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1835                                       SS.getWithLocInContext(Context),
1836                                       *MemberOrBase, IdLoc);
1837          if (BaseType.isNull())
1838            return true;
1839
1840          R.clear();
1841          R.setLookupName(MemberOrBase);
1842        }
1843      }
1844
1845      // If no results were found, try to correct typos.
1846      TypoCorrection Corr;
1847      if (R.empty() && BaseType.isNull() &&
1848          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1849                              ClassDecl, false, CTC_NoKeywords))) {
1850        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1851        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1852        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1853          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1854            // We have found a non-static data member with a similar
1855            // name to what was typed; complain and initialize that
1856            // member.
1857            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1858              << MemberOrBase << true << CorrectedQuotedStr
1859              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1860            Diag(Member->getLocation(), diag::note_previous_decl)
1861              << CorrectedQuotedStr;
1862
1863            return BuildMemberInitializer(Member, Args, IdLoc);
1864          }
1865        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1866          const CXXBaseSpecifier *DirectBaseSpec;
1867          const CXXBaseSpecifier *VirtualBaseSpec;
1868          if (FindBaseInitializer(*this, ClassDecl,
1869                                  Context.getTypeDeclType(Type),
1870                                  DirectBaseSpec, VirtualBaseSpec)) {
1871            // We have found a direct or virtual base class with a
1872            // similar name to what was typed; complain and initialize
1873            // that base class.
1874            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1875              << MemberOrBase << false << CorrectedQuotedStr
1876              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1877
1878            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1879                                                             : VirtualBaseSpec;
1880            Diag(BaseSpec->getSourceRange().getBegin(),
1881                 diag::note_base_class_specified_here)
1882              << BaseSpec->getType()
1883              << BaseSpec->getSourceRange();
1884
1885            TyD = Type;
1886          }
1887        }
1888      }
1889
1890      if (!TyD && BaseType.isNull()) {
1891        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1892          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1893        return true;
1894      }
1895    }
1896
1897    if (BaseType.isNull()) {
1898      BaseType = Context.getTypeDeclType(TyD);
1899      if (SS.isSet()) {
1900        NestedNameSpecifier *Qualifier =
1901          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1902
1903        // FIXME: preserve source range information
1904        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1905      }
1906    }
1907  }
1908
1909  if (!TInfo)
1910    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1911
1912  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1913}
1914
1915/// Checks a member initializer expression for cases where reference (or
1916/// pointer) members are bound to by-value parameters (or their addresses).
1917static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1918                                               Expr *Init,
1919                                               SourceLocation IdLoc) {
1920  QualType MemberTy = Member->getType();
1921
1922  // We only handle pointers and references currently.
1923  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1924  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1925    return;
1926
1927  const bool IsPointer = MemberTy->isPointerType();
1928  if (IsPointer) {
1929    if (const UnaryOperator *Op
1930          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1931      // The only case we're worried about with pointers requires taking the
1932      // address.
1933      if (Op->getOpcode() != UO_AddrOf)
1934        return;
1935
1936      Init = Op->getSubExpr();
1937    } else {
1938      // We only handle address-of expression initializers for pointers.
1939      return;
1940    }
1941  }
1942
1943  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1944    // Taking the address of a temporary will be diagnosed as a hard error.
1945    if (IsPointer)
1946      return;
1947
1948    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1949      << Member << Init->getSourceRange();
1950  } else if (const DeclRefExpr *DRE
1951               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1952    // We only warn when referring to a non-reference parameter declaration.
1953    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1954    if (!Parameter || Parameter->getType()->isReferenceType())
1955      return;
1956
1957    S.Diag(Init->getExprLoc(),
1958           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1959                     : diag::warn_bind_ref_member_to_parameter)
1960      << Member << Parameter << Init->getSourceRange();
1961  } else {
1962    // Other initializers are fine.
1963    return;
1964  }
1965
1966  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1967    << (unsigned)IsPointer;
1968}
1969
1970/// Checks an initializer expression for use of uninitialized fields, such as
1971/// containing the field that is being initialized. Returns true if there is an
1972/// uninitialized field was used an updates the SourceLocation parameter; false
1973/// otherwise.
1974static bool InitExprContainsUninitializedFields(const Stmt *S,
1975                                                const ValueDecl *LhsField,
1976                                                SourceLocation *L) {
1977  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1978
1979  if (isa<CallExpr>(S)) {
1980    // Do not descend into function calls or constructors, as the use
1981    // of an uninitialized field may be valid. One would have to inspect
1982    // the contents of the function/ctor to determine if it is safe or not.
1983    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1984    // may be safe, depending on what the function/ctor does.
1985    return false;
1986  }
1987  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1988    const NamedDecl *RhsField = ME->getMemberDecl();
1989
1990    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1991      // The member expression points to a static data member.
1992      assert(VD->isStaticDataMember() &&
1993             "Member points to non-static data member!");
1994      (void)VD;
1995      return false;
1996    }
1997
1998    if (isa<EnumConstantDecl>(RhsField)) {
1999      // The member expression points to an enum.
2000      return false;
2001    }
2002
2003    if (RhsField == LhsField) {
2004      // Initializing a field with itself. Throw a warning.
2005      // But wait; there are exceptions!
2006      // Exception #1:  The field may not belong to this record.
2007      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2008      const Expr *base = ME->getBase();
2009      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2010        // Even though the field matches, it does not belong to this record.
2011        return false;
2012      }
2013      // None of the exceptions triggered; return true to indicate an
2014      // uninitialized field was used.
2015      *L = ME->getMemberLoc();
2016      return true;
2017    }
2018  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2019    // sizeof/alignof doesn't reference contents, do not warn.
2020    return false;
2021  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2022    // address-of doesn't reference contents (the pointer may be dereferenced
2023    // in the same expression but it would be rare; and weird).
2024    if (UOE->getOpcode() == UO_AddrOf)
2025      return false;
2026  }
2027  for (Stmt::const_child_range it = S->children(); it; ++it) {
2028    if (!*it) {
2029      // An expression such as 'member(arg ?: "")' may trigger this.
2030      continue;
2031    }
2032    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2033      return true;
2034  }
2035  return false;
2036}
2037
2038MemInitResult
2039Sema::BuildMemberInitializer(ValueDecl *Member,
2040                             const MultiInitializer &Args,
2041                             SourceLocation IdLoc) {
2042  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2043  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2044  assert((DirectMember || IndirectMember) &&
2045         "Member must be a FieldDecl or IndirectFieldDecl");
2046
2047  if (Member->isInvalidDecl())
2048    return true;
2049
2050  // Diagnose value-uses of fields to initialize themselves, e.g.
2051  //   foo(foo)
2052  // where foo is not also a parameter to the constructor.
2053  // TODO: implement -Wuninitialized and fold this into that framework.
2054  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2055       I != E; ++I) {
2056    SourceLocation L;
2057    Expr *Arg = *I;
2058    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2059      Arg = DIE->getInit();
2060    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2061      // FIXME: Return true in the case when other fields are used before being
2062      // uninitialized. For example, let this field be the i'th field. When
2063      // initializing the i'th field, throw a warning if any of the >= i'th
2064      // fields are used, as they are not yet initialized.
2065      // Right now we are only handling the case where the i'th field uses
2066      // itself in its initializer.
2067      Diag(L, diag::warn_field_is_uninit);
2068    }
2069  }
2070
2071  bool HasDependentArg = Args.isTypeDependent();
2072
2073  Expr *Init;
2074  if (Member->getType()->isDependentType() || HasDependentArg) {
2075    // Can't check initialization for a member of dependent type or when
2076    // any of the arguments are type-dependent expressions.
2077    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2078
2079    DiscardCleanupsInEvaluationContext();
2080  } else {
2081    // Initialize the member.
2082    InitializedEntity MemberEntity =
2083      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2084                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2085    InitializationKind Kind =
2086      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2087                                       Args.getEndLoc());
2088
2089    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2090    if (MemberInit.isInvalid())
2091      return true;
2092
2093    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2094
2095    // C++0x [class.base.init]p7:
2096    //   The initialization of each base and member constitutes a
2097    //   full-expression.
2098    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2099    if (MemberInit.isInvalid())
2100      return true;
2101
2102    // If we are in a dependent context, template instantiation will
2103    // perform this type-checking again. Just save the arguments that we
2104    // received in a ParenListExpr.
2105    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2106    // of the information that we have about the member
2107    // initializer. However, deconstructing the ASTs is a dicey process,
2108    // and this approach is far more likely to get the corner cases right.
2109    if (CurContext->isDependentContext()) {
2110      Init = Args.CreateInitExpr(Context,
2111                                 Member->getType().getNonReferenceType());
2112    } else {
2113      Init = MemberInit.get();
2114      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2115    }
2116  }
2117
2118  if (DirectMember) {
2119    return new (Context) CXXCtorInitializer(Context, DirectMember,
2120                                                    IdLoc, Args.getStartLoc(),
2121                                                    Init, Args.getEndLoc());
2122  } else {
2123    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2124                                                    IdLoc, Args.getStartLoc(),
2125                                                    Init, Args.getEndLoc());
2126  }
2127}
2128
2129MemInitResult
2130Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2131                                 const MultiInitializer &Args,
2132                                 SourceLocation NameLoc,
2133                                 CXXRecordDecl *ClassDecl) {
2134  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2135  if (!LangOpts.CPlusPlus0x)
2136    return Diag(Loc, diag::err_delegation_0x_only)
2137      << TInfo->getTypeLoc().getLocalSourceRange();
2138
2139  // Initialize the object.
2140  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2141                                     QualType(ClassDecl->getTypeForDecl(), 0));
2142  InitializationKind Kind =
2143    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2144                                     Args.getEndLoc());
2145
2146  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2147  if (DelegationInit.isInvalid())
2148    return true;
2149
2150  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
2151  CXXConstructorDecl *Constructor
2152    = ConExpr->getConstructor();
2153  assert(Constructor && "Delegating constructor with no target?");
2154
2155  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2156
2157  // C++0x [class.base.init]p7:
2158  //   The initialization of each base and member constitutes a
2159  //   full-expression.
2160  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2161  if (DelegationInit.isInvalid())
2162    return true;
2163
2164  assert(!CurContext->isDependentContext());
2165  return new (Context) CXXCtorInitializer(Context, Loc, Args.getStartLoc(),
2166                                          Constructor,
2167                                          DelegationInit.takeAs<Expr>(),
2168                                          Args.getEndLoc());
2169}
2170
2171MemInitResult
2172Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2173                           const MultiInitializer &Args,
2174                           CXXRecordDecl *ClassDecl,
2175                           SourceLocation EllipsisLoc) {
2176  bool HasDependentArg = Args.isTypeDependent();
2177
2178  SourceLocation BaseLoc
2179    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2180
2181  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2182    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2183             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2184
2185  // C++ [class.base.init]p2:
2186  //   [...] Unless the mem-initializer-id names a nonstatic data
2187  //   member of the constructor's class or a direct or virtual base
2188  //   of that class, the mem-initializer is ill-formed. A
2189  //   mem-initializer-list can initialize a base class using any
2190  //   name that denotes that base class type.
2191  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2192
2193  if (EllipsisLoc.isValid()) {
2194    // This is a pack expansion.
2195    if (!BaseType->containsUnexpandedParameterPack())  {
2196      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2197        << SourceRange(BaseLoc, Args.getEndLoc());
2198
2199      EllipsisLoc = SourceLocation();
2200    }
2201  } else {
2202    // Check for any unexpanded parameter packs.
2203    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2204      return true;
2205
2206    if (Args.DiagnoseUnexpandedParameterPack(*this))
2207      return true;
2208  }
2209
2210  // Check for direct and virtual base classes.
2211  const CXXBaseSpecifier *DirectBaseSpec = 0;
2212  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2213  if (!Dependent) {
2214    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2215                                       BaseType))
2216      return BuildDelegatingInitializer(BaseTInfo, Args, BaseLoc, ClassDecl);
2217
2218    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2219                        VirtualBaseSpec);
2220
2221    // C++ [base.class.init]p2:
2222    // Unless the mem-initializer-id names a nonstatic data member of the
2223    // constructor's class or a direct or virtual base of that class, the
2224    // mem-initializer is ill-formed.
2225    if (!DirectBaseSpec && !VirtualBaseSpec) {
2226      // If the class has any dependent bases, then it's possible that
2227      // one of those types will resolve to the same type as
2228      // BaseType. Therefore, just treat this as a dependent base
2229      // class initialization.  FIXME: Should we try to check the
2230      // initialization anyway? It seems odd.
2231      if (ClassDecl->hasAnyDependentBases())
2232        Dependent = true;
2233      else
2234        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2235          << BaseType << Context.getTypeDeclType(ClassDecl)
2236          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2237    }
2238  }
2239
2240  if (Dependent) {
2241    // Can't check initialization for a base of dependent type or when
2242    // any of the arguments are type-dependent expressions.
2243    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2244
2245    DiscardCleanupsInEvaluationContext();
2246
2247    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2248                                            /*IsVirtual=*/false,
2249                                            Args.getStartLoc(), BaseInit,
2250                                            Args.getEndLoc(), EllipsisLoc);
2251  }
2252
2253  // C++ [base.class.init]p2:
2254  //   If a mem-initializer-id is ambiguous because it designates both
2255  //   a direct non-virtual base class and an inherited virtual base
2256  //   class, the mem-initializer is ill-formed.
2257  if (DirectBaseSpec && VirtualBaseSpec)
2258    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2259      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2260
2261  CXXBaseSpecifier *BaseSpec
2262    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2263  if (!BaseSpec)
2264    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2265
2266  // Initialize the base.
2267  InitializedEntity BaseEntity =
2268    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2269  InitializationKind Kind =
2270    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2271                                     Args.getEndLoc());
2272
2273  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2274  if (BaseInit.isInvalid())
2275    return true;
2276
2277  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2278
2279  // C++0x [class.base.init]p7:
2280  //   The initialization of each base and member constitutes a
2281  //   full-expression.
2282  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2283  if (BaseInit.isInvalid())
2284    return true;
2285
2286  // If we are in a dependent context, template instantiation will
2287  // perform this type-checking again. Just save the arguments that we
2288  // received in a ParenListExpr.
2289  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2290  // of the information that we have about the base
2291  // initializer. However, deconstructing the ASTs is a dicey process,
2292  // and this approach is far more likely to get the corner cases right.
2293  if (CurContext->isDependentContext())
2294    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2295
2296  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2297                                          BaseSpec->isVirtual(),
2298                                          Args.getStartLoc(),
2299                                          BaseInit.takeAs<Expr>(),
2300                                          Args.getEndLoc(), EllipsisLoc);
2301}
2302
2303// Create a static_cast\<T&&>(expr).
2304static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2305  QualType ExprType = E->getType();
2306  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2307  SourceLocation ExprLoc = E->getLocStart();
2308  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2309      TargetType, ExprLoc);
2310
2311  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2312                                   SourceRange(ExprLoc, ExprLoc),
2313                                   E->getSourceRange()).take();
2314}
2315
2316/// ImplicitInitializerKind - How an implicit base or member initializer should
2317/// initialize its base or member.
2318enum ImplicitInitializerKind {
2319  IIK_Default,
2320  IIK_Copy,
2321  IIK_Move
2322};
2323
2324static bool
2325BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2326                             ImplicitInitializerKind ImplicitInitKind,
2327                             CXXBaseSpecifier *BaseSpec,
2328                             bool IsInheritedVirtualBase,
2329                             CXXCtorInitializer *&CXXBaseInit) {
2330  InitializedEntity InitEntity
2331    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2332                                        IsInheritedVirtualBase);
2333
2334  ExprResult BaseInit;
2335
2336  switch (ImplicitInitKind) {
2337  case IIK_Default: {
2338    InitializationKind InitKind
2339      = InitializationKind::CreateDefault(Constructor->getLocation());
2340    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2341    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2342                               MultiExprArg(SemaRef, 0, 0));
2343    break;
2344  }
2345
2346  case IIK_Move:
2347  case IIK_Copy: {
2348    bool Moving = ImplicitInitKind == IIK_Move;
2349    ParmVarDecl *Param = Constructor->getParamDecl(0);
2350    QualType ParamType = Param->getType().getNonReferenceType();
2351
2352    Expr *CopyCtorArg =
2353      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2354                          Constructor->getLocation(), ParamType,
2355                          VK_LValue, 0);
2356
2357    // Cast to the base class to avoid ambiguities.
2358    QualType ArgTy =
2359      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2360                                       ParamType.getQualifiers());
2361
2362    if (Moving) {
2363      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2364    }
2365
2366    CXXCastPath BasePath;
2367    BasePath.push_back(BaseSpec);
2368    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2369                                            CK_UncheckedDerivedToBase,
2370                                            Moving ? VK_XValue : VK_LValue,
2371                                            &BasePath).take();
2372
2373    InitializationKind InitKind
2374      = InitializationKind::CreateDirect(Constructor->getLocation(),
2375                                         SourceLocation(), SourceLocation());
2376    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2377                                   &CopyCtorArg, 1);
2378    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2379                               MultiExprArg(&CopyCtorArg, 1));
2380    break;
2381  }
2382  }
2383
2384  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2385  if (BaseInit.isInvalid())
2386    return true;
2387
2388  CXXBaseInit =
2389    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2390               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2391                                                        SourceLocation()),
2392                                             BaseSpec->isVirtual(),
2393                                             SourceLocation(),
2394                                             BaseInit.takeAs<Expr>(),
2395                                             SourceLocation(),
2396                                             SourceLocation());
2397
2398  return false;
2399}
2400
2401static bool RefersToRValueRef(Expr *MemRef) {
2402  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2403  return Referenced->getType()->isRValueReferenceType();
2404}
2405
2406static bool
2407BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2408                               ImplicitInitializerKind ImplicitInitKind,
2409                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2410                               CXXCtorInitializer *&CXXMemberInit) {
2411  if (Field->isInvalidDecl())
2412    return true;
2413
2414  SourceLocation Loc = Constructor->getLocation();
2415
2416  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2417    bool Moving = ImplicitInitKind == IIK_Move;
2418    ParmVarDecl *Param = Constructor->getParamDecl(0);
2419    QualType ParamType = Param->getType().getNonReferenceType();
2420
2421    // Suppress copying zero-width bitfields.
2422    if (const Expr *Width = Field->getBitWidth())
2423      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
2424        return false;
2425
2426    Expr *MemberExprBase =
2427      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
2428                          Loc, ParamType, VK_LValue, 0);
2429
2430    if (Moving) {
2431      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2432    }
2433
2434    // Build a reference to this field within the parameter.
2435    CXXScopeSpec SS;
2436    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2437                              Sema::LookupMemberName);
2438    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2439                                  : cast<ValueDecl>(Field), AS_public);
2440    MemberLookup.resolveKind();
2441    ExprResult CtorArg
2442      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2443                                         ParamType, Loc,
2444                                         /*IsArrow=*/false,
2445                                         SS,
2446                                         /*FirstQualifierInScope=*/0,
2447                                         MemberLookup,
2448                                         /*TemplateArgs=*/0);
2449    if (CtorArg.isInvalid())
2450      return true;
2451
2452    // C++11 [class.copy]p15:
2453    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2454    //     with static_cast<T&&>(x.m);
2455    if (RefersToRValueRef(CtorArg.get())) {
2456      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2457    }
2458
2459    // When the field we are copying is an array, create index variables for
2460    // each dimension of the array. We use these index variables to subscript
2461    // the source array, and other clients (e.g., CodeGen) will perform the
2462    // necessary iteration with these index variables.
2463    SmallVector<VarDecl *, 4> IndexVariables;
2464    QualType BaseType = Field->getType();
2465    QualType SizeType = SemaRef.Context.getSizeType();
2466    bool InitializingArray = false;
2467    while (const ConstantArrayType *Array
2468                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2469      InitializingArray = true;
2470      // Create the iteration variable for this array index.
2471      IdentifierInfo *IterationVarName = 0;
2472      {
2473        llvm::SmallString<8> Str;
2474        llvm::raw_svector_ostream OS(Str);
2475        OS << "__i" << IndexVariables.size();
2476        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2477      }
2478      VarDecl *IterationVar
2479        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2480                          IterationVarName, SizeType,
2481                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2482                          SC_None, SC_None);
2483      IndexVariables.push_back(IterationVar);
2484
2485      // Create a reference to the iteration variable.
2486      ExprResult IterationVarRef
2487        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2488      assert(!IterationVarRef.isInvalid() &&
2489             "Reference to invented variable cannot fail!");
2490
2491      // Subscript the array with this iteration variable.
2492      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2493                                                        IterationVarRef.take(),
2494                                                        Loc);
2495      if (CtorArg.isInvalid())
2496        return true;
2497
2498      BaseType = Array->getElementType();
2499    }
2500
2501    // The array subscript expression is an lvalue, which is wrong for moving.
2502    if (Moving && InitializingArray)
2503      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2504
2505    // Construct the entity that we will be initializing. For an array, this
2506    // will be first element in the array, which may require several levels
2507    // of array-subscript entities.
2508    SmallVector<InitializedEntity, 4> Entities;
2509    Entities.reserve(1 + IndexVariables.size());
2510    if (Indirect)
2511      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2512    else
2513      Entities.push_back(InitializedEntity::InitializeMember(Field));
2514    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2515      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2516                                                              0,
2517                                                              Entities.back()));
2518
2519    // Direct-initialize to use the copy constructor.
2520    InitializationKind InitKind =
2521      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2522
2523    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2524    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2525                                   &CtorArgE, 1);
2526
2527    ExprResult MemberInit
2528      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2529                        MultiExprArg(&CtorArgE, 1));
2530    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2531    if (MemberInit.isInvalid())
2532      return true;
2533
2534    if (Indirect) {
2535      assert(IndexVariables.size() == 0 &&
2536             "Indirect field improperly initialized");
2537      CXXMemberInit
2538        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2539                                                   Loc, Loc,
2540                                                   MemberInit.takeAs<Expr>(),
2541                                                   Loc);
2542    } else
2543      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2544                                                 Loc, MemberInit.takeAs<Expr>(),
2545                                                 Loc,
2546                                                 IndexVariables.data(),
2547                                                 IndexVariables.size());
2548    return false;
2549  }
2550
2551  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2552
2553  QualType FieldBaseElementType =
2554    SemaRef.Context.getBaseElementType(Field->getType());
2555
2556  if (FieldBaseElementType->isRecordType()) {
2557    InitializedEntity InitEntity
2558      = Indirect? InitializedEntity::InitializeMember(Indirect)
2559                : InitializedEntity::InitializeMember(Field);
2560    InitializationKind InitKind =
2561      InitializationKind::CreateDefault(Loc);
2562
2563    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2564    ExprResult MemberInit =
2565      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2566
2567    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2568    if (MemberInit.isInvalid())
2569      return true;
2570
2571    if (Indirect)
2572      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2573                                                               Indirect, Loc,
2574                                                               Loc,
2575                                                               MemberInit.get(),
2576                                                               Loc);
2577    else
2578      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2579                                                               Field, Loc, Loc,
2580                                                               MemberInit.get(),
2581                                                               Loc);
2582    return false;
2583  }
2584
2585  if (!Field->getParent()->isUnion()) {
2586    if (FieldBaseElementType->isReferenceType()) {
2587      SemaRef.Diag(Constructor->getLocation(),
2588                   diag::err_uninitialized_member_in_ctor)
2589      << (int)Constructor->isImplicit()
2590      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2591      << 0 << Field->getDeclName();
2592      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2593      return true;
2594    }
2595
2596    if (FieldBaseElementType.isConstQualified()) {
2597      SemaRef.Diag(Constructor->getLocation(),
2598                   diag::err_uninitialized_member_in_ctor)
2599      << (int)Constructor->isImplicit()
2600      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2601      << 1 << Field->getDeclName();
2602      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2603      return true;
2604    }
2605  }
2606
2607  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2608      FieldBaseElementType->isObjCRetainableType() &&
2609      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2610      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2611    // Instant objects:
2612    //   Default-initialize Objective-C pointers to NULL.
2613    CXXMemberInit
2614      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2615                                                 Loc, Loc,
2616                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2617                                                 Loc);
2618    return false;
2619  }
2620
2621  // Nothing to initialize.
2622  CXXMemberInit = 0;
2623  return false;
2624}
2625
2626namespace {
2627struct BaseAndFieldInfo {
2628  Sema &S;
2629  CXXConstructorDecl *Ctor;
2630  bool AnyErrorsInInits;
2631  ImplicitInitializerKind IIK;
2632  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2633  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2634
2635  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2636    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2637    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2638    if (Generated && Ctor->isCopyConstructor())
2639      IIK = IIK_Copy;
2640    else if (Generated && Ctor->isMoveConstructor())
2641      IIK = IIK_Move;
2642    else
2643      IIK = IIK_Default;
2644  }
2645};
2646}
2647
2648/// \brief Determine whether the given indirect field declaration is somewhere
2649/// within an anonymous union.
2650static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2651  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2652                                      CEnd = F->chain_end();
2653       C != CEnd; ++C)
2654    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2655      if (Record->isUnion())
2656        return true;
2657
2658  return false;
2659}
2660
2661static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2662                                    FieldDecl *Field,
2663                                    IndirectFieldDecl *Indirect = 0) {
2664
2665  // Overwhelmingly common case: we have a direct initializer for this field.
2666  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2667    Info.AllToInit.push_back(Init);
2668    return false;
2669  }
2670
2671  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2672  // has a brace-or-equal-initializer, the entity is initialized as specified
2673  // in [dcl.init].
2674  if (Field->hasInClassInitializer()) {
2675    CXXCtorInitializer *Init;
2676    if (Indirect)
2677      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2678                                                      SourceLocation(),
2679                                                      SourceLocation(), 0,
2680                                                      SourceLocation());
2681    else
2682      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2683                                                      SourceLocation(),
2684                                                      SourceLocation(), 0,
2685                                                      SourceLocation());
2686    Info.AllToInit.push_back(Init);
2687    return false;
2688  }
2689
2690  // Don't build an implicit initializer for union members if none was
2691  // explicitly specified.
2692  if (Field->getParent()->isUnion() ||
2693      (Indirect && isWithinAnonymousUnion(Indirect)))
2694    return false;
2695
2696  // Don't try to build an implicit initializer if there were semantic
2697  // errors in any of the initializers (and therefore we might be
2698  // missing some that the user actually wrote).
2699  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2700    return false;
2701
2702  CXXCtorInitializer *Init = 0;
2703  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2704                                     Indirect, Init))
2705    return true;
2706
2707  if (Init)
2708    Info.AllToInit.push_back(Init);
2709
2710  return false;
2711}
2712
2713bool
2714Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2715                               CXXCtorInitializer *Initializer) {
2716  assert(Initializer->isDelegatingInitializer());
2717  Constructor->setNumCtorInitializers(1);
2718  CXXCtorInitializer **initializer =
2719    new (Context) CXXCtorInitializer*[1];
2720  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2721  Constructor->setCtorInitializers(initializer);
2722
2723  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2724    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2725    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2726  }
2727
2728  DelegatingCtorDecls.push_back(Constructor);
2729
2730  return false;
2731}
2732
2733bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2734                               CXXCtorInitializer **Initializers,
2735                               unsigned NumInitializers,
2736                               bool AnyErrors) {
2737  if (Constructor->isDependentContext()) {
2738    // Just store the initializers as written, they will be checked during
2739    // instantiation.
2740    if (NumInitializers > 0) {
2741      Constructor->setNumCtorInitializers(NumInitializers);
2742      CXXCtorInitializer **baseOrMemberInitializers =
2743        new (Context) CXXCtorInitializer*[NumInitializers];
2744      memcpy(baseOrMemberInitializers, Initializers,
2745             NumInitializers * sizeof(CXXCtorInitializer*));
2746      Constructor->setCtorInitializers(baseOrMemberInitializers);
2747    }
2748
2749    return false;
2750  }
2751
2752  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2753
2754  // We need to build the initializer AST according to order of construction
2755  // and not what user specified in the Initializers list.
2756  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2757  if (!ClassDecl)
2758    return true;
2759
2760  bool HadError = false;
2761
2762  for (unsigned i = 0; i < NumInitializers; i++) {
2763    CXXCtorInitializer *Member = Initializers[i];
2764
2765    if (Member->isBaseInitializer())
2766      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2767    else
2768      Info.AllBaseFields[Member->getAnyMember()] = Member;
2769  }
2770
2771  // Keep track of the direct virtual bases.
2772  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2773  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2774       E = ClassDecl->bases_end(); I != E; ++I) {
2775    if (I->isVirtual())
2776      DirectVBases.insert(I);
2777  }
2778
2779  // Push virtual bases before others.
2780  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2781       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2782
2783    if (CXXCtorInitializer *Value
2784        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2785      Info.AllToInit.push_back(Value);
2786    } else if (!AnyErrors) {
2787      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2788      CXXCtorInitializer *CXXBaseInit;
2789      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2790                                       VBase, IsInheritedVirtualBase,
2791                                       CXXBaseInit)) {
2792        HadError = true;
2793        continue;
2794      }
2795
2796      Info.AllToInit.push_back(CXXBaseInit);
2797    }
2798  }
2799
2800  // Non-virtual bases.
2801  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2802       E = ClassDecl->bases_end(); Base != E; ++Base) {
2803    // Virtuals are in the virtual base list and already constructed.
2804    if (Base->isVirtual())
2805      continue;
2806
2807    if (CXXCtorInitializer *Value
2808          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2809      Info.AllToInit.push_back(Value);
2810    } else if (!AnyErrors) {
2811      CXXCtorInitializer *CXXBaseInit;
2812      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2813                                       Base, /*IsInheritedVirtualBase=*/false,
2814                                       CXXBaseInit)) {
2815        HadError = true;
2816        continue;
2817      }
2818
2819      Info.AllToInit.push_back(CXXBaseInit);
2820    }
2821  }
2822
2823  // Fields.
2824  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2825                               MemEnd = ClassDecl->decls_end();
2826       Mem != MemEnd; ++Mem) {
2827    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2828      if (F->getType()->isIncompleteArrayType()) {
2829        assert(ClassDecl->hasFlexibleArrayMember() &&
2830               "Incomplete array type is not valid");
2831        continue;
2832      }
2833
2834      // If we're not generating the implicit copy/move constructor, then we'll
2835      // handle anonymous struct/union fields based on their individual
2836      // indirect fields.
2837      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2838        continue;
2839
2840      if (CollectFieldInitializer(*this, Info, F))
2841        HadError = true;
2842      continue;
2843    }
2844
2845    // Beyond this point, we only consider default initialization.
2846    if (Info.IIK != IIK_Default)
2847      continue;
2848
2849    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2850      if (F->getType()->isIncompleteArrayType()) {
2851        assert(ClassDecl->hasFlexibleArrayMember() &&
2852               "Incomplete array type is not valid");
2853        continue;
2854      }
2855
2856      // Initialize each field of an anonymous struct individually.
2857      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2858        HadError = true;
2859
2860      continue;
2861    }
2862  }
2863
2864  NumInitializers = Info.AllToInit.size();
2865  if (NumInitializers > 0) {
2866    Constructor->setNumCtorInitializers(NumInitializers);
2867    CXXCtorInitializer **baseOrMemberInitializers =
2868      new (Context) CXXCtorInitializer*[NumInitializers];
2869    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2870           NumInitializers * sizeof(CXXCtorInitializer*));
2871    Constructor->setCtorInitializers(baseOrMemberInitializers);
2872
2873    // Constructors implicitly reference the base and member
2874    // destructors.
2875    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2876                                           Constructor->getParent());
2877  }
2878
2879  return HadError;
2880}
2881
2882static void *GetKeyForTopLevelField(FieldDecl *Field) {
2883  // For anonymous unions, use the class declaration as the key.
2884  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2885    if (RT->getDecl()->isAnonymousStructOrUnion())
2886      return static_cast<void *>(RT->getDecl());
2887  }
2888  return static_cast<void *>(Field);
2889}
2890
2891static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2892  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2893}
2894
2895static void *GetKeyForMember(ASTContext &Context,
2896                             CXXCtorInitializer *Member) {
2897  if (!Member->isAnyMemberInitializer())
2898    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2899
2900  // For fields injected into the class via declaration of an anonymous union,
2901  // use its anonymous union class declaration as the unique key.
2902  FieldDecl *Field = Member->getAnyMember();
2903
2904  // If the field is a member of an anonymous struct or union, our key
2905  // is the anonymous record decl that's a direct child of the class.
2906  RecordDecl *RD = Field->getParent();
2907  if (RD->isAnonymousStructOrUnion()) {
2908    while (true) {
2909      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2910      if (Parent->isAnonymousStructOrUnion())
2911        RD = Parent;
2912      else
2913        break;
2914    }
2915
2916    return static_cast<void *>(RD);
2917  }
2918
2919  return static_cast<void *>(Field);
2920}
2921
2922static void
2923DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2924                                  const CXXConstructorDecl *Constructor,
2925                                  CXXCtorInitializer **Inits,
2926                                  unsigned NumInits) {
2927  if (Constructor->getDeclContext()->isDependentContext())
2928    return;
2929
2930  // Don't check initializers order unless the warning is enabled at the
2931  // location of at least one initializer.
2932  bool ShouldCheckOrder = false;
2933  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2934    CXXCtorInitializer *Init = Inits[InitIndex];
2935    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2936                                         Init->getSourceLocation())
2937          != DiagnosticsEngine::Ignored) {
2938      ShouldCheckOrder = true;
2939      break;
2940    }
2941  }
2942  if (!ShouldCheckOrder)
2943    return;
2944
2945  // Build the list of bases and members in the order that they'll
2946  // actually be initialized.  The explicit initializers should be in
2947  // this same order but may be missing things.
2948  SmallVector<const void*, 32> IdealInitKeys;
2949
2950  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2951
2952  // 1. Virtual bases.
2953  for (CXXRecordDecl::base_class_const_iterator VBase =
2954       ClassDecl->vbases_begin(),
2955       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2956    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2957
2958  // 2. Non-virtual bases.
2959  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2960       E = ClassDecl->bases_end(); Base != E; ++Base) {
2961    if (Base->isVirtual())
2962      continue;
2963    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2964  }
2965
2966  // 3. Direct fields.
2967  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2968       E = ClassDecl->field_end(); Field != E; ++Field)
2969    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2970
2971  unsigned NumIdealInits = IdealInitKeys.size();
2972  unsigned IdealIndex = 0;
2973
2974  CXXCtorInitializer *PrevInit = 0;
2975  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2976    CXXCtorInitializer *Init = Inits[InitIndex];
2977    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2978
2979    // Scan forward to try to find this initializer in the idealized
2980    // initializers list.
2981    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2982      if (InitKey == IdealInitKeys[IdealIndex])
2983        break;
2984
2985    // If we didn't find this initializer, it must be because we
2986    // scanned past it on a previous iteration.  That can only
2987    // happen if we're out of order;  emit a warning.
2988    if (IdealIndex == NumIdealInits && PrevInit) {
2989      Sema::SemaDiagnosticBuilder D =
2990        SemaRef.Diag(PrevInit->getSourceLocation(),
2991                     diag::warn_initializer_out_of_order);
2992
2993      if (PrevInit->isAnyMemberInitializer())
2994        D << 0 << PrevInit->getAnyMember()->getDeclName();
2995      else
2996        D << 1 << PrevInit->getBaseClassInfo()->getType();
2997
2998      if (Init->isAnyMemberInitializer())
2999        D << 0 << Init->getAnyMember()->getDeclName();
3000      else
3001        D << 1 << Init->getBaseClassInfo()->getType();
3002
3003      // Move back to the initializer's location in the ideal list.
