SemaDeclCXX.cpp revision e25a96c0629b6f928d5e8055510789817db827d0
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name,
727                                   CXXBaseSpecifierArray *BasePath) {
728  // First, determine whether the path from Derived to Base is
729  // ambiguous. This is slightly more expensive than checking whether
730  // the Derived to Base conversion exists, because here we need to
731  // explore multiple paths to determine if there is an ambiguity.
732  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
733                     /*DetectVirtual=*/false);
734  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
735  assert(DerivationOkay &&
736         "Can only be used with a derived-to-base conversion");
737  (void)DerivationOkay;
738
739  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
740    if (!InaccessibleBaseID)
741      return false;
742
743    // Check that the base class can be accessed.
744    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
745                                 InaccessibleBaseID)) {
746    case AR_inaccessible:
747      return true;
748    case AR_accessible:
749    case AR_dependent:
750    case AR_delayed:
751      // Build a base path if necessary.
752      if (BasePath) {
753        // FIXME: Do this!
754      }
755      return false;
756    }
757  }
758
759  // We know that the derived-to-base conversion is ambiguous, and
760  // we're going to produce a diagnostic. Perform the derived-to-base
761  // search just one more time to compute all of the possible paths so
762  // that we can print them out. This is more expensive than any of
763  // the previous derived-to-base checks we've done, but at this point
764  // performance isn't as much of an issue.
765  Paths.clear();
766  Paths.setRecordingPaths(true);
767  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
768  assert(StillOkay && "Can only be used with a derived-to-base conversion");
769  (void)StillOkay;
770
771  // Build up a textual representation of the ambiguous paths, e.g.,
772  // D -> B -> A, that will be used to illustrate the ambiguous
773  // conversions in the diagnostic. We only print one of the paths
774  // to each base class subobject.
775  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
776
777  Diag(Loc, AmbigiousBaseConvID)
778  << Derived << Base << PathDisplayStr << Range << Name;
779  return true;
780}
781
782bool
783Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
784                                   SourceLocation Loc, SourceRange Range,
785                                   CXXBaseSpecifierArray *BasePath,
786                                   bool IgnoreAccess) {
787  return CheckDerivedToBaseConversion(Derived, Base,
788                                      IgnoreAccess ? 0
789                                       : diag::err_upcast_to_inaccessible_base,
790                                      diag::err_ambiguous_derived_to_base_conv,
791                                      Loc, Range, DeclarationName(),
792                                      BasePath);
793}
794
795
796/// @brief Builds a string representing ambiguous paths from a
797/// specific derived class to different subobjects of the same base
798/// class.
799///
800/// This function builds a string that can be used in error messages
801/// to show the different paths that one can take through the
802/// inheritance hierarchy to go from the derived class to different
803/// subobjects of a base class. The result looks something like this:
804/// @code
805/// struct D -> struct B -> struct A
806/// struct D -> struct C -> struct A
807/// @endcode
808std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
809  std::string PathDisplayStr;
810  std::set<unsigned> DisplayedPaths;
811  for (CXXBasePaths::paths_iterator Path = Paths.begin();
812       Path != Paths.end(); ++Path) {
813    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
814      // We haven't displayed a path to this particular base
815      // class subobject yet.
816      PathDisplayStr += "\n    ";
817      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
818      for (CXXBasePath::const_iterator Element = Path->begin();
819           Element != Path->end(); ++Element)
820        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
821    }
822  }
823
824  return PathDisplayStr;
825}
826
827//===----------------------------------------------------------------------===//
828// C++ class member Handling
829//===----------------------------------------------------------------------===//
830
831/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
832/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
833/// bitfield width if there is one and 'InitExpr' specifies the initializer if
834/// any.
835Sema::DeclPtrTy
836Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
837                               MultiTemplateParamsArg TemplateParameterLists,
838                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
839                               bool Deleted) {
840  const DeclSpec &DS = D.getDeclSpec();
841  DeclarationName Name = GetNameForDeclarator(D);
842  Expr *BitWidth = static_cast<Expr*>(BW);
843  Expr *Init = static_cast<Expr*>(InitExpr);
844  SourceLocation Loc = D.getIdentifierLoc();
845
846  bool isFunc = D.isFunctionDeclarator();
847
848  assert(!DS.isFriendSpecified());
849
850  // C++ 9.2p6: A member shall not be declared to have automatic storage
851  // duration (auto, register) or with the extern storage-class-specifier.
852  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
853  // data members and cannot be applied to names declared const or static,
854  // and cannot be applied to reference members.
855  switch (DS.getStorageClassSpec()) {
856    case DeclSpec::SCS_unspecified:
857    case DeclSpec::SCS_typedef:
858    case DeclSpec::SCS_static:
859      // FALL THROUGH.
860      break;
861    case DeclSpec::SCS_mutable:
862      if (isFunc) {
863        if (DS.getStorageClassSpecLoc().isValid())
864          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
865        else
866          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
867
868        // FIXME: It would be nicer if the keyword was ignored only for this
869        // declarator. Otherwise we could get follow-up errors.
870        D.getMutableDeclSpec().ClearStorageClassSpecs();
871      } else {
872        QualType T = GetTypeForDeclarator(D, S);
873        diag::kind err = static_cast<diag::kind>(0);
874        if (T->isReferenceType())
875          err = diag::err_mutable_reference;
876        else if (T.isConstQualified())
877          err = diag::err_mutable_const;
878        if (err != 0) {
879          if (DS.getStorageClassSpecLoc().isValid())
880            Diag(DS.getStorageClassSpecLoc(), err);
881          else
882            Diag(DS.getThreadSpecLoc(), err);
883          // FIXME: It would be nicer if the keyword was ignored only for this
884          // declarator. Otherwise we could get follow-up errors.
885          D.getMutableDeclSpec().ClearStorageClassSpecs();
886        }
887      }
888      break;
889    default:
890      if (DS.getStorageClassSpecLoc().isValid())
891        Diag(DS.getStorageClassSpecLoc(),
892             diag::err_storageclass_invalid_for_member);
893      else
894        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
895      D.getMutableDeclSpec().ClearStorageClassSpecs();
896  }
897
898  if (!isFunc &&
899      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
900      D.getNumTypeObjects() == 0) {
901    // Check also for this case:
902    //
903    // typedef int f();
904    // f a;
905    //
906    QualType TDType = GetTypeFromParser(DS.getTypeRep());
907    isFunc = TDType->isFunctionType();
908  }
909
910  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
911                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
912                      !isFunc);
913
914  Decl *Member;
915  if (isInstField) {
916    // FIXME: Check for template parameters!
917    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
918                         AS);
919    assert(Member && "HandleField never returns null");
920  } else {
921    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
922               .getAs<Decl>();
923    if (!Member) {
924      if (BitWidth) DeleteExpr(BitWidth);
925      return DeclPtrTy();
926    }
927
928    // Non-instance-fields can't have a bitfield.
929    if (BitWidth) {
930      if (Member->isInvalidDecl()) {
931        // don't emit another diagnostic.
932      } else if (isa<VarDecl>(Member)) {
933        // C++ 9.6p3: A bit-field shall not be a static member.
934        // "static member 'A' cannot be a bit-field"
935        Diag(Loc, diag::err_static_not_bitfield)
936          << Name << BitWidth->getSourceRange();
937      } else if (isa<TypedefDecl>(Member)) {
938        // "typedef member 'x' cannot be a bit-field"
939        Diag(Loc, diag::err_typedef_not_bitfield)
940          << Name << BitWidth->getSourceRange();
941      } else {
942        // A function typedef ("typedef int f(); f a;").
943        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
944        Diag(Loc, diag::err_not_integral_type_bitfield)
945          << Name << cast<ValueDecl>(Member)->getType()
946          << BitWidth->getSourceRange();
947      }
948
949      DeleteExpr(BitWidth);
950      BitWidth = 0;
951      Member->setInvalidDecl();
952    }
953
954    Member->setAccess(AS);
955
956    // If we have declared a member function template, set the access of the
957    // templated declaration as well.
958    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
959      FunTmpl->getTemplatedDecl()->setAccess(AS);
960  }
961
962  assert((Name || isInstField) && "No identifier for non-field ?");
963
964  if (Init)
965    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
966  if (Deleted) // FIXME: Source location is not very good.
967    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
968
969  if (isInstField) {
970    FieldCollector->Add(cast<FieldDecl>(Member));
971    return DeclPtrTy();
972  }
973  return DeclPtrTy::make(Member);
974}
975
976/// \brief Find the direct and/or virtual base specifiers that
977/// correspond to the given base type, for use in base initialization
978/// within a constructor.
979static bool FindBaseInitializer(Sema &SemaRef,
980                                CXXRecordDecl *ClassDecl,
981                                QualType BaseType,
982                                const CXXBaseSpecifier *&DirectBaseSpec,
983                                const CXXBaseSpecifier *&VirtualBaseSpec) {
984  // First, check for a direct base class.
985  DirectBaseSpec = 0;
986  for (CXXRecordDecl::base_class_const_iterator Base
987         = ClassDecl->bases_begin();
988       Base != ClassDecl->bases_end(); ++Base) {
989    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
990      // We found a direct base of this type. That's what we're
991      // initializing.
992      DirectBaseSpec = &*Base;
993      break;
994    }
995  }
996
997  // Check for a virtual base class.
998  // FIXME: We might be able to short-circuit this if we know in advance that
999  // there are no virtual bases.
1000  VirtualBaseSpec = 0;
1001  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1002    // We haven't found a base yet; search the class hierarchy for a
1003    // virtual base class.
1004    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1005                       /*DetectVirtual=*/false);
1006    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1007                              BaseType, Paths)) {
1008      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1009           Path != Paths.end(); ++Path) {
1010        if (Path->back().Base->isVirtual()) {
1011          VirtualBaseSpec = Path->back().Base;
1012          break;
1013        }
1014      }
1015    }
1016  }
1017
1018  return DirectBaseSpec || VirtualBaseSpec;
1019}
1020
1021/// ActOnMemInitializer - Handle a C++ member initializer.
1022Sema::MemInitResult
1023Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1024                          Scope *S,
1025                          CXXScopeSpec &SS,
1026                          IdentifierInfo *MemberOrBase,
1027                          TypeTy *TemplateTypeTy,
1028                          SourceLocation IdLoc,
1029                          SourceLocation LParenLoc,
1030                          ExprTy **Args, unsigned NumArgs,
1031                          SourceLocation *CommaLocs,
1032                          SourceLocation RParenLoc) {
1033  if (!ConstructorD)
1034    return true;
1035
1036  AdjustDeclIfTemplate(ConstructorD);
1037
1038  CXXConstructorDecl *Constructor
1039    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1040  if (!Constructor) {
1041    // The user wrote a constructor initializer on a function that is
1042    // not a C++ constructor. Ignore the error for now, because we may
1043    // have more member initializers coming; we'll diagnose it just
1044    // once in ActOnMemInitializers.
1045    return true;
1046  }
1047
1048  CXXRecordDecl *ClassDecl = Constructor->getParent();
1049
1050  // C++ [class.base.init]p2:
1051  //   Names in a mem-initializer-id are looked up in the scope of the
1052  //   constructor’s class and, if not found in that scope, are looked
1053  //   up in the scope containing the constructor’s
1054  //   definition. [Note: if the constructor’s class contains a member
1055  //   with the same name as a direct or virtual base class of the
1056  //   class, a mem-initializer-id naming the member or base class and
1057  //   composed of a single identifier refers to the class member. A
1058  //   mem-initializer-id for the hidden base class may be specified
1059  //   using a qualified name. ]
1060  if (!SS.getScopeRep() && !TemplateTypeTy) {
1061    // Look for a member, first.
1062    FieldDecl *Member = 0;
1063    DeclContext::lookup_result Result
1064      = ClassDecl->lookup(MemberOrBase);
1065    if (Result.first != Result.second)
1066      Member = dyn_cast<FieldDecl>(*Result.first);
1067
1068    // FIXME: Handle members of an anonymous union.
1069
1070    if (Member)
1071      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1072                                    LParenLoc, RParenLoc);
1073  }
1074  // It didn't name a member, so see if it names a class.
1075  QualType BaseType;
1076  TypeSourceInfo *TInfo = 0;
1077
1078  if (TemplateTypeTy) {
1079    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1080  } else {
1081    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1082    LookupParsedName(R, S, &SS);
1083
1084    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1085    if (!TyD) {
1086      if (R.isAmbiguous()) return true;
1087
1088      // We don't want access-control diagnostics here.
1089      R.suppressDiagnostics();
1090
1091      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1092        bool NotUnknownSpecialization = false;
1093        DeclContext *DC = computeDeclContext(SS, false);
1094        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1095          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1096
1097        if (!NotUnknownSpecialization) {
1098          // When the scope specifier can refer to a member of an unknown
1099          // specialization, we take it as a type name.
1100          BaseType = CheckTypenameType(ETK_None,
1101                                       (NestedNameSpecifier *)SS.getScopeRep(),
1102                                       *MemberOrBase, SS.getRange());
1103          if (BaseType.isNull())
1104            return true;
1105
1106          R.clear();
1107        }
1108      }
1109
1110      // If no results were found, try to correct typos.
1111      if (R.empty() && BaseType.isNull() &&
1112          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1113          R.isSingleResult()) {
1114        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1115          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1116            // We have found a non-static data member with a similar
1117            // name to what was typed; complain and initialize that
1118            // member.
1119            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1120              << MemberOrBase << true << R.getLookupName()
1121              << FixItHint::CreateReplacement(R.getNameLoc(),
1122                                              R.getLookupName().getAsString());
1123            Diag(Member->getLocation(), diag::note_previous_decl)
1124              << Member->getDeclName();
1125
1126            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1127                                          LParenLoc, RParenLoc);
1128          }
1129        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1130          const CXXBaseSpecifier *DirectBaseSpec;
1131          const CXXBaseSpecifier *VirtualBaseSpec;
1132          if (FindBaseInitializer(*this, ClassDecl,
1133                                  Context.getTypeDeclType(Type),
1134                                  DirectBaseSpec, VirtualBaseSpec)) {
1135            // We have found a direct or virtual base class with a
1136            // similar name to what was typed; complain and initialize
1137            // that base class.
1138            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1139              << MemberOrBase << false << R.getLookupName()
1140              << FixItHint::CreateReplacement(R.getNameLoc(),
1141                                              R.getLookupName().getAsString());
1142
1143            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1144                                                             : VirtualBaseSpec;
1145            Diag(BaseSpec->getSourceRange().getBegin(),
1146                 diag::note_base_class_specified_here)
1147              << BaseSpec->getType()
1148              << BaseSpec->getSourceRange();
1149
1150            TyD = Type;
1151          }
1152        }
1153      }
1154
1155      if (!TyD && BaseType.isNull()) {
1156        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1157          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1158        return true;
1159      }
1160    }
1161
1162    if (BaseType.isNull()) {
1163      BaseType = Context.getTypeDeclType(TyD);
1164      if (SS.isSet()) {
1165        NestedNameSpecifier *Qualifier =
1166          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1167
1168        // FIXME: preserve source range information
1169        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1170      }
1171    }
1172  }
1173
1174  if (!TInfo)
1175    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1176
1177  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1178                              LParenLoc, RParenLoc, ClassDecl);
1179}
1180
1181/// Checks an initializer expression for use of uninitialized fields, such as
1182/// containing the field that is being initialized. Returns true if there is an
1183/// uninitialized field was used an updates the SourceLocation parameter; false
1184/// otherwise.
1185static bool InitExprContainsUninitializedFields(const Stmt* S,
1186                                                const FieldDecl* LhsField,
1187                                                SourceLocation* L) {
1188  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1189  if (ME) {
1190    const NamedDecl* RhsField = ME->getMemberDecl();
1191    if (RhsField == LhsField) {
1192      // Initializing a field with itself. Throw a warning.
1193      // But wait; there are exceptions!
1194      // Exception #1:  The field may not belong to this record.
1195      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1196      const Expr* base = ME->getBase();
1197      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1198        // Even though the field matches, it does not belong to this record.
1199        return false;
1200      }
1201      // None of the exceptions triggered; return true to indicate an
1202      // uninitialized field was used.
1203      *L = ME->getMemberLoc();
1204      return true;
1205    }
1206  }
1207  bool found = false;
1208  for (Stmt::const_child_iterator it = S->child_begin();
1209       it != S->child_end() && found == false;
1210       ++it) {
1211    if (isa<CallExpr>(S)) {
1212      // Do not descend into function calls or constructors, as the use
1213      // of an uninitialized field may be valid. One would have to inspect
1214      // the contents of the function/ctor to determine if it is safe or not.
1215      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1216      // may be safe, depending on what the function/ctor does.
1217      continue;
1218    }
1219    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1220  }
1221  return found;
1222}
1223
1224Sema::MemInitResult
1225Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1226                             unsigned NumArgs, SourceLocation IdLoc,
1227                             SourceLocation LParenLoc,
1228                             SourceLocation RParenLoc) {
1229  // Diagnose value-uses of fields to initialize themselves, e.g.
1230  //   foo(foo)
1231  // where foo is not also a parameter to the constructor.
1232  // TODO: implement -Wuninitialized and fold this into that framework.
1233  for (unsigned i = 0; i < NumArgs; ++i) {
1234    SourceLocation L;
1235    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1236      // FIXME: Return true in the case when other fields are used before being
1237      // uninitialized. For example, let this field be the i'th field. When
1238      // initializing the i'th field, throw a warning if any of the >= i'th
1239      // fields are used, as they are not yet initialized.
1240      // Right now we are only handling the case where the i'th field uses
1241      // itself in its initializer.
1242      Diag(L, diag::warn_field_is_uninit);
1243    }
1244  }
1245
1246  bool HasDependentArg = false;
1247  for (unsigned i = 0; i < NumArgs; i++)
1248    HasDependentArg |= Args[i]->isTypeDependent();
1249
1250  QualType FieldType = Member->getType();
1251  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1252    FieldType = Array->getElementType();
1253  if (FieldType->isDependentType() || HasDependentArg) {
1254    // Can't check initialization for a member of dependent type or when
1255    // any of the arguments are type-dependent expressions.
1256    OwningExprResult Init
1257      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1258                                          RParenLoc));
1259
1260    // Erase any temporaries within this evaluation context; we're not
1261    // going to track them in the AST, since we'll be rebuilding the
1262    // ASTs during template instantiation.
1263    ExprTemporaries.erase(
1264              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1265                          ExprTemporaries.end());
1266
1267    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1268                                                    LParenLoc,
1269                                                    Init.takeAs<Expr>(),
1270                                                    RParenLoc);
1271
1272  }
1273
1274  if (Member->isInvalidDecl())
1275    return true;
1276
1277  // Initialize the member.
1278  InitializedEntity MemberEntity =
1279    InitializedEntity::InitializeMember(Member, 0);
1280  InitializationKind Kind =
1281    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1282
1283  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1284
1285  OwningExprResult MemberInit =
1286    InitSeq.Perform(*this, MemberEntity, Kind,
1287                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1288  if (MemberInit.isInvalid())
1289    return true;
1290
1291  // C++0x [class.base.init]p7:
1292  //   The initialization of each base and member constitutes a
1293  //   full-expression.
1294  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1295  if (MemberInit.isInvalid())
1296    return true;
1297
1298  // If we are in a dependent context, template instantiation will
1299  // perform this type-checking again. Just save the arguments that we
1300  // received in a ParenListExpr.
1301  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1302  // of the information that we have about the member
1303  // initializer. However, deconstructing the ASTs is a dicey process,
1304  // and this approach is far more likely to get the corner cases right.
1305  if (CurContext->isDependentContext()) {
1306    // Bump the reference count of all of the arguments.
1307    for (unsigned I = 0; I != NumArgs; ++I)
1308      Args[I]->Retain();
1309
1310    OwningExprResult Init
1311      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1312                                          RParenLoc));
1313    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1314                                                    LParenLoc,
1315                                                    Init.takeAs<Expr>(),
1316                                                    RParenLoc);
1317  }
1318
1319  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1320                                                  LParenLoc,
1321                                                  MemberInit.takeAs<Expr>(),
1322                                                  RParenLoc);
1323}
1324
1325Sema::MemInitResult
1326Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1327                           Expr **Args, unsigned NumArgs,
1328                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1329                           CXXRecordDecl *ClassDecl) {
1330  bool HasDependentArg = false;
1331  for (unsigned i = 0; i < NumArgs; i++)
1332    HasDependentArg |= Args[i]->isTypeDependent();
1333
1334  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1335  if (BaseType->isDependentType() || HasDependentArg) {
1336    // Can't check initialization for a base of dependent type or when
1337    // any of the arguments are type-dependent expressions.
