SemaDeclCXX.cpp revision e3406826db726960ede77dd18361eb327d30c108
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // If this function has a basic noexcept, it doesn't affect the outcome.
133  if (EST == EST_BasicNoexcept)
134    return;
135
136  // If we have a throw-all spec at this point, ignore the function.
137  if (ComputedEST == EST_None)
138    return;
139
140  // If we're still at noexcept(true) and there's a nothrow() callee,
141  // change to that specification.
142  if (EST == EST_DynamicNone) {
143    if (ComputedEST == EST_BasicNoexcept)
144      ComputedEST = EST_DynamicNone;
145    return;
146  }
147
148  // Check out noexcept specs.
149  if (EST == EST_ComputedNoexcept) {
150    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
151    assert(NR != FunctionProtoType::NR_NoNoexcept &&
152           "Must have noexcept result for EST_ComputedNoexcept.");
153    assert(NR != FunctionProtoType::NR_Dependent &&
154           "Should not generate implicit declarations for dependent cases, "
155           "and don't know how to handle them anyway.");
156
157    // noexcept(false) -> no spec on the new function
158    if (NR == FunctionProtoType::NR_Throw) {
159      ClearExceptions();
160      ComputedEST = EST_None;
161    }
162    // noexcept(true) won't change anything either.
163    return;
164  }
165
166  assert(EST == EST_Dynamic && "EST case not considered earlier.");
167  assert(ComputedEST != EST_None &&
168         "Shouldn't collect exceptions when throw-all is guaranteed.");
169  ComputedEST = EST_Dynamic;
170  // Record the exceptions in this function's exception specification.
171  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
172                                          EEnd = Proto->exception_end();
173       E != EEnd; ++E)
174    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
175      Exceptions.push_back(*E);
176}
177
178bool
179Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
180                              SourceLocation EqualLoc) {
181  if (RequireCompleteType(Param->getLocation(), Param->getType(),
182                          diag::err_typecheck_decl_incomplete_type)) {
183    Param->setInvalidDecl();
184    return true;
185  }
186
187  // C++ [dcl.fct.default]p5
188  //   A default argument expression is implicitly converted (clause
189  //   4) to the parameter type. The default argument expression has
190  //   the same semantic constraints as the initializer expression in
191  //   a declaration of a variable of the parameter type, using the
192  //   copy-initialization semantics (8.5).
193  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
194                                                                    Param);
195  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
196                                                           EqualLoc);
197  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
198  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
199                                      MultiExprArg(*this, &Arg, 1));
200  if (Result.isInvalid())
201    return true;
202  Arg = Result.takeAs<Expr>();
203
204  CheckImplicitConversions(Arg, EqualLoc);
205  Arg = MaybeCreateExprWithCleanups(Arg);
206
207  // Okay: add the default argument to the parameter
208  Param->setDefaultArg(Arg);
209
210  // We have already instantiated this parameter; provide each of the
211  // instantiations with the uninstantiated default argument.
212  UnparsedDefaultArgInstantiationsMap::iterator InstPos
213    = UnparsedDefaultArgInstantiations.find(Param);
214  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
215    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
216      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
217
218    // We're done tracking this parameter's instantiations.
219    UnparsedDefaultArgInstantiations.erase(InstPos);
220  }
221
222  return false;
223}
224
225/// ActOnParamDefaultArgument - Check whether the default argument
226/// provided for a function parameter is well-formed. If so, attach it
227/// to the parameter declaration.
228void
229Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
230                                Expr *DefaultArg) {
231  if (!param || !DefaultArg)
232    return;
233
234  ParmVarDecl *Param = cast<ParmVarDecl>(param);
235  UnparsedDefaultArgLocs.erase(Param);
236
237  // Default arguments are only permitted in C++
238  if (!getLangOptions().CPlusPlus) {
239    Diag(EqualLoc, diag::err_param_default_argument)
240      << DefaultArg->getSourceRange();
241    Param->setInvalidDecl();
242    return;
243  }
244
245  // Check for unexpanded parameter packs.
246  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
247    Param->setInvalidDecl();
248    return;
249  }
250
251  // Check that the default argument is well-formed
252  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
253  if (DefaultArgChecker.Visit(DefaultArg)) {
254    Param->setInvalidDecl();
255    return;
256  }
257
258  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
259}
260
261/// ActOnParamUnparsedDefaultArgument - We've seen a default
262/// argument for a function parameter, but we can't parse it yet
263/// because we're inside a class definition. Note that this default
264/// argument will be parsed later.
265void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
266                                             SourceLocation EqualLoc,
267                                             SourceLocation ArgLoc) {
268  if (!param)
269    return;
270
271  ParmVarDecl *Param = cast<ParmVarDecl>(param);
272  if (Param)
273    Param->setUnparsedDefaultArg();
274
275  UnparsedDefaultArgLocs[Param] = ArgLoc;
276}
277
278/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
279/// the default argument for the parameter param failed.
280void Sema::ActOnParamDefaultArgumentError(Decl *param) {
281  if (!param)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285
286  Param->setInvalidDecl();
287
288  UnparsedDefaultArgLocs.erase(Param);
289}
290
291/// CheckExtraCXXDefaultArguments - Check for any extra default
292/// arguments in the declarator, which is not a function declaration
293/// or definition and therefore is not permitted to have default
294/// arguments. This routine should be invoked for every declarator
295/// that is not a function declaration or definition.
296void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
297  // C++ [dcl.fct.default]p3
298  //   A default argument expression shall be specified only in the
299  //   parameter-declaration-clause of a function declaration or in a
300  //   template-parameter (14.1). It shall not be specified for a
301  //   parameter pack. If it is specified in a
302  //   parameter-declaration-clause, it shall not occur within a
303  //   declarator or abstract-declarator of a parameter-declaration.
304  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
305    DeclaratorChunk &chunk = D.getTypeObject(i);
306    if (chunk.Kind == DeclaratorChunk::Function) {
307      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
308        ParmVarDecl *Param =
309          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
310        if (Param->hasUnparsedDefaultArg()) {
311          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
312          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
313            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
314          delete Toks;
315          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
316        } else if (Param->getDefaultArg()) {
317          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
318            << Param->getDefaultArg()->getSourceRange();
319          Param->setDefaultArg(0);
320        }
321      }
322    }
323  }
324}
325
326// MergeCXXFunctionDecl - Merge two declarations of the same C++
327// function, once we already know that they have the same
328// type. Subroutine of MergeFunctionDecl. Returns true if there was an
329// error, false otherwise.
330bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
331  bool Invalid = false;
332
333  // C++ [dcl.fct.default]p4:
334  //   For non-template functions, default arguments can be added in
335  //   later declarations of a function in the same
336  //   scope. Declarations in different scopes have completely
337  //   distinct sets of default arguments. That is, declarations in
338  //   inner scopes do not acquire default arguments from
339  //   declarations in outer scopes, and vice versa. In a given
340  //   function declaration, all parameters subsequent to a
341  //   parameter with a default argument shall have default
342  //   arguments supplied in this or previous declarations. A
343  //   default argument shall not be redefined by a later
344  //   declaration (not even to the same value).
345  //
346  // C++ [dcl.fct.default]p6:
347  //   Except for member functions of class templates, the default arguments
348  //   in a member function definition that appears outside of the class
349  //   definition are added to the set of default arguments provided by the
350  //   member function declaration in the class definition.
351  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
352    ParmVarDecl *OldParam = Old->getParamDecl(p);
353    ParmVarDecl *NewParam = New->getParamDecl(p);
354
355    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
356
357      unsigned DiagDefaultParamID =
358        diag::err_param_default_argument_redefinition;
359
360      // MSVC accepts that default parameters be redefined for member functions
361      // of template class. The new default parameter's value is ignored.
362      Invalid = true;
363      if (getLangOptions().Microsoft) {
364        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
365        if (MD && MD->getParent()->getDescribedClassTemplate()) {
366          // Merge the old default argument into the new parameter.
367          NewParam->setHasInheritedDefaultArg();
368          if (OldParam->hasUninstantiatedDefaultArg())
369            NewParam->setUninstantiatedDefaultArg(
370                                      OldParam->getUninstantiatedDefaultArg());
371          else
372            NewParam->setDefaultArg(OldParam->getInit());
373          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
374          Invalid = false;
375        }
376      }
377
378      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
379      // hint here. Alternatively, we could walk the type-source information
380      // for NewParam to find the last source location in the type... but it
381      // isn't worth the effort right now. This is the kind of test case that
382      // is hard to get right:
383      //   int f(int);
384      //   void g(int (*fp)(int) = f);
385      //   void g(int (*fp)(int) = &f);
386      Diag(NewParam->getLocation(), DiagDefaultParamID)
387        << NewParam->getDefaultArgRange();
388
389      // Look for the function declaration where the default argument was
390      // actually written, which may be a declaration prior to Old.
391      for (FunctionDecl *Older = Old->getPreviousDeclaration();
392           Older; Older = Older->getPreviousDeclaration()) {
393        if (!Older->getParamDecl(p)->hasDefaultArg())
394          break;
395
396        OldParam = Older->getParamDecl(p);
397      }
398
399      Diag(OldParam->getLocation(), diag::note_previous_definition)
400        << OldParam->getDefaultArgRange();
401    } else if (OldParam->hasDefaultArg()) {
402      // Merge the old default argument into the new parameter.
403      // It's important to use getInit() here;  getDefaultArg()
404      // strips off any top-level ExprWithCleanups.
405      NewParam->setHasInheritedDefaultArg();
406      if (OldParam->hasUninstantiatedDefaultArg())
407        NewParam->setUninstantiatedDefaultArg(
408                                      OldParam->getUninstantiatedDefaultArg());
409      else
410        NewParam->setDefaultArg(OldParam->getInit());
411    } else if (NewParam->hasDefaultArg()) {
412      if (New->getDescribedFunctionTemplate()) {
413        // Paragraph 4, quoted above, only applies to non-template functions.
414        Diag(NewParam->getLocation(),
415             diag::err_param_default_argument_template_redecl)
416          << NewParam->getDefaultArgRange();
417        Diag(Old->getLocation(), diag::note_template_prev_declaration)
418          << false;
419      } else if (New->getTemplateSpecializationKind()
420                   != TSK_ImplicitInstantiation &&
421                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
422        // C++ [temp.expr.spec]p21:
423        //   Default function arguments shall not be specified in a declaration
424        //   or a definition for one of the following explicit specializations:
425        //     - the explicit specialization of a function template;
426        //     - the explicit specialization of a member function template;
427        //     - the explicit specialization of a member function of a class
428        //       template where the class template specialization to which the
429        //       member function specialization belongs is implicitly
430        //       instantiated.
431        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
432          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
433          << New->getDeclName()
434          << NewParam->getDefaultArgRange();
435      } else if (New->getDeclContext()->isDependentContext()) {
436        // C++ [dcl.fct.default]p6 (DR217):
437        //   Default arguments for a member function of a class template shall
438        //   be specified on the initial declaration of the member function
439        //   within the class template.
440        //
441        // Reading the tea leaves a bit in DR217 and its reference to DR205
442        // leads me to the conclusion that one cannot add default function
443        // arguments for an out-of-line definition of a member function of a
444        // dependent type.
445        int WhichKind = 2;
446        if (CXXRecordDecl *Record
447              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
448          if (Record->getDescribedClassTemplate())
449            WhichKind = 0;
450          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
451            WhichKind = 1;
452          else
453            WhichKind = 2;
454        }
455
456        Diag(NewParam->getLocation(),
457             diag::err_param_default_argument_member_template_redecl)
458          << WhichKind
459          << NewParam->getDefaultArgRange();
460      }
461    }
462  }
463
464  if (CheckEquivalentExceptionSpec(Old, New))
465    Invalid = true;
466
467  return Invalid;
468}
469
470/// \brief Merge the exception specifications of two variable declarations.
471///
472/// This is called when there's a redeclaration of a VarDecl. The function
473/// checks if the redeclaration might have an exception specification and
474/// validates compatibility and merges the specs if necessary.
475void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
476  // Shortcut if exceptions are disabled.
477  if (!getLangOptions().CXXExceptions)
478    return;
479
480  assert(Context.hasSameType(New->getType(), Old->getType()) &&
481         "Should only be called if types are otherwise the same.");
482
483  QualType NewType = New->getType();
484  QualType OldType = Old->getType();
485
486  // We're only interested in pointers and references to functions, as well
487  // as pointers to member functions.
488  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
489    NewType = R->getPointeeType();
490    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
491  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
492    NewType = P->getPointeeType();
493    OldType = OldType->getAs<PointerType>()->getPointeeType();
494  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
495    NewType = M->getPointeeType();
496    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
497  }
498
499  if (!NewType->isFunctionProtoType())
500    return;
501
502  // There's lots of special cases for functions. For function pointers, system
503  // libraries are hopefully not as broken so that we don't need these
504  // workarounds.
505  if (CheckEquivalentExceptionSpec(
506        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
507        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
508    New->setInvalidDecl();
509  }
510}
511
512/// CheckCXXDefaultArguments - Verify that the default arguments for a
513/// function declaration are well-formed according to C++
514/// [dcl.fct.default].
515void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
516  unsigned NumParams = FD->getNumParams();
517  unsigned p;
518
519  // Find first parameter with a default argument
520  for (p = 0; p < NumParams; ++p) {
521    ParmVarDecl *Param = FD->getParamDecl(p);
522    if (Param->hasDefaultArg())
523      break;
524  }
525
526  // C++ [dcl.fct.default]p4:
527  //   In a given function declaration, all parameters
528  //   subsequent to a parameter with a default argument shall
529  //   have default arguments supplied in this or previous
530  //   declarations. A default argument shall not be redefined
531  //   by a later declaration (not even to the same value).
532  unsigned LastMissingDefaultArg = 0;
533  for (; p < NumParams; ++p) {
534    ParmVarDecl *Param = FD->getParamDecl(p);
535    if (!Param->hasDefaultArg()) {
536      if (Param->isInvalidDecl())
537        /* We already complained about this parameter. */;
538      else if (Param->getIdentifier())
539        Diag(Param->getLocation(),
540             diag::err_param_default_argument_missing_name)
541          << Param->getIdentifier();
542      else
543        Diag(Param->getLocation(),
544             diag::err_param_default_argument_missing);
545
546      LastMissingDefaultArg = p;
547    }
548  }
549
550  if (LastMissingDefaultArg > 0) {
551    // Some default arguments were missing. Clear out all of the
552    // default arguments up to (and including) the last missing
553    // default argument, so that we leave the function parameters
554    // in a semantically valid state.
555    for (p = 0; p <= LastMissingDefaultArg; ++p) {
556      ParmVarDecl *Param = FD->getParamDecl(p);
557      if (Param->hasDefaultArg()) {
558        Param->setDefaultArg(0);
559      }
560    }
561  }
562}
563
564/// isCurrentClassName - Determine whether the identifier II is the
565/// name of the class type currently being defined. In the case of
566/// nested classes, this will only return true if II is the name of
567/// the innermost class.
568bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
569                              const CXXScopeSpec *SS) {
570  assert(getLangOptions().CPlusPlus && "No class names in C!");
571
572  CXXRecordDecl *CurDecl;
573  if (SS && SS->isSet() && !SS->isInvalid()) {
574    DeclContext *DC = computeDeclContext(*SS, true);
575    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
576  } else
577    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
578
579  if (CurDecl && CurDecl->getIdentifier())
580    return &II == CurDecl->getIdentifier();
581  else
582    return false;
583}
584
585/// \brief Check the validity of a C++ base class specifier.
586///
587/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
588/// and returns NULL otherwise.
589CXXBaseSpecifier *
590Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
591                         SourceRange SpecifierRange,
592                         bool Virtual, AccessSpecifier Access,
593                         TypeSourceInfo *TInfo,
594                         SourceLocation EllipsisLoc) {
595  QualType BaseType = TInfo->getType();
596
597  // C++ [class.union]p1:
598  //   A union shall not have base classes.
599  if (Class->isUnion()) {
600    Diag(Class->getLocation(), diag::err_base_clause_on_union)
601      << SpecifierRange;
602    return 0;
603  }
604
605  if (EllipsisLoc.isValid() &&
606      !TInfo->getType()->containsUnexpandedParameterPack()) {
607    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
608      << TInfo->getTypeLoc().getSourceRange();
609    EllipsisLoc = SourceLocation();
610  }
611
612  if (BaseType->isDependentType())
613    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
614                                          Class->getTagKind() == TTK_Class,
615                                          Access, TInfo, EllipsisLoc);
616
617  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
618
619  // Base specifiers must be record types.
620  if (!BaseType->isRecordType()) {
621    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
622    return 0;
623  }
624
625  // C++ [class.union]p1:
626  //   A union shall not be used as a base class.
627  if (BaseType->isUnionType()) {
628    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
629    return 0;
630  }
631
632  // C++ [class.derived]p2:
633  //   The class-name in a base-specifier shall not be an incompletely
634  //   defined class.
635  if (RequireCompleteType(BaseLoc, BaseType,
636                          PDiag(diag::err_incomplete_base_class)
637                            << SpecifierRange)) {
638    Class->setInvalidDecl();
639    return 0;
640  }
641
642  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
643  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
644  assert(BaseDecl && "Record type has no declaration");
645  BaseDecl = BaseDecl->getDefinition();
646  assert(BaseDecl && "Base type is not incomplete, but has no definition");
647  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
648  assert(CXXBaseDecl && "Base type is not a C++ type");
649
650  // C++ [class]p3:
651  //   If a class is marked final and it appears as a base-type-specifier in
652  //   base-clause, the program is ill-formed.
653  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
654    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
655      << CXXBaseDecl->getDeclName();
656    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
657      << CXXBaseDecl->getDeclName();
658    return 0;
659  }
660
661  if (BaseDecl->isInvalidDecl())
662    Class->setInvalidDecl();
663
664  // Create the base specifier.
665  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
666                                        Class->getTagKind() == TTK_Class,
667                                        Access, TInfo, EllipsisLoc);
668}
669
670/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
671/// one entry in the base class list of a class specifier, for
672/// example:
673///    class foo : public bar, virtual private baz {
674/// 'public bar' and 'virtual private baz' are each base-specifiers.
675BaseResult
676Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
677                         bool Virtual, AccessSpecifier Access,
678                         ParsedType basetype, SourceLocation BaseLoc,
679                         SourceLocation EllipsisLoc) {
680  if (!classdecl)
681    return true;
682
683  AdjustDeclIfTemplate(classdecl);
684  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
685  if (!Class)
686    return true;
687
688  TypeSourceInfo *TInfo = 0;
689  GetTypeFromParser(basetype, &TInfo);
690
691  if (EllipsisLoc.isInvalid() &&
692      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
693                                      UPPC_BaseType))
694    return true;
695
696  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
697                                                      Virtual, Access, TInfo,
698                                                      EllipsisLoc))
699    return BaseSpec;
700
701  return true;
702}
703
704/// \brief Performs the actual work of attaching the given base class
705/// specifiers to a C++ class.
706bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
707                                unsigned NumBases) {
708 if (NumBases == 0)
709    return false;
710
711  // Used to keep track of which base types we have already seen, so
712  // that we can properly diagnose redundant direct base types. Note
713  // that the key is always the unqualified canonical type of the base
714  // class.
715  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
716
717  // Copy non-redundant base specifiers into permanent storage.
718  unsigned NumGoodBases = 0;
719  bool Invalid = false;
720  for (unsigned idx = 0; idx < NumBases; ++idx) {
721    QualType NewBaseType
722      = Context.getCanonicalType(Bases[idx]->getType());
723    NewBaseType = NewBaseType.getLocalUnqualifiedType();
724    if (!Class->hasObjectMember()) {
725      if (const RecordType *FDTTy =
726            NewBaseType.getTypePtr()->getAs<RecordType>())
727        if (FDTTy->getDecl()->hasObjectMember())
728          Class->setHasObjectMember(true);
729    }
730
731    if (KnownBaseTypes[NewBaseType]) {
732      // C++ [class.mi]p3:
733      //   A class shall not be specified as a direct base class of a
734      //   derived class more than once.
735      Diag(Bases[idx]->getSourceRange().getBegin(),
736           diag::err_duplicate_base_class)
737        << KnownBaseTypes[NewBaseType]->getType()
738        << Bases[idx]->getSourceRange();
739
740      // Delete the duplicate base class specifier; we're going to
741      // overwrite its pointer later.
742      Context.Deallocate(Bases[idx]);
743
744      Invalid = true;
745    } else {
746      // Okay, add this new base class.
747      KnownBaseTypes[NewBaseType] = Bases[idx];
748      Bases[NumGoodBases++] = Bases[idx];
749    }
750  }
751
752  // Attach the remaining base class specifiers to the derived class.
753  Class->setBases(Bases, NumGoodBases);
754
755  // Delete the remaining (good) base class specifiers, since their
756  // data has been copied into the CXXRecordDecl.
757  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
758    Context.Deallocate(Bases[idx]);
759
760  return Invalid;
761}
762
763/// ActOnBaseSpecifiers - Attach the given base specifiers to the
764/// class, after checking whether there are any duplicate base
765/// classes.
766void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
767                               unsigned NumBases) {
768  if (!ClassDecl || !Bases || !NumBases)
769    return;
770
771  AdjustDeclIfTemplate(ClassDecl);
772  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
773                       (CXXBaseSpecifier**)(Bases), NumBases);
774}
775
776static CXXRecordDecl *GetClassForType(QualType T) {
777  if (const RecordType *RT = T->getAs<RecordType>())
778    return cast<CXXRecordDecl>(RT->getDecl());
779  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
780    return ICT->getDecl();
781  else
782    return 0;
783}
784
785/// \brief Determine whether the type \p Derived is a C++ class that is
786/// derived from the type \p Base.
787bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
788  if (!getLangOptions().CPlusPlus)
789    return false;
790
791  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
792  if (!DerivedRD)
793    return false;
794
795  CXXRecordDecl *BaseRD = GetClassForType(Base);
796  if (!BaseRD)
797    return false;
798
799  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
800  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
801}
802
803/// \brief Determine whether the type \p Derived is a C++ class that is
804/// derived from the type \p Base.
805bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
806  if (!getLangOptions().CPlusPlus)
807    return false;
808
809  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
810  if (!DerivedRD)
811    return false;
812
813  CXXRecordDecl *BaseRD = GetClassForType(Base);
814  if (!BaseRD)
815    return false;
816
817  return DerivedRD->isDerivedFrom(BaseRD, Paths);
818}
819
820void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
821                              CXXCastPath &BasePathArray) {
822  assert(BasePathArray.empty() && "Base path array must be empty!");
823  assert(Paths.isRecordingPaths() && "Must record paths!");
824
825  const CXXBasePath &Path = Paths.front();
826
827  // We first go backward and check if we have a virtual base.
828  // FIXME: It would be better if CXXBasePath had the base specifier for
829  // the nearest virtual base.
830  unsigned Start = 0;
831  for (unsigned I = Path.size(); I != 0; --I) {
832    if (Path[I - 1].Base->isVirtual()) {
833      Start = I - 1;
834      break;
835    }
836  }
837
838  // Now add all bases.
839  for (unsigned I = Start, E = Path.size(); I != E; ++I)
840    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
841}
842
843/// \brief Determine whether the given base path includes a virtual
844/// base class.
845bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
846  for (CXXCastPath::const_iterator B = BasePath.begin(),
847                                BEnd = BasePath.end();
848       B != BEnd; ++B)
849    if ((*B)->isVirtual())
850      return true;
851
852  return false;
853}
854
855/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
856/// conversion (where Derived and Base are class types) is
857/// well-formed, meaning that the conversion is unambiguous (and
858/// that all of the base classes are accessible). Returns true
859/// and emits a diagnostic if the code is ill-formed, returns false
860/// otherwise. Loc is the location where this routine should point to
861/// if there is an error, and Range is the source range to highlight
862/// if there is an error.
863bool
864Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
865                                   unsigned InaccessibleBaseID,
866                                   unsigned AmbigiousBaseConvID,
867                                   SourceLocation Loc, SourceRange Range,
868                                   DeclarationName Name,
869                                   CXXCastPath *BasePath) {
870  // First, determine whether the path from Derived to Base is
871  // ambiguous. This is slightly more expensive than checking whether
872  // the Derived to Base conversion exists, because here we need to
873  // explore multiple paths to determine if there is an ambiguity.
874  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
875                     /*DetectVirtual=*/false);
876  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
877  assert(DerivationOkay &&
878         "Can only be used with a derived-to-base conversion");
879  (void)DerivationOkay;
880
881  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
882    if (InaccessibleBaseID) {
883      // Check that the base class can be accessed.
884      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
885                                   InaccessibleBaseID)) {
886        case AR_inaccessible:
887          return true;
888        case AR_accessible:
889        case AR_dependent:
890        case AR_delayed:
891          break;
892      }
893    }
894
895    // Build a base path if necessary.
896    if (BasePath)
897      BuildBasePathArray(Paths, *BasePath);
898    return false;
899  }
900
901  // We know that the derived-to-base conversion is ambiguous, and
902  // we're going to produce a diagnostic. Perform the derived-to-base
903  // search just one more time to compute all of the possible paths so
904  // that we can print them out. This is more expensive than any of
905  // the previous derived-to-base checks we've done, but at this point
906  // performance isn't as much of an issue.
907  Paths.clear();
908  Paths.setRecordingPaths(true);
909  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
910  assert(StillOkay && "Can only be used with a derived-to-base conversion");
911  (void)StillOkay;
912
913  // Build up a textual representation of the ambiguous paths, e.g.,
914  // D -> B -> A, that will be used to illustrate the ambiguous
915  // conversions in the diagnostic. We only print one of the paths
916  // to each base class subobject.
917  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
918
919  Diag(Loc, AmbigiousBaseConvID)
920  << Derived << Base << PathDisplayStr << Range << Name;
921  return true;
922}
923
924bool
925Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
926                                   SourceLocation Loc, SourceRange Range,
927                                   CXXCastPath *BasePath,
928                                   bool IgnoreAccess) {
929  return CheckDerivedToBaseConversion(Derived, Base,
930                                      IgnoreAccess ? 0
931                                       : diag::err_upcast_to_inaccessible_base,
932                                      diag::err_ambiguous_derived_to_base_conv,
933                                      Loc, Range, DeclarationName(),
934                                      BasePath);
935}
936
937
938/// @brief Builds a string representing ambiguous paths from a
939/// specific derived class to different subobjects of the same base
940/// class.
941///
942/// This function builds a string that can be used in error messages
943/// to show the different paths that one can take through the
944/// inheritance hierarchy to go from the derived class to different
945/// subobjects of a base class. The result looks something like this:
946/// @code
947/// struct D -> struct B -> struct A
948/// struct D -> struct C -> struct A
949/// @endcode
950std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
951  std::string PathDisplayStr;
952  std::set<unsigned> DisplayedPaths;
953  for (CXXBasePaths::paths_iterator Path = Paths.begin();
954       Path != Paths.end(); ++Path) {
955    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
956      // We haven't displayed a path to this particular base
957      // class subobject yet.
958      PathDisplayStr += "\n    ";
959      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
960      for (CXXBasePath::const_iterator Element = Path->begin();
961           Element != Path->end(); ++Element)
962        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
963    }
964  }
965
966  return PathDisplayStr;
967}
968
969//===----------------------------------------------------------------------===//
970// C++ class member Handling
971//===----------------------------------------------------------------------===//
972
973/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
974Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
975                                 SourceLocation ASLoc,
976                                 SourceLocation ColonLoc) {
977  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
978  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
979                                                  ASLoc, ColonLoc);
980  CurContext->addHiddenDecl(ASDecl);
981  return ASDecl;
982}
983
984/// CheckOverrideControl - Check C++0x override control semantics.
985void Sema::CheckOverrideControl(const Decl *D) {
986  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
987  if (!MD || !MD->isVirtual())
988    return;
989
990  if (MD->isDependentContext())
991    return;
992
993  // C++0x [class.virtual]p3:
994  //   If a virtual function is marked with the virt-specifier override and does
995  //   not override a member function of a base class,
996  //   the program is ill-formed.
997  bool HasOverriddenMethods =
998    MD->begin_overridden_methods() != MD->end_overridden_methods();
999  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1000    Diag(MD->getLocation(),
1001                 diag::err_function_marked_override_not_overriding)
1002      << MD->getDeclName();
1003    return;
1004  }
1005}
1006
1007/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1008/// function overrides a virtual member function marked 'final', according to
1009/// C++0x [class.virtual]p3.
1010bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1011                                                  const CXXMethodDecl *Old) {
1012  if (!Old->hasAttr<FinalAttr>())
1013    return false;
1014
1015  Diag(New->getLocation(), diag::err_final_function_overridden)
1016    << New->getDeclName();
1017  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1018  return true;
1019}
1020
1021/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1022/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1023/// bitfield width if there is one and 'InitExpr' specifies the initializer if
1024/// any.
1025Decl *
1026Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1027                               MultiTemplateParamsArg TemplateParameterLists,
1028                               ExprTy *BW, const VirtSpecifiers &VS,
1029                               ExprTy *InitExpr, bool IsDefinition) {
1030  const DeclSpec &DS = D.getDeclSpec();
1031  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1032  DeclarationName Name = NameInfo.getName();
1033  SourceLocation Loc = NameInfo.getLoc();
1034
1035  // For anonymous bitfields, the location should point to the type.
1036  if (Loc.isInvalid())
1037    Loc = D.getSourceRange().getBegin();
1038
1039  Expr *BitWidth = static_cast<Expr*>(BW);
1040  Expr *Init = static_cast<Expr*>(InitExpr);
1041
1042  assert(isa<CXXRecordDecl>(CurContext));
1043  assert(!DS.isFriendSpecified());
1044
1045  bool isFunc = false;
1046  if (D.isFunctionDeclarator())
1047    isFunc = true;
1048  else if (D.getNumTypeObjects() == 0 &&
1049           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
1050    QualType TDType = GetTypeFromParser(DS.getRepAsType());
1051    isFunc = TDType->isFunctionType();
1052  }
1053
1054  // C++ 9.2p6: A member shall not be declared to have automatic storage
1055  // duration (auto, register) or with the extern storage-class-specifier.
1056  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1057  // data members and cannot be applied to names declared const or static,
1058  // and cannot be applied to reference members.
1059  switch (DS.getStorageClassSpec()) {
1060    case DeclSpec::SCS_unspecified:
1061    case DeclSpec::SCS_typedef:
1062    case DeclSpec::SCS_static:
1063      // FALL THROUGH.
1064      break;
1065    case DeclSpec::SCS_mutable:
1066      if (isFunc) {
1067        if (DS.getStorageClassSpecLoc().isValid())
1068          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1069        else
1070          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1071
1072        // FIXME: It would be nicer if the keyword was ignored only for this
1073        // declarator. Otherwise we could get follow-up errors.
1074        D.getMutableDeclSpec().ClearStorageClassSpecs();
1075      }
1076      break;
1077    default:
1078      if (DS.getStorageClassSpecLoc().isValid())
1079        Diag(DS.getStorageClassSpecLoc(),
1080             diag::err_storageclass_invalid_for_member);
1081      else
1082        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1083      D.getMutableDeclSpec().ClearStorageClassSpecs();
1084  }
1085
1086  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1087                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1088                      !isFunc);
1089
1090  Decl *Member;
1091  if (isInstField) {
1092    CXXScopeSpec &SS = D.getCXXScopeSpec();
1093
1094    if (SS.isSet() && !SS.isInvalid()) {
1095      // The user provided a superfluous scope specifier inside a class
1096      // definition:
1097      //
1098      // class X {
1099      //   int X::member;
1100      // };
1101      DeclContext *DC = 0;
1102      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1103        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1104        << Name << FixItHint::CreateRemoval(SS.getRange());
1105      else
1106        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1107          << Name << SS.getRange();
1108
1109      SS.clear();
1110    }
1111
1112    // FIXME: Check for template parameters!
1113    // FIXME: Check that the name is an identifier!
1114    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1115                         AS);
1116    assert(Member && "HandleField never returns null");
1117  } else {
1118    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1119    if (!Member) {
1120      return 0;
1121    }
1122
1123    // Non-instance-fields can't have a bitfield.
1124    if (BitWidth) {
1125      if (Member->isInvalidDecl()) {
1126        // don't emit another diagnostic.
1127      } else if (isa<VarDecl>(Member)) {
1128        // C++ 9.6p3: A bit-field shall not be a static member.
1129        // "static member 'A' cannot be a bit-field"
1130        Diag(Loc, diag::err_static_not_bitfield)
1131          << Name << BitWidth->getSourceRange();
1132      } else if (isa<TypedefDecl>(Member)) {
1133        // "typedef member 'x' cannot be a bit-field"
1134        Diag(Loc, diag::err_typedef_not_bitfield)
1135          << Name << BitWidth->getSourceRange();
1136      } else {
1137        // A function typedef ("typedef int f(); f a;").
1138        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1139        Diag(Loc, diag::err_not_integral_type_bitfield)
1140          << Name << cast<ValueDecl>(Member)->getType()
1141          << BitWidth->getSourceRange();
1142      }
1143
1144      BitWidth = 0;
1145      Member->setInvalidDecl();
1146    }
1147
1148    Member->setAccess(AS);
1149
1150    // If we have declared a member function template, set the access of the
1151    // templated declaration as well.
1152    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1153      FunTmpl->getTemplatedDecl()->setAccess(AS);
1154  }
1155
1156  if (VS.isOverrideSpecified()) {
1157    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1158    if (!MD || !MD->isVirtual()) {
1159      Diag(Member->getLocStart(),
1160           diag::override_keyword_only_allowed_on_virtual_member_functions)
1161        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1162    } else
1163      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1164  }
1165  if (VS.isFinalSpecified()) {
1166    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1167    if (!MD || !MD->isVirtual()) {
1168      Diag(Member->getLocStart(),
1169           diag::override_keyword_only_allowed_on_virtual_member_functions)
1170      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1171    } else
1172      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1173  }
1174
1175  if (VS.getLastLocation().isValid()) {
1176    // Update the end location of a method that has a virt-specifiers.
1177    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1178      MD->setRangeEnd(VS.getLastLocation());
1179  }
1180
1181  CheckOverrideControl(Member);
1182
1183  assert((Name || isInstField) && "No identifier for non-field ?");
1184
1185  if (Init)
1186    AddInitializerToDecl(Member, Init, false,
1187                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1188
1189  FinalizeDeclaration(Member);
1190
1191  if (isInstField)
1192    FieldCollector->Add(cast<FieldDecl>(Member));
1193  return Member;
1194}
1195
1196/// \brief Find the direct and/or virtual base specifiers that
1197/// correspond to the given base type, for use in base initialization
1198/// within a constructor.
1199static bool FindBaseInitializer(Sema &SemaRef,
1200                                CXXRecordDecl *ClassDecl,
1201                                QualType BaseType,
1202                                const CXXBaseSpecifier *&DirectBaseSpec,
1203                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1204  // First, check for a direct base class.
1205  DirectBaseSpec = 0;
1206  for (CXXRecordDecl::base_class_const_iterator Base
1207         = ClassDecl->bases_begin();
1208       Base != ClassDecl->bases_end(); ++Base) {
1209    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1210      // We found a direct base of this type. That's what we're
1211      // initializing.
1212      DirectBaseSpec = &*Base;
1213      break;
1214    }
1215  }
1216
1217  // Check for a virtual base class.
1218  // FIXME: We might be able to short-circuit this if we know in advance that
1219  // there are no virtual bases.
1220  VirtualBaseSpec = 0;
1221  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1222    // We haven't found a base yet; search the class hierarchy for a
1223    // virtual base class.
1224    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1225                       /*DetectVirtual=*/false);
1226    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1227                              BaseType, Paths)) {
1228      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1229           Path != Paths.end(); ++Path) {
1230        if (Path->back().Base->isVirtual()) {
1231          VirtualBaseSpec = Path->back().Base;
1232          break;
1233        }
1234      }
1235    }
1236  }
1237
1238  return DirectBaseSpec || VirtualBaseSpec;
1239}
1240
1241/// ActOnMemInitializer - Handle a C++ member initializer.
1242MemInitResult
1243Sema::ActOnMemInitializer(Decl *ConstructorD,
1244                          Scope *S,
1245                          CXXScopeSpec &SS,
1246                          IdentifierInfo *MemberOrBase,
1247                          ParsedType TemplateTypeTy,
1248                          SourceLocation IdLoc,
1249                          SourceLocation LParenLoc,
1250                          ExprTy **Args, unsigned NumArgs,
1251                          SourceLocation RParenLoc,
1252                          SourceLocation EllipsisLoc) {
1253  if (!ConstructorD)
1254    return true;
1255
1256  AdjustDeclIfTemplate(ConstructorD);
1257
1258  CXXConstructorDecl *Constructor
1259    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1260  if (!Constructor) {
1261    // The user wrote a constructor initializer on a function that is
1262    // not a C++ constructor. Ignore the error for now, because we may
1263    // have more member initializers coming; we'll diagnose it just
1264    // once in ActOnMemInitializers.
1265    return true;
1266  }
1267
1268  CXXRecordDecl *ClassDecl = Constructor->getParent();
1269
1270  // C++ [class.base.init]p2:
1271  //   Names in a mem-initializer-id are looked up in the scope of the
1272  //   constructor's class and, if not found in that scope, are looked
1273  //   up in the scope containing the constructor's definition.
1274  //   [Note: if the constructor's class contains a member with the
1275  //   same name as a direct or virtual base class of the class, a
1276  //   mem-initializer-id naming the member or base class and composed
1277  //   of a single identifier refers to the class member. A
1278  //   mem-initializer-id for the hidden base class may be specified
1279  //   using a qualified name. ]
1280  if (!SS.getScopeRep() && !TemplateTypeTy) {
1281    // Look for a member, first.
1282    FieldDecl *Member = 0;
1283    DeclContext::lookup_result Result
1284      = ClassDecl->lookup(MemberOrBase);
1285    if (Result.first != Result.second) {
1286      Member = dyn_cast<FieldDecl>(*Result.first);
1287
1288      if (Member) {
1289        if (EllipsisLoc.isValid())
1290          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1291            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1292
1293        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1294                                    LParenLoc, RParenLoc);
1295      }
1296
1297      // Handle anonymous union case.
1298      if (IndirectFieldDecl* IndirectField
1299            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1300        if (EllipsisLoc.isValid())
1301          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1302            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1303
1304         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1305                                       NumArgs, IdLoc,
1306                                       LParenLoc, RParenLoc);
1307      }
1308    }
1309  }
1310  // It didn't name a member, so see if it names a class.
1311  QualType BaseType;
1312  TypeSourceInfo *TInfo = 0;
1313
1314  if (TemplateTypeTy) {
1315    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1316  } else {
1317    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1318    LookupParsedName(R, S, &SS);
1319
1320    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1321    if (!TyD) {
1322      if (R.isAmbiguous()) return true;
1323
1324      // We don't want access-control diagnostics here.
1325      R.suppressDiagnostics();
1326
1327      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1328        bool NotUnknownSpecialization = false;
1329        DeclContext *DC = computeDeclContext(SS, false);
1330        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1331          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1332
1333        if (!NotUnknownSpecialization) {
1334          // When the scope specifier can refer to a member of an unknown
1335          // specialization, we take it as a type name.
1336          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1337                                       SS.getWithLocInContext(Context),
1338                                       *MemberOrBase, IdLoc);
1339          if (BaseType.isNull())
1340            return true;
1341
1342          R.clear();
1343          R.setLookupName(MemberOrBase);
1344        }
1345      }
1346
1347      // If no results were found, try to correct typos.
1348      if (R.empty() && BaseType.isNull() &&
1349          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1350          R.isSingleResult()) {
1351        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1352          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1353            // We have found a non-static data member with a similar
1354            // name to what was typed; complain and initialize that
1355            // member.
1356            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1357              << MemberOrBase << true << R.getLookupName()
1358              << FixItHint::CreateReplacement(R.getNameLoc(),
1359                                              R.getLookupName().getAsString());
1360            Diag(Member->getLocation(), diag::note_previous_decl)
1361              << Member->getDeclName();
1362
1363            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1364                                          LParenLoc, RParenLoc);
1365          }
1366        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1367          const CXXBaseSpecifier *DirectBaseSpec;
1368          const CXXBaseSpecifier *VirtualBaseSpec;
1369          if (FindBaseInitializer(*this, ClassDecl,
1370                                  Context.getTypeDeclType(Type),
1371                                  DirectBaseSpec, VirtualBaseSpec)) {
1372            // We have found a direct or virtual base class with a
1373            // similar name to what was typed; complain and initialize
1374            // that base class.
1375            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1376              << MemberOrBase << false << R.getLookupName()
1377              << FixItHint::CreateReplacement(R.getNameLoc(),
1378                                              R.getLookupName().getAsString());
1379
1380            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1381                                                             : VirtualBaseSpec;
1382            Diag(BaseSpec->getSourceRange().getBegin(),
1383                 diag::note_base_class_specified_here)
1384              << BaseSpec->getType()
1385              << BaseSpec->getSourceRange();
1386
1387            TyD = Type;
1388          }
1389        }
1390      }
1391
1392      if (!TyD && BaseType.isNull()) {
1393        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1394          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1395        return true;
1396      }
1397    }
1398
1399    if (BaseType.isNull()) {
1400      BaseType = Context.getTypeDeclType(TyD);
1401      if (SS.isSet()) {
1402        NestedNameSpecifier *Qualifier =
1403          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1404
1405        // FIXME: preserve source range information
1406        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1407      }
1408    }
1409  }
1410
1411  if (!TInfo)
1412    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1413
1414  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1415                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1416}
1417
1418/// Checks an initializer expression for use of uninitialized fields, such as
1419/// containing the field that is being initialized. Returns true if there is an
1420/// uninitialized field was used an updates the SourceLocation parameter; false
1421/// otherwise.
1422static bool InitExprContainsUninitializedFields(const Stmt *S,
1423                                                const ValueDecl *LhsField,
1424                                                SourceLocation *L) {
1425  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1426
1427  if (isa<CallExpr>(S)) {
1428    // Do not descend into function calls or constructors, as the use
1429    // of an uninitialized field may be valid. One would have to inspect
1430    // the contents of the function/ctor to determine if it is safe or not.
1431    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1432    // may be safe, depending on what the function/ctor does.
1433    return false;
1434  }
1435  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1436    const NamedDecl *RhsField = ME->getMemberDecl();
1437
1438    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1439      // The member expression points to a static data member.
1440      assert(VD->isStaticDataMember() &&
1441             "Member points to non-static data member!");
1442      (void)VD;
1443      return false;
1444    }
1445
1446    if (isa<EnumConstantDecl>(RhsField)) {
1447      // The member expression points to an enum.
1448      return false;
1449    }
1450
1451    if (RhsField == LhsField) {
1452      // Initializing a field with itself. Throw a warning.
1453      // But wait; there are exceptions!
1454      // Exception #1:  The field may not belong to this record.
1455      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1456      const Expr *base = ME->getBase();
1457      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1458        // Even though the field matches, it does not belong to this record.
1459        return false;
1460      }
1461      // None of the exceptions triggered; return true to indicate an
1462      // uninitialized field was used.
1463      *L = ME->getMemberLoc();
1464      return true;
1465    }
1466  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1467    // sizeof/alignof doesn't reference contents, do not warn.
1468    return false;
1469  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1470    // address-of doesn't reference contents (the pointer may be dereferenced
1471    // in the same expression but it would be rare; and weird).
1472    if (UOE->getOpcode() == UO_AddrOf)
1473      return false;
1474  }
1475  for (Stmt::const_child_range it = S->children(); it; ++it) {
1476    if (!*it) {
1477      // An expression such as 'member(arg ?: "")' may trigger this.
1478      continue;
1479    }
1480    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1481      return true;
1482  }
1483  return false;
1484}
1485
1486MemInitResult
1487Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1488                             unsigned NumArgs, SourceLocation IdLoc,
1489                             SourceLocation LParenLoc,
1490                             SourceLocation RParenLoc) {
1491  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1492  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1493  assert((DirectMember || IndirectMember) &&
1494         "Member must be a FieldDecl or IndirectFieldDecl");
1495
1496  if (Member->isInvalidDecl())
1497    return true;
1498
1499  // Diagnose value-uses of fields to initialize themselves, e.g.
1500  //   foo(foo)
1501  // where foo is not also a parameter to the constructor.
1502  // TODO: implement -Wuninitialized and fold this into that framework.
1503  for (unsigned i = 0; i < NumArgs; ++i) {
1504    SourceLocation L;
1505    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1506      // FIXME: Return true in the case when other fields are used before being
1507      // uninitialized. For example, let this field be the i'th field. When
1508      // initializing the i'th field, throw a warning if any of the >= i'th
1509      // fields are used, as they are not yet initialized.
1510      // Right now we are only handling the case where the i'th field uses
1511      // itself in its initializer.
1512      Diag(L, diag::warn_field_is_uninit);
1513    }
1514  }
1515
1516  bool HasDependentArg = false;
1517  for (unsigned i = 0; i < NumArgs; i++)
1518    HasDependentArg |= Args[i]->isTypeDependent();
1519
1520  Expr *Init;
1521  if (Member->getType()->isDependentType() || HasDependentArg) {
1522    // Can't check initialization for a member of dependent type or when
1523    // any of the arguments are type-dependent expressions.
1524    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1525                                       RParenLoc);
1526
1527    // Erase any temporaries within this evaluation context; we're not
1528    // going to track them in the AST, since we'll be rebuilding the
1529    // ASTs during template instantiation.
1530    ExprTemporaries.erase(
1531              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1532                          ExprTemporaries.end());
1533  } else {
1534    // Initialize the member.
1535    InitializedEntity MemberEntity =
1536      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1537                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1538    InitializationKind Kind =
1539      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1540
1541    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1542
1543    ExprResult MemberInit =
1544      InitSeq.Perform(*this, MemberEntity, Kind,
1545                      MultiExprArg(*this, Args, NumArgs), 0);
1546    if (MemberInit.isInvalid())
1547      return true;
1548
1549    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1550
1551    // C++0x [class.base.init]p7:
1552    //   The initialization of each base and member constitutes a
1553    //   full-expression.
1554    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1555    if (MemberInit.isInvalid())
1556      return true;
1557
1558    // If we are in a dependent context, template instantiation will
1559    // perform this type-checking again. Just save the arguments that we
1560    // received in a ParenListExpr.