3004      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3005        if (InitKey == IdealInitKeys[IdealIndex])
3006          break;
3007
3008      assert(IdealIndex != NumIdealInits &&
3009             "initializer not found in initializer list");
3010    }
3011
3012    PrevInit = Init;
3013  }
3014}
3015
3016namespace {
3017bool CheckRedundantInit(Sema &S,
3018                        CXXCtorInitializer *Init,
3019                        CXXCtorInitializer *&PrevInit) {
3020  if (!PrevInit) {
3021    PrevInit = Init;
3022    return false;
3023  }
3024
3025  if (FieldDecl *Field = Init->getMember())
3026    S.Diag(Init->getSourceLocation(),
3027           diag::err_multiple_mem_initialization)
3028      << Field->getDeclName()
3029      << Init->getSourceRange();
3030  else {
3031    const Type *BaseClass = Init->getBaseClass();
3032    assert(BaseClass && "neither field nor base");
3033    S.Diag(Init->getSourceLocation(),
3034           diag::err_multiple_base_initialization)
3035      << QualType(BaseClass, 0)
3036      << Init->getSourceRange();
3037  }
3038  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3039    << 0 << PrevInit->getSourceRange();
3040
3041  return true;
3042}
3043
3044typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3045typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3046
3047bool CheckRedundantUnionInit(Sema &S,
3048                             CXXCtorInitializer *Init,
3049                             RedundantUnionMap &Unions) {
3050  FieldDecl *Field = Init->getAnyMember();
3051  RecordDecl *Parent = Field->getParent();
3052  if (!Parent->isAnonymousStructOrUnion())
3053    return false;
3054
3055  NamedDecl *Child = Field;
3056  do {
3057    if (Parent->isUnion()) {
3058      UnionEntry &En = Unions[Parent];
3059      if (En.first && En.first != Child) {
3060        S.Diag(Init->getSourceLocation(),
3061               diag::err_multiple_mem_union_initialization)
3062          << Field->getDeclName()
3063          << Init->getSourceRange();
3064        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3065          << 0 << En.second->getSourceRange();
3066        return true;
3067      } else if (!En.first) {
3068        En.first = Child;
3069        En.second = Init;
3070      }
3071    }
3072
3073    Child = Parent;
3074    Parent = cast<RecordDecl>(Parent->getDeclContext());
3075  } while (Parent->isAnonymousStructOrUnion());
3076
3077  return false;
3078}
3079}
3080
3081/// ActOnMemInitializers - Handle the member initializers for a constructor.
3082void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3083                                SourceLocation ColonLoc,
3084                                CXXCtorInitializer **meminits,
3085                                unsigned NumMemInits,
3086                                bool AnyErrors) {
3087  if (!ConstructorDecl)
3088    return;
3089
3090  AdjustDeclIfTemplate(ConstructorDecl);
3091
3092  CXXConstructorDecl *Constructor
3093    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3094
3095  if (!Constructor) {
3096    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3097    return;
3098  }
3099
3100  CXXCtorInitializer **MemInits =
3101    reinterpret_cast<CXXCtorInitializer **>(meminits);
3102
3103  // Mapping for the duplicate initializers check.
3104  // For member initializers, this is keyed with a FieldDecl*.
3105  // For base initializers, this is keyed with a Type*.
3106  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3107
3108  // Mapping for the inconsistent anonymous-union initializers check.
3109  RedundantUnionMap MemberUnions;
3110
3111  bool HadError = false;
3112  for (unsigned i = 0; i < NumMemInits; i++) {
3113    CXXCtorInitializer *Init = MemInits[i];
3114
3115    // Set the source order index.
3116    Init->setSourceOrder(i);
3117
3118    if (Init->isAnyMemberInitializer()) {
3119      FieldDecl *Field = Init->getAnyMember();
3120      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3121          CheckRedundantUnionInit(*this, Init, MemberUnions))
3122        HadError = true;
3123    } else if (Init->isBaseInitializer()) {
3124      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3125      if (CheckRedundantInit(*this, Init, Members[Key]))
3126        HadError = true;
3127    } else {
3128      assert(Init->isDelegatingInitializer());
3129      // This must be the only initializer
3130      if (i != 0 || NumMemInits > 1) {
3131        Diag(MemInits[0]->getSourceLocation(),
3132             diag::err_delegating_initializer_alone)
3133          << MemInits[0]->getSourceRange();
3134        HadError = true;
3135        // We will treat this as being the only initializer.
3136      }
3137      SetDelegatingInitializer(Constructor, MemInits[i]);
3138      // Return immediately as the initializer is set.
3139      return;
3140    }
3141  }
3142
3143  if (HadError)
3144    return;
3145
3146  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3147
3148  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3149}
3150
3151void
3152Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3153                                             CXXRecordDecl *ClassDecl) {
3154  // Ignore dependent contexts. Also ignore unions, since their members never
3155  // have destructors implicitly called.
3156  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3157    return;
3158
3159  // FIXME: all the access-control diagnostics are positioned on the
3160  // field/base declaration.  That's probably good; that said, the
3161  // user might reasonably want to know why the destructor is being
3162  // emitted, and we currently don't say.
3163
3164  // Non-static data members.
3165  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3166       E = ClassDecl->field_end(); I != E; ++I) {
3167    FieldDecl *Field = *I;
3168    if (Field->isInvalidDecl())
3169      continue;
3170    QualType FieldType = Context.getBaseElementType(Field->getType());
3171
3172    const RecordType* RT = FieldType->getAs<RecordType>();
3173    if (!RT)
3174      continue;
3175
3176    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3177    if (FieldClassDecl->isInvalidDecl())
3178      continue;
3179    if (FieldClassDecl->hasTrivialDestructor())
3180      continue;
3181
3182    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3183    assert(Dtor && "No dtor found for FieldClassDecl!");
3184    CheckDestructorAccess(Field->getLocation(), Dtor,
3185                          PDiag(diag::err_access_dtor_field)
3186                            << Field->getDeclName()
3187                            << FieldType);
3188
3189    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3190  }
3191
3192  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3193
3194  // Bases.
3195  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3196       E = ClassDecl->bases_end(); Base != E; ++Base) {
3197    // Bases are always records in a well-formed non-dependent class.
3198    const RecordType *RT = Base->getType()->getAs<RecordType>();
3199
3200    // Remember direct virtual bases.
3201    if (Base->isVirtual())
3202      DirectVirtualBases.insert(RT);
3203
3204    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3205    // If our base class is invalid, we probably can't get its dtor anyway.
3206    if (BaseClassDecl->isInvalidDecl())
3207      continue;
3208    // Ignore trivial destructors.
3209    if (BaseClassDecl->hasTrivialDestructor())
3210      continue;
3211
3212    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3213    assert(Dtor && "No dtor found for BaseClassDecl!");
3214
3215    // FIXME: caret should be on the start of the class name
3216    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3217                          PDiag(diag::err_access_dtor_base)
3218                            << Base->getType()
3219                            << Base->getSourceRange());
3220
3221    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3222  }
3223
3224  // Virtual bases.
3225  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3226       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3227
3228    // Bases are always records in a well-formed non-dependent class.
3229    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3230
3231    // Ignore direct virtual bases.
3232    if (DirectVirtualBases.count(RT))
3233      continue;
3234
3235    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3236    // If our base class is invalid, we probably can't get its dtor anyway.
3237    if (BaseClassDecl->isInvalidDecl())
3238      continue;
3239    // Ignore trivial destructors.
3240    if (BaseClassDecl->hasTrivialDestructor())
3241      continue;
3242
3243    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3244    assert(Dtor && "No dtor found for BaseClassDecl!");
3245    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3246                          PDiag(diag::err_access_dtor_vbase)
3247                            << VBase->getType());
3248
3249    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3250  }
3251}
3252
3253void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3254  if (!CDtorDecl)
3255    return;
3256
3257  if (CXXConstructorDecl *Constructor
3258      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3259    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3260}
3261
3262bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3263                                  unsigned DiagID, AbstractDiagSelID SelID) {
3264  if (SelID == -1)
3265    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3266  else
3267    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3268}
3269
3270bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3271                                  const PartialDiagnostic &PD) {
3272  if (!getLangOptions().CPlusPlus)
3273    return false;
3274
3275  if (const ArrayType *AT = Context.getAsArrayType(T))
3276    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3277
3278  if (const PointerType *PT = T->getAs<PointerType>()) {
3279    // Find the innermost pointer type.
3280    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3281      PT = T;
3282
3283    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3284      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3285  }
3286
3287  const RecordType *RT = T->getAs<RecordType>();
3288  if (!RT)
3289    return false;
3290
3291  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3292
3293  // We can't answer whether something is abstract until it has a
3294  // definition.  If it's currently being defined, we'll walk back
3295  // over all the declarations when we have a full definition.
3296  const CXXRecordDecl *Def = RD->getDefinition();
3297  if (!Def || Def->isBeingDefined())
3298    return false;
3299
3300  if (!RD->isAbstract())
3301    return false;
3302
3303  Diag(Loc, PD) << RD->getDeclName();
3304  DiagnoseAbstractType(RD);
3305
3306  return true;
3307}
3308
3309void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3310  // Check if we've already emitted the list of pure virtual functions
3311  // for this class.
3312  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3313    return;
3314
3315  CXXFinalOverriderMap FinalOverriders;
3316  RD->getFinalOverriders(FinalOverriders);
3317
3318  // Keep a set of seen pure methods so we won't diagnose the same method
3319  // more than once.
3320  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3321
3322  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3323                                   MEnd = FinalOverriders.end();
3324       M != MEnd;
3325       ++M) {
3326    for (OverridingMethods::iterator SO = M->second.begin(),
3327                                  SOEnd = M->second.end();
3328         SO != SOEnd; ++SO) {
3329      // C++ [class.abstract]p4:
3330      //   A class is abstract if it contains or inherits at least one
3331      //   pure virtual function for which the final overrider is pure
3332      //   virtual.
3333
3334      //
3335      if (SO->second.size() != 1)
3336        continue;
3337
3338      if (!SO->second.front().Method->isPure())
3339        continue;
3340
3341      if (!SeenPureMethods.insert(SO->second.front().Method))
3342        continue;
3343
3344      Diag(SO->second.front().Method->getLocation(),
3345           diag::note_pure_virtual_function)
3346        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3347    }
3348  }
3349
3350  if (!PureVirtualClassDiagSet)
3351    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3352  PureVirtualClassDiagSet->insert(RD);
3353}
3354
3355namespace {
3356struct AbstractUsageInfo {
3357  Sema &S;
3358  CXXRecordDecl *Record;
3359  CanQualType AbstractType;
3360  bool Invalid;
3361
3362  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3363    : S(S), Record(Record),
3364      AbstractType(S.Context.getCanonicalType(
3365                   S.Context.getTypeDeclType(Record))),
3366      Invalid(false) {}
3367
3368  void DiagnoseAbstractType() {
3369    if (Invalid) return;
3370    S.DiagnoseAbstractType(Record);
3371    Invalid = true;
3372  }
3373
3374  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3375};
3376
3377struct CheckAbstractUsage {
3378  AbstractUsageInfo &Info;
3379  const NamedDecl *Ctx;
3380
3381  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3382    : Info(Info), Ctx(Ctx) {}
3383
3384  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3385    switch (TL.getTypeLocClass()) {
3386#define ABSTRACT_TYPELOC(CLASS, PARENT)
3387#define TYPELOC(CLASS, PARENT) \
3388    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3389#include "clang/AST/TypeLocNodes.def"
3390    }
3391  }
3392
3393  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3394    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3395    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3396      if (!TL.getArg(I))
3397        continue;
3398
3399      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3400      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3401    }
3402  }
3403
3404  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3405    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3406  }
3407
3408  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3409    // Visit the type parameters from a permissive context.
3410    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3411      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3412      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3413        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3414          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3415      // TODO: other template argument types?
3416    }
3417  }
3418
3419  // Visit pointee types from a permissive context.
3420#define CheckPolymorphic(Type) \
3421  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3422    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3423  }
3424  CheckPolymorphic(PointerTypeLoc)
3425  CheckPolymorphic(ReferenceTypeLoc)
3426  CheckPolymorphic(MemberPointerTypeLoc)
3427  CheckPolymorphic(BlockPointerTypeLoc)
3428  CheckPolymorphic(AtomicTypeLoc)
3429
3430  /// Handle all the types we haven't given a more specific
3431  /// implementation for above.
3432  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3433    // Every other kind of type that we haven't called out already
3434    // that has an inner type is either (1) sugar or (2) contains that
3435    // inner type in some way as a subobject.
3436    if (TypeLoc Next = TL.getNextTypeLoc())
3437      return Visit(Next, Sel);
3438
3439    // If there's no inner type and we're in a permissive context,
3440    // don't diagnose.
3441    if (Sel == Sema::AbstractNone) return;
3442
3443    // Check whether the type matches the abstract type.
3444    QualType T = TL.getType();
3445    if (T->isArrayType()) {
3446      Sel = Sema::AbstractArrayType;
3447      T = Info.S.Context.getBaseElementType(T);
3448    }
3449    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3450    if (CT != Info.AbstractType) return;
3451
3452    // It matched; do some magic.
3453    if (Sel == Sema::AbstractArrayType) {
3454      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3455        << T << TL.getSourceRange();
3456    } else {
3457      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3458        << Sel << T << TL.getSourceRange();
3459    }
3460    Info.DiagnoseAbstractType();
3461  }
3462};
3463
3464void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3465                                  Sema::AbstractDiagSelID Sel) {
3466  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3467}
3468
3469}
3470
3471/// Check for invalid uses of an abstract type in a method declaration.
3472static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3473                                    CXXMethodDecl *MD) {
3474  // No need to do the check on definitions, which require that
3475  // the return/param types be complete.
3476  if (MD->doesThisDeclarationHaveABody())
3477    return;
3478
3479  // For safety's sake, just ignore it if we don't have type source
3480  // information.  This should never happen for non-implicit methods,
3481  // but...
3482  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3483    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3484}
3485
3486/// Check for invalid uses of an abstract type within a class definition.
3487static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3488                                    CXXRecordDecl *RD) {
3489  for (CXXRecordDecl::decl_iterator
3490         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3491    Decl *D = *I;
3492    if (D->isImplicit()) continue;
3493
3494    // Methods and method templates.
3495    if (isa<CXXMethodDecl>(D)) {
3496      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3497    } else if (isa<FunctionTemplateDecl>(D)) {
3498      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3499      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3500
3501    // Fields and static variables.
3502    } else if (isa<FieldDecl>(D)) {
3503      FieldDecl *FD = cast<FieldDecl>(D);
3504      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3505        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3506    } else if (isa<VarDecl>(D)) {
3507      VarDecl *VD = cast<VarDecl>(D);
3508      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3509        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3510
3511    // Nested classes and class templates.
3512    } else if (isa<CXXRecordDecl>(D)) {
3513      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3514    } else if (isa<ClassTemplateDecl>(D)) {
3515      CheckAbstractClassUsage(Info,
3516                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3517    }
3518  }
3519}
3520
3521/// \brief Perform semantic checks on a class definition that has been
3522/// completing, introducing implicitly-declared members, checking for
3523/// abstract types, etc.
3524void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3525  if (!Record)
3526    return;
3527
3528  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3529    AbstractUsageInfo Info(*this, Record);
3530    CheckAbstractClassUsage(Info, Record);
3531  }
3532
3533  // If this is not an aggregate type and has no user-declared constructor,
3534  // complain about any non-static data members of reference or const scalar
3535  // type, since they will never get initializers.
3536  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3537      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3538    bool Complained = false;
3539    for (RecordDecl::field_iterator F = Record->field_begin(),
3540                                 FEnd = Record->field_end();
3541         F != FEnd; ++F) {
3542      if (F->hasInClassInitializer())
3543        continue;
3544
3545      if (F->getType()->isReferenceType() ||
3546          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3547        if (!Complained) {
3548          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3549            << Record->getTagKind() << Record;
3550          Complained = true;
3551        }
3552
3553        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3554          << F->getType()->isReferenceType()
3555          << F->getDeclName();
3556      }
3557    }
3558  }
3559
3560  if (Record->isDynamicClass() && !Record->isDependentType())
3561    DynamicClasses.push_back(Record);
3562
3563  if (Record->getIdentifier()) {
3564    // C++ [class.mem]p13:
3565    //   If T is the name of a class, then each of the following shall have a
3566    //   name different from T:
3567    //     - every member of every anonymous union that is a member of class T.
3568    //
3569    // C++ [class.mem]p14:
3570    //   In addition, if class T has a user-declared constructor (12.1), every
3571    //   non-static data member of class T shall have a name different from T.
3572    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3573         R.first != R.second; ++R.first) {
3574      NamedDecl *D = *R.first;
3575      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3576          isa<IndirectFieldDecl>(D)) {
3577        Diag(D->getLocation(), diag::err_member_name_of_class)
3578          << D->getDeclName();
3579        break;
3580      }
3581    }
3582  }
3583
3584  // Warn if the class has virtual methods but non-virtual public destructor.
3585  if (Record->isPolymorphic() && !Record->isDependentType()) {
3586    CXXDestructorDecl *dtor = Record->getDestructor();
3587    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3588      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3589           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3590  }
3591
3592  // See if a method overloads virtual methods in a base
3593  /// class without overriding any.
3594  if (!Record->isDependentType()) {
3595    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3596                                     MEnd = Record->method_end();
3597         M != MEnd; ++M) {
3598      if (!(*M)->isStatic())
3599        DiagnoseHiddenVirtualMethods(Record, *M);
3600    }
3601  }
3602
3603  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3604  // function that is not a constructor declares that member function to be
3605  // const. [...] The class of which that function is a member shall be
3606  // a literal type.
3607  //
3608  // It's fine to diagnose constructors here too: such constructors cannot
3609  // produce a constant expression, so are ill-formed (no diagnostic required).
3610  //
3611  // If the class has virtual bases, any constexpr members will already have
3612  // been diagnosed by the checks performed on the member declaration, so
3613  // suppress this (less useful) diagnostic.
3614  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3615      !Record->isLiteral() && !Record->getNumVBases()) {
3616    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3617                                     MEnd = Record->method_end();
3618         M != MEnd; ++M) {
3619      if ((*M)->isConstexpr()) {
3620        switch (Record->getTemplateSpecializationKind()) {
3621        case TSK_ImplicitInstantiation:
3622        case TSK_ExplicitInstantiationDeclaration:
3623        case TSK_ExplicitInstantiationDefinition:
3624          // If a template instantiates to a non-literal type, but its members
3625          // instantiate to constexpr functions, the template is technically
3626          // ill-formed, but we allow it for sanity. Such members are treated as
3627          // non-constexpr.
3628          (*M)->setConstexpr(false);
3629          continue;
3630
3631        case TSK_Undeclared:
3632        case TSK_ExplicitSpecialization:
3633          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3634                             PDiag(diag::err_constexpr_method_non_literal));
3635          break;
3636        }
3637
3638        // Only produce one error per class.
3639        break;
3640      }
3641    }
3642  }
3643
3644  // Declare inherited constructors. We do this eagerly here because:
3645  // - The standard requires an eager diagnostic for conflicting inherited
3646  //   constructors from different classes.
3647  // - The lazy declaration of the other implicit constructors is so as to not
3648  //   waste space and performance on classes that are not meant to be
3649  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3650  //   have inherited constructors.
3651  DeclareInheritedConstructors(Record);
3652
3653  if (!Record->isDependentType())
3654    CheckExplicitlyDefaultedMethods(Record);
3655}
3656
3657void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3658  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3659                                      ME = Record->method_end();
3660       MI != ME; ++MI) {
3661    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3662      switch (getSpecialMember(*MI)) {
3663      case CXXDefaultConstructor:
3664        CheckExplicitlyDefaultedDefaultConstructor(
3665                                                  cast<CXXConstructorDecl>(*MI));
3666        break;
3667
3668      case CXXDestructor:
3669        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3670        break;
3671
3672      case CXXCopyConstructor:
3673        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3674        break;
3675
3676      case CXXCopyAssignment:
3677        CheckExplicitlyDefaultedCopyAssignment(*MI);
3678        break;
3679
3680      case CXXMoveConstructor:
3681        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3682        break;
3683
3684      case CXXMoveAssignment:
3685        CheckExplicitlyDefaultedMoveAssignment(*MI);
3686        break;
3687
3688      case CXXInvalid:
3689        llvm_unreachable("non-special member explicitly defaulted!");
3690      }
3691    }
3692  }
3693
3694}
3695
3696void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3697  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3698
3699  // Whether this was the first-declared instance of the constructor.
3700  // This affects whether we implicitly add an exception spec (and, eventually,
3701  // constexpr). It is also ill-formed to explicitly default a constructor such
3702  // that it would be deleted. (C++0x [decl.fct.def.default])
3703  bool First = CD == CD->getCanonicalDecl();
3704
3705  bool HadError = false;
3706  if (CD->getNumParams() != 0) {
3707    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3708      << CD->getSourceRange();
3709    HadError = true;
3710  }
3711
3712  ImplicitExceptionSpecification Spec
3713    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3714  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3715  if (EPI.ExceptionSpecType == EST_Delayed) {
3716    // Exception specification depends on some deferred part of the class. We'll
3717    // try again when the class's definition has been fully processed.
3718    return;
3719  }
3720  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3721                          *ExceptionType = Context.getFunctionType(
3722                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3723
3724  if (CtorType->hasExceptionSpec()) {
3725    if (CheckEquivalentExceptionSpec(
3726          PDiag(diag::err_incorrect_defaulted_exception_spec)
3727            << CXXDefaultConstructor,
3728          PDiag(),
3729          ExceptionType, SourceLocation(),
3730          CtorType, CD->getLocation())) {
3731      HadError = true;
3732    }
3733  } else if (First) {
3734    // We set the declaration to have the computed exception spec here.
3735    // We know there are no parameters.
3736    EPI.ExtInfo = CtorType->getExtInfo();
3737    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3738  }
3739
3740  if (HadError) {
3741    CD->setInvalidDecl();
3742    return;
3743  }
3744
3745  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3746    if (First) {
3747      CD->setDeletedAsWritten();
3748    } else {
3749      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3750        << CXXDefaultConstructor;
3751      CD->setInvalidDecl();
3752    }
3753  }
3754}
3755
3756void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3757  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3758
3759  // Whether this was the first-declared instance of the constructor.
3760  bool First = CD == CD->getCanonicalDecl();
3761
3762  bool HadError = false;
3763  if (CD->getNumParams() != 1) {
3764    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3765      << CD->getSourceRange();
3766    HadError = true;
3767  }
3768
3769  ImplicitExceptionSpecification Spec(Context);
3770  bool Const;
3771  llvm::tie(Spec, Const) =
3772    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3773
3774  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3775  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3776                          *ExceptionType = Context.getFunctionType(
3777                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3778
3779  // Check for parameter type matching.
3780  // This is a copy ctor so we know it's a cv-qualified reference to T.
3781  QualType ArgType = CtorType->getArgType(0);
3782  if (ArgType->getPointeeType().isVolatileQualified()) {
3783    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3784    HadError = true;
3785  }
3786  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3787    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3788    HadError = true;
3789  }
3790
3791  if (CtorType->hasExceptionSpec()) {
3792    if (CheckEquivalentExceptionSpec(
3793          PDiag(diag::err_incorrect_defaulted_exception_spec)
3794            << CXXCopyConstructor,
3795          PDiag(),
3796          ExceptionType, SourceLocation(),
3797          CtorType, CD->getLocation())) {
3798      HadError = true;
3799    }
3800  } else if (First) {
3801    // We set the declaration to have the computed exception spec here.
3802    // We duplicate the one parameter type.
3803    EPI.ExtInfo = CtorType->getExtInfo();
3804    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3805  }
3806
3807  if (HadError) {
3808    CD->setInvalidDecl();
3809    return;
3810  }
3811
3812  if (ShouldDeleteCopyConstructor(CD)) {
3813    if (First) {
3814      CD->setDeletedAsWritten();
3815    } else {
3816      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3817        << CXXCopyConstructor;
3818      CD->setInvalidDecl();
3819    }
3820  }
3821}
3822
3823void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3824  assert(MD->isExplicitlyDefaulted());
3825
3826  // Whether this was the first-declared instance of the operator
3827  bool First = MD == MD->getCanonicalDecl();
3828
3829  bool HadError = false;
3830  if (MD->getNumParams() != 1) {
3831    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3832      << MD->getSourceRange();
3833    HadError = true;
3834  }
3835
3836  QualType ReturnType =
3837    MD->getType()->getAs<FunctionType>()->getResultType();
3838  if (!ReturnType->isLValueReferenceType() ||
3839      !Context.hasSameType(
3840        Context.getCanonicalType(ReturnType->getPointeeType()),
3841        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3842    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3843    HadError = true;
3844  }
3845
3846  ImplicitExceptionSpecification Spec(Context);
3847  bool Const;
3848  llvm::tie(Spec, Const) =
3849    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3850
3851  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3852  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3853                          *ExceptionType = Context.getFunctionType(
3854                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3855
3856  QualType ArgType = OperType->getArgType(0);
3857  if (!ArgType->isLValueReferenceType()) {
3858    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3859    HadError = true;
3860  } else {
3861    if (ArgType->getPointeeType().isVolatileQualified()) {
3862      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3863      HadError = true;
3864    }
3865    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3866      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3867      HadError = true;
3868    }
3869  }
3870
3871  if (OperType->getTypeQuals()) {
3872    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3873    HadError = true;
3874  }
3875
3876  if (OperType->hasExceptionSpec()) {
3877    if (CheckEquivalentExceptionSpec(
3878          PDiag(diag::err_incorrect_defaulted_exception_spec)
3879            << CXXCopyAssignment,
3880          PDiag(),
3881          ExceptionType, SourceLocation(),
3882          OperType, MD->getLocation())) {
3883      HadError = true;
3884    }
3885  } else if (First) {
3886    // We set the declaration to have the computed exception spec here.
3887    // We duplicate the one parameter type.
3888    EPI.RefQualifier = OperType->getRefQualifier();
3889    EPI.ExtInfo = OperType->getExtInfo();
3890    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3891  }
3892
3893  if (HadError) {
3894    MD->setInvalidDecl();
3895    return;
3896  }
3897
3898  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3899    if (First) {
3900      MD->setDeletedAsWritten();
3901    } else {
3902      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3903        << CXXCopyAssignment;
3904      MD->setInvalidDecl();
3905    }
3906  }
3907}
3908
3909void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
3910  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
3911
3912  // Whether this was the first-declared instance of the constructor.
3913  bool First = CD == CD->getCanonicalDecl();
3914
3915  bool HadError = false;
3916  if (CD->getNumParams() != 1) {
3917    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
3918      << CD->getSourceRange();
3919    HadError = true;
3920  }
3921
3922  ImplicitExceptionSpecification Spec(
3923      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
3924
3925  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3926  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3927                          *ExceptionType = Context.getFunctionType(
3928                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3929
3930  // Check for parameter type matching.
3931  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
3932  QualType ArgType = CtorType->getArgType(0);
3933  if (ArgType->getPointeeType().isVolatileQualified()) {
3934    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
3935    HadError = true;
3936  }
3937  if (ArgType->getPointeeType().isConstQualified()) {
3938    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
3939    HadError = true;
3940  }
3941
3942  if (CtorType->hasExceptionSpec()) {
3943    if (CheckEquivalentExceptionSpec(
3944          PDiag(diag::err_incorrect_defaulted_exception_spec)
3945            << CXXMoveConstructor,
3946          PDiag(),
3947          ExceptionType, SourceLocation(),
3948          CtorType, CD->getLocation())) {
3949      HadError = true;
3950    }
3951  } else if (First) {
3952    // We set the declaration to have the computed exception spec here.
3953    // We duplicate the one parameter type.
3954    EPI.ExtInfo = CtorType->getExtInfo();
3955    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3956  }
3957
3958  if (HadError) {
3959    CD->setInvalidDecl();
3960    return;
3961  }
3962
3963  if (ShouldDeleteMoveConstructor(CD)) {
3964    if (First) {
3965      CD->setDeletedAsWritten();
3966    } else {
3967      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3968        << CXXMoveConstructor;
3969      CD->setInvalidDecl();
3970    }
3971  }
3972}
3973
3974void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
3975  assert(MD->isExplicitlyDefaulted());
3976
3977  // Whether this was the first-declared instance of the operator
3978  bool First = MD == MD->getCanonicalDecl();
3979
3980  bool HadError = false;
3981  if (MD->getNumParams() != 1) {
3982    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
3983      << MD->getSourceRange();
3984    HadError = true;
3985  }
3986
3987  QualType ReturnType =
3988    MD->getType()->getAs<FunctionType>()->getResultType();
3989  if (!ReturnType->isLValueReferenceType() ||
3990      !Context.hasSameType(
3991        Context.getCanonicalType(ReturnType->getPointeeType()),
3992        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3993    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
3994    HadError = true;
3995  }
3996
3997  ImplicitExceptionSpecification Spec(
3998      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
3999
4000  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4001  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4002                          *ExceptionType = Context.getFunctionType(
4003                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4004
4005  QualType ArgType = OperType->getArgType(0);
4006  if (!ArgType->isRValueReferenceType()) {
4007    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4008    HadError = true;
4009  } else {
4010    if (ArgType->getPointeeType().isVolatileQualified()) {
4011      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4012      HadError = true;
4013    }
4014    if (ArgType->getPointeeType().isConstQualified()) {
4015      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4016      HadError = true;
4017    }
4018  }
4019
4020  if (OperType->getTypeQuals()) {
4021    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4022    HadError = true;
4023  }
4024
4025  if (OperType->hasExceptionSpec()) {
4026    if (CheckEquivalentExceptionSpec(
4027          PDiag(diag::err_incorrect_defaulted_exception_spec)
4028            << CXXMoveAssignment,
4029          PDiag(),
4030          ExceptionType, SourceLocation(),
4031          OperType, MD->getLocation())) {
4032      HadError = true;
4033    }
4034  } else if (First) {
4035    // We set the declaration to have the computed exception spec here.
4036    // We duplicate the one parameter type.
4037    EPI.RefQualifier = OperType->getRefQualifier();
4038    EPI.ExtInfo = OperType->getExtInfo();
4039    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4040  }
4041
4042  if (HadError) {
4043    MD->setInvalidDecl();
4044    return;
4045  }
4046
4047  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4048    if (First) {
4049      MD->setDeletedAsWritten();
4050    } else {
4051      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4052        << CXXMoveAssignment;
4053      MD->setInvalidDecl();
4054    }
4055  }
4056}
4057
4058void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4059  assert(DD->isExplicitlyDefaulted());
4060
4061  // Whether this was the first-declared instance of the destructor.
4062  bool First = DD == DD->getCanonicalDecl();
4063
4064  ImplicitExceptionSpecification Spec
4065    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4066  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4067  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4068                          *ExceptionType = Context.getFunctionType(
4069                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4070
4071  if (DtorType->hasExceptionSpec()) {
4072    if (CheckEquivalentExceptionSpec(
4073          PDiag(diag::err_incorrect_defaulted_exception_spec)
4074            << CXXDestructor,
4075          PDiag(),
4076          ExceptionType, SourceLocation(),
4077          DtorType, DD->getLocation())) {
4078      DD->setInvalidDecl();
4079      return;
4080    }
4081  } else if (First) {
4082    // We set the declaration to have the computed exception spec here.
4083    // There are no parameters.
4084    EPI.ExtInfo = DtorType->getExtInfo();
4085    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4086  }
4087
4088  if (ShouldDeleteDestructor(DD)) {
4089    if (First) {
4090      DD->setDeletedAsWritten();
4091    } else {
4092      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4093        << CXXDestructor;
4094      DD->setInvalidDecl();
4095    }
4096  }
4097}
4098
4099/// This function implements the following C++0x paragraphs:
4100///  - [class.ctor]/5
4101bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4102  assert(!MD->isInvalidDecl());
4103  CXXRecordDecl *RD = MD->getParent();
4104  assert(!RD->isDependentType() && "do deletion after instantiation");
4105  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4106    return false;
4107
4108  bool IsUnion = RD->isUnion();
4109  bool IsConstructor = false;
4110  bool IsAssignment = false;
4111  bool IsMove = false;
4112
4113  bool ConstArg = false;
4114
4115  switch (CSM) {
4116  case CXXDefaultConstructor:
4117    IsConstructor = true;
4118    break;
4119  default:
4120    llvm_unreachable("function only currently implemented for default ctors");
4121  }
4122
4123  SourceLocation Loc = MD->getLocation();
4124
4125  // Do access control from the constructor
4126  ContextRAII MethodContext(*this, MD);
4127
4128  bool AllConst = true;
4129
4130  // We do this because we should never actually use an anonymous
4131  // union's constructor.
4132  if (IsUnion && RD->isAnonymousStructOrUnion())
4133    return false;
4134
4135  // FIXME: We should put some diagnostic logic right into this function.
4136
4137  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4138                                          BE = RD->bases_end();
4139       BI != BE; ++BI) {
4140    // We'll handle this one later
4141    if (BI->isVirtual())
4142      continue;
4143
4144    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4145    assert(BaseDecl && "base isn't a CXXRecordDecl");
4146
4147    // Unless we have an assignment operator, the base's destructor must
4148    // be accessible and not deleted.
4149    if (!IsAssignment) {
4150      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4151      if (BaseDtor->isDeleted())
4152        return true;
4153      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4154          AR_accessible)
4155        return true;
4156    }
4157
4158    // Finding the corresponding member in the base should lead to a
4159    // unique, accessible, non-deleted function.
4160    if (CSM != CXXDestructor) {
4161      SpecialMemberOverloadResult *SMOR =
4162        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, IsMove, false,
4163                            false);
4164      if (!SMOR->hasSuccess())
4165        return true;
4166      CXXMethodDecl *BaseMember = SMOR->getMethod();
4167      if (IsConstructor) {
4168        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4169        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4170                                   PDiag()) != AR_accessible)
4171          return true;
4172      }
4173    }
4174  }
4175
4176  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4177                                          BE = RD->vbases_end();
4178       BI != BE; ++BI) {
4179    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4180    assert(BaseDecl && "base isn't a CXXRecordDecl");
4181
4182    // Unless we have an assignment operator, the base's destructor must
4183    // be accessible and not deleted.
4184    if (!IsAssignment) {
4185      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4186      if (BaseDtor->isDeleted())
4187        return true;
4188      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4189          AR_accessible)
4190        return true;
4191    }
4192
4193    // Finding the corresponding member in the base should lead to a
4194    // unique, accessible, non-deleted function.
4195    if (CSM != CXXDestructor) {
4196      SpecialMemberOverloadResult *SMOR =
4197        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, IsMove, false,
4198                            false);
4199      if (!SMOR->hasSuccess())
4200        return true;
4201      CXXMethodDecl *BaseMember = SMOR->getMethod();
4202      if (IsConstructor) {
4203        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4204        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4205                                   PDiag()) != AR_accessible)
4206          return true;
4207      }
4208    }
4209  }
4210
4211  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4212                                     FE = RD->field_end();
4213       FI != FE; ++FI) {
4214    if (FI->isInvalidDecl())
4215      continue;
4216
4217    QualType FieldType = Context.getBaseElementType(FI->getType());
4218    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4219
4220    // For a default constructor, all references must be initialized in-class
4221    // and, if a union, it must have a non-const member.
4222    if (CSM == CXXDefaultConstructor) {
4223      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4224        return true;
4225
4226      if (IsUnion && !FieldType.isConstQualified())
4227        AllConst = false;
4228    }
4229
4230    if (FieldRecord) {
4231      // Unless we're doing assignment, the field's destructor must be
4232      // accessible and not deleted.
4233      if (!IsAssignment) {
4234        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4235        if (FieldDtor->isDeleted())
4236          return true;
4237        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4238            AR_accessible)
4239          return true;
4240      }
4241
4242      // For a default constructor, a const member must have a user-provided
4243      // default constructor or else be explicitly initialized.
4244      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4245          !FI->hasInClassInitializer() &&
4246          !FieldRecord->hasUserProvidedDefaultConstructor())
4247        return true;
4248
4249      // For a default constructor, additional restrictions exist on the
4250      // variant members.
4251      if (CSM == CXXDefaultConstructor && !IsUnion && FieldRecord->isUnion() &&
4252          FieldRecord->isAnonymousStructOrUnion()) {
4253        // We're okay to reuse AllConst here since we only care about the
4254        // value otherwise if we're in a union.
4255        AllConst = true;
4256
4257        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4258                                           UE = FieldRecord->field_end();
4259             UI != UE; ++UI) {
4260          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4261          CXXRecordDecl *UnionFieldRecord =
4262            UnionFieldType->getAsCXXRecordDecl();
4263
4264          if (!UnionFieldType.isConstQualified())
4265            AllConst = false;
4266
4267          if (UnionFieldRecord &&
4268              !UnionFieldRecord->hasTrivialDefaultConstructor())
4269            return true;
4270        }
4271
4272        if (AllConst)
4273          return true;
4274
4275        // Don't try to initialize the anonymous union
4276        // This is technically non-conformant, but sanity demands it.