1338    OwningExprResult BaseInit
1339      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1340                                          RParenLoc));
1341
1342    // Erase any temporaries within this evaluation context; we're not
1343    // going to track them in the AST, since we'll be rebuilding the
1344    // ASTs during template instantiation.
1345    ExprTemporaries.erase(
1346              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1347                          ExprTemporaries.end());
1348
1349    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1350                                                    /*IsVirtual=*/false,
1351                                                    LParenLoc,
1352                                                    BaseInit.takeAs<Expr>(),
1353                                                    RParenLoc);
1354  }
1355
1356  if (!BaseType->isRecordType())
1357    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1358             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1359
1360  // C++ [class.base.init]p2:
1361  //   [...] Unless the mem-initializer-id names a nonstatic data
1362  //   member of the constructor’s class or a direct or virtual base
1363  //   of that class, the mem-initializer is ill-formed. A
1364  //   mem-initializer-list can initialize a base class using any
1365  //   name that denotes that base class type.
1366
1367  // Check for direct and virtual base classes.
1368  const CXXBaseSpecifier *DirectBaseSpec = 0;
1369  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1370  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1371                      VirtualBaseSpec);
1372
1373  // C++ [base.class.init]p2:
1374  //   If a mem-initializer-id is ambiguous because it designates both
1375  //   a direct non-virtual base class and an inherited virtual base
1376  //   class, the mem-initializer is ill-formed.
1377  if (DirectBaseSpec && VirtualBaseSpec)
1378    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1379      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1380  // C++ [base.class.init]p2:
1381  // Unless the mem-initializer-id names a nonstatic data membeer of the
1382  // constructor's class ot a direst or virtual base of that class, the
1383  // mem-initializer is ill-formed.
1384  if (!DirectBaseSpec && !VirtualBaseSpec)
1385    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1386      << BaseType << ClassDecl->getNameAsCString()
1387      << BaseTInfo->getTypeLoc().getSourceRange();
1388
1389  CXXBaseSpecifier *BaseSpec
1390    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1391  if (!BaseSpec)
1392    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1393
1394  // Initialize the base.
1395  InitializedEntity BaseEntity =
1396    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1397  InitializationKind Kind =
1398    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1399
1400  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1401
1402  OwningExprResult BaseInit =
1403    InitSeq.Perform(*this, BaseEntity, Kind,
1404                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1405  if (BaseInit.isInvalid())
1406    return true;
1407
1408  // C++0x [class.base.init]p7:
1409  //   The initialization of each base and member constitutes a
1410  //   full-expression.
1411  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1412  if (BaseInit.isInvalid())
1413    return true;
1414
1415  // If we are in a dependent context, template instantiation will
1416  // perform this type-checking again. Just save the arguments that we
1417  // received in a ParenListExpr.
1418  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1419  // of the information that we have about the base
1420  // initializer. However, deconstructing the ASTs is a dicey process,
1421  // and this approach is far more likely to get the corner cases right.
1422  if (CurContext->isDependentContext()) {
1423    // Bump the reference count of all of the arguments.
1424    for (unsigned I = 0; I != NumArgs; ++I)
1425      Args[I]->Retain();
1426
1427    OwningExprResult Init
1428      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1429                                          RParenLoc));
1430    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1431                                                    BaseSpec->isVirtual(),
1432                                                    LParenLoc,
1433                                                    Init.takeAs<Expr>(),
1434                                                    RParenLoc);
1435  }
1436
1437  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1438                                                  BaseSpec->isVirtual(),
1439                                                  LParenLoc,
1440                                                  BaseInit.takeAs<Expr>(),
1441                                                  RParenLoc);
1442}
1443
1444/// ImplicitInitializerKind - How an implicit base or member initializer should
1445/// initialize its base or member.
1446enum ImplicitInitializerKind {
1447  IIK_Default,
1448  IIK_Copy,
1449  IIK_Move
1450};
1451
1452static bool
1453BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1454                             ImplicitInitializerKind ImplicitInitKind,
1455                             CXXBaseSpecifier *BaseSpec,
1456                             bool IsInheritedVirtualBase,
1457                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1458  InitializedEntity InitEntity
1459    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1460                                        IsInheritedVirtualBase);
1461
1462  Sema::OwningExprResult BaseInit(SemaRef);
1463
1464  switch (ImplicitInitKind) {
1465  case IIK_Default: {
1466    InitializationKind InitKind
1467      = InitializationKind::CreateDefault(Constructor->getLocation());
1468    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1469    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1470                               Sema::MultiExprArg(SemaRef, 0, 0));
1471    break;
1472  }
1473
1474  case IIK_Copy: {
1475    ParmVarDecl *Param = Constructor->getParamDecl(0);
1476    QualType ParamType = Param->getType().getNonReferenceType();
1477
1478    Expr *CopyCtorArg =
1479      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1480                          SourceLocation(), ParamType, 0);
1481
1482    InitializationKind InitKind
1483      = InitializationKind::CreateDirect(Constructor->getLocation(),
1484                                         SourceLocation(), SourceLocation());
1485    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1486                                   &CopyCtorArg, 1);
1487    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1488                               Sema::MultiExprArg(SemaRef,
1489                                                  (void**)&CopyCtorArg, 1));
1490    break;
1491  }
1492
1493  case IIK_Move:
1494    assert(false && "Unhandled initializer kind!");
1495  }
1496
1497  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1498  if (BaseInit.isInvalid())
1499    return true;
1500
1501  CXXBaseInit =
1502    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1503               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1504                                                        SourceLocation()),
1505                                             BaseSpec->isVirtual(),
1506                                             SourceLocation(),
1507                                             BaseInit.takeAs<Expr>(),
1508                                             SourceLocation());
1509
1510  return false;
1511}
1512
1513static bool
1514BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1515                               ImplicitInitializerKind ImplicitInitKind,
1516                               FieldDecl *Field,
1517                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1518  if (ImplicitInitKind == IIK_Copy) {
1519    ParmVarDecl *Param = Constructor->getParamDecl(0);
1520    QualType ParamType = Param->getType().getNonReferenceType();
1521
1522    Expr *MemberExprBase =
1523      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1524                          SourceLocation(), ParamType, 0);
1525
1526
1527    Expr *CopyCtorArg =
1528      MemberExpr::Create(SemaRef.Context, MemberExprBase, /*IsArrow=*/false,
1529                         0, SourceRange(), Field,
1530                         DeclAccessPair::make(Field, Field->getAccess()),
1531                         SourceLocation(), 0,
1532                         Field->getType().getNonReferenceType());
1533
1534    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1535    InitializationKind InitKind =
1536      InitializationKind::CreateDirect(Constructor->getLocation(),
1537                                       SourceLocation(), SourceLocation());
1538
1539    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1540                                   &CopyCtorArg, 1);
1541
1542    Sema::OwningExprResult MemberInit =
1543      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1544                      Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArg, 1), 0);
1545    if (MemberInit.isInvalid())
1546      return true;
1547
1548    CXXMemberInit = 0;
1549    return false;
1550  }
1551
1552  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1553
1554  QualType FieldBaseElementType =
1555    SemaRef.Context.getBaseElementType(Field->getType());
1556
1557  if (FieldBaseElementType->isRecordType()) {
1558    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1559    InitializationKind InitKind =
1560      InitializationKind::CreateDefault(Constructor->getLocation());
1561
1562    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1563    Sema::OwningExprResult MemberInit =
1564      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1565                      Sema::MultiExprArg(SemaRef, 0, 0));
1566    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1567    if (MemberInit.isInvalid())
1568      return true;
1569
1570    CXXMemberInit =
1571      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1572                                                       Field, SourceLocation(),
1573                                                       SourceLocation(),
1574                                                      MemberInit.takeAs<Expr>(),
1575                                                       SourceLocation());
1576    return false;
1577  }
1578
1579  if (FieldBaseElementType->isReferenceType()) {
1580    SemaRef.Diag(Constructor->getLocation(),
1581                 diag::err_uninitialized_member_in_ctor)
1582    << (int)Constructor->isImplicit()
1583    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1584    << 0 << Field->getDeclName();
1585    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1586    return true;
1587  }
1588
1589  if (FieldBaseElementType.isConstQualified()) {
1590    SemaRef.Diag(Constructor->getLocation(),
1591                 diag::err_uninitialized_member_in_ctor)
1592    << (int)Constructor->isImplicit()
1593    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1594    << 1 << Field->getDeclName();
1595    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1596    return true;
1597  }
1598
1599  // Nothing to initialize.
1600  CXXMemberInit = 0;
1601  return false;
1602}
1603
1604bool
1605Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1606                                  CXXBaseOrMemberInitializer **Initializers,
1607                                  unsigned NumInitializers,
1608                                  bool AnyErrors) {
1609  if (Constructor->getDeclContext()->isDependentContext()) {
1610    // Just store the initializers as written, they will be checked during
1611    // instantiation.
1612    if (NumInitializers > 0) {
1613      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1614      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1615        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1616      memcpy(baseOrMemberInitializers, Initializers,
1617             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1618      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1619    }
1620
1621    return false;
1622  }
1623
1624  ImplicitInitializerKind ImplicitInitKind = IIK_Default;
1625
1626  // FIXME: Handle implicit move constructors.
1627  if (Constructor->isImplicit() && Constructor->isCopyConstructor())
1628    ImplicitInitKind = IIK_Copy;
1629
1630  // We need to build the initializer AST according to order of construction
1631  // and not what user specified in the Initializers list.
1632  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1633  if (!ClassDecl)
1634    return true;
1635
1636  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1637  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1638  bool HadError = false;
1639
1640  for (unsigned i = 0; i < NumInitializers; i++) {
1641    CXXBaseOrMemberInitializer *Member = Initializers[i];
1642
1643    if (Member->isBaseInitializer())
1644      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1645    else
1646      AllBaseFields[Member->getMember()] = Member;
1647  }
1648
1649  // Keep track of the direct virtual bases.
1650  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1651  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1652       E = ClassDecl->bases_end(); I != E; ++I) {
1653    if (I->isVirtual())
1654      DirectVBases.insert(I);
1655  }
1656
1657  // Push virtual bases before others.
1658  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1659       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1660
1661    if (CXXBaseOrMemberInitializer *Value
1662        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1663      AllToInit.push_back(Value);
1664    } else if (!AnyErrors) {
1665      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1666      CXXBaseOrMemberInitializer *CXXBaseInit;
1667      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1668                                       VBase, IsInheritedVirtualBase,
1669                                       CXXBaseInit)) {
1670        HadError = true;
1671        continue;
1672      }
1673
1674      AllToInit.push_back(CXXBaseInit);
1675    }
1676  }
1677
1678  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1679       E = ClassDecl->bases_end(); Base != E; ++Base) {
1680    // Virtuals are in the virtual base list and already constructed.
1681    if (Base->isVirtual())
1682      continue;
1683
1684    if (CXXBaseOrMemberInitializer *Value
1685          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1686      AllToInit.push_back(Value);
1687    } else if (!AnyErrors) {
1688      CXXBaseOrMemberInitializer *CXXBaseInit;
1689      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1690                                       Base, /*IsInheritedVirtualBase=*/false,
1691                                       CXXBaseInit)) {
1692        HadError = true;
1693        continue;
1694      }
1695
1696      AllToInit.push_back(CXXBaseInit);
1697    }
1698  }
1699
1700  // non-static data members.
1701  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1702       E = ClassDecl->field_end(); Field != E; ++Field) {
1703    if ((*Field)->isAnonymousStructOrUnion()) {
1704      if (const RecordType *FieldClassType =
1705          Field->getType()->getAs<RecordType>()) {
1706        CXXRecordDecl *FieldClassDecl
1707          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1708        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1709            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1710          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1711            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1712            // set to the anonymous union data member used in the initializer
1713            // list.
1714            Value->setMember(*Field);
1715            Value->setAnonUnionMember(*FA);
1716            AllToInit.push_back(Value);
1717            break;
1718          }
1719        }
1720      }
1721      continue;
1722    }
1723    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1724      AllToInit.push_back(Value);
1725      continue;
1726    }
1727
1728    if (AnyErrors)
1729      continue;
1730
1731    CXXBaseOrMemberInitializer *Member;
1732    if (BuildImplicitMemberInitializer(*this, Constructor, ImplicitInitKind,
1733                                       *Field, Member)) {
1734      HadError = true;
1735      continue;
1736    }
1737
1738    // If the member doesn't need to be initialized, it will be null.
1739    if (Member)
1740      AllToInit.push_back(Member);
1741  }
1742
1743  NumInitializers = AllToInit.size();
1744  if (NumInitializers > 0) {
1745    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1746    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1747      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1748    memcpy(baseOrMemberInitializers, AllToInit.data(),
1749           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1750    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1751
1752    // Constructors implicitly reference the base and member
1753    // destructors.
1754    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1755                                           Constructor->getParent());
1756  }
1757
1758  return HadError;
1759}
1760
1761static void *GetKeyForTopLevelField(FieldDecl *Field) {
1762  // For anonymous unions, use the class declaration as the key.
1763  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1764    if (RT->getDecl()->isAnonymousStructOrUnion())
1765      return static_cast<void *>(RT->getDecl());
1766  }
1767  return static_cast<void *>(Field);
1768}
1769
1770static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1771  return Context.getCanonicalType(BaseType).getTypePtr();
1772}
1773
1774static void *GetKeyForMember(ASTContext &Context,
1775                             CXXBaseOrMemberInitializer *Member,
1776                             bool MemberMaybeAnon = false) {
1777  if (!Member->isMemberInitializer())
1778    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1779
1780  // For fields injected into the class via declaration of an anonymous union,
1781  // use its anonymous union class declaration as the unique key.
1782  FieldDecl *Field = Member->getMember();
1783
1784  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1785  // data member of the class. Data member used in the initializer list is
1786  // in AnonUnionMember field.
1787  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1788    Field = Member->getAnonUnionMember();
1789
1790  // If the field is a member of an anonymous struct or union, our key
1791  // is the anonymous record decl that's a direct child of the class.
1792  RecordDecl *RD = Field->getParent();
1793  if (RD->isAnonymousStructOrUnion()) {
1794    while (true) {
1795      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1796      if (Parent->isAnonymousStructOrUnion())
1797        RD = Parent;
1798      else
1799        break;
1800    }
1801
1802    return static_cast<void *>(RD);
1803  }
1804
1805  return static_cast<void *>(Field);
1806}
1807
1808static void
1809DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1810                                  const CXXConstructorDecl *Constructor,
1811                                  CXXBaseOrMemberInitializer **Inits,
1812                                  unsigned NumInits) {
1813  if (Constructor->getDeclContext()->isDependentContext())
1814    return;
1815
1816  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1817        == Diagnostic::Ignored)
1818    return;
1819
1820  // Build the list of bases and members in the order that they'll
1821  // actually be initialized.  The explicit initializers should be in
1822  // this same order but may be missing things.
1823  llvm::SmallVector<const void*, 32> IdealInitKeys;
1824
1825  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1826
1827  // 1. Virtual bases.
1828  for (CXXRecordDecl::base_class_const_iterator VBase =
1829       ClassDecl->vbases_begin(),
1830       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1831    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1832
1833  // 2. Non-virtual bases.
1834  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1835       E = ClassDecl->bases_end(); Base != E; ++Base) {
1836    if (Base->isVirtual())
1837      continue;
1838    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1839  }
1840
1841  // 3. Direct fields.
1842  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1843       E = ClassDecl->field_end(); Field != E; ++Field)
1844    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1845
1846  unsigned NumIdealInits = IdealInitKeys.size();
1847  unsigned IdealIndex = 0;
1848
1849  CXXBaseOrMemberInitializer *PrevInit = 0;
1850  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1851    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1852    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1853
1854    // Scan forward to try to find this initializer in the idealized
1855    // initializers list.
1856    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1857      if (InitKey == IdealInitKeys[IdealIndex])
1858        break;
1859
1860    // If we didn't find this initializer, it must be because we
1861    // scanned past it on a previous iteration.  That can only
1862    // happen if we're out of order;  emit a warning.
1863    if (IdealIndex == NumIdealInits) {
1864      assert(PrevInit && "initializer not found in initializer list");
1865
1866      Sema::SemaDiagnosticBuilder D =
1867        SemaRef.Diag(PrevInit->getSourceLocation(),
1868                     diag::warn_initializer_out_of_order);
1869
1870      if (PrevInit->isMemberInitializer())
1871        D << 0 << PrevInit->getMember()->getDeclName();
1872      else
1873        D << 1 << PrevInit->getBaseClassInfo()->getType();
1874
1875      if (Init->isMemberInitializer())
1876        D << 0 << Init->getMember()->getDeclName();
1877      else
1878        D << 1 << Init->getBaseClassInfo()->getType();
1879
1880      // Move back to the initializer's location in the ideal list.
1881      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1882        if (InitKey == IdealInitKeys[IdealIndex])
1883          break;
1884
1885      assert(IdealIndex != NumIdealInits &&
1886             "initializer not found in initializer list");
1887    }
1888
1889    PrevInit = Init;
1890  }
1891}
1892
1893namespace {
1894bool CheckRedundantInit(Sema &S,
1895                        CXXBaseOrMemberInitializer *Init,
1896                        CXXBaseOrMemberInitializer *&PrevInit) {
1897  if (!PrevInit) {
1898    PrevInit = Init;
1899    return false;
1900  }
1901
1902  if (FieldDecl *Field = Init->getMember())
1903    S.Diag(Init->getSourceLocation(),
1904           diag::err_multiple_mem_initialization)
1905      << Field->getDeclName()
1906      << Init->getSourceRange();
1907  else {
1908    Type *BaseClass = Init->getBaseClass();
1909    assert(BaseClass && "neither field nor base");
1910    S.Diag(Init->getSourceLocation(),
1911           diag::err_multiple_base_initialization)
1912      << QualType(BaseClass, 0)
1913      << Init->getSourceRange();
1914  }
1915  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1916    << 0 << PrevInit->getSourceRange();
1917
1918  return true;
1919}
1920
1921typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1922typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1923
1924bool CheckRedundantUnionInit(Sema &S,
1925                             CXXBaseOrMemberInitializer *Init,
1926                             RedundantUnionMap &Unions) {
1927  FieldDecl *Field = Init->getMember();
1928  RecordDecl *Parent = Field->getParent();
1929  if (!Parent->isAnonymousStructOrUnion())
1930    return false;
1931
1932  NamedDecl *Child = Field;
1933  do {
1934    if (Parent->isUnion()) {
1935      UnionEntry &En = Unions[Parent];
1936      if (En.first && En.first != Child) {
1937        S.Diag(Init->getSourceLocation(),
1938               diag::err_multiple_mem_union_initialization)
1939          << Field->getDeclName()
1940          << Init->getSourceRange();
1941        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1942          << 0 << En.second->getSourceRange();
1943        return true;
1944      } else if (!En.first) {
1945        En.first = Child;
1946        En.second = Init;
1947      }
1948    }
1949
1950    Child = Parent;
1951    Parent = cast<RecordDecl>(Parent->getDeclContext());
1952  } while (Parent->isAnonymousStructOrUnion());
1953
1954  return false;
1955}
1956}
1957
1958/// ActOnMemInitializers - Handle the member initializers for a constructor.
1959void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1960                                SourceLocation ColonLoc,
1961                                MemInitTy **meminits, unsigned NumMemInits,
1962                                bool AnyErrors) {
1963  if (!ConstructorDecl)
1964    return;
1965
1966  AdjustDeclIfTemplate(ConstructorDecl);
1967
1968  CXXConstructorDecl *Constructor
1969    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1970
1971  if (!Constructor) {
1972    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1973    return;
1974  }
1975
1976  CXXBaseOrMemberInitializer **MemInits =
1977    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1978
1979  // Mapping for the duplicate initializers check.