1561    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1562    // of the information that we have about the member
1563    // initializer. However, deconstructing the ASTs is a dicey process,
1564    // and this approach is far more likely to get the corner cases right.
1565    if (CurContext->isDependentContext())
1566      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1567                                               RParenLoc);
1568    else
1569      Init = MemberInit.get();
1570  }
1571
1572  if (DirectMember) {
1573    return new (Context) CXXCtorInitializer(Context, DirectMember,
1574                                                    IdLoc, LParenLoc, Init,
1575                                                    RParenLoc);
1576  } else {
1577    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1578                                                    IdLoc, LParenLoc, Init,
1579                                                    RParenLoc);
1580  }
1581}
1582
1583MemInitResult
1584Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1585                                 Expr **Args, unsigned NumArgs,
1586                                 SourceLocation NameLoc,
1587                                 SourceLocation LParenLoc,
1588                                 SourceLocation RParenLoc,
1589                                 CXXRecordDecl *ClassDecl) {
1590  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1591  if (!LangOpts.CPlusPlus0x)
1592    return Diag(Loc, diag::err_delegation_0x_only)
1593      << TInfo->getTypeLoc().getLocalSourceRange();
1594
1595  // Initialize the object.
1596  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1597                                     QualType(ClassDecl->getTypeForDecl(), 0));
1598  InitializationKind Kind =
1599    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1600
1601  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1602
1603  ExprResult DelegationInit =
1604    InitSeq.Perform(*this, DelegationEntity, Kind,
1605                    MultiExprArg(*this, Args, NumArgs), 0);
1606  if (DelegationInit.isInvalid())
1607    return true;
1608
1609  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1610  CXXConstructorDecl *Constructor
1611    = ConExpr->getConstructor();
1612  assert(Constructor && "Delegating constructor with no target?");
1613
1614  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1615
1616  // C++0x [class.base.init]p7:
1617  //   The initialization of each base and member constitutes a
1618  //   full-expression.
1619  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1620  if (DelegationInit.isInvalid())
1621    return true;
1622
1623  // If we are in a dependent context, template instantiation will
1624  // perform this type-checking again. Just save the arguments that we
1625  // received in a ParenListExpr.
1626  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1627  // of the information that we have about the base
1628  // initializer. However, deconstructing the ASTs is a dicey process,
1629  // and this approach is far more likely to get the corner cases right.
1630  if (CurContext->isDependentContext()) {
1631    ExprResult Init
1632      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args,
1633                                          NumArgs, RParenLoc));
1634    return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc,
1635                                            Constructor, Init.takeAs<Expr>(),
1636                                            RParenLoc);
1637  }
1638
1639  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1640                                          DelegationInit.takeAs<Expr>(),
1641                                          RParenLoc);
1642}
1643
1644MemInitResult
1645Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1646                           Expr **Args, unsigned NumArgs,
1647                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1648                           CXXRecordDecl *ClassDecl,
1649                           SourceLocation EllipsisLoc) {
1650  bool HasDependentArg = false;
1651  for (unsigned i = 0; i < NumArgs; i++)
1652    HasDependentArg |= Args[i]->isTypeDependent();
1653
1654  SourceLocation BaseLoc
1655    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1656
1657  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1658    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1659             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1660
1661  // C++ [class.base.init]p2:
1662  //   [...] Unless the mem-initializer-id names a nonstatic data
1663  //   member of the constructor's class or a direct or virtual base
1664  //   of that class, the mem-initializer is ill-formed. A
1665  //   mem-initializer-list can initialize a base class using any
1666  //   name that denotes that base class type.
1667  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1668
1669  if (EllipsisLoc.isValid()) {
1670    // This is a pack expansion.
1671    if (!BaseType->containsUnexpandedParameterPack())  {
1672      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1673        << SourceRange(BaseLoc, RParenLoc);
1674
1675      EllipsisLoc = SourceLocation();
1676    }
1677  } else {
1678    // Check for any unexpanded parameter packs.
1679    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1680      return true;
1681
1682    for (unsigned I = 0; I != NumArgs; ++I)
1683      if (DiagnoseUnexpandedParameterPack(Args[I]))
1684        return true;
1685  }
1686
1687  // Check for direct and virtual base classes.
1688  const CXXBaseSpecifier *DirectBaseSpec = 0;
1689  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1690  if (!Dependent) {
1691    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1692                                       BaseType))
1693      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1694                                        LParenLoc, RParenLoc, ClassDecl);
1695
1696    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1697                        VirtualBaseSpec);
1698
1699    // C++ [base.class.init]p2:
1700    // Unless the mem-initializer-id names a nonstatic data member of the
1701    // constructor's class or a direct or virtual base of that class, the
1702    // mem-initializer is ill-formed.
1703    if (!DirectBaseSpec && !VirtualBaseSpec) {
1704      // If the class has any dependent bases, then it's possible that
1705      // one of those types will resolve to the same type as
1706      // BaseType. Therefore, just treat this as a dependent base
1707      // class initialization.  FIXME: Should we try to check the
1708      // initialization anyway? It seems odd.
1709      if (ClassDecl->hasAnyDependentBases())
1710        Dependent = true;
1711      else
1712        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1713          << BaseType << Context.getTypeDeclType(ClassDecl)
1714          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1715    }
1716  }
1717
1718  if (Dependent) {
1719    // Can't check initialization for a base of dependent type or when
1720    // any of the arguments are type-dependent expressions.
1721    ExprResult BaseInit
1722      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1723                                          RParenLoc));
1724
1725    // Erase any temporaries within this evaluation context; we're not
1726    // going to track them in the AST, since we'll be rebuilding the
1727    // ASTs during template instantiation.
1728    ExprTemporaries.erase(
1729              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1730                          ExprTemporaries.end());
1731
1732    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1733                                                    /*IsVirtual=*/false,
1734                                                    LParenLoc,
1735                                                    BaseInit.takeAs<Expr>(),
1736                                                    RParenLoc,
1737                                                    EllipsisLoc);
1738  }
1739
1740  // C++ [base.class.init]p2:
1741  //   If a mem-initializer-id is ambiguous because it designates both
1742  //   a direct non-virtual base class and an inherited virtual base
1743  //   class, the mem-initializer is ill-formed.
1744  if (DirectBaseSpec && VirtualBaseSpec)
1745    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1746      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1747
1748  CXXBaseSpecifier *BaseSpec
1749    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1750  if (!BaseSpec)
1751    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1752
1753  // Initialize the base.
1754  InitializedEntity BaseEntity =
1755    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1756  InitializationKind Kind =
1757    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1758
1759  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1760
1761  ExprResult BaseInit =
1762    InitSeq.Perform(*this, BaseEntity, Kind,
1763                    MultiExprArg(*this, Args, NumArgs), 0);
1764  if (BaseInit.isInvalid())
1765    return true;
1766
1767  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1768
1769  // C++0x [class.base.init]p7:
1770  //   The initialization of each base and member constitutes a
1771  //   full-expression.
1772  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1773  if (BaseInit.isInvalid())
1774    return true;
1775
1776  // If we are in a dependent context, template instantiation will
1777  // perform this type-checking again. Just save the arguments that we
1778  // received in a ParenListExpr.
1779  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1780  // of the information that we have about the base
1781  // initializer. However, deconstructing the ASTs is a dicey process,
1782  // and this approach is far more likely to get the corner cases right.
1783  if (CurContext->isDependentContext()) {
1784    ExprResult Init
1785      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1786                                          RParenLoc));
1787    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1788                                                    BaseSpec->isVirtual(),
1789                                                    LParenLoc,
1790                                                    Init.takeAs<Expr>(),
1791                                                    RParenLoc,
1792                                                    EllipsisLoc);
1793  }
1794
1795  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1796                                                  BaseSpec->isVirtual(),
1797                                                  LParenLoc,
1798                                                  BaseInit.takeAs<Expr>(),
1799                                                  RParenLoc,
1800                                                  EllipsisLoc);
1801}
1802
1803/// ImplicitInitializerKind - How an implicit base or member initializer should
1804/// initialize its base or member.
1805enum ImplicitInitializerKind {
1806  IIK_Default,
1807  IIK_Copy,
1808  IIK_Move
1809};
1810
1811static bool
1812BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1813                             ImplicitInitializerKind ImplicitInitKind,
1814                             CXXBaseSpecifier *BaseSpec,
1815                             bool IsInheritedVirtualBase,
1816                             CXXCtorInitializer *&CXXBaseInit) {
1817  InitializedEntity InitEntity
1818    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1819                                        IsInheritedVirtualBase);
1820
1821  ExprResult BaseInit;
1822
1823  switch (ImplicitInitKind) {
1824  case IIK_Default: {
1825    InitializationKind InitKind
1826      = InitializationKind::CreateDefault(Constructor->getLocation());
1827    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1828    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1829                               MultiExprArg(SemaRef, 0, 0));
1830    break;
1831  }
1832
1833  case IIK_Copy: {
1834    ParmVarDecl *Param = Constructor->getParamDecl(0);
1835    QualType ParamType = Param->getType().getNonReferenceType();
1836
1837    Expr *CopyCtorArg =
1838      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1839                          Constructor->getLocation(), ParamType,
1840                          VK_LValue, 0);
1841
1842    // Cast to the base class to avoid ambiguities.
1843    QualType ArgTy =
1844      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1845                                       ParamType.getQualifiers());
1846
1847    CXXCastPath BasePath;
1848    BasePath.push_back(BaseSpec);
1849    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1850                                            CK_UncheckedDerivedToBase,
1851                                            VK_LValue, &BasePath).take();
1852
1853    InitializationKind InitKind
1854      = InitializationKind::CreateDirect(Constructor->getLocation(),
1855                                         SourceLocation(), SourceLocation());
1856    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1857                                   &CopyCtorArg, 1);
1858    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1859                               MultiExprArg(&CopyCtorArg, 1));
1860    break;
1861  }
1862
1863  case IIK_Move:
1864    assert(false && "Unhandled initializer kind!");
1865  }
1866
1867  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1868  if (BaseInit.isInvalid())
1869    return true;
1870
1871  CXXBaseInit =
1872    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1873               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1874                                                        SourceLocation()),
1875                                             BaseSpec->isVirtual(),
1876                                             SourceLocation(),
1877                                             BaseInit.takeAs<Expr>(),
1878                                             SourceLocation(),
1879                                             SourceLocation());
1880
1881  return false;
1882}
1883
1884static bool
1885BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1886                               ImplicitInitializerKind ImplicitInitKind,
1887                               FieldDecl *Field,
1888                               CXXCtorInitializer *&CXXMemberInit) {
1889  if (Field->isInvalidDecl())
1890    return true;
1891
1892  SourceLocation Loc = Constructor->getLocation();
1893
1894  if (ImplicitInitKind == IIK_Copy) {
1895    ParmVarDecl *Param = Constructor->getParamDecl(0);
1896    QualType ParamType = Param->getType().getNonReferenceType();
1897
1898    Expr *MemberExprBase =
1899      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1900                          Loc, ParamType, VK_LValue, 0);
1901
1902    // Build a reference to this field within the parameter.
1903    CXXScopeSpec SS;
1904    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1905                              Sema::LookupMemberName);
1906    MemberLookup.addDecl(Field, AS_public);
1907    MemberLookup.resolveKind();
1908    ExprResult CopyCtorArg
1909      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1910                                         ParamType, Loc,
1911                                         /*IsArrow=*/false,
1912                                         SS,
1913                                         /*FirstQualifierInScope=*/0,
1914                                         MemberLookup,
1915                                         /*TemplateArgs=*/0);
1916    if (CopyCtorArg.isInvalid())
1917      return true;
1918
1919    // When the field we are copying is an array, create index variables for
1920    // each dimension of the array. We use these index variables to subscript
1921    // the source array, and other clients (e.g., CodeGen) will perform the
1922    // necessary iteration with these index variables.
1923    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1924    QualType BaseType = Field->getType();
1925    QualType SizeType = SemaRef.Context.getSizeType();
1926    while (const ConstantArrayType *Array
1927                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1928      // Create the iteration variable for this array index.
1929      IdentifierInfo *IterationVarName = 0;
1930      {
1931        llvm::SmallString<8> Str;
1932        llvm::raw_svector_ostream OS(Str);
1933        OS << "__i" << IndexVariables.size();
1934        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1935      }
1936      VarDecl *IterationVar
1937        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
1938                          IterationVarName, SizeType,
1939                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1940                          SC_None, SC_None);
1941      IndexVariables.push_back(IterationVar);
1942
1943      // Create a reference to the iteration variable.
1944      ExprResult IterationVarRef
1945        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1946      assert(!IterationVarRef.isInvalid() &&
1947             "Reference to invented variable cannot fail!");
1948
1949      // Subscript the array with this iteration variable.
1950      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1951                                                            Loc,
1952                                                        IterationVarRef.take(),
1953                                                            Loc);
1954      if (CopyCtorArg.isInvalid())
1955        return true;
1956
1957      BaseType = Array->getElementType();
1958    }
1959
1960    // Construct the entity that we will be initializing. For an array, this
1961    // will be first element in the array, which may require several levels
1962    // of array-subscript entities.
1963    llvm::SmallVector<InitializedEntity, 4> Entities;
1964    Entities.reserve(1 + IndexVariables.size());
1965    Entities.push_back(InitializedEntity::InitializeMember(Field));
1966    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1967      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1968                                                              0,
1969                                                              Entities.back()));
1970
1971    // Direct-initialize to use the copy constructor.
1972    InitializationKind InitKind =
1973      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1974
1975    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1976    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1977                                   &CopyCtorArgE, 1);
1978
1979    ExprResult MemberInit
1980      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1981                        MultiExprArg(&CopyCtorArgE, 1));
1982    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1983    if (MemberInit.isInvalid())
1984      return true;
1985
1986    CXXMemberInit
1987      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1988                                           MemberInit.takeAs<Expr>(), Loc,
1989                                           IndexVariables.data(),
1990                                           IndexVariables.size());
1991    return false;
1992  }
1993
1994  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1995
1996  QualType FieldBaseElementType =
1997    SemaRef.Context.getBaseElementType(Field->getType());
1998
1999  if (FieldBaseElementType->isRecordType()) {
2000    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2001    InitializationKind InitKind =
2002      InitializationKind::CreateDefault(Loc);
2003
2004    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2005    ExprResult MemberInit =
2006      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2007
2008    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2009    if (MemberInit.isInvalid())
2010      return true;
2011
2012    CXXMemberInit =
2013      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2014                                                       Field, Loc, Loc,
2015                                                       MemberInit.get(),
2016                                                       Loc);
2017    return false;
2018  }
2019
2020  if (!Field->getParent()->isUnion()) {
2021    if (FieldBaseElementType->isReferenceType()) {
2022      SemaRef.Diag(Constructor->getLocation(),
2023                   diag::err_uninitialized_member_in_ctor)
2024      << (int)Constructor->isImplicit()
2025      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2026      << 0 << Field->getDeclName();
2027      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2028      return true;
2029    }
2030
2031    if (FieldBaseElementType.isConstQualified()) {
2032      SemaRef.Diag(Constructor->getLocation(),
2033                   diag::err_uninitialized_member_in_ctor)
2034      << (int)Constructor->isImplicit()
2035      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2036      << 1 << Field->getDeclName();
2037      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2038      return true;
2039    }
2040  }
2041
2042  // Nothing to initialize.
2043  CXXMemberInit = 0;
2044  return false;
2045}
2046
2047namespace {
2048struct BaseAndFieldInfo {
2049  Sema &S;
2050  CXXConstructorDecl *Ctor;
2051  bool AnyErrorsInInits;
2052  ImplicitInitializerKind IIK;
2053  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2054  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2055
2056  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2057    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2058    // FIXME: Handle implicit move constructors.
2059    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2060      IIK = IIK_Copy;
2061    else
2062      IIK = IIK_Default;
2063  }
2064};
2065}
2066
2067static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
2068                                    FieldDecl *Top, FieldDecl *Field) {
2069
2070  // Overwhelmingly common case: we have a direct initializer for this field.
2071  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2072    Info.AllToInit.push_back(Init);
2073    return false;
2074  }
2075
2076  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2077    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2078    assert(FieldClassType && "anonymous struct/union without record type");
2079    CXXRecordDecl *FieldClassDecl
2080      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2081
2082    // Even though union members never have non-trivial default
2083    // constructions in C++03, we still build member initializers for aggregate
2084    // record types which can be union members, and C++0x allows non-trivial
2085    // default constructors for union members, so we ensure that only one
2086    // member is initialized for these.
2087    if (FieldClassDecl->isUnion()) {
2088      // First check for an explicit initializer for one field.
2089      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2090           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2091        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2092          Info.AllToInit.push_back(Init);
2093
2094          // Once we've initialized a field of an anonymous union, the union
2095          // field in the class is also initialized, so exit immediately.
2096          return false;
2097        } else if ((*FA)->isAnonymousStructOrUnion()) {
2098          if (CollectFieldInitializer(Info, Top, *FA))
2099            return true;
2100        }
2101      }
2102
2103      // Fallthrough and construct a default initializer for the union as
2104      // a whole, which can call its default constructor if such a thing exists
2105      // (C++0x perhaps). FIXME: It's not clear that this is the correct
2106      // behavior going forward with C++0x, when anonymous unions there are
2107      // finalized, we should revisit this.
2108    } else {
2109      // For structs, we simply descend through to initialize all members where
2110      // necessary.
2111      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2112           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2113        if (CollectFieldInitializer(Info, Top, *FA))
2114          return true;
2115      }
2116    }
2117  }
2118
2119  // Don't try to build an implicit initializer if there were semantic
2120  // errors in any of the initializers (and therefore we might be
2121  // missing some that the user actually wrote).
2122  if (Info.AnyErrorsInInits)
2123    return false;
2124
2125  CXXCtorInitializer *Init = 0;
2126  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2127    return true;
2128
2129  if (Init)
2130    Info.AllToInit.push_back(Init);
2131
2132  return false;
2133}
2134
2135bool
2136Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2137                               CXXCtorInitializer *Initializer) {
2138  assert(Initializer->isDelegatingInitializer());
2139  Constructor->setNumCtorInitializers(1);
2140  CXXCtorInitializer **initializer =
2141    new (Context) CXXCtorInitializer*[1];
2142  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2143  Constructor->setCtorInitializers(initializer);
2144
2145  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2146    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2147    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2148  }
2149
2150  DelegatingCtorDecls.push_back(Constructor);
2151
2152  return false;
2153}
2154
2155bool
2156Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2157                                  CXXCtorInitializer **Initializers,
2158                                  unsigned NumInitializers,
2159                                  bool AnyErrors) {
2160  if (Constructor->getDeclContext()->isDependentContext()) {
2161    // Just store the initializers as written, they will be checked during
2162    // instantiation.
2163    if (NumInitializers > 0) {
2164      Constructor->setNumCtorInitializers(NumInitializers);
2165      CXXCtorInitializer **baseOrMemberInitializers =
2166        new (Context) CXXCtorInitializer*[NumInitializers];
2167      memcpy(baseOrMemberInitializers, Initializers,
2168             NumInitializers * sizeof(CXXCtorInitializer*));
2169      Constructor->setCtorInitializers(baseOrMemberInitializers);
2170    }
2171
2172    return false;
2173  }
2174
2175  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2176
2177  // We need to build the initializer AST according to order of construction
2178  // and not what user specified in the Initializers list.
2179  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2180  if (!ClassDecl)
2181    return true;
2182
2183  bool HadError = false;
2184
2185  for (unsigned i = 0; i < NumInitializers; i++) {
2186    CXXCtorInitializer *Member = Initializers[i];
2187
2188    if (Member->isBaseInitializer())
2189      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2190    else
2191      Info.AllBaseFields[Member->getAnyMember()] = Member;
2192  }
2193
2194  // Keep track of the direct virtual bases.
2195  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2196  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2197       E = ClassDecl->bases_end(); I != E; ++I) {
2198    if (I->isVirtual())
2199      DirectVBases.insert(I);
2200  }
2201
2202  // Push virtual bases before others.
2203  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2204       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2205
2206    if (CXXCtorInitializer *Value
2207        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2208      Info.AllToInit.push_back(Value);
2209    } else if (!AnyErrors) {
2210      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2211      CXXCtorInitializer *CXXBaseInit;
2212      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2213                                       VBase, IsInheritedVirtualBase,
2214                                       CXXBaseInit)) {
2215        HadError = true;
2216        continue;
2217      }
2218
2219      Info.AllToInit.push_back(CXXBaseInit);
2220    }
2221  }
2222
2223  // Non-virtual bases.
2224  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2225       E = ClassDecl->bases_end(); Base != E; ++Base) {
2226    // Virtuals are in the virtual base list and already constructed.
2227    if (Base->isVirtual())
2228      continue;
2229
2230    if (CXXCtorInitializer *Value
2231          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2232      Info.AllToInit.push_back(Value);
2233    } else if (!AnyErrors) {
2234      CXXCtorInitializer *CXXBaseInit;
2235      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2236                                       Base, /*IsInheritedVirtualBase=*/false,
2237                                       CXXBaseInit)) {
2238        HadError = true;
2239        continue;
2240      }
2241
2242      Info.AllToInit.push_back(CXXBaseInit);
2243    }
2244  }
2245
2246  // Fields.
2247  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2248       E = ClassDecl->field_end(); Field != E; ++Field) {
2249    if ((*Field)->getType()->isIncompleteArrayType()) {
2250      assert(ClassDecl->hasFlexibleArrayMember() &&
2251             "Incomplete array type is not valid");
2252      continue;
2253    }
2254    if (CollectFieldInitializer(Info, *Field, *Field))
2255      HadError = true;
2256  }
2257
2258  NumInitializers = Info.AllToInit.size();
2259  if (NumInitializers > 0) {
2260    Constructor->setNumCtorInitializers(NumInitializers);
2261    CXXCtorInitializer **baseOrMemberInitializers =
2262      new (Context) CXXCtorInitializer*[NumInitializers];
2263    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2264           NumInitializers * sizeof(CXXCtorInitializer*));
2265    Constructor->setCtorInitializers(baseOrMemberInitializers);
2266
2267    // Constructors implicitly reference the base and member
2268    // destructors.
2269    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2270                                           Constructor->getParent());
2271  }
2272
2273  return HadError;
2274}
2275
2276static void *GetKeyForTopLevelField(FieldDecl *Field) {
2277  // For anonymous unions, use the class declaration as the key.
2278  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2279    if (RT->getDecl()->isAnonymousStructOrUnion())
2280      return static_cast<void *>(RT->getDecl());
2281  }
2282  return static_cast<void *>(Field);
2283}
2284
2285static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2286  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2287}
2288
2289static void *GetKeyForMember(ASTContext &Context,
2290                             CXXCtorInitializer *Member) {
2291  if (!Member->isAnyMemberInitializer())
2292    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2293
2294  // For fields injected into the class via declaration of an anonymous union,
2295  // use its anonymous union class declaration as the unique key.
2296  FieldDecl *Field = Member->getAnyMember();
2297
2298  // If the field is a member of an anonymous struct or union, our key
2299  // is the anonymous record decl that's a direct child of the class.