4277        continue;
4278      }
4279
4280      // Check that the corresponding member of the field is accessible,
4281      // unique, and non-deleted. We don't do this if it has an explicit
4282      // initialization when default-constructing.
4283      if (CSM != CXXDestructor &&
4284          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4285        SpecialMemberOverloadResult *SMOR =
4286          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, IsMove, false,
4287                              false);
4288        if (!SMOR->hasSuccess())
4289          return true;
4290
4291        CXXMethodDecl *FieldMember = SMOR->getMethod();
4292        if (IsConstructor) {
4293          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4294          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4295                                     PDiag()) != AR_accessible)
4296          return true;
4297        }
4298
4299        // We need the corresponding member of a union to be trivial so that
4300        // we can safely copy them all simultaneously.
4301        // FIXME: Note that performing the check here (where we rely on the lack
4302        // of an in-class initializer) is technically ill-formed. However, this
4303        // seems most obviously to be a bug in the standard.
4304        if (IsUnion && !FieldMember->isTrivial())
4305          return true;
4306      }
4307    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4308               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4309      // We can't initialize a const member of non-class type to any value.
4310      return true;
4311    }
4312  }
4313
4314  // We can't have all const members in a union when default-constructing,
4315  // or else they're all nonsensical garbage values that can't be changed.
4316  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4317    return true;
4318
4319  return false;
4320}
4321
4322bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
4323  CXXRecordDecl *RD = CD->getParent();
4324  assert(!RD->isDependentType() && "do deletion after instantiation");
4325  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4326    return false;
4327
4328  SourceLocation Loc = CD->getLocation();
4329
4330  // Do access control from the constructor
4331  ContextRAII CtorContext(*this, CD);
4332
4333  bool Union = RD->isUnion();
4334
4335  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
4336         "copy assignment arg has no pointee type");
4337  unsigned ArgQuals =
4338    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4339      Qualifiers::Const : 0;
4340
4341  // We do this because we should never actually use an anonymous
4342  // union's constructor.
4343  if (Union && RD->isAnonymousStructOrUnion())
4344    return false;
4345
4346  // FIXME: We should put some diagnostic logic right into this function.
4347
4348  // C++0x [class.copy]/11
4349  //    A defaulted [copy] constructor for class X is defined as delete if X has:
4350
4351  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4352                                          BE = RD->bases_end();
4353       BI != BE; ++BI) {
4354    // We'll handle this one later
4355    if (BI->isVirtual())
4356      continue;
4357
4358    QualType BaseType = BI->getType();
4359    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4360    assert(BaseDecl && "base isn't a CXXRecordDecl");
4361
4362    // -- any [direct base class] of a type with a destructor that is deleted or
4363    //    inaccessible from the defaulted constructor
4364    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4365    if (BaseDtor->isDeleted())
4366      return true;
4367    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4368        AR_accessible)
4369      return true;
4370
4371    // -- a [direct base class] B that cannot be [copied] because overload
4372    //    resolution, as applied to B's [copy] constructor, results in an
4373    //    ambiguity or a function that is deleted or inaccessible from the
4374    //    defaulted constructor
4375    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
4376    if (!BaseCtor || BaseCtor->isDeleted())
4377      return true;
4378    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4379        AR_accessible)
4380      return true;
4381  }
4382
4383  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4384                                          BE = RD->vbases_end();
4385       BI != BE; ++BI) {
4386    QualType BaseType = BI->getType();
4387    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4388    assert(BaseDecl && "base isn't a CXXRecordDecl");
4389
4390    // -- any [virtual base class] of a type with a destructor that is deleted or
4391    //    inaccessible from the defaulted constructor
4392    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4393    if (BaseDtor->isDeleted())
4394      return true;
4395    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4396        AR_accessible)
4397      return true;
4398
4399    // -- a [virtual base class] B that cannot be [copied] because overload
4400    //    resolution, as applied to B's [copy] constructor, results in an
4401    //    ambiguity or a function that is deleted or inaccessible from the
4402    //    defaulted constructor
4403    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
4404    if (!BaseCtor || BaseCtor->isDeleted())
4405      return true;
4406    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4407        AR_accessible)
4408      return true;
4409  }
4410
4411  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4412                                     FE = RD->field_end();
4413       FI != FE; ++FI) {
4414    QualType FieldType = Context.getBaseElementType(FI->getType());
4415
4416    // -- for a copy constructor, a non-static data member of rvalue reference
4417    //    type
4418    if (FieldType->isRValueReferenceType())
4419      return true;
4420
4421    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4422
4423    if (FieldRecord) {
4424      // This is an anonymous union
4425      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4426        // Anonymous unions inside unions do not variant members create
4427        if (!Union) {
4428          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4429                                             UE = FieldRecord->field_end();
4430               UI != UE; ++UI) {
4431            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4432            CXXRecordDecl *UnionFieldRecord =
4433              UnionFieldType->getAsCXXRecordDecl();
4434
4435            // -- a variant member with a non-trivial [copy] constructor and X
4436            //    is a union-like class
4437            if (UnionFieldRecord &&
4438                !UnionFieldRecord->hasTrivialCopyConstructor())
4439              return true;
4440          }
4441        }
4442
4443        // Don't try to initalize an anonymous union
4444        continue;
4445      } else {
4446         // -- a variant member with a non-trivial [copy] constructor and X is a
4447         //    union-like class
4448        if (Union && !FieldRecord->hasTrivialCopyConstructor())
4449          return true;
4450
4451        // -- any [non-static data member] of a type with a destructor that is
4452        //    deleted or inaccessible from the defaulted constructor
4453        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4454        if (FieldDtor->isDeleted())
4455          return true;
4456        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4457            AR_accessible)
4458          return true;
4459      }
4460
4461    // -- a [non-static data member of class type (or array thereof)] B that
4462    //    cannot be [copied] because overload resolution, as applied to B's
4463    //    [copy] constructor, results in an ambiguity or a function that is
4464    //    deleted or inaccessible from the defaulted constructor
4465      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
4466                                                               ArgQuals);
4467      if (!FieldCtor || FieldCtor->isDeleted())
4468        return true;
4469      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4470                                 PDiag()) != AR_accessible)
4471        return true;
4472    }
4473  }
4474
4475  return false;
4476}
4477
4478bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4479  CXXRecordDecl *RD = MD->getParent();
4480  assert(!RD->isDependentType() && "do deletion after instantiation");
4481  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4482    return false;
4483
4484  SourceLocation Loc = MD->getLocation();
4485
4486  // Do access control from the constructor
4487  ContextRAII MethodContext(*this, MD);
4488
4489  bool Union = RD->isUnion();
4490
4491  unsigned ArgQuals =
4492    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4493      Qualifiers::Const : 0;
4494
4495  // We do this because we should never actually use an anonymous
4496  // union's constructor.
4497  if (Union && RD->isAnonymousStructOrUnion())
4498    return false;
4499
4500  // FIXME: We should put some diagnostic logic right into this function.
4501
4502  // C++0x [class.copy]/20
4503  //    A defaulted [copy] assignment operator for class X is defined as deleted
4504  //    if X has:
4505
4506  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4507                                          BE = RD->bases_end();
4508       BI != BE; ++BI) {
4509    // We'll handle this one later
4510    if (BI->isVirtual())
4511      continue;
4512
4513    QualType BaseType = BI->getType();
4514    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4515    assert(BaseDecl && "base isn't a CXXRecordDecl");
4516
4517    // -- a [direct base class] B that cannot be [copied] because overload
4518    //    resolution, as applied to B's [copy] assignment operator, results in
4519    //    an ambiguity or a function that is deleted or inaccessible from the
4520    //    assignment operator
4521    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4522                                                      0);
4523    if (!CopyOper || CopyOper->isDeleted())
4524      return true;
4525    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4526      return true;
4527  }
4528
4529  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4530                                          BE = RD->vbases_end();
4531       BI != BE; ++BI) {
4532    QualType BaseType = BI->getType();
4533    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4534    assert(BaseDecl && "base isn't a CXXRecordDecl");
4535
4536    // -- a [virtual base class] B that cannot be [copied] because overload
4537    //    resolution, as applied to B's [copy] assignment operator, results in
4538    //    an ambiguity or a function that is deleted or inaccessible from the
4539    //    assignment operator
4540    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4541                                                      0);
4542    if (!CopyOper || CopyOper->isDeleted())
4543      return true;
4544    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4545      return true;
4546  }
4547
4548  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4549                                     FE = RD->field_end();
4550       FI != FE; ++FI) {
4551    QualType FieldType = Context.getBaseElementType(FI->getType());
4552
4553    // -- a non-static data member of reference type
4554    if (FieldType->isReferenceType())
4555      return true;
4556
4557    // -- a non-static data member of const non-class type (or array thereof)
4558    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4559      return true;
4560
4561    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4562
4563    if (FieldRecord) {
4564      // This is an anonymous union
4565      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4566        // Anonymous unions inside unions do not variant members create
4567        if (!Union) {
4568          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4569                                             UE = FieldRecord->field_end();
4570               UI != UE; ++UI) {
4571            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4572            CXXRecordDecl *UnionFieldRecord =
4573              UnionFieldType->getAsCXXRecordDecl();
4574
4575            // -- a variant member with a non-trivial [copy] assignment operator
4576            //    and X is a union-like class
4577            if (UnionFieldRecord &&
4578                !UnionFieldRecord->hasTrivialCopyAssignment())
4579              return true;
4580          }
4581        }
4582
4583        // Don't try to initalize an anonymous union
4584        continue;
4585      // -- a variant member with a non-trivial [copy] assignment operator
4586      //    and X is a union-like class
4587      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4588          return true;
4589      }
4590
4591      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4592                                                        false, 0);
4593      if (!CopyOper || CopyOper->isDeleted())
4594        return true;
4595      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4596        return true;
4597    }
4598  }
4599
4600  return false;
4601}
4602
4603bool Sema::ShouldDeleteMoveConstructor(CXXConstructorDecl *CD) {
4604  CXXRecordDecl *RD = CD->getParent();
4605  assert(!RD->isDependentType() && "do deletion after instantiation");
4606  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4607    return false;
4608
4609  SourceLocation Loc = CD->getLocation();
4610
4611  // Do access control from the constructor
4612  ContextRAII CtorContext(*this, CD);
4613
4614  bool Union = RD->isUnion();
4615
4616  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
4617         "copy assignment arg has no pointee type");
4618
4619  // We do this because we should never actually use an anonymous
4620  // union's constructor.
4621  if (Union && RD->isAnonymousStructOrUnion())
4622    return false;
4623
4624  // C++0x [class.copy]/11
4625  //    A defaulted [move] constructor for class X is defined as deleted
4626  //    if X has:
4627
4628  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4629                                          BE = RD->bases_end();
4630       BI != BE; ++BI) {
4631    // We'll handle this one later
4632    if (BI->isVirtual())
4633      continue;
4634
4635    QualType BaseType = BI->getType();
4636    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4637    assert(BaseDecl && "base isn't a CXXRecordDecl");
4638
4639    // -- any [direct base class] of a type with a destructor that is deleted or
4640    //    inaccessible from the defaulted constructor
4641    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4642    if (BaseDtor->isDeleted())
4643      return true;
4644    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4645        AR_accessible)
4646      return true;
4647
4648    // -- a [direct base class] B that cannot be [moved] because overload
4649    //    resolution, as applied to B's [move] constructor, results in an
4650    //    ambiguity or a function that is deleted or inaccessible from the
4651    //    defaulted constructor
4652    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4653    if (!BaseCtor || BaseCtor->isDeleted())
4654      return true;
4655    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4656        AR_accessible)
4657      return true;
4658
4659    // -- for a move constructor, a [direct base class] with a type that
4660    //    does not have a move constructor and is not trivially copyable.
4661    // If the field isn't a record, it's always trivially copyable.
4662    // A moving constructor could be a copy constructor instead.
4663    if (!BaseCtor->isMoveConstructor() &&
4664        !BaseDecl->isTriviallyCopyable())
4665      return true;
4666  }
4667
4668  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4669                                          BE = RD->vbases_end();
4670       BI != BE; ++BI) {
4671    QualType BaseType = BI->getType();
4672    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4673    assert(BaseDecl && "base isn't a CXXRecordDecl");
4674
4675    // -- any [virtual base class] of a type with a destructor that is deleted
4676    //    or inaccessible from the defaulted constructor
4677    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4678    if (BaseDtor->isDeleted())
4679      return true;
4680    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4681        AR_accessible)
4682      return true;
4683
4684    // -- a [virtual base class] B that cannot be [moved] because overload
4685    //    resolution, as applied to B's [move] constructor, results in an
4686    //    ambiguity or a function that is deleted or inaccessible from the
4687    //    defaulted constructor
4688    CXXConstructorDecl *BaseCtor = LookupMovingConstructor(BaseDecl);
4689    if (!BaseCtor || BaseCtor->isDeleted())
4690      return true;
4691    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
4692        AR_accessible)
4693      return true;
4694
4695    // -- for a move constructor, a [virtual base class] with a type that
4696    //    does not have a move constructor and is not trivially copyable.
4697    // If the field isn't a record, it's always trivially copyable.
4698    // A moving constructor could be a copy constructor instead.
4699    if (!BaseCtor->isMoveConstructor() &&
4700        !BaseDecl->isTriviallyCopyable())
4701      return true;
4702  }
4703
4704  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4705                                     FE = RD->field_end();
4706       FI != FE; ++FI) {
4707    QualType FieldType = Context.getBaseElementType(FI->getType());
4708
4709    if (CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl()) {
4710      // This is an anonymous union
4711      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4712        // Anonymous unions inside unions do not variant members create
4713        if (!Union) {
4714          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4715                                             UE = FieldRecord->field_end();
4716               UI != UE; ++UI) {
4717            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4718            CXXRecordDecl *UnionFieldRecord =
4719              UnionFieldType->getAsCXXRecordDecl();
4720
4721            // -- a variant member with a non-trivial [move] constructor and X
4722            //    is a union-like class
4723            if (UnionFieldRecord &&
4724                !UnionFieldRecord->hasTrivialMoveConstructor())
4725              return true;
4726          }
4727        }
4728
4729        // Don't try to initalize an anonymous union
4730        continue;
4731      } else {
4732         // -- a variant member with a non-trivial [move] constructor and X is a
4733         //    union-like class
4734        if (Union && !FieldRecord->hasTrivialMoveConstructor())
4735          return true;
4736
4737        // -- any [non-static data member] of a type with a destructor that is
4738        //    deleted or inaccessible from the defaulted constructor
4739        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4740        if (FieldDtor->isDeleted())
4741          return true;
4742        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4743            AR_accessible)
4744          return true;
4745      }
4746
4747      // -- a [non-static data member of class type (or array thereof)] B that
4748      //    cannot be [moved] because overload resolution, as applied to B's
4749      //    [move] constructor, results in an ambiguity or a function that is
4750      //    deleted or inaccessible from the defaulted constructor
4751      CXXConstructorDecl *FieldCtor = LookupMovingConstructor(FieldRecord);
4752      if (!FieldCtor || FieldCtor->isDeleted())
4753        return true;
4754      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4755                                 PDiag()) != AR_accessible)
4756        return true;
4757
4758      // -- for a move constructor, a [non-static data member] with a type that
4759      //    does not have a move constructor and is not trivially copyable.
4760      // If the field isn't a record, it's always trivially copyable.
4761      // A moving constructor could be a copy constructor instead.
4762      if (!FieldCtor->isMoveConstructor() &&
4763          !FieldRecord->isTriviallyCopyable())
4764        return true;
4765    }
4766  }
4767
4768  return false;
4769}
4770
4771bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4772  CXXRecordDecl *RD = MD->getParent();
4773  assert(!RD->isDependentType() && "do deletion after instantiation");
4774  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4775    return false;
4776
4777  SourceLocation Loc = MD->getLocation();
4778
4779  // Do access control from the constructor
4780  ContextRAII MethodContext(*this, MD);
4781
4782  bool Union = RD->isUnion();
4783
4784  // We do this because we should never actually use an anonymous
4785  // union's constructor.
4786  if (Union && RD->isAnonymousStructOrUnion())
4787    return false;
4788
4789  // C++0x [class.copy]/20
4790  //    A defaulted [move] assignment operator for class X is defined as deleted
4791  //    if X has:
4792
4793  //    -- for the move constructor, [...] any direct or indirect virtual base
4794  //       class.
4795  if (RD->getNumVBases() != 0)
4796    return true;
4797
4798  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4799                                          BE = RD->bases_end();
4800       BI != BE; ++BI) {
4801
4802    QualType BaseType = BI->getType();
4803    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4804    assert(BaseDecl && "base isn't a CXXRecordDecl");
4805
4806    // -- a [direct base class] B that cannot be [moved] because overload
4807    //    resolution, as applied to B's [move] assignment operator, results in
4808    //    an ambiguity or a function that is deleted or inaccessible from the
4809    //    assignment operator
4810    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4811    if (!MoveOper || MoveOper->isDeleted())
4812      return true;
4813    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4814      return true;
4815
4816    // -- for the move assignment operator, a [direct base class] with a type
4817    //    that does not have a move assignment operator and is not trivially
4818    //    copyable.
4819    if (!MoveOper->isMoveAssignmentOperator() &&
4820        !BaseDecl->isTriviallyCopyable())
4821      return true;
4822  }
4823
4824  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4825                                     FE = RD->field_end();
4826       FI != FE; ++FI) {
4827    QualType FieldType = Context.getBaseElementType(FI->getType());
4828
4829    // -- a non-static data member of reference type
4830    if (FieldType->isReferenceType())
4831      return true;
4832
4833    // -- a non-static data member of const non-class type (or array thereof)
4834    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4835      return true;
4836
4837    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4838
4839    if (FieldRecord) {
4840      // This is an anonymous union
4841      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4842        // Anonymous unions inside unions do not variant members create
4843        if (!Union) {
4844          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4845                                             UE = FieldRecord->field_end();
4846               UI != UE; ++UI) {
4847            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4848            CXXRecordDecl *UnionFieldRecord =
4849              UnionFieldType->getAsCXXRecordDecl();
4850
4851            // -- a variant member with a non-trivial [move] assignment operator
4852            //    and X is a union-like class
4853            if (UnionFieldRecord &&
4854                !UnionFieldRecord->hasTrivialMoveAssignment())
4855              return true;
4856          }
4857        }
4858
4859        // Don't try to initalize an anonymous union
4860        continue;
4861      // -- a variant member with a non-trivial [move] assignment operator
4862      //    and X is a union-like class
4863      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4864          return true;
4865      }
4866
4867      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4868      if (!MoveOper || MoveOper->isDeleted())
4869        return true;
4870      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4871        return true;
4872
4873      // -- for the move assignment operator, a [non-static data member] with a
4874      //    type that does not have a move assignment operator and is not
4875      //    trivially copyable.
4876      if (!MoveOper->isMoveAssignmentOperator() &&
4877          !FieldRecord->isTriviallyCopyable())
4878        return true;
4879    }
4880  }
4881
4882  return false;
4883}
4884
4885bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4886  CXXRecordDecl *RD = DD->getParent();
4887  assert(!RD->isDependentType() && "do deletion after instantiation");
4888  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4889    return false;
4890
4891  SourceLocation Loc = DD->getLocation();
4892
4893  // Do access control from the destructor
4894  ContextRAII CtorContext(*this, DD);
4895
4896  bool Union = RD->isUnion();
4897
4898  // We do this because we should never actually use an anonymous
4899  // union's destructor.
4900  if (Union && RD->isAnonymousStructOrUnion())
4901    return false;
4902
4903  // C++0x [class.dtor]p5
4904  //    A defaulted destructor for a class X is defined as deleted if:
4905  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4906                                          BE = RD->bases_end();
4907       BI != BE; ++BI) {
4908    // We'll handle this one later
4909    if (BI->isVirtual())
4910      continue;
4911
4912    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4913    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4914    assert(BaseDtor && "base has no destructor");
4915
4916    // -- any direct or virtual base class has a deleted destructor or
4917    //    a destructor that is inaccessible from the defaulted destructor
4918    if (BaseDtor->isDeleted())
4919      return true;
4920    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4921        AR_accessible)
4922      return true;
4923  }
4924
4925  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4926                                          BE = RD->vbases_end();
4927       BI != BE; ++BI) {
4928    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4929    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4930    assert(BaseDtor && "base has no destructor");
4931
4932    // -- any direct or virtual base class has a deleted destructor or
4933    //    a destructor that is inaccessible from the defaulted destructor
4934    if (BaseDtor->isDeleted())
4935      return true;
4936    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4937        AR_accessible)
4938      return true;
4939  }
4940
4941  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4942                                     FE = RD->field_end();
4943       FI != FE; ++FI) {
4944    QualType FieldType = Context.getBaseElementType(FI->getType());
4945    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4946    if (FieldRecord) {
4947      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4948         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4949                                            UE = FieldRecord->field_end();
4950              UI != UE; ++UI) {
4951           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4952           CXXRecordDecl *UnionFieldRecord =
4953             UnionFieldType->getAsCXXRecordDecl();
4954
4955           // -- X is a union-like class that has a variant member with a non-
4956           //    trivial destructor.
4957           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4958             return true;
4959         }
4960      // Technically we are supposed to do this next check unconditionally.
4961      // But that makes absolutely no sense.
4962      } else {
4963        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4964
4965        // -- any of the non-static data members has class type M (or array
4966        //    thereof) and M has a deleted destructor or a destructor that is
4967        //    inaccessible from the defaulted destructor
4968        if (FieldDtor->isDeleted())
4969          return true;
4970        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4971          AR_accessible)
4972        return true;
4973
4974        // -- X is a union-like class that has a variant member with a non-
4975        //    trivial destructor.
4976        if (Union && !FieldDtor->isTrivial())
4977          return true;
4978      }
4979    }
4980  }
4981
4982  if (DD->isVirtual()) {
4983    FunctionDecl *OperatorDelete = 0;
4984    DeclarationName Name =
4985      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4986    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4987          false))
4988      return true;
4989  }
4990
4991
4992  return false;
4993}
4994
4995/// \brief Data used with FindHiddenVirtualMethod
4996namespace {
4997  struct FindHiddenVirtualMethodData {
4998    Sema *S;
4999    CXXMethodDecl *Method;
5000    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5001    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5002  };
5003}
5004
5005/// \brief Member lookup function that determines whether a given C++
5006/// method overloads virtual methods in a base class without overriding any,
5007/// to be used with CXXRecordDecl::lookupInBases().
5008static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5009                                    CXXBasePath &Path,
5010                                    void *UserData) {
5011  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5012
5013  FindHiddenVirtualMethodData &Data
5014    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5015
5016  DeclarationName Name = Data.Method->getDeclName();
5017  assert(Name.getNameKind() == DeclarationName::Identifier);
5018
5019  bool foundSameNameMethod = false;
5020  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5021  for (Path.Decls = BaseRecord->lookup(Name);
5022       Path.Decls.first != Path.Decls.second;
5023       ++Path.Decls.first) {
5024    NamedDecl *D = *Path.Decls.first;
5025    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5026      MD = MD->getCanonicalDecl();
5027      foundSameNameMethod = true;
5028      // Interested only in hidden virtual methods.
5029      if (!MD->isVirtual())
5030        continue;
5031      // If the method we are checking overrides a method from its base
5032      // don't warn about the other overloaded methods.
5033      if (!Data.S->IsOverload(Data.Method, MD, false))
5034        return true;
5035      // Collect the overload only if its hidden.
5036      if (!Data.OverridenAndUsingBaseMethods.count(MD))
5037        overloadedMethods.push_back(MD);
5038    }
5039  }
5040
5041  if (foundSameNameMethod)
5042    Data.OverloadedMethods.append(overloadedMethods.begin(),
5043                                   overloadedMethods.end());
5044  return foundSameNameMethod;
5045}
5046
5047/// \brief See if a method overloads virtual methods in a base class without
5048/// overriding any.
5049void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5050  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5051                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5052    return;
5053  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5054    return;
5055
5056  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5057                     /*bool RecordPaths=*/false,
5058                     /*bool DetectVirtual=*/false);
5059  FindHiddenVirtualMethodData Data;
5060  Data.Method = MD;
5061  Data.S = this;
5062
5063  // Keep the base methods that were overriden or introduced in the subclass
5064  // by 'using' in a set. A base method not in this set is hidden.
5065  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5066       res.first != res.second; ++res.first) {
5067    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5068      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5069                                          E = MD->end_overridden_methods();
5070           I != E; ++I)
5071        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5072    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5073      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5074        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5075  }
5076
5077  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5078      !Data.OverloadedMethods.empty()) {
5079    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5080      << MD << (Data.OverloadedMethods.size() > 1);
5081
5082    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5083      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5084      Diag(overloadedMD->getLocation(),
5085           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5086    }
5087  }
5088}
5089
5090void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5091                                             Decl *TagDecl,
5092                                             SourceLocation LBrac,
5093                                             SourceLocation RBrac,
5094                                             AttributeList *AttrList) {
5095  if (!TagDecl)
5096    return;
5097
5098  AdjustDeclIfTemplate(TagDecl);
5099
5100  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5101              // strict aliasing violation!
5102              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5103              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5104
5105  CheckCompletedCXXClass(
5106                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5107}
5108
5109/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5110/// special functions, such as the default constructor, copy
5111/// constructor, or destructor, to the given C++ class (C++
5112/// [special]p1).  This routine can only be executed just before the
5113/// definition of the class is complete.
5114void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5115  if (!ClassDecl->hasUserDeclaredConstructor())
5116    ++ASTContext::NumImplicitDefaultConstructors;
5117
5118  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5119    ++ASTContext::NumImplicitCopyConstructors;
5120
5121  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5122    ++ASTContext::NumImplicitCopyAssignmentOperators;
5123
5124    // If we have a dynamic class, then the copy assignment operator may be
5125    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5126    // it shows up in the right place in the vtable and that we diagnose
5127    // problems with the implicit exception specification.
5128    if (ClassDecl->isDynamicClass())
5129      DeclareImplicitCopyAssignment(ClassDecl);
5130  }
5131
5132  if (!ClassDecl->hasUserDeclaredDestructor()) {
5133    ++ASTContext::NumImplicitDestructors;
5134
5135    // If we have a dynamic class, then the destructor may be virtual, so we
5136    // have to declare the destructor immediately. This ensures that, e.g., it
5137    // shows up in the right place in the vtable and that we diagnose problems
5138    // with the implicit exception specification.
5139    if (ClassDecl->isDynamicClass())
5140      DeclareImplicitDestructor(ClassDecl);
5141  }
5142}
5143
5144void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5145  if (!D)
5146    return;
5147
5148  int NumParamList = D->getNumTemplateParameterLists();
5149  for (int i = 0; i < NumParamList; i++) {
5150    TemplateParameterList* Params = D->getTemplateParameterList(i);
5151    for (TemplateParameterList::iterator Param = Params->begin(),
5152                                      ParamEnd = Params->end();
5153          Param != ParamEnd; ++Param) {
5154      NamedDecl *Named = cast<NamedDecl>(*Param);
5155      if (Named->getDeclName()) {
5156        S->AddDecl(Named);
5157        IdResolver.AddDecl(Named);
5158      }
5159    }
5160  }
5161}
5162
5163void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5164  if (!D)
5165    return;
5166
5167  TemplateParameterList *Params = 0;
5168  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5169    Params = Template->getTemplateParameters();
5170  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5171           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5172    Params = PartialSpec->getTemplateParameters();
5173  else
5174    return;
5175
5176  for (TemplateParameterList::iterator Param = Params->begin(),
5177                                    ParamEnd = Params->end();
5178       Param != ParamEnd; ++Param) {
5179    NamedDecl *Named = cast<NamedDecl>(*Param);
5180    if (Named->getDeclName()) {
5181      S->AddDecl(Named);
5182      IdResolver.AddDecl(Named);
5183    }
5184  }
5185}
5186
5187void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5188  if (!RecordD) return;
5189  AdjustDeclIfTemplate(RecordD);
5190  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5191  PushDeclContext(S, Record);
5192}
5193
5194void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5195  if (!RecordD) return;
5196  PopDeclContext();
5197}
5198
5199/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5200/// parsing a top-level (non-nested) C++ class, and we are now
5201/// parsing those parts of the given Method declaration that could
5202/// not be parsed earlier (C++ [class.mem]p2), such as default
5203/// arguments. This action should enter the scope of the given
5204/// Method declaration as if we had just parsed the qualified method
5205/// name. However, it should not bring the parameters into scope;
5206/// that will be performed by ActOnDelayedCXXMethodParameter.
5207void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5208}
5209
5210/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5211/// C++ method declaration. We're (re-)introducing the given
5212/// function parameter into scope for use in parsing later parts of
5213/// the method declaration. For example, we could see an
5214/// ActOnParamDefaultArgument event for this parameter.
5215void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5216  if (!ParamD)
5217    return;
5218
5219  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5220
5221  // If this parameter has an unparsed default argument, clear it out
5222  // to make way for the parsed default argument.
5223  if (Param->hasUnparsedDefaultArg())
5224    Param->setDefaultArg(0);
5225
5226  S->AddDecl(Param);
5227  if (Param->getDeclName())
5228    IdResolver.AddDecl(Param);
5229}
5230
5231/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5232/// processing the delayed method declaration for Method. The method
5233/// declaration is now considered finished. There may be a separate
5234/// ActOnStartOfFunctionDef action later (not necessarily
5235/// immediately!) for this method, if it was also defined inside the
5236/// class body.
5237void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5238  if (!MethodD)
5239    return;
5240
5241  AdjustDeclIfTemplate(MethodD);
5242
5243  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5244
5245  // Now that we have our default arguments, check the constructor
5246  // again. It could produce additional diagnostics or affect whether
5247  // the class has implicitly-declared destructors, among other
5248  // things.
5249  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5250    CheckConstructor(Constructor);
5251
5252  // Check the default arguments, which we may have added.
5253  if (!Method->isInvalidDecl())
5254    CheckCXXDefaultArguments(Method);
5255}
5256
5257/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5258/// the well-formedness of the constructor declarator @p D with type @p
5259/// R. If there are any errors in the declarator, this routine will
5260/// emit diagnostics and set the invalid bit to true.  In any case, the type
5261/// will be updated to reflect a well-formed type for the constructor and
5262/// returned.
5263QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5264                                          StorageClass &SC) {
5265  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5266
5267  // C++ [class.ctor]p3:
5268  //   A constructor shall not be virtual (10.3) or static (9.4). A
5269  //   constructor can be invoked for a const, volatile or const
5270  //   volatile object. A constructor shall not be declared const,
5271  //   volatile, or const volatile (9.3.2).
5272  if (isVirtual) {
5273    if (!D.isInvalidType())
5274      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5275        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5276        << SourceRange(D.getIdentifierLoc());
5277    D.setInvalidType();
5278  }
5279  if (SC == SC_Static) {
5280    if (!D.isInvalidType())
5281      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5282        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5283        << SourceRange(D.getIdentifierLoc());
5284    D.setInvalidType();
5285    SC = SC_None;
5286  }
5287
5288  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5289  if (FTI.TypeQuals != 0) {
5290    if (FTI.TypeQuals & Qualifiers::Const)
5291      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5292        << "const" << SourceRange(D.getIdentifierLoc());
5293    if (FTI.TypeQuals & Qualifiers::Volatile)
5294      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5295        << "volatile" << SourceRange(D.getIdentifierLoc());
5296    if (FTI.TypeQuals & Qualifiers::Restrict)
5297      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5298        << "restrict" << SourceRange(D.getIdentifierLoc());
5299    D.setInvalidType();
5300  }
5301
5302  // C++0x [class.ctor]p4:
5303  //   A constructor shall not be declared with a ref-qualifier.
5304  if (FTI.hasRefQualifier()) {
5305    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5306      << FTI.RefQualifierIsLValueRef
5307      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5308    D.setInvalidType();
5309  }
5310
5311  // Rebuild the function type "R" without any type qualifiers (in
5312  // case any of the errors above fired) and with "void" as the
5313  // return type, since constructors don't have return types.
5314  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5315  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5316    return R;
5317
5318  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5319  EPI.TypeQuals = 0;
5320  EPI.RefQualifier = RQ_None;
5321
5322  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5323                                 Proto->getNumArgs(), EPI);
5324}
5325
5326/// CheckConstructor - Checks a fully-formed constructor for
5327/// well-formedness, issuing any diagnostics required. Returns true if
5328/// the constructor declarator is invalid.
5329void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5330  CXXRecordDecl *ClassDecl
5331    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5332  if (!ClassDecl)
5333    return Constructor->setInvalidDecl();
5334
5335  // C++ [class.copy]p3:
5336  //   A declaration of a constructor for a class X is ill-formed if
5337  //   its first parameter is of type (optionally cv-qualified) X and
5338  //   either there are no other parameters or else all other
5339  //   parameters have default arguments.
5340  if (!Constructor->isInvalidDecl() &&
5341      ((Constructor->getNumParams() == 1) ||
5342       (Constructor->getNumParams() > 1 &&
5343        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5344      Constructor->getTemplateSpecializationKind()
5345                                              != TSK_ImplicitInstantiation) {
5346    QualType ParamType = Constructor->getParamDecl(0)->getType();
5347    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5348    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5349      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5350      const char *ConstRef
5351        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5352                                                        : " const &";
5353      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5354        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5355
5356      // FIXME: Rather that making the constructor invalid, we should endeavor
5357      // to fix the type.
5358      Constructor->setInvalidDecl();
5359    }
5360  }
5361}
5362
5363/// CheckDestructor - Checks a fully-formed destructor definition for
5364/// well-formedness, issuing any diagnostics required.  Returns true
5365/// on error.
5366bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5367  CXXRecordDecl *RD = Destructor->getParent();
5368
5369  if (Destructor->isVirtual()) {
5370    SourceLocation Loc;
5371
5372    if (!Destructor->isImplicit())
5373      Loc = Destructor->getLocation();
5374    else
5375      Loc = RD->getLocation();
5376
5377    // If we have a virtual destructor, look up the deallocation function
5378    FunctionDecl *OperatorDelete = 0;
5379    DeclarationName Name =
5380    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5381    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5382      return true;
5383
5384    MarkDeclarationReferenced(Loc, OperatorDelete);
5385
5386    Destructor->setOperatorDelete(OperatorDelete);
5387  }
5388
5389  return false;
5390}
5391
5392static inline bool
5393FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5394  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5395          FTI.ArgInfo[0].Param &&
5396          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5397}
5398
5399/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5400/// the well-formednes of the destructor declarator @p D with type @p
5401/// R. If there are any errors in the declarator, this routine will
5402/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5403/// will be updated to reflect a well-formed type for the destructor and
5404/// returned.
5405QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5406                                         StorageClass& SC) {
5407  // C++ [class.dtor]p1:
5408  //   [...] A typedef-name that names a class is a class-name
5409  //   (7.1.3); however, a typedef-name that names a class shall not
5410  //   be used as the identifier in the declarator for a destructor
5411  //   declaration.
5412  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5413  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5414    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5415      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5416  else if (const TemplateSpecializationType *TST =
5417             DeclaratorType->getAs<TemplateSpecializationType>())
5418    if (TST->isTypeAlias())
5419      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5420        << DeclaratorType << 1;
5421
5422  // C++ [class.dtor]p2:
5423  //   A destructor is used to destroy objects of its class type. A
5424  //   destructor takes no parameters, and no return type can be
5425  //   specified for it (not even void). The address of a destructor
5426  //   shall not be taken. A destructor shall not be static. A
5427  //   destructor can be invoked for a const, volatile or const
5428  //   volatile object. A destructor shall not be declared const,
5429  //   volatile or const volatile (9.3.2).
5430  if (SC == SC_Static) {
5431    if (!D.isInvalidType())
5432      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5433        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5434        << SourceRange(D.getIdentifierLoc())
5435        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5436
5437    SC = SC_None;
5438  }
5439  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5440    // Destructors don't have return types, but the parser will
5441    // happily parse something like:
5442    //
5443    //   class X {
5444    //     float ~X();
5445    //   };
5446    //
5447    // The return type will be eliminated later.