1980  // For member initializers, this is keyed with a FieldDecl*.
1981  // For base initializers, this is keyed with a Type*.
1982  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1983
1984  // Mapping for the inconsistent anonymous-union initializers check.
1985  RedundantUnionMap MemberUnions;
1986
1987  bool HadError = false;
1988  for (unsigned i = 0; i < NumMemInits; i++) {
1989    CXXBaseOrMemberInitializer *Init = MemInits[i];
1990
1991    if (Init->isMemberInitializer()) {
1992      FieldDecl *Field = Init->getMember();
1993      if (CheckRedundantInit(*this, Init, Members[Field]) ||
1994          CheckRedundantUnionInit(*this, Init, MemberUnions))
1995        HadError = true;
1996    } else {
1997      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
1998      if (CheckRedundantInit(*this, Init, Members[Key]))
1999        HadError = true;
2000    }
2001  }
2002
2003  if (HadError)
2004    return;
2005
2006  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2007
2008  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2009}
2010
2011void
2012Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2013                                             CXXRecordDecl *ClassDecl) {
2014  // Ignore dependent contexts.
2015  if (ClassDecl->isDependentContext())
2016    return;
2017
2018  // FIXME: all the access-control diagnostics are positioned on the
2019  // field/base declaration.  That's probably good; that said, the
2020  // user might reasonably want to know why the destructor is being
2021  // emitted, and we currently don't say.
2022
2023  // Non-static data members.
2024  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2025       E = ClassDecl->field_end(); I != E; ++I) {
2026    FieldDecl *Field = *I;
2027
2028    QualType FieldType = Context.getBaseElementType(Field->getType());
2029
2030    const RecordType* RT = FieldType->getAs<RecordType>();
2031    if (!RT)
2032      continue;
2033
2034    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2035    if (FieldClassDecl->hasTrivialDestructor())
2036      continue;
2037
2038    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2039    CheckDestructorAccess(Field->getLocation(), Dtor,
2040                          PDiag(diag::err_access_dtor_field)
2041                            << Field->getDeclName()
2042                            << FieldType);
2043
2044    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2045  }
2046
2047  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2048
2049  // Bases.
2050  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2051       E = ClassDecl->bases_end(); Base != E; ++Base) {
2052    // Bases are always records in a well-formed non-dependent class.
2053    const RecordType *RT = Base->getType()->getAs<RecordType>();
2054
2055    // Remember direct virtual bases.
2056    if (Base->isVirtual())
2057      DirectVirtualBases.insert(RT);
2058
2059    // Ignore trivial destructors.
2060    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2061    if (BaseClassDecl->hasTrivialDestructor())
2062      continue;
2063
2064    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2065
2066    // FIXME: caret should be on the start of the class name
2067    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2068                          PDiag(diag::err_access_dtor_base)
2069                            << Base->getType()
2070                            << Base->getSourceRange());
2071
2072    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2073  }
2074
2075  // Virtual bases.
2076  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2077       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2078
2079    // Bases are always records in a well-formed non-dependent class.
2080    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2081
2082    // Ignore direct virtual bases.
2083    if (DirectVirtualBases.count(RT))
2084      continue;
2085
2086    // Ignore trivial destructors.
2087    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2088    if (BaseClassDecl->hasTrivialDestructor())
2089      continue;
2090
2091    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2092    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2093                          PDiag(diag::err_access_dtor_vbase)
2094                            << VBase->getType());
2095
2096    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2097  }
2098}
2099
2100void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2101  if (!CDtorDecl)
2102    return;
2103
2104  if (CXXConstructorDecl *Constructor
2105      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2106    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2107}
2108
2109bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2110                                  unsigned DiagID, AbstractDiagSelID SelID,
2111                                  const CXXRecordDecl *CurrentRD) {
2112  if (SelID == -1)
2113    return RequireNonAbstractType(Loc, T,
2114                                  PDiag(DiagID), CurrentRD);
2115  else
2116    return RequireNonAbstractType(Loc, T,
2117                                  PDiag(DiagID) << SelID, CurrentRD);
2118}
2119
2120bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2121                                  const PartialDiagnostic &PD,
2122                                  const CXXRecordDecl *CurrentRD) {
2123  if (!getLangOptions().CPlusPlus)
2124    return false;
2125
2126  if (const ArrayType *AT = Context.getAsArrayType(T))
2127    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2128                                  CurrentRD);
2129
2130  if (const PointerType *PT = T->getAs<PointerType>()) {
2131    // Find the innermost pointer type.
2132    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2133      PT = T;
2134
2135    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2136      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2137  }
2138
2139  const RecordType *RT = T->getAs<RecordType>();
2140  if (!RT)
2141    return false;
2142
2143  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2144
2145  if (CurrentRD && CurrentRD != RD)
2146    return false;
2147
2148  // FIXME: is this reasonable?  It matches current behavior, but....
2149  if (!RD->getDefinition())
2150    return false;
2151
2152  if (!RD->isAbstract())
2153    return false;
2154
2155  Diag(Loc, PD) << RD->getDeclName();
2156
2157  // Check if we've already emitted the list of pure virtual functions for this
2158  // class.
2159  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2160    return true;
2161
2162  CXXFinalOverriderMap FinalOverriders;
2163  RD->getFinalOverriders(FinalOverriders);
2164
2165  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2166                                   MEnd = FinalOverriders.end();
2167       M != MEnd;
2168       ++M) {
2169    for (OverridingMethods::iterator SO = M->second.begin(),
2170                                  SOEnd = M->second.end();
2171         SO != SOEnd; ++SO) {
2172      // C++ [class.abstract]p4:
2173      //   A class is abstract if it contains or inherits at least one
2174      //   pure virtual function for which the final overrider is pure
2175      //   virtual.
2176
2177      //
2178      if (SO->second.size() != 1)
2179        continue;
2180
2181      if (!SO->second.front().Method->isPure())
2182        continue;
2183
2184      Diag(SO->second.front().Method->getLocation(),
2185           diag::note_pure_virtual_function)
2186        << SO->second.front().Method->getDeclName();
2187    }
2188  }
2189
2190  if (!PureVirtualClassDiagSet)
2191    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2192  PureVirtualClassDiagSet->insert(RD);
2193
2194  return true;
2195}
2196
2197namespace {
2198  class AbstractClassUsageDiagnoser
2199    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2200    Sema &SemaRef;
2201    CXXRecordDecl *AbstractClass;
2202
2203    bool VisitDeclContext(const DeclContext *DC) {
2204      bool Invalid = false;
2205
2206      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2207           E = DC->decls_end(); I != E; ++I)
2208        Invalid |= Visit(*I);
2209
2210      return Invalid;
2211    }
2212
2213  public:
2214    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2215      : SemaRef(SemaRef), AbstractClass(ac) {
2216        Visit(SemaRef.Context.getTranslationUnitDecl());
2217    }
2218
2219    bool VisitFunctionDecl(const FunctionDecl *FD) {
2220      if (FD->isThisDeclarationADefinition()) {
2221        // No need to do the check if we're in a definition, because it requires
2222        // that the return/param types are complete.
2223        // because that requires
2224        return VisitDeclContext(FD);
2225      }
2226
2227      // Check the return type.
2228      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2229      bool Invalid =
2230        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2231                                       diag::err_abstract_type_in_decl,
2232                                       Sema::AbstractReturnType,
2233                                       AbstractClass);
2234
2235      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2236           E = FD->param_end(); I != E; ++I) {
2237        const ParmVarDecl *VD = *I;
2238        Invalid |=
2239          SemaRef.RequireNonAbstractType(VD->getLocation(),
2240                                         VD->getOriginalType(),
2241                                         diag::err_abstract_type_in_decl,
2242                                         Sema::AbstractParamType,
2243                                         AbstractClass);
2244      }
2245
2246      return Invalid;
2247    }
2248
2249    bool VisitDecl(const Decl* D) {
2250      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2251        return VisitDeclContext(DC);
2252
2253      return false;
2254    }
2255  };
2256}
2257
2258/// \brief Perform semantic checks on a class definition that has been
2259/// completing, introducing implicitly-declared members, checking for
2260/// abstract types, etc.
2261void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2262  if (!Record || Record->isInvalidDecl())
2263    return;
2264
2265  if (!Record->isDependentType())
2266    AddImplicitlyDeclaredMembersToClass(S, Record);
2267
2268  if (Record->isInvalidDecl())
2269    return;
2270
2271  // Set access bits correctly on the directly-declared conversions.
2272  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2273  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2274    Convs->setAccess(I, (*I)->getAccess());
2275
2276  // Determine whether we need to check for final overriders. We do
2277  // this either when there are virtual base classes (in which case we
2278  // may end up finding multiple final overriders for a given virtual
2279  // function) or any of the base classes is abstract (in which case
2280  // we might detect that this class is abstract).
2281  bool CheckFinalOverriders = false;
2282  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2283      !Record->isDependentType()) {
2284    if (Record->getNumVBases())
2285      CheckFinalOverriders = true;
2286    else if (!Record->isAbstract()) {
2287      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2288                                                 BEnd = Record->bases_end();
2289           B != BEnd; ++B) {
2290        CXXRecordDecl *BaseDecl
2291          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2292        if (BaseDecl->isAbstract()) {
2293          CheckFinalOverriders = true;
2294          break;
2295        }
2296      }
2297    }
2298  }
2299
2300  if (CheckFinalOverriders) {
2301    CXXFinalOverriderMap FinalOverriders;
2302    Record->getFinalOverriders(FinalOverriders);
2303
2304    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2305                                     MEnd = FinalOverriders.end();
2306         M != MEnd; ++M) {
2307      for (OverridingMethods::iterator SO = M->second.begin(),
2308                                    SOEnd = M->second.end();
2309           SO != SOEnd; ++SO) {
2310        assert(SO->second.size() > 0 &&
2311               "All virtual functions have overridding virtual functions");
2312        if (SO->second.size() == 1) {
2313          // C++ [class.abstract]p4:
2314          //   A class is abstract if it contains or inherits at least one
2315          //   pure virtual function for which the final overrider is pure
2316          //   virtual.
2317          if (SO->second.front().Method->isPure())
2318            Record->setAbstract(true);
2319          continue;
2320        }
2321
2322        // C++ [class.virtual]p2:
2323        //   In a derived class, if a virtual member function of a base
2324        //   class subobject has more than one final overrider the
2325        //   program is ill-formed.
2326        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2327          << (NamedDecl *)M->first << Record;
2328        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2329        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2330                                                 OMEnd = SO->second.end();
2331             OM != OMEnd; ++OM)
2332          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2333            << (NamedDecl *)M->first << OM->Method->getParent();
2334
2335        Record->setInvalidDecl();
2336      }
2337    }
2338  }
2339
2340  if (Record->isAbstract() && !Record->isInvalidDecl())
2341    (void)AbstractClassUsageDiagnoser(*this, Record);
2342
2343  // If this is not an aggregate type and has no user-declared constructor,
2344  // complain about any non-static data members of reference or const scalar
2345  // type, since they will never get initializers.
2346  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2347      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2348    bool Complained = false;
2349    for (RecordDecl::field_iterator F = Record->field_begin(),
2350                                 FEnd = Record->field_end();
2351         F != FEnd; ++F) {
2352      if (F->getType()->isReferenceType() ||
2353          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2354        if (!Complained) {
2355          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2356            << Record->getTagKind() << Record;
2357          Complained = true;
2358        }
2359
2360        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2361          << F->getType()->isReferenceType()
2362          << F->getDeclName();
2363      }
2364    }
2365  }
2366}
2367
2368void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2369                                             DeclPtrTy TagDecl,
2370                                             SourceLocation LBrac,
2371                                             SourceLocation RBrac,
2372                                             AttributeList *AttrList) {
2373  if (!TagDecl)
2374    return;
2375
2376  AdjustDeclIfTemplate(TagDecl);
2377
2378  ActOnFields(S, RLoc, TagDecl,
2379              (DeclPtrTy*)FieldCollector->getCurFields(),
2380              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2381
2382  CheckCompletedCXXClass(S,
2383                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2384}
2385
2386/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2387/// special functions, such as the default constructor, copy
2388/// constructor, or destructor, to the given C++ class (C++
2389/// [special]p1).  This routine can only be executed just before the
2390/// definition of the class is complete.
2391///
2392/// The scope, if provided, is the class scope.
2393void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2394                                               CXXRecordDecl *ClassDecl) {
2395  CanQualType ClassType
2396    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2397
2398  // FIXME: Implicit declarations have exception specifications, which are
2399  // the union of the specifications of the implicitly called functions.
2400
2401  if (!ClassDecl->hasUserDeclaredConstructor()) {
2402    // C++ [class.ctor]p5:
2403    //   A default constructor for a class X is a constructor of class X
2404    //   that can be called without an argument. If there is no
2405    //   user-declared constructor for class X, a default constructor is
2406    //   implicitly declared. An implicitly-declared default constructor
2407    //   is an inline public member of its class.
2408    DeclarationName Name
2409      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2410    CXXConstructorDecl *DefaultCon =
2411      CXXConstructorDecl::Create(Context, ClassDecl,
2412                                 ClassDecl->getLocation(), Name,
2413                                 Context.getFunctionType(Context.VoidTy,
2414                                                         0, 0, false, 0,
2415                                                         /*FIXME*/false, false,
2416                                                         0, 0,
2417                                                       FunctionType::ExtInfo()),
2418                                 /*TInfo=*/0,
2419                                 /*isExplicit=*/false,
2420                                 /*isInline=*/true,
2421                                 /*isImplicitlyDeclared=*/true);
2422    DefaultCon->setAccess(AS_public);
2423    DefaultCon->setImplicit();
2424    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2425    if (S)
2426      PushOnScopeChains(DefaultCon, S, true);
2427    else
2428      ClassDecl->addDecl(DefaultCon);
2429  }
2430
2431  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2432    // C++ [class.copy]p4:
2433    //   If the class definition does not explicitly declare a copy
2434    //   constructor, one is declared implicitly.
2435
2436    // C++ [class.copy]p5:
2437    //   The implicitly-declared copy constructor for a class X will
2438    //   have the form
2439    //
2440    //       X::X(const X&)
2441    //
2442    //   if
2443    bool HasConstCopyConstructor = true;
2444
2445    //     -- each direct or virtual base class B of X has a copy
2446    //        constructor whose first parameter is of type const B& or
2447    //        const volatile B&, and
2448    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2449         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2450      const CXXRecordDecl *BaseClassDecl
2451        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2452      HasConstCopyConstructor
2453        = BaseClassDecl->hasConstCopyConstructor(Context);
2454    }
2455
2456    //     -- for all the nonstatic data members of X that are of a
2457    //        class type M (or array thereof), each such class type
2458    //        has a copy constructor whose first parameter is of type
2459    //        const M& or const volatile M&.
2460    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2461         HasConstCopyConstructor && Field != ClassDecl->field_end();
2462         ++Field) {
2463      QualType FieldType = (*Field)->getType();
2464      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2465        FieldType = Array->getElementType();
2466      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2467        const CXXRecordDecl *FieldClassDecl
2468          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2469        HasConstCopyConstructor
2470          = FieldClassDecl->hasConstCopyConstructor(Context);
2471      }
2472    }
2473
2474    //   Otherwise, the implicitly declared copy constructor will have
2475    //   the form
2476    //
2477    //       X::X(X&)
2478    QualType ArgType = ClassType;
2479    if (HasConstCopyConstructor)
2480      ArgType = ArgType.withConst();
2481    ArgType = Context.getLValueReferenceType(ArgType);
2482
2483    //   An implicitly-declared copy constructor is an inline public
2484    //   member of its class.
2485    DeclarationName Name
2486      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2487    CXXConstructorDecl *CopyConstructor
2488      = CXXConstructorDecl::Create(Context, ClassDecl,
2489                                   ClassDecl->getLocation(), Name,
2490                                   Context.getFunctionType(Context.VoidTy,
2491                                                           &ArgType, 1,
2492                                                           false, 0,
2493                                                           /*FIXME:*/false,
2494                                                           false, 0, 0,
2495                                                       FunctionType::ExtInfo()),
2496                                   /*TInfo=*/0,
2497                                   /*isExplicit=*/false,
2498                                   /*isInline=*/true,
2499                                   /*isImplicitlyDeclared=*/true);
2500    CopyConstructor->setAccess(AS_public);
2501    CopyConstructor->setImplicit();
2502    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2503
2504    // Add the parameter to the constructor.
2505    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2506                                                 ClassDecl->getLocation(),
2507                                                 /*IdentifierInfo=*/0,
2508                                                 ArgType, /*TInfo=*/0,
2509                                                 VarDecl::None,
2510                                                 VarDecl::None, 0);
2511    CopyConstructor->setParams(&FromParam, 1);
2512    if (S)
2513      PushOnScopeChains(CopyConstructor, S, true);
2514    else
2515      ClassDecl->addDecl(CopyConstructor);
2516  }
2517
2518  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2519    // Note: The following rules are largely analoguous to the copy
2520    // constructor rules. Note that virtual bases are not taken into account
2521    // for determining the argument type of the operator. Note also that
2522    // operators taking an object instead of a reference are allowed.
2523    //
2524    // C++ [class.copy]p10:
2525    //   If the class definition does not explicitly declare a copy
2526    //   assignment operator, one is declared implicitly.
2527    //   The implicitly-defined copy assignment operator for a class X
2528    //   will have the form
2529    //
2530    //       X& X::operator=(const X&)
2531    //
2532    //   if
2533    bool HasConstCopyAssignment = true;
2534
2535    //       -- each direct base class B of X has a copy assignment operator
2536    //          whose parameter is of type const B&, const volatile B& or B,
2537    //          and
2538    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2539         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2540      assert(!Base->getType()->isDependentType() &&
2541            "Cannot generate implicit members for class with dependent bases.");
2542      const CXXRecordDecl *BaseClassDecl
2543        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2544      const CXXMethodDecl *MD = 0;
2545      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2546                                                                     MD);
2547    }
2548
2549    //       -- for all the nonstatic data members of X that are of a class
2550    //          type M (or array thereof), each such class type has a copy
2551    //          assignment operator whose parameter is of type const M&,
2552    //          const volatile M& or M.
2553    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2554         HasConstCopyAssignment && Field != ClassDecl->field_end();
2555         ++Field) {
2556      QualType FieldType = (*Field)->getType();
2557      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2558        FieldType = Array->getElementType();
2559      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2560        const CXXRecordDecl *FieldClassDecl
2561          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2562        const CXXMethodDecl *MD = 0;
2563        HasConstCopyAssignment
2564          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2565      }
2566    }
2567
2568    //   Otherwise, the implicitly declared copy assignment operator will
2569    //   have the form
2570    //
2571    //       X& X::operator=(X&)
2572    QualType ArgType = ClassType;
2573    QualType RetType = Context.getLValueReferenceType(ArgType);
2574    if (HasConstCopyAssignment)
2575      ArgType = ArgType.withConst();
2576    ArgType = Context.getLValueReferenceType(ArgType);
2577
2578    //   An implicitly-declared copy assignment operator is an inline public
2579    //   member of its class.
2580    DeclarationName Name =
2581      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2582    CXXMethodDecl *CopyAssignment =
2583      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2584                            Context.getFunctionType(RetType, &ArgType, 1,
2585                                                    false, 0,
2586                                                    /*FIXME:*/false,
2587                                                    false, 0, 0,
2588                                                    FunctionType::ExtInfo()),
2589                            /*TInfo=*/0, /*isStatic=*/false,
2590                            /*StorageClassAsWritten=*/FunctionDecl::None,
2591                            /*isInline=*/true);
2592    CopyAssignment->setAccess(AS_public);
2593    CopyAssignment->setImplicit();
2594    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2595    CopyAssignment->setCopyAssignment(true);
2596
2597    // Add the parameter to the operator.
2598    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2599                                                 ClassDecl->getLocation(),
2600                                                 /*IdentifierInfo=*/0,
2601                                                 ArgType, /*TInfo=*/0,
2602                                                 VarDecl::None,
2603                                                 VarDecl::None, 0);
2604    CopyAssignment->setParams(&FromParam, 1);
2605
2606    // Don't call addedAssignmentOperator. There is no way to distinguish an
2607    // implicit from an explicit assignment operator.