2300  RecordDecl *RD = Field->getParent();
2301  if (RD->isAnonymousStructOrUnion()) {
2302    while (true) {
2303      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2304      if (Parent->isAnonymousStructOrUnion())
2305        RD = Parent;
2306      else
2307        break;
2308    }
2309
2310    return static_cast<void *>(RD);
2311  }
2312
2313  return static_cast<void *>(Field);
2314}
2315
2316static void
2317DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2318                                  const CXXConstructorDecl *Constructor,
2319                                  CXXCtorInitializer **Inits,
2320                                  unsigned NumInits) {
2321  if (Constructor->getDeclContext()->isDependentContext())
2322    return;
2323
2324  // Don't check initializers order unless the warning is enabled at the
2325  // location of at least one initializer.
2326  bool ShouldCheckOrder = false;
2327  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2328    CXXCtorInitializer *Init = Inits[InitIndex];
2329    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2330                                         Init->getSourceLocation())
2331          != Diagnostic::Ignored) {
2332      ShouldCheckOrder = true;
2333      break;
2334    }
2335  }
2336  if (!ShouldCheckOrder)
2337    return;
2338
2339  // Build the list of bases and members in the order that they'll
2340  // actually be initialized.  The explicit initializers should be in
2341  // this same order but may be missing things.
2342  llvm::SmallVector<const void*, 32> IdealInitKeys;
2343
2344  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2345
2346  // 1. Virtual bases.
2347  for (CXXRecordDecl::base_class_const_iterator VBase =
2348       ClassDecl->vbases_begin(),
2349       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2350    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2351
2352  // 2. Non-virtual bases.
2353  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2354       E = ClassDecl->bases_end(); Base != E; ++Base) {
2355    if (Base->isVirtual())
2356      continue;
2357    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2358  }
2359
2360  // 3. Direct fields.
2361  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2362       E = ClassDecl->field_end(); Field != E; ++Field)
2363    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2364
2365  unsigned NumIdealInits = IdealInitKeys.size();
2366  unsigned IdealIndex = 0;
2367
2368  CXXCtorInitializer *PrevInit = 0;
2369  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2370    CXXCtorInitializer *Init = Inits[InitIndex];
2371    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2372
2373    // Scan forward to try to find this initializer in the idealized
2374    // initializers list.
2375    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2376      if (InitKey == IdealInitKeys[IdealIndex])
2377        break;
2378
2379    // If we didn't find this initializer, it must be because we
2380    // scanned past it on a previous iteration.  That can only
2381    // happen if we're out of order;  emit a warning.
2382    if (IdealIndex == NumIdealInits && PrevInit) {
2383      Sema::SemaDiagnosticBuilder D =
2384        SemaRef.Diag(PrevInit->getSourceLocation(),
2385                     diag::warn_initializer_out_of_order);
2386
2387      if (PrevInit->isAnyMemberInitializer())
2388        D << 0 << PrevInit->getAnyMember()->getDeclName();
2389      else
2390        D << 1 << PrevInit->getBaseClassInfo()->getType();
2391
2392      if (Init->isAnyMemberInitializer())
2393        D << 0 << Init->getAnyMember()->getDeclName();
2394      else
2395        D << 1 << Init->getBaseClassInfo()->getType();
2396
2397      // Move back to the initializer's location in the ideal list.
2398      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2399        if (InitKey == IdealInitKeys[IdealIndex])
2400          break;
2401
2402      assert(IdealIndex != NumIdealInits &&
2403             "initializer not found in initializer list");
2404    }
2405
2406    PrevInit = Init;
2407  }
2408}
2409
2410namespace {
2411bool CheckRedundantInit(Sema &S,
2412                        CXXCtorInitializer *Init,
2413                        CXXCtorInitializer *&PrevInit) {
2414  if (!PrevInit) {
2415    PrevInit = Init;
2416    return false;
2417  }
2418
2419  if (FieldDecl *Field = Init->getMember())
2420    S.Diag(Init->getSourceLocation(),
2421           diag::err_multiple_mem_initialization)
2422      << Field->getDeclName()
2423      << Init->getSourceRange();
2424  else {
2425    const Type *BaseClass = Init->getBaseClass();
2426    assert(BaseClass && "neither field nor base");
2427    S.Diag(Init->getSourceLocation(),
2428           diag::err_multiple_base_initialization)
2429      << QualType(BaseClass, 0)
2430      << Init->getSourceRange();
2431  }
2432  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2433    << 0 << PrevInit->getSourceRange();
2434
2435  return true;
2436}
2437
2438typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2439typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2440
2441bool CheckRedundantUnionInit(Sema &S,
2442                             CXXCtorInitializer *Init,
2443                             RedundantUnionMap &Unions) {
2444  FieldDecl *Field = Init->getAnyMember();
2445  RecordDecl *Parent = Field->getParent();
2446  if (!Parent->isAnonymousStructOrUnion())
2447    return false;
2448
2449  NamedDecl *Child = Field;
2450  do {
2451    if (Parent->isUnion()) {
2452      UnionEntry &En = Unions[Parent];
2453      if (En.first && En.first != Child) {
2454        S.Diag(Init->getSourceLocation(),
2455               diag::err_multiple_mem_union_initialization)
2456          << Field->getDeclName()
2457          << Init->getSourceRange();
2458        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2459          << 0 << En.second->getSourceRange();
2460        return true;
2461      } else if (!En.first) {
2462        En.first = Child;
2463        En.second = Init;
2464      }
2465    }
2466
2467    Child = Parent;
2468    Parent = cast<RecordDecl>(Parent->getDeclContext());
2469  } while (Parent->isAnonymousStructOrUnion());
2470
2471  return false;
2472}
2473}
2474
2475/// ActOnMemInitializers - Handle the member initializers for a constructor.
2476void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2477                                SourceLocation ColonLoc,
2478                                MemInitTy **meminits, unsigned NumMemInits,
2479                                bool AnyErrors) {
2480  if (!ConstructorDecl)
2481    return;
2482
2483  AdjustDeclIfTemplate(ConstructorDecl);
2484
2485  CXXConstructorDecl *Constructor
2486    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2487
2488  if (!Constructor) {
2489    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2490    return;
2491  }
2492
2493  CXXCtorInitializer **MemInits =
2494    reinterpret_cast<CXXCtorInitializer **>(meminits);
2495
2496  // Mapping for the duplicate initializers check.
2497  // For member initializers, this is keyed with a FieldDecl*.
2498  // For base initializers, this is keyed with a Type*.
2499  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2500
2501  // Mapping for the inconsistent anonymous-union initializers check.
2502  RedundantUnionMap MemberUnions;
2503
2504  bool HadError = false;
2505  for (unsigned i = 0; i < NumMemInits; i++) {
2506    CXXCtorInitializer *Init = MemInits[i];
2507
2508    // Set the source order index.
2509    Init->setSourceOrder(i);
2510
2511    if (Init->isAnyMemberInitializer()) {
2512      FieldDecl *Field = Init->getAnyMember();
2513      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2514          CheckRedundantUnionInit(*this, Init, MemberUnions))
2515        HadError = true;
2516    } else if (Init->isBaseInitializer()) {
2517      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2518      if (CheckRedundantInit(*this, Init, Members[Key]))
2519        HadError = true;
2520    } else {
2521      assert(Init->isDelegatingInitializer());
2522      // This must be the only initializer
2523      if (i != 0 || NumMemInits > 1) {
2524        Diag(MemInits[0]->getSourceLocation(),
2525             diag::err_delegating_initializer_alone)
2526          << MemInits[0]->getSourceRange();
2527        HadError = true;
2528        // We will treat this as being the only initializer.
2529      }
2530      SetDelegatingInitializer(Constructor, MemInits[i]);
2531      // Return immediately as the initializer is set.
2532      return;
2533    }
2534  }
2535
2536  if (HadError)
2537    return;
2538
2539  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2540
2541  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2542}
2543
2544void
2545Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2546                                             CXXRecordDecl *ClassDecl) {
2547  // Ignore dependent contexts.
2548  if (ClassDecl->isDependentContext())
2549    return;
2550
2551  // FIXME: all the access-control diagnostics are positioned on the
2552  // field/base declaration.  That's probably good; that said, the
2553  // user might reasonably want to know why the destructor is being
2554  // emitted, and we currently don't say.
2555
2556  // Non-static data members.
2557  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2558       E = ClassDecl->field_end(); I != E; ++I) {
2559    FieldDecl *Field = *I;
2560    if (Field->isInvalidDecl())
2561      continue;
2562    QualType FieldType = Context.getBaseElementType(Field->getType());
2563
2564    const RecordType* RT = FieldType->getAs<RecordType>();
2565    if (!RT)
2566      continue;
2567
2568    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2569    if (FieldClassDecl->isInvalidDecl())
2570      continue;
2571    if (FieldClassDecl->hasTrivialDestructor())
2572      continue;
2573
2574    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2575    assert(Dtor && "No dtor found for FieldClassDecl!");
2576    CheckDestructorAccess(Field->getLocation(), Dtor,
2577                          PDiag(diag::err_access_dtor_field)
2578                            << Field->getDeclName()
2579                            << FieldType);
2580
2581    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2582  }
2583
2584  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2585
2586  // Bases.
2587  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2588       E = ClassDecl->bases_end(); Base != E; ++Base) {
2589    // Bases are always records in a well-formed non-dependent class.
2590    const RecordType *RT = Base->getType()->getAs<RecordType>();
2591
2592    // Remember direct virtual bases.
2593    if (Base->isVirtual())
2594      DirectVirtualBases.insert(RT);
2595
2596    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2597    // If our base class is invalid, we probably can't get its dtor anyway.
2598    if (BaseClassDecl->isInvalidDecl())
2599      continue;
2600    // Ignore trivial destructors.
2601    if (BaseClassDecl->hasTrivialDestructor())
2602      continue;
2603
2604    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2605    assert(Dtor && "No dtor found for BaseClassDecl!");
2606
2607    // FIXME: caret should be on the start of the class name
2608    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2609                          PDiag(diag::err_access_dtor_base)
2610                            << Base->getType()
2611                            << Base->getSourceRange());
2612
2613    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2614  }
2615
2616  // Virtual bases.
2617  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2618       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2619
2620    // Bases are always records in a well-formed non-dependent class.
2621    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2622
2623    // Ignore direct virtual bases.
2624    if (DirectVirtualBases.count(RT))
2625      continue;
2626
2627    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2628    // If our base class is invalid, we probably can't get its dtor anyway.
2629    if (BaseClassDecl->isInvalidDecl())
2630      continue;
2631    // Ignore trivial destructors.
2632    if (BaseClassDecl->hasTrivialDestructor())
2633      continue;
2634
2635    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2636    assert(Dtor && "No dtor found for BaseClassDecl!");
2637    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2638                          PDiag(diag::err_access_dtor_vbase)
2639                            << VBase->getType());
2640
2641    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2642  }
2643}
2644
2645void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2646  if (!CDtorDecl)
2647    return;
2648
2649  if (CXXConstructorDecl *Constructor
2650      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2651    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2652}
2653
2654bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2655                                  unsigned DiagID, AbstractDiagSelID SelID) {
2656  if (SelID == -1)
2657    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2658  else
2659    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2660}
2661
2662bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2663                                  const PartialDiagnostic &PD) {
2664  if (!getLangOptions().CPlusPlus)
2665    return false;
2666
2667  if (const ArrayType *AT = Context.getAsArrayType(T))
2668    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2669
2670  if (const PointerType *PT = T->getAs<PointerType>()) {
2671    // Find the innermost pointer type.
2672    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2673      PT = T;
2674
2675    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2676      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2677  }
2678
2679  const RecordType *RT = T->getAs<RecordType>();
2680  if (!RT)
2681    return false;
2682
2683  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2684
2685  // We can't answer whether something is abstract until it has a
2686  // definition.  If it's currently being defined, we'll walk back
2687  // over all the declarations when we have a full definition.
2688  const CXXRecordDecl *Def = RD->getDefinition();
2689  if (!Def || Def->isBeingDefined())
2690    return false;
2691
2692  if (!RD->isAbstract())
2693    return false;
2694
2695  Diag(Loc, PD) << RD->getDeclName();
2696  DiagnoseAbstractType(RD);
2697
2698  return true;
2699}
2700
2701void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2702  // Check if we've already emitted the list of pure virtual functions
2703  // for this class.
2704  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2705    return;
2706
2707  CXXFinalOverriderMap FinalOverriders;
2708  RD->getFinalOverriders(FinalOverriders);
2709
2710  // Keep a set of seen pure methods so we won't diagnose the same method
2711  // more than once.
2712  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2713
2714  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2715                                   MEnd = FinalOverriders.end();
2716       M != MEnd;
2717       ++M) {
2718    for (OverridingMethods::iterator SO = M->second.begin(),
2719                                  SOEnd = M->second.end();
2720         SO != SOEnd; ++SO) {
2721      // C++ [class.abstract]p4:
2722      //   A class is abstract if it contains or inherits at least one
2723      //   pure virtual function for which the final overrider is pure
2724      //   virtual.
2725
2726      //
2727      if (SO->second.size() != 1)
2728        continue;
2729
2730      if (!SO->second.front().Method->isPure())
2731        continue;
2732
2733      if (!SeenPureMethods.insert(SO->second.front().Method))
2734        continue;
2735
2736      Diag(SO->second.front().Method->getLocation(),
2737           diag::note_pure_virtual_function)
2738        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2739    }
2740  }
2741
2742  if (!PureVirtualClassDiagSet)
2743    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2744  PureVirtualClassDiagSet->insert(RD);
2745}
2746
2747namespace {
2748struct AbstractUsageInfo {
2749  Sema &S;
2750  CXXRecordDecl *Record;
2751  CanQualType AbstractType;
2752  bool Invalid;
2753
2754  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2755    : S(S), Record(Record),
2756      AbstractType(S.Context.getCanonicalType(
2757                   S.Context.getTypeDeclType(Record))),
2758      Invalid(false) {}
2759
2760  void DiagnoseAbstractType() {
2761    if (Invalid) return;
2762    S.DiagnoseAbstractType(Record);
2763    Invalid = true;
2764  }
2765
2766  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2767};
2768
2769struct CheckAbstractUsage {
2770  AbstractUsageInfo &Info;
2771  const NamedDecl *Ctx;
2772
2773  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2774    : Info(Info), Ctx(Ctx) {}
2775
2776  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2777    switch (TL.getTypeLocClass()) {
2778#define ABSTRACT_TYPELOC(CLASS, PARENT)
2779#define TYPELOC(CLASS, PARENT) \
2780    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2781#include "clang/AST/TypeLocNodes.def"
2782    }
2783  }
2784
2785  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2786    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2787    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2788      if (!TL.getArg(I))
2789        continue;
2790
2791      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2792      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2793    }
2794  }
2795
2796  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2797    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2798  }
2799
2800  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2801    // Visit the type parameters from a permissive context.
2802    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2803      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2804      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2805        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2806          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2807      // TODO: other template argument types?
2808    }
2809  }
2810
2811  // Visit pointee types from a permissive context.
2812#define CheckPolymorphic(Type) \
2813  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2814    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2815  }
2816  CheckPolymorphic(PointerTypeLoc)
2817  CheckPolymorphic(ReferenceTypeLoc)
2818  CheckPolymorphic(MemberPointerTypeLoc)
2819  CheckPolymorphic(BlockPointerTypeLoc)
2820
2821  /// Handle all the types we haven't given a more specific
2822  /// implementation for above.
2823  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2824    // Every other kind of type that we haven't called out already
2825    // that has an inner type is either (1) sugar or (2) contains that
2826    // inner type in some way as a subobject.
2827    if (TypeLoc Next = TL.getNextTypeLoc())
2828      return Visit(Next, Sel);
2829
2830    // If there's no inner type and we're in a permissive context,
2831    // don't diagnose.
2832    if (Sel == Sema::AbstractNone) return;
2833
2834    // Check whether the type matches the abstract type.
2835    QualType T = TL.getType();
2836    if (T->isArrayType()) {
2837      Sel = Sema::AbstractArrayType;
2838      T = Info.S.Context.getBaseElementType(T);
2839    }
2840    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2841    if (CT != Info.AbstractType) return;
2842
2843    // It matched; do some magic.
2844    if (Sel == Sema::AbstractArrayType) {
2845      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2846        << T << TL.getSourceRange();
2847    } else {
2848      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2849        << Sel << T << TL.getSourceRange();
2850    }
2851    Info.DiagnoseAbstractType();
2852  }
2853};
2854
2855void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2856                                  Sema::AbstractDiagSelID Sel) {
2857  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2858}
2859
2860}
2861
2862/// Check for invalid uses of an abstract type in a method declaration.
2863static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2864                                    CXXMethodDecl *MD) {
2865  // No need to do the check on definitions, which require that
2866  // the return/param types be complete.
2867  if (MD->doesThisDeclarationHaveABody())
2868    return;
2869
2870  // For safety's sake, just ignore it if we don't have type source
2871  // information.  This should never happen for non-implicit methods,
2872  // but...
2873  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2874    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2875}
2876
2877/// Check for invalid uses of an abstract type within a class definition.
2878static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2879                                    CXXRecordDecl *RD) {
2880  for (CXXRecordDecl::decl_iterator
2881         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2882    Decl *D = *I;
2883    if (D->isImplicit()) continue;
2884
2885    // Methods and method templates.
2886    if (isa<CXXMethodDecl>(D)) {
2887      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2888    } else if (isa<FunctionTemplateDecl>(D)) {
2889      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2890      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2891
2892    // Fields and static variables.
2893    } else if (isa<FieldDecl>(D)) {
2894      FieldDecl *FD = cast<FieldDecl>(D);
2895      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2896        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2897    } else if (isa<VarDecl>(D)) {
2898      VarDecl *VD = cast<VarDecl>(D);
2899      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2900        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2901
2902    // Nested classes and class templates.
2903    } else if (isa<CXXRecordDecl>(D)) {
2904      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2905    } else if (isa<ClassTemplateDecl>(D)) {
2906      CheckAbstractClassUsage(Info,
2907                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2908    }
2909  }
2910}
2911
2912/// \brief Perform semantic checks on a class definition that has been
2913/// completing, introducing implicitly-declared members, checking for
2914/// abstract types, etc.
2915void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2916  if (!Record)
2917    return;
2918
2919  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2920    AbstractUsageInfo Info(*this, Record);
2921    CheckAbstractClassUsage(Info, Record);
2922  }
2923
2924  // If this is not an aggregate type and has no user-declared constructor,
2925  // complain about any non-static data members of reference or const scalar
2926  // type, since they will never get initializers.
2927  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2928      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2929    bool Complained = false;
2930    for (RecordDecl::field_iterator F = Record->field_begin(),
2931                                 FEnd = Record->field_end();
2932         F != FEnd; ++F) {
2933      if (F->getType()->isReferenceType() ||
2934          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2935        if (!Complained) {
2936          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2937            << Record->getTagKind() << Record;
2938          Complained = true;
2939        }
2940
2941        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2942          << F->getType()->isReferenceType()
2943          << F->getDeclName();
2944      }
2945    }
2946  }
2947
2948  if (Record->isDynamicClass() && !Record->isDependentType())
2949    DynamicClasses.push_back(Record);
2950
2951  if (Record->getIdentifier()) {
2952    // C++ [class.mem]p13:
2953    //   If T is the name of a class, then each of the following shall have a
2954    //   name different from T:
2955    //     - every member of every anonymous union that is a member of class T.
2956    //
2957    // C++ [class.mem]p14:
2958    //   In addition, if class T has a user-declared constructor (12.1), every
2959    //   non-static data member of class T shall have a name different from T.
2960    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2961         R.first != R.second; ++R.first) {
2962      NamedDecl *D = *R.first;
2963      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2964          isa<IndirectFieldDecl>(D)) {
2965        Diag(D->getLocation(), diag::err_member_name_of_class)
2966          << D->getDeclName();
2967        break;
2968      }
2969    }
2970  }
2971
2972  // Warn if the class has virtual methods but non-virtual public destructor.
2973  if (Record->isPolymorphic() && !Record->isDependentType()) {
2974    CXXDestructorDecl *dtor = Record->getDestructor();
2975    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2976      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2977           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2978  }
2979
2980  // See if a method overloads virtual methods in a base
2981  /// class without overriding any.
2982  if (!Record->isDependentType()) {
2983    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2984                                     MEnd = Record->method_end();
2985         M != MEnd; ++M) {
2986      if (!(*M)->isStatic())
2987        DiagnoseHiddenVirtualMethods(Record, *M);
2988    }
2989  }
2990
2991  // Declare inherited constructors. We do this eagerly here because:
2992  // - The standard requires an eager diagnostic for conflicting inherited
2993  //   constructors from different classes.
2994  // - The lazy declaration of the other implicit constructors is so as to not
2995  //   waste space and performance on classes that are not meant to be
2996  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2997  //   have inherited constructors.
2998  DeclareInheritedConstructors(Record);
2999
3000  CheckExplicitlyDefaultedMethods(Record);
3001}
3002
3003void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3004  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3005                                      ME = Record->method_end();
3006       MI != ME; ++MI) {
3007    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3008      switch (getSpecialMember(*MI)) {
3009      case CXXDefaultConstructor:
3010        CheckExplicitlyDefaultedDefaultConstructor(
3011                                                  cast<CXXConstructorDecl>(*MI));
3012        break;
3013
3014      case CXXDestructor:
3015        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3016        break;
3017
3018      case CXXCopyConstructor:
3019        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3020        break;
3021
3022      case CXXCopyAssignment:
3023        CheckExplicitlyDefaultedCopyAssignment(*MI);
3024        break;
3025
3026      default:
3027        // FIXME: Do moves once they exist
3028        llvm_unreachable("non-special member explicitly defaulted!");
3029      }
3030    }
3031  }
3032
3033}
3034
3035void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3036  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3037
3038  // Whether this was the first-declared instance of the constructor.
3039  // This affects whether we implicitly add an exception spec (and, eventually,
3040  // constexpr). It is also ill-formed to explicitly default a constructor such
3041  // that it would be deleted. (C++0x [decl.fct.def.default])
3042  bool First = CD == CD->getCanonicalDecl();
3043
3044  bool HadError = false;
3045  if (CD->getNumParams() != 0) {
3046    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3047      << CD->getSourceRange();
3048    HadError = true;
3049  }
3050
3051  ImplicitExceptionSpecification Spec
3052    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3053  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3054  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3055                          *ExceptionType = Context.getFunctionType(
3056                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3057
3058  if (CtorType->hasExceptionSpec()) {
3059    if (CheckEquivalentExceptionSpec(
3060          PDiag(diag::err_incorrect_defaulted_exception_spec)
3061            << 0 /* default constructor */,
3062          PDiag(),
3063          ExceptionType, SourceLocation(),
3064          CtorType, CD->getLocation())) {
3065      HadError = true;
3066    }
3067  } else if (First) {
3068    // We set the declaration to have the computed exception spec here.
3069    // We know there are no parameters.
3070    EPI.ExtInfo = CtorType->getExtInfo();
3071    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3072  }
3073
3074  if (HadError) {
3075    CD->setInvalidDecl();
3076    return;
3077  }
3078
3079  if (ShouldDeleteDefaultConstructor(CD)) {
3080    if (First) {
3081      CD->setDeletedAsWritten();
3082    } else {
3083      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3084        << 0 /* default constructor */;
3085      CD->setInvalidDecl();
3086    }
3087  }
3088}
3089
3090void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3091  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3092
3093  // Whether this was the first-declared instance of the constructor.