5448    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5449      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5450      << SourceRange(D.getIdentifierLoc());
5451  }
5452
5453  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5454  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5455    if (FTI.TypeQuals & Qualifiers::Const)
5456      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5457        << "const" << SourceRange(D.getIdentifierLoc());
5458    if (FTI.TypeQuals & Qualifiers::Volatile)
5459      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5460        << "volatile" << SourceRange(D.getIdentifierLoc());
5461    if (FTI.TypeQuals & Qualifiers::Restrict)
5462      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5463        << "restrict" << SourceRange(D.getIdentifierLoc());
5464    D.setInvalidType();
5465  }
5466
5467  // C++0x [class.dtor]p2:
5468  //   A destructor shall not be declared with a ref-qualifier.
5469  if (FTI.hasRefQualifier()) {
5470    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5471      << FTI.RefQualifierIsLValueRef
5472      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5473    D.setInvalidType();
5474  }
5475
5476  // Make sure we don't have any parameters.
5477  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5478    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5479
5480    // Delete the parameters.
5481    FTI.freeArgs();
5482    D.setInvalidType();
5483  }
5484
5485  // Make sure the destructor isn't variadic.
5486  if (FTI.isVariadic) {
5487    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5488    D.setInvalidType();
5489  }
5490
5491  // Rebuild the function type "R" without any type qualifiers or
5492  // parameters (in case any of the errors above fired) and with
5493  // "void" as the return type, since destructors don't have return
5494  // types.
5495  if (!D.isInvalidType())
5496    return R;
5497
5498  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5499  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5500  EPI.Variadic = false;
5501  EPI.TypeQuals = 0;
5502  EPI.RefQualifier = RQ_None;
5503  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5504}
5505
5506/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5507/// well-formednes of the conversion function declarator @p D with
5508/// type @p R. If there are any errors in the declarator, this routine
5509/// will emit diagnostics and return true. Otherwise, it will return
5510/// false. Either way, the type @p R will be updated to reflect a
5511/// well-formed type for the conversion operator.
5512void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5513                                     StorageClass& SC) {
5514  // C++ [class.conv.fct]p1:
5515  //   Neither parameter types nor return type can be specified. The
5516  //   type of a conversion function (8.3.5) is "function taking no
5517  //   parameter returning conversion-type-id."
5518  if (SC == SC_Static) {
5519    if (!D.isInvalidType())
5520      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5521        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5522        << SourceRange(D.getIdentifierLoc());
5523    D.setInvalidType();
5524    SC = SC_None;
5525  }
5526
5527  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5528
5529  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5530    // Conversion functions don't have return types, but the parser will
5531    // happily parse something like:
5532    //
5533    //   class X {
5534    //     float operator bool();
5535    //   };
5536    //
5537    // The return type will be changed later anyway.
5538    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5539      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5540      << SourceRange(D.getIdentifierLoc());
5541    D.setInvalidType();
5542  }
5543
5544  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5545
5546  // Make sure we don't have any parameters.
5547  if (Proto->getNumArgs() > 0) {
5548    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5549
5550    // Delete the parameters.
5551    D.getFunctionTypeInfo().freeArgs();
5552    D.setInvalidType();
5553  } else if (Proto->isVariadic()) {
5554    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5555    D.setInvalidType();
5556  }
5557
5558  // Diagnose "&operator bool()" and other such nonsense.  This
5559  // is actually a gcc extension which we don't support.
5560  if (Proto->getResultType() != ConvType) {
5561    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5562      << Proto->getResultType();
5563    D.setInvalidType();
5564    ConvType = Proto->getResultType();
5565  }
5566
5567  // C++ [class.conv.fct]p4:
5568  //   The conversion-type-id shall not represent a function type nor
5569  //   an array type.
5570  if (ConvType->isArrayType()) {
5571    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5572    ConvType = Context.getPointerType(ConvType);
5573    D.setInvalidType();
5574  } else if (ConvType->isFunctionType()) {
5575    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5576    ConvType = Context.getPointerType(ConvType);
5577    D.setInvalidType();
5578  }
5579
5580  // Rebuild the function type "R" without any parameters (in case any
5581  // of the errors above fired) and with the conversion type as the
5582  // return type.
5583  if (D.isInvalidType())
5584    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5585
5586  // C++0x explicit conversion operators.
5587  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
5588    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5589         diag::warn_explicit_conversion_functions)
5590      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5591}
5592
5593/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5594/// the declaration of the given C++ conversion function. This routine
5595/// is responsible for recording the conversion function in the C++
5596/// class, if possible.
5597Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5598  assert(Conversion && "Expected to receive a conversion function declaration");
5599
5600  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5601
5602  // Make sure we aren't redeclaring the conversion function.
5603  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5604
5605  // C++ [class.conv.fct]p1:
5606  //   [...] A conversion function is never used to convert a
5607  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5608  //   same object type (or a reference to it), to a (possibly
5609  //   cv-qualified) base class of that type (or a reference to it),
5610  //   or to (possibly cv-qualified) void.
5611  // FIXME: Suppress this warning if the conversion function ends up being a
5612  // virtual function that overrides a virtual function in a base class.
5613  QualType ClassType
5614    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5615  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5616    ConvType = ConvTypeRef->getPointeeType();
5617  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5618      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5619    /* Suppress diagnostics for instantiations. */;
5620  else if (ConvType->isRecordType()) {
5621    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5622    if (ConvType == ClassType)
5623      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5624        << ClassType;
5625    else if (IsDerivedFrom(ClassType, ConvType))
5626      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5627        <<  ClassType << ConvType;
5628  } else if (ConvType->isVoidType()) {
5629    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5630      << ClassType << ConvType;
5631  }
5632
5633  if (FunctionTemplateDecl *ConversionTemplate
5634                                = Conversion->getDescribedFunctionTemplate())
5635    return ConversionTemplate;
5636
5637  return Conversion;
5638}
5639
5640//===----------------------------------------------------------------------===//
5641// Namespace Handling
5642//===----------------------------------------------------------------------===//
5643
5644
5645
5646/// ActOnStartNamespaceDef - This is called at the start of a namespace
5647/// definition.
5648Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5649                                   SourceLocation InlineLoc,
5650                                   SourceLocation NamespaceLoc,
5651                                   SourceLocation IdentLoc,
5652                                   IdentifierInfo *II,
5653                                   SourceLocation LBrace,
5654                                   AttributeList *AttrList) {
5655  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5656  // For anonymous namespace, take the location of the left brace.
5657  SourceLocation Loc = II ? IdentLoc : LBrace;
5658  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
5659                                                 StartLoc, Loc, II);
5660  Namespc->setInline(InlineLoc.isValid());
5661
5662  Scope *DeclRegionScope = NamespcScope->getParent();
5663
5664  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5665
5666  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5667    PushNamespaceVisibilityAttr(Attr);
5668
5669  if (II) {
5670    // C++ [namespace.def]p2:
5671    //   The identifier in an original-namespace-definition shall not
5672    //   have been previously defined in the declarative region in
5673    //   which the original-namespace-definition appears. The
5674    //   identifier in an original-namespace-definition is the name of
5675    //   the namespace. Subsequently in that declarative region, it is
5676    //   treated as an original-namespace-name.
5677    //
5678    // Since namespace names are unique in their scope, and we don't
5679    // look through using directives, just look for any ordinary names.
5680
5681    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5682      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5683      Decl::IDNS_Namespace;
5684    NamedDecl *PrevDecl = 0;
5685    for (DeclContext::lookup_result R
5686            = CurContext->getRedeclContext()->lookup(II);
5687         R.first != R.second; ++R.first) {
5688      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5689        PrevDecl = *R.first;
5690        break;
5691      }
5692    }
5693
5694    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
5695      // This is an extended namespace definition.
5696      if (Namespc->isInline() != OrigNS->isInline()) {
5697        // inline-ness must match
5698        if (OrigNS->isInline()) {
5699          // The user probably just forgot the 'inline', so suggest that it
5700          // be added back.
5701          Diag(Namespc->getLocation(),
5702               diag::warn_inline_namespace_reopened_noninline)
5703            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5704        } else {
5705          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5706            << Namespc->isInline();
5707        }
5708        Diag(OrigNS->getLocation(), diag::note_previous_definition);
5709
5710        // Recover by ignoring the new namespace's inline status.
5711        Namespc->setInline(OrigNS->isInline());
5712      }
5713
5714      // Attach this namespace decl to the chain of extended namespace
5715      // definitions.
5716      OrigNS->setNextNamespace(Namespc);
5717      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
5718
5719      // Remove the previous declaration from the scope.
5720      if (DeclRegionScope->isDeclScope(OrigNS)) {
5721        IdResolver.RemoveDecl(OrigNS);
5722        DeclRegionScope->RemoveDecl(OrigNS);
5723      }
5724    } else if (PrevDecl) {
5725      // This is an invalid name redefinition.
5726      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
5727       << Namespc->getDeclName();
5728      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5729      Namespc->setInvalidDecl();
5730      // Continue on to push Namespc as current DeclContext and return it.
5731    } else if (II->isStr("std") &&
5732               CurContext->getRedeclContext()->isTranslationUnit()) {
5733      // This is the first "real" definition of the namespace "std", so update
5734      // our cache of the "std" namespace to point at this definition.
5735      if (NamespaceDecl *StdNS = getStdNamespace()) {
5736        // We had already defined a dummy namespace "std". Link this new
5737        // namespace definition to the dummy namespace "std".
5738        StdNS->setNextNamespace(Namespc);
5739        StdNS->setLocation(IdentLoc);
5740        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
5741      }
5742
5743      // Make our StdNamespace cache point at the first real definition of the
5744      // "std" namespace.
5745      StdNamespace = Namespc;
5746
5747      // Add this instance of "std" to the set of known namespaces
5748      KnownNamespaces[Namespc] = false;
5749    } else if (!Namespc->isInline()) {
5750      // Since this is an "original" namespace, add it to the known set of
5751      // namespaces if it is not an inline namespace.
5752      KnownNamespaces[Namespc] = false;
5753    }
5754
5755    PushOnScopeChains(Namespc, DeclRegionScope);
5756  } else {
5757    // Anonymous namespaces.
5758    assert(Namespc->isAnonymousNamespace());
5759
5760    // Link the anonymous namespace into its parent.
5761    NamespaceDecl *PrevDecl;
5762    DeclContext *Parent = CurContext->getRedeclContext();
5763    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5764      PrevDecl = TU->getAnonymousNamespace();
5765      TU->setAnonymousNamespace(Namespc);
5766    } else {
5767      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5768      PrevDecl = ND->getAnonymousNamespace();
5769      ND->setAnonymousNamespace(Namespc);
5770    }
5771
5772    // Link the anonymous namespace with its previous declaration.
5773    if (PrevDecl) {
5774      assert(PrevDecl->isAnonymousNamespace());
5775      assert(!PrevDecl->getNextNamespace());
5776      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
5777      PrevDecl->setNextNamespace(Namespc);
5778
5779      if (Namespc->isInline() != PrevDecl->isInline()) {
5780        // inline-ness must match
5781        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
5782          << Namespc->isInline();
5783        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5784        Namespc->setInvalidDecl();
5785        // Recover by ignoring the new namespace's inline status.
5786        Namespc->setInline(PrevDecl->isInline());
5787      }
5788    }
5789
5790    CurContext->addDecl(Namespc);
5791
5792    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5793    //   behaves as if it were replaced by
5794    //     namespace unique { /* empty body */ }
5795    //     using namespace unique;
5796    //     namespace unique { namespace-body }
5797    //   where all occurrences of 'unique' in a translation unit are
5798    //   replaced by the same identifier and this identifier differs
5799    //   from all other identifiers in the entire program.
5800
5801    // We just create the namespace with an empty name and then add an
5802    // implicit using declaration, just like the standard suggests.
5803    //
5804    // CodeGen enforces the "universally unique" aspect by giving all
5805    // declarations semantically contained within an anonymous
5806    // namespace internal linkage.
5807
5808    if (!PrevDecl) {
5809      UsingDirectiveDecl* UD
5810        = UsingDirectiveDecl::Create(Context, CurContext,
5811                                     /* 'using' */ LBrace,
5812                                     /* 'namespace' */ SourceLocation(),
5813                                     /* qualifier */ NestedNameSpecifierLoc(),
5814                                     /* identifier */ SourceLocation(),
5815                                     Namespc,
5816                                     /* Ancestor */ CurContext);
5817      UD->setImplicit();
5818      CurContext->addDecl(UD);
5819    }
5820  }
5821
5822  // Although we could have an invalid decl (i.e. the namespace name is a
5823  // redefinition), push it as current DeclContext and try to continue parsing.
5824  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5825  // for the namespace has the declarations that showed up in that particular
5826  // namespace definition.
5827  PushDeclContext(NamespcScope, Namespc);
5828  return Namespc;
5829}
5830
5831/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5832/// is a namespace alias, returns the namespace it points to.
5833static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5834  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5835    return AD->getNamespace();
5836  return dyn_cast_or_null<NamespaceDecl>(D);
5837}
5838
5839/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5840/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5841void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5842  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5843  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5844  Namespc->setRBraceLoc(RBrace);
5845  PopDeclContext();
5846  if (Namespc->hasAttr<VisibilityAttr>())
5847    PopPragmaVisibility();
5848}
5849
5850CXXRecordDecl *Sema::getStdBadAlloc() const {
5851  return cast_or_null<CXXRecordDecl>(
5852                                  StdBadAlloc.get(Context.getExternalSource()));
5853}
5854
5855NamespaceDecl *Sema::getStdNamespace() const {
5856  return cast_or_null<NamespaceDecl>(
5857                                 StdNamespace.get(Context.getExternalSource()));
5858}
5859
5860/// \brief Retrieve the special "std" namespace, which may require us to
5861/// implicitly define the namespace.
5862NamespaceDecl *Sema::getOrCreateStdNamespace() {
5863  if (!StdNamespace) {
5864    // The "std" namespace has not yet been defined, so build one implicitly.
5865    StdNamespace = NamespaceDecl::Create(Context,
5866                                         Context.getTranslationUnitDecl(),
5867                                         SourceLocation(), SourceLocation(),
5868                                         &PP.getIdentifierTable().get("std"));
5869    getStdNamespace()->setImplicit(true);
5870  }
5871
5872  return getStdNamespace();
5873}
5874
5875/// \brief Determine whether a using statement is in a context where it will be
5876/// apply in all contexts.
5877static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5878  switch (CurContext->getDeclKind()) {
5879    case Decl::TranslationUnit:
5880      return true;
5881    case Decl::LinkageSpec:
5882      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5883    default:
5884      return false;
5885  }
5886}
5887
5888static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5889                                       CXXScopeSpec &SS,
5890                                       SourceLocation IdentLoc,
5891                                       IdentifierInfo *Ident) {
5892  R.clear();
5893  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5894                                               R.getLookupKind(), Sc, &SS, NULL,
5895                                               false, S.CTC_NoKeywords, NULL)) {
5896    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
5897        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
5898      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5899      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5900      if (DeclContext *DC = S.computeDeclContext(SS, false))
5901        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5902          << Ident << DC << CorrectedQuotedStr << SS.getRange()
5903          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5904      else
5905        S.Diag(IdentLoc, diag::err_using_directive_suggest)
5906          << Ident << CorrectedQuotedStr
5907          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5908
5909      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5910           diag::note_namespace_defined_here) << CorrectedQuotedStr;
5911
5912      Ident = Corrected.getCorrectionAsIdentifierInfo();
5913      R.addDecl(Corrected.getCorrectionDecl());
5914      return true;
5915    }
5916    R.setLookupName(Ident);
5917  }
5918  return false;
5919}
5920
5921Decl *Sema::ActOnUsingDirective(Scope *S,
5922                                          SourceLocation UsingLoc,
5923                                          SourceLocation NamespcLoc,
5924                                          CXXScopeSpec &SS,
5925                                          SourceLocation IdentLoc,
5926                                          IdentifierInfo *NamespcName,
5927                                          AttributeList *AttrList) {
5928  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5929  assert(NamespcName && "Invalid NamespcName.");
5930  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5931
5932  // This can only happen along a recovery path.
5933  while (S->getFlags() & Scope::TemplateParamScope)
5934    S = S->getParent();
5935  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5936
5937  UsingDirectiveDecl *UDir = 0;
5938  NestedNameSpecifier *Qualifier = 0;
5939  if (SS.isSet())
5940    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5941
5942  // Lookup namespace name.
5943  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5944  LookupParsedName(R, S, &SS);
5945  if (R.isAmbiguous())
5946    return 0;
5947
5948  if (R.empty()) {
5949    R.clear();
5950    // Allow "using namespace std;" or "using namespace ::std;" even if
5951    // "std" hasn't been defined yet, for GCC compatibility.
5952    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5953        NamespcName->isStr("std")) {
5954      Diag(IdentLoc, diag::ext_using_undefined_std);
5955      R.addDecl(getOrCreateStdNamespace());
5956      R.resolveKind();
5957    }
5958    // Otherwise, attempt typo correction.
5959    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5960  }
5961
5962  if (!R.empty()) {
5963    NamedDecl *Named = R.getFoundDecl();
5964    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5965        && "expected namespace decl");
5966    // C++ [namespace.udir]p1:
5967    //   A using-directive specifies that the names in the nominated
5968    //   namespace can be used in the scope in which the
5969    //   using-directive appears after the using-directive. During
5970    //   unqualified name lookup (3.4.1), the names appear as if they
5971    //   were declared in the nearest enclosing namespace which
5972    //   contains both the using-directive and the nominated
5973    //   namespace. [Note: in this context, "contains" means "contains
5974    //   directly or indirectly". ]
5975
5976    // Find enclosing context containing both using-directive and
5977    // nominated namespace.
5978    NamespaceDecl *NS = getNamespaceDecl(Named);
5979    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5980    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5981      CommonAncestor = CommonAncestor->getParent();
5982
5983    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5984                                      SS.getWithLocInContext(Context),
5985                                      IdentLoc, Named, CommonAncestor);
5986
5987    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5988        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5989      Diag(IdentLoc, diag::warn_using_directive_in_header);
5990    }
5991
5992    PushUsingDirective(S, UDir);
5993  } else {
5994    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5995  }
5996
5997  // FIXME: We ignore attributes for now.
5998  return UDir;
5999}
6000
6001void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6002  // If scope has associated entity, then using directive is at namespace
6003  // or translation unit scope. We add UsingDirectiveDecls, into
6004  // it's lookup structure.
6005  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6006    Ctx->addDecl(UDir);
6007  else
6008    // Otherwise it is block-sope. using-directives will affect lookup
6009    // only to the end of scope.
6010    S->PushUsingDirective(UDir);
6011}
6012
6013
6014Decl *Sema::ActOnUsingDeclaration(Scope *S,
6015                                  AccessSpecifier AS,
6016                                  bool HasUsingKeyword,
6017                                  SourceLocation UsingLoc,
6018                                  CXXScopeSpec &SS,
6019                                  UnqualifiedId &Name,
6020                                  AttributeList *AttrList,
6021                                  bool IsTypeName,
6022                                  SourceLocation TypenameLoc) {
6023  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6024
6025  switch (Name.getKind()) {
6026  case UnqualifiedId::IK_ImplicitSelfParam:
6027  case UnqualifiedId::IK_Identifier:
6028  case UnqualifiedId::IK_OperatorFunctionId:
6029  case UnqualifiedId::IK_LiteralOperatorId:
6030  case UnqualifiedId::IK_ConversionFunctionId:
6031    break;
6032
6033  case UnqualifiedId::IK_ConstructorName:
6034  case UnqualifiedId::IK_ConstructorTemplateId:
6035    // C++0x inherited constructors.
6036    if (getLangOptions().CPlusPlus0x) break;
6037
6038    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
6039      << SS.getRange();
6040    return 0;
6041
6042  case UnqualifiedId::IK_DestructorName:
6043    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6044      << SS.getRange();
6045    return 0;
6046
6047  case UnqualifiedId::IK_TemplateId:
6048    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6049      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6050    return 0;
6051  }
6052
6053  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6054  DeclarationName TargetName = TargetNameInfo.getName();
6055  if (!TargetName)
6056    return 0;
6057
6058  // Warn about using declarations.
6059  // TODO: store that the declaration was written without 'using' and
6060  // talk about access decls instead of using decls in the
6061  // diagnostics.
6062  if (!HasUsingKeyword) {
6063    UsingLoc = Name.getSourceRange().getBegin();
6064
6065    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6066      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6067  }
6068
6069  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6070      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6071    return 0;
6072
6073  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6074                                        TargetNameInfo, AttrList,
6075                                        /* IsInstantiation */ false,
6076                                        IsTypeName, TypenameLoc);
6077  if (UD)
6078    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6079
6080  return UD;
6081}
6082
6083/// \brief Determine whether a using declaration considers the given
6084/// declarations as "equivalent", e.g., if they are redeclarations of
6085/// the same entity or are both typedefs of the same type.
6086static bool
6087IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6088                         bool &SuppressRedeclaration) {
6089  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6090    SuppressRedeclaration = false;
6091    return true;
6092  }
6093
6094  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6095    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6096      SuppressRedeclaration = true;
6097      return Context.hasSameType(TD1->getUnderlyingType(),
6098                                 TD2->getUnderlyingType());
6099    }
6100
6101  return false;
6102}
6103
6104
6105/// Determines whether to create a using shadow decl for a particular
6106/// decl, given the set of decls existing prior to this using lookup.
6107bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6108                                const LookupResult &Previous) {
6109  // Diagnose finding a decl which is not from a base class of the
6110  // current class.  We do this now because there are cases where this
6111  // function will silently decide not to build a shadow decl, which
6112  // will pre-empt further diagnostics.
6113  //
6114  // We don't need to do this in C++0x because we do the check once on
6115  // the qualifier.
6116  //
6117  // FIXME: diagnose the following if we care enough:
6118  //   struct A { int foo; };
6119  //   struct B : A { using A::foo; };
6120  //   template <class T> struct C : A {};
6121  //   template <class T> struct D : C<T> { using B::foo; } // <---
6122  // This is invalid (during instantiation) in C++03 because B::foo
6123  // resolves to the using decl in B, which is not a base class of D<T>.
6124  // We can't diagnose it immediately because C<T> is an unknown
6125  // specialization.  The UsingShadowDecl in D<T> then points directly
6126  // to A::foo, which will look well-formed when we instantiate.
6127  // The right solution is to not collapse the shadow-decl chain.
6128  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6129    DeclContext *OrigDC = Orig->getDeclContext();
6130
6131    // Handle enums and anonymous structs.
6132    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6133    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6134    while (OrigRec->isAnonymousStructOrUnion())
6135      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6136
6137    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6138      if (OrigDC == CurContext) {
6139        Diag(Using->getLocation(),
6140             diag::err_using_decl_nested_name_specifier_is_current_class)
6141          << Using->getQualifierLoc().getSourceRange();
6142        Diag(Orig->getLocation(), diag::note_using_decl_target);
6143        return true;
6144      }
6145
6146      Diag(Using->getQualifierLoc().getBeginLoc(),
6147           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6148        << Using->getQualifier()
6149        << cast<CXXRecordDecl>(CurContext)
6150        << Using->getQualifierLoc().getSourceRange();
6151      Diag(Orig->getLocation(), diag::note_using_decl_target);
6152      return true;
6153    }
6154  }
6155
6156  if (Previous.empty()) return false;
6157
6158  NamedDecl *Target = Orig;
6159  if (isa<UsingShadowDecl>(Target))
6160    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6161
6162  // If the target happens to be one of the previous declarations, we
6163  // don't have a conflict.
6164  //
6165  // FIXME: but we might be increasing its access, in which case we
6166  // should redeclare it.
6167  NamedDecl *NonTag = 0, *Tag = 0;
6168  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6169         I != E; ++I) {
6170    NamedDecl *D = (*I)->getUnderlyingDecl();
6171    bool Result;
6172    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6173      return Result;
6174
6175    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6176  }
6177
6178  if (Target->isFunctionOrFunctionTemplate()) {
6179    FunctionDecl *FD;
6180    if (isa<FunctionTemplateDecl>(Target))
6181      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6182    else
6183      FD = cast<FunctionDecl>(Target);
6184
6185    NamedDecl *OldDecl = 0;
6186    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6187    case Ovl_Overload:
6188      return false;
6189
6190    case Ovl_NonFunction:
6191      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6192      break;
6193
6194    // We found a decl with the exact signature.
6195    case Ovl_Match:
6196      // If we're in a record, we want to hide the target, so we
6197      // return true (without a diagnostic) to tell the caller not to
6198      // build a shadow decl.
6199      if (CurContext->isRecord())
6200        return true;
6201
6202      // If we're not in a record, this is an error.
6203      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6204      break;
6205    }
6206
6207    Diag(Target->getLocation(), diag::note_using_decl_target);
6208    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6209    return true;
6210  }
6211
6212  // Target is not a function.
6213
6214  if (isa<TagDecl>(Target)) {
6215    // No conflict between a tag and a non-tag.
6216    if (!Tag) return false;
6217
6218    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6219    Diag(Target->getLocation(), diag::note_using_decl_target);
6220    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6221    return true;
6222  }
6223
6224  // No conflict between a tag and a non-tag.
6225  if (!NonTag) return false;
6226
6227  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6228  Diag(Target->getLocation(), diag::note_using_decl_target);
6229  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6230  return true;
6231}
6232
6233/// Builds a shadow declaration corresponding to a 'using' declaration.
6234UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6235                                            UsingDecl *UD,
6236                                            NamedDecl *Orig) {
6237
6238  // If we resolved to another shadow declaration, just coalesce them.
6239  NamedDecl *Target = Orig;
6240  if (isa<UsingShadowDecl>(Target)) {
6241    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6242    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6243  }
6244
6245  UsingShadowDecl *Shadow
6246    = UsingShadowDecl::Create(Context, CurContext,
6247                              UD->getLocation(), UD, Target);
6248  UD->addShadowDecl(Shadow);
6249
6250  Shadow->setAccess(UD->getAccess());
6251  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6252    Shadow->setInvalidDecl();
6253
6254  if (S)
6255    PushOnScopeChains(Shadow, S);
6256  else
6257    CurContext->addDecl(Shadow);
6258
6259
6260  return Shadow;
6261}
6262
6263/// Hides a using shadow declaration.  This is required by the current
6264/// using-decl implementation when a resolvable using declaration in a
6265/// class is followed by a declaration which would hide or override
6266/// one or more of the using decl's targets; for example:
6267///
6268///   struct Base { void foo(int); };
6269///   struct Derived : Base {
6270///     using Base::foo;
6271///     void foo(int);
6272///   };
6273///
6274/// The governing language is C++03 [namespace.udecl]p12:
6275///
6276///   When a using-declaration brings names from a base class into a
6277///   derived class scope, member functions in the derived class
6278///   override and/or hide member functions with the same name and
6279///   parameter types in a base class (rather than conflicting).
6280///
6281/// There are two ways to implement this:
6282///   (1) optimistically create shadow decls when they're not hidden
6283///       by existing declarations, or
6284///   (2) don't create any shadow decls (or at least don't make them
6285///       visible) until we've fully parsed/instantiated the class.
6286/// The problem with (1) is that we might have to retroactively remove
6287/// a shadow decl, which requires several O(n) operations because the
6288/// decl structures are (very reasonably) not designed for removal.
6289/// (2) avoids this but is very fiddly and phase-dependent.
6290void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6291  if (Shadow->getDeclName().getNameKind() ==
6292        DeclarationName::CXXConversionFunctionName)
6293    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6294
6295  // Remove it from the DeclContext...
6296  Shadow->getDeclContext()->removeDecl(Shadow);
6297
6298  // ...and the scope, if applicable...
6299  if (S) {
6300    S->RemoveDecl(Shadow);
6301    IdResolver.RemoveDecl(Shadow);
6302  }
6303
6304  // ...and the using decl.
6305  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6306
6307  // TODO: complain somehow if Shadow was used.  It shouldn't
6308  // be possible for this to happen, because...?
6309}
6310
6311/// Builds a using declaration.
6312///
6313/// \param IsInstantiation - Whether this call arises from an
6314///   instantiation of an unresolved using declaration.  We treat
6315///   the lookup differently for these declarations.
6316NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6317                                       SourceLocation UsingLoc,
6318                                       CXXScopeSpec &SS,
6319                                       const DeclarationNameInfo &NameInfo,
6320                                       AttributeList *AttrList,
6321                                       bool IsInstantiation,
6322                                       bool IsTypeName,
6323                                       SourceLocation TypenameLoc) {
6324  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6325  SourceLocation IdentLoc = NameInfo.getLoc();
6326  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6327
6328  // FIXME: We ignore attributes for now.
6329
6330  if (SS.isEmpty()) {
6331    Diag(IdentLoc, diag::err_using_requires_qualname);
6332    return 0;
6333  }
6334
6335  // Do the redeclaration lookup in the current scope.
6336  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6337                        ForRedeclaration);
6338  Previous.setHideTags(false);
6339  if (S) {
6340    LookupName(Previous, S);
6341
6342    // It is really dumb that we have to do this.
6343    LookupResult::Filter F = Previous.makeFilter();
6344    while (F.hasNext()) {
6345      NamedDecl *D = F.next();
6346      if (!isDeclInScope(D, CurContext, S))
6347        F.erase();
6348    }
6349    F.done();
6350  } else {
6351    assert(IsInstantiation && "no scope in non-instantiation");
6352    assert(CurContext->isRecord() && "scope not record in instantiation");
6353    LookupQualifiedName(Previous, CurContext);
6354  }
6355
6356  // Check for invalid redeclarations.
6357  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6358    return 0;
6359
6360  // Check for bad qualifiers.
6361  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6362    return 0;
6363
6364  DeclContext *LookupContext = computeDeclContext(SS);
6365  NamedDecl *D;
6366  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6367  if (!LookupContext) {
6368    if (IsTypeName) {
6369      // FIXME: not all declaration name kinds are legal here
6370      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6371                                              UsingLoc, TypenameLoc,
6372                                              QualifierLoc,
6373                                              IdentLoc, NameInfo.getName());
6374    } else {
6375      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6376                                           QualifierLoc, NameInfo);
6377    }
6378  } else {
6379    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6380                          NameInfo, IsTypeName);
6381  }
6382  D->setAccess(AS);
6383  CurContext->addDecl(D);
6384
6385  if (!LookupContext) return D;
6386  UsingDecl *UD = cast<UsingDecl>(D);
6387
6388  if (RequireCompleteDeclContext(SS, LookupContext)) {
6389    UD->setInvalidDecl();
6390    return UD;
6391  }
6392
6393  // Constructor inheriting using decls get special treatment.
6394  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6395    if (CheckInheritedConstructorUsingDecl(UD))
6396      UD->setInvalidDecl();
6397    return UD;
6398  }
6399
6400  // Otherwise, look up the target name.
6401
6402  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6403
6404  // Unlike most lookups, we don't always want to hide tag
6405  // declarations: tag names are visible through the using declaration
6406  // even if hidden by ordinary names, *except* in a dependent context
6407  // where it's important for the sanity of two-phase lookup.
6408  if (!IsInstantiation)
6409    R.setHideTags(false);
6410
6411  LookupQualifiedName(R, LookupContext);
6412
6413  if (R.empty()) {
6414    Diag(IdentLoc, diag::err_no_member)
6415      << NameInfo.getName() << LookupContext << SS.getRange();
6416    UD->setInvalidDecl();
6417    return UD;
6418  }
6419
6420  if (R.isAmbiguous()) {
6421    UD->setInvalidDecl();
6422    return UD;
6423  }
6424
6425  if (IsTypeName) {
6426    // If we asked for a typename and got a non-type decl, error out.
6427    if (!R.getAsSingle<TypeDecl>()) {
6428      Diag(IdentLoc, diag::err_using_typename_non_type);
6429      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6430        Diag((*I)->getUnderlyingDecl()->getLocation(),
6431             diag::note_using_decl_target);
6432      UD->setInvalidDecl();
6433      return UD;
6434    }
6435  } else {
6436    // If we asked for a non-typename and we got a type, error out,
6437    // but only if this is an instantiation of an unresolved using
6438    // decl.  Otherwise just silently find the type name.
6439    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6440      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6441      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6442      UD->setInvalidDecl();
6443      return UD;
6444    }
6445  }
6446
6447  // C++0x N2914 [namespace.udecl]p6:
6448  // A using-declaration shall not name a namespace.
6449  if (R.getAsSingle<NamespaceDecl>()) {
6450    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6451      << SS.getRange();
6452    UD->setInvalidDecl();
6453    return UD;
6454  }
6455
6456  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6457    if (!CheckUsingShadowDecl(UD, *I, Previous))
6458      BuildUsingShadowDecl(S, UD, *I);
6459  }
6460
6461  return UD;
6462}
6463
6464/// Additional checks for a using declaration referring to a constructor name.
6465bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6466  if (UD->isTypeName()) {
6467    // FIXME: Cannot specify typename when specifying constructor
6468    return true;
6469  }
6470
6471  const Type *SourceType = UD->getQualifier()->getAsType();
6472  assert(SourceType &&
6473         "Using decl naming constructor doesn't have type in scope spec.");
6474  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6475
6476  // Check whether the named type is a direct base class.
6477  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6478  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6479  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6480       BaseIt != BaseE; ++BaseIt) {
6481    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6482    if (CanonicalSourceType == BaseType)
6483      break;
6484  }
6485
6486  if (BaseIt == BaseE) {
6487    // Did not find SourceType in the bases.
6488    Diag(UD->getUsingLocation(),
6489         diag::err_using_decl_constructor_not_in_direct_base)
6490      << UD->getNameInfo().getSourceRange()
6491      << QualType(SourceType, 0) << TargetClass;
6492    return true;
6493  }
6494
6495  BaseIt->setInheritConstructors();
6496
6497  return false;
6498}
6499
6500/// Checks that the given using declaration is not an invalid
6501/// redeclaration.  Note that this is checking only for the using decl
6502/// itself, not for any ill-formedness among the UsingShadowDecls.
6503bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6504                                       bool isTypeName,
6505                                       const CXXScopeSpec &SS,
6506                                       SourceLocation NameLoc,
6507                                       const LookupResult &Prev) {
6508  // C++03 [namespace.udecl]p8:
6509  // C++0x [namespace.udecl]p10:
6510  //   A using-declaration is a declaration and can therefore be used
6511  //   repeatedly where (and only where) multiple declarations are
6512  //   allowed.
6513  //
6514  // That's in non-member contexts.
6515  if (!CurContext->getRedeclContext()->isRecord())
6516    return false;
6517
6518  NestedNameSpecifier *Qual
6519    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6520
6521  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6522    NamedDecl *D = *I;
6523
6524    bool DTypename;
6525    NestedNameSpecifier *DQual;
6526    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6527      DTypename = UD->isTypeName();
6528      DQual = UD->getQualifier();
6529    } else if (UnresolvedUsingValueDecl *UD
6530                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6531      DTypename = false;
6532      DQual = UD->getQualifier();
6533    } else if (UnresolvedUsingTypenameDecl *UD
6534                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6535      DTypename = true;
6536      DQual = UD->getQualifier();
6537    } else continue;
6538
6539    // using decls differ if one says 'typename' and the other doesn't.
6540    // FIXME: non-dependent using decls?
6541    if (isTypeName != DTypename) continue;
6542
6543    // using decls differ if they name different scopes (but note that
6544    // template instantiation can cause this check to trigger when it
6545    // didn't before instantiation).
6546    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6547        Context.getCanonicalNestedNameSpecifier(DQual))
6548      continue;
6549
6550    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6551    Diag(D->getLocation(), diag::note_using_decl) << 1;
6552    return true;
6553  }
6554
6555  return false;
6556}
6557
6558
6559/// Checks that the given nested-name qualifier used in a using decl
6560/// in the current context is appropriately related to the current
6561/// scope.  If an error is found, diagnoses it and returns true.
6562bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6563                                   const CXXScopeSpec &SS,
6564                                   SourceLocation NameLoc) {
6565  DeclContext *NamedContext = computeDeclContext(SS);
6566
6567  if (!CurContext->isRecord()) {
6568    // C++03 [namespace.udecl]p3:
6569    // C++0x [namespace.udecl]p8:
6570    //   A using-declaration for a class member shall be a member-declaration.