2608    if (S)
2609      PushOnScopeChains(CopyAssignment, S, true);
2610    else
2611      ClassDecl->addDecl(CopyAssignment);
2612    AddOverriddenMethods(ClassDecl, CopyAssignment);
2613  }
2614
2615  if (!ClassDecl->hasUserDeclaredDestructor()) {
2616    // C++ [class.dtor]p2:
2617    //   If a class has no user-declared destructor, a destructor is
2618    //   declared implicitly. An implicitly-declared destructor is an
2619    //   inline public member of its class.
2620    QualType Ty = Context.getFunctionType(Context.VoidTy,
2621                                          0, 0, false, 0,
2622                                          /*FIXME:*/false,
2623                                          false, 0, 0, FunctionType::ExtInfo());
2624
2625    DeclarationName Name
2626      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2627    CXXDestructorDecl *Destructor
2628      = CXXDestructorDecl::Create(Context, ClassDecl,
2629                                  ClassDecl->getLocation(), Name, Ty,
2630                                  /*isInline=*/true,
2631                                  /*isImplicitlyDeclared=*/true);
2632    Destructor->setAccess(AS_public);
2633    Destructor->setImplicit();
2634    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2635    if (S)
2636      PushOnScopeChains(Destructor, S, true);
2637    else
2638      ClassDecl->addDecl(Destructor);
2639
2640    // This could be uniqued if it ever proves significant.
2641    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2642
2643    AddOverriddenMethods(ClassDecl, Destructor);
2644  }
2645}
2646
2647void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2648  Decl *D = TemplateD.getAs<Decl>();
2649  if (!D)
2650    return;
2651
2652  TemplateParameterList *Params = 0;
2653  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2654    Params = Template->getTemplateParameters();
2655  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2656           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2657    Params = PartialSpec->getTemplateParameters();
2658  else
2659    return;
2660
2661  for (TemplateParameterList::iterator Param = Params->begin(),
2662                                    ParamEnd = Params->end();
2663       Param != ParamEnd; ++Param) {
2664    NamedDecl *Named = cast<NamedDecl>(*Param);
2665    if (Named->getDeclName()) {
2666      S->AddDecl(DeclPtrTy::make(Named));
2667      IdResolver.AddDecl(Named);
2668    }
2669  }
2670}
2671
2672void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2673  if (!RecordD) return;
2674  AdjustDeclIfTemplate(RecordD);
2675  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2676  PushDeclContext(S, Record);
2677}
2678
2679void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2680  if (!RecordD) return;
2681  PopDeclContext();
2682}
2683
2684/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2685/// parsing a top-level (non-nested) C++ class, and we are now
2686/// parsing those parts of the given Method declaration that could
2687/// not be parsed earlier (C++ [class.mem]p2), such as default
2688/// arguments. This action should enter the scope of the given
2689/// Method declaration as if we had just parsed the qualified method
2690/// name. However, it should not bring the parameters into scope;
2691/// that will be performed by ActOnDelayedCXXMethodParameter.
2692void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2693}
2694
2695/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2696/// C++ method declaration. We're (re-)introducing the given
2697/// function parameter into scope for use in parsing later parts of
2698/// the method declaration. For example, we could see an
2699/// ActOnParamDefaultArgument event for this parameter.
2700void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2701  if (!ParamD)
2702    return;
2703
2704  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2705
2706  // If this parameter has an unparsed default argument, clear it out
2707  // to make way for the parsed default argument.
2708  if (Param->hasUnparsedDefaultArg())
2709    Param->setDefaultArg(0);
2710
2711  S->AddDecl(DeclPtrTy::make(Param));
2712  if (Param->getDeclName())
2713    IdResolver.AddDecl(Param);
2714}
2715
2716/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2717/// processing the delayed method declaration for Method. The method
2718/// declaration is now considered finished. There may be a separate
2719/// ActOnStartOfFunctionDef action later (not necessarily
2720/// immediately!) for this method, if it was also defined inside the
2721/// class body.
2722void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2723  if (!MethodD)
2724    return;
2725
2726  AdjustDeclIfTemplate(MethodD);
2727
2728  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2729
2730  // Now that we have our default arguments, check the constructor
2731  // again. It could produce additional diagnostics or affect whether
2732  // the class has implicitly-declared destructors, among other
2733  // things.
2734  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2735    CheckConstructor(Constructor);
2736
2737  // Check the default arguments, which we may have added.
2738  if (!Method->isInvalidDecl())
2739    CheckCXXDefaultArguments(Method);
2740}
2741
2742/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2743/// the well-formedness of the constructor declarator @p D with type @p
2744/// R. If there are any errors in the declarator, this routine will
2745/// emit diagnostics and set the invalid bit to true.  In any case, the type
2746/// will be updated to reflect a well-formed type for the constructor and
2747/// returned.
2748QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2749                                          FunctionDecl::StorageClass &SC) {
2750  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2751
2752  // C++ [class.ctor]p3:
2753  //   A constructor shall not be virtual (10.3) or static (9.4). A
2754  //   constructor can be invoked for a const, volatile or const
2755  //   volatile object. A constructor shall not be declared const,
2756  //   volatile, or const volatile (9.3.2).
2757  if (isVirtual) {
2758    if (!D.isInvalidType())
2759      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2760        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2761        << SourceRange(D.getIdentifierLoc());
2762    D.setInvalidType();
2763  }
2764  if (SC == FunctionDecl::Static) {
2765    if (!D.isInvalidType())
2766      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2767        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2768        << SourceRange(D.getIdentifierLoc());
2769    D.setInvalidType();
2770    SC = FunctionDecl::None;
2771  }
2772
2773  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2774  if (FTI.TypeQuals != 0) {
2775    if (FTI.TypeQuals & Qualifiers::Const)
2776      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2777        << "const" << SourceRange(D.getIdentifierLoc());
2778    if (FTI.TypeQuals & Qualifiers::Volatile)
2779      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2780        << "volatile" << SourceRange(D.getIdentifierLoc());
2781    if (FTI.TypeQuals & Qualifiers::Restrict)
2782      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2783        << "restrict" << SourceRange(D.getIdentifierLoc());
2784  }
2785
2786  // Rebuild the function type "R" without any type qualifiers (in
2787  // case any of the errors above fired) and with "void" as the
2788  // return type, since constructors don't have return types. We
2789  // *always* have to do this, because GetTypeForDeclarator will
2790  // put in a result type of "int" when none was specified.
2791  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2792  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2793                                 Proto->getNumArgs(),
2794                                 Proto->isVariadic(), 0,
2795                                 Proto->hasExceptionSpec(),
2796                                 Proto->hasAnyExceptionSpec(),
2797                                 Proto->getNumExceptions(),
2798                                 Proto->exception_begin(),
2799                                 Proto->getExtInfo());
2800}
2801
2802/// CheckConstructor - Checks a fully-formed constructor for
2803/// well-formedness, issuing any diagnostics required. Returns true if
2804/// the constructor declarator is invalid.
2805void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2806  CXXRecordDecl *ClassDecl
2807    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2808  if (!ClassDecl)
2809    return Constructor->setInvalidDecl();
2810
2811  // C++ [class.copy]p3:
2812  //   A declaration of a constructor for a class X is ill-formed if
2813  //   its first parameter is of type (optionally cv-qualified) X and
2814  //   either there are no other parameters or else all other
2815  //   parameters have default arguments.
2816  if (!Constructor->isInvalidDecl() &&
2817      ((Constructor->getNumParams() == 1) ||
2818       (Constructor->getNumParams() > 1 &&
2819        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2820      Constructor->getTemplateSpecializationKind()
2821                                              != TSK_ImplicitInstantiation) {
2822    QualType ParamType = Constructor->getParamDecl(0)->getType();
2823    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2824    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2825      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2826      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2827        << FixItHint::CreateInsertion(ParamLoc, " const &");
2828
2829      // FIXME: Rather that making the constructor invalid, we should endeavor
2830      // to fix the type.
2831      Constructor->setInvalidDecl();
2832    }
2833  }
2834
2835  // Notify the class that we've added a constructor.  In principle we
2836  // don't need to do this for out-of-line declarations; in practice
2837  // we only instantiate the most recent declaration of a method, so
2838  // we have to call this for everything but friends.
2839  if (!Constructor->getFriendObjectKind())
2840    ClassDecl->addedConstructor(Context, Constructor);
2841}
2842
2843/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2844/// issuing any diagnostics required. Returns true on error.
2845bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2846  CXXRecordDecl *RD = Destructor->getParent();
2847
2848  if (Destructor->isVirtual()) {
2849    SourceLocation Loc;
2850
2851    if (!Destructor->isImplicit())
2852      Loc = Destructor->getLocation();
2853    else
2854      Loc = RD->getLocation();
2855
2856    // If we have a virtual destructor, look up the deallocation function
2857    FunctionDecl *OperatorDelete = 0;
2858    DeclarationName Name =
2859    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2860    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2861      return true;
2862
2863    Destructor->setOperatorDelete(OperatorDelete);
2864  }
2865
2866  return false;
2867}
2868
2869static inline bool
2870FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2871  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2872          FTI.ArgInfo[0].Param &&
2873          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2874}
2875
2876/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2877/// the well-formednes of the destructor declarator @p D with type @p
2878/// R. If there are any errors in the declarator, this routine will
2879/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2880/// will be updated to reflect a well-formed type for the destructor and
2881/// returned.
2882QualType Sema::CheckDestructorDeclarator(Declarator &D,
2883                                         FunctionDecl::StorageClass& SC) {
2884  // C++ [class.dtor]p1:
2885  //   [...] A typedef-name that names a class is a class-name
2886  //   (7.1.3); however, a typedef-name that names a class shall not
2887  //   be used as the identifier in the declarator for a destructor
2888  //   declaration.
2889  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2890  if (isa<TypedefType>(DeclaratorType)) {
2891    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2892      << DeclaratorType;
2893    D.setInvalidType();
2894  }
2895
2896  // C++ [class.dtor]p2:
2897  //   A destructor is used to destroy objects of its class type. A
2898  //   destructor takes no parameters, and no return type can be
2899  //   specified for it (not even void). The address of a destructor
2900  //   shall not be taken. A destructor shall not be static. A
2901  //   destructor can be invoked for a const, volatile or const
2902  //   volatile object. A destructor shall not be declared const,
2903  //   volatile or const volatile (9.3.2).
2904  if (SC == FunctionDecl::Static) {
2905    if (!D.isInvalidType())
2906      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2907        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2908        << SourceRange(D.getIdentifierLoc());
2909    SC = FunctionDecl::None;
2910    D.setInvalidType();
2911  }
2912  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2913    // Destructors don't have return types, but the parser will
2914    // happily parse something like:
2915    //
2916    //   class X {
2917    //     float ~X();
2918    //   };
2919    //
2920    // The return type will be eliminated later.
2921    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2922      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2923      << SourceRange(D.getIdentifierLoc());
2924  }
2925
2926  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2927  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2928    if (FTI.TypeQuals & Qualifiers::Const)
2929      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2930        << "const" << SourceRange(D.getIdentifierLoc());
2931    if (FTI.TypeQuals & Qualifiers::Volatile)
2932      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2933        << "volatile" << SourceRange(D.getIdentifierLoc());
2934    if (FTI.TypeQuals & Qualifiers::Restrict)
2935      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2936        << "restrict" << SourceRange(D.getIdentifierLoc());
2937    D.setInvalidType();
2938  }
2939
2940  // Make sure we don't have any parameters.
2941  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2942    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2943
2944    // Delete the parameters.
2945    FTI.freeArgs();
2946    D.setInvalidType();
2947  }
2948
2949  // Make sure the destructor isn't variadic.
2950  if (FTI.isVariadic) {
2951    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2952    D.setInvalidType();
2953  }
2954
2955  // Rebuild the function type "R" without any type qualifiers or
2956  // parameters (in case any of the errors above fired) and with
2957  // "void" as the return type, since destructors don't have return
2958  // types. We *always* have to do this, because GetTypeForDeclarator
2959  // will put in a result type of "int" when none was specified.
2960  // FIXME: Exceptions!
2961  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2962                                 false, false, 0, 0, FunctionType::ExtInfo());
2963}
2964
2965/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2966/// well-formednes of the conversion function declarator @p D with
2967/// type @p R. If there are any errors in the declarator, this routine
2968/// will emit diagnostics and return true. Otherwise, it will return
2969/// false. Either way, the type @p R will be updated to reflect a
2970/// well-formed type for the conversion operator.
2971void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2972                                     FunctionDecl::StorageClass& SC) {
2973  // C++ [class.conv.fct]p1:
2974  //   Neither parameter types nor return type can be specified. The
2975  //   type of a conversion function (8.3.5) is "function taking no
2976  //   parameter returning conversion-type-id."
2977  if (SC == FunctionDecl::Static) {
2978    if (!D.isInvalidType())
2979      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2980        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2981        << SourceRange(D.getIdentifierLoc());
2982    D.setInvalidType();
2983    SC = FunctionDecl::None;
2984  }
2985
2986  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2987
2988  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2989    // Conversion functions don't have return types, but the parser will
2990    // happily parse something like:
2991    //
2992    //   class X {
2993    //     float operator bool();
2994    //   };
2995    //
2996    // The return type will be changed later anyway.
2997    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2998      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2999      << SourceRange(D.getIdentifierLoc());
3000    D.setInvalidType();
3001  }
3002
3003  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3004
3005  // Make sure we don't have any parameters.
3006  if (Proto->getNumArgs() > 0) {
3007    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3008
3009    // Delete the parameters.
3010    D.getTypeObject(0).Fun.freeArgs();
3011    D.setInvalidType();
3012  } else if (Proto->isVariadic()) {
3013    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3014    D.setInvalidType();
3015  }
3016
3017  // Diagnose "&operator bool()" and other such nonsense.  This
3018  // is actually a gcc extension which we don't support.
3019  if (Proto->getResultType() != ConvType) {
3020    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3021      << Proto->getResultType();
3022    D.setInvalidType();
3023    ConvType = Proto->getResultType();
3024  }
3025
3026  // C++ [class.conv.fct]p4:
3027  //   The conversion-type-id shall not represent a function type nor
3028  //   an array type.
3029  if (ConvType->isArrayType()) {
3030    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3031    ConvType = Context.getPointerType(ConvType);
3032    D.setInvalidType();
3033  } else if (ConvType->isFunctionType()) {
3034    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3035    ConvType = Context.getPointerType(ConvType);
3036    D.setInvalidType();
3037  }
3038
3039  // Rebuild the function type "R" without any parameters (in case any
3040  // of the errors above fired) and with the conversion type as the
3041  // return type.
3042  if (D.isInvalidType()) {
3043    R = Context.getFunctionType(ConvType, 0, 0, false,
3044                                Proto->getTypeQuals(),
3045                                Proto->hasExceptionSpec(),
3046                                Proto->hasAnyExceptionSpec(),
3047                                Proto->getNumExceptions(),
3048                                Proto->exception_begin(),
3049                                Proto->getExtInfo());
3050  }
3051
3052  // C++0x explicit conversion operators.
3053  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3054    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3055         diag::warn_explicit_conversion_functions)
3056      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3057}
3058
3059/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3060/// the declaration of the given C++ conversion function. This routine
3061/// is responsible for recording the conversion function in the C++
3062/// class, if possible.
3063Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3064  assert(Conversion && "Expected to receive a conversion function declaration");
3065
3066  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3067
3068  // Make sure we aren't redeclaring the conversion function.
3069  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3070
3071  // C++ [class.conv.fct]p1:
3072  //   [...] A conversion function is never used to convert a
3073  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3074  //   same object type (or a reference to it), to a (possibly
3075  //   cv-qualified) base class of that type (or a reference to it),
3076  //   or to (possibly cv-qualified) void.
3077  // FIXME: Suppress this warning if the conversion function ends up being a
3078  // virtual function that overrides a virtual function in a base class.
3079  QualType ClassType
3080    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3081  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3082    ConvType = ConvTypeRef->getPointeeType();
3083  if (ConvType->isRecordType()) {
3084    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3085    if (ConvType == ClassType)
3086      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3087        << ClassType;
3088    else if (IsDerivedFrom(ClassType, ConvType))
3089      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3090        <<  ClassType << ConvType;
3091  } else if (ConvType->isVoidType()) {
3092    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3093      << ClassType << ConvType;
3094  }
3095
3096  if (Conversion->getPrimaryTemplate()) {
3097    // ignore specializations
3098  } else if (Conversion->getPreviousDeclaration()) {
3099    if (FunctionTemplateDecl *ConversionTemplate
3100                                  = Conversion->getDescribedFunctionTemplate()) {
3101      if (ClassDecl->replaceConversion(
3102                                   ConversionTemplate->getPreviousDeclaration(),
3103                                       ConversionTemplate))
3104        return DeclPtrTy::make(ConversionTemplate);
3105    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3106                                            Conversion))
3107      return DeclPtrTy::make(Conversion);
3108    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3109  } else if (FunctionTemplateDecl *ConversionTemplate
3110               = Conversion->getDescribedFunctionTemplate())
3111    ClassDecl->addConversionFunction(ConversionTemplate);
3112  else
3113    ClassDecl->addConversionFunction(Conversion);
3114
3115  return DeclPtrTy::make(Conversion);
3116}
3117
3118//===----------------------------------------------------------------------===//
3119// Namespace Handling
3120//===----------------------------------------------------------------------===//
3121
3122/// ActOnStartNamespaceDef - This is called at the start of a namespace
3123/// definition.
3124Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3125                                             SourceLocation IdentLoc,
3126                                             IdentifierInfo *II,
3127                                             SourceLocation LBrace,
3128                                             AttributeList *AttrList) {
3129  NamespaceDecl *Namespc =
3130      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3131  Namespc->setLBracLoc(LBrace);
3132
3133  Scope *DeclRegionScope = NamespcScope->getParent();
3134
3135  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3136
3137  if (II) {
3138    // C++ [namespace.def]p2:
3139    // The identifier in an original-namespace-definition shall not have been
3140    // previously defined in the declarative region in which the
3141    // original-namespace-definition appears. The identifier in an
3142    // original-namespace-definition is the name of the namespace. Subsequently
3143    // in that declarative region, it is treated as an original-namespace-name.
3144
3145    NamedDecl *PrevDecl
3146      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3147                         ForRedeclaration);
3148
3149    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3150      // This is an extended namespace definition.
3151      // Attach this namespace decl to the chain of extended namespace
3152      // definitions.
3153      OrigNS->setNextNamespace(Namespc);
3154      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3155
3156      // Remove the previous declaration from the scope.
3157      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3158        IdResolver.RemoveDecl(OrigNS);
3159        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3160      }
3161    } else if (PrevDecl) {
3162      // This is an invalid name redefinition.
3163      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3164       << Namespc->getDeclName();
3165      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3166      Namespc->setInvalidDecl();
3167      // Continue on to push Namespc as current DeclContext and return it.
3168    } else if (II->isStr("std") &&
3169               CurContext->getLookupContext()->isTranslationUnit()) {
3170      // This is the first "real" definition of the namespace "std", so update
3171      // our cache of the "std" namespace to point at this definition.
3172      if (StdNamespace) {
3173        // We had already defined a dummy namespace "std". Link this new
3174        // namespace definition to the dummy namespace "std".
3175        StdNamespace->setNextNamespace(Namespc);
3176        StdNamespace->setLocation(IdentLoc);
3177        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3178      }
3179
3180      // Make our StdNamespace cache point at the first real definition of the
3181      // "std" namespace.
3182      StdNamespace = Namespc;
3183    }
3184
3185    PushOnScopeChains(Namespc, DeclRegionScope);
3186  } else {
3187    // Anonymous namespaces.
3188    assert(Namespc->isAnonymousNamespace());
3189
3190    // Link the anonymous namespace into its parent.
3191    NamespaceDecl *PrevDecl;
3192    DeclContext *Parent = CurContext->getLookupContext();
3193    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3194      PrevDecl = TU->getAnonymousNamespace();
3195      TU->setAnonymousNamespace(Namespc);
3196    } else {
3197      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3198      PrevDecl = ND->getAnonymousNamespace();
3199      ND->setAnonymousNamespace(Namespc);
3200    }
3201
3202    // Link the anonymous namespace with its previous declaration.