3094  bool First = CD == CD->getCanonicalDecl();
3095
3096  bool HadError = false;
3097  if (CD->getNumParams() != 1) {
3098    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3099      << CD->getSourceRange();
3100    HadError = true;
3101  }
3102
3103  ImplicitExceptionSpecification Spec(Context);
3104  bool Const;
3105  llvm::tie(Spec, Const) =
3106    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3107
3108  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3109  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3110                          *ExceptionType = Context.getFunctionType(
3111                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3112
3113  // Check for parameter type matching.
3114  // This is a copy ctor so we know it's a cv-qualified reference to T.
3115  QualType ArgType = CtorType->getArgType(0);
3116  if (ArgType->getPointeeType().isVolatileQualified()) {
3117    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3118    HadError = true;
3119  }
3120  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3121    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3122    HadError = true;
3123  }
3124
3125  if (CtorType->hasExceptionSpec()) {
3126    if (CheckEquivalentExceptionSpec(
3127          PDiag(diag::err_incorrect_defaulted_exception_spec)
3128            << 1 /* copy constructor */,
3129          PDiag(),
3130          ExceptionType, SourceLocation(),
3131          CtorType, CD->getLocation())) {
3132      HadError = true;
3133    }
3134  } else if (First) {
3135    // We set the declaration to have the computed exception spec here.
3136    // We duplicate the one parameter type.
3137    EPI.ExtInfo = CtorType->getExtInfo();
3138    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3139  }
3140
3141  if (HadError) {
3142    CD->setInvalidDecl();
3143    return;
3144  }
3145
3146  if (ShouldDeleteCopyConstructor(CD)) {
3147    if (First) {
3148      CD->setDeletedAsWritten();
3149    } else {
3150      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3151        << 1 /* copy constructor */;
3152      CD->setInvalidDecl();
3153    }
3154  }
3155}
3156
3157void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3158  assert(MD->isExplicitlyDefaulted());
3159
3160  // Whether this was the first-declared instance of the operator
3161  bool First = MD == MD->getCanonicalDecl();
3162
3163  bool HadError = false;
3164  if (MD->getNumParams() != 1) {
3165    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3166      << MD->getSourceRange();
3167    HadError = true;
3168  }
3169
3170  QualType ReturnType =
3171    MD->getType()->getAs<FunctionType>()->getResultType();
3172  if (!ReturnType->isLValueReferenceType() ||
3173      !Context.hasSameType(
3174        Context.getCanonicalType(ReturnType->getPointeeType()),
3175        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3176    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3177    HadError = true;
3178  }
3179
3180  ImplicitExceptionSpecification Spec(Context);
3181  bool Const;
3182  llvm::tie(Spec, Const) =
3183    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3184
3185  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3186  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3187                          *ExceptionType = Context.getFunctionType(
3188                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3189
3190  QualType ArgType = OperType->getArgType(0);
3191  if (!ArgType->isReferenceType()) {
3192    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3193    HadError = true;
3194  } else {
3195    if (ArgType->getPointeeType().isVolatileQualified()) {
3196      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3197      HadError = true;
3198    }
3199    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3200      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3201      HadError = true;
3202    }
3203  }
3204
3205  if (OperType->getTypeQuals()) {
3206    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3207    HadError = true;
3208  }
3209
3210  if (OperType->hasExceptionSpec()) {
3211    if (CheckEquivalentExceptionSpec(
3212          PDiag(diag::err_incorrect_defaulted_exception_spec)
3213            << 2 /* copy assignment operator */,
3214          PDiag(),
3215          ExceptionType, SourceLocation(),
3216          OperType, MD->getLocation())) {
3217      HadError = true;
3218    }
3219  } else if (First) {
3220    // We set the declaration to have the computed exception spec here.
3221    // We duplicate the one parameter type.
3222    EPI.RefQualifier = OperType->getRefQualifier();
3223    EPI.ExtInfo = OperType->getExtInfo();
3224    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3225  }
3226
3227  if (HadError) {
3228    MD->setInvalidDecl();
3229    return;
3230  }
3231
3232  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3233    if (First) {
3234      MD->setDeletedAsWritten();
3235    } else {
3236      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3237        << 2 /* copy assignment operator  */;
3238      MD->setInvalidDecl();
3239    }
3240  }
3241}
3242
3243void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3244  assert(DD->isExplicitlyDefaulted());
3245
3246  // Whether this was the first-declared instance of the destructor.
3247  bool First = DD == DD->getCanonicalDecl();
3248
3249  ImplicitExceptionSpecification Spec
3250    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3251  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3252  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3253                          *ExceptionType = Context.getFunctionType(
3254                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3255
3256  if (DtorType->hasExceptionSpec()) {
3257    if (CheckEquivalentExceptionSpec(
3258          PDiag(diag::err_incorrect_defaulted_exception_spec)
3259            << 3 /* destructor */,
3260          PDiag(),
3261          ExceptionType, SourceLocation(),
3262          DtorType, DD->getLocation())) {
3263      DD->setInvalidDecl();
3264      return;
3265    }
3266  } else if (First) {
3267    // We set the declaration to have the computed exception spec here.
3268    // There are no parameters.
3269    EPI.ExtInfo = DtorType->getExtInfo();
3270    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3271  }
3272
3273  if (ShouldDeleteDestructor(DD)) {
3274    if (First) {
3275      DD->setDeletedAsWritten();
3276    } else {
3277      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3278        << 3 /* destructor */;
3279      DD->setInvalidDecl();
3280    }
3281  }
3282}
3283
3284bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3285  CXXRecordDecl *RD = CD->getParent();
3286  assert(!RD->isDependentType() && "do deletion after instantiation");
3287  if (!LangOpts.CPlusPlus0x)
3288    return false;
3289
3290  SourceLocation Loc = CD->getLocation();
3291
3292  // Do access control from the constructor
3293  ContextRAII CtorContext(*this, CD);
3294
3295  bool Union = RD->isUnion();
3296  bool AllConst = true;
3297
3298  // We do this because we should never actually use an anonymous
3299  // union's constructor.
3300  if (Union && RD->isAnonymousStructOrUnion())
3301    return false;
3302
3303  // FIXME: We should put some diagnostic logic right into this function.
3304
3305  // C++0x [class.ctor]/5
3306  //    A defaulted default constructor for class X is defined as delete if:
3307
3308  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3309                                          BE = RD->bases_end();
3310       BI != BE; ++BI) {
3311    // We'll handle this one later
3312    if (BI->isVirtual())
3313      continue;
3314
3315    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3316    assert(BaseDecl && "base isn't a CXXRecordDecl");
3317
3318    // -- any [direct base class] has a type with a destructor that is
3319    //    delete or inaccessible from the defaulted default constructor
3320    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3321    if (BaseDtor->isDeleted())
3322      return true;
3323    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3324        AR_accessible)
3325      return true;
3326
3327    // -- any [direct base class either] has no default constructor or
3328    //    overload resolution as applied to [its] default constructor
3329    //    results in an ambiguity or in a function that is deleted or
3330    //    inaccessible from the defaulted default constructor
3331    InitializedEntity BaseEntity =
3332      InitializedEntity::InitializeBase(Context, BI, 0);
3333    InitializationKind Kind =
3334      InitializationKind::CreateDirect(Loc, Loc, Loc);
3335
3336    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3337
3338    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3339      return true;
3340  }
3341
3342  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3343                                          BE = RD->vbases_end();
3344       BI != BE; ++BI) {
3345    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3346    assert(BaseDecl && "base isn't a CXXRecordDecl");
3347
3348    // -- any [virtual base class] has a type with a destructor that is
3349    //    delete or inaccessible from the defaulted default constructor
3350    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3351    if (BaseDtor->isDeleted())
3352      return true;
3353    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3354        AR_accessible)
3355      return true;
3356
3357    // -- any [virtual base class either] has no default constructor or
3358    //    overload resolution as applied to [its] default constructor
3359    //    results in an ambiguity or in a function that is deleted or
3360    //    inaccessible from the defaulted default constructor
3361    InitializedEntity BaseEntity =
3362      InitializedEntity::InitializeBase(Context, BI, BI);
3363    InitializationKind Kind =
3364      InitializationKind::CreateDirect(Loc, Loc, Loc);
3365
3366    InitializationSequence InitSeq(*this, BaseEntity, Kind, 0, 0);
3367
3368    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3369      return true;
3370  }
3371
3372  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3373                                     FE = RD->field_end();
3374       FI != FE; ++FI) {
3375    QualType FieldType = Context.getBaseElementType(FI->getType());
3376    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3377
3378    // -- any non-static data member with no brace-or-equal-initializer is of
3379    //    reference type
3380    if (FieldType->isReferenceType())
3381      return true;
3382
3383    // -- X is a union and all its variant members are of const-qualified type
3384    //    (or array thereof)
3385    if (Union && !FieldType.isConstQualified())
3386      AllConst = false;
3387
3388    if (FieldRecord) {
3389      // -- X is a union-like class that has a variant member with a non-trivial
3390      //    default constructor
3391      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3392        return true;
3393
3394      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3395      if (FieldDtor->isDeleted())
3396        return true;
3397      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3398          AR_accessible)
3399        return true;
3400
3401      // -- any non-variant non-static data member of const-qualified type (or
3402      //    array thereof) with no brace-or-equal-initializer does not have a
3403      //    user-provided default constructor
3404      if (FieldType.isConstQualified() &&
3405          !FieldRecord->hasUserProvidedDefaultConstructor())
3406        return true;
3407
3408      if (!Union && FieldRecord->isUnion() &&
3409          FieldRecord->isAnonymousStructOrUnion()) {
3410        // We're okay to reuse AllConst here since we only care about the
3411        // value otherwise if we're in a union.
3412        AllConst = true;
3413
3414        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3415                                           UE = FieldRecord->field_end();
3416             UI != UE; ++UI) {
3417          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3418          CXXRecordDecl *UnionFieldRecord =
3419            UnionFieldType->getAsCXXRecordDecl();
3420
3421          if (!UnionFieldType.isConstQualified())
3422            AllConst = false;
3423
3424          if (UnionFieldRecord &&
3425              !UnionFieldRecord->hasTrivialDefaultConstructor())
3426            return true;
3427        }
3428
3429        if (AllConst)
3430          return true;
3431
3432        // Don't try to initialize the anonymous union
3433        // This is technically non-conformant, but sanity demands it.
3434        continue;
3435      }
3436    } else if (!Union && FieldType.isConstQualified()) {
3437      // -- any non-variant non-static data member of const-qualified type (or
3438      //    array thereof) with no brace-or-equal-initializer does not have a
3439      //    user-provided default constructor
3440      return true;
3441    }
3442
3443    InitializedEntity MemberEntity =
3444      InitializedEntity::InitializeMember(*FI, 0);
3445    InitializationKind Kind =
3446      InitializationKind::CreateDirect(Loc, Loc, Loc);
3447
3448    InitializationSequence InitSeq(*this, MemberEntity, Kind, 0, 0);
3449
3450    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3451      return true;
3452  }
3453
3454  if (Union && AllConst)
3455    return true;
3456
3457  return false;
3458}
3459
3460bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3461  CXXRecordDecl *RD = CD->getParent();
3462  assert(!RD->isDependentType() && "do deletion after instantiation");
3463  if (!LangOpts.CPlusPlus0x)
3464    return false;
3465
3466  SourceLocation Loc = CD->getLocation();
3467
3468  // Do access control from the constructor
3469  ContextRAII CtorContext(*this, CD);
3470
3471    bool Union = RD->isUnion();
3472
3473  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3474         "copy assignment arg has no pointee type");
3475  bool ConstArg =
3476    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3477
3478  // We do this because we should never actually use an anonymous
3479  // union's constructor.
3480  if (Union && RD->isAnonymousStructOrUnion())
3481    return false;
3482
3483  // FIXME: We should put some diagnostic logic right into this function.
3484
3485  // C++0x [class.copy]/11
3486  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3487
3488  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3489                                          BE = RD->bases_end();
3490       BI != BE; ++BI) {
3491    // We'll handle this one later
3492    if (BI->isVirtual())
3493      continue;
3494
3495    QualType BaseType = BI->getType();
3496    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3497    assert(BaseDecl && "base isn't a CXXRecordDecl");
3498
3499    // -- any [direct base class] of a type with a destructor that is deleted or
3500    //    inaccessible from the defaulted constructor
3501    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3502    if (BaseDtor->isDeleted())
3503      return true;
3504    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3505        AR_accessible)
3506      return true;
3507
3508    // -- a [direct base class] B that cannot be [copied] because overload
3509    //    resolution, as applied to B's [copy] constructor, results in an
3510    //    ambiguity or a function that is deleted or inaccessible from the
3511    //    defaulted constructor
3512    InitializedEntity BaseEntity =
3513      InitializedEntity::InitializeBase(Context, BI, 0);
3514    InitializationKind Kind =
3515      InitializationKind::CreateDirect(Loc, Loc, Loc);
3516
3517    // Construct a fake expression to perform the copy overloading.
3518    QualType ArgType = BaseType.getUnqualifiedType();
3519    if (ConstArg)
3520      ArgType.addConst();
3521    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3522
3523    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3524
3525    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3526      return true;
3527  }
3528
3529  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3530                                          BE = RD->vbases_end();
3531       BI != BE; ++BI) {
3532    QualType BaseType = BI->getType();
3533    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3534    assert(BaseDecl && "base isn't a CXXRecordDecl");
3535
3536    // -- any [direct base class] of a type with a destructor that is deleted or
3537    //    inaccessible from the defaulted constructor
3538    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3539    if (BaseDtor->isDeleted())
3540      return true;
3541    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3542        AR_accessible)
3543      return true;
3544
3545    // -- a [virtual base class] B that cannot be [copied] because overload
3546    //    resolution, as applied to B's [copy] constructor, results in an
3547    //    ambiguity or a function that is deleted or inaccessible from the
3548    //    defaulted constructor
3549    InitializedEntity BaseEntity =
3550      InitializedEntity::InitializeBase(Context, BI, BI);
3551    InitializationKind Kind =
3552      InitializationKind::CreateDirect(Loc, Loc, Loc);
3553
3554    // Construct a fake expression to perform the copy overloading.
3555    QualType ArgType = BaseType.getUnqualifiedType();
3556    if (ConstArg)
3557      ArgType.addConst();
3558    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3559
3560    InitializationSequence InitSeq(*this, BaseEntity, Kind, &Arg, 1);
3561
3562    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3563      return true;
3564  }
3565
3566  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3567                                     FE = RD->field_end();
3568       FI != FE; ++FI) {
3569    QualType FieldType = Context.getBaseElementType(FI->getType());
3570
3571    // -- for a copy constructor, a non-static data member of rvalue reference
3572    //    type
3573    if (FieldType->isRValueReferenceType())
3574      return true;
3575
3576    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3577
3578    if (FieldRecord) {
3579      // This is an anonymous union
3580      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3581        // Anonymous unions inside unions do not variant members create
3582        if (!Union) {
3583          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3584                                             UE = FieldRecord->field_end();
3585               UI != UE; ++UI) {
3586            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3587            CXXRecordDecl *UnionFieldRecord =
3588              UnionFieldType->getAsCXXRecordDecl();
3589
3590            // -- a variant member with a non-trivial [copy] constructor and X
3591            //    is a union-like class
3592            if (UnionFieldRecord &&
3593                !UnionFieldRecord->hasTrivialCopyConstructor())
3594              return true;
3595          }
3596        }
3597
3598        // Don't try to initalize an anonymous union
3599        continue;
3600      } else {
3601         // -- a variant member with a non-trivial [copy] constructor and X is a
3602         //    union-like class
3603        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3604          return true;
3605
3606        // -- any [non-static data member] of a type with a destructor that is
3607        //    deleted or inaccessible from the defaulted constructor
3608        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3609        if (FieldDtor->isDeleted())
3610          return true;
3611        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3612            AR_accessible)
3613          return true;
3614      }
3615    }
3616
3617    llvm::SmallVector<InitializedEntity, 4> Entities;
3618    QualType CurType = FI->getType();
3619    Entities.push_back(InitializedEntity::InitializeMember(*FI, 0));
3620    while (CurType->isArrayType()) {
3621      Entities.push_back(InitializedEntity::InitializeElement(Context, 0,
3622                                                              Entities.back()));
3623      CurType = Context.getAsArrayType(CurType)->getElementType();
3624    }
3625
3626    InitializationKind Kind =
3627      InitializationKind::CreateDirect(Loc, Loc, Loc);
3628
3629    // Construct a fake expression to perform the copy overloading.
3630    QualType ArgType = FieldType;
3631    if (ArgType->isReferenceType())
3632      ArgType = ArgType->getPointeeType();
3633    else if (ConstArg)
3634      ArgType.addConst();
3635    Expr *Arg = new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue);
3636
3637    InitializationSequence InitSeq(*this, Entities.back(), Kind, &Arg, 1);
3638
3639    if (InitSeq.getKind() == InitializationSequence::FailedSequence)
3640      return true;
3641  }
3642
3643  return false;
3644}
3645
3646bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3647  CXXRecordDecl *RD = MD->getParent();
3648  assert(!RD->isDependentType() && "do deletion after instantiation");
3649  if (!LangOpts.CPlusPlus0x)
3650    return false;
3651
3652  SourceLocation Loc = MD->getLocation();
3653
3654  // Do access control from the constructor
3655  ContextRAII MethodContext(*this, MD);
3656
3657  bool Union = RD->isUnion();
3658
3659  bool ConstArg =
3660    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified();
3661
3662  // We do this because we should never actually use an anonymous
3663  // union's constructor.
3664  if (Union && RD->isAnonymousStructOrUnion())
3665    return false;
3666
3667  DeclarationName OperatorName =
3668    Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3669  LookupResult R(*this, OperatorName, Loc, LookupOrdinaryName);
3670  R.suppressDiagnostics();
3671
3672  // FIXME: We should put some diagnostic logic right into this function.
3673
3674  // C++0x [class.copy]/11
3675  //    A defaulted [copy] assignment operator for class X is defined as deleted
3676  //    if X has:
3677
3678  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3679                                          BE = RD->bases_end();
3680       BI != BE; ++BI) {
3681    // We'll handle this one later
3682    if (BI->isVirtual())
3683      continue;
3684
3685    QualType BaseType = BI->getType();
3686    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3687    assert(BaseDecl && "base isn't a CXXRecordDecl");
3688
3689    // -- a [direct base class] B that cannot be [copied] because overload
3690    //    resolution, as applied to B's [copy] assignment operator, results in
3691    //    an ambiguity or a function that is deleted or inaccessible from the
3692    //    assignment operator
3693
3694    LookupQualifiedName(R, BaseDecl, false);
3695
3696    // Filter out any result that isn't a copy-assignment operator.
3697    LookupResult::Filter F = R.makeFilter();
3698    while (F.hasNext()) {
3699      NamedDecl *D = F.next();
3700      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3701        if (Method->isCopyAssignmentOperator())
3702          continue;
3703
3704      F.erase();
3705    }
3706    F.done();
3707
3708    // Build a fake argument expression
3709    QualType ArgType = BaseType;
3710    QualType ThisType = BaseType;
3711    if (ConstArg)
3712      ArgType.addConst();
3713    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3714                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3715                   };
3716
3717    OverloadCandidateSet OCS((Loc));
3718    OverloadCandidateSet::iterator Best;
3719
3720    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3721
3722    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3723        OR_Success)
3724      return true;
3725  }
3726
3727  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3728                                          BE = RD->vbases_end();
3729       BI != BE; ++BI) {
3730    QualType BaseType = BI->getType();
3731    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3732    assert(BaseDecl && "base isn't a CXXRecordDecl");
3733
3734    // -- a [virtual base class] B that cannot be [copied] because overload
3735    //    resolution, as applied to B's [copy] assignment operator, results in
3736    //    an ambiguity or a function that is deleted or inaccessible from the
3737    //    assignment operator
3738
3739    LookupQualifiedName(R, BaseDecl, false);
3740
3741    // Filter out any result that isn't a copy-assignment operator.
3742    LookupResult::Filter F = R.makeFilter();
3743    while (F.hasNext()) {
3744      NamedDecl *D = F.next();
3745      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3746        if (Method->isCopyAssignmentOperator())
3747          continue;
3748
3749      F.erase();
3750    }
3751    F.done();
3752
3753    // Build a fake argument expression
3754    QualType ArgType = BaseType;
3755    QualType ThisType = BaseType;
3756    if (ConstArg)
3757      ArgType.addConst();
3758    Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3759                   , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3760                   };
3761
3762    OverloadCandidateSet OCS((Loc));
3763    OverloadCandidateSet::iterator Best;
3764
3765    AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3766
3767    if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3768        OR_Success)
3769      return true;
3770  }
3771
3772  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3773                                     FE = RD->field_end();
3774       FI != FE; ++FI) {
3775    QualType FieldType = Context.getBaseElementType(FI->getType());
3776
3777    // -- a non-static data member of reference type
3778    if (FieldType->isReferenceType())
3779      return true;
3780
3781    // -- a non-static data member of const non-class type (or array thereof)
3782    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3783      return true;
3784
3785    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3786
3787    if (FieldRecord) {
3788      // This is an anonymous union
3789      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3790        // Anonymous unions inside unions do not variant members create
3791        if (!Union) {
3792          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3793                                             UE = FieldRecord->field_end();
3794               UI != UE; ++UI) {
3795            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3796            CXXRecordDecl *UnionFieldRecord =
3797              UnionFieldType->getAsCXXRecordDecl();
3798
3799            // -- a variant member with a non-trivial [copy] assignment operator
3800            //    and X is a union-like class
3801            if (UnionFieldRecord &&
3802                !UnionFieldRecord->hasTrivialCopyAssignment())
3803              return true;
3804          }
3805        }
3806
3807        // Don't try to initalize an anonymous union
3808        continue;
3809      // -- a variant member with a non-trivial [copy] assignment operator
3810      //    and X is a union-like class
3811      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3812          return true;
3813      }
3814
3815      LookupQualifiedName(R, FieldRecord, false);
3816
3817      // Filter out any result that isn't a copy-assignment operator.
3818      LookupResult::Filter F = R.makeFilter();
3819      while (F.hasNext()) {
3820        NamedDecl *D = F.next();
3821        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
3822          if (Method->isCopyAssignmentOperator())
3823            continue;
3824
3825        F.erase();
3826      }
3827      F.done();
3828
3829      // Build a fake argument expression
3830      QualType ArgType = FieldType;
3831      QualType ThisType = FieldType;
3832      if (ConstArg)
3833        ArgType.addConst();
3834      Expr *Args[] = { new (Context) OpaqueValueExpr(Loc, ThisType, VK_LValue)
3835                     , new (Context) OpaqueValueExpr(Loc, ArgType, VK_LValue)
3836                     };
3837
3838      OverloadCandidateSet OCS((Loc));
3839      OverloadCandidateSet::iterator Best;
3840
3841      AddFunctionCandidates(R.asUnresolvedSet(), Args, 2, OCS);
3842
3843      if (OCS.BestViableFunction(*this, Loc, Best, false) !=
3844          OR_Success)
3845        return true;
3846    }
3847  }
3848
3849  return false;
3850}
3851
3852bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3853  CXXRecordDecl *RD = DD->getParent();
3854  assert(!RD->isDependentType() && "do deletion after instantiation");
3855  if (!LangOpts.CPlusPlus0x)
3856    return false;
3857
3858  SourceLocation Loc = DD->getLocation();
3859
3860  // Do access control from the destructor
3861  ContextRAII CtorContext(*this, DD);
3862
3863  bool Union = RD->isUnion();
3864
3865  // We do this because we should never actually use an anonymous
3866  // union's destructor.