6571
6572    // If we weren't able to compute a valid scope, it must be a
6573    // dependent class scope.
6574    if (!NamedContext || NamedContext->isRecord()) {
6575      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6576        << SS.getRange();
6577      return true;
6578    }
6579
6580    // Otherwise, everything is known to be fine.
6581    return false;
6582  }
6583
6584  // The current scope is a record.
6585
6586  // If the named context is dependent, we can't decide much.
6587  if (!NamedContext) {
6588    // FIXME: in C++0x, we can diagnose if we can prove that the
6589    // nested-name-specifier does not refer to a base class, which is
6590    // still possible in some cases.
6591
6592    // Otherwise we have to conservatively report that things might be
6593    // okay.
6594    return false;
6595  }
6596
6597  if (!NamedContext->isRecord()) {
6598    // Ideally this would point at the last name in the specifier,
6599    // but we don't have that level of source info.
6600    Diag(SS.getRange().getBegin(),
6601         diag::err_using_decl_nested_name_specifier_is_not_class)
6602      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6603    return true;
6604  }
6605
6606  if (!NamedContext->isDependentContext() &&
6607      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6608    return true;
6609
6610  if (getLangOptions().CPlusPlus0x) {
6611    // C++0x [namespace.udecl]p3:
6612    //   In a using-declaration used as a member-declaration, the
6613    //   nested-name-specifier shall name a base class of the class
6614    //   being defined.
6615
6616    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6617                                 cast<CXXRecordDecl>(NamedContext))) {
6618      if (CurContext == NamedContext) {
6619        Diag(NameLoc,
6620             diag::err_using_decl_nested_name_specifier_is_current_class)
6621          << SS.getRange();
6622        return true;
6623      }
6624
6625      Diag(SS.getRange().getBegin(),
6626           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6627        << (NestedNameSpecifier*) SS.getScopeRep()
6628        << cast<CXXRecordDecl>(CurContext)
6629        << SS.getRange();
6630      return true;
6631    }
6632
6633    return false;
6634  }
6635
6636  // C++03 [namespace.udecl]p4:
6637  //   A using-declaration used as a member-declaration shall refer
6638  //   to a member of a base class of the class being defined [etc.].
6639
6640  // Salient point: SS doesn't have to name a base class as long as
6641  // lookup only finds members from base classes.  Therefore we can
6642  // diagnose here only if we can prove that that can't happen,
6643  // i.e. if the class hierarchies provably don't intersect.
6644
6645  // TODO: it would be nice if "definitely valid" results were cached
6646  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6647  // need to be repeated.
6648
6649  struct UserData {
6650    llvm::DenseSet<const CXXRecordDecl*> Bases;
6651
6652    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6653      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6654      Data->Bases.insert(Base);
6655      return true;
6656    }
6657
6658    bool hasDependentBases(const CXXRecordDecl *Class) {
6659      return !Class->forallBases(collect, this);
6660    }
6661
6662    /// Returns true if the base is dependent or is one of the
6663    /// accumulated base classes.
6664    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6665      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6666      return !Data->Bases.count(Base);
6667    }
6668
6669    bool mightShareBases(const CXXRecordDecl *Class) {
6670      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6671    }
6672  };
6673
6674  UserData Data;
6675
6676  // Returns false if we find a dependent base.
6677  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6678    return false;
6679
6680  // Returns false if the class has a dependent base or if it or one
6681  // of its bases is present in the base set of the current context.
6682  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6683    return false;
6684
6685  Diag(SS.getRange().getBegin(),
6686       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6687    << (NestedNameSpecifier*) SS.getScopeRep()
6688    << cast<CXXRecordDecl>(CurContext)
6689    << SS.getRange();
6690
6691  return true;
6692}
6693
6694Decl *Sema::ActOnAliasDeclaration(Scope *S,
6695                                  AccessSpecifier AS,
6696                                  MultiTemplateParamsArg TemplateParamLists,
6697                                  SourceLocation UsingLoc,
6698                                  UnqualifiedId &Name,
6699                                  TypeResult Type) {
6700  // Skip up to the relevant declaration scope.
6701  while (S->getFlags() & Scope::TemplateParamScope)
6702    S = S->getParent();
6703  assert((S->getFlags() & Scope::DeclScope) &&
6704         "got alias-declaration outside of declaration scope");
6705
6706  if (Type.isInvalid())
6707    return 0;
6708
6709  bool Invalid = false;
6710  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6711  TypeSourceInfo *TInfo = 0;
6712  GetTypeFromParser(Type.get(), &TInfo);
6713
6714  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6715    return 0;
6716
6717  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6718                                      UPPC_DeclarationType)) {
6719    Invalid = true;
6720    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6721                                             TInfo->getTypeLoc().getBeginLoc());
6722  }
6723
6724  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6725  LookupName(Previous, S);
6726
6727  // Warn about shadowing the name of a template parameter.
6728  if (Previous.isSingleResult() &&
6729      Previous.getFoundDecl()->isTemplateParameter()) {
6730    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
6731                                        Previous.getFoundDecl()))
6732      Invalid = true;
6733    Previous.clear();
6734  }
6735
6736  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6737         "name in alias declaration must be an identifier");
6738  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6739                                               Name.StartLocation,
6740                                               Name.Identifier, TInfo);
6741
6742  NewTD->setAccess(AS);
6743
6744  if (Invalid)
6745    NewTD->setInvalidDecl();
6746
6747  CheckTypedefForVariablyModifiedType(S, NewTD);
6748  Invalid |= NewTD->isInvalidDecl();
6749
6750  bool Redeclaration = false;
6751
6752  NamedDecl *NewND;
6753  if (TemplateParamLists.size()) {
6754    TypeAliasTemplateDecl *OldDecl = 0;
6755    TemplateParameterList *OldTemplateParams = 0;
6756
6757    if (TemplateParamLists.size() != 1) {
6758      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6759        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6760         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6761    }
6762    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6763
6764    // Only consider previous declarations in the same scope.
6765    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6766                         /*ExplicitInstantiationOrSpecialization*/false);
6767    if (!Previous.empty()) {
6768      Redeclaration = true;
6769
6770      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6771      if (!OldDecl && !Invalid) {
6772        Diag(UsingLoc, diag::err_redefinition_different_kind)
6773          << Name.Identifier;
6774
6775        NamedDecl *OldD = Previous.getRepresentativeDecl();
6776        if (OldD->getLocation().isValid())
6777          Diag(OldD->getLocation(), diag::note_previous_definition);
6778
6779        Invalid = true;
6780      }
6781
6782      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6783        if (TemplateParameterListsAreEqual(TemplateParams,
6784                                           OldDecl->getTemplateParameters(),
6785                                           /*Complain=*/true,
6786                                           TPL_TemplateMatch))
6787          OldTemplateParams = OldDecl->getTemplateParameters();
6788        else
6789          Invalid = true;
6790
6791        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6792        if (!Invalid &&
6793            !Context.hasSameType(OldTD->getUnderlyingType(),
6794                                 NewTD->getUnderlyingType())) {
6795          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6796          // but we can't reasonably accept it.
6797          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6798            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6799          if (OldTD->getLocation().isValid())
6800            Diag(OldTD->getLocation(), diag::note_previous_definition);
6801          Invalid = true;
6802        }
6803      }
6804    }
6805
6806    // Merge any previous default template arguments into our parameters,
6807    // and check the parameter list.
6808    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6809                                   TPC_TypeAliasTemplate))
6810      return 0;
6811
6812    TypeAliasTemplateDecl *NewDecl =
6813      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6814                                    Name.Identifier, TemplateParams,
6815                                    NewTD);
6816
6817    NewDecl->setAccess(AS);
6818
6819    if (Invalid)
6820      NewDecl->setInvalidDecl();
6821    else if (OldDecl)
6822      NewDecl->setPreviousDeclaration(OldDecl);
6823
6824    NewND = NewDecl;
6825  } else {
6826    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6827    NewND = NewTD;
6828  }
6829
6830  if (!Redeclaration)
6831    PushOnScopeChains(NewND, S);
6832
6833  return NewND;
6834}
6835
6836Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6837                                             SourceLocation NamespaceLoc,
6838                                             SourceLocation AliasLoc,
6839                                             IdentifierInfo *Alias,
6840                                             CXXScopeSpec &SS,
6841                                             SourceLocation IdentLoc,
6842                                             IdentifierInfo *Ident) {
6843
6844  // Lookup the namespace name.
6845  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6846  LookupParsedName(R, S, &SS);
6847
6848  // Check if we have a previous declaration with the same name.
6849  NamedDecl *PrevDecl
6850    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6851                       ForRedeclaration);
6852  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6853    PrevDecl = 0;
6854
6855  if (PrevDecl) {
6856    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6857      // We already have an alias with the same name that points to the same
6858      // namespace, so don't create a new one.
6859      // FIXME: At some point, we'll want to create the (redundant)
6860      // declaration to maintain better source information.
6861      if (!R.isAmbiguous() && !R.empty() &&
6862          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6863        return 0;
6864    }
6865
6866    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6867      diag::err_redefinition_different_kind;
6868    Diag(AliasLoc, DiagID) << Alias;
6869    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6870    return 0;
6871  }
6872
6873  if (R.isAmbiguous())
6874    return 0;
6875
6876  if (R.empty()) {
6877    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6878      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6879      return 0;
6880    }
6881  }
6882
6883  NamespaceAliasDecl *AliasDecl =
6884    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6885                               Alias, SS.getWithLocInContext(Context),
6886                               IdentLoc, R.getFoundDecl());
6887
6888  PushOnScopeChains(AliasDecl, S);
6889  return AliasDecl;
6890}
6891
6892namespace {
6893  /// \brief Scoped object used to handle the state changes required in Sema
6894  /// to implicitly define the body of a C++ member function;
6895  class ImplicitlyDefinedFunctionScope {
6896    Sema &S;
6897    Sema::ContextRAII SavedContext;
6898
6899  public:
6900    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6901      : S(S), SavedContext(S, Method)
6902    {
6903      S.PushFunctionScope();
6904      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6905    }
6906
6907    ~ImplicitlyDefinedFunctionScope() {
6908      S.PopExpressionEvaluationContext();
6909      S.PopFunctionOrBlockScope();
6910    }
6911  };
6912}
6913
6914Sema::ImplicitExceptionSpecification
6915Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6916  // C++ [except.spec]p14:
6917  //   An implicitly declared special member function (Clause 12) shall have an
6918  //   exception-specification. [...]
6919  ImplicitExceptionSpecification ExceptSpec(Context);
6920  if (ClassDecl->isInvalidDecl())
6921    return ExceptSpec;
6922
6923  // Direct base-class constructors.
6924  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6925                                       BEnd = ClassDecl->bases_end();
6926       B != BEnd; ++B) {
6927    if (B->isVirtual()) // Handled below.
6928      continue;
6929
6930    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6931      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6932      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6933      // If this is a deleted function, add it anyway. This might be conformant
6934      // with the standard. This might not. I'm not sure. It might not matter.
6935      if (Constructor)
6936        ExceptSpec.CalledDecl(Constructor);
6937    }
6938  }
6939
6940  // Virtual base-class constructors.
6941  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6942                                       BEnd = ClassDecl->vbases_end();
6943       B != BEnd; ++B) {
6944    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6945      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6946      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6947      // If this is a deleted function, add it anyway. This might be conformant
6948      // with the standard. This might not. I'm not sure. It might not matter.
6949      if (Constructor)
6950        ExceptSpec.CalledDecl(Constructor);
6951    }
6952  }
6953
6954  // Field constructors.
6955  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6956                               FEnd = ClassDecl->field_end();
6957       F != FEnd; ++F) {
6958    if (F->hasInClassInitializer()) {
6959      if (Expr *E = F->getInClassInitializer())
6960        ExceptSpec.CalledExpr(E);
6961      else if (!F->isInvalidDecl())
6962        ExceptSpec.SetDelayed();
6963    } else if (const RecordType *RecordTy
6964              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6965      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6966      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6967      // If this is a deleted function, add it anyway. This might be conformant
6968      // with the standard. This might not. I'm not sure. It might not matter.
6969      // In particular, the problem is that this function never gets called. It
6970      // might just be ill-formed because this function attempts to refer to
6971      // a deleted function here.
6972      if (Constructor)
6973        ExceptSpec.CalledDecl(Constructor);
6974    }
6975  }
6976
6977  return ExceptSpec;
6978}
6979
6980CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6981                                                     CXXRecordDecl *ClassDecl) {
6982  // C++ [class.ctor]p5:
6983  //   A default constructor for a class X is a constructor of class X
6984  //   that can be called without an argument. If there is no
6985  //   user-declared constructor for class X, a default constructor is
6986  //   implicitly declared. An implicitly-declared default constructor
6987  //   is an inline public member of its class.
6988  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6989         "Should not build implicit default constructor!");
6990
6991  ImplicitExceptionSpecification Spec =
6992    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6993  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6994
6995  // Create the actual constructor declaration.
6996  CanQualType ClassType
6997    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6998  SourceLocation ClassLoc = ClassDecl->getLocation();
6999  DeclarationName Name
7000    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7001  DeclarationNameInfo NameInfo(Name, ClassLoc);
7002  CXXConstructorDecl *DefaultCon
7003    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7004                                 Context.getFunctionType(Context.VoidTy,
7005                                                         0, 0, EPI),
7006                                 /*TInfo=*/0,
7007                                 /*isExplicit=*/false,
7008                                 /*isInline=*/true,
7009                                 /*isImplicitlyDeclared=*/true,
7010                                 // FIXME: apply the rules for definitions here
7011                                 /*isConstexpr=*/false);
7012  DefaultCon->setAccess(AS_public);
7013  DefaultCon->setDefaulted();
7014  DefaultCon->setImplicit();
7015  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7016
7017  // Note that we have declared this constructor.
7018  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7019
7020  if (Scope *S = getScopeForContext(ClassDecl))
7021    PushOnScopeChains(DefaultCon, S, false);
7022  ClassDecl->addDecl(DefaultCon);
7023
7024  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7025    DefaultCon->setDeletedAsWritten();
7026
7027  return DefaultCon;
7028}
7029
7030void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7031                                            CXXConstructorDecl *Constructor) {
7032  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7033          !Constructor->doesThisDeclarationHaveABody() &&
7034          !Constructor->isDeleted()) &&
7035    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7036
7037  CXXRecordDecl *ClassDecl = Constructor->getParent();
7038  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7039
7040  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7041  DiagnosticErrorTrap Trap(Diags);
7042  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7043      Trap.hasErrorOccurred()) {
7044    Diag(CurrentLocation, diag::note_member_synthesized_at)
7045      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7046    Constructor->setInvalidDecl();
7047    return;
7048  }
7049
7050  SourceLocation Loc = Constructor->getLocation();
7051  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7052
7053  Constructor->setUsed();
7054  MarkVTableUsed(CurrentLocation, ClassDecl);
7055
7056  if (ASTMutationListener *L = getASTMutationListener()) {
7057    L->CompletedImplicitDefinition(Constructor);
7058  }
7059}
7060
7061/// Get any existing defaulted default constructor for the given class. Do not
7062/// implicitly define one if it does not exist.
7063static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7064                                                             CXXRecordDecl *D) {
7065  ASTContext &Context = Self.Context;
7066  QualType ClassType = Context.getTypeDeclType(D);
7067  DeclarationName ConstructorName
7068    = Context.DeclarationNames.getCXXConstructorName(
7069                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7070
7071  DeclContext::lookup_const_iterator Con, ConEnd;
7072  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7073       Con != ConEnd; ++Con) {
7074    // A function template cannot be defaulted.
7075    if (isa<FunctionTemplateDecl>(*Con))
7076      continue;
7077
7078    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7079    if (Constructor->isDefaultConstructor())
7080      return Constructor->isDefaulted() ? Constructor : 0;
7081  }
7082  return 0;
7083}
7084
7085void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7086  if (!D) return;
7087  AdjustDeclIfTemplate(D);
7088
7089  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7090  CXXConstructorDecl *CtorDecl
7091    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7092
7093  if (!CtorDecl) return;
7094
7095  // Compute the exception specification for the default constructor.
7096  const FunctionProtoType *CtorTy =
7097    CtorDecl->getType()->castAs<FunctionProtoType>();
7098  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7099    ImplicitExceptionSpecification Spec =
7100      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7101    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7102    assert(EPI.ExceptionSpecType != EST_Delayed);
7103
7104    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7105  }
7106
7107  // If the default constructor is explicitly defaulted, checking the exception
7108  // specification is deferred until now.
7109  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7110      !ClassDecl->isDependentType())
7111    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7112}
7113
7114void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7115  // We start with an initial pass over the base classes to collect those that
7116  // inherit constructors from. If there are none, we can forgo all further
7117  // processing.
7118  typedef SmallVector<const RecordType *, 4> BasesVector;
7119  BasesVector BasesToInheritFrom;
7120  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7121                                          BaseE = ClassDecl->bases_end();
7122         BaseIt != BaseE; ++BaseIt) {
7123    if (BaseIt->getInheritConstructors()) {
7124      QualType Base = BaseIt->getType();
7125      if (Base->isDependentType()) {
7126        // If we inherit constructors from anything that is dependent, just
7127        // abort processing altogether. We'll get another chance for the
7128        // instantiations.
7129        return;
7130      }
7131      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7132    }
7133  }
7134  if (BasesToInheritFrom.empty())
7135    return;
7136
7137  // Now collect the constructors that we already have in the current class.
7138  // Those take precedence over inherited constructors.
7139  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7140  //   unless there is a user-declared constructor with the same signature in
7141  //   the class where the using-declaration appears.
7142  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7143  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7144                                    CtorE = ClassDecl->ctor_end();
7145       CtorIt != CtorE; ++CtorIt) {
7146    ExistingConstructors.insert(
7147        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7148  }
7149
7150  Scope *S = getScopeForContext(ClassDecl);
7151  DeclarationName CreatedCtorName =
7152      Context.DeclarationNames.getCXXConstructorName(
7153          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7154
7155  // Now comes the true work.
7156  // First, we keep a map from constructor types to the base that introduced
7157  // them. Needed for finding conflicting constructors. We also keep the
7158  // actually inserted declarations in there, for pretty diagnostics.
7159  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7160  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7161  ConstructorToSourceMap InheritedConstructors;
7162  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7163                             BaseE = BasesToInheritFrom.end();
7164       BaseIt != BaseE; ++BaseIt) {
7165    const RecordType *Base = *BaseIt;
7166    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7167    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7168    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7169                                      CtorE = BaseDecl->ctor_end();
7170         CtorIt != CtorE; ++CtorIt) {
7171      // Find the using declaration for inheriting this base's constructors.
7172      DeclarationName Name =
7173          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7174      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7175          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7176      SourceLocation UsingLoc = UD ? UD->getLocation() :
7177                                     ClassDecl->getLocation();
7178
7179      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7180      //   from the class X named in the using-declaration consists of actual
7181      //   constructors and notional constructors that result from the
7182      //   transformation of defaulted parameters as follows:
7183      //   - all non-template default constructors of X, and
7184      //   - for each non-template constructor of X that has at least one
7185      //     parameter with a default argument, the set of constructors that
7186      //     results from omitting any ellipsis parameter specification and
7187      //     successively omitting parameters with a default argument from the
7188      //     end of the parameter-type-list.
7189      CXXConstructorDecl *BaseCtor = *CtorIt;
7190      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7191      const FunctionProtoType *BaseCtorType =
7192          BaseCtor->getType()->getAs<FunctionProtoType>();
7193
7194      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7195                    maxParams = BaseCtor->getNumParams();
7196           params <= maxParams; ++params) {
7197        // Skip default constructors. They're never inherited.
7198        if (params == 0)
7199          continue;
7200        // Skip copy and move constructors for the same reason.
7201        if (CanBeCopyOrMove && params == 1)
7202          continue;
7203
7204        // Build up a function type for this particular constructor.
7205        // FIXME: The working paper does not consider that the exception spec
7206        // for the inheriting constructor might be larger than that of the
7207        // source. This code doesn't yet, either. When it does, this code will
7208        // need to be delayed until after exception specifications and in-class
7209        // member initializers are attached.
7210        const Type *NewCtorType;
7211        if (params == maxParams)
7212          NewCtorType = BaseCtorType;
7213        else {
7214          SmallVector<QualType, 16> Args;
7215          for (unsigned i = 0; i < params; ++i) {
7216            Args.push_back(BaseCtorType->getArgType(i));
7217          }
7218          FunctionProtoType::ExtProtoInfo ExtInfo =
7219              BaseCtorType->getExtProtoInfo();
7220          ExtInfo.Variadic = false;
7221          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7222                                                Args.data(), params, ExtInfo)
7223                       .getTypePtr();
7224        }
7225        const Type *CanonicalNewCtorType =
7226            Context.getCanonicalType(NewCtorType);
7227
7228        // Now that we have the type, first check if the class already has a
7229        // constructor with this signature.
7230        if (ExistingConstructors.count(CanonicalNewCtorType))
7231          continue;
7232
7233        // Then we check if we have already declared an inherited constructor
7234        // with this signature.
7235        std::pair<ConstructorToSourceMap::iterator, bool> result =
7236            InheritedConstructors.insert(std::make_pair(
7237                CanonicalNewCtorType,
7238                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7239        if (!result.second) {
7240          // Already in the map. If it came from a different class, that's an
7241          // error. Not if it's from the same.
7242          CanQualType PreviousBase = result.first->second.first;
7243          if (CanonicalBase != PreviousBase) {
7244            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7245            const CXXConstructorDecl *PrevBaseCtor =
7246                PrevCtor->getInheritedConstructor();
7247            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7248
7249            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7250            Diag(BaseCtor->getLocation(),
7251                 diag::note_using_decl_constructor_conflict_current_ctor);
7252            Diag(PrevBaseCtor->getLocation(),
7253                 diag::note_using_decl_constructor_conflict_previous_ctor);
7254            Diag(PrevCtor->getLocation(),
7255                 diag::note_using_decl_constructor_conflict_previous_using);
7256          }
7257          continue;
7258        }
7259
7260        // OK, we're there, now add the constructor.
7261        // C++0x [class.inhctor]p8: [...] that would be performed by a
7262        //   user-written inline constructor [...]
7263        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7264        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7265            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7266            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7267            /*ImplicitlyDeclared=*/true,
7268            // FIXME: Due to a defect in the standard, we treat inherited
7269            // constructors as constexpr even if that makes them ill-formed.
7270            /*Constexpr=*/BaseCtor->isConstexpr());
7271        NewCtor->setAccess(BaseCtor->getAccess());
7272
7273        // Build up the parameter decls and add them.
7274        SmallVector<ParmVarDecl *, 16> ParamDecls;
7275        for (unsigned i = 0; i < params; ++i) {
7276          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7277                                                   UsingLoc, UsingLoc,
7278                                                   /*IdentifierInfo=*/0,
7279                                                   BaseCtorType->getArgType(i),
7280                                                   /*TInfo=*/0, SC_None,
7281                                                   SC_None, /*DefaultArg=*/0));
7282        }
7283        NewCtor->setParams(ParamDecls);
7284        NewCtor->setInheritedConstructor(BaseCtor);
7285
7286        PushOnScopeChains(NewCtor, S, false);
7287        ClassDecl->addDecl(NewCtor);
7288        result.first->second.second = NewCtor;
7289      }
7290    }
7291  }
7292}
7293
7294Sema::ImplicitExceptionSpecification
7295Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7296  // C++ [except.spec]p14:
7297  //   An implicitly declared special member function (Clause 12) shall have
7298  //   an exception-specification.
7299  ImplicitExceptionSpecification ExceptSpec(Context);
7300  if (ClassDecl->isInvalidDecl())
7301    return ExceptSpec;
7302
7303  // Direct base-class destructors.
7304  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7305                                       BEnd = ClassDecl->bases_end();
7306       B != BEnd; ++B) {
7307    if (B->isVirtual()) // Handled below.
7308      continue;
7309
7310    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7311      ExceptSpec.CalledDecl(
7312                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7313  }
7314
7315  // Virtual base-class destructors.
7316  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7317                                       BEnd = ClassDecl->vbases_end();
7318       B != BEnd; ++B) {
7319    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7320      ExceptSpec.CalledDecl(
7321                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7322  }
7323
7324  // Field destructors.
7325  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7326                               FEnd = ClassDecl->field_end();
7327       F != FEnd; ++F) {
7328    if (const RecordType *RecordTy
7329        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7330      ExceptSpec.CalledDecl(
7331                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7332  }
7333
7334  return ExceptSpec;
7335}
7336
7337CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7338  // C++ [class.dtor]p2:
7339  //   If a class has no user-declared destructor, a destructor is
7340  //   declared implicitly. An implicitly-declared destructor is an
7341  //   inline public member of its class.
7342
7343  ImplicitExceptionSpecification Spec =
7344      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7345  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7346
7347  // Create the actual destructor declaration.
7348  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7349
7350  CanQualType ClassType
7351    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7352  SourceLocation ClassLoc = ClassDecl->getLocation();
7353  DeclarationName Name
7354    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7355  DeclarationNameInfo NameInfo(Name, ClassLoc);
7356  CXXDestructorDecl *Destructor
7357      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7358                                  /*isInline=*/true,
7359                                  /*isImplicitlyDeclared=*/true);
7360  Destructor->setAccess(AS_public);
7361  Destructor->setDefaulted();
7362  Destructor->setImplicit();
7363  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7364
7365  // Note that we have declared this destructor.
7366  ++ASTContext::NumImplicitDestructorsDeclared;
7367
7368  // Introduce this destructor into its scope.
7369  if (Scope *S = getScopeForContext(ClassDecl))
7370    PushOnScopeChains(Destructor, S, false);
7371  ClassDecl->addDecl(Destructor);
7372
7373  // This could be uniqued if it ever proves significant.
7374  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7375
7376  if (ShouldDeleteDestructor(Destructor))
7377    Destructor->setDeletedAsWritten();
7378
7379  AddOverriddenMethods(ClassDecl, Destructor);
7380
7381  return Destructor;
7382}
7383
7384void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7385                                    CXXDestructorDecl *Destructor) {
7386  assert((Destructor->isDefaulted() &&
7387          !Destructor->doesThisDeclarationHaveABody()) &&
7388         "DefineImplicitDestructor - call it for implicit default dtor");
7389  CXXRecordDecl *ClassDecl = Destructor->getParent();
7390  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7391
7392  if (Destructor->isInvalidDecl())
7393    return;
7394
7395  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7396
7397  DiagnosticErrorTrap Trap(Diags);
7398  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7399                                         Destructor->getParent());
7400
7401  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7402    Diag(CurrentLocation, diag::note_member_synthesized_at)
7403      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7404
7405    Destructor->setInvalidDecl();
7406    return;
7407  }
7408
7409  SourceLocation Loc = Destructor->getLocation();
7410  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7411  Destructor->setImplicitlyDefined(true);
7412  Destructor->setUsed();
7413  MarkVTableUsed(CurrentLocation, ClassDecl);
7414
7415  if (ASTMutationListener *L = getASTMutationListener()) {
7416    L->CompletedImplicitDefinition(Destructor);
7417  }
7418}
7419
7420void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7421                                         CXXDestructorDecl *destructor) {
7422  // C++11 [class.dtor]p3:
7423  //   A declaration of a destructor that does not have an exception-
7424  //   specification is implicitly considered to have the same exception-
7425  //   specification as an implicit declaration.
7426  const FunctionProtoType *dtorType = destructor->getType()->
7427                                        getAs<FunctionProtoType>();
7428  if (dtorType->hasExceptionSpec())
7429    return;
7430
7431  ImplicitExceptionSpecification exceptSpec =
7432      ComputeDefaultedDtorExceptionSpec(classDecl);
7433
7434  // Replace the destructor's type, building off the existing one. Fortunately,
7435  // the only thing of interest in the destructor type is its extended info.
7436  // The return and arguments are fixed.
7437  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7438  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7439  epi.NumExceptions = exceptSpec.size();
7440  epi.Exceptions = exceptSpec.data();
7441  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7442
7443  destructor->setType(ty);
7444
7445  // FIXME: If the destructor has a body that could throw, and the newly created
7446  // spec doesn't allow exceptions, we should emit a warning, because this
7447  // change in behavior can break conforming C++03 programs at runtime.
7448  // However, we don't have a body yet, so it needs to be done somewhere else.
7449}
7450
7451/// \brief Builds a statement that copies/moves the given entity from \p From to
7452/// \c To.
7453///
7454/// This routine is used to copy/move the members of a class with an
7455/// implicitly-declared copy/move assignment operator. When the entities being
7456/// copied are arrays, this routine builds for loops to copy them.
7457///
7458/// \param S The Sema object used for type-checking.
7459///
7460/// \param Loc The location where the implicit copy/move is being generated.
7461///
7462/// \param T The type of the expressions being copied/moved. Both expressions
7463/// must have this type.
7464///
7465/// \param To The expression we are copying/moving to.
7466///
7467/// \param From The expression we are copying/moving from.
7468///
7469/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7470/// Otherwise, it's a non-static member subobject.
7471///
7472/// \param Copying Whether we're copying or moving.
7473///
7474/// \param Depth Internal parameter recording the depth of the recursion.
7475///
7476/// \returns A statement or a loop that copies the expressions.
7477static StmtResult
7478BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7479                      Expr *To, Expr *From,
7480                      bool CopyingBaseSubobject, bool Copying,
7481                      unsigned Depth = 0) {
7482  // C++0x [class.copy]p28:
7483  //   Each subobject is assigned in the manner appropriate to its type:
7484  //
7485  //     - if the subobject is of class type, as if by a call to operator= with
7486  //       the subobject as the object expression and the corresponding
7487  //       subobject of x as a single function argument (as if by explicit
7488  //       qualification; that is, ignoring any possible virtual overriding
7489  //       functions in more derived classes);
7490  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7491    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7492
7493    // Look for operator=.
7494    DeclarationName Name
7495      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7496    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7497    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7498
7499    // Filter out any result that isn't a copy/move-assignment operator.
7500    LookupResult::Filter F = OpLookup.makeFilter();
7501    while (F.hasNext()) {
7502      NamedDecl *D = F.next();
7503      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7504        if (Copying ? Method->isCopyAssignmentOperator() :
7505                      Method->isMoveAssignmentOperator())
7506          continue;
7507
7508      F.erase();
7509    }
7510    F.done();
7511
7512    // Suppress the protected check (C++ [class.protected]) for each of the
7513    // assignment operators we found. This strange dance is required when
7514    // we're assigning via a base classes's copy-assignment operator. To
7515    // ensure that we're getting the right base class subobject (without
7516    // ambiguities), we need to cast "this" to that subobject type; to
7517    // ensure that we don't go through the virtual call mechanism, we need
7518    // to qualify the operator= name with the base class (see below). However,
7519    // this means that if the base class has a protected copy assignment
7520    // operator, the protected member access check will fail. So, we
7521    // rewrite "protected" access to "public" access in this case, since we
7522    // know by construction that we're calling from a derived class.
7523    if (CopyingBaseSubobject) {
7524      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7525           L != LEnd; ++L) {
7526        if (L.getAccess() == AS_protected)
7527          L.setAccess(AS_public);
7528      }
7529    }
7530
7531    // Create the nested-name-specifier that will be used to qualify the
7532    // reference to operator=; this is required to suppress the virtual
7533    // call mechanism.
7534    CXXScopeSpec SS;
7535    SS.MakeTrivial(S.Context,
7536                   NestedNameSpecifier::Create(S.Context, 0, false,
7537                                               T.getTypePtr()),
7538                   Loc);
7539
7540    // Create the reference to operator=.
7541    ExprResult OpEqualRef
7542      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7543                                   /*FirstQualifierInScope=*/0, OpLookup,
7544                                   /*TemplateArgs=*/0,
7545                                   /*SuppressQualifierCheck=*/true);
7546    if (OpEqualRef.isInvalid())
7547      return StmtError();
7548
7549    // Build the call to the assignment operator.
7550
7551    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7552                                                  OpEqualRef.takeAs<Expr>(),
7553                                                  Loc, &From, 1, Loc);
7554    if (Call.isInvalid())
7555      return StmtError();
7556
7557    return S.Owned(Call.takeAs<Stmt>());
7558  }
7559
7560  //     - if the subobject is of scalar type, the built-in assignment
7561  //       operator is used.
7562  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7563  if (!ArrayTy) {
7564    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7565    if (Assignment.isInvalid())
7566      return StmtError();
7567
7568    return S.Owned(Assignment.takeAs<Stmt>());
7569  }
7570
7571  //     - if the subobject is an array, each element is assigned, in the
7572  //       manner appropriate to the element type;
7573
7574  // Construct a loop over the array bounds, e.g.,
7575  //
7576  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7577  //
7578  // that will copy each of the array elements.
7579  QualType SizeType = S.Context.getSizeType();
7580
7581  // Create the iteration variable.
7582  IdentifierInfo *IterationVarName = 0;
7583  {
7584    llvm::SmallString<8> Str;
7585    llvm::raw_svector_ostream OS(Str);
7586    OS << "__i" << Depth;
7587    IterationVarName = &S.Context.Idents.get(OS.str());
7588  }
7589  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7590                                          IterationVarName, SizeType,
7591                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7592                                          SC_None, SC_None);
7593
7594  // Initialize the iteration variable to zero.
7595  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7596  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7597
7598  // Create a reference to the iteration variable; we'll use this several
7599  // times throughout.
7600  Expr *IterationVarRef
7601    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
7602  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7603
7604  // Create the DeclStmt that holds the iteration variable.
7605  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7606
7607  // Create the comparison against the array bound.
7608  llvm::APInt Upper
7609    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7610  Expr *Comparison
7611    = new (S.Context) BinaryOperator(IterationVarRef,
7612                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7613                                     BO_NE, S.Context.BoolTy,
7614                                     VK_RValue, OK_Ordinary, Loc);
7615
7616  // Create the pre-increment of the iteration variable.
7617  Expr *Increment
7618    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7619                                    VK_LValue, OK_Ordinary, Loc);
7620
7621  // Subscript the "from" and "to" expressions with the iteration variable.
7622  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7623                                                         IterationVarRef, Loc));
7624  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7625                                                       IterationVarRef, Loc));
7626  if (!Copying) // Cast to rvalue
7627    From = CastForMoving(S, From);
7628
7629  // Build the copy/move for an individual element of the array.
7630  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7631                                          To, From, CopyingBaseSubobject,
7632                                          Copying, Depth + 1);
7633  if (Copy.isInvalid())
7634    return StmtError();
7635
7636  // Construct the loop that copies all elements of this array.
7637  return S.ActOnForStmt(Loc, Loc, InitStmt,
7638                        S.MakeFullExpr(Comparison),
7639                        0, S.MakeFullExpr(Increment),
7640                        Loc, Copy.take());
7641}
7642
7643std::pair<Sema::ImplicitExceptionSpecification, bool>
7644Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7645                                                   CXXRecordDecl *ClassDecl) {
7646  if (ClassDecl->isInvalidDecl())
7647    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7648
7649  // C++ [class.copy]p10:
7650  //   If the class definition does not explicitly declare a copy
7651  //   assignment operator, one is declared implicitly.
7652  //   The implicitly-defined copy assignment operator for a class X
7653  //   will have the form
7654  //
7655  //       X& X::operator=(const X&)
7656  //
7657  //   if
7658  bool HasConstCopyAssignment = true;
7659
7660  //       -- each direct base class B of X has a copy assignment operator
7661  //          whose parameter is of type const B&, const volatile B& or B,
7662  //          and
7663  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7664                                       BaseEnd = ClassDecl->bases_end();
7665       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7666    // We'll handle this below
7667    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7668      continue;
7669
7670    assert(!Base->getType()->isDependentType() &&
7671           "Cannot generate implicit members for class with dependent bases.");
7672    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7673    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7674                            &HasConstCopyAssignment);
7675  }
7676
7677  // In C++0x, the above citation has "or virtual added"
7678  if (LangOpts.CPlusPlus0x) {
7679    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7680                                         BaseEnd = ClassDecl->vbases_end();
7681         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7682      assert(!Base->getType()->isDependentType() &&
7683             "Cannot generate implicit members for class with dependent bases.");
7684      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7685      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7686                              &HasConstCopyAssignment);
7687    }
7688  }
7689
7690  //       -- for all the nonstatic data members of X that are of a class
7691  //          type M (or array thereof), each such class type has a copy
7692  //          assignment operator whose parameter is of type const M&,
7693  //          const volatile M& or M.