3203    if (PrevDecl) {
3204      assert(PrevDecl->isAnonymousNamespace());
3205      assert(!PrevDecl->getNextNamespace());
3206      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3207      PrevDecl->setNextNamespace(Namespc);
3208    }
3209
3210    CurContext->addDecl(Namespc);
3211
3212    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3213    //   behaves as if it were replaced by
3214    //     namespace unique { /* empty body */ }
3215    //     using namespace unique;
3216    //     namespace unique { namespace-body }
3217    //   where all occurrences of 'unique' in a translation unit are
3218    //   replaced by the same identifier and this identifier differs
3219    //   from all other identifiers in the entire program.
3220
3221    // We just create the namespace with an empty name and then add an
3222    // implicit using declaration, just like the standard suggests.
3223    //
3224    // CodeGen enforces the "universally unique" aspect by giving all
3225    // declarations semantically contained within an anonymous
3226    // namespace internal linkage.
3227
3228    if (!PrevDecl) {
3229      UsingDirectiveDecl* UD
3230        = UsingDirectiveDecl::Create(Context, CurContext,
3231                                     /* 'using' */ LBrace,
3232                                     /* 'namespace' */ SourceLocation(),
3233                                     /* qualifier */ SourceRange(),
3234                                     /* NNS */ NULL,
3235                                     /* identifier */ SourceLocation(),
3236                                     Namespc,
3237                                     /* Ancestor */ CurContext);
3238      UD->setImplicit();
3239      CurContext->addDecl(UD);
3240    }
3241  }
3242
3243  // Although we could have an invalid decl (i.e. the namespace name is a
3244  // redefinition), push it as current DeclContext and try to continue parsing.
3245  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3246  // for the namespace has the declarations that showed up in that particular
3247  // namespace definition.
3248  PushDeclContext(NamespcScope, Namespc);
3249  return DeclPtrTy::make(Namespc);
3250}
3251
3252/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3253/// is a namespace alias, returns the namespace it points to.
3254static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3255  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3256    return AD->getNamespace();
3257  return dyn_cast_or_null<NamespaceDecl>(D);
3258}
3259
3260/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3261/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3262void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3263  Decl *Dcl = D.getAs<Decl>();
3264  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3265  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3266  Namespc->setRBracLoc(RBrace);
3267  PopDeclContext();
3268}
3269
3270Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3271                                          SourceLocation UsingLoc,
3272                                          SourceLocation NamespcLoc,
3273                                          CXXScopeSpec &SS,
3274                                          SourceLocation IdentLoc,
3275                                          IdentifierInfo *NamespcName,
3276                                          AttributeList *AttrList) {
3277  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3278  assert(NamespcName && "Invalid NamespcName.");
3279  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3280  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3281
3282  UsingDirectiveDecl *UDir = 0;
3283
3284  // Lookup namespace name.
3285  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3286  LookupParsedName(R, S, &SS);
3287  if (R.isAmbiguous())
3288    return DeclPtrTy();
3289
3290  if (!R.empty()) {
3291    NamedDecl *Named = R.getFoundDecl();
3292    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3293        && "expected namespace decl");
3294    // C++ [namespace.udir]p1:
3295    //   A using-directive specifies that the names in the nominated
3296    //   namespace can be used in the scope in which the
3297    //   using-directive appears after the using-directive. During
3298    //   unqualified name lookup (3.4.1), the names appear as if they
3299    //   were declared in the nearest enclosing namespace which
3300    //   contains both the using-directive and the nominated
3301    //   namespace. [Note: in this context, "contains" means "contains
3302    //   directly or indirectly". ]
3303
3304    // Find enclosing context containing both using-directive and
3305    // nominated namespace.
3306    NamespaceDecl *NS = getNamespaceDecl(Named);
3307    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3308    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3309      CommonAncestor = CommonAncestor->getParent();
3310
3311    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3312                                      SS.getRange(),
3313                                      (NestedNameSpecifier *)SS.getScopeRep(),
3314                                      IdentLoc, Named, CommonAncestor);
3315    PushUsingDirective(S, UDir);
3316  } else {
3317    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3318  }
3319
3320  // FIXME: We ignore attributes for now.
3321  delete AttrList;
3322  return DeclPtrTy::make(UDir);
3323}
3324
3325void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3326  // If scope has associated entity, then using directive is at namespace
3327  // or translation unit scope. We add UsingDirectiveDecls, into
3328  // it's lookup structure.
3329  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3330    Ctx->addDecl(UDir);
3331  else
3332    // Otherwise it is block-sope. using-directives will affect lookup
3333    // only to the end of scope.
3334    S->PushUsingDirective(DeclPtrTy::make(UDir));
3335}
3336
3337
3338Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3339                                            AccessSpecifier AS,
3340                                            bool HasUsingKeyword,
3341                                            SourceLocation UsingLoc,
3342                                            CXXScopeSpec &SS,
3343                                            UnqualifiedId &Name,
3344                                            AttributeList *AttrList,
3345                                            bool IsTypeName,
3346                                            SourceLocation TypenameLoc) {
3347  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3348
3349  switch (Name.getKind()) {
3350  case UnqualifiedId::IK_Identifier:
3351  case UnqualifiedId::IK_OperatorFunctionId:
3352  case UnqualifiedId::IK_LiteralOperatorId:
3353  case UnqualifiedId::IK_ConversionFunctionId:
3354    break;
3355
3356  case UnqualifiedId::IK_ConstructorName:
3357  case UnqualifiedId::IK_ConstructorTemplateId:
3358    // C++0x inherited constructors.
3359    if (getLangOptions().CPlusPlus0x) break;
3360
3361    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3362      << SS.getRange();
3363    return DeclPtrTy();
3364
3365  case UnqualifiedId::IK_DestructorName:
3366    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3367      << SS.getRange();
3368    return DeclPtrTy();
3369
3370  case UnqualifiedId::IK_TemplateId:
3371    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3372      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3373    return DeclPtrTy();
3374  }
3375
3376  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3377  if (!TargetName)
3378    return DeclPtrTy();
3379
3380  // Warn about using declarations.
3381  // TODO: store that the declaration was written without 'using' and
3382  // talk about access decls instead of using decls in the
3383  // diagnostics.
3384  if (!HasUsingKeyword) {
3385    UsingLoc = Name.getSourceRange().getBegin();
3386
3387    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3388      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3389  }
3390
3391  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3392                                        Name.getSourceRange().getBegin(),
3393                                        TargetName, AttrList,
3394                                        /* IsInstantiation */ false,
3395                                        IsTypeName, TypenameLoc);
3396  if (UD)
3397    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3398
3399  return DeclPtrTy::make(UD);
3400}
3401
3402/// Determines whether to create a using shadow decl for a particular
3403/// decl, given the set of decls existing prior to this using lookup.
3404bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3405                                const LookupResult &Previous) {
3406  // Diagnose finding a decl which is not from a base class of the
3407  // current class.  We do this now because there are cases where this
3408  // function will silently decide not to build a shadow decl, which
3409  // will pre-empt further diagnostics.
3410  //
3411  // We don't need to do this in C++0x because we do the check once on
3412  // the qualifier.
3413  //
3414  // FIXME: diagnose the following if we care enough:
3415  //   struct A { int foo; };
3416  //   struct B : A { using A::foo; };
3417  //   template <class T> struct C : A {};
3418  //   template <class T> struct D : C<T> { using B::foo; } // <---
3419  // This is invalid (during instantiation) in C++03 because B::foo
3420  // resolves to the using decl in B, which is not a base class of D<T>.
3421  // We can't diagnose it immediately because C<T> is an unknown
3422  // specialization.  The UsingShadowDecl in D<T> then points directly
3423  // to A::foo, which will look well-formed when we instantiate.
3424  // The right solution is to not collapse the shadow-decl chain.
3425  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3426    DeclContext *OrigDC = Orig->getDeclContext();
3427
3428    // Handle enums and anonymous structs.
3429    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3430    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3431    while (OrigRec->isAnonymousStructOrUnion())
3432      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3433
3434    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3435      if (OrigDC == CurContext) {
3436        Diag(Using->getLocation(),
3437             diag::err_using_decl_nested_name_specifier_is_current_class)
3438          << Using->getNestedNameRange();
3439        Diag(Orig->getLocation(), diag::note_using_decl_target);
3440        return true;
3441      }
3442
3443      Diag(Using->getNestedNameRange().getBegin(),
3444           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3445        << Using->getTargetNestedNameDecl()
3446        << cast<CXXRecordDecl>(CurContext)
3447        << Using->getNestedNameRange();
3448      Diag(Orig->getLocation(), diag::note_using_decl_target);
3449      return true;
3450    }
3451  }
3452
3453  if (Previous.empty()) return false;
3454
3455  NamedDecl *Target = Orig;
3456  if (isa<UsingShadowDecl>(Target))
3457    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3458
3459  // If the target happens to be one of the previous declarations, we
3460  // don't have a conflict.
3461  //
3462  // FIXME: but we might be increasing its access, in which case we
3463  // should redeclare it.
3464  NamedDecl *NonTag = 0, *Tag = 0;
3465  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3466         I != E; ++I) {
3467    NamedDecl *D = (*I)->getUnderlyingDecl();
3468    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3469      return false;
3470
3471    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3472  }
3473
3474  if (Target->isFunctionOrFunctionTemplate()) {
3475    FunctionDecl *FD;
3476    if (isa<FunctionTemplateDecl>(Target))
3477      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3478    else
3479      FD = cast<FunctionDecl>(Target);
3480
3481    NamedDecl *OldDecl = 0;
3482    switch (CheckOverload(FD, Previous, OldDecl)) {
3483    case Ovl_Overload:
3484      return false;
3485
3486    case Ovl_NonFunction:
3487      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3488      break;
3489
3490    // We found a decl with the exact signature.
3491    case Ovl_Match:
3492      if (isa<UsingShadowDecl>(OldDecl)) {
3493        // Silently ignore the possible conflict.
3494        return false;
3495      }
3496
3497      // If we're in a record, we want to hide the target, so we
3498      // return true (without a diagnostic) to tell the caller not to
3499      // build a shadow decl.
3500      if (CurContext->isRecord())
3501        return true;
3502
3503      // If we're not in a record, this is an error.
3504      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3505      break;
3506    }
3507
3508    Diag(Target->getLocation(), diag::note_using_decl_target);
3509    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3510    return true;
3511  }
3512
3513  // Target is not a function.
3514
3515  if (isa<TagDecl>(Target)) {
3516    // No conflict between a tag and a non-tag.
3517    if (!Tag) return false;
3518
3519    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3520    Diag(Target->getLocation(), diag::note_using_decl_target);
3521    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3522    return true;
3523  }
3524
3525  // No conflict between a tag and a non-tag.
3526  if (!NonTag) return false;
3527
3528  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3529  Diag(Target->getLocation(), diag::note_using_decl_target);
3530  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3531  return true;
3532}
3533
3534/// Builds a shadow declaration corresponding to a 'using' declaration.
3535UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3536                                            UsingDecl *UD,
3537                                            NamedDecl *Orig) {
3538
3539  // If we resolved to another shadow declaration, just coalesce them.
3540  NamedDecl *Target = Orig;
3541  if (isa<UsingShadowDecl>(Target)) {
3542    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3543    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3544  }
3545
3546  UsingShadowDecl *Shadow
3547    = UsingShadowDecl::Create(Context, CurContext,
3548                              UD->getLocation(), UD, Target);
3549  UD->addShadowDecl(Shadow);
3550
3551  if (S)
3552    PushOnScopeChains(Shadow, S);
3553  else
3554    CurContext->addDecl(Shadow);
3555  Shadow->setAccess(UD->getAccess());
3556
3557  // Register it as a conversion if appropriate.
3558  if (Shadow->getDeclName().getNameKind()
3559        == DeclarationName::CXXConversionFunctionName)
3560    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3561
3562  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3563    Shadow->setInvalidDecl();
3564
3565  return Shadow;
3566}
3567
3568/// Hides a using shadow declaration.  This is required by the current
3569/// using-decl implementation when a resolvable using declaration in a
3570/// class is followed by a declaration which would hide or override
3571/// one or more of the using decl's targets; for example:
3572///
3573///   struct Base { void foo(int); };
3574///   struct Derived : Base {
3575///     using Base::foo;
3576///     void foo(int);
3577///   };
3578///
3579/// The governing language is C++03 [namespace.udecl]p12:
3580///
3581///   When a using-declaration brings names from a base class into a
3582///   derived class scope, member functions in the derived class
3583///   override and/or hide member functions with the same name and
3584///   parameter types in a base class (rather than conflicting).
3585///
3586/// There are two ways to implement this:
3587///   (1) optimistically create shadow decls when they're not hidden
3588///       by existing declarations, or
3589///   (2) don't create any shadow decls (or at least don't make them
3590///       visible) until we've fully parsed/instantiated the class.
3591/// The problem with (1) is that we might have to retroactively remove
3592/// a shadow decl, which requires several O(n) operations because the
3593/// decl structures are (very reasonably) not designed for removal.
3594/// (2) avoids this but is very fiddly and phase-dependent.
3595void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3596  if (Shadow->getDeclName().getNameKind() ==
3597        DeclarationName::CXXConversionFunctionName)
3598    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3599
3600  // Remove it from the DeclContext...
3601  Shadow->getDeclContext()->removeDecl(Shadow);
3602
3603  // ...and the scope, if applicable...
3604  if (S) {
3605    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3606    IdResolver.RemoveDecl(Shadow);
3607  }
3608
3609  // ...and the using decl.
3610  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3611
3612  // TODO: complain somehow if Shadow was used.  It shouldn't
3613  // be possible for this to happen, because...?
3614}
3615
3616/// Builds a using declaration.
3617///
3618/// \param IsInstantiation - Whether this call arises from an
3619///   instantiation of an unresolved using declaration.  We treat
3620///   the lookup differently for these declarations.
3621NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3622                                       SourceLocation UsingLoc,
3623                                       CXXScopeSpec &SS,
3624                                       SourceLocation IdentLoc,
3625                                       DeclarationName Name,
3626                                       AttributeList *AttrList,
3627                                       bool IsInstantiation,
3628                                       bool IsTypeName,
3629                                       SourceLocation TypenameLoc) {
3630  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3631  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3632
3633  // FIXME: We ignore attributes for now.
3634  delete AttrList;
3635
3636  if (SS.isEmpty()) {
3637    Diag(IdentLoc, diag::err_using_requires_qualname);
3638    return 0;
3639  }
3640
3641  // Do the redeclaration lookup in the current scope.
3642  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3643                        ForRedeclaration);
3644  Previous.setHideTags(false);
3645  if (S) {
3646    LookupName(Previous, S);
3647
3648    // It is really dumb that we have to do this.
3649    LookupResult::Filter F = Previous.makeFilter();
3650    while (F.hasNext()) {
3651      NamedDecl *D = F.next();
3652      if (!isDeclInScope(D, CurContext, S))
3653        F.erase();
3654    }
3655    F.done();
3656  } else {
3657    assert(IsInstantiation && "no scope in non-instantiation");
3658    assert(CurContext->isRecord() && "scope not record in instantiation");
3659    LookupQualifiedName(Previous, CurContext);
3660  }
3661
3662  NestedNameSpecifier *NNS =
3663    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3664
3665  // Check for invalid redeclarations.
3666  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3667    return 0;
3668
3669  // Check for bad qualifiers.
3670  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3671    return 0;
3672
3673  DeclContext *LookupContext = computeDeclContext(SS);
3674  NamedDecl *D;
3675  if (!LookupContext) {
3676    if (IsTypeName) {
3677      // FIXME: not all declaration name kinds are legal here
3678      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3679                                              UsingLoc, TypenameLoc,
3680                                              SS.getRange(), NNS,
3681                                              IdentLoc, Name);
3682    } else {
3683      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3684                                           UsingLoc, SS.getRange(), NNS,
3685                                           IdentLoc, Name);
3686    }
3687  } else {
3688    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3689                          SS.getRange(), UsingLoc, NNS, Name,
3690                          IsTypeName);
3691  }
3692  D->setAccess(AS);
3693  CurContext->addDecl(D);
3694
3695  if (!LookupContext) return D;
3696  UsingDecl *UD = cast<UsingDecl>(D);
3697
3698  if (RequireCompleteDeclContext(SS)) {
3699    UD->setInvalidDecl();
3700    return UD;
3701  }
3702
3703  // Look up the target name.
3704
3705  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3706
3707  // Unlike most lookups, we don't always want to hide tag
3708  // declarations: tag names are visible through the using declaration
3709  // even if hidden by ordinary names, *except* in a dependent context
3710  // where it's important for the sanity of two-phase lookup.
3711  if (!IsInstantiation)
3712    R.setHideTags(false);
3713
3714  LookupQualifiedName(R, LookupContext);
3715
3716  if (R.empty()) {
3717    Diag(IdentLoc, diag::err_no_member)
3718      << Name << LookupContext << SS.getRange();
3719    UD->setInvalidDecl();
3720    return UD;
3721  }
3722
3723  if (R.isAmbiguous()) {
3724    UD->setInvalidDecl();
3725    return UD;
3726  }
3727
3728  if (IsTypeName) {
3729    // If we asked for a typename and got a non-type decl, error out.
3730    if (!R.getAsSingle<TypeDecl>()) {
3731      Diag(IdentLoc, diag::err_using_typename_non_type);
3732      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3733        Diag((*I)->getUnderlyingDecl()->getLocation(),
3734             diag::note_using_decl_target);
3735      UD->setInvalidDecl();
3736      return UD;
3737    }
3738  } else {
3739    // If we asked for a non-typename and we got a type, error out,
3740    // but only if this is an instantiation of an unresolved using
3741    // decl.  Otherwise just silently find the type name.
3742    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3743      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3744      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3745      UD->setInvalidDecl();
3746      return UD;
3747    }
3748  }
3749
3750  // C++0x N2914 [namespace.udecl]p6:
3751  // A using-declaration shall not name a namespace.
3752  if (R.getAsSingle<NamespaceDecl>()) {
3753    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3754      << SS.getRange();
3755    UD->setInvalidDecl();
3756    return UD;
3757  }
3758
3759  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3760    if (!CheckUsingShadowDecl(UD, *I, Previous))
3761      BuildUsingShadowDecl(S, UD, *I);
3762  }
3763
3764  return UD;
3765}
3766
3767/// Checks that the given using declaration is not an invalid
3768/// redeclaration.  Note that this is checking only for the using decl
3769/// itself, not for any ill-formedness among the UsingShadowDecls.
3770bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3771                                       bool isTypeName,
3772                                       const CXXScopeSpec &SS,
3773                                       SourceLocation NameLoc,
3774                                       const LookupResult &Prev) {
3775  // C++03 [namespace.udecl]p8:
3776  // C++0x [namespace.udecl]p10:
3777  //   A using-declaration is a declaration and can therefore be used
3778  //   repeatedly where (and only where) multiple declarations are
3779  //   allowed.
3780  // That's only in file contexts.
3781  if (CurContext->getLookupContext()->isFileContext())
3782    return false;
3783
3784  NestedNameSpecifier *Qual
3785    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3786
3787  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3788    NamedDecl *D = *I;
3789
3790    bool DTypename;
3791    NestedNameSpecifier *DQual;
3792    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3793      DTypename = UD->isTypeName();
3794      DQual = UD->getTargetNestedNameDecl();
3795    } else if (UnresolvedUsingValueDecl *UD
3796                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3797      DTypename = false;
3798      DQual = UD->getTargetNestedNameSpecifier();
3799    } else if (UnresolvedUsingTypenameDecl *UD
3800                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3801      DTypename = true;
3802      DQual = UD->getTargetNestedNameSpecifier();
3803    } else continue;
3804
3805    // using decls differ if one says 'typename' and the other doesn't.
3806    // FIXME: non-dependent using decls?
3807    if (isTypeName != DTypename) continue;
3808
3809    // using decls differ if they name different scopes (but note that
3810    // template instantiation can cause this check to trigger when it
3811    // didn't before instantiation).