3867  if (Union && RD->isAnonymousStructOrUnion())
3868    return false;
3869
3870  // C++0x [class.dtor]p5
3871  //    A defaulted destructor for a class X is defined as deleted if:
3872  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3873                                          BE = RD->bases_end();
3874       BI != BE; ++BI) {
3875    // We'll handle this one later
3876    if (BI->isVirtual())
3877      continue;
3878
3879    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3880    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3881    assert(BaseDtor && "base has no destructor");
3882
3883    // -- any direct or virtual base class has a deleted destructor or
3884    //    a destructor that is inaccessible from the defaulted destructor
3885    if (BaseDtor->isDeleted())
3886      return true;
3887    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3888        AR_accessible)
3889      return true;
3890  }
3891
3892  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3893                                          BE = RD->vbases_end();
3894       BI != BE; ++BI) {
3895    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3896    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3897    assert(BaseDtor && "base has no destructor");
3898
3899    // -- any direct or virtual base class has a deleted destructor or
3900    //    a destructor that is inaccessible from the defaulted destructor
3901    if (BaseDtor->isDeleted())
3902      return true;
3903    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3904        AR_accessible)
3905      return true;
3906  }
3907
3908  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3909                                     FE = RD->field_end();
3910       FI != FE; ++FI) {
3911    QualType FieldType = Context.getBaseElementType(FI->getType());
3912    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3913    if (FieldRecord) {
3914      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3915         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3916                                            UE = FieldRecord->field_end();
3917              UI != UE; ++UI) {
3918           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3919           CXXRecordDecl *UnionFieldRecord =
3920             UnionFieldType->getAsCXXRecordDecl();
3921
3922           // -- X is a union-like class that has a variant member with a non-
3923           //    trivial destructor.
3924           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3925             return true;
3926         }
3927      // Technically we are supposed to do this next check unconditionally.
3928      // But that makes absolutely no sense.
3929      } else {
3930        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3931
3932        // -- any of the non-static data members has class type M (or array
3933        //    thereof) and M has a deleted destructor or a destructor that is
3934        //    inaccessible from the defaulted destructor
3935        if (FieldDtor->isDeleted())
3936          return true;
3937        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3938          AR_accessible)
3939        return true;
3940
3941        // -- X is a union-like class that has a variant member with a non-
3942        //    trivial destructor.
3943        if (Union && !FieldDtor->isTrivial())
3944          return true;
3945      }
3946    }
3947  }
3948
3949  if (DD->isVirtual()) {
3950    FunctionDecl *OperatorDelete = 0;
3951    DeclarationName Name =
3952      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3953    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3954          false))
3955      return true;
3956  }
3957
3958
3959  return false;
3960}
3961
3962/// \brief Data used with FindHiddenVirtualMethod
3963namespace {
3964  struct FindHiddenVirtualMethodData {
3965    Sema *S;
3966    CXXMethodDecl *Method;
3967    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3968    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3969  };
3970}
3971
3972/// \brief Member lookup function that determines whether a given C++
3973/// method overloads virtual methods in a base class without overriding any,
3974/// to be used with CXXRecordDecl::lookupInBases().
3975static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3976                                    CXXBasePath &Path,
3977                                    void *UserData) {
3978  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3979
3980  FindHiddenVirtualMethodData &Data
3981    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3982
3983  DeclarationName Name = Data.Method->getDeclName();
3984  assert(Name.getNameKind() == DeclarationName::Identifier);
3985
3986  bool foundSameNameMethod = false;
3987  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3988  for (Path.Decls = BaseRecord->lookup(Name);
3989       Path.Decls.first != Path.Decls.second;
3990       ++Path.Decls.first) {
3991    NamedDecl *D = *Path.Decls.first;
3992    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3993      MD = MD->getCanonicalDecl();
3994      foundSameNameMethod = true;
3995      // Interested only in hidden virtual methods.
3996      if (!MD->isVirtual())
3997        continue;
3998      // If the method we are checking overrides a method from its base
3999      // don't warn about the other overloaded methods.
4000      if (!Data.S->IsOverload(Data.Method, MD, false))
4001        return true;
4002      // Collect the overload only if its hidden.
4003      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4004        overloadedMethods.push_back(MD);
4005    }
4006  }
4007
4008  if (foundSameNameMethod)
4009    Data.OverloadedMethods.append(overloadedMethods.begin(),
4010                                   overloadedMethods.end());
4011  return foundSameNameMethod;
4012}
4013
4014/// \brief See if a method overloads virtual methods in a base class without
4015/// overriding any.
4016void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4017  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4018                               MD->getLocation()) == Diagnostic::Ignored)
4019    return;
4020  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4021    return;
4022
4023  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4024                     /*bool RecordPaths=*/false,
4025                     /*bool DetectVirtual=*/false);
4026  FindHiddenVirtualMethodData Data;
4027  Data.Method = MD;
4028  Data.S = this;
4029
4030  // Keep the base methods that were overriden or introduced in the subclass
4031  // by 'using' in a set. A base method not in this set is hidden.
4032  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4033       res.first != res.second; ++res.first) {
4034    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4035      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4036                                          E = MD->end_overridden_methods();
4037           I != E; ++I)
4038        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4039    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4040      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4041        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4042  }
4043
4044  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4045      !Data.OverloadedMethods.empty()) {
4046    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4047      << MD << (Data.OverloadedMethods.size() > 1);
4048
4049    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4050      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4051      Diag(overloadedMD->getLocation(),
4052           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4053    }
4054  }
4055}
4056
4057void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4058                                             Decl *TagDecl,
4059                                             SourceLocation LBrac,
4060                                             SourceLocation RBrac,
4061                                             AttributeList *AttrList) {
4062  if (!TagDecl)
4063    return;
4064
4065  AdjustDeclIfTemplate(TagDecl);
4066
4067  ActOnFields(S, RLoc, TagDecl,
4068              // strict aliasing violation!
4069              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4070              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4071
4072  CheckCompletedCXXClass(
4073                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4074}
4075
4076/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4077/// special functions, such as the default constructor, copy
4078/// constructor, or destructor, to the given C++ class (C++
4079/// [special]p1).  This routine can only be executed just before the
4080/// definition of the class is complete.
4081void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4082  if (!ClassDecl->hasUserDeclaredConstructor())
4083    ++ASTContext::NumImplicitDefaultConstructors;
4084
4085  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4086    ++ASTContext::NumImplicitCopyConstructors;
4087
4088  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4089    ++ASTContext::NumImplicitCopyAssignmentOperators;
4090
4091    // If we have a dynamic class, then the copy assignment operator may be
4092    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4093    // it shows up in the right place in the vtable and that we diagnose
4094    // problems with the implicit exception specification.
4095    if (ClassDecl->isDynamicClass())
4096      DeclareImplicitCopyAssignment(ClassDecl);
4097  }
4098
4099  if (!ClassDecl->hasUserDeclaredDestructor()) {
4100    ++ASTContext::NumImplicitDestructors;
4101
4102    // If we have a dynamic class, then the destructor may be virtual, so we
4103    // have to declare the destructor immediately. This ensures that, e.g., it
4104    // shows up in the right place in the vtable and that we diagnose problems
4105    // with the implicit exception specification.
4106    if (ClassDecl->isDynamicClass())
4107      DeclareImplicitDestructor(ClassDecl);
4108  }
4109}
4110
4111void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4112  if (!D)
4113    return;
4114
4115  int NumParamList = D->getNumTemplateParameterLists();
4116  for (int i = 0; i < NumParamList; i++) {
4117    TemplateParameterList* Params = D->getTemplateParameterList(i);
4118    for (TemplateParameterList::iterator Param = Params->begin(),
4119                                      ParamEnd = Params->end();
4120          Param != ParamEnd; ++Param) {
4121      NamedDecl *Named = cast<NamedDecl>(*Param);
4122      if (Named->getDeclName()) {
4123        S->AddDecl(Named);
4124        IdResolver.AddDecl(Named);
4125      }
4126    }
4127  }
4128}
4129
4130void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4131  if (!D)
4132    return;
4133
4134  TemplateParameterList *Params = 0;
4135  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4136    Params = Template->getTemplateParameters();
4137  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4138           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4139    Params = PartialSpec->getTemplateParameters();
4140  else
4141    return;
4142
4143  for (TemplateParameterList::iterator Param = Params->begin(),
4144                                    ParamEnd = Params->end();
4145       Param != ParamEnd; ++Param) {
4146    NamedDecl *Named = cast<NamedDecl>(*Param);
4147    if (Named->getDeclName()) {
4148      S->AddDecl(Named);
4149      IdResolver.AddDecl(Named);
4150    }
4151  }
4152}
4153
4154void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4155  if (!RecordD) return;
4156  AdjustDeclIfTemplate(RecordD);
4157  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4158  PushDeclContext(S, Record);
4159}
4160
4161void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4162  if (!RecordD) return;
4163  PopDeclContext();
4164}
4165
4166/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4167/// parsing a top-level (non-nested) C++ class, and we are now
4168/// parsing those parts of the given Method declaration that could
4169/// not be parsed earlier (C++ [class.mem]p2), such as default
4170/// arguments. This action should enter the scope of the given
4171/// Method declaration as if we had just parsed the qualified method
4172/// name. However, it should not bring the parameters into scope;
4173/// that will be performed by ActOnDelayedCXXMethodParameter.
4174void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4175}
4176
4177/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4178/// C++ method declaration. We're (re-)introducing the given
4179/// function parameter into scope for use in parsing later parts of
4180/// the method declaration. For example, we could see an
4181/// ActOnParamDefaultArgument event for this parameter.
4182void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4183  if (!ParamD)
4184    return;
4185
4186  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4187
4188  // If this parameter has an unparsed default argument, clear it out
4189  // to make way for the parsed default argument.
4190  if (Param->hasUnparsedDefaultArg())
4191    Param->setDefaultArg(0);
4192
4193  S->AddDecl(Param);
4194  if (Param->getDeclName())
4195    IdResolver.AddDecl(Param);
4196}
4197
4198/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4199/// processing the delayed method declaration for Method. The method
4200/// declaration is now considered finished. There may be a separate
4201/// ActOnStartOfFunctionDef action later (not necessarily
4202/// immediately!) for this method, if it was also defined inside the
4203/// class body.
4204void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4205  if (!MethodD)
4206    return;
4207
4208  AdjustDeclIfTemplate(MethodD);
4209
4210  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4211
4212  // Now that we have our default arguments, check the constructor
4213  // again. It could produce additional diagnostics or affect whether
4214  // the class has implicitly-declared destructors, among other
4215  // things.
4216  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4217    CheckConstructor(Constructor);
4218
4219  // Check the default arguments, which we may have added.
4220  if (!Method->isInvalidDecl())
4221    CheckCXXDefaultArguments(Method);
4222}
4223
4224/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4225/// the well-formedness of the constructor declarator @p D with type @p
4226/// R. If there are any errors in the declarator, this routine will
4227/// emit diagnostics and set the invalid bit to true.  In any case, the type
4228/// will be updated to reflect a well-formed type for the constructor and
4229/// returned.
4230QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4231                                          StorageClass &SC) {
4232  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4233
4234  // C++ [class.ctor]p3:
4235  //   A constructor shall not be virtual (10.3) or static (9.4). A
4236  //   constructor can be invoked for a const, volatile or const
4237  //   volatile object. A constructor shall not be declared const,
4238  //   volatile, or const volatile (9.3.2).
4239  if (isVirtual) {
4240    if (!D.isInvalidType())
4241      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4242        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4243        << SourceRange(D.getIdentifierLoc());
4244    D.setInvalidType();
4245  }
4246  if (SC == SC_Static) {
4247    if (!D.isInvalidType())
4248      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4249        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4250        << SourceRange(D.getIdentifierLoc());
4251    D.setInvalidType();
4252    SC = SC_None;
4253  }
4254
4255  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4256  if (FTI.TypeQuals != 0) {
4257    if (FTI.TypeQuals & Qualifiers::Const)
4258      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4259        << "const" << SourceRange(D.getIdentifierLoc());
4260    if (FTI.TypeQuals & Qualifiers::Volatile)
4261      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4262        << "volatile" << SourceRange(D.getIdentifierLoc());
4263    if (FTI.TypeQuals & Qualifiers::Restrict)
4264      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4265        << "restrict" << SourceRange(D.getIdentifierLoc());
4266    D.setInvalidType();
4267  }
4268
4269  // C++0x [class.ctor]p4:
4270  //   A constructor shall not be declared with a ref-qualifier.
4271  if (FTI.hasRefQualifier()) {
4272    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4273      << FTI.RefQualifierIsLValueRef
4274      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4275    D.setInvalidType();
4276  }
4277
4278  // Rebuild the function type "R" without any type qualifiers (in
4279  // case any of the errors above fired) and with "void" as the
4280  // return type, since constructors don't have return types.
4281  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4282  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4283    return R;
4284
4285  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4286  EPI.TypeQuals = 0;
4287  EPI.RefQualifier = RQ_None;
4288
4289  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4290                                 Proto->getNumArgs(), EPI);
4291}
4292
4293/// CheckConstructor - Checks a fully-formed constructor for
4294/// well-formedness, issuing any diagnostics required. Returns true if
4295/// the constructor declarator is invalid.
4296void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4297  CXXRecordDecl *ClassDecl
4298    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4299  if (!ClassDecl)
4300    return Constructor->setInvalidDecl();
4301
4302  // C++ [class.copy]p3:
4303  //   A declaration of a constructor for a class X is ill-formed if
4304  //   its first parameter is of type (optionally cv-qualified) X and
4305  //   either there are no other parameters or else all other
4306  //   parameters have default arguments.
4307  if (!Constructor->isInvalidDecl() &&
4308      ((Constructor->getNumParams() == 1) ||
4309       (Constructor->getNumParams() > 1 &&
4310        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4311      Constructor->getTemplateSpecializationKind()
4312                                              != TSK_ImplicitInstantiation) {
4313    QualType ParamType = Constructor->getParamDecl(0)->getType();
4314    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4315    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4316      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4317      const char *ConstRef
4318        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4319                                                        : " const &";
4320      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4321        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4322
4323      // FIXME: Rather that making the constructor invalid, we should endeavor
4324      // to fix the type.
4325      Constructor->setInvalidDecl();
4326    }
4327  }
4328}
4329
4330/// CheckDestructor - Checks a fully-formed destructor definition for
4331/// well-formedness, issuing any diagnostics required.  Returns true
4332/// on error.
4333bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4334  CXXRecordDecl *RD = Destructor->getParent();
4335
4336  if (Destructor->isVirtual()) {
4337    SourceLocation Loc;
4338
4339    if (!Destructor->isImplicit())
4340      Loc = Destructor->getLocation();
4341    else
4342      Loc = RD->getLocation();
4343
4344    // If we have a virtual destructor, look up the deallocation function
4345    FunctionDecl *OperatorDelete = 0;
4346    DeclarationName Name =
4347    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4348    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4349      return true;
4350
4351    MarkDeclarationReferenced(Loc, OperatorDelete);
4352
4353    Destructor->setOperatorDelete(OperatorDelete);
4354  }
4355
4356  return false;
4357}
4358
4359static inline bool
4360FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4361  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4362          FTI.ArgInfo[0].Param &&
4363          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4364}
4365
4366/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4367/// the well-formednes of the destructor declarator @p D with type @p
4368/// R. If there are any errors in the declarator, this routine will
4369/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4370/// will be updated to reflect a well-formed type for the destructor and
4371/// returned.
4372QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4373                                         StorageClass& SC) {
4374  // C++ [class.dtor]p1:
4375  //   [...] A typedef-name that names a class is a class-name
4376  //   (7.1.3); however, a typedef-name that names a class shall not
4377  //   be used as the identifier in the declarator for a destructor
4378  //   declaration.
4379  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4380  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4381    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4382      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4383  else if (const TemplateSpecializationType *TST =
4384             DeclaratorType->getAs<TemplateSpecializationType>())
4385    if (TST->isTypeAlias())
4386      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4387        << DeclaratorType << 1;
4388
4389  // C++ [class.dtor]p2:
4390  //   A destructor is used to destroy objects of its class type. A
4391  //   destructor takes no parameters, and no return type can be
4392  //   specified for it (not even void). The address of a destructor
4393  //   shall not be taken. A destructor shall not be static. A
4394  //   destructor can be invoked for a const, volatile or const
4395  //   volatile object. A destructor shall not be declared const,
4396  //   volatile or const volatile (9.3.2).
4397  if (SC == SC_Static) {
4398    if (!D.isInvalidType())
4399      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4400        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4401        << SourceRange(D.getIdentifierLoc())
4402        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4403
4404    SC = SC_None;
4405  }
4406  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4407    // Destructors don't have return types, but the parser will
4408    // happily parse something like:
4409    //
4410    //   class X {
4411    //     float ~X();
4412    //   };
4413    //
4414    // The return type will be eliminated later.
4415    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4416      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4417      << SourceRange(D.getIdentifierLoc());
4418  }
4419
4420  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4421  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4422    if (FTI.TypeQuals & Qualifiers::Const)
4423      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4424        << "const" << SourceRange(D.getIdentifierLoc());
4425    if (FTI.TypeQuals & Qualifiers::Volatile)
4426      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4427        << "volatile" << SourceRange(D.getIdentifierLoc());
4428    if (FTI.TypeQuals & Qualifiers::Restrict)
4429      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4430        << "restrict" << SourceRange(D.getIdentifierLoc());
4431    D.setInvalidType();
4432  }
4433
4434  // C++0x [class.dtor]p2:
4435  //   A destructor shall not be declared with a ref-qualifier.
4436  if (FTI.hasRefQualifier()) {
4437    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4438      << FTI.RefQualifierIsLValueRef
4439      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4440    D.setInvalidType();
4441  }
4442
4443  // Make sure we don't have any parameters.
4444  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4445    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4446
4447    // Delete the parameters.
4448    FTI.freeArgs();
4449    D.setInvalidType();
4450  }
4451
4452  // Make sure the destructor isn't variadic.
4453  if (FTI.isVariadic) {
4454    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4455    D.setInvalidType();
4456  }
4457
4458  // Rebuild the function type "R" without any type qualifiers or
4459  // parameters (in case any of the errors above fired) and with
4460  // "void" as the return type, since destructors don't have return
4461  // types.
4462  if (!D.isInvalidType())
4463    return R;
4464
4465  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4466  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4467  EPI.Variadic = false;
4468  EPI.TypeQuals = 0;
4469  EPI.RefQualifier = RQ_None;
4470  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4471}
4472
4473/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4474/// well-formednes of the conversion function declarator @p D with
4475/// type @p R. If there are any errors in the declarator, this routine
4476/// will emit diagnostics and return true. Otherwise, it will return
4477/// false. Either way, the type @p R will be updated to reflect a
4478/// well-formed type for the conversion operator.
4479void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4480                                     StorageClass& SC) {
4481  // C++ [class.conv.fct]p1:
4482  //   Neither parameter types nor return type can be specified. The
4483  //   type of a conversion function (8.3.5) is "function taking no
4484  //   parameter returning conversion-type-id."
4485  if (SC == SC_Static) {
4486    if (!D.isInvalidType())
4487      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4488        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4489        << SourceRange(D.getIdentifierLoc());
4490    D.setInvalidType();
4491    SC = SC_None;
4492  }
4493
4494  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4495
4496  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4497    // Conversion functions don't have return types, but the parser will
4498    // happily parse something like:
4499    //
4500    //   class X {
4501    //     float operator bool();
4502    //   };
4503    //
4504    // The return type will be changed later anyway.
4505    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4506      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4507      << SourceRange(D.getIdentifierLoc());
4508    D.setInvalidType();
4509  }
4510
4511  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4512
4513  // Make sure we don't have any parameters.
4514  if (Proto->getNumArgs() > 0) {
4515    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4516
4517    // Delete the parameters.
4518    D.getFunctionTypeInfo().freeArgs();
4519    D.setInvalidType();
4520  } else if (Proto->isVariadic()) {
4521    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4522    D.setInvalidType();
4523  }
4524
4525  // Diagnose "&operator bool()" and other such nonsense.  This
4526  // is actually a gcc extension which we don't support.
4527  if (Proto->getResultType() != ConvType) {
4528    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4529      << Proto->getResultType();
4530    D.setInvalidType();
4531    ConvType = Proto->getResultType();
4532  }
4533
4534  // C++ [class.conv.fct]p4:
4535  //   The conversion-type-id shall not represent a function type nor
4536  //   an array type.
4537  if (ConvType->isArrayType()) {
4538    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4539    ConvType = Context.getPointerType(ConvType);
4540    D.setInvalidType();
4541  } else if (ConvType->isFunctionType()) {
4542    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4543    ConvType = Context.getPointerType(ConvType);
4544    D.setInvalidType();
4545  }
4546
4547  // Rebuild the function type "R" without any parameters (in case any
4548  // of the errors above fired) and with the conversion type as the
4549  // return type.
4550  if (D.isInvalidType())
4551    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4552
4553  // C++0x explicit conversion operators.
4554  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4555    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4556         diag::warn_explicit_conversion_functions)
4557      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4558}
4559
4560/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4561/// the declaration of the given C++ conversion function. This routine
4562/// is responsible for recording the conversion function in the C++
4563/// class, if possible.
4564Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4565  assert(Conversion && "Expected to receive a conversion function declaration");
4566
4567  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4568
4569  // Make sure we aren't redeclaring the conversion function.
4570  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4571
4572  // C++ [class.conv.fct]p1:
4573  //   [...] A conversion function is never used to convert a
4574  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4575  //   same object type (or a reference to it), to a (possibly
4576  //   cv-qualified) base class of that type (or a reference to it),
4577  //   or to (possibly cv-qualified) void.
4578  // FIXME: Suppress this warning if the conversion function ends up being a
4579  // virtual function that overrides a virtual function in a base class.
4580  QualType ClassType
4581    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4582  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4583    ConvType = ConvTypeRef->getPointeeType();
4584  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4585      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4586    /* Suppress diagnostics for instantiations. */;
4587  else if (ConvType->isRecordType()) {
4588    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4589    if (ConvType == ClassType)
4590      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4591        << ClassType;
4592    else if (IsDerivedFrom(ClassType, ConvType))
4593      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4594        <<  ClassType << ConvType;
4595  } else if (ConvType->isVoidType()) {
4596    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4597      << ClassType << ConvType;
4598  }
4599
4600  if (FunctionTemplateDecl *ConversionTemplate
4601                                = Conversion->getDescribedFunctionTemplate())
4602    return ConversionTemplate;
4603
4604  return Conversion;
4605}
4606
4607//===----------------------------------------------------------------------===//
4608// Namespace Handling
4609//===----------------------------------------------------------------------===//
4610
4611
4612
4613/// ActOnStartNamespaceDef - This is called at the start of a namespace
4614/// definition.