7694  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7695                                  FieldEnd = ClassDecl->field_end();
7696       HasConstCopyAssignment && Field != FieldEnd;
7697       ++Field) {
7698    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7699    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7700      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7701                              &HasConstCopyAssignment);
7702    }
7703  }
7704
7705  //   Otherwise, the implicitly declared copy assignment operator will
7706  //   have the form
7707  //
7708  //       X& X::operator=(X&)
7709
7710  // C++ [except.spec]p14:
7711  //   An implicitly declared special member function (Clause 12) shall have an
7712  //   exception-specification. [...]
7713
7714  // It is unspecified whether or not an implicit copy assignment operator
7715  // attempts to deduplicate calls to assignment operators of virtual bases are
7716  // made. As such, this exception specification is effectively unspecified.
7717  // Based on a similar decision made for constness in C++0x, we're erring on
7718  // the side of assuming such calls to be made regardless of whether they
7719  // actually happen.
7720  ImplicitExceptionSpecification ExceptSpec(Context);
7721  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7722  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7723                                       BaseEnd = ClassDecl->bases_end();
7724       Base != BaseEnd; ++Base) {
7725    if (Base->isVirtual())
7726      continue;
7727
7728    CXXRecordDecl *BaseClassDecl
7729      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7730    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7731                                                            ArgQuals, false, 0))
7732      ExceptSpec.CalledDecl(CopyAssign);
7733  }
7734
7735  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7736                                       BaseEnd = ClassDecl->vbases_end();
7737       Base != BaseEnd; ++Base) {
7738    CXXRecordDecl *BaseClassDecl
7739      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7740    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7741                                                            ArgQuals, false, 0))
7742      ExceptSpec.CalledDecl(CopyAssign);
7743  }
7744
7745  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7746                                  FieldEnd = ClassDecl->field_end();
7747       Field != FieldEnd;
7748       ++Field) {
7749    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7750    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7751      if (CXXMethodDecl *CopyAssign =
7752          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7753        ExceptSpec.CalledDecl(CopyAssign);
7754    }
7755  }
7756
7757  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7758}
7759
7760CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7761  // Note: The following rules are largely analoguous to the copy
7762  // constructor rules. Note that virtual bases are not taken into account
7763  // for determining the argument type of the operator. Note also that
7764  // operators taking an object instead of a reference are allowed.
7765
7766  ImplicitExceptionSpecification Spec(Context);
7767  bool Const;
7768  llvm::tie(Spec, Const) =
7769    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7770
7771  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7772  QualType RetType = Context.getLValueReferenceType(ArgType);
7773  if (Const)
7774    ArgType = ArgType.withConst();
7775  ArgType = Context.getLValueReferenceType(ArgType);
7776
7777  //   An implicitly-declared copy assignment operator is an inline public
7778  //   member of its class.
7779  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7780  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7781  SourceLocation ClassLoc = ClassDecl->getLocation();
7782  DeclarationNameInfo NameInfo(Name, ClassLoc);
7783  CXXMethodDecl *CopyAssignment
7784    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7785                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7786                            /*TInfo=*/0, /*isStatic=*/false,
7787                            /*StorageClassAsWritten=*/SC_None,
7788                            /*isInline=*/true, /*isConstexpr=*/false,
7789                            SourceLocation());
7790  CopyAssignment->setAccess(AS_public);
7791  CopyAssignment->setDefaulted();
7792  CopyAssignment->setImplicit();
7793  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7794
7795  // Add the parameter to the operator.
7796  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7797                                               ClassLoc, ClassLoc, /*Id=*/0,
7798                                               ArgType, /*TInfo=*/0,
7799                                               SC_None,
7800                                               SC_None, 0);
7801  CopyAssignment->setParams(FromParam);
7802
7803  // Note that we have added this copy-assignment operator.
7804  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7805
7806  if (Scope *S = getScopeForContext(ClassDecl))
7807    PushOnScopeChains(CopyAssignment, S, false);
7808  ClassDecl->addDecl(CopyAssignment);
7809
7810  // C++0x [class.copy]p18:
7811  //   ... If the class definition declares a move constructor or move
7812  //   assignment operator, the implicitly declared copy assignment operator is
7813  //   defined as deleted; ...
7814  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7815      ClassDecl->hasUserDeclaredMoveAssignment() ||
7816      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7817    CopyAssignment->setDeletedAsWritten();
7818
7819  AddOverriddenMethods(ClassDecl, CopyAssignment);
7820  return CopyAssignment;
7821}
7822
7823void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7824                                        CXXMethodDecl *CopyAssignOperator) {
7825  assert((CopyAssignOperator->isDefaulted() &&
7826          CopyAssignOperator->isOverloadedOperator() &&
7827          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7828          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7829         "DefineImplicitCopyAssignment called for wrong function");
7830
7831  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7832
7833  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7834    CopyAssignOperator->setInvalidDecl();
7835    return;
7836  }
7837
7838  CopyAssignOperator->setUsed();
7839
7840  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7841  DiagnosticErrorTrap Trap(Diags);
7842
7843  // C++0x [class.copy]p30:
7844  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7845  //   for a non-union class X performs memberwise copy assignment of its
7846  //   subobjects. The direct base classes of X are assigned first, in the
7847  //   order of their declaration in the base-specifier-list, and then the
7848  //   immediate non-static data members of X are assigned, in the order in
7849  //   which they were declared in the class definition.
7850
7851  // The statements that form the synthesized function body.
7852  ASTOwningVector<Stmt*> Statements(*this);
7853
7854  // The parameter for the "other" object, which we are copying from.
7855  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7856  Qualifiers OtherQuals = Other->getType().getQualifiers();
7857  QualType OtherRefType = Other->getType();
7858  if (const LValueReferenceType *OtherRef
7859                                = OtherRefType->getAs<LValueReferenceType>()) {
7860    OtherRefType = OtherRef->getPointeeType();
7861    OtherQuals = OtherRefType.getQualifiers();
7862  }
7863
7864  // Our location for everything implicitly-generated.
7865  SourceLocation Loc = CopyAssignOperator->getLocation();
7866
7867  // Construct a reference to the "other" object. We'll be using this
7868  // throughout the generated ASTs.
7869  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7870  assert(OtherRef && "Reference to parameter cannot fail!");
7871
7872  // Construct the "this" pointer. We'll be using this throughout the generated
7873  // ASTs.
7874  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7875  assert(This && "Reference to this cannot fail!");
7876
7877  // Assign base classes.
7878  bool Invalid = false;
7879  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7880       E = ClassDecl->bases_end(); Base != E; ++Base) {
7881    // Form the assignment:
7882    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7883    QualType BaseType = Base->getType().getUnqualifiedType();
7884    if (!BaseType->isRecordType()) {
7885      Invalid = true;
7886      continue;
7887    }
7888
7889    CXXCastPath BasePath;
7890    BasePath.push_back(Base);
7891
7892    // Construct the "from" expression, which is an implicit cast to the
7893    // appropriately-qualified base type.
7894    Expr *From = OtherRef;
7895    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7896                             CK_UncheckedDerivedToBase,
7897                             VK_LValue, &BasePath).take();
7898
7899    // Dereference "this".
7900    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7901
7902    // Implicitly cast "this" to the appropriately-qualified base type.
7903    To = ImpCastExprToType(To.take(),
7904                           Context.getCVRQualifiedType(BaseType,
7905                                     CopyAssignOperator->getTypeQualifiers()),
7906                           CK_UncheckedDerivedToBase,
7907                           VK_LValue, &BasePath);
7908
7909    // Build the copy.
7910    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7911                                            To.get(), From,
7912                                            /*CopyingBaseSubobject=*/true,
7913                                            /*Copying=*/true);
7914    if (Copy.isInvalid()) {
7915      Diag(CurrentLocation, diag::note_member_synthesized_at)
7916        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7917      CopyAssignOperator->setInvalidDecl();
7918      return;
7919    }
7920
7921    // Success! Record the copy.
7922    Statements.push_back(Copy.takeAs<Expr>());
7923  }
7924
7925  // \brief Reference to the __builtin_memcpy function.
7926  Expr *BuiltinMemCpyRef = 0;
7927  // \brief Reference to the __builtin_objc_memmove_collectable function.
7928  Expr *CollectableMemCpyRef = 0;
7929
7930  // Assign non-static members.
7931  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7932                                  FieldEnd = ClassDecl->field_end();
7933       Field != FieldEnd; ++Field) {
7934    // Check for members of reference type; we can't copy those.
7935    if (Field->getType()->isReferenceType()) {
7936      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7937        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7938      Diag(Field->getLocation(), diag::note_declared_at);
7939      Diag(CurrentLocation, diag::note_member_synthesized_at)
7940        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7941      Invalid = true;
7942      continue;
7943    }
7944
7945    // Check for members of const-qualified, non-class type.
7946    QualType BaseType = Context.getBaseElementType(Field->getType());
7947    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7948      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7949        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7950      Diag(Field->getLocation(), diag::note_declared_at);
7951      Diag(CurrentLocation, diag::note_member_synthesized_at)
7952        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7953      Invalid = true;
7954      continue;
7955    }
7956
7957    // Suppress assigning zero-width bitfields.
7958    if (const Expr *Width = Field->getBitWidth())
7959      if (Width->EvaluateAsInt(Context) == 0)
7960        continue;
7961
7962    QualType FieldType = Field->getType().getNonReferenceType();
7963    if (FieldType->isIncompleteArrayType()) {
7964      assert(ClassDecl->hasFlexibleArrayMember() &&
7965             "Incomplete array type is not valid");
7966      continue;
7967    }
7968
7969    // Build references to the field in the object we're copying from and to.
7970    CXXScopeSpec SS; // Intentionally empty
7971    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7972                              LookupMemberName);
7973    MemberLookup.addDecl(*Field);
7974    MemberLookup.resolveKind();
7975    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7976                                               Loc, /*IsArrow=*/false,
7977                                               SS, 0, MemberLookup, 0);
7978    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7979                                             Loc, /*IsArrow=*/true,
7980                                             SS, 0, MemberLookup, 0);
7981    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7982    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7983
7984    // If the field should be copied with __builtin_memcpy rather than via
7985    // explicit assignments, do so. This optimization only applies for arrays
7986    // of scalars and arrays of class type with trivial copy-assignment
7987    // operators.
7988    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7989        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7990      // Compute the size of the memory buffer to be copied.
7991      QualType SizeType = Context.getSizeType();
7992      llvm::APInt Size(Context.getTypeSize(SizeType),
7993                       Context.getTypeSizeInChars(BaseType).getQuantity());
7994      for (const ConstantArrayType *Array
7995              = Context.getAsConstantArrayType(FieldType);
7996           Array;
7997           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7998        llvm::APInt ArraySize
7999          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8000        Size *= ArraySize;
8001      }
8002
8003      // Take the address of the field references for "from" and "to".
8004      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8005      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8006
8007      bool NeedsCollectableMemCpy =
8008          (BaseType->isRecordType() &&
8009           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8010
8011      if (NeedsCollectableMemCpy) {
8012        if (!CollectableMemCpyRef) {
8013          // Create a reference to the __builtin_objc_memmove_collectable function.
8014          LookupResult R(*this,
8015                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8016                         Loc, LookupOrdinaryName);
8017          LookupName(R, TUScope, true);
8018
8019          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8020          if (!CollectableMemCpy) {
8021            // Something went horribly wrong earlier, and we will have
8022            // complained about it.
8023            Invalid = true;
8024            continue;
8025          }
8026
8027          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8028                                                  CollectableMemCpy->getType(),
8029                                                  VK_LValue, Loc, 0).take();
8030          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8031        }
8032      }
8033      // Create a reference to the __builtin_memcpy builtin function.
8034      else if (!BuiltinMemCpyRef) {
8035        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8036                       LookupOrdinaryName);
8037        LookupName(R, TUScope, true);
8038
8039        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8040        if (!BuiltinMemCpy) {
8041          // Something went horribly wrong earlier, and we will have complained
8042          // about it.
8043          Invalid = true;
8044          continue;
8045        }
8046
8047        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8048                                            BuiltinMemCpy->getType(),
8049                                            VK_LValue, Loc, 0).take();
8050        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8051      }
8052
8053      ASTOwningVector<Expr*> CallArgs(*this);
8054      CallArgs.push_back(To.takeAs<Expr>());
8055      CallArgs.push_back(From.takeAs<Expr>());
8056      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8057      ExprResult Call = ExprError();
8058      if (NeedsCollectableMemCpy)
8059        Call = ActOnCallExpr(/*Scope=*/0,
8060                             CollectableMemCpyRef,
8061                             Loc, move_arg(CallArgs),
8062                             Loc);
8063      else
8064        Call = ActOnCallExpr(/*Scope=*/0,
8065                             BuiltinMemCpyRef,
8066                             Loc, move_arg(CallArgs),
8067                             Loc);
8068
8069      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8070      Statements.push_back(Call.takeAs<Expr>());
8071      continue;
8072    }
8073
8074    // Build the copy of this field.
8075    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8076                                            To.get(), From.get(),
8077                                            /*CopyingBaseSubobject=*/false,
8078                                            /*Copying=*/true);
8079    if (Copy.isInvalid()) {
8080      Diag(CurrentLocation, diag::note_member_synthesized_at)
8081        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8082      CopyAssignOperator->setInvalidDecl();
8083      return;
8084    }
8085
8086    // Success! Record the copy.
8087    Statements.push_back(Copy.takeAs<Stmt>());
8088  }
8089
8090  if (!Invalid) {
8091    // Add a "return *this;"
8092    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8093
8094    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8095    if (Return.isInvalid())
8096      Invalid = true;
8097    else {
8098      Statements.push_back(Return.takeAs<Stmt>());
8099
8100      if (Trap.hasErrorOccurred()) {
8101        Diag(CurrentLocation, diag::note_member_synthesized_at)
8102          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8103        Invalid = true;
8104      }
8105    }
8106  }
8107
8108  if (Invalid) {
8109    CopyAssignOperator->setInvalidDecl();
8110    return;
8111  }
8112
8113  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8114                                            /*isStmtExpr=*/false);
8115  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8116  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8117
8118  if (ASTMutationListener *L = getASTMutationListener()) {
8119    L->CompletedImplicitDefinition(CopyAssignOperator);
8120  }
8121}
8122
8123Sema::ImplicitExceptionSpecification
8124Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8125  ImplicitExceptionSpecification ExceptSpec(Context);
8126
8127  if (ClassDecl->isInvalidDecl())
8128    return ExceptSpec;
8129
8130  // C++0x [except.spec]p14:
8131  //   An implicitly declared special member function (Clause 12) shall have an
8132  //   exception-specification. [...]
8133
8134  // It is unspecified whether or not an implicit move assignment operator
8135  // attempts to deduplicate calls to assignment operators of virtual bases are
8136  // made. As such, this exception specification is effectively unspecified.
8137  // Based on a similar decision made for constness in C++0x, we're erring on
8138  // the side of assuming such calls to be made regardless of whether they
8139  // actually happen.
8140  // Note that a move constructor is not implicitly declared when there are
8141  // virtual bases, but it can still be user-declared and explicitly defaulted.
8142  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8143                                       BaseEnd = ClassDecl->bases_end();
8144       Base != BaseEnd; ++Base) {
8145    if (Base->isVirtual())
8146      continue;
8147
8148    CXXRecordDecl *BaseClassDecl
8149      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8150    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8151                                                           false, 0))
8152      ExceptSpec.CalledDecl(MoveAssign);
8153  }
8154
8155  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8156                                       BaseEnd = ClassDecl->vbases_end();
8157       Base != BaseEnd; ++Base) {
8158    CXXRecordDecl *BaseClassDecl
8159      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8160    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8161                                                           false, 0))
8162      ExceptSpec.CalledDecl(MoveAssign);
8163  }
8164
8165  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8166                                  FieldEnd = ClassDecl->field_end();
8167       Field != FieldEnd;
8168       ++Field) {
8169    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8170    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8171      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8172                                                             false, 0))
8173        ExceptSpec.CalledDecl(MoveAssign);
8174    }
8175  }
8176
8177  return ExceptSpec;
8178}
8179
8180CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8181  // Note: The following rules are largely analoguous to the move
8182  // constructor rules.
8183
8184  ImplicitExceptionSpecification Spec(
8185      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8186
8187  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8188  QualType RetType = Context.getLValueReferenceType(ArgType);
8189  ArgType = Context.getRValueReferenceType(ArgType);
8190
8191  //   An implicitly-declared move assignment operator is an inline public
8192  //   member of its class.
8193  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8194  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8195  SourceLocation ClassLoc = ClassDecl->getLocation();
8196  DeclarationNameInfo NameInfo(Name, ClassLoc);
8197  CXXMethodDecl *MoveAssignment
8198    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8199                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8200                            /*TInfo=*/0, /*isStatic=*/false,
8201                            /*StorageClassAsWritten=*/SC_None,
8202                            /*isInline=*/true,
8203                            /*isConstexpr=*/false,
8204                            SourceLocation());
8205  MoveAssignment->setAccess(AS_public);
8206  MoveAssignment->setDefaulted();
8207  MoveAssignment->setImplicit();
8208  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8209
8210  // Add the parameter to the operator.
8211  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8212                                               ClassLoc, ClassLoc, /*Id=*/0,
8213                                               ArgType, /*TInfo=*/0,
8214                                               SC_None,
8215                                               SC_None, 0);
8216  MoveAssignment->setParams(FromParam);
8217
8218  // Note that we have added this copy-assignment operator.
8219  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8220
8221  // C++0x [class.copy]p9:
8222  //   If the definition of a class X does not explicitly declare a move
8223  //   assignment operator, one will be implicitly declared as defaulted if and
8224  //   only if:
8225  //   [...]
8226  //   - the move assignment operator would not be implicitly defined as
8227  //     deleted.
8228  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8229    // Cache this result so that we don't try to generate this over and over
8230    // on every lookup, leaking memory and wasting time.
8231    ClassDecl->setFailedImplicitMoveAssignment();
8232    return 0;
8233  }
8234
8235  if (Scope *S = getScopeForContext(ClassDecl))
8236    PushOnScopeChains(MoveAssignment, S, false);
8237  ClassDecl->addDecl(MoveAssignment);
8238
8239  AddOverriddenMethods(ClassDecl, MoveAssignment);
8240  return MoveAssignment;
8241}
8242
8243void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8244                                        CXXMethodDecl *MoveAssignOperator) {
8245  assert((MoveAssignOperator->isDefaulted() &&
8246          MoveAssignOperator->isOverloadedOperator() &&
8247          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8248          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8249         "DefineImplicitMoveAssignment called for wrong function");
8250
8251  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8252
8253  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8254    MoveAssignOperator->setInvalidDecl();
8255    return;
8256  }
8257
8258  MoveAssignOperator->setUsed();
8259
8260  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8261  DiagnosticErrorTrap Trap(Diags);
8262
8263  // C++0x [class.copy]p28:
8264  //   The implicitly-defined or move assignment operator for a non-union class
8265  //   X performs memberwise move assignment of its subobjects. The direct base
8266  //   classes of X are assigned first, in the order of their declaration in the
8267  //   base-specifier-list, and then the immediate non-static data members of X
8268  //   are assigned, in the order in which they were declared in the class
8269  //   definition.
8270
8271  // The statements that form the synthesized function body.
8272  ASTOwningVector<Stmt*> Statements(*this);
8273
8274  // The parameter for the "other" object, which we are move from.
8275  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8276  QualType OtherRefType = Other->getType()->
8277      getAs<RValueReferenceType>()->getPointeeType();
8278  assert(OtherRefType.getQualifiers() == 0 &&
8279         "Bad argument type of defaulted move assignment");
8280
8281  // Our location for everything implicitly-generated.
8282  SourceLocation Loc = MoveAssignOperator->getLocation();
8283
8284  // Construct a reference to the "other" object. We'll be using this
8285  // throughout the generated ASTs.
8286  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8287  assert(OtherRef && "Reference to parameter cannot fail!");
8288  // Cast to rvalue.
8289  OtherRef = CastForMoving(*this, OtherRef);
8290
8291  // Construct the "this" pointer. We'll be using this throughout the generated
8292  // ASTs.
8293  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8294  assert(This && "Reference to this cannot fail!");
8295
8296  // Assign base classes.
8297  bool Invalid = false;
8298  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8299       E = ClassDecl->bases_end(); Base != E; ++Base) {
8300    // Form the assignment:
8301    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8302    QualType BaseType = Base->getType().getUnqualifiedType();
8303    if (!BaseType->isRecordType()) {
8304      Invalid = true;
8305      continue;
8306    }
8307
8308    CXXCastPath BasePath;
8309    BasePath.push_back(Base);
8310
8311    // Construct the "from" expression, which is an implicit cast to the
8312    // appropriately-qualified base type.
8313    Expr *From = OtherRef;
8314    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8315                             VK_XValue, &BasePath).take();
8316
8317    // Dereference "this".
8318    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8319
8320    // Implicitly cast "this" to the appropriately-qualified base type.
8321    To = ImpCastExprToType(To.take(),
8322                           Context.getCVRQualifiedType(BaseType,
8323                                     MoveAssignOperator->getTypeQualifiers()),
8324                           CK_UncheckedDerivedToBase,
8325                           VK_LValue, &BasePath);
8326
8327    // Build the move.
8328    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8329                                            To.get(), From,
8330                                            /*CopyingBaseSubobject=*/true,
8331                                            /*Copying=*/false);
8332    if (Move.isInvalid()) {
8333      Diag(CurrentLocation, diag::note_member_synthesized_at)
8334        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8335      MoveAssignOperator->setInvalidDecl();
8336      return;
8337    }
8338
8339    // Success! Record the move.
8340    Statements.push_back(Move.takeAs<Expr>());
8341  }
8342
8343  // \brief Reference to the __builtin_memcpy function.
8344  Expr *BuiltinMemCpyRef = 0;
8345  // \brief Reference to the __builtin_objc_memmove_collectable function.
8346  Expr *CollectableMemCpyRef = 0;
8347
8348  // Assign non-static members.
8349  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8350                                  FieldEnd = ClassDecl->field_end();
8351       Field != FieldEnd; ++Field) {
8352    // Check for members of reference type; we can't move those.
8353    if (Field->getType()->isReferenceType()) {
8354      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8355        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8356      Diag(Field->getLocation(), diag::note_declared_at);
8357      Diag(CurrentLocation, diag::note_member_synthesized_at)
8358        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8359      Invalid = true;
8360      continue;
8361    }
8362
8363    // Check for members of const-qualified, non-class type.
8364    QualType BaseType = Context.getBaseElementType(Field->getType());
8365    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8366      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8367        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8368      Diag(Field->getLocation(), diag::note_declared_at);
8369      Diag(CurrentLocation, diag::note_member_synthesized_at)
8370        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8371      Invalid = true;
8372      continue;
8373    }
8374
8375    // Suppress assigning zero-width bitfields.
8376    if (const Expr *Width = Field->getBitWidth())
8377      if (Width->EvaluateAsInt(Context) == 0)
8378        continue;
8379
8380    QualType FieldType = Field->getType().getNonReferenceType();
8381    if (FieldType->isIncompleteArrayType()) {
8382      assert(ClassDecl->hasFlexibleArrayMember() &&
8383             "Incomplete array type is not valid");
8384      continue;
8385    }
8386
8387    // Build references to the field in the object we're copying from and to.
8388    CXXScopeSpec SS; // Intentionally empty
8389    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8390                              LookupMemberName);
8391    MemberLookup.addDecl(*Field);
8392    MemberLookup.resolveKind();
8393    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8394                                               Loc, /*IsArrow=*/false,
8395                                               SS, 0, MemberLookup, 0);
8396    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8397                                             Loc, /*IsArrow=*/true,
8398                                             SS, 0, MemberLookup, 0);
8399    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8400    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8401
8402    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8403        "Member reference with rvalue base must be rvalue except for reference "
8404        "members, which aren't allowed for move assignment.");
8405
8406    // If the field should be copied with __builtin_memcpy rather than via
8407    // explicit assignments, do so. This optimization only applies for arrays
8408    // of scalars and arrays of class type with trivial move-assignment
8409    // operators.
8410    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8411        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8412      // Compute the size of the memory buffer to be copied.
8413      QualType SizeType = Context.getSizeType();
8414      llvm::APInt Size(Context.getTypeSize(SizeType),
8415                       Context.getTypeSizeInChars(BaseType).getQuantity());
8416      for (const ConstantArrayType *Array
8417              = Context.getAsConstantArrayType(FieldType);
8418           Array;
8419           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8420        llvm::APInt ArraySize
8421          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8422        Size *= ArraySize;
8423      }
8424
8425      // Take the address of the field references for "from" and "to". We
8426      // directly construct UnaryOperators here because semantic analysis
8427      // does not permit us to take the address of an xvalue.
8428      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8429                             Context.getPointerType(From.get()->getType()),
8430                             VK_RValue, OK_Ordinary, Loc);
8431      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8432                           Context.getPointerType(To.get()->getType()),
8433                           VK_RValue, OK_Ordinary, Loc);
8434
8435      bool NeedsCollectableMemCpy =
8436          (BaseType->isRecordType() &&
8437           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8438
8439      if (NeedsCollectableMemCpy) {
8440        if (!CollectableMemCpyRef) {
8441          // Create a reference to the __builtin_objc_memmove_collectable function.
8442          LookupResult R(*this,
8443                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8444                         Loc, LookupOrdinaryName);
8445          LookupName(R, TUScope, true);
8446
8447          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8448          if (!CollectableMemCpy) {
8449            // Something went horribly wrong earlier, and we will have
8450            // complained about it.
8451            Invalid = true;
8452            continue;
8453          }
8454
8455          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8456                                                  CollectableMemCpy->getType(),
8457                                                  VK_LValue, Loc, 0).take();
8458          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8459        }
8460      }
8461      // Create a reference to the __builtin_memcpy builtin function.
8462      else if (!BuiltinMemCpyRef) {
8463        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8464                       LookupOrdinaryName);
8465        LookupName(R, TUScope, true);
8466
8467        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8468        if (!BuiltinMemCpy) {
8469          // Something went horribly wrong earlier, and we will have complained
8470          // about it.
8471          Invalid = true;
8472          continue;
8473        }
8474
8475        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8476                                            BuiltinMemCpy->getType(),
8477                                            VK_LValue, Loc, 0).take();
8478        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8479      }
8480
8481      ASTOwningVector<Expr*> CallArgs(*this);
8482      CallArgs.push_back(To.takeAs<Expr>());
8483      CallArgs.push_back(From.takeAs<Expr>());
8484      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8485      ExprResult Call = ExprError();
8486      if (NeedsCollectableMemCpy)
8487        Call = ActOnCallExpr(/*Scope=*/0,
8488                             CollectableMemCpyRef,
8489                             Loc, move_arg(CallArgs),
8490                             Loc);
8491      else
8492        Call = ActOnCallExpr(/*Scope=*/0,
8493                             BuiltinMemCpyRef,
8494                             Loc, move_arg(CallArgs),
8495                             Loc);
8496
8497      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8498      Statements.push_back(Call.takeAs<Expr>());
8499      continue;
8500    }
8501
8502    // Build the move of this field.
8503    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8504                                            To.get(), From.get(),
8505                                            /*CopyingBaseSubobject=*/false,
8506                                            /*Copying=*/false);
8507    if (Move.isInvalid()) {
8508      Diag(CurrentLocation, diag::note_member_synthesized_at)
8509        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8510      MoveAssignOperator->setInvalidDecl();
8511      return;
8512    }
8513
8514    // Success! Record the copy.
8515    Statements.push_back(Move.takeAs<Stmt>());
8516  }
8517
8518  if (!Invalid) {
8519    // Add a "return *this;"
8520    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8521
8522    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8523    if (Return.isInvalid())
8524      Invalid = true;
8525    else {
8526      Statements.push_back(Return.takeAs<Stmt>());
8527
8528      if (Trap.hasErrorOccurred()) {
8529        Diag(CurrentLocation, diag::note_member_synthesized_at)
8530          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8531        Invalid = true;
8532      }
8533    }
8534  }
8535
8536  if (Invalid) {
8537    MoveAssignOperator->setInvalidDecl();
8538    return;
8539  }
8540
8541  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8542                                            /*isStmtExpr=*/false);
8543  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8544  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8545
8546  if (ASTMutationListener *L = getASTMutationListener()) {
8547    L->CompletedImplicitDefinition(MoveAssignOperator);
8548  }
8549}
8550
8551std::pair<Sema::ImplicitExceptionSpecification, bool>
8552Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8553  if (ClassDecl->isInvalidDecl())
8554    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8555
8556  // C++ [class.copy]p5:
8557  //   The implicitly-declared copy constructor for a class X will
8558  //   have the form
8559  //
8560  //       X::X(const X&)
8561  //
8562  //   if
8563  // FIXME: It ought to be possible to store this on the record.
8564  bool HasConstCopyConstructor = true;
8565
8566  //     -- each direct or virtual base class B of X has a copy
8567  //        constructor whose first parameter is of type const B& or
8568  //        const volatile B&, and
8569  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8570                                       BaseEnd = ClassDecl->bases_end();
8571       HasConstCopyConstructor && Base != BaseEnd;
8572       ++Base) {
8573    // Virtual bases are handled below.
8574    if (Base->isVirtual())
8575      continue;
8576
8577    CXXRecordDecl *BaseClassDecl
8578      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8579    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8580                             &HasConstCopyConstructor);
8581  }
8582
8583  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8584                                       BaseEnd = ClassDecl->vbases_end();
8585       HasConstCopyConstructor && Base != BaseEnd;
8586       ++Base) {
8587    CXXRecordDecl *BaseClassDecl
8588      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8589    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8590                             &HasConstCopyConstructor);
8591  }
8592
8593  //     -- for all the nonstatic data members of X that are of a
8594  //        class type M (or array thereof), each such class type
8595  //        has a copy constructor whose first parameter is of type
8596  //        const M& or const volatile M&.
8597  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8598                                  FieldEnd = ClassDecl->field_end();
8599       HasConstCopyConstructor && Field != FieldEnd;
8600       ++Field) {
8601    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8602    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8603      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8604                               &HasConstCopyConstructor);
8605    }
8606  }
8607  //   Otherwise, the implicitly declared copy constructor will have
8608  //   the form
8609  //
8610  //       X::X(X&)
8611
8612  // C++ [except.spec]p14:
8613  //   An implicitly declared special member function (Clause 12) shall have an
8614  //   exception-specification. [...]
8615  ImplicitExceptionSpecification ExceptSpec(Context);
8616  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8617  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8618                                       BaseEnd = ClassDecl->bases_end();
8619       Base != BaseEnd;
8620       ++Base) {
8621    // Virtual bases are handled below.
8622    if (Base->isVirtual())
8623      continue;
8624
8625    CXXRecordDecl *BaseClassDecl
8626      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8627    if (CXXConstructorDecl *CopyConstructor =
8628          LookupCopyingConstructor(BaseClassDecl, Quals))
8629      ExceptSpec.CalledDecl(CopyConstructor);
8630  }
8631  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8632                                       BaseEnd = ClassDecl->vbases_end();
8633       Base != BaseEnd;
8634       ++Base) {
8635    CXXRecordDecl *BaseClassDecl
8636      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8637    if (CXXConstructorDecl *CopyConstructor =
8638          LookupCopyingConstructor(BaseClassDecl, Quals))
8639      ExceptSpec.CalledDecl(CopyConstructor);
8640  }
8641  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8642                                  FieldEnd = ClassDecl->field_end();
8643       Field != FieldEnd;
8644       ++Field) {
8645    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8646    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8647      if (CXXConstructorDecl *CopyConstructor =
8648        LookupCopyingConstructor(FieldClassDecl, Quals))
8649      ExceptSpec.CalledDecl(CopyConstructor);
8650    }
8651  }
8652
8653  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8654}
8655
8656CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8657                                                    CXXRecordDecl *ClassDecl) {
8658  // C++ [class.copy]p4:
8659  //   If the class definition does not explicitly declare a copy
8660  //   constructor, one is declared implicitly.
8661
8662  ImplicitExceptionSpecification Spec(Context);
8663  bool Const;
8664  llvm::tie(Spec, Const) =
8665    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8666
8667  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8668  QualType ArgType = ClassType;
8669  if (Const)
8670    ArgType = ArgType.withConst();
8671  ArgType = Context.getLValueReferenceType(ArgType);
8672
8673  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8674
8675  DeclarationName Name
8676    = Context.DeclarationNames.getCXXConstructorName(
8677                                           Context.getCanonicalType(ClassType));
8678  SourceLocation ClassLoc = ClassDecl->getLocation();
8679  DeclarationNameInfo NameInfo(Name, ClassLoc);
8680
8681  //   An implicitly-declared copy constructor is an inline public
8682  //   member of its class.
8683  CXXConstructorDecl *CopyConstructor
8684    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8685                                 Context.getFunctionType(Context.VoidTy,
8686                                                         &ArgType, 1, EPI),
8687                                 /*TInfo=*/0,
8688                                 /*isExplicit=*/false,
8689                                 /*isInline=*/true,
8690                                 /*isImplicitlyDeclared=*/true,
8691                                 // FIXME: apply the rules for definitions here
8692                                 /*isConstexpr=*/false);
8693  CopyConstructor->setAccess(AS_public);
8694  CopyConstructor->setDefaulted();
8695  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8696
8697  // Note that we have declared this constructor.
8698  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8699
8700  // Add the parameter to the constructor.
8701  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8702                                               ClassLoc, ClassLoc,
8703                                               /*IdentifierInfo=*/0,
8704                                               ArgType, /*TInfo=*/0,
8705                                               SC_None,
8706                                               SC_None, 0);
8707  CopyConstructor->setParams(FromParam);
8708
8709  if (Scope *S = getScopeForContext(ClassDecl))
8710    PushOnScopeChains(CopyConstructor, S, false);
8711  ClassDecl->addDecl(CopyConstructor);
8712
8713  // C++0x [class.copy]p7:
8714  //   ... If the class definition declares a move constructor or move
8715  //   assignment operator, the implicitly declared constructor is defined as
8716  //   deleted; ...
8717  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8718      ClassDecl->hasUserDeclaredMoveAssignment() ||
8719      ShouldDeleteCopyConstructor(CopyConstructor))
8720    CopyConstructor->setDeletedAsWritten();
8721
8722  return CopyConstructor;
8723}
8724
8725void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8726                                   CXXConstructorDecl *CopyConstructor) {
8727  assert((CopyConstructor->isDefaulted() &&
8728          CopyConstructor->isCopyConstructor() &&
8729          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8730         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8731
8732  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8733  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8734
8735  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8736  DiagnosticErrorTrap Trap(Diags);
8737
8738  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8739      Trap.hasErrorOccurred()) {
8740    Diag(CurrentLocation, diag::note_member_synthesized_at)
8741      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8742    CopyConstructor->setInvalidDecl();
8743  }  else {
8744    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8745                                               CopyConstructor->getLocation(),
8746                                               MultiStmtArg(*this, 0, 0),
8747                                               /*isStmtExpr=*/false)
8748                                                              .takeAs<Stmt>());
8749    CopyConstructor->setImplicitlyDefined(true);
8750  }
8751
8752  CopyConstructor->setUsed();
8753  if (ASTMutationListener *L = getASTMutationListener()) {
8754    L->CompletedImplicitDefinition(CopyConstructor);
8755  }
8756}
8757
8758Sema::ImplicitExceptionSpecification
8759Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8760  // C++ [except.spec]p14:
8761  //   An implicitly declared special member function (Clause 12) shall have an
8762  //   exception-specification. [...]
8763  ImplicitExceptionSpecification ExceptSpec(Context);
8764  if (ClassDecl->isInvalidDecl())
8765    return ExceptSpec;
8766
8767  // Direct base-class constructors.
8768  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8769                                       BEnd = ClassDecl->bases_end();
8770       B != BEnd; ++B) {
8771    if (B->isVirtual()) // Handled below.
8772      continue;
8773
8774    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8775      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8776      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8777      // If this is a deleted function, add it anyway. This might be conformant
8778      // with the standard. This might not. I'm not sure. It might not matter.