3812    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3813        Context.getCanonicalNestedNameSpecifier(DQual))
3814      continue;
3815
3816    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3817    Diag(D->getLocation(), diag::note_using_decl) << 1;
3818    return true;
3819  }
3820
3821  return false;
3822}
3823
3824
3825/// Checks that the given nested-name qualifier used in a using decl
3826/// in the current context is appropriately related to the current
3827/// scope.  If an error is found, diagnoses it and returns true.
3828bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3829                                   const CXXScopeSpec &SS,
3830                                   SourceLocation NameLoc) {
3831  DeclContext *NamedContext = computeDeclContext(SS);
3832
3833  if (!CurContext->isRecord()) {
3834    // C++03 [namespace.udecl]p3:
3835    // C++0x [namespace.udecl]p8:
3836    //   A using-declaration for a class member shall be a member-declaration.
3837
3838    // If we weren't able to compute a valid scope, it must be a
3839    // dependent class scope.
3840    if (!NamedContext || NamedContext->isRecord()) {
3841      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3842        << SS.getRange();
3843      return true;
3844    }
3845
3846    // Otherwise, everything is known to be fine.
3847    return false;
3848  }
3849
3850  // The current scope is a record.
3851
3852  // If the named context is dependent, we can't decide much.
3853  if (!NamedContext) {
3854    // FIXME: in C++0x, we can diagnose if we can prove that the
3855    // nested-name-specifier does not refer to a base class, which is
3856    // still possible in some cases.
3857
3858    // Otherwise we have to conservatively report that things might be
3859    // okay.
3860    return false;
3861  }
3862
3863  if (!NamedContext->isRecord()) {
3864    // Ideally this would point at the last name in the specifier,
3865    // but we don't have that level of source info.
3866    Diag(SS.getRange().getBegin(),
3867         diag::err_using_decl_nested_name_specifier_is_not_class)
3868      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3869    return true;
3870  }
3871
3872  if (getLangOptions().CPlusPlus0x) {
3873    // C++0x [namespace.udecl]p3:
3874    //   In a using-declaration used as a member-declaration, the
3875    //   nested-name-specifier shall name a base class of the class
3876    //   being defined.
3877
3878    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3879                                 cast<CXXRecordDecl>(NamedContext))) {
3880      if (CurContext == NamedContext) {
3881        Diag(NameLoc,
3882             diag::err_using_decl_nested_name_specifier_is_current_class)
3883          << SS.getRange();
3884        return true;
3885      }
3886
3887      Diag(SS.getRange().getBegin(),
3888           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3889        << (NestedNameSpecifier*) SS.getScopeRep()
3890        << cast<CXXRecordDecl>(CurContext)
3891        << SS.getRange();
3892      return true;
3893    }
3894
3895    return false;
3896  }
3897
3898  // C++03 [namespace.udecl]p4:
3899  //   A using-declaration used as a member-declaration shall refer
3900  //   to a member of a base class of the class being defined [etc.].
3901
3902  // Salient point: SS doesn't have to name a base class as long as
3903  // lookup only finds members from base classes.  Therefore we can
3904  // diagnose here only if we can prove that that can't happen,
3905  // i.e. if the class hierarchies provably don't intersect.
3906
3907  // TODO: it would be nice if "definitely valid" results were cached
3908  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3909  // need to be repeated.
3910
3911  struct UserData {
3912    llvm::DenseSet<const CXXRecordDecl*> Bases;
3913
3914    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3915      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3916      Data->Bases.insert(Base);
3917      return true;
3918    }
3919
3920    bool hasDependentBases(const CXXRecordDecl *Class) {
3921      return !Class->forallBases(collect, this);
3922    }
3923
3924    /// Returns true if the base is dependent or is one of the
3925    /// accumulated base classes.
3926    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3927      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3928      return !Data->Bases.count(Base);
3929    }
3930
3931    bool mightShareBases(const CXXRecordDecl *Class) {
3932      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3933    }
3934  };
3935
3936  UserData Data;
3937
3938  // Returns false if we find a dependent base.
3939  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3940    return false;
3941
3942  // Returns false if the class has a dependent base or if it or one
3943  // of its bases is present in the base set of the current context.
3944  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3945    return false;
3946
3947  Diag(SS.getRange().getBegin(),
3948       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3949    << (NestedNameSpecifier*) SS.getScopeRep()
3950    << cast<CXXRecordDecl>(CurContext)
3951    << SS.getRange();
3952
3953  return true;
3954}
3955
3956Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3957                                             SourceLocation NamespaceLoc,
3958                                             SourceLocation AliasLoc,
3959                                             IdentifierInfo *Alias,
3960                                             CXXScopeSpec &SS,
3961                                             SourceLocation IdentLoc,
3962                                             IdentifierInfo *Ident) {
3963
3964  // Lookup the namespace name.
3965  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3966  LookupParsedName(R, S, &SS);
3967
3968  // Check if we have a previous declaration with the same name.
3969  if (NamedDecl *PrevDecl
3970        = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
3971                           ForRedeclaration)) {
3972    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3973      // We already have an alias with the same name that points to the same
3974      // namespace, so don't create a new one.
3975      // FIXME: At some point, we'll want to create the (redundant)
3976      // declaration to maintain better source information.
3977      if (!R.isAmbiguous() && !R.empty() &&
3978          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3979        return DeclPtrTy();
3980    }
3981
3982    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3983      diag::err_redefinition_different_kind;
3984    Diag(AliasLoc, DiagID) << Alias;
3985    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3986    return DeclPtrTy();
3987  }
3988
3989  if (R.isAmbiguous())
3990    return DeclPtrTy();
3991
3992  if (R.empty()) {
3993    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3994    return DeclPtrTy();
3995  }
3996
3997  NamespaceAliasDecl *AliasDecl =
3998    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3999                               Alias, SS.getRange(),
4000                               (NestedNameSpecifier *)SS.getScopeRep(),
4001                               IdentLoc, R.getFoundDecl());
4002
4003  PushOnScopeChains(AliasDecl, S);
4004  return DeclPtrTy::make(AliasDecl);
4005}
4006
4007void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4008                                            CXXConstructorDecl *Constructor) {
4009  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4010          !Constructor->isUsed()) &&
4011    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4012
4013  CXXRecordDecl *ClassDecl = Constructor->getParent();
4014  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4015
4016  DeclContext *PreviousContext = CurContext;
4017  CurContext = Constructor;
4018  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
4019    Diag(CurrentLocation, diag::note_member_synthesized_at)
4020      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4021    Constructor->setInvalidDecl();
4022  } else {
4023    Constructor->setUsed();
4024  }
4025  CurContext = PreviousContext;
4026}
4027
4028void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4029                                    CXXDestructorDecl *Destructor) {
4030  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4031         "DefineImplicitDestructor - call it for implicit default dtor");
4032  CXXRecordDecl *ClassDecl = Destructor->getParent();
4033  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4034
4035  DeclContext *PreviousContext = CurContext;
4036  CurContext = Destructor;
4037
4038  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4039                                         Destructor->getParent());
4040
4041  // FIXME: If CheckDestructor fails, we should emit a note about where the
4042  // implicit destructor was needed.
4043  if (CheckDestructor(Destructor)) {
4044    Diag(CurrentLocation, diag::note_member_synthesized_at)
4045      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4046
4047    Destructor->setInvalidDecl();
4048    CurContext = PreviousContext;
4049
4050    return;
4051  }
4052  CurContext = PreviousContext;
4053
4054  Destructor->setUsed();
4055}
4056
4057void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
4058                                          CXXMethodDecl *MethodDecl) {
4059  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
4060          MethodDecl->getOverloadedOperator() == OO_Equal &&
4061          !MethodDecl->isUsed()) &&
4062         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
4063
4064  CXXRecordDecl *ClassDecl
4065    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
4066
4067  DeclContext *PreviousContext = CurContext;
4068  CurContext = MethodDecl;
4069
4070  // C++[class.copy] p12
4071  // Before the implicitly-declared copy assignment operator for a class is
4072  // implicitly defined, all implicitly-declared copy assignment operators
4073  // for its direct base classes and its nonstatic data members shall have
4074  // been implicitly defined.
4075  bool err = false;
4076  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4077       E = ClassDecl->bases_end(); Base != E; ++Base) {
4078    CXXRecordDecl *BaseClassDecl
4079      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4080    if (CXXMethodDecl *BaseAssignOpMethod =
4081          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4082                                  BaseClassDecl)) {
4083      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4084                              BaseAssignOpMethod,
4085                              PDiag(diag::err_access_assign_base)
4086                                << Base->getType());
4087
4088      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
4089    }
4090  }
4091  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4092       E = ClassDecl->field_end(); Field != E; ++Field) {
4093    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4094    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4095      FieldType = Array->getElementType();
4096    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4097      CXXRecordDecl *FieldClassDecl
4098        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4099      if (CXXMethodDecl *FieldAssignOpMethod =
4100          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4101                                  FieldClassDecl)) {
4102        CheckDirectMemberAccess(Field->getLocation(),
4103                                FieldAssignOpMethod,
4104                                PDiag(diag::err_access_assign_field)
4105                                  << Field->getDeclName() << Field->getType());
4106
4107        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
4108      }
4109    } else if (FieldType->isReferenceType()) {
4110      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4111      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4112      Diag(Field->getLocation(), diag::note_declared_at);
4113      Diag(CurrentLocation, diag::note_first_required_here);
4114      err = true;
4115    } else if (FieldType.isConstQualified()) {
4116      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4117      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4118      Diag(Field->getLocation(), diag::note_declared_at);
4119      Diag(CurrentLocation, diag::note_first_required_here);
4120      err = true;
4121    }
4122  }
4123  if (!err)
4124    MethodDecl->setUsed();
4125
4126  CurContext = PreviousContext;
4127}
4128
4129CXXMethodDecl *
4130Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
4131                              ParmVarDecl *ParmDecl,
4132                              CXXRecordDecl *ClassDecl) {
4133  QualType LHSType = Context.getTypeDeclType(ClassDecl);
4134  QualType RHSType(LHSType);
4135  // If class's assignment operator argument is const/volatile qualified,
4136  // look for operator = (const/volatile B&). Otherwise, look for
4137  // operator = (B&).
4138  RHSType = Context.getCVRQualifiedType(RHSType,
4139                                     ParmDecl->getType().getCVRQualifiers());
4140  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
4141                                                           LHSType,
4142                                                           SourceLocation()));
4143  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
4144                                                           RHSType,
4145                                                           CurrentLocation));
4146  Expr *Args[2] = { &*LHS, &*RHS };
4147  OverloadCandidateSet CandidateSet(CurrentLocation);
4148  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
4149                              CandidateSet);
4150  OverloadCandidateSet::iterator Best;
4151  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
4152    return cast<CXXMethodDecl>(Best->Function);
4153  assert(false &&
4154         "getAssignOperatorMethod - copy assignment operator method not found");
4155  return 0;
4156}
4157
4158void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4159                                   CXXConstructorDecl *CopyConstructor,
4160                                   unsigned TypeQuals) {
4161  assert((CopyConstructor->isImplicit() &&
4162          CopyConstructor->isCopyConstructor(TypeQuals) &&
4163          !CopyConstructor->isUsed()) &&
4164         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4165
4166  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4167  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4168
4169  DeclContext *PreviousContext = CurContext;
4170  CurContext = CopyConstructor;
4171
4172  // C++ [class.copy] p209
4173  // Before the implicitly-declared copy constructor for a class is
4174  // implicitly defined, all the implicitly-declared copy constructors
4175  // for its base class and its non-static data members shall have been
4176  // implicitly defined.
4177  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
4178       Base != ClassDecl->bases_end(); ++Base) {
4179    CXXRecordDecl *BaseClassDecl
4180      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4181    if (CXXConstructorDecl *BaseCopyCtor =
4182        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
4183      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4184                              BaseCopyCtor,
4185                              PDiag(diag::err_access_copy_base)
4186                                << Base->getType());
4187
4188      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4189    }
4190  }
4191  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4192                                  FieldEnd = ClassDecl->field_end();
4193       Field != FieldEnd; ++Field) {
4194    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4195    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4196      FieldType = Array->getElementType();
4197    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4198      CXXRecordDecl *FieldClassDecl
4199        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4200      if (CXXConstructorDecl *FieldCopyCtor =
4201          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4202        CheckDirectMemberAccess(Field->getLocation(),
4203                                FieldCopyCtor,
4204                                PDiag(diag::err_access_copy_field)
4205                                  << Field->getDeclName() << Field->getType());
4206
4207        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4208      }
4209    }
4210  }
4211  CopyConstructor->setUsed();
4212
4213  CurContext = PreviousContext;
4214}
4215
4216Sema::OwningExprResult
4217Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4218                            CXXConstructorDecl *Constructor,
4219                            MultiExprArg ExprArgs,
4220                            bool RequiresZeroInit,
4221                            bool BaseInitialization) {
4222  bool Elidable = false;
4223
4224  // C++0x [class.copy]p34:
4225  //   When certain criteria are met, an implementation is allowed to
4226  //   omit the copy/move construction of a class object, even if the
4227  //   copy/move constructor and/or destructor for the object have
4228  //   side effects. [...]
4229  //     - when a temporary class object that has not been bound to a
4230  //       reference (12.2) would be copied/moved to a class object
4231  //       with the same cv-unqualified type, the copy/move operation
4232  //       can be omitted by constructing the temporary object
4233  //       directly into the target of the omitted copy/move
4234  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4235    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4236    Elidable = SubExpr->isTemporaryObject() &&
4237      Context.hasSameUnqualifiedType(SubExpr->getType(),
4238                           Context.getTypeDeclType(Constructor->getParent()));
4239  }
4240
4241  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4242                               Elidable, move(ExprArgs), RequiresZeroInit,
4243                               BaseInitialization);
4244}
4245
4246/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4247/// including handling of its default argument expressions.
4248Sema::OwningExprResult
4249Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4250                            CXXConstructorDecl *Constructor, bool Elidable,
4251                            MultiExprArg ExprArgs,
4252                            bool RequiresZeroInit,
4253                            bool BaseInitialization) {
4254  unsigned NumExprs = ExprArgs.size();
4255  Expr **Exprs = (Expr **)ExprArgs.release();
4256
4257  MarkDeclarationReferenced(ConstructLoc, Constructor);
4258  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4259                                        Constructor, Elidable, Exprs, NumExprs,
4260                                        RequiresZeroInit, BaseInitialization));
4261}
4262
4263bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4264                                        CXXConstructorDecl *Constructor,
4265                                        MultiExprArg Exprs) {
4266  OwningExprResult TempResult =
4267    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4268                          move(Exprs));
4269  if (TempResult.isInvalid())
4270    return true;
4271
4272  Expr *Temp = TempResult.takeAs<Expr>();
4273  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4274  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4275  VD->setInit(Temp);
4276
4277  return false;
4278}
4279
4280void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4281  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4282  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4283      !ClassDecl->hasTrivialDestructor()) {
4284    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4285    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4286    CheckDestructorAccess(VD->getLocation(), Destructor,
4287                          PDiag(diag::err_access_dtor_var)
4288                            << VD->getDeclName()
4289                            << VD->getType());
4290  }
4291}
4292
4293/// AddCXXDirectInitializerToDecl - This action is called immediately after
4294/// ActOnDeclarator, when a C++ direct initializer is present.
4295/// e.g: "int x(1);"
4296void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4297                                         SourceLocation LParenLoc,
4298                                         MultiExprArg Exprs,
4299                                         SourceLocation *CommaLocs,
4300                                         SourceLocation RParenLoc) {
4301  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4302  Decl *RealDecl = Dcl.getAs<Decl>();
4303
4304  // If there is no declaration, there was an error parsing it.  Just ignore
4305  // the initializer.
4306  if (RealDecl == 0)
4307    return;
4308
4309  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4310  if (!VDecl) {
4311    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4312    RealDecl->setInvalidDecl();
4313    return;
4314  }
4315
4316  // We will represent direct-initialization similarly to copy-initialization:
4317  //    int x(1);  -as-> int x = 1;
4318  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4319  //
4320  // Clients that want to distinguish between the two forms, can check for
4321  // direct initializer using VarDecl::hasCXXDirectInitializer().
4322  // A major benefit is that clients that don't particularly care about which
4323  // exactly form was it (like the CodeGen) can handle both cases without
4324  // special case code.
4325
4326  // C++ 8.5p11:
4327  // The form of initialization (using parentheses or '=') is generally
4328  // insignificant, but does matter when the entity being initialized has a
4329  // class type.
4330  QualType DeclInitType = VDecl->getType();
4331  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4332    DeclInitType = Context.getBaseElementType(Array);
4333
4334  if (!VDecl->getType()->isDependentType() &&
4335      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4336                          diag::err_typecheck_decl_incomplete_type)) {
4337    VDecl->setInvalidDecl();
4338    return;
4339  }
4340
4341  // The variable can not have an abstract class type.
4342  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4343                             diag::err_abstract_type_in_decl,
4344                             AbstractVariableType))
4345    VDecl->setInvalidDecl();
4346
4347  const VarDecl *Def;
4348  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4349    Diag(VDecl->getLocation(), diag::err_redefinition)
4350    << VDecl->getDeclName();
4351    Diag(Def->getLocation(), diag::note_previous_definition);
4352    VDecl->setInvalidDecl();
4353    return;
4354  }
4355
4356  // If either the declaration has a dependent type or if any of the
4357  // expressions is type-dependent, we represent the initialization
4358  // via a ParenListExpr for later use during template instantiation.
4359  if (VDecl->getType()->isDependentType() ||
4360      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4361    // Let clients know that initialization was done with a direct initializer.
4362    VDecl->setCXXDirectInitializer(true);
4363
4364    // Store the initialization expressions as a ParenListExpr.
4365    unsigned NumExprs = Exprs.size();
4366    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4367                                               (Expr **)Exprs.release(),
4368                                               NumExprs, RParenLoc));
4369    return;
4370  }
4371
4372  // Capture the variable that is being initialized and the style of
4373  // initialization.
4374  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4375
4376  // FIXME: Poor source location information.
4377  InitializationKind Kind
4378    = InitializationKind::CreateDirect(VDecl->getLocation(),
4379                                       LParenLoc, RParenLoc);
4380
4381  InitializationSequence InitSeq(*this, Entity, Kind,
4382                                 (Expr**)Exprs.get(), Exprs.size());
4383  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4384  if (Result.isInvalid()) {
4385    VDecl->setInvalidDecl();
4386    return;
4387  }
4388
4389  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4390  VDecl->setInit(Result.takeAs<Expr>());
4391  VDecl->setCXXDirectInitializer(true);
4392
4393  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4394    FinalizeVarWithDestructor(VDecl, Record);
4395}
4396
4397/// \brief Given a constructor and the set of arguments provided for the
4398/// constructor, convert the arguments and add any required default arguments
4399/// to form a proper call to this constructor.
4400///
4401/// \returns true if an error occurred, false otherwise.
4402bool
4403Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4404                              MultiExprArg ArgsPtr,
4405                              SourceLocation Loc,
4406                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4407  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4408  unsigned NumArgs = ArgsPtr.size();
4409  Expr **Args = (Expr **)ArgsPtr.get();
4410
4411  const FunctionProtoType *Proto
4412    = Constructor->getType()->getAs<FunctionProtoType>();
4413  assert(Proto && "Constructor without a prototype?");
4414  unsigned NumArgsInProto = Proto->getNumArgs();
4415
4416  // If too few arguments are available, we'll fill in the rest with defaults.
4417  if (NumArgs < NumArgsInProto)
4418    ConvertedArgs.reserve(NumArgsInProto);
4419  else
4420    ConvertedArgs.reserve(NumArgs);
4421
4422  VariadicCallType CallType =
4423    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4424  llvm::SmallVector<Expr *, 8> AllArgs;
4425  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4426                                        Proto, 0, Args, NumArgs, AllArgs,
4427                                        CallType);
4428  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4429    ConvertedArgs.push_back(AllArgs[i]);
4430  return Invalid;
4431}
4432
4433static inline bool
4434CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4435                                       const FunctionDecl *FnDecl) {
4436  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4437  if (isa<NamespaceDecl>(DC)) {
4438    return SemaRef.Diag(FnDecl->getLocation(),
4439                        diag::err_operator_new_delete_declared_in_namespace)
4440      << FnDecl->getDeclName();
4441  }
4442
4443  if (isa<TranslationUnitDecl>(DC) &&
4444      FnDecl->getStorageClass() == FunctionDecl::Static) {
4445    return SemaRef.Diag(FnDecl->getLocation(),
4446                        diag::err_operator_new_delete_declared_static)
4447      << FnDecl->getDeclName();
4448  }
4449
4450  return false;
4451}
4452
4453static inline bool
4454CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4455                            CanQualType ExpectedResultType,
4456                            CanQualType ExpectedFirstParamType,
4457                            unsigned DependentParamTypeDiag,
4458                            unsigned InvalidParamTypeDiag) {
4459  QualType ResultType =
4460    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4461
4462  // Check that the result type is not dependent.