4615Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4616                                   SourceLocation InlineLoc,
4617                                   SourceLocation NamespaceLoc,
4618                                   SourceLocation IdentLoc,
4619                                   IdentifierInfo *II,
4620                                   SourceLocation LBrace,
4621                                   AttributeList *AttrList) {
4622  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4623  // For anonymous namespace, take the location of the left brace.
4624  SourceLocation Loc = II ? IdentLoc : LBrace;
4625  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4626                                                 StartLoc, Loc, II);
4627  Namespc->setInline(InlineLoc.isValid());
4628
4629  Scope *DeclRegionScope = NamespcScope->getParent();
4630
4631  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4632
4633  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4634    PushNamespaceVisibilityAttr(Attr);
4635
4636  if (II) {
4637    // C++ [namespace.def]p2:
4638    //   The identifier in an original-namespace-definition shall not
4639    //   have been previously defined in the declarative region in
4640    //   which the original-namespace-definition appears. The
4641    //   identifier in an original-namespace-definition is the name of
4642    //   the namespace. Subsequently in that declarative region, it is
4643    //   treated as an original-namespace-name.
4644    //
4645    // Since namespace names are unique in their scope, and we don't
4646    // look through using directives, just look for any ordinary names.
4647
4648    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4649      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4650      Decl::IDNS_Namespace;
4651    NamedDecl *PrevDecl = 0;
4652    for (DeclContext::lookup_result R
4653            = CurContext->getRedeclContext()->lookup(II);
4654         R.first != R.second; ++R.first) {
4655      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4656        PrevDecl = *R.first;
4657        break;
4658      }
4659    }
4660
4661    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4662      // This is an extended namespace definition.
4663      if (Namespc->isInline() != OrigNS->isInline()) {
4664        // inline-ness must match
4665        if (OrigNS->isInline()) {
4666          // The user probably just forgot the 'inline', so suggest that it
4667          // be added back.
4668          Diag(Namespc->getLocation(),
4669               diag::warn_inline_namespace_reopened_noninline)
4670            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4671        } else {
4672          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4673            << Namespc->isInline();
4674        }
4675        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4676
4677        // Recover by ignoring the new namespace's inline status.
4678        Namespc->setInline(OrigNS->isInline());
4679      }
4680
4681      // Attach this namespace decl to the chain of extended namespace
4682      // definitions.
4683      OrigNS->setNextNamespace(Namespc);
4684      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4685
4686      // Remove the previous declaration from the scope.
4687      if (DeclRegionScope->isDeclScope(OrigNS)) {
4688        IdResolver.RemoveDecl(OrigNS);
4689        DeclRegionScope->RemoveDecl(OrigNS);
4690      }
4691    } else if (PrevDecl) {
4692      // This is an invalid name redefinition.
4693      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4694       << Namespc->getDeclName();
4695      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4696      Namespc->setInvalidDecl();
4697      // Continue on to push Namespc as current DeclContext and return it.
4698    } else if (II->isStr("std") &&
4699               CurContext->getRedeclContext()->isTranslationUnit()) {
4700      // This is the first "real" definition of the namespace "std", so update
4701      // our cache of the "std" namespace to point at this definition.
4702      if (NamespaceDecl *StdNS = getStdNamespace()) {
4703        // We had already defined a dummy namespace "std". Link this new
4704        // namespace definition to the dummy namespace "std".
4705        StdNS->setNextNamespace(Namespc);
4706        StdNS->setLocation(IdentLoc);
4707        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4708      }
4709
4710      // Make our StdNamespace cache point at the first real definition of the
4711      // "std" namespace.
4712      StdNamespace = Namespc;
4713    }
4714
4715    PushOnScopeChains(Namespc, DeclRegionScope);
4716  } else {
4717    // Anonymous namespaces.
4718    assert(Namespc->isAnonymousNamespace());
4719
4720    // Link the anonymous namespace into its parent.
4721    NamespaceDecl *PrevDecl;
4722    DeclContext *Parent = CurContext->getRedeclContext();
4723    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4724      PrevDecl = TU->getAnonymousNamespace();
4725      TU->setAnonymousNamespace(Namespc);
4726    } else {
4727      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4728      PrevDecl = ND->getAnonymousNamespace();
4729      ND->setAnonymousNamespace(Namespc);
4730    }
4731
4732    // Link the anonymous namespace with its previous declaration.
4733    if (PrevDecl) {
4734      assert(PrevDecl->isAnonymousNamespace());
4735      assert(!PrevDecl->getNextNamespace());
4736      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4737      PrevDecl->setNextNamespace(Namespc);
4738
4739      if (Namespc->isInline() != PrevDecl->isInline()) {
4740        // inline-ness must match
4741        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4742          << Namespc->isInline();
4743        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4744        Namespc->setInvalidDecl();
4745        // Recover by ignoring the new namespace's inline status.
4746        Namespc->setInline(PrevDecl->isInline());
4747      }
4748    }
4749
4750    CurContext->addDecl(Namespc);
4751
4752    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4753    //   behaves as if it were replaced by
4754    //     namespace unique { /* empty body */ }
4755    //     using namespace unique;
4756    //     namespace unique { namespace-body }
4757    //   where all occurrences of 'unique' in a translation unit are
4758    //   replaced by the same identifier and this identifier differs
4759    //   from all other identifiers in the entire program.
4760
4761    // We just create the namespace with an empty name and then add an
4762    // implicit using declaration, just like the standard suggests.
4763    //
4764    // CodeGen enforces the "universally unique" aspect by giving all
4765    // declarations semantically contained within an anonymous
4766    // namespace internal linkage.
4767
4768    if (!PrevDecl) {
4769      UsingDirectiveDecl* UD
4770        = UsingDirectiveDecl::Create(Context, CurContext,
4771                                     /* 'using' */ LBrace,
4772                                     /* 'namespace' */ SourceLocation(),
4773                                     /* qualifier */ NestedNameSpecifierLoc(),
4774                                     /* identifier */ SourceLocation(),
4775                                     Namespc,
4776                                     /* Ancestor */ CurContext);
4777      UD->setImplicit();
4778      CurContext->addDecl(UD);
4779    }
4780  }
4781
4782  // Although we could have an invalid decl (i.e. the namespace name is a
4783  // redefinition), push it as current DeclContext and try to continue parsing.
4784  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4785  // for the namespace has the declarations that showed up in that particular
4786  // namespace definition.
4787  PushDeclContext(NamespcScope, Namespc);
4788  return Namespc;
4789}
4790
4791/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4792/// is a namespace alias, returns the namespace it points to.
4793static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4794  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4795    return AD->getNamespace();
4796  return dyn_cast_or_null<NamespaceDecl>(D);
4797}
4798
4799/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4800/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4801void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4802  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4803  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4804  Namespc->setRBraceLoc(RBrace);
4805  PopDeclContext();
4806  if (Namespc->hasAttr<VisibilityAttr>())
4807    PopPragmaVisibility();
4808}
4809
4810CXXRecordDecl *Sema::getStdBadAlloc() const {
4811  return cast_or_null<CXXRecordDecl>(
4812                                  StdBadAlloc.get(Context.getExternalSource()));
4813}
4814
4815NamespaceDecl *Sema::getStdNamespace() const {
4816  return cast_or_null<NamespaceDecl>(
4817                                 StdNamespace.get(Context.getExternalSource()));
4818}
4819
4820/// \brief Retrieve the special "std" namespace, which may require us to
4821/// implicitly define the namespace.
4822NamespaceDecl *Sema::getOrCreateStdNamespace() {
4823  if (!StdNamespace) {
4824    // The "std" namespace has not yet been defined, so build one implicitly.
4825    StdNamespace = NamespaceDecl::Create(Context,
4826                                         Context.getTranslationUnitDecl(),
4827                                         SourceLocation(), SourceLocation(),
4828                                         &PP.getIdentifierTable().get("std"));
4829    getStdNamespace()->setImplicit(true);
4830  }
4831
4832  return getStdNamespace();
4833}
4834
4835/// \brief Determine whether a using statement is in a context where it will be
4836/// apply in all contexts.
4837static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4838  switch (CurContext->getDeclKind()) {
4839    case Decl::TranslationUnit:
4840      return true;
4841    case Decl::LinkageSpec:
4842      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4843    default:
4844      return false;
4845  }
4846}
4847
4848Decl *Sema::ActOnUsingDirective(Scope *S,
4849                                          SourceLocation UsingLoc,
4850                                          SourceLocation NamespcLoc,
4851                                          CXXScopeSpec &SS,
4852                                          SourceLocation IdentLoc,
4853                                          IdentifierInfo *NamespcName,
4854                                          AttributeList *AttrList) {
4855  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4856  assert(NamespcName && "Invalid NamespcName.");
4857  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4858
4859  // This can only happen along a recovery path.
4860  while (S->getFlags() & Scope::TemplateParamScope)
4861    S = S->getParent();
4862  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4863
4864  UsingDirectiveDecl *UDir = 0;
4865  NestedNameSpecifier *Qualifier = 0;
4866  if (SS.isSet())
4867    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4868
4869  // Lookup namespace name.
4870  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4871  LookupParsedName(R, S, &SS);
4872  if (R.isAmbiguous())
4873    return 0;
4874
4875  if (R.empty()) {
4876    // Allow "using namespace std;" or "using namespace ::std;" even if
4877    // "std" hasn't been defined yet, for GCC compatibility.
4878    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4879        NamespcName->isStr("std")) {
4880      Diag(IdentLoc, diag::ext_using_undefined_std);
4881      R.addDecl(getOrCreateStdNamespace());
4882      R.resolveKind();
4883    }
4884    // Otherwise, attempt typo correction.
4885    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4886                                                       CTC_NoKeywords, 0)) {
4887      if (R.getAsSingle<NamespaceDecl>() ||
4888          R.getAsSingle<NamespaceAliasDecl>()) {
4889        if (DeclContext *DC = computeDeclContext(SS, false))
4890          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4891            << NamespcName << DC << Corrected << SS.getRange()
4892            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4893        else
4894          Diag(IdentLoc, diag::err_using_directive_suggest)
4895            << NamespcName << Corrected
4896            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4897        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4898          << Corrected;
4899
4900        NamespcName = Corrected.getAsIdentifierInfo();
4901      } else {
4902        R.clear();
4903        R.setLookupName(NamespcName);
4904      }
4905    }
4906  }
4907
4908  if (!R.empty()) {
4909    NamedDecl *Named = R.getFoundDecl();
4910    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4911        && "expected namespace decl");
4912    // C++ [namespace.udir]p1:
4913    //   A using-directive specifies that the names in the nominated
4914    //   namespace can be used in the scope in which the
4915    //   using-directive appears after the using-directive. During
4916    //   unqualified name lookup (3.4.1), the names appear as if they
4917    //   were declared in the nearest enclosing namespace which
4918    //   contains both the using-directive and the nominated
4919    //   namespace. [Note: in this context, "contains" means "contains
4920    //   directly or indirectly". ]
4921
4922    // Find enclosing context containing both using-directive and
4923    // nominated namespace.
4924    NamespaceDecl *NS = getNamespaceDecl(Named);
4925    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4926    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4927      CommonAncestor = CommonAncestor->getParent();
4928
4929    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4930                                      SS.getWithLocInContext(Context),
4931                                      IdentLoc, Named, CommonAncestor);
4932
4933    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4934        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4935      Diag(IdentLoc, diag::warn_using_directive_in_header);
4936    }
4937
4938    PushUsingDirective(S, UDir);
4939  } else {
4940    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4941  }
4942
4943  // FIXME: We ignore attributes for now.
4944  return UDir;
4945}
4946
4947void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4948  // If scope has associated entity, then using directive is at namespace
4949  // or translation unit scope. We add UsingDirectiveDecls, into
4950  // it's lookup structure.
4951  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4952    Ctx->addDecl(UDir);
4953  else
4954    // Otherwise it is block-sope. using-directives will affect lookup
4955    // only to the end of scope.
4956    S->PushUsingDirective(UDir);
4957}
4958
4959
4960Decl *Sema::ActOnUsingDeclaration(Scope *S,
4961                                  AccessSpecifier AS,
4962                                  bool HasUsingKeyword,
4963                                  SourceLocation UsingLoc,
4964                                  CXXScopeSpec &SS,
4965                                  UnqualifiedId &Name,
4966                                  AttributeList *AttrList,
4967                                  bool IsTypeName,
4968                                  SourceLocation TypenameLoc) {
4969  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4970
4971  switch (Name.getKind()) {
4972  case UnqualifiedId::IK_Identifier:
4973  case UnqualifiedId::IK_OperatorFunctionId:
4974  case UnqualifiedId::IK_LiteralOperatorId:
4975  case UnqualifiedId::IK_ConversionFunctionId:
4976    break;
4977
4978  case UnqualifiedId::IK_ConstructorName:
4979  case UnqualifiedId::IK_ConstructorTemplateId:
4980    // C++0x inherited constructors.
4981    if (getLangOptions().CPlusPlus0x) break;
4982
4983    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
4984      << SS.getRange();
4985    return 0;
4986
4987  case UnqualifiedId::IK_DestructorName:
4988    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
4989      << SS.getRange();
4990    return 0;
4991
4992  case UnqualifiedId::IK_TemplateId:
4993    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
4994      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
4995    return 0;
4996  }
4997
4998  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4999  DeclarationName TargetName = TargetNameInfo.getName();
5000  if (!TargetName)
5001    return 0;
5002
5003  // Warn about using declarations.
5004  // TODO: store that the declaration was written without 'using' and
5005  // talk about access decls instead of using decls in the
5006  // diagnostics.
5007  if (!HasUsingKeyword) {
5008    UsingLoc = Name.getSourceRange().getBegin();
5009
5010    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5011      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5012  }
5013
5014  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5015      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5016    return 0;
5017
5018  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5019                                        TargetNameInfo, AttrList,
5020                                        /* IsInstantiation */ false,
5021                                        IsTypeName, TypenameLoc);
5022  if (UD)
5023    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5024
5025  return UD;
5026}
5027
5028/// \brief Determine whether a using declaration considers the given
5029/// declarations as "equivalent", e.g., if they are redeclarations of
5030/// the same entity or are both typedefs of the same type.
5031static bool
5032IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5033                         bool &SuppressRedeclaration) {
5034  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5035    SuppressRedeclaration = false;
5036    return true;
5037  }
5038
5039  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5040    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5041      SuppressRedeclaration = true;
5042      return Context.hasSameType(TD1->getUnderlyingType(),
5043                                 TD2->getUnderlyingType());
5044    }
5045
5046  return false;
5047}
5048
5049
5050/// Determines whether to create a using shadow decl for a particular
5051/// decl, given the set of decls existing prior to this using lookup.
5052bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5053                                const LookupResult &Previous) {
5054  // Diagnose finding a decl which is not from a base class of the
5055  // current class.  We do this now because there are cases where this
5056  // function will silently decide not to build a shadow decl, which
5057  // will pre-empt further diagnostics.
5058  //
5059  // We don't need to do this in C++0x because we do the check once on
5060  // the qualifier.
5061  //
5062  // FIXME: diagnose the following if we care enough:
5063  //   struct A { int foo; };
5064  //   struct B : A { using A::foo; };
5065  //   template <class T> struct C : A {};
5066  //   template <class T> struct D : C<T> { using B::foo; } // <---
5067  // This is invalid (during instantiation) in C++03 because B::foo
5068  // resolves to the using decl in B, which is not a base class of D<T>.
5069  // We can't diagnose it immediately because C<T> is an unknown
5070  // specialization.  The UsingShadowDecl in D<T> then points directly
5071  // to A::foo, which will look well-formed when we instantiate.
5072  // The right solution is to not collapse the shadow-decl chain.
5073  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5074    DeclContext *OrigDC = Orig->getDeclContext();
5075
5076    // Handle enums and anonymous structs.
5077    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5078    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5079    while (OrigRec->isAnonymousStructOrUnion())
5080      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5081
5082    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5083      if (OrigDC == CurContext) {
5084        Diag(Using->getLocation(),
5085             diag::err_using_decl_nested_name_specifier_is_current_class)
5086          << Using->getQualifierLoc().getSourceRange();
5087        Diag(Orig->getLocation(), diag::note_using_decl_target);
5088        return true;
5089      }
5090
5091      Diag(Using->getQualifierLoc().getBeginLoc(),
5092           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5093        << Using->getQualifier()
5094        << cast<CXXRecordDecl>(CurContext)
5095        << Using->getQualifierLoc().getSourceRange();
5096      Diag(Orig->getLocation(), diag::note_using_decl_target);
5097      return true;
5098    }
5099  }
5100
5101  if (Previous.empty()) return false;
5102
5103  NamedDecl *Target = Orig;
5104  if (isa<UsingShadowDecl>(Target))
5105    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5106
5107  // If the target happens to be one of the previous declarations, we
5108  // don't have a conflict.
5109  //
5110  // FIXME: but we might be increasing its access, in which case we
5111  // should redeclare it.
5112  NamedDecl *NonTag = 0, *Tag = 0;
5113  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5114         I != E; ++I) {
5115    NamedDecl *D = (*I)->getUnderlyingDecl();
5116    bool Result;
5117    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5118      return Result;
5119
5120    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5121  }
5122
5123  if (Target->isFunctionOrFunctionTemplate()) {
5124    FunctionDecl *FD;
5125    if (isa<FunctionTemplateDecl>(Target))
5126      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5127    else
5128      FD = cast<FunctionDecl>(Target);
5129
5130    NamedDecl *OldDecl = 0;
5131    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5132    case Ovl_Overload:
5133      return false;
5134
5135    case Ovl_NonFunction:
5136      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5137      break;
5138
5139    // We found a decl with the exact signature.
5140    case Ovl_Match:
5141      // If we're in a record, we want to hide the target, so we
5142      // return true (without a diagnostic) to tell the caller not to
5143      // build a shadow decl.
5144      if (CurContext->isRecord())
5145        return true;
5146
5147      // If we're not in a record, this is an error.
5148      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5149      break;
5150    }
5151
5152    Diag(Target->getLocation(), diag::note_using_decl_target);
5153    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5154    return true;
5155  }
5156
5157  // Target is not a function.
5158
5159  if (isa<TagDecl>(Target)) {
5160    // No conflict between a tag and a non-tag.
5161    if (!Tag) return false;
5162
5163    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5164    Diag(Target->getLocation(), diag::note_using_decl_target);
5165    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5166    return true;
5167  }
5168
5169  // No conflict between a tag and a non-tag.
5170  if (!NonTag) return false;
5171
5172  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5173  Diag(Target->getLocation(), diag::note_using_decl_target);
5174  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5175  return true;
5176}
5177
5178/// Builds a shadow declaration corresponding to a 'using' declaration.
5179UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5180                                            UsingDecl *UD,
5181                                            NamedDecl *Orig) {
5182
5183  // If we resolved to another shadow declaration, just coalesce them.
5184  NamedDecl *Target = Orig;
5185  if (isa<UsingShadowDecl>(Target)) {
5186    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5187    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5188  }
5189
5190  UsingShadowDecl *Shadow
5191    = UsingShadowDecl::Create(Context, CurContext,
5192                              UD->getLocation(), UD, Target);
5193  UD->addShadowDecl(Shadow);
5194
5195  Shadow->setAccess(UD->getAccess());
5196  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5197    Shadow->setInvalidDecl();
5198
5199  if (S)
5200    PushOnScopeChains(Shadow, S);
5201  else
5202    CurContext->addDecl(Shadow);
5203
5204
5205  return Shadow;
5206}
5207
5208/// Hides a using shadow declaration.  This is required by the current
5209/// using-decl implementation when a resolvable using declaration in a
5210/// class is followed by a declaration which would hide or override
5211/// one or more of the using decl's targets; for example:
5212///
5213///   struct Base { void foo(int); };
5214///   struct Derived : Base {
5215///     using Base::foo;
5216///     void foo(int);
5217///   };
5218///
5219/// The governing language is C++03 [namespace.udecl]p12:
5220///
5221///   When a using-declaration brings names from a base class into a
5222///   derived class scope, member functions in the derived class
5223///   override and/or hide member functions with the same name and
5224///   parameter types in a base class (rather than conflicting).
5225///
5226/// There are two ways to implement this:
5227///   (1) optimistically create shadow decls when they're not hidden
5228///       by existing declarations, or
5229///   (2) don't create any shadow decls (or at least don't make them
5230///       visible) until we've fully parsed/instantiated the class.
5231/// The problem with (1) is that we might have to retroactively remove
5232/// a shadow decl, which requires several O(n) operations because the
5233/// decl structures are (very reasonably) not designed for removal.
5234/// (2) avoids this but is very fiddly and phase-dependent.
5235void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5236  if (Shadow->getDeclName().getNameKind() ==
5237        DeclarationName::CXXConversionFunctionName)
5238    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5239
5240  // Remove it from the DeclContext...
5241  Shadow->getDeclContext()->removeDecl(Shadow);
5242
5243  // ...and the scope, if applicable...
5244  if (S) {
5245    S->RemoveDecl(Shadow);
5246    IdResolver.RemoveDecl(Shadow);
5247  }
5248
5249  // ...and the using decl.
5250  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5251
5252  // TODO: complain somehow if Shadow was used.  It shouldn't
5253  // be possible for this to happen, because...?
5254}
5255
5256/// Builds a using declaration.
5257///
5258/// \param IsInstantiation - Whether this call arises from an
5259///   instantiation of an unresolved using declaration.  We treat
5260///   the lookup differently for these declarations.
5261NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5262                                       SourceLocation UsingLoc,
5263                                       CXXScopeSpec &SS,
5264                                       const DeclarationNameInfo &NameInfo,
5265                                       AttributeList *AttrList,
5266                                       bool IsInstantiation,
5267                                       bool IsTypeName,
5268                                       SourceLocation TypenameLoc) {
5269  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5270  SourceLocation IdentLoc = NameInfo.getLoc();
5271  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5272
5273  // FIXME: We ignore attributes for now.
5274
5275  if (SS.isEmpty()) {
5276    Diag(IdentLoc, diag::err_using_requires_qualname);
5277    return 0;
5278  }
5279
5280  // Do the redeclaration lookup in the current scope.
5281  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5282                        ForRedeclaration);
5283  Previous.setHideTags(false);
5284  if (S) {
5285    LookupName(Previous, S);
5286
5287    // It is really dumb that we have to do this.
5288    LookupResult::Filter F = Previous.makeFilter();
5289    while (F.hasNext()) {
5290      NamedDecl *D = F.next();
5291      if (!isDeclInScope(D, CurContext, S))
5292        F.erase();
5293    }
5294    F.done();
5295  } else {
5296    assert(IsInstantiation && "no scope in non-instantiation");
5297    assert(CurContext->isRecord() && "scope not record in instantiation");
5298    LookupQualifiedName(Previous, CurContext);
5299  }
5300
5301  // Check for invalid redeclarations.
5302  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5303    return 0;
5304
5305  // Check for bad qualifiers.