8779      if (Constructor)
8780        ExceptSpec.CalledDecl(Constructor);
8781    }
8782  }
8783
8784  // Virtual base-class constructors.
8785  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8786                                       BEnd = ClassDecl->vbases_end();
8787       B != BEnd; ++B) {
8788    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8789      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8790      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8791      // If this is a deleted function, add it anyway. This might be conformant
8792      // with the standard. This might not. I'm not sure. It might not matter.
8793      if (Constructor)
8794        ExceptSpec.CalledDecl(Constructor);
8795    }
8796  }
8797
8798  // Field constructors.
8799  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8800                               FEnd = ClassDecl->field_end();
8801       F != FEnd; ++F) {
8802    if (F->hasInClassInitializer()) {
8803      if (Expr *E = F->getInClassInitializer())
8804        ExceptSpec.CalledExpr(E);
8805      else if (!F->isInvalidDecl())
8806        ExceptSpec.SetDelayed();
8807    } else if (const RecordType *RecordTy
8808              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8809      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8810      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8811      // If this is a deleted function, add it anyway. This might be conformant
8812      // with the standard. This might not. I'm not sure. It might not matter.
8813      // In particular, the problem is that this function never gets called. It
8814      // might just be ill-formed because this function attempts to refer to
8815      // a deleted function here.
8816      if (Constructor)
8817        ExceptSpec.CalledDecl(Constructor);
8818    }
8819  }
8820
8821  return ExceptSpec;
8822}
8823
8824CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8825                                                    CXXRecordDecl *ClassDecl) {
8826  ImplicitExceptionSpecification Spec(
8827      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8828
8829  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8830  QualType ArgType = Context.getRValueReferenceType(ClassType);
8831
8832  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8833
8834  DeclarationName Name
8835    = Context.DeclarationNames.getCXXConstructorName(
8836                                           Context.getCanonicalType(ClassType));
8837  SourceLocation ClassLoc = ClassDecl->getLocation();
8838  DeclarationNameInfo NameInfo(Name, ClassLoc);
8839
8840  // C++0x [class.copy]p11:
8841  //   An implicitly-declared copy/move constructor is an inline public
8842  //   member of its class.
8843  CXXConstructorDecl *MoveConstructor
8844    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8845                                 Context.getFunctionType(Context.VoidTy,
8846                                                         &ArgType, 1, EPI),
8847                                 /*TInfo=*/0,
8848                                 /*isExplicit=*/false,
8849                                 /*isInline=*/true,
8850                                 /*isImplicitlyDeclared=*/true,
8851                                 // FIXME: apply the rules for definitions here
8852                                 /*isConstexpr=*/false);
8853  MoveConstructor->setAccess(AS_public);
8854  MoveConstructor->setDefaulted();
8855  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8856
8857  // Add the parameter to the constructor.
8858  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8859                                               ClassLoc, ClassLoc,
8860                                               /*IdentifierInfo=*/0,
8861                                               ArgType, /*TInfo=*/0,
8862                                               SC_None,
8863                                               SC_None, 0);
8864  MoveConstructor->setParams(FromParam);
8865
8866  // C++0x [class.copy]p9:
8867  //   If the definition of a class X does not explicitly declare a move
8868  //   constructor, one will be implicitly declared as defaulted if and only if:
8869  //   [...]
8870  //   - the move constructor would not be implicitly defined as deleted.
8871  if (ShouldDeleteMoveConstructor(MoveConstructor)) {
8872    // Cache this result so that we don't try to generate this over and over
8873    // on every lookup, leaking memory and wasting time.
8874    ClassDecl->setFailedImplicitMoveConstructor();
8875    return 0;
8876  }
8877
8878  // Note that we have declared this constructor.
8879  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8880
8881  if (Scope *S = getScopeForContext(ClassDecl))
8882    PushOnScopeChains(MoveConstructor, S, false);
8883  ClassDecl->addDecl(MoveConstructor);
8884
8885  return MoveConstructor;
8886}
8887
8888void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8889                                   CXXConstructorDecl *MoveConstructor) {
8890  assert((MoveConstructor->isDefaulted() &&
8891          MoveConstructor->isMoveConstructor() &&
8892          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8893         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8894
8895  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8896  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8897
8898  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8899  DiagnosticErrorTrap Trap(Diags);
8900
8901  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8902      Trap.hasErrorOccurred()) {
8903    Diag(CurrentLocation, diag::note_member_synthesized_at)
8904      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8905    MoveConstructor->setInvalidDecl();
8906  }  else {
8907    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8908                                               MoveConstructor->getLocation(),
8909                                               MultiStmtArg(*this, 0, 0),
8910                                               /*isStmtExpr=*/false)
8911                                                              .takeAs<Stmt>());
8912    MoveConstructor->setImplicitlyDefined(true);
8913  }
8914
8915  MoveConstructor->setUsed();
8916
8917  if (ASTMutationListener *L = getASTMutationListener()) {
8918    L->CompletedImplicitDefinition(MoveConstructor);
8919  }
8920}
8921
8922ExprResult
8923Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8924                            CXXConstructorDecl *Constructor,
8925                            MultiExprArg ExprArgs,
8926                            bool HadMultipleCandidates,
8927                            bool RequiresZeroInit,
8928                            unsigned ConstructKind,
8929                            SourceRange ParenRange) {
8930  bool Elidable = false;
8931
8932  // C++0x [class.copy]p34:
8933  //   When certain criteria are met, an implementation is allowed to
8934  //   omit the copy/move construction of a class object, even if the
8935  //   copy/move constructor and/or destructor for the object have
8936  //   side effects. [...]
8937  //     - when a temporary class object that has not been bound to a
8938  //       reference (12.2) would be copied/moved to a class object
8939  //       with the same cv-unqualified type, the copy/move operation
8940  //       can be omitted by constructing the temporary object
8941  //       directly into the target of the omitted copy/move
8942  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8943      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8944    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8945    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8946  }
8947
8948  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8949                               Elidable, move(ExprArgs), HadMultipleCandidates,
8950                               RequiresZeroInit, ConstructKind, ParenRange);
8951}
8952
8953/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8954/// including handling of its default argument expressions.
8955ExprResult
8956Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8957                            CXXConstructorDecl *Constructor, bool Elidable,
8958                            MultiExprArg ExprArgs,
8959                            bool HadMultipleCandidates,
8960                            bool RequiresZeroInit,
8961                            unsigned ConstructKind,
8962                            SourceRange ParenRange) {
8963  unsigned NumExprs = ExprArgs.size();
8964  Expr **Exprs = (Expr **)ExprArgs.release();
8965
8966  for (specific_attr_iterator<NonNullAttr>
8967           i = Constructor->specific_attr_begin<NonNullAttr>(),
8968           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8969    const NonNullAttr *NonNull = *i;
8970    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8971  }
8972
8973  MarkDeclarationReferenced(ConstructLoc, Constructor);
8974  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8975                                        Constructor, Elidable, Exprs, NumExprs,
8976                                        HadMultipleCandidates, RequiresZeroInit,
8977              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8978                                        ParenRange));
8979}
8980
8981bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8982                                        CXXConstructorDecl *Constructor,
8983                                        MultiExprArg Exprs,
8984                                        bool HadMultipleCandidates) {
8985  // FIXME: Provide the correct paren SourceRange when available.
8986  ExprResult TempResult =
8987    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8988                          move(Exprs), HadMultipleCandidates, false,
8989                          CXXConstructExpr::CK_Complete, SourceRange());
8990  if (TempResult.isInvalid())
8991    return true;
8992
8993  Expr *Temp = TempResult.takeAs<Expr>();
8994  CheckImplicitConversions(Temp, VD->getLocation());
8995  MarkDeclarationReferenced(VD->getLocation(), Constructor);
8996  Temp = MaybeCreateExprWithCleanups(Temp);
8997  VD->setInit(Temp);
8998
8999  return false;
9000}
9001
9002void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9003  if (VD->isInvalidDecl()) return;
9004
9005  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9006  if (ClassDecl->isInvalidDecl()) return;
9007  if (ClassDecl->hasTrivialDestructor()) return;
9008  if (ClassDecl->isDependentContext()) return;
9009
9010  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9011  MarkDeclarationReferenced(VD->getLocation(), Destructor);
9012  CheckDestructorAccess(VD->getLocation(), Destructor,
9013                        PDiag(diag::err_access_dtor_var)
9014                        << VD->getDeclName()
9015                        << VD->getType());
9016
9017  if (!VD->hasGlobalStorage()) return;
9018
9019  // Emit warning for non-trivial dtor in global scope (a real global,
9020  // class-static, function-static).
9021  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9022
9023  // TODO: this should be re-enabled for static locals by !CXAAtExit
9024  if (!VD->isStaticLocal())
9025    Diag(VD->getLocation(), diag::warn_global_destructor);
9026}
9027
9028/// AddCXXDirectInitializerToDecl - This action is called immediately after
9029/// ActOnDeclarator, when a C++ direct initializer is present.
9030/// e.g: "int x(1);"
9031void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9032                                         SourceLocation LParenLoc,
9033                                         MultiExprArg Exprs,
9034                                         SourceLocation RParenLoc,
9035                                         bool TypeMayContainAuto) {
9036  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
9037
9038  // If there is no declaration, there was an error parsing it.  Just ignore
9039  // the initializer.
9040  if (RealDecl == 0)
9041    return;
9042
9043  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9044  if (!VDecl) {
9045    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9046    RealDecl->setInvalidDecl();
9047    return;
9048  }
9049
9050  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9051  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9052    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
9053    if (Exprs.size() > 1) {
9054      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9055           diag::err_auto_var_init_multiple_expressions)
9056        << VDecl->getDeclName() << VDecl->getType()
9057        << VDecl->getSourceRange();
9058      RealDecl->setInvalidDecl();
9059      return;
9060    }
9061
9062    Expr *Init = Exprs.get()[0];
9063    TypeSourceInfo *DeducedType = 0;
9064    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
9065      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
9066        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
9067        << Init->getSourceRange();
9068    if (!DeducedType) {
9069      RealDecl->setInvalidDecl();
9070      return;
9071    }
9072    VDecl->setTypeSourceInfo(DeducedType);
9073    VDecl->setType(DeducedType->getType());
9074
9075    // In ARC, infer lifetime.
9076    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9077      VDecl->setInvalidDecl();
9078
9079    // If this is a redeclaration, check that the type we just deduced matches
9080    // the previously declared type.
9081    if (VarDecl *Old = VDecl->getPreviousDeclaration())
9082      MergeVarDeclTypes(VDecl, Old);
9083  }
9084
9085  // We will represent direct-initialization similarly to copy-initialization:
9086  //    int x(1);  -as-> int x = 1;
9087  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9088  //
9089  // Clients that want to distinguish between the two forms, can check for
9090  // direct initializer using VarDecl::hasCXXDirectInitializer().
9091  // A major benefit is that clients that don't particularly care about which
9092  // exactly form was it (like the CodeGen) can handle both cases without
9093  // special case code.
9094
9095  // C++ 8.5p11:
9096  // The form of initialization (using parentheses or '=') is generally
9097  // insignificant, but does matter when the entity being initialized has a
9098  // class type.
9099
9100  if (!VDecl->getType()->isDependentType() &&
9101      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9102                          diag::err_typecheck_decl_incomplete_type)) {
9103    VDecl->setInvalidDecl();
9104    return;
9105  }
9106
9107  // The variable can not have an abstract class type.
9108  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9109                             diag::err_abstract_type_in_decl,
9110                             AbstractVariableType))
9111    VDecl->setInvalidDecl();
9112
9113  const VarDecl *Def;
9114  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9115    Diag(VDecl->getLocation(), diag::err_redefinition)
9116    << VDecl->getDeclName();
9117    Diag(Def->getLocation(), diag::note_previous_definition);
9118    VDecl->setInvalidDecl();
9119    return;
9120  }
9121
9122  // C++ [class.static.data]p4
9123  //   If a static data member is of const integral or const
9124  //   enumeration type, its declaration in the class definition can
9125  //   specify a constant-initializer which shall be an integral
9126  //   constant expression (5.19). In that case, the member can appear
9127  //   in integral constant expressions. The member shall still be
9128  //   defined in a namespace scope if it is used in the program and the
9129  //   namespace scope definition shall not contain an initializer.
9130  //
9131  // We already performed a redefinition check above, but for static
9132  // data members we also need to check whether there was an in-class
9133  // declaration with an initializer.
9134  const VarDecl* PrevInit = 0;
9135  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9136    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9137    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9138    return;
9139  }
9140
9141  bool IsDependent = false;
9142  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9143    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9144      VDecl->setInvalidDecl();
9145      return;
9146    }
9147
9148    if (Exprs.get()[I]->isTypeDependent())
9149      IsDependent = true;
9150  }
9151
9152  // If either the declaration has a dependent type or if any of the
9153  // expressions is type-dependent, we represent the initialization
9154  // via a ParenListExpr for later use during template instantiation.
9155  if (VDecl->getType()->isDependentType() || IsDependent) {
9156    // Let clients know that initialization was done with a direct initializer.
9157    VDecl->setCXXDirectInitializer(true);
9158
9159    // Store the initialization expressions as a ParenListExpr.
9160    unsigned NumExprs = Exprs.size();
9161    VDecl->setInit(new (Context) ParenListExpr(
9162        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9163        VDecl->getType().getNonReferenceType()));
9164    return;
9165  }
9166
9167  // Capture the variable that is being initialized and the style of
9168  // initialization.
9169  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9170
9171  // FIXME: Poor source location information.
9172  InitializationKind Kind
9173    = InitializationKind::CreateDirect(VDecl->getLocation(),
9174                                       LParenLoc, RParenLoc);
9175
9176  InitializationSequence InitSeq(*this, Entity, Kind,
9177                                 Exprs.get(), Exprs.size());
9178  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
9179  if (Result.isInvalid()) {
9180    VDecl->setInvalidDecl();
9181    return;
9182  }
9183
9184  Expr *Init = Result.get();
9185  CheckImplicitConversions(Init, LParenLoc);
9186
9187  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
9188      !Init->isValueDependent() &&
9189      !Init->isConstantInitializer(Context,
9190                                   VDecl->getType()->isReferenceType())) {
9191    // FIXME: Improve this diagnostic to explain why the initializer is not
9192    // a constant expression.
9193    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
9194      << VDecl << Init->getSourceRange();
9195  }
9196
9197  Init = MaybeCreateExprWithCleanups(Init);
9198  VDecl->setInit(Init);
9199  VDecl->setCXXDirectInitializer(true);
9200
9201  CheckCompleteVariableDeclaration(VDecl);
9202}
9203
9204/// \brief Given a constructor and the set of arguments provided for the
9205/// constructor, convert the arguments and add any required default arguments
9206/// to form a proper call to this constructor.
9207///
9208/// \returns true if an error occurred, false otherwise.
9209bool
9210Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9211                              MultiExprArg ArgsPtr,
9212                              SourceLocation Loc,
9213                              ASTOwningVector<Expr*> &ConvertedArgs) {
9214  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9215  unsigned NumArgs = ArgsPtr.size();
9216  Expr **Args = (Expr **)ArgsPtr.get();
9217
9218  const FunctionProtoType *Proto
9219    = Constructor->getType()->getAs<FunctionProtoType>();
9220  assert(Proto && "Constructor without a prototype?");
9221  unsigned NumArgsInProto = Proto->getNumArgs();
9222
9223  // If too few arguments are available, we'll fill in the rest with defaults.
9224  if (NumArgs < NumArgsInProto)
9225    ConvertedArgs.reserve(NumArgsInProto);
9226  else
9227    ConvertedArgs.reserve(NumArgs);
9228
9229  VariadicCallType CallType =
9230    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9231  SmallVector<Expr *, 8> AllArgs;
9232  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9233                                        Proto, 0, Args, NumArgs, AllArgs,
9234                                        CallType);
9235  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9236    ConvertedArgs.push_back(AllArgs[i]);
9237  return Invalid;
9238}
9239
9240static inline bool
9241CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9242                                       const FunctionDecl *FnDecl) {
9243  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9244  if (isa<NamespaceDecl>(DC)) {
9245    return SemaRef.Diag(FnDecl->getLocation(),
9246                        diag::err_operator_new_delete_declared_in_namespace)
9247      << FnDecl->getDeclName();
9248  }
9249
9250  if (isa<TranslationUnitDecl>(DC) &&
9251      FnDecl->getStorageClass() == SC_Static) {
9252    return SemaRef.Diag(FnDecl->getLocation(),
9253                        diag::err_operator_new_delete_declared_static)
9254      << FnDecl->getDeclName();
9255  }
9256
9257  return false;
9258}
9259
9260static inline bool
9261CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9262                            CanQualType ExpectedResultType,
9263                            CanQualType ExpectedFirstParamType,
9264                            unsigned DependentParamTypeDiag,
9265                            unsigned InvalidParamTypeDiag) {
9266  QualType ResultType =
9267    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9268
9269  // Check that the result type is not dependent.
9270  if (ResultType->isDependentType())
9271    return SemaRef.Diag(FnDecl->getLocation(),
9272                        diag::err_operator_new_delete_dependent_result_type)
9273    << FnDecl->getDeclName() << ExpectedResultType;
9274
9275  // Check that the result type is what we expect.
9276  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9277    return SemaRef.Diag(FnDecl->getLocation(),
9278                        diag::err_operator_new_delete_invalid_result_type)
9279    << FnDecl->getDeclName() << ExpectedResultType;
9280
9281  // A function template must have at least 2 parameters.
9282  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9283    return SemaRef.Diag(FnDecl->getLocation(),
9284                      diag::err_operator_new_delete_template_too_few_parameters)
9285        << FnDecl->getDeclName();
9286
9287  // The function decl must have at least 1 parameter.
9288  if (FnDecl->getNumParams() == 0)
9289    return SemaRef.Diag(FnDecl->getLocation(),
9290                        diag::err_operator_new_delete_too_few_parameters)
9291      << FnDecl->getDeclName();
9292
9293  // Check the the first parameter type is not dependent.
9294  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9295  if (FirstParamType->isDependentType())
9296    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9297      << FnDecl->getDeclName() << ExpectedFirstParamType;
9298
9299  // Check that the first parameter type is what we expect.
9300  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9301      ExpectedFirstParamType)
9302    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9303    << FnDecl->getDeclName() << ExpectedFirstParamType;
9304
9305  return false;
9306}
9307
9308static bool
9309CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9310  // C++ [basic.stc.dynamic.allocation]p1:
9311  //   A program is ill-formed if an allocation function is declared in a
9312  //   namespace scope other than global scope or declared static in global
9313  //   scope.
9314  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9315    return true;
9316
9317  CanQualType SizeTy =
9318    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9319
9320  // C++ [basic.stc.dynamic.allocation]p1:
9321  //  The return type shall be void*. The first parameter shall have type
9322  //  std::size_t.
9323  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9324                                  SizeTy,
9325                                  diag::err_operator_new_dependent_param_type,
9326                                  diag::err_operator_new_param_type))
9327    return true;
9328
9329  // C++ [basic.stc.dynamic.allocation]p1:
9330  //  The first parameter shall not have an associated default argument.
9331  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9332    return SemaRef.Diag(FnDecl->getLocation(),
9333                        diag::err_operator_new_default_arg)
9334      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9335
9336  return false;
9337}
9338
9339static bool
9340CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9341  // C++ [basic.stc.dynamic.deallocation]p1:
9342  //   A program is ill-formed if deallocation functions are declared in a
9343  //   namespace scope other than global scope or declared static in global
9344  //   scope.
9345  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9346    return true;
9347
9348  // C++ [basic.stc.dynamic.deallocation]p2:
9349  //   Each deallocation function shall return void and its first parameter
9350  //   shall be void*.
9351  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9352                                  SemaRef.Context.VoidPtrTy,
9353                                 diag::err_operator_delete_dependent_param_type,
9354                                 diag::err_operator_delete_param_type))
9355    return true;
9356
9357  return false;
9358}
9359
9360/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9361/// of this overloaded operator is well-formed. If so, returns false;
9362/// otherwise, emits appropriate diagnostics and returns true.
9363bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9364  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9365         "Expected an overloaded operator declaration");
9366
9367  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9368
9369  // C++ [over.oper]p5:
9370  //   The allocation and deallocation functions, operator new,
9371  //   operator new[], operator delete and operator delete[], are
9372  //   described completely in 3.7.3. The attributes and restrictions
9373  //   found in the rest of this subclause do not apply to them unless
9374  //   explicitly stated in 3.7.3.
9375  if (Op == OO_Delete || Op == OO_Array_Delete)
9376    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9377
9378  if (Op == OO_New || Op == OO_Array_New)
9379    return CheckOperatorNewDeclaration(*this, FnDecl);
9380
9381  // C++ [over.oper]p6:
9382  //   An operator function shall either be a non-static member
9383  //   function or be a non-member function and have at least one
9384  //   parameter whose type is a class, a reference to a class, an
9385  //   enumeration, or a reference to an enumeration.
9386  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9387    if (MethodDecl->isStatic())
9388      return Diag(FnDecl->getLocation(),
9389                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9390  } else {
9391    bool ClassOrEnumParam = false;
9392    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9393                                   ParamEnd = FnDecl->param_end();
9394         Param != ParamEnd; ++Param) {
9395      QualType ParamType = (*Param)->getType().getNonReferenceType();
9396      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9397          ParamType->isEnumeralType()) {
9398        ClassOrEnumParam = true;
9399        break;
9400      }
9401    }
9402
9403    if (!ClassOrEnumParam)
9404      return Diag(FnDecl->getLocation(),
9405                  diag::err_operator_overload_needs_class_or_enum)
9406        << FnDecl->getDeclName();
9407  }
9408
9409  // C++ [over.oper]p8:
9410  //   An operator function cannot have default arguments (8.3.6),
9411  //   except where explicitly stated below.
9412  //
9413  // Only the function-call operator allows default arguments
9414  // (C++ [over.call]p1).
9415  if (Op != OO_Call) {
9416    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9417         Param != FnDecl->param_end(); ++Param) {
9418      if ((*Param)->hasDefaultArg())
9419        return Diag((*Param)->getLocation(),
9420                    diag::err_operator_overload_default_arg)
9421          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9422    }
9423  }
9424
9425  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9426    { false, false, false }
9427#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9428    , { Unary, Binary, MemberOnly }
9429#include "clang/Basic/OperatorKinds.def"
9430  };
9431
9432  bool CanBeUnaryOperator = OperatorUses[Op][0];
9433  bool CanBeBinaryOperator = OperatorUses[Op][1];
9434  bool MustBeMemberOperator = OperatorUses[Op][2];
9435
9436  // C++ [over.oper]p8:
9437  //   [...] Operator functions cannot have more or fewer parameters
9438  //   than the number required for the corresponding operator, as
9439  //   described in the rest of this subclause.
9440  unsigned NumParams = FnDecl->getNumParams()
9441                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9442  if (Op != OO_Call &&
9443      ((NumParams == 1 && !CanBeUnaryOperator) ||
9444       (NumParams == 2 && !CanBeBinaryOperator) ||
9445       (NumParams < 1) || (NumParams > 2))) {
9446    // We have the wrong number of parameters.
9447    unsigned ErrorKind;
9448    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9449      ErrorKind = 2;  // 2 -> unary or binary.
9450    } else if (CanBeUnaryOperator) {
9451      ErrorKind = 0;  // 0 -> unary
9452    } else {
9453      assert(CanBeBinaryOperator &&
9454             "All non-call overloaded operators are unary or binary!");
9455      ErrorKind = 1;  // 1 -> binary
9456    }
9457
9458    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9459      << FnDecl->getDeclName() << NumParams << ErrorKind;
9460  }
9461
9462  // Overloaded operators other than operator() cannot be variadic.
9463  if (Op != OO_Call &&
9464      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9465    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9466      << FnDecl->getDeclName();
9467  }
9468
9469  // Some operators must be non-static member functions.
9470  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9471    return Diag(FnDecl->getLocation(),
9472                diag::err_operator_overload_must_be_member)
9473      << FnDecl->getDeclName();
9474  }
9475
9476  // C++ [over.inc]p1:
9477  //   The user-defined function called operator++ implements the
9478  //   prefix and postfix ++ operator. If this function is a member
9479  //   function with no parameters, or a non-member function with one
9480  //   parameter of class or enumeration type, it defines the prefix
9481  //   increment operator ++ for objects of that type. If the function
9482  //   is a member function with one parameter (which shall be of type
9483  //   int) or a non-member function with two parameters (the second
9484  //   of which shall be of type int), it defines the postfix
9485  //   increment operator ++ for objects of that type.
9486  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9487    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9488    bool ParamIsInt = false;
9489    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9490      ParamIsInt = BT->getKind() == BuiltinType::Int;
9491
9492    if (!ParamIsInt)
9493      return Diag(LastParam->getLocation(),
9494                  diag::err_operator_overload_post_incdec_must_be_int)
9495        << LastParam->getType() << (Op == OO_MinusMinus);
9496  }
9497
9498  return false;
9499}
9500
9501/// CheckLiteralOperatorDeclaration - Check whether the declaration
9502/// of this literal operator function is well-formed. If so, returns
9503/// false; otherwise, emits appropriate diagnostics and returns true.
9504bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9505  DeclContext *DC = FnDecl->getDeclContext();
9506  Decl::Kind Kind = DC->getDeclKind();
9507  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9508      Kind != Decl::LinkageSpec) {
9509    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9510      << FnDecl->getDeclName();
9511    return true;
9512  }
9513
9514  bool Valid = false;
9515
9516  // template <char...> type operator "" name() is the only valid template
9517  // signature, and the only valid signature with no parameters.
9518  if (FnDecl->param_size() == 0) {
9519    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9520      // Must have only one template parameter
9521      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9522      if (Params->size() == 1) {
9523        NonTypeTemplateParmDecl *PmDecl =
9524          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9525
9526        // The template parameter must be a char parameter pack.
9527        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9528            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9529          Valid = true;
9530      }
9531    }
9532  } else {
9533    // Check the first parameter
9534    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9535
9536    QualType T = (*Param)->getType();
9537
9538    // unsigned long long int, long double, and any character type are allowed
9539    // as the only parameters.
9540    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9541        Context.hasSameType(T, Context.LongDoubleTy) ||
9542        Context.hasSameType(T, Context.CharTy) ||
9543        Context.hasSameType(T, Context.WCharTy) ||
9544        Context.hasSameType(T, Context.Char16Ty) ||
9545        Context.hasSameType(T, Context.Char32Ty)) {
9546      if (++Param == FnDecl->param_end())
9547        Valid = true;
9548      goto FinishedParams;
9549    }
9550
9551    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9552    const PointerType *PT = T->getAs<PointerType>();
9553    if (!PT)
9554      goto FinishedParams;
9555    T = PT->getPointeeType();
9556    if (!T.isConstQualified())
9557      goto FinishedParams;
9558    T = T.getUnqualifiedType();
9559
9560    // Move on to the second parameter;
9561    ++Param;
9562
9563    // If there is no second parameter, the first must be a const char *
9564    if (Param == FnDecl->param_end()) {
9565      if (Context.hasSameType(T, Context.CharTy))
9566        Valid = true;
9567      goto FinishedParams;
9568    }
9569
9570    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9571    // are allowed as the first parameter to a two-parameter function
9572    if (!(Context.hasSameType(T, Context.CharTy) ||
9573          Context.hasSameType(T, Context.WCharTy) ||
9574          Context.hasSameType(T, Context.Char16Ty) ||
9575          Context.hasSameType(T, Context.Char32Ty)))
9576      goto FinishedParams;
9577
9578    // The second and final parameter must be an std::size_t
9579    T = (*Param)->getType().getUnqualifiedType();
9580    if (Context.hasSameType(T, Context.getSizeType()) &&
9581        ++Param == FnDecl->param_end())
9582      Valid = true;
9583  }
9584
9585  // FIXME: This diagnostic is absolutely terrible.
9586FinishedParams:
9587  if (!Valid) {
9588    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9589      << FnDecl->getDeclName();
9590    return true;
9591  }
9592
9593  StringRef LiteralName
9594    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9595  if (LiteralName[0] != '_') {
9596    // C++0x [usrlit.suffix]p1:
9597    //   Literal suffix identifiers that do not start with an underscore are
9598    //   reserved for future standardization.
9599    bool IsHexFloat = true;
9600    if (LiteralName.size() > 1 &&
9601        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9602      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9603        if (!isdigit(LiteralName[I])) {
9604          IsHexFloat = false;
9605          break;
9606        }
9607      }
9608    }
9609
9610    if (IsHexFloat)
9611      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9612        << LiteralName;
9613    else
9614      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9615  }
9616
9617  return false;
9618}
9619
9620/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9621/// linkage specification, including the language and (if present)
9622/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9623/// the location of the language string literal, which is provided
9624/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9625/// the '{' brace. Otherwise, this linkage specification does not
9626/// have any braces.
9627Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9628                                           SourceLocation LangLoc,
9629                                           StringRef Lang,
9630                                           SourceLocation LBraceLoc) {
9631  LinkageSpecDecl::LanguageIDs Language;
9632  if (Lang == "\"C\"")
9633    Language = LinkageSpecDecl::lang_c;
9634  else if (Lang == "\"C++\"")
9635    Language = LinkageSpecDecl::lang_cxx;
9636  else {
9637    Diag(LangLoc, diag::err_bad_language);
9638    return 0;
9639  }
9640
9641  // FIXME: Add all the various semantics of linkage specifications
9642
9643  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9644                                               ExternLoc, LangLoc, Language);
9645  CurContext->addDecl(D);
9646  PushDeclContext(S, D);
9647  return D;
9648}
9649
9650/// ActOnFinishLinkageSpecification - Complete the definition of
9651/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9652/// valid, it's the position of the closing '}' brace in a linkage
9653/// specification that uses braces.
9654Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9655                                            Decl *LinkageSpec,
9656                                            SourceLocation RBraceLoc) {
9657  if (LinkageSpec) {
9658    if (RBraceLoc.isValid()) {
9659      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9660      LSDecl->setRBraceLoc(RBraceLoc);
9661    }
9662    PopDeclContext();
9663  }
9664  return LinkageSpec;
9665}
9666
9667/// \brief Perform semantic analysis for the variable declaration that
9668/// occurs within a C++ catch clause, returning the newly-created
9669/// variable.
9670VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9671                                         TypeSourceInfo *TInfo,
9672                                         SourceLocation StartLoc,
9673                                         SourceLocation Loc,
9674                                         IdentifierInfo *Name) {
9675  bool Invalid = false;
9676  QualType ExDeclType = TInfo->getType();
9677
9678  // Arrays and functions decay.
9679  if (ExDeclType->isArrayType())
9680    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9681  else if (ExDeclType->isFunctionType())
9682    ExDeclType = Context.getPointerType(ExDeclType);
9683
9684  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9685  // The exception-declaration shall not denote a pointer or reference to an
9686  // incomplete type, other than [cv] void*.
9687  // N2844 forbids rvalue references.
9688  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9689    Diag(Loc, diag::err_catch_rvalue_ref);
9690    Invalid = true;
9691  }
9692
9693  // GCC allows catching pointers and references to incomplete types
9694  // as an extension; so do we, but we warn by default.
9695
9696  QualType BaseType = ExDeclType;
9697  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9698  unsigned DK = diag::err_catch_incomplete;
9699  bool IncompleteCatchIsInvalid = true;
9700  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9701    BaseType = Ptr->getPointeeType();
9702    Mode = 1;
9703    DK = diag::ext_catch_incomplete_ptr;
9704    IncompleteCatchIsInvalid = false;
9705  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9706    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9707    BaseType = Ref->getPointeeType();
9708    Mode = 2;
9709    DK = diag::ext_catch_incomplete_ref;
9710    IncompleteCatchIsInvalid = false;
9711  }
9712  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9713      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
9714      IncompleteCatchIsInvalid)
9715    Invalid = true;
9716
9717  if (!Invalid && !ExDeclType->isDependentType() &&
9718      RequireNonAbstractType(Loc, ExDeclType,
9719                             diag::err_abstract_type_in_decl,
9720                             AbstractVariableType))
9721    Invalid = true;
9722
9723  // Only the non-fragile NeXT runtime currently supports C++ catches
9724  // of ObjC types, and no runtime supports catching ObjC types by value.
9725  if (!Invalid && getLangOptions().ObjC1) {
9726    QualType T = ExDeclType;
9727    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9728      T = RT->getPointeeType();
9729
9730    if (T->isObjCObjectType()) {
9731      Diag(Loc, diag::err_objc_object_catch);
9732      Invalid = true;
9733    } else if (T->isObjCObjectPointerType()) {
9734      if (!getLangOptions().ObjCNonFragileABI)
9735        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9736    }
9737  }
9738
9739  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9740                                    ExDeclType, TInfo, SC_None, SC_None);
9741  ExDecl->setExceptionVariable(true);
9742
9743  if (!Invalid && !ExDeclType->isDependentType()) {
9744    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9745      // C++ [except.handle]p16:
9746      //   The object declared in an exception-declaration or, if the
9747      //   exception-declaration does not specify a name, a temporary (12.2) is
9748      //   copy-initialized (8.5) from the exception object. [...]
9749      //   The object is destroyed when the handler exits, after the destruction
9750      //   of any automatic objects initialized within the handler.
9751      //
9752      // We just pretend to initialize the object with itself, then make sure
9753      // it can be destroyed later.
9754      QualType initType = ExDeclType;
9755
9756      InitializedEntity entity =
9757        InitializedEntity::InitializeVariable(ExDecl);
9758      InitializationKind initKind =
9759        InitializationKind::CreateCopy(Loc, SourceLocation());
9760
9761      Expr *opaqueValue =
9762        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9763      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9764      ExprResult result = sequence.Perform(*this, entity, initKind,
9765                                           MultiExprArg(&opaqueValue, 1));
9766      if (result.isInvalid())
9767        Invalid = true;
9768      else {
9769        // If the constructor used was non-trivial, set this as the
9770        // "initializer".
9771        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9772        if (!construct->getConstructor()->isTrivial()) {
9773          Expr *init = MaybeCreateExprWithCleanups(construct);
9774          ExDecl->setInit(init);
9775        }
9776
9777        // And make sure it's destructable.
9778        FinalizeVarWithDestructor(ExDecl, recordType);
9779      }
9780    }
9781  }
9782
9783  if (Invalid)
9784    ExDecl->setInvalidDecl();
9785
9786  return ExDecl;
9787}
9788
9789/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9790/// handler.
9791Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9792  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9793  bool Invalid = D.isInvalidType();
9794
9795  // Check for unexpanded parameter packs.
9796  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9797                                               UPPC_ExceptionType)) {
9798    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9799                                             D.getIdentifierLoc());
9800    Invalid = true;
9801  }
9802
9803  IdentifierInfo *II = D.getIdentifier();
9804  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9805                                             LookupOrdinaryName,
9806                                             ForRedeclaration)) {
9807    // The scope should be freshly made just for us. There is just no way
9808    // it contains any previous declaration.
9809    assert(!S->isDeclScope(PrevDecl));
9810    if (PrevDecl->isTemplateParameter()) {
9811      // Maybe we will complain about the shadowed template parameter.
9812      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9813    }
9814  }
9815
9816  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9817    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9818      << D.getCXXScopeSpec().getRange();
9819    Invalid = true;
9820  }
9821
9822  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9823                                              D.getSourceRange().getBegin(),
9824                                              D.getIdentifierLoc(),
9825                                              D.getIdentifier());
9826  if (Invalid)
9827    ExDecl->setInvalidDecl();
9828
9829  // Add the exception declaration into this scope.
9830  if (II)
9831    PushOnScopeChains(ExDecl, S);
9832  else
9833    CurContext->addDecl(ExDecl);
9834
9835  ProcessDeclAttributes(S, ExDecl, D);
9836  return ExDecl;
9837}
9838
9839Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9840                                         Expr *AssertExpr,
9841                                         Expr *AssertMessageExpr_,
9842                                         SourceLocation RParenLoc) {
9843  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9844
9845  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9846    llvm::APSInt Value(32);
9847    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
9848      Diag(StaticAssertLoc,
9849           diag::err_static_assert_expression_is_not_constant) <<
9850        AssertExpr->getSourceRange();
9851      return 0;
9852    }
9853
9854    if (Value == 0) {
9855      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9856        << AssertMessage->getString() << AssertExpr->getSourceRange();
9857    }
9858  }
9859
9860  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9861    return 0;
9862
9863  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9864                                        AssertExpr, AssertMessage, RParenLoc);
9865
9866  CurContext->addDecl(Decl);
9867  return Decl;
9868}
9869
9870/// \brief Perform semantic analysis of the given friend type declaration.