4463  if (ResultType->isDependentType())
4464    return SemaRef.Diag(FnDecl->getLocation(),
4465                        diag::err_operator_new_delete_dependent_result_type)
4466    << FnDecl->getDeclName() << ExpectedResultType;
4467
4468  // Check that the result type is what we expect.
4469  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4470    return SemaRef.Diag(FnDecl->getLocation(),
4471                        diag::err_operator_new_delete_invalid_result_type)
4472    << FnDecl->getDeclName() << ExpectedResultType;
4473
4474  // A function template must have at least 2 parameters.
4475  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4476    return SemaRef.Diag(FnDecl->getLocation(),
4477                      diag::err_operator_new_delete_template_too_few_parameters)
4478        << FnDecl->getDeclName();
4479
4480  // The function decl must have at least 1 parameter.
4481  if (FnDecl->getNumParams() == 0)
4482    return SemaRef.Diag(FnDecl->getLocation(),
4483                        diag::err_operator_new_delete_too_few_parameters)
4484      << FnDecl->getDeclName();
4485
4486  // Check the the first parameter type is not dependent.
4487  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4488  if (FirstParamType->isDependentType())
4489    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4490      << FnDecl->getDeclName() << ExpectedFirstParamType;
4491
4492  // Check that the first parameter type is what we expect.
4493  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4494      ExpectedFirstParamType)
4495    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4496    << FnDecl->getDeclName() << ExpectedFirstParamType;
4497
4498  return false;
4499}
4500
4501static bool
4502CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4503  // C++ [basic.stc.dynamic.allocation]p1:
4504  //   A program is ill-formed if an allocation function is declared in a
4505  //   namespace scope other than global scope or declared static in global
4506  //   scope.
4507  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4508    return true;
4509
4510  CanQualType SizeTy =
4511    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4512
4513  // C++ [basic.stc.dynamic.allocation]p1:
4514  //  The return type shall be void*. The first parameter shall have type
4515  //  std::size_t.
4516  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4517                                  SizeTy,
4518                                  diag::err_operator_new_dependent_param_type,
4519                                  diag::err_operator_new_param_type))
4520    return true;
4521
4522  // C++ [basic.stc.dynamic.allocation]p1:
4523  //  The first parameter shall not have an associated default argument.
4524  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4525    return SemaRef.Diag(FnDecl->getLocation(),
4526                        diag::err_operator_new_default_arg)
4527      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4528
4529  return false;
4530}
4531
4532static bool
4533CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4534  // C++ [basic.stc.dynamic.deallocation]p1:
4535  //   A program is ill-formed if deallocation functions are declared in a
4536  //   namespace scope other than global scope or declared static in global
4537  //   scope.
4538  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4539    return true;
4540
4541  // C++ [basic.stc.dynamic.deallocation]p2:
4542  //   Each deallocation function shall return void and its first parameter
4543  //   shall be void*.
4544  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4545                                  SemaRef.Context.VoidPtrTy,
4546                                 diag::err_operator_delete_dependent_param_type,
4547                                 diag::err_operator_delete_param_type))
4548    return true;
4549
4550  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4551  if (FirstParamType->isDependentType())
4552    return SemaRef.Diag(FnDecl->getLocation(),
4553                        diag::err_operator_delete_dependent_param_type)
4554    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4555
4556  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4557      SemaRef.Context.VoidPtrTy)
4558    return SemaRef.Diag(FnDecl->getLocation(),
4559                        diag::err_operator_delete_param_type)
4560      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4561
4562  return false;
4563}
4564
4565/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4566/// of this overloaded operator is well-formed. If so, returns false;
4567/// otherwise, emits appropriate diagnostics and returns true.
4568bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4569  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4570         "Expected an overloaded operator declaration");
4571
4572  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4573
4574  // C++ [over.oper]p5:
4575  //   The allocation and deallocation functions, operator new,
4576  //   operator new[], operator delete and operator delete[], are
4577  //   described completely in 3.7.3. The attributes and restrictions
4578  //   found in the rest of this subclause do not apply to them unless
4579  //   explicitly stated in 3.7.3.
4580  if (Op == OO_Delete || Op == OO_Array_Delete)
4581    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4582
4583  if (Op == OO_New || Op == OO_Array_New)
4584    return CheckOperatorNewDeclaration(*this, FnDecl);
4585
4586  // C++ [over.oper]p6:
4587  //   An operator function shall either be a non-static member
4588  //   function or be a non-member function and have at least one
4589  //   parameter whose type is a class, a reference to a class, an
4590  //   enumeration, or a reference to an enumeration.
4591  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4592    if (MethodDecl->isStatic())
4593      return Diag(FnDecl->getLocation(),
4594                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4595  } else {
4596    bool ClassOrEnumParam = false;
4597    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4598                                   ParamEnd = FnDecl->param_end();
4599         Param != ParamEnd; ++Param) {
4600      QualType ParamType = (*Param)->getType().getNonReferenceType();
4601      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4602          ParamType->isEnumeralType()) {
4603        ClassOrEnumParam = true;
4604        break;
4605      }
4606    }
4607
4608    if (!ClassOrEnumParam)
4609      return Diag(FnDecl->getLocation(),
4610                  diag::err_operator_overload_needs_class_or_enum)
4611        << FnDecl->getDeclName();
4612  }
4613
4614  // C++ [over.oper]p8:
4615  //   An operator function cannot have default arguments (8.3.6),
4616  //   except where explicitly stated below.
4617  //
4618  // Only the function-call operator allows default arguments
4619  // (C++ [over.call]p1).
4620  if (Op != OO_Call) {
4621    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4622         Param != FnDecl->param_end(); ++Param) {
4623      if ((*Param)->hasDefaultArg())
4624        return Diag((*Param)->getLocation(),
4625                    diag::err_operator_overload_default_arg)
4626          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4627    }
4628  }
4629
4630  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4631    { false, false, false }
4632#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4633    , { Unary, Binary, MemberOnly }
4634#include "clang/Basic/OperatorKinds.def"
4635  };
4636
4637  bool CanBeUnaryOperator = OperatorUses[Op][0];
4638  bool CanBeBinaryOperator = OperatorUses[Op][1];
4639  bool MustBeMemberOperator = OperatorUses[Op][2];
4640
4641  // C++ [over.oper]p8:
4642  //   [...] Operator functions cannot have more or fewer parameters
4643  //   than the number required for the corresponding operator, as
4644  //   described in the rest of this subclause.
4645  unsigned NumParams = FnDecl->getNumParams()
4646                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4647  if (Op != OO_Call &&
4648      ((NumParams == 1 && !CanBeUnaryOperator) ||
4649       (NumParams == 2 && !CanBeBinaryOperator) ||
4650       (NumParams < 1) || (NumParams > 2))) {
4651    // We have the wrong number of parameters.
4652    unsigned ErrorKind;
4653    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4654      ErrorKind = 2;  // 2 -> unary or binary.
4655    } else if (CanBeUnaryOperator) {
4656      ErrorKind = 0;  // 0 -> unary
4657    } else {
4658      assert(CanBeBinaryOperator &&
4659             "All non-call overloaded operators are unary or binary!");
4660      ErrorKind = 1;  // 1 -> binary
4661    }
4662
4663    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4664      << FnDecl->getDeclName() << NumParams << ErrorKind;
4665  }
4666
4667  // Overloaded operators other than operator() cannot be variadic.
4668  if (Op != OO_Call &&
4669      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4670    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4671      << FnDecl->getDeclName();
4672  }
4673
4674  // Some operators must be non-static member functions.
4675  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4676    return Diag(FnDecl->getLocation(),
4677                diag::err_operator_overload_must_be_member)
4678      << FnDecl->getDeclName();
4679  }
4680
4681  // C++ [over.inc]p1:
4682  //   The user-defined function called operator++ implements the
4683  //   prefix and postfix ++ operator. If this function is a member
4684  //   function with no parameters, or a non-member function with one
4685  //   parameter of class or enumeration type, it defines the prefix
4686  //   increment operator ++ for objects of that type. If the function
4687  //   is a member function with one parameter (which shall be of type
4688  //   int) or a non-member function with two parameters (the second
4689  //   of which shall be of type int), it defines the postfix
4690  //   increment operator ++ for objects of that type.
4691  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4692    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4693    bool ParamIsInt = false;
4694    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4695      ParamIsInt = BT->getKind() == BuiltinType::Int;
4696
4697    if (!ParamIsInt)
4698      return Diag(LastParam->getLocation(),
4699                  diag::err_operator_overload_post_incdec_must_be_int)
4700        << LastParam->getType() << (Op == OO_MinusMinus);
4701  }
4702
4703  // Notify the class if it got an assignment operator.
4704  if (Op == OO_Equal) {
4705    // Would have returned earlier otherwise.
4706    assert(isa<CXXMethodDecl>(FnDecl) &&
4707      "Overloaded = not member, but not filtered.");
4708    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4709    Method->getParent()->addedAssignmentOperator(Context, Method);
4710  }
4711
4712  return false;
4713}
4714
4715/// CheckLiteralOperatorDeclaration - Check whether the declaration
4716/// of this literal operator function is well-formed. If so, returns
4717/// false; otherwise, emits appropriate diagnostics and returns true.
4718bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
4719  DeclContext *DC = FnDecl->getDeclContext();
4720  Decl::Kind Kind = DC->getDeclKind();
4721  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
4722      Kind != Decl::LinkageSpec) {
4723    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
4724      << FnDecl->getDeclName();
4725    return true;
4726  }
4727
4728  bool Valid = false;
4729
4730  // template <char...> type operator "" name() is the only valid template
4731  // signature, and the only valid signature with no parameters.
4732  if (FnDecl->param_size() == 0) {
4733    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
4734      // Must have only one template parameter
4735      TemplateParameterList *Params = TpDecl->getTemplateParameters();
4736      if (Params->size() == 1) {
4737        NonTypeTemplateParmDecl *PmDecl =
4738          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
4739
4740        // The template parameter must be a char parameter pack.
4741        // FIXME: This test will always fail because non-type parameter packs
4742        //   have not been implemented.
4743        if (PmDecl && PmDecl->isTemplateParameterPack() &&
4744            Context.hasSameType(PmDecl->getType(), Context.CharTy))
4745          Valid = true;
4746      }
4747    }
4748  } else {
4749    // Check the first parameter
4750    FunctionDecl::param_iterator Param = FnDecl->param_begin();
4751
4752    QualType T = (*Param)->getType();
4753
4754    // unsigned long long int, long double, and any character type are allowed
4755    // as the only parameters.
4756    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
4757        Context.hasSameType(T, Context.LongDoubleTy) ||
4758        Context.hasSameType(T, Context.CharTy) ||
4759        Context.hasSameType(T, Context.WCharTy) ||
4760        Context.hasSameType(T, Context.Char16Ty) ||
4761        Context.hasSameType(T, Context.Char32Ty)) {
4762      if (++Param == FnDecl->param_end())
4763        Valid = true;
4764      goto FinishedParams;
4765    }
4766
4767    // Otherwise it must be a pointer to const; let's strip those qualifiers.
4768    const PointerType *PT = T->getAs<PointerType>();
4769    if (!PT)
4770      goto FinishedParams;
4771    T = PT->getPointeeType();
4772    if (!T.isConstQualified())
4773      goto FinishedParams;
4774    T = T.getUnqualifiedType();
4775
4776    // Move on to the second parameter;
4777    ++Param;
4778
4779    // If there is no second parameter, the first must be a const char *
4780    if (Param == FnDecl->param_end()) {
4781      if (Context.hasSameType(T, Context.CharTy))
4782        Valid = true;
4783      goto FinishedParams;
4784    }
4785
4786    // const char *, const wchar_t*, const char16_t*, and const char32_t*
4787    // are allowed as the first parameter to a two-parameter function
4788    if (!(Context.hasSameType(T, Context.CharTy) ||
4789          Context.hasSameType(T, Context.WCharTy) ||
4790          Context.hasSameType(T, Context.Char16Ty) ||
4791          Context.hasSameType(T, Context.Char32Ty)))
4792      goto FinishedParams;
4793
4794    // The second and final parameter must be an std::size_t
4795    T = (*Param)->getType().getUnqualifiedType();
4796    if (Context.hasSameType(T, Context.getSizeType()) &&
4797        ++Param == FnDecl->param_end())
4798      Valid = true;
4799  }
4800
4801  // FIXME: This diagnostic is absolutely terrible.
4802FinishedParams:
4803  if (!Valid) {
4804    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
4805      << FnDecl->getDeclName();
4806    return true;
4807  }
4808
4809  return false;
4810}
4811
4812/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4813/// linkage specification, including the language and (if present)
4814/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4815/// the location of the language string literal, which is provided
4816/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4817/// the '{' brace. Otherwise, this linkage specification does not
4818/// have any braces.
4819Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4820                                                     SourceLocation ExternLoc,
4821                                                     SourceLocation LangLoc,
4822                                                     const char *Lang,
4823                                                     unsigned StrSize,
4824                                                     SourceLocation LBraceLoc) {
4825  LinkageSpecDecl::LanguageIDs Language;
4826  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4827    Language = LinkageSpecDecl::lang_c;
4828  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4829    Language = LinkageSpecDecl::lang_cxx;
4830  else {
4831    Diag(LangLoc, diag::err_bad_language);
4832    return DeclPtrTy();
4833  }
4834
4835  // FIXME: Add all the various semantics of linkage specifications
4836
4837  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4838                                               LangLoc, Language,
4839                                               LBraceLoc.isValid());
4840  CurContext->addDecl(D);
4841  PushDeclContext(S, D);
4842  return DeclPtrTy::make(D);
4843}
4844
4845/// ActOnFinishLinkageSpecification - Completely the definition of
4846/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4847/// valid, it's the position of the closing '}' brace in a linkage
4848/// specification that uses braces.
4849Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4850                                                      DeclPtrTy LinkageSpec,
4851                                                      SourceLocation RBraceLoc) {
4852  if (LinkageSpec)
4853    PopDeclContext();
4854  return LinkageSpec;
4855}
4856
4857/// \brief Perform semantic analysis for the variable declaration that
4858/// occurs within a C++ catch clause, returning the newly-created
4859/// variable.
4860VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4861                                         TypeSourceInfo *TInfo,
4862                                         IdentifierInfo *Name,
4863                                         SourceLocation Loc,
4864                                         SourceRange Range) {
4865  bool Invalid = false;
4866
4867  // Arrays and functions decay.
4868  if (ExDeclType->isArrayType())
4869    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4870  else if (ExDeclType->isFunctionType())
4871    ExDeclType = Context.getPointerType(ExDeclType);
4872
4873  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4874  // The exception-declaration shall not denote a pointer or reference to an
4875  // incomplete type, other than [cv] void*.
4876  // N2844 forbids rvalue references.
4877  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4878    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4879    Invalid = true;
4880  }
4881
4882  // GCC allows catching pointers and references to incomplete types
4883  // as an extension; so do we, but we warn by default.
4884
4885  QualType BaseType = ExDeclType;
4886  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4887  unsigned DK = diag::err_catch_incomplete;
4888  bool IncompleteCatchIsInvalid = true;
4889  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4890    BaseType = Ptr->getPointeeType();
4891    Mode = 1;
4892    DK = diag::ext_catch_incomplete_ptr;
4893    IncompleteCatchIsInvalid = false;
4894  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4895    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4896    BaseType = Ref->getPointeeType();
4897    Mode = 2;
4898    DK = diag::ext_catch_incomplete_ref;
4899    IncompleteCatchIsInvalid = false;
4900  }
4901  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4902      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
4903      IncompleteCatchIsInvalid)
4904    Invalid = true;
4905
4906  if (!Invalid && !ExDeclType->isDependentType() &&
4907      RequireNonAbstractType(Loc, ExDeclType,
4908                             diag::err_abstract_type_in_decl,
4909                             AbstractVariableType))
4910    Invalid = true;
4911
4912  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4913                                    Name, ExDeclType, TInfo, VarDecl::None,
4914                                    VarDecl::None);
4915
4916  if (!Invalid) {
4917    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
4918      // C++ [except.handle]p16:
4919      //   The object declared in an exception-declaration or, if the
4920      //   exception-declaration does not specify a name, a temporary (12.2) is
4921      //   copy-initialized (8.5) from the exception object. [...]
4922      //   The object is destroyed when the handler exits, after the destruction
4923      //   of any automatic objects initialized within the handler.
4924      //
4925      // We just pretend to initialize the object with itself, then make sure
4926      // it can be destroyed later.
4927      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
4928      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
4929                                            Loc, ExDeclType, 0);
4930      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
4931                                                               SourceLocation());
4932      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
4933      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4934                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
4935      if (Result.isInvalid())
4936        Invalid = true;
4937      else
4938        FinalizeVarWithDestructor(ExDecl, RecordTy);
4939    }
4940  }
4941
4942  if (Invalid)
4943    ExDecl->setInvalidDecl();
4944
4945  return ExDecl;
4946}
4947
4948/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4949/// handler.
4950Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4951  TypeSourceInfo *TInfo = 0;
4952  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
4953
4954  bool Invalid = D.isInvalidType();
4955  IdentifierInfo *II = D.getIdentifier();
4956  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
4957                                             LookupOrdinaryName,
4958                                             ForRedeclaration)) {
4959    // The scope should be freshly made just for us. There is just no way
4960    // it contains any previous declaration.
4961    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4962    if (PrevDecl->isTemplateParameter()) {
4963      // Maybe we will complain about the shadowed template parameter.
4964      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4965    }
4966  }
4967
4968  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4969    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4970      << D.getCXXScopeSpec().getRange();
4971    Invalid = true;
4972  }
4973
4974  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
4975                                              D.getIdentifier(),
4976                                              D.getIdentifierLoc(),
4977                                            D.getDeclSpec().getSourceRange());
4978
4979  if (Invalid)
4980    ExDecl->setInvalidDecl();
4981
4982  // Add the exception declaration into this scope.
4983  if (II)
4984    PushOnScopeChains(ExDecl, S);
4985  else
4986    CurContext->addDecl(ExDecl);
4987
4988  ProcessDeclAttributes(S, ExDecl, D);
4989  return DeclPtrTy::make(ExDecl);
4990}
4991
4992Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4993                                                   ExprArg assertexpr,
4994                                                   ExprArg assertmessageexpr) {
4995  Expr *AssertExpr = (Expr *)assertexpr.get();
4996  StringLiteral *AssertMessage =
4997    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4998
4999  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5000    llvm::APSInt Value(32);
5001    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5002      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5003        AssertExpr->getSourceRange();
5004      return DeclPtrTy();
5005    }
5006
5007    if (Value == 0) {
5008      Diag(AssertLoc, diag::err_static_assert_failed)
5009        << AssertMessage->getString() << AssertExpr->getSourceRange();
5010    }
5011  }
5012
5013  assertexpr.release();
5014  assertmessageexpr.release();
5015  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5016                                        AssertExpr, AssertMessage);
5017
5018  CurContext->addDecl(Decl);
5019  return DeclPtrTy::make(Decl);
5020}
5021
5022/// \brief Perform semantic analysis of the given friend type declaration.
5023///
5024/// \returns A friend declaration that.
5025FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5026                                      TypeSourceInfo *TSInfo) {
5027  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5028
5029  QualType T = TSInfo->getType();
5030  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5031
5032  if (!getLangOptions().CPlusPlus0x) {
5033    // C++03 [class.friend]p2:
5034    //   An elaborated-type-specifier shall be used in a friend declaration
5035    //   for a class.*
5036    //
5037    //   * The class-key of the elaborated-type-specifier is required.