5306  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5307    return 0;
5308
5309  DeclContext *LookupContext = computeDeclContext(SS);
5310  NamedDecl *D;
5311  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5312  if (!LookupContext) {
5313    if (IsTypeName) {
5314      // FIXME: not all declaration name kinds are legal here
5315      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5316                                              UsingLoc, TypenameLoc,
5317                                              QualifierLoc,
5318                                              IdentLoc, NameInfo.getName());
5319    } else {
5320      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5321                                           QualifierLoc, NameInfo);
5322    }
5323  } else {
5324    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5325                          NameInfo, IsTypeName);
5326  }
5327  D->setAccess(AS);
5328  CurContext->addDecl(D);
5329
5330  if (!LookupContext) return D;
5331  UsingDecl *UD = cast<UsingDecl>(D);
5332
5333  if (RequireCompleteDeclContext(SS, LookupContext)) {
5334    UD->setInvalidDecl();
5335    return UD;
5336  }
5337
5338  // Constructor inheriting using decls get special treatment.
5339  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5340    if (CheckInheritedConstructorUsingDecl(UD))
5341      UD->setInvalidDecl();
5342    return UD;
5343  }
5344
5345  // Otherwise, look up the target name.
5346
5347  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5348
5349  // Unlike most lookups, we don't always want to hide tag
5350  // declarations: tag names are visible through the using declaration
5351  // even if hidden by ordinary names, *except* in a dependent context
5352  // where it's important for the sanity of two-phase lookup.
5353  if (!IsInstantiation)
5354    R.setHideTags(false);
5355
5356  LookupQualifiedName(R, LookupContext);
5357
5358  if (R.empty()) {
5359    Diag(IdentLoc, diag::err_no_member)
5360      << NameInfo.getName() << LookupContext << SS.getRange();
5361    UD->setInvalidDecl();
5362    return UD;
5363  }
5364
5365  if (R.isAmbiguous()) {
5366    UD->setInvalidDecl();
5367    return UD;
5368  }
5369
5370  if (IsTypeName) {
5371    // If we asked for a typename and got a non-type decl, error out.
5372    if (!R.getAsSingle<TypeDecl>()) {
5373      Diag(IdentLoc, diag::err_using_typename_non_type);
5374      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5375        Diag((*I)->getUnderlyingDecl()->getLocation(),
5376             diag::note_using_decl_target);
5377      UD->setInvalidDecl();
5378      return UD;
5379    }
5380  } else {
5381    // If we asked for a non-typename and we got a type, error out,
5382    // but only if this is an instantiation of an unresolved using
5383    // decl.  Otherwise just silently find the type name.
5384    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5385      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5386      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5387      UD->setInvalidDecl();
5388      return UD;
5389    }
5390  }
5391
5392  // C++0x N2914 [namespace.udecl]p6:
5393  // A using-declaration shall not name a namespace.
5394  if (R.getAsSingle<NamespaceDecl>()) {
5395    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5396      << SS.getRange();
5397    UD->setInvalidDecl();
5398    return UD;
5399  }
5400
5401  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5402    if (!CheckUsingShadowDecl(UD, *I, Previous))
5403      BuildUsingShadowDecl(S, UD, *I);
5404  }
5405
5406  return UD;
5407}
5408
5409/// Additional checks for a using declaration referring to a constructor name.
5410bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5411  if (UD->isTypeName()) {
5412    // FIXME: Cannot specify typename when specifying constructor
5413    return true;
5414  }
5415
5416  const Type *SourceType = UD->getQualifier()->getAsType();
5417  assert(SourceType &&
5418         "Using decl naming constructor doesn't have type in scope spec.");
5419  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5420
5421  // Check whether the named type is a direct base class.
5422  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5423  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5424  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5425       BaseIt != BaseE; ++BaseIt) {
5426    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5427    if (CanonicalSourceType == BaseType)
5428      break;
5429  }
5430
5431  if (BaseIt == BaseE) {
5432    // Did not find SourceType in the bases.
5433    Diag(UD->getUsingLocation(),
5434         diag::err_using_decl_constructor_not_in_direct_base)
5435      << UD->getNameInfo().getSourceRange()
5436      << QualType(SourceType, 0) << TargetClass;
5437    return true;
5438  }
5439
5440  BaseIt->setInheritConstructors();
5441
5442  return false;
5443}
5444
5445/// Checks that the given using declaration is not an invalid
5446/// redeclaration.  Note that this is checking only for the using decl
5447/// itself, not for any ill-formedness among the UsingShadowDecls.
5448bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5449                                       bool isTypeName,
5450                                       const CXXScopeSpec &SS,
5451                                       SourceLocation NameLoc,
5452                                       const LookupResult &Prev) {
5453  // C++03 [namespace.udecl]p8:
5454  // C++0x [namespace.udecl]p10:
5455  //   A using-declaration is a declaration and can therefore be used
5456  //   repeatedly where (and only where) multiple declarations are
5457  //   allowed.
5458  //
5459  // That's in non-member contexts.
5460  if (!CurContext->getRedeclContext()->isRecord())
5461    return false;
5462
5463  NestedNameSpecifier *Qual
5464    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5465
5466  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5467    NamedDecl *D = *I;
5468
5469    bool DTypename;
5470    NestedNameSpecifier *DQual;
5471    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5472      DTypename = UD->isTypeName();
5473      DQual = UD->getQualifier();
5474    } else if (UnresolvedUsingValueDecl *UD
5475                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5476      DTypename = false;
5477      DQual = UD->getQualifier();
5478    } else if (UnresolvedUsingTypenameDecl *UD
5479                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5480      DTypename = true;
5481      DQual = UD->getQualifier();
5482    } else continue;
5483
5484    // using decls differ if one says 'typename' and the other doesn't.
5485    // FIXME: non-dependent using decls?
5486    if (isTypeName != DTypename) continue;
5487
5488    // using decls differ if they name different scopes (but note that
5489    // template instantiation can cause this check to trigger when it
5490    // didn't before instantiation).
5491    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5492        Context.getCanonicalNestedNameSpecifier(DQual))
5493      continue;
5494
5495    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5496    Diag(D->getLocation(), diag::note_using_decl) << 1;
5497    return true;
5498  }
5499
5500  return false;
5501}
5502
5503
5504/// Checks that the given nested-name qualifier used in a using decl
5505/// in the current context is appropriately related to the current
5506/// scope.  If an error is found, diagnoses it and returns true.
5507bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5508                                   const CXXScopeSpec &SS,
5509                                   SourceLocation NameLoc) {
5510  DeclContext *NamedContext = computeDeclContext(SS);
5511
5512  if (!CurContext->isRecord()) {
5513    // C++03 [namespace.udecl]p3:
5514    // C++0x [namespace.udecl]p8:
5515    //   A using-declaration for a class member shall be a member-declaration.
5516
5517    // If we weren't able to compute a valid scope, it must be a
5518    // dependent class scope.
5519    if (!NamedContext || NamedContext->isRecord()) {
5520      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5521        << SS.getRange();
5522      return true;
5523    }
5524
5525    // Otherwise, everything is known to be fine.
5526    return false;
5527  }
5528
5529  // The current scope is a record.
5530
5531  // If the named context is dependent, we can't decide much.
5532  if (!NamedContext) {
5533    // FIXME: in C++0x, we can diagnose if we can prove that the
5534    // nested-name-specifier does not refer to a base class, which is
5535    // still possible in some cases.
5536
5537    // Otherwise we have to conservatively report that things might be
5538    // okay.
5539    return false;
5540  }
5541
5542  if (!NamedContext->isRecord()) {
5543    // Ideally this would point at the last name in the specifier,
5544    // but we don't have that level of source info.
5545    Diag(SS.getRange().getBegin(),
5546         diag::err_using_decl_nested_name_specifier_is_not_class)
5547      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5548    return true;
5549  }
5550
5551  if (!NamedContext->isDependentContext() &&
5552      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5553    return true;
5554
5555  if (getLangOptions().CPlusPlus0x) {
5556    // C++0x [namespace.udecl]p3:
5557    //   In a using-declaration used as a member-declaration, the
5558    //   nested-name-specifier shall name a base class of the class
5559    //   being defined.
5560
5561    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5562                                 cast<CXXRecordDecl>(NamedContext))) {
5563      if (CurContext == NamedContext) {
5564        Diag(NameLoc,
5565             diag::err_using_decl_nested_name_specifier_is_current_class)
5566          << SS.getRange();
5567        return true;
5568      }
5569
5570      Diag(SS.getRange().getBegin(),
5571           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5572        << (NestedNameSpecifier*) SS.getScopeRep()
5573        << cast<CXXRecordDecl>(CurContext)
5574        << SS.getRange();
5575      return true;
5576    }
5577
5578    return false;
5579  }
5580
5581  // C++03 [namespace.udecl]p4:
5582  //   A using-declaration used as a member-declaration shall refer
5583  //   to a member of a base class of the class being defined [etc.].
5584
5585  // Salient point: SS doesn't have to name a base class as long as
5586  // lookup only finds members from base classes.  Therefore we can
5587  // diagnose here only if we can prove that that can't happen,
5588  // i.e. if the class hierarchies provably don't intersect.
5589
5590  // TODO: it would be nice if "definitely valid" results were cached
5591  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5592  // need to be repeated.
5593
5594  struct UserData {
5595    llvm::DenseSet<const CXXRecordDecl*> Bases;
5596
5597    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5598      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5599      Data->Bases.insert(Base);
5600      return true;
5601    }
5602
5603    bool hasDependentBases(const CXXRecordDecl *Class) {
5604      return !Class->forallBases(collect, this);
5605    }
5606
5607    /// Returns true if the base is dependent or is one of the
5608    /// accumulated base classes.
5609    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5610      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5611      return !Data->Bases.count(Base);
5612    }
5613
5614    bool mightShareBases(const CXXRecordDecl *Class) {
5615      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5616    }
5617  };
5618
5619  UserData Data;
5620
5621  // Returns false if we find a dependent base.
5622  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5623    return false;
5624
5625  // Returns false if the class has a dependent base or if it or one
5626  // of its bases is present in the base set of the current context.
5627  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5628    return false;
5629
5630  Diag(SS.getRange().getBegin(),
5631       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5632    << (NestedNameSpecifier*) SS.getScopeRep()
5633    << cast<CXXRecordDecl>(CurContext)
5634    << SS.getRange();
5635
5636  return true;
5637}
5638
5639Decl *Sema::ActOnAliasDeclaration(Scope *S,
5640                                  AccessSpecifier AS,
5641                                  MultiTemplateParamsArg TemplateParamLists,
5642                                  SourceLocation UsingLoc,
5643                                  UnqualifiedId &Name,
5644                                  TypeResult Type) {
5645  // Skip up to the relevant declaration scope.
5646  while (S->getFlags() & Scope::TemplateParamScope)
5647    S = S->getParent();
5648  assert((S->getFlags() & Scope::DeclScope) &&
5649         "got alias-declaration outside of declaration scope");
5650
5651  if (Type.isInvalid())
5652    return 0;
5653
5654  bool Invalid = false;
5655  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5656  TypeSourceInfo *TInfo = 0;
5657  GetTypeFromParser(Type.get(), &TInfo);
5658
5659  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5660    return 0;
5661
5662  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5663                                      UPPC_DeclarationType)) {
5664    Invalid = true;
5665    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5666                                             TInfo->getTypeLoc().getBeginLoc());
5667  }
5668
5669  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5670  LookupName(Previous, S);
5671
5672  // Warn about shadowing the name of a template parameter.
5673  if (Previous.isSingleResult() &&
5674      Previous.getFoundDecl()->isTemplateParameter()) {
5675    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5676                                        Previous.getFoundDecl()))
5677      Invalid = true;
5678    Previous.clear();
5679  }
5680
5681  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5682         "name in alias declaration must be an identifier");
5683  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5684                                               Name.StartLocation,
5685                                               Name.Identifier, TInfo);
5686
5687  NewTD->setAccess(AS);
5688
5689  if (Invalid)
5690    NewTD->setInvalidDecl();
5691
5692  CheckTypedefForVariablyModifiedType(S, NewTD);
5693  Invalid |= NewTD->isInvalidDecl();
5694
5695  bool Redeclaration = false;
5696
5697  NamedDecl *NewND;
5698  if (TemplateParamLists.size()) {
5699    TypeAliasTemplateDecl *OldDecl = 0;
5700    TemplateParameterList *OldTemplateParams = 0;
5701
5702    if (TemplateParamLists.size() != 1) {
5703      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5704        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5705         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5706    }
5707    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5708
5709    // Only consider previous declarations in the same scope.
5710    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5711                         /*ExplicitInstantiationOrSpecialization*/false);
5712    if (!Previous.empty()) {
5713      Redeclaration = true;
5714
5715      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5716      if (!OldDecl && !Invalid) {
5717        Diag(UsingLoc, diag::err_redefinition_different_kind)
5718          << Name.Identifier;
5719
5720        NamedDecl *OldD = Previous.getRepresentativeDecl();
5721        if (OldD->getLocation().isValid())
5722          Diag(OldD->getLocation(), diag::note_previous_definition);
5723
5724        Invalid = true;
5725      }
5726
5727      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5728        if (TemplateParameterListsAreEqual(TemplateParams,
5729                                           OldDecl->getTemplateParameters(),
5730                                           /*Complain=*/true,
5731                                           TPL_TemplateMatch))
5732          OldTemplateParams = OldDecl->getTemplateParameters();
5733        else
5734          Invalid = true;
5735
5736        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5737        if (!Invalid &&
5738            !Context.hasSameType(OldTD->getUnderlyingType(),
5739                                 NewTD->getUnderlyingType())) {
5740          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5741          // but we can't reasonably accept it.
5742          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5743            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5744          if (OldTD->getLocation().isValid())
5745            Diag(OldTD->getLocation(), diag::note_previous_definition);
5746          Invalid = true;
5747        }
5748      }
5749    }
5750
5751    // Merge any previous default template arguments into our parameters,
5752    // and check the parameter list.
5753    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5754                                   TPC_TypeAliasTemplate))
5755      return 0;
5756
5757    TypeAliasTemplateDecl *NewDecl =
5758      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5759                                    Name.Identifier, TemplateParams,
5760                                    NewTD);
5761
5762    NewDecl->setAccess(AS);
5763
5764    if (Invalid)
5765      NewDecl->setInvalidDecl();
5766    else if (OldDecl)
5767      NewDecl->setPreviousDeclaration(OldDecl);
5768
5769    NewND = NewDecl;
5770  } else {
5771    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5772    NewND = NewTD;
5773  }
5774
5775  if (!Redeclaration)
5776    PushOnScopeChains(NewND, S);
5777
5778  return NewND;
5779}
5780
5781Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5782                                             SourceLocation NamespaceLoc,
5783                                             SourceLocation AliasLoc,
5784                                             IdentifierInfo *Alias,
5785                                             CXXScopeSpec &SS,
5786                                             SourceLocation IdentLoc,
5787                                             IdentifierInfo *Ident) {
5788
5789  // Lookup the namespace name.
5790  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5791  LookupParsedName(R, S, &SS);
5792
5793  // Check if we have a previous declaration with the same name.
5794  NamedDecl *PrevDecl
5795    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5796                       ForRedeclaration);
5797  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5798    PrevDecl = 0;
5799
5800  if (PrevDecl) {
5801    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5802      // We already have an alias with the same name that points to the same
5803      // namespace, so don't create a new one.
5804      // FIXME: At some point, we'll want to create the (redundant)
5805      // declaration to maintain better source information.
5806      if (!R.isAmbiguous() && !R.empty() &&
5807          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5808        return 0;
5809    }
5810
5811    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5812      diag::err_redefinition_different_kind;
5813    Diag(AliasLoc, DiagID) << Alias;
5814    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5815    return 0;
5816  }
5817
5818  if (R.isAmbiguous())
5819    return 0;
5820
5821  if (R.empty()) {
5822    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
5823                                                CTC_NoKeywords, 0)) {
5824      if (R.getAsSingle<NamespaceDecl>() ||
5825          R.getAsSingle<NamespaceAliasDecl>()) {
5826        if (DeclContext *DC = computeDeclContext(SS, false))
5827          Diag(IdentLoc, diag::err_using_directive_member_suggest)
5828            << Ident << DC << Corrected << SS.getRange()
5829            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5830        else
5831          Diag(IdentLoc, diag::err_using_directive_suggest)
5832            << Ident << Corrected
5833            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
5834
5835        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
5836          << Corrected;
5837
5838        Ident = Corrected.getAsIdentifierInfo();
5839      } else {
5840        R.clear();
5841        R.setLookupName(Ident);
5842      }
5843    }
5844
5845    if (R.empty()) {
5846      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5847      return 0;
5848    }
5849  }
5850
5851  NamespaceAliasDecl *AliasDecl =
5852    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5853                               Alias, SS.getWithLocInContext(Context),
5854                               IdentLoc, R.getFoundDecl());
5855
5856  PushOnScopeChains(AliasDecl, S);
5857  return AliasDecl;
5858}
5859
5860namespace {
5861  /// \brief Scoped object used to handle the state changes required in Sema
5862  /// to implicitly define the body of a C++ member function;
5863  class ImplicitlyDefinedFunctionScope {
5864    Sema &S;
5865    Sema::ContextRAII SavedContext;
5866
5867  public:
5868    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5869      : S(S), SavedContext(S, Method)
5870    {
5871      S.PushFunctionScope();
5872      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5873    }
5874
5875    ~ImplicitlyDefinedFunctionScope() {
5876      S.PopExpressionEvaluationContext();
5877      S.PopFunctionOrBlockScope();
5878    }
5879  };
5880}
5881
5882static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
5883                                                       CXXRecordDecl *D) {
5884  ASTContext &Context = Self.Context;
5885  QualType ClassType = Context.getTypeDeclType(D);
5886  DeclarationName ConstructorName
5887    = Context.DeclarationNames.getCXXConstructorName(
5888                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
5889
5890  DeclContext::lookup_const_iterator Con, ConEnd;
5891  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
5892       Con != ConEnd; ++Con) {
5893    // FIXME: In C++0x, a constructor template can be a default constructor.
5894    if (isa<FunctionTemplateDecl>(*Con))
5895      continue;
5896
5897    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
5898    if (Constructor->isDefaultConstructor())
5899      return Constructor;
5900  }
5901  return 0;
5902}
5903
5904Sema::ImplicitExceptionSpecification
5905Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5906  // C++ [except.spec]p14:
5907  //   An implicitly declared special member function (Clause 12) shall have an
5908  //   exception-specification. [...]
5909  ImplicitExceptionSpecification ExceptSpec(Context);
5910
5911  // Direct base-class constructors.
5912  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5913                                       BEnd = ClassDecl->bases_end();
5914       B != BEnd; ++B) {
5915    if (B->isVirtual()) // Handled below.
5916      continue;
5917
5918    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5919      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5920      if (BaseClassDecl->needsImplicitDefaultConstructor())
5921        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5922      else if (CXXConstructorDecl *Constructor
5923                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5924        ExceptSpec.CalledDecl(Constructor);
5925    }
5926  }
5927
5928  // Virtual base-class constructors.
5929  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5930                                       BEnd = ClassDecl->vbases_end();
5931       B != BEnd; ++B) {
5932    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5933      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5934      if (BaseClassDecl->needsImplicitDefaultConstructor())
5935        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
5936      else if (CXXConstructorDecl *Constructor
5937                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
5938        ExceptSpec.CalledDecl(Constructor);
5939    }
5940  }
5941
5942  // Field constructors.
5943  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5944                               FEnd = ClassDecl->field_end();
5945       F != FEnd; ++F) {
5946    if (const RecordType *RecordTy
5947              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5948      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5949      if (FieldClassDecl->needsImplicitDefaultConstructor())
5950        ExceptSpec.CalledDecl(
5951                            DeclareImplicitDefaultConstructor(FieldClassDecl));
5952      else if (CXXConstructorDecl *Constructor
5953                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
5954        ExceptSpec.CalledDecl(Constructor);
5955    }
5956  }
5957
5958  return ExceptSpec;
5959}
5960
5961CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5962                                                     CXXRecordDecl *ClassDecl) {
5963  // C++ [class.ctor]p5:
5964  //   A default constructor for a class X is a constructor of class X
5965  //   that can be called without an argument. If there is no
5966  //   user-declared constructor for class X, a default constructor is
5967  //   implicitly declared. An implicitly-declared default constructor
5968  //   is an inline public member of its class.
5969  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5970         "Should not build implicit default constructor!");
5971
5972  ImplicitExceptionSpecification Spec =
5973    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5974  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5975
5976  // Create the actual constructor declaration.
5977  CanQualType ClassType
5978    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5979  SourceLocation ClassLoc = ClassDecl->getLocation();
5980  DeclarationName Name
5981    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5982  DeclarationNameInfo NameInfo(Name, ClassLoc);
5983  CXXConstructorDecl *DefaultCon
5984    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5985                                 Context.getFunctionType(Context.VoidTy,
5986                                                         0, 0, EPI),
5987                                 /*TInfo=*/0,
5988                                 /*isExplicit=*/false,
5989                                 /*isInline=*/true,
5990                                 /*isImplicitlyDeclared=*/true);
5991  DefaultCon->setAccess(AS_public);
5992  DefaultCon->setDefaulted();
5993  DefaultCon->setImplicit();
5994  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5995
5996  // Note that we have declared this constructor.
5997  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5998
5999  if (Scope *S = getScopeForContext(ClassDecl))
6000    PushOnScopeChains(DefaultCon, S, false);
6001  ClassDecl->addDecl(DefaultCon);
6002
6003  if (ShouldDeleteDefaultConstructor(DefaultCon))
6004    DefaultCon->setDeletedAsWritten();
6005
6006  return DefaultCon;
6007}
6008
6009void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6010                                            CXXConstructorDecl *Constructor) {
6011  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6012          !Constructor->isUsed(false) && !Constructor->isDeleted()) &&
6013    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6014
6015  CXXRecordDecl *ClassDecl = Constructor->getParent();
6016  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6017
6018  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6019  DiagnosticErrorTrap Trap(Diags);
6020  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6021      Trap.hasErrorOccurred()) {
6022    Diag(CurrentLocation, diag::note_member_synthesized_at)
6023      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6024    Constructor->setInvalidDecl();
6025    return;
6026  }
6027
6028  SourceLocation Loc = Constructor->getLocation();
6029  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6030
6031  Constructor->setUsed();
6032  MarkVTableUsed(CurrentLocation, ClassDecl);
6033
6034  if (ASTMutationListener *L = getASTMutationListener()) {
6035    L->CompletedImplicitDefinition(Constructor);
6036  }
6037}
6038
6039void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6040  // We start with an initial pass over the base classes to collect those that
6041  // inherit constructors from. If there are none, we can forgo all further
6042  // processing.
6043  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6044  BasesVector BasesToInheritFrom;
6045  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6046                                          BaseE = ClassDecl->bases_end();
6047         BaseIt != BaseE; ++BaseIt) {
6048    if (BaseIt->getInheritConstructors()) {
6049      QualType Base = BaseIt->getType();
6050      if (Base->isDependentType()) {
6051        // If we inherit constructors from anything that is dependent, just
6052        // abort processing altogether. We'll get another chance for the
6053        // instantiations.
6054        return;
6055      }
6056      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6057    }
6058  }
6059  if (BasesToInheritFrom.empty())
6060    return;
6061
6062  // Now collect the constructors that we already have in the current class.
6063  // Those take