9871///
9872/// \returns A friend declaration that.
9873FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
9874                                      TypeSourceInfo *TSInfo) {
9875  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9876
9877  QualType T = TSInfo->getType();
9878  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9879
9880  if (!getLangOptions().CPlusPlus0x) {
9881    // C++03 [class.friend]p2:
9882    //   An elaborated-type-specifier shall be used in a friend declaration
9883    //   for a class.*
9884    //
9885    //   * The class-key of the elaborated-type-specifier is required.
9886    if (!ActiveTemplateInstantiations.empty()) {
9887      // Do not complain about the form of friend template types during
9888      // template instantiation; we will already have complained when the
9889      // template was declared.
9890    } else if (!T->isElaboratedTypeSpecifier()) {
9891      // If we evaluated the type to a record type, suggest putting
9892      // a tag in front.
9893      if (const RecordType *RT = T->getAs<RecordType>()) {
9894        RecordDecl *RD = RT->getDecl();
9895
9896        std::string InsertionText = std::string(" ") + RD->getKindName();
9897
9898        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
9899          << (unsigned) RD->getTagKind()
9900          << T
9901          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9902                                        InsertionText);
9903      } else {
9904        Diag(FriendLoc, diag::ext_nonclass_type_friend)
9905          << T
9906          << SourceRange(FriendLoc, TypeRange.getEnd());
9907      }
9908    } else if (T->getAs<EnumType>()) {
9909      Diag(FriendLoc, diag::ext_enum_friend)
9910        << T
9911        << SourceRange(FriendLoc, TypeRange.getEnd());
9912    }
9913  }
9914
9915  // C++0x [class.friend]p3:
9916  //   If the type specifier in a friend declaration designates a (possibly
9917  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9918  //   the friend declaration is ignored.
9919
9920  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9921  // in [class.friend]p3 that we do not implement.
9922
9923  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
9924}
9925
9926/// Handle a friend tag declaration where the scope specifier was
9927/// templated.
9928Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9929                                    unsigned TagSpec, SourceLocation TagLoc,
9930                                    CXXScopeSpec &SS,
9931                                    IdentifierInfo *Name, SourceLocation NameLoc,
9932                                    AttributeList *Attr,
9933                                    MultiTemplateParamsArg TempParamLists) {
9934  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9935
9936  bool isExplicitSpecialization = false;
9937  bool Invalid = false;
9938
9939  if (TemplateParameterList *TemplateParams
9940        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9941                                                  TempParamLists.get(),
9942                                                  TempParamLists.size(),
9943                                                  /*friend*/ true,
9944                                                  isExplicitSpecialization,
9945                                                  Invalid)) {
9946    if (TemplateParams->size() > 0) {
9947      // This is a declaration of a class template.
9948      if (Invalid)
9949        return 0;
9950
9951      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9952                                SS, Name, NameLoc, Attr,
9953                                TemplateParams, AS_public,
9954                                /*ModulePrivateLoc=*/SourceLocation(),
9955                                TempParamLists.size() - 1,
9956                   (TemplateParameterList**) TempParamLists.release()).take();
9957    } else {
9958      // The "template<>" header is extraneous.
9959      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9960        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9961      isExplicitSpecialization = true;
9962    }
9963  }
9964
9965  if (Invalid) return 0;
9966
9967  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9968
9969  bool isAllExplicitSpecializations = true;
9970  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9971    if (TempParamLists.get()[I]->size()) {
9972      isAllExplicitSpecializations = false;
9973      break;
9974    }
9975  }
9976
9977  // FIXME: don't ignore attributes.
9978
9979  // If it's explicit specializations all the way down, just forget
9980  // about the template header and build an appropriate non-templated
9981  // friend.  TODO: for source fidelity, remember the headers.
9982  if (isAllExplicitSpecializations) {
9983    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9984    ElaboratedTypeKeyword Keyword
9985      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9986    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9987                                   *Name, NameLoc);
9988    if (T.isNull())
9989      return 0;
9990
9991    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9992    if (isa<DependentNameType>(T)) {
9993      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9994      TL.setKeywordLoc(TagLoc);
9995      TL.setQualifierLoc(QualifierLoc);
9996      TL.setNameLoc(NameLoc);
9997    } else {
9998      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9999      TL.setKeywordLoc(TagLoc);
10000      TL.setQualifierLoc(QualifierLoc);
10001      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10002    }
10003
10004    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10005                                            TSI, FriendLoc);
10006    Friend->setAccess(AS_public);
10007    CurContext->addDecl(Friend);
10008    return Friend;
10009  }
10010
10011  // Handle the case of a templated-scope friend class.  e.g.
10012  //   template <class T> class A<T>::B;
10013  // FIXME: we don't support these right now.
10014  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10015  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10016  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10017  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10018  TL.setKeywordLoc(TagLoc);
10019  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10020  TL.setNameLoc(NameLoc);
10021
10022  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10023                                          TSI, FriendLoc);
10024  Friend->setAccess(AS_public);
10025  Friend->setUnsupportedFriend(true);
10026  CurContext->addDecl(Friend);
10027  return Friend;
10028}
10029
10030
10031/// Handle a friend type declaration.  This works in tandem with
10032/// ActOnTag.
10033///
10034/// Notes on friend class templates:
10035///
10036/// We generally treat friend class declarations as if they were
10037/// declaring a class.  So, for example, the elaborated type specifier
10038/// in a friend declaration is required to obey the restrictions of a
10039/// class-head (i.e. no typedefs in the scope chain), template
10040/// parameters are required to match up with simple template-ids, &c.
10041/// However, unlike when declaring a template specialization, it's
10042/// okay to refer to a template specialization without an empty
10043/// template parameter declaration, e.g.
10044///   friend class A<T>::B<unsigned>;
10045/// We permit this as a special case; if there are any template
10046/// parameters present at all, require proper matching, i.e.
10047///   template <> template <class T> friend class A<int>::B;
10048Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10049                                MultiTemplateParamsArg TempParams) {
10050  SourceLocation Loc = DS.getSourceRange().getBegin();
10051
10052  assert(DS.isFriendSpecified());
10053  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10054
10055  // Try to convert the decl specifier to a type.  This works for
10056  // friend templates because ActOnTag never produces a ClassTemplateDecl
10057  // for a TUK_Friend.
10058  Declarator TheDeclarator(DS, Declarator::MemberContext);
10059  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10060  QualType T = TSI->getType();
10061  if (TheDeclarator.isInvalidType())
10062    return 0;
10063
10064  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10065    return 0;
10066
10067  // This is definitely an error in C++98.  It's probably meant to
10068  // be forbidden in C++0x, too, but the specification is just
10069  // poorly written.
10070  //
10071  // The problem is with declarations like the following:
10072  //   template <T> friend A<T>::foo;
10073  // where deciding whether a class C is a friend or not now hinges
10074  // on whether there exists an instantiation of A that causes
10075  // 'foo' to equal C.  There are restrictions on class-heads
10076  // (which we declare (by fiat) elaborated friend declarations to
10077  // be) that makes this tractable.
10078  //
10079  // FIXME: handle "template <> friend class A<T>;", which
10080  // is possibly well-formed?  Who even knows?
10081  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10082    Diag(Loc, diag::err_tagless_friend_type_template)
10083      << DS.getSourceRange();
10084    return 0;
10085  }
10086
10087  // C++98 [class.friend]p1: A friend of a class is a function
10088  //   or class that is not a member of the class . . .
10089  // This is fixed in DR77, which just barely didn't make the C++03
10090  // deadline.  It's also a very silly restriction that seriously
10091  // affects inner classes and which nobody else seems to implement;
10092  // thus we never diagnose it, not even in -pedantic.
10093  //
10094  // But note that we could warn about it: it's always useless to
10095  // friend one of your own members (it's not, however, worthless to
10096  // friend a member of an arbitrary specialization of your template).
10097
10098  Decl *D;
10099  if (unsigned NumTempParamLists = TempParams.size())
10100    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10101                                   NumTempParamLists,
10102                                   TempParams.release(),
10103                                   TSI,
10104                                   DS.getFriendSpecLoc());
10105  else
10106    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
10107
10108  if (!D)
10109    return 0;
10110
10111  D->setAccess(AS_public);
10112  CurContext->addDecl(D);
10113
10114  return D;
10115}
10116
10117Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
10118                                    MultiTemplateParamsArg TemplateParams) {
10119  const DeclSpec &DS = D.getDeclSpec();
10120
10121  assert(DS.isFriendSpecified());
10122  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10123
10124  SourceLocation Loc = D.getIdentifierLoc();
10125  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10126  QualType T = TInfo->getType();
10127
10128  // C++ [class.friend]p1
10129  //   A friend of a class is a function or class....
10130  // Note that this sees through typedefs, which is intended.
10131  // It *doesn't* see through dependent types, which is correct
10132  // according to [temp.arg.type]p3:
10133  //   If a declaration acquires a function type through a
10134  //   type dependent on a template-parameter and this causes
10135  //   a declaration that does not use the syntactic form of a
10136  //   function declarator to have a function type, the program
10137  //   is ill-formed.
10138  if (!T->isFunctionType()) {
10139    Diag(Loc, diag::err_unexpected_friend);
10140
10141    // It might be worthwhile to try to recover by creating an
10142    // appropriate declaration.
10143    return 0;
10144  }
10145
10146  // C++ [namespace.memdef]p3
10147  //  - If a friend declaration in a non-local class first declares a
10148  //    class or function, the friend class or function is a member
10149  //    of the innermost enclosing namespace.
10150  //  - The name of the friend is not found by simple name lookup
10151  //    until a matching declaration is provided in that namespace
10152  //    scope (either before or after the class declaration granting
10153  //    friendship).
10154  //  - If a friend function is called, its name may be found by the
10155  //    name lookup that considers functions from namespaces and
10156  //    classes associated with the types of the function arguments.
10157  //  - When looking for a prior declaration of a class or a function
10158  //    declared as a friend, scopes outside the innermost enclosing
10159  //    namespace scope are not considered.
10160
10161  CXXScopeSpec &SS = D.getCXXScopeSpec();
10162  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10163  DeclarationName Name = NameInfo.getName();
10164  assert(Name);
10165
10166  // Check for unexpanded parameter packs.
10167  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10168      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10169      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10170    return 0;
10171
10172  // The context we found the declaration in, or in which we should
10173  // create the declaration.
10174  DeclContext *DC;
10175  Scope *DCScope = S;
10176  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10177                        ForRedeclaration);
10178
10179  // FIXME: there are different rules in local classes
10180
10181  // There are four cases here.
10182  //   - There's no scope specifier, in which case we just go to the
10183  //     appropriate scope and look for a function or function template
10184  //     there as appropriate.
10185  // Recover from invalid scope qualifiers as if they just weren't there.
10186  if (SS.isInvalid() || !SS.isSet()) {
10187    // C++0x [namespace.memdef]p3:
10188    //   If the name in a friend declaration is neither qualified nor
10189    //   a template-id and the declaration is a function or an
10190    //   elaborated-type-specifier, the lookup to determine whether
10191    //   the entity has been previously declared shall not consider
10192    //   any scopes outside the innermost enclosing namespace.
10193    // C++0x [class.friend]p11:
10194    //   If a friend declaration appears in a local class and the name
10195    //   specified is an unqualified name, a prior declaration is
10196    //   looked up without considering scopes that are outside the
10197    //   innermost enclosing non-class scope. For a friend function
10198    //   declaration, if there is no prior declaration, the program is
10199    //   ill-formed.
10200    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10201    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10202
10203    // Find the appropriate context according to the above.
10204    DC = CurContext;
10205    while (true) {
10206      // Skip class contexts.  If someone can cite chapter and verse
10207      // for this behavior, that would be nice --- it's what GCC and
10208      // EDG do, and it seems like a reasonable intent, but the spec
10209      // really only says that checks for unqualified existing
10210      // declarations should stop at the nearest enclosing namespace,
10211      // not that they should only consider the nearest enclosing
10212      // namespace.
10213      while (DC->isRecord())
10214        DC = DC->getParent();
10215
10216      LookupQualifiedName(Previous, DC);
10217
10218      // TODO: decide what we think about using declarations.
10219      if (isLocal || !Previous.empty())
10220        break;
10221
10222      if (isTemplateId) {
10223        if (isa<TranslationUnitDecl>(DC)) break;
10224      } else {
10225        if (DC->isFileContext()) break;
10226      }
10227      DC = DC->getParent();
10228    }
10229
10230    // C++ [class.friend]p1: A friend of a class is a function or
10231    //   class that is not a member of the class . . .
10232    // C++0x changes this for both friend types and functions.
10233    // Most C++ 98 compilers do seem to give an error here, so
10234    // we do, too.
10235    if (!Previous.empty() && DC->Equals(CurContext)
10236        && !getLangOptions().CPlusPlus0x)
10237      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
10238
10239    DCScope = getScopeForDeclContext(S, DC);
10240
10241    // C++ [class.friend]p6:
10242    //   A function can be defined in a friend declaration of a class if and
10243    //   only if the class is a non-local class (9.8), the function name is
10244    //   unqualified, and the function has namespace scope.
10245    if (isLocal && IsDefinition) {
10246      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10247    }
10248
10249  //   - There's a non-dependent scope specifier, in which case we
10250  //     compute it and do a previous lookup there for a function
10251  //     or function template.
10252  } else if (!SS.getScopeRep()->isDependent()) {
10253    DC = computeDeclContext(SS);
10254    if (!DC) return 0;
10255
10256    if (RequireCompleteDeclContext(SS, DC)) return 0;
10257
10258    LookupQualifiedName(Previous, DC);
10259
10260    // Ignore things found implicitly in the wrong scope.
10261    // TODO: better diagnostics for this case.  Suggesting the right
10262    // qualified scope would be nice...
10263    LookupResult::Filter F = Previous.makeFilter();
10264    while (F.hasNext()) {
10265      NamedDecl *D = F.next();
10266      if (!DC->InEnclosingNamespaceSetOf(
10267              D->getDeclContext()->getRedeclContext()))
10268        F.erase();
10269    }
10270    F.done();
10271
10272    if (Previous.empty()) {
10273      D.setInvalidType();
10274      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
10275      return 0;
10276    }
10277
10278    // C++ [class.friend]p1: A friend of a class is a function or
10279    //   class that is not a member of the class . . .
10280    if (DC->Equals(CurContext))
10281      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
10282
10283    if (IsDefinition) {
10284      // C++ [class.friend]p6:
10285      //   A function can be defined in a friend declaration of a class if and
10286      //   only if the class is a non-local class (9.8), the function name is
10287      //   unqualified, and the function has namespace scope.
10288      SemaDiagnosticBuilder DB
10289        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10290
10291      DB << SS.getScopeRep();
10292      if (DC->isFileContext())
10293        DB << FixItHint::CreateRemoval(SS.getRange());
10294      SS.clear();
10295    }
10296
10297  //   - There's a scope specifier that does not match any template
10298  //     parameter lists, in which case we use some arbitrary context,
10299  //     create a method or method template, and wait for instantiation.
10300  //   - There's a scope specifier that does match some template
10301  //     parameter lists, which we don't handle right now.
10302  } else {
10303    if (IsDefinition) {
10304      // C++ [class.friend]p6:
10305      //   A function can be defined in a friend declaration of a class if and
10306      //   only if the class is a non-local class (9.8), the function name is
10307      //   unqualified, and the function has namespace scope.
10308      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10309        << SS.getScopeRep();
10310    }
10311
10312    DC = CurContext;
10313    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10314  }
10315
10316  if (!DC->isRecord()) {
10317    // This implies that it has to be an operator or function.
10318    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10319        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10320        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10321      Diag(Loc, diag::err_introducing_special_friend) <<
10322        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10323         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10324      return 0;
10325    }
10326  }
10327
10328  bool Redeclaration = false;
10329  bool AddToScope = true;
10330  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
10331                                          move(TemplateParams),
10332                                          IsDefinition,
10333                                          Redeclaration, AddToScope);
10334  if (!ND) return 0;
10335
10336  assert(ND->getDeclContext() == DC);
10337  assert(ND->getLexicalDeclContext() == CurContext);
10338
10339  // Add the function declaration to the appropriate lookup tables,
10340  // adjusting the redeclarations list as necessary.  We don't
10341  // want to do this yet if the friending class is dependent.
10342  //
10343  // Also update the scope-based lookup if the target context's
10344  // lookup context is in lexical scope.
10345  if (!CurContext->isDependentContext()) {
10346    DC = DC->getRedeclContext();
10347    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10348    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10349      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10350  }
10351
10352  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10353                                       D.getIdentifierLoc(), ND,
10354                                       DS.getFriendSpecLoc());
10355  FrD->setAccess(AS_public);
10356  CurContext->addDecl(FrD);
10357
10358  if (ND->isInvalidDecl())
10359    FrD->setInvalidDecl();
10360  else {
10361    FunctionDecl *FD;
10362    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10363      FD = FTD->getTemplatedDecl();
10364    else
10365      FD = cast<FunctionDecl>(ND);
10366
10367    // Mark templated-scope function declarations as unsupported.
10368    if (FD->getNumTemplateParameterLists())
10369      FrD->setUnsupportedFriend(true);
10370  }
10371
10372  return ND;
10373}
10374
10375void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10376  AdjustDeclIfTemplate(Dcl);
10377
10378  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10379  if (!Fn) {
10380    Diag(DelLoc, diag::err_deleted_non_function);
10381    return;
10382  }
10383  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
10384    Diag(DelLoc, diag::err_deleted_decl_not_first);
10385    Diag(Prev->getLocation(), diag::note_previous_declaration);
10386    // If the declaration wasn't the first, we delete the function anyway for
10387    // recovery.
10388  }
10389  Fn->setDeletedAsWritten();
10390}
10391
10392void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10393  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10394
10395  if (MD) {
10396    if (MD->getParent()->isDependentType()) {
10397      MD->setDefaulted();
10398      MD->setExplicitlyDefaulted();
10399      return;
10400    }
10401
10402    CXXSpecialMember Member = getSpecialMember(MD);
10403    if (Member == CXXInvalid) {
10404      Diag(DefaultLoc, diag::err_default_special_members);
10405      return;
10406    }
10407
10408    MD->setDefaulted();
10409    MD->setExplicitlyDefaulted();
10410
10411    // If this definition appears within the record, do the checking when
10412    // the record is complete.
10413    const FunctionDecl *Primary = MD;
10414    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10415      // Find the uninstantiated declaration that actually had the '= default'
10416      // on it.
10417      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10418
10419    if (Primary == Primary->getCanonicalDecl())
10420      return;
10421
10422    switch (Member) {
10423    case CXXDefaultConstructor: {
10424      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10425      CheckExplicitlyDefaultedDefaultConstructor(CD);
10426      if (!CD->isInvalidDecl())
10427        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10428      break;
10429    }
10430
10431    case CXXCopyConstructor: {
10432      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10433      CheckExplicitlyDefaultedCopyConstructor(CD);
10434      if (!CD->isInvalidDecl())
10435        DefineImplicitCopyConstructor(DefaultLoc, CD);
10436      break;
10437    }
10438
10439    case CXXCopyAssignment: {
10440      CheckExplicitlyDefaultedCopyAssignment(MD);
10441      if (!MD->isInvalidDecl())
10442        DefineImplicitCopyAssignment(DefaultLoc, MD);
10443      break;
10444    }
10445
10446    case CXXDestructor: {
10447      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10448      CheckExplicitlyDefaultedDestructor(DD);
10449      if (!DD->isInvalidDecl())
10450        DefineImplicitDestructor(DefaultLoc, DD);
10451      break;
10452    }
10453
10454    case CXXMoveConstructor: {
10455      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10456      CheckExplicitlyDefaultedMoveConstructor(CD);
10457      if (!CD->isInvalidDecl())
10458        DefineImplicitMoveConstructor(DefaultLoc, CD);
10459      break;
10460    }
10461
10462    case CXXMoveAssignment: {
10463      CheckExplicitlyDefaultedMoveAssignment(MD);
10464      if (!MD->isInvalidDecl())
10465        DefineImplicitMoveAssignment(DefaultLoc, MD);
10466      break;
10467    }
10468
10469    case CXXInvalid:
10470      llvm_unreachable("Invalid special member.");
10471    }
10472  } else {
10473    Diag(DefaultLoc, diag::err_default_special_members);
10474  }
10475}
10476
10477static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10478  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10479    Stmt *SubStmt = *CI;
10480    if (!SubStmt)
10481      continue;
10482    if (isa<ReturnStmt>(SubStmt))
10483      Self.Diag(SubStmt->getSourceRange().getBegin(),
10484           diag::err_return_in_constructor_handler);
10485    if (!isa<Expr>(SubStmt))
10486      SearchForReturnInStmt(Self, SubStmt);
10487  }
10488}
10489
10490void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10491  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10492    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10493    SearchForReturnInStmt(*this, Handler);
10494  }
10495}
10496
10497bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10498                                             const CXXMethodDecl *Old) {
10499  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10500  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10501
10502  if (Context.hasSameType(NewTy, OldTy) ||
10503      NewTy->isDependentType() || OldTy->isDependentType())
10504    return false;
10505
10506  // Check if the return types are covariant
10507  QualType NewClassTy, OldClassTy;
10508
10509  /// Both types must be pointers or references to classes.
10510  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10511    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10512      NewClassTy = NewPT->getPointeeType();
10513      OldClassTy = OldPT->getPointeeType();
10514    }
10515  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10516    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10517      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10518        NewClassTy = NewRT->getPointeeType();
10519        OldClassTy = OldRT->getPointeeType();
10520      }
10521    }
10522  }
10523
10524  // The return types aren't either both pointers or references to a class type.
10525  if (NewClassTy.isNull()) {
10526    Diag(New->getLocation(),
10527         diag::err_different_return_type_for_overriding_virtual_function)
10528      << New->getDeclName() << NewTy << OldTy;
10529    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10530
10531    return true;
10532  }
10533
10534  // C++ [class.virtual]p6:
10535  //   If the return type of D::f differs from the return type of B::f, the
10536  //   class type in the return type of D::f shall be complete at the point of
10537  //   declaration of D::f or shall be the class type D.
10538  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10539    if (!RT->isBeingDefined() &&
10540        RequireCompleteType(New->getLocation(), NewClassTy,
10541                            PDiag(diag::err_covariant_return_incomplete)
10542                              << New->getDeclName()))
10543    return true;
10544  }
10545
10546  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10547    // Check if the new class derives from the old class.
10548    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10549      Diag(New->getLocation(),
10550           diag::err_covariant_return_not_derived)
10551      << New->getDeclName() << NewTy << OldTy;
10552      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10553      return true;
10554    }
10555
10556    // Check if we the conversion from derived to base is valid.
10557    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10558                    diag::err_covariant_return_inaccessible_base,
10559                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10560                    // FIXME: Should this point to the return type?
10561                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10562      // FIXME: this note won't trigger for delayed access control
10563      // diagnostics, and it's impossible to get an undelayed error
10564      // here from access control during the original parse because
10565      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10566      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10567      return true;
10568    }
10569  }
10570
10571  // The qualifiers of the return types must be the same.
10572  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10573    Diag(New->getLocation(),
10574         diag::err_covariant_return_type_different_qualifications)
10575    << New->getDeclName() << NewTy << OldTy;
10576    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10577    return true;
10578  };
10579
10580
10581  // The new class type must have the same or less qualifiers as the old type.
10582  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10583    Diag(New->getLocation(),
10584         diag::err_covariant_return_type_class_type_more_qualified)
10585    << New->getDeclName() << NewTy << OldTy;
10586    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10587    return true;
10588  };
10589
10590  return false;
10591}
10592
10593/// \brief Mark the given method pure.
10594///
10595/// \param Method the method to be marked pure.
10596///
10597/// \param InitRange the source range that covers the "0" initializer.
10598bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10599  SourceLocation EndLoc = InitRange.getEnd();
10600  if (EndLoc.isValid())
10601    Method->setRangeEnd(EndLoc);
10602
10603  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10604    Method->setPure();
10605    return false;
10606  }
10607
10608  if (!Method->isInvalidDecl())
10609    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10610      << Method->getDeclName() << InitRange;
10611  return true;
10612}
10613
10614/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10615/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10616/// is a fresh scope pushed for just this purpose.
10617///
10618/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10619/// static data member of class X, names should be looked up in the scope of
10620/// class X.
10621void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10622  // If there is no declaration, there was an error parsing it.
10623  if (D == 0 || D->isInvalidDecl()) return;
10624
10625  // We should only get called for declarations with scope specifiers, like:
10626  //   int foo::bar;
10627  assert(D->isOutOfLine());
10628  EnterDeclaratorContext(S, D->getDeclContext());
10629}
10630
10631/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10632/// initializer for the out-of-line declaration 'D'.
10633void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10634  // If there is no declaration, there was an error parsing it.
10635  if (D == 0 || D->isInvalidDecl()) return;
10636
10637  assert(D->isOutOfLine());
10638  ExitDeclaratorContext(S);
10639}
10640
10641/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10642/// C++ if/switch/while/for statement.
10643/// e.g: "if (int x = f()) {...}"
10644DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10645  // C++ 6.4p2:
10646  // The declarator shall not specify a function or an array.
10647  // The type-specifier-seq shall not contain typedef and shall not declare a
10648  // new class or enumeration.
10649  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10650         "Parser allowed 'typedef' as storage class of condition decl.");
10651
10652  Decl *Dcl = ActOnDeclarator(S, D);
10653  if (!Dcl)
10654    return true;
10655
10656  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10657    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10658      << D.getSourceRange();
10659    return true;
10660  }
10661
10662  return Dcl;
10663}
10664
10665void Sema::LoadExternalVTableUses() {
10666  if (!ExternalSource)
10667    return;
10668
10669  SmallVector<ExternalVTableUse, 4> VTables;
10670  ExternalSource->ReadUsedVTables(VTables);
10671  SmallVector<VTableUse, 4> NewUses;
10672  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10673    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10674      = VTablesUsed.find(VTables[I].Record);
10675    // Even if a definition wasn't required before, it may be required now.
10676    if (Pos != VTablesUsed.end()) {
10677      if (!Pos->second && VTables[I].DefinitionRequired)
10678        Pos->second = true;
10679      continue;
10680    }
10681
10682    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10683    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10684  }
10685
10686  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10687}
10688
10689void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10690                          bool DefinitionRequired) {
10691  // Ignore any vtable uses in unevaluated operands or for classes that do
10692  // not have a vtable.
10693  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10694      CurContext->isDependentContext() ||
10695      ExprEvalContexts.back().Context == Unevaluated)
10696    return;
10697
10698  // Try to insert this class into the map.
10699  LoadExternalVTableUses();
10700  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10701  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10702    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10703  if (!Pos.second) {
10704    // If we already had an entry, check to see if we are promoting this vtable
10705    // to required a definition. If so, we need to reappend to the VTableUses
10706    // list, since we may have already processed the first entry.
10707    if (DefinitionRequired && !Pos.first->second) {
10708      Pos.first->second = true;
10709    } else {
10710      // Otherwise, we can early exit.
10711      return;
10712    }
10713  }
10714
10715  // Local classes need to have their virtual members marked
10716  // immediately. For all other classes, we mark their virtual members
10717  // at the end of the translation unit.
10718  if (Class->isLocalClass())
10719    MarkVirtualMembersReferenced(Loc, Class);
10720  else
10721    VTableUses.push_back(std::make_pair(Class, Loc));
10722}
10723
10724bool Sema::DefineUsedVTables() {
10725  LoadExternalVTableUses();
10726  if (VTableUses.empty())
10727    return false;
10728
10729  // Note: The VTableUses vector could grow as a result of marking
10730  // the members of a class as "used", so we check the size each
10731  // time through the loop and prefer indices (with are stable) to
10732  // iterators (which are not).
10733  bool DefinedAnything = false;
10734  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10735    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10736    if (!Class)
10737      continue;
10738
10739    SourceLocation Loc = VTableUses[I].second;
10740
10741    // If this class has a key function, but that key function is
10742    // defined in another translation unit, we don't need to emit the
10743    // vtable even though we're using it.
10744    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10745    if (KeyFunction && !KeyFunction->hasBody()) {
10746      switch (KeyFunction->getTemplateSpecializationKind()) {
10747      case TSK_Undeclared:
10748      case TSK_ExplicitSpecialization:
10749      case TSK_ExplicitInstantiationDeclaration:
10750        // The key function is in another translation unit.
10751        continue;
10752
10753      case TSK_ExplicitInstantiationDefinition:
10754      case TSK_ImplicitInstantiation:
10755        // We will be instantiating the key function.
10756        break;
10757      }
10758    } else if (!KeyFunction) {
10759      // If we have a class with no key function that is the subject
10760      // of an explicit instantiation declaration, suppress the
10761      // vtable; it will live with the explicit instantiation
10762      // definition.
10763      bool IsExplicitInstantiationDeclaration
10764        = Class->getTemplateSpecializationKind()
10765                                      == TSK_ExplicitInstantiationDeclaration;
10766      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10767                                 REnd = Class->redecls_end();
10768           R != REnd; ++R) {
10769        TemplateSpecializationKind TSK
10770          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10771        if (TSK == TSK_ExplicitInstantiationDeclaration)
10772          IsExplicitInstantiationDeclaration = true;
10773        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10774          IsExplicitInstantiationDeclaration = false;
10775          break;
10776        }
10777      }
10778
10779      if (IsExplicitInstantiationDeclaration)
10780        continue;
10781    }
10782
10783    // Mark all of the virtual members of this class as referenced, so
10784    // that we can build a vtable. Then, tell the AST consumer that a
10785    // vtable for this class is required.
10786    DefinedAnything = true;
10787    MarkVirtualMembersReferenced(Loc, Class);
10788    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10789    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10790
10791    // Optionally warn if we're emitting a weak vtable.
10792    if (Class->getLinkage() == ExternalLinkage &&
10793        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10794      const FunctionDecl *KeyFunctionDef = 0;
10795      if (!KeyFunction ||
10796          (KeyFunction->hasBody(KeyFunctionDef) &&
10797           KeyFunctionDef->isInlined()))
10798        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
10799    }
10800  }
10801  VTableUses.clear();
10802
10803  return DefinedAnything;
10804}
10805
10806void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10807                                        const CXXRecordDecl *RD) {
10808  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10809       e = RD->method_end(); i != e; ++i) {
10810    CXXMethodDecl *MD = *i;
10811
10812    // C++ [basic.def.odr]p2:
10813    //   [...] A virtual member function is used if it is not pure. [...]
10814    if (MD->isVirtual() && !MD->isPure())
10815      MarkDeclarationReferenced(Loc, MD);
10816  }
10817
10818  // Only classes that have virtual bases need a VTT.
10819  if (RD->getNumVBases() == 0)
10820    return;
10821
10822  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10823           e = RD->bases_end(); i != e; ++i) {
10824    const CXXRecordDecl *Base =
10825        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10826    if (Base->getNumVBases() == 0)
10827      continue;
10828    MarkVirtualMembersReferenced(Loc, Base);
10829  }
10830}
10831
10832/// SetIvarInitializers - This routine builds initialization ASTs for the
10833/// Objective-C implementation whose ivars need be initialized.
10834void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10835  if (!getLangOptions().CPlusPlus)
10836    return;
10837  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10838    SmallVector<ObjCIvarDecl*, 8> ivars;
10839    CollectIvarsToConstructOrDestruct(OID, ivars);
10840    if (ivars.empty())
10841      return;
10842    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10843    for (unsigned i = 0; i < ivars.size(); i++) {
10844      FieldDecl *Field = ivars[i];
10845      if (Field->isInvalidDecl())
10846        continue;
10847
10848      CXXCtorInitializer *Member;
10849      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10850      InitializationKind InitKind =
10851        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10852
10853      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10854      ExprResult MemberInit =
10855        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10856      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10857      // Note, MemberInit could actually come back empty if no initialization
10858      // is required (e.g., because it would call a trivial default constructor)
10859      if (!MemberInit.get() || MemberInit.isInvalid())
10860        continue;
10861
10862      Member =
10863        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10864                                         SourceLocation(),
10865                                         MemberInit.takeAs<Expr>(),
10866                                         SourceLocation());
10867      AllToInit.push_back(Member);
10868
10869      // Be sure that the destructor is accessible and is marked as referenced.
10870      if (const RecordType *RecordTy
10871                  = Context.getBaseElementType(Field->getType())
10872                                                        ->getAs<RecordType>()) {
10873                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10874        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10875          MarkDeclarationReferenced(Field->getLocation(), Destructor);
10876          CheckDestructorAccess(Field->getLocation(), Destructor,
10877                            PDiag(diag::err_access_dtor_ivar)
10878                              << Context.getBaseElementType(Field->getType()));
10879        }
10880      }
10881    }
10882    ObjCImplementation->setIvarInitializers(Context,
10883                                            AllToInit.data(), AllToInit.size());
10884  }
10885}
10886
10887static
10888void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10889                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10890                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10891                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10892                           Sema &S) {
10893  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10894                                                   CE = Current.end();
10895  if (Ctor->isInvalidDecl())
10896    return;
10897
10898  const FunctionDecl *FNTarget = 0;
10899  CXXConstructorDecl *Target;
10900
10901  // We ignore the result here since if we don't have a body, Target will be
10902  // null below.
10903  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10904  Target
10905= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10906
10907  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10908                     // Avoid dereferencing a null pointer here.
10909                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10910
10911  if (!Current.insert(Canonical))
10912    return;
10913
10914  // We know that beyond here, we aren't chaining into a cycle.
10915  if (!Target || !Target->isDelegatingConstructor() ||
10916      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10917    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10918      Valid.insert(*CI);
10919    Current.clear();
10920  // We've hit a cycle.
10921  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10922             Current.count(TCanonical)) {
10923    // If we haven't diagnosed this cycle yet, do so now.
10924    if (!Invalid.count(TCanonical)) {
10925      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10926             diag::warn_delegating_ctor_cycle)
10927        << Ctor;
10928
10929      // Don't add a note for a function delegating directo to itself.
10930      if (TCanonical != Canonical)
10931        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10932
10933      CXXConstructorDecl *C = Target;
10934      while (C->getCanonicalDecl() != Canonical) {
10935        (void)C->getTargetConstructor()->hasBody(FNTarget);
10936        assert(FNTarget && "Ctor cycle through bodiless function");
10937
10938        C
10939       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10940        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10941      }
10942    }
10943
10944    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10945      Invalid.insert(*CI);
10946    Current.clear();
10947  } else {
10948    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10949  }
10950}
10951
10952
10953void Sema::CheckDelegatingCtorCycles() {
10954  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10955
10956  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10957                                                   CE = Current.end();
10958
10959  for (DelegatingCtorDeclsType::iterator
10960         I = DelegatingCtorDecls.begin(ExternalSource),
10961         E = DelegatingCtorDecls.end();
10962       I != E; ++I) {
10963   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10964  }
10965
10966  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10967    (*CI)->setInvalidDecl();
10968}
10969
10970/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10971Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10972  // Implicitly declared functions (e.g. copy constructors) are
10973  // __host__ __device__
10974  if (D->isImplicit())
10975    return CFT_HostDevice;
10976
10977  if (D->hasAttr<CUDAGlobalAttr>())
10978    return CFT_Global;
10979
10980  if (D->hasAttr<CUDADeviceAttr>()) {
10981    if (D->hasAttr<CUDAHostAttr>())
10982      return CFT_HostDevice;
10983    else
10984      return CFT_Device;
10985  }
10986
10987  return CFT_Host;
10988}
10989
10990bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10991                           CUDAFunctionTarget CalleeTarget) {
10992  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10993  // Callable from the device only."
10994  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10995    return true;
10996
10997  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10998  // Callable from the host only."
10999  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11000  // Callable from the host only."
11001  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11002      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11003    return true;
11004
11005  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11006    return true;
11007
11008  return false;
11009}
11010