5038    if (!ActiveTemplateInstantiations.empty()) {
5039      // Do not complain about the form of friend template types during
5040      // template instantiation; we will already have complained when the
5041      // template was declared.
5042    } else if (!T->isElaboratedTypeSpecifier()) {
5043      // If we evaluated the type to a record type, suggest putting
5044      // a tag in front.
5045      if (const RecordType *RT = T->getAs<RecordType>()) {
5046        RecordDecl *RD = RT->getDecl();
5047
5048        std::string InsertionText = std::string(" ") + RD->getKindName();
5049
5050        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5051          << (unsigned) RD->getTagKind()
5052          << T
5053          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5054                                        InsertionText);
5055      } else {
5056        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5057          << T
5058          << SourceRange(FriendLoc, TypeRange.getEnd());
5059      }
5060    } else if (T->getAs<EnumType>()) {
5061      Diag(FriendLoc, diag::ext_enum_friend)
5062        << T
5063        << SourceRange(FriendLoc, TypeRange.getEnd());
5064    }
5065  }
5066
5067  // C++0x [class.friend]p3:
5068  //   If the type specifier in a friend declaration designates a (possibly
5069  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5070  //   the friend declaration is ignored.
5071
5072  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5073  // in [class.friend]p3 that we do not implement.
5074
5075  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5076}
5077
5078/// Handle a friend type declaration.  This works in tandem with
5079/// ActOnTag.
5080///
5081/// Notes on friend class templates:
5082///
5083/// We generally treat friend class declarations as if they were
5084/// declaring a class.  So, for example, the elaborated type specifier
5085/// in a friend declaration is required to obey the restrictions of a
5086/// class-head (i.e. no typedefs in the scope chain), template
5087/// parameters are required to match up with simple template-ids, &c.
5088/// However, unlike when declaring a template specialization, it's
5089/// okay to refer to a template specialization without an empty
5090/// template parameter declaration, e.g.
5091///   friend class A<T>::B<unsigned>;
5092/// We permit this as a special case; if there are any template
5093/// parameters present at all, require proper matching, i.e.
5094///   template <> template <class T> friend class A<int>::B;
5095Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5096                                          MultiTemplateParamsArg TempParams) {
5097  SourceLocation Loc = DS.getSourceRange().getBegin();
5098
5099  assert(DS.isFriendSpecified());
5100  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5101
5102  // Try to convert the decl specifier to a type.  This works for
5103  // friend templates because ActOnTag never produces a ClassTemplateDecl
5104  // for a TUK_Friend.
5105  Declarator TheDeclarator(DS, Declarator::MemberContext);
5106  TypeSourceInfo *TSI;
5107  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5108  if (TheDeclarator.isInvalidType())
5109    return DeclPtrTy();
5110
5111  if (!TSI)
5112    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5113
5114  // This is definitely an error in C++98.  It's probably meant to
5115  // be forbidden in C++0x, too, but the specification is just
5116  // poorly written.
5117  //
5118  // The problem is with declarations like the following:
5119  //   template <T> friend A<T>::foo;
5120  // where deciding whether a class C is a friend or not now hinges
5121  // on whether there exists an instantiation of A that causes
5122  // 'foo' to equal C.  There are restrictions on class-heads
5123  // (which we declare (by fiat) elaborated friend declarations to
5124  // be) that makes this tractable.
5125  //
5126  // FIXME: handle "template <> friend class A<T>;", which
5127  // is possibly well-formed?  Who even knows?
5128  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5129    Diag(Loc, diag::err_tagless_friend_type_template)
5130      << DS.getSourceRange();
5131    return DeclPtrTy();
5132  }
5133
5134  // C++98 [class.friend]p1: A friend of a class is a function
5135  //   or class that is not a member of the class . . .
5136  // This is fixed in DR77, which just barely didn't make the C++03
5137  // deadline.  It's also a very silly restriction that seriously
5138  // affects inner classes and which nobody else seems to implement;
5139  // thus we never diagnose it, not even in -pedantic.
5140  //
5141  // But note that we could warn about it: it's always useless to
5142  // friend one of your own members (it's not, however, worthless to
5143  // friend a member of an arbitrary specialization of your template).
5144
5145  Decl *D;
5146  if (unsigned NumTempParamLists = TempParams.size())
5147    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5148                                   NumTempParamLists,
5149                                 (TemplateParameterList**) TempParams.release(),
5150                                   TSI,
5151                                   DS.getFriendSpecLoc());
5152  else
5153    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5154
5155  if (!D)
5156    return DeclPtrTy();
5157
5158  D->setAccess(AS_public);
5159  CurContext->addDecl(D);
5160
5161  return DeclPtrTy::make(D);
5162}
5163
5164Sema::DeclPtrTy
5165Sema::ActOnFriendFunctionDecl(Scope *S,
5166                              Declarator &D,
5167                              bool IsDefinition,
5168                              MultiTemplateParamsArg TemplateParams) {
5169  const DeclSpec &DS = D.getDeclSpec();
5170
5171  assert(DS.isFriendSpecified());
5172  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5173
5174  SourceLocation Loc = D.getIdentifierLoc();
5175  TypeSourceInfo *TInfo = 0;
5176  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5177
5178  // C++ [class.friend]p1
5179  //   A friend of a class is a function or class....
5180  // Note that this sees through typedefs, which is intended.
5181  // It *doesn't* see through dependent types, which is correct
5182  // according to [temp.arg.type]p3:
5183  //   If a declaration acquires a function type through a
5184  //   type dependent on a template-parameter and this causes
5185  //   a declaration that does not use the syntactic form of a
5186  //   function declarator to have a function type, the program
5187  //   is ill-formed.
5188  if (!T->isFunctionType()) {
5189    Diag(Loc, diag::err_unexpected_friend);
5190
5191    // It might be worthwhile to try to recover by creating an
5192    // appropriate declaration.
5193    return DeclPtrTy();
5194  }
5195
5196  // C++ [namespace.memdef]p3
5197  //  - If a friend declaration in a non-local class first declares a
5198  //    class or function, the friend class or function is a member
5199  //    of the innermost enclosing namespace.
5200  //  - The name of the friend is not found by simple name lookup
5201  //    until a matching declaration is provided in that namespace
5202  //    scope (either before or after the class declaration granting
5203  //    friendship).
5204  //  - If a friend function is called, its name may be found by the
5205  //    name lookup that considers functions from namespaces and
5206  //    classes associated with the types of the function arguments.
5207  //  - When looking for a prior declaration of a class or a function
5208  //    declared as a friend, scopes outside the innermost enclosing
5209  //    namespace scope are not considered.
5210
5211  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5212  DeclarationName Name = GetNameForDeclarator(D);
5213  assert(Name);
5214
5215  // The context we found the declaration in, or in which we should
5216  // create the declaration.
5217  DeclContext *DC;
5218
5219  // FIXME: handle local classes
5220
5221  // Recover from invalid scope qualifiers as if they just weren't there.
5222  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5223                        ForRedeclaration);
5224  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5225    // FIXME: RequireCompleteDeclContext
5226    DC = computeDeclContext(ScopeQual);
5227
5228    // FIXME: handle dependent contexts
5229    if (!DC) return DeclPtrTy();
5230
5231    LookupQualifiedName(Previous, DC);
5232
5233    // If searching in that context implicitly found a declaration in
5234    // a different context, treat it like it wasn't found at all.
5235    // TODO: better diagnostics for this case.  Suggesting the right
5236    // qualified scope would be nice...
5237    // FIXME: getRepresentativeDecl() is not right here at all
5238    if (Previous.empty() ||
5239        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5240      D.setInvalidType();
5241      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5242      return DeclPtrTy();
5243    }
5244
5245    // C++ [class.friend]p1: A friend of a class is a function or
5246    //   class that is not a member of the class . . .
5247    if (DC->Equals(CurContext))
5248      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5249
5250  // Otherwise walk out to the nearest namespace scope looking for matches.
5251  } else {
5252    // TODO: handle local class contexts.
5253
5254    DC = CurContext;
5255    while (true) {
5256      // Skip class contexts.  If someone can cite chapter and verse
5257      // for this behavior, that would be nice --- it's what GCC and
5258      // EDG do, and it seems like a reasonable intent, but the spec
5259      // really only says that checks for unqualified existing
5260      // declarations should stop at the nearest enclosing namespace,
5261      // not that they should only consider the nearest enclosing
5262      // namespace.
5263      while (DC->isRecord())
5264        DC = DC->getParent();
5265
5266      LookupQualifiedName(Previous, DC);
5267
5268      // TODO: decide what we think about using declarations.
5269      if (!Previous.empty())
5270        break;
5271
5272      if (DC->isFileContext()) break;
5273      DC = DC->getParent();
5274    }
5275
5276    // C++ [class.friend]p1: A friend of a class is a function or
5277    //   class that is not a member of the class . . .
5278    // C++0x changes this for both friend types and functions.
5279    // Most C++ 98 compilers do seem to give an error here, so
5280    // we do, too.
5281    if (!Previous.empty() && DC->Equals(CurContext)
5282        && !getLangOptions().CPlusPlus0x)
5283      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5284  }
5285
5286  if (DC->isFileContext()) {
5287    // This implies that it has to be an operator or function.
5288    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5289        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5290        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5291      Diag(Loc, diag::err_introducing_special_friend) <<
5292        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5293         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5294      return DeclPtrTy();
5295    }
5296  }
5297
5298  bool Redeclaration = false;
5299  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5300                                          move(TemplateParams),
5301                                          IsDefinition,
5302                                          Redeclaration);
5303  if (!ND) return DeclPtrTy();
5304
5305  assert(ND->getDeclContext() == DC);
5306  assert(ND->getLexicalDeclContext() == CurContext);
5307
5308  // Add the function declaration to the appropriate lookup tables,
5309  // adjusting the redeclarations list as necessary.  We don't
5310  // want to do this yet if the friending class is dependent.
5311  //
5312  // Also update the scope-based lookup if the target context's
5313  // lookup context is in lexical scope.
5314  if (!CurContext->isDependentContext()) {
5315    DC = DC->getLookupContext();
5316    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5317    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5318      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5319  }
5320
5321  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5322                                       D.getIdentifierLoc(), ND,
5323                                       DS.getFriendSpecLoc());
5324  FrD->setAccess(AS_public);
5325  CurContext->addDecl(FrD);
5326
5327  return DeclPtrTy::make(ND);
5328}
5329
5330void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5331  AdjustDeclIfTemplate(dcl);
5332
5333  Decl *Dcl = dcl.getAs<Decl>();
5334  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5335  if (!Fn) {
5336    Diag(DelLoc, diag::err_deleted_non_function);
5337    return;
5338  }
5339  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5340    Diag(DelLoc, diag::err_deleted_decl_not_first);
5341    Diag(Prev->getLocation(), diag::note_previous_declaration);
5342    // If the declaration wasn't the first, we delete the function anyway for
5343    // recovery.
5344  }
5345  Fn->setDeleted();
5346}
5347
5348static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5349  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5350       ++CI) {
5351    Stmt *SubStmt = *CI;
5352    if (!SubStmt)
5353      continue;
5354    if (isa<ReturnStmt>(SubStmt))
5355      Self.Diag(SubStmt->getSourceRange().getBegin(),
5356           diag::err_return_in_constructor_handler);
5357    if (!isa<Expr>(SubStmt))
5358      SearchForReturnInStmt(Self, SubStmt);
5359  }
5360}
5361
5362void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5363  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5364    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5365    SearchForReturnInStmt(*this, Handler);
5366  }
5367}
5368
5369bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5370                                             const CXXMethodDecl *Old) {
5371  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5372  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5373
5374  if (Context.hasSameType(NewTy, OldTy) ||
5375      NewTy->isDependentType() || OldTy->isDependentType())
5376    return false;
5377
5378  // Check if the return types are covariant
5379  QualType NewClassTy, OldClassTy;
5380
5381  /// Both types must be pointers or references to classes.
5382  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5383    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5384      NewClassTy = NewPT->getPointeeType();
5385      OldClassTy = OldPT->getPointeeType();
5386    }
5387  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5388    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5389      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5390        NewClassTy = NewRT->getPointeeType();
5391        OldClassTy = OldRT->getPointeeType();
5392      }
5393    }
5394  }
5395
5396  // The return types aren't either both pointers or references to a class type.
5397  if (NewClassTy.isNull()) {
5398    Diag(New->getLocation(),
5399         diag::err_different_return_type_for_overriding_virtual_function)
5400      << New->getDeclName() << NewTy << OldTy;
5401    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5402
5403    return true;
5404  }
5405
5406  // C++ [class.virtual]p6:
5407  //   If the return type of D::f differs from the return type of B::f, the
5408  //   class type in the return type of D::f shall be complete at the point of
5409  //   declaration of D::f or shall be the class type D.
5410  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5411    if (!RT->isBeingDefined() &&
5412        RequireCompleteType(New->getLocation(), NewClassTy,
5413                            PDiag(diag::err_covariant_return_incomplete)
5414                              << New->getDeclName()))
5415    return true;
5416  }
5417
5418  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5419    // Check if the new class derives from the old class.
5420    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5421      Diag(New->getLocation(),
5422           diag::err_covariant_return_not_derived)
5423      << New->getDeclName() << NewTy << OldTy;
5424      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5425      return true;
5426    }
5427
5428    // Check if we the conversion from derived to base is valid.
5429    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5430                    diag::err_covariant_return_inaccessible_base,
5431                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5432                    // FIXME: Should this point to the return type?
5433                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5434      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5435      return true;
5436    }
5437  }
5438
5439  // The qualifiers of the return types must be the same.
5440  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5441    Diag(New->getLocation(),
5442         diag::err_covariant_return_type_different_qualifications)
5443    << New->getDeclName() << NewTy << OldTy;
5444    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5445    return true;
5446  };
5447
5448
5449  // The new class type must have the same or less qualifiers as the old type.
5450  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5451    Diag(New->getLocation(),
5452         diag::err_covariant_return_type_class_type_more_qualified)
5453    << New->getDeclName() << NewTy << OldTy;
5454    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5455    return true;
5456  };
5457
5458  return false;
5459}
5460
5461bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5462                                             const CXXMethodDecl *Old)
5463{
5464  if (Old->hasAttr<FinalAttr>()) {
5465    Diag(New->getLocation(), diag::err_final_function_overridden)
5466      << New->getDeclName();
5467    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5468    return true;
5469  }
5470
5471  return false;
5472}
5473
5474/// \brief Mark the given method pure.
5475///
5476/// \param Method the method to be marked pure.
5477///
5478/// \param InitRange the source range that covers the "0" initializer.
5479bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5480  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5481    Method->setPure();
5482
5483    // A class is abstract if at least one function is pure virtual.
5484    Method->getParent()->setAbstract(true);
5485    return false;
5486  }
5487
5488  if (!Method->isInvalidDecl())
5489    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5490      << Method->getDeclName() << InitRange;
5491  return true;
5492}
5493
5494/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5495/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5496/// is a fresh scope pushed for just this purpose.
5497///
5498/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5499/// static data member of class X, names should be looked up in the scope of
5500/// class X.
5501void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5502  // If there is no declaration, there was an error parsing it.
5503  Decl *D = Dcl.getAs<Decl>();
5504  if (D == 0) return;
5505
5506  // We should only get called for declarations with scope specifiers, like:
5507  //   int foo::bar;
5508  assert(D->isOutOfLine());
5509  EnterDeclaratorContext(S, D->getDeclContext());
5510}
5511
5512/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5513/// initializer for the out-of-line declaration 'Dcl'.
5514void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5515  // If there is no declaration, there was an error parsing it.
5516  Decl *D = Dcl.getAs<Decl>();
5517  if (D == 0) return;
5518
5519  assert(D->isOutOfLine());
5520  ExitDeclaratorContext(S);
5521}
5522
5523/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5524/// C++ if/switch/while/for statement.
5525/// e.g: "if (int x = f()) {...}"
5526Action::DeclResult
5527Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5528  // C++ 6.4p2:
5529  // The declarator shall not specify a function or an array.
5530  // The type-specifier-seq shall not contain typedef and shall not declare a
5531  // new class or enumeration.
5532  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5533         "Parser allowed 'typedef' as storage class of condition decl.");
5534
5535  TypeSourceInfo *TInfo = 0;
5536  TagDecl *OwnedTag = 0;
5537  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5538
5539  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5540                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5541                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5542    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5543      << D.getSourceRange();
5544    return DeclResult();
5545  } else if (OwnedTag && OwnedTag->isDefinition()) {
5546    // The type-specifier-seq shall not declare a new class or enumeration.
5547    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5548  }
5549
5550  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5551  if (!Dcl)
5552    return DeclResult();
5553
5554  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5555  VD->setDeclaredInCondition(true);
5556  return Dcl;
5557}
5558
5559static bool needsVTable(CXXMethodDecl *MD, ASTContext &Context) {
5560  // Ignore dependent types.
5561  if (MD->isDependentContext())
5562    return false;
5563
5564  // Ignore declarations that are not definitions.
5565  if (!MD->isThisDeclarationADefinition())
5566    return false;
5567
5568  CXXRecordDecl *RD = MD->getParent();
5569
5570  // Ignore classes without a vtable.
5571  if (!RD->isDynamicClass())
5572    return false;
5573
5574  switch (MD->getParent()->getTemplateSpecializationKind()) {
5575  case TSK_Undeclared:
5576  case TSK_ExplicitSpecialization:
5577    // Classes that aren't instantiations of templates don't need their
5578    // virtual methods marked until we see the definition of the key
5579    // function.
5580    break;
5581
5582  case TSK_ImplicitInstantiation:
5583    // This is a constructor of a class template; mark all of the virtual
5584    // members as referenced to ensure that they get instantiatied.
5585    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5586      return true;
5587    break;
5588
5589  case TSK_ExplicitInstantiationDeclaration:
5590    return false;
5591
5592  case TSK_ExplicitInstantiationDefinition:
5593    // This is method of a explicit instantiation; mark all of the virtual
5594    // members as referenced to ensure that they get instantiatied.
5595    return true;
5596  }
5597
5598  // Consider only out-of-line definitions of member functions. When we see
5599  // an inline definition, it's too early to compute the key function.
5600  if (!MD->isOutOfLine())
5601    return false;
5602
5603  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5604
5605  // If there is no key function, we will need a copy of the vtable.
5606  if (!KeyFunction)
5607    return true;
5608
5609  // If this is the key function, we need to mark virtual members.
5610  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5611    return true;
5612
5613  return false;
5614}
5615
5616void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5617                                             CXXMethodDecl *MD) {
5618  CXXRecordDecl *RD = MD->getParent();
5619
5620  // We will need to mark all of the virtual members as referenced to build the
5621  // vtable.
5622  if (!needsVTable(MD, Context))
5623    return;
5624
5625  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5626  if (kind == TSK_ImplicitInstantiation)
5627    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5628  else
5629    MarkVirtualMembersReferenced(Loc, RD);
5630}
5631
5632bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5633  if (ClassesWithUnmarkedVirtualMembers.empty())
5634    return false;
5635
5636  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5637    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5638    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5639    ClassesWithUnmarkedVirtualMembers.pop_back();
5640    MarkVirtualMembersReferenced(Loc, RD);
5641  }
5642
5643  return true;
5644}
5645
5646void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5647                                        const CXXRecordDecl *RD) {
5648  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5649       e = RD->method_end(); i != e; ++i) {
5650    CXXMethodDecl *MD = *i;
5651
5652    // C++ [basic.def.odr]p2:
5653    //   [...] A virtual member function is used if it is not pure. [...]
5654    if (MD->isVirtual() && !MD->isPure())
5655      MarkDeclarationReferenced(Loc, MD);
5656  }
5657
5658  // Only classes that have virtual bases need a VTT.
5659  if (RD->getNumVBases() == 0)
5660    return;
5661
5662  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5663           e = RD->bases_end(); i != e; ++i) {
5664    const CXXRecordDecl *Base =
5665        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5666    if (i->isVirtual())
5667      continue;
5668    if (Base->getNumVBases() == 0)
5669      continue;
5670    MarkVirtualMembersReferenced(Loc, Base);
5671  }
5672}
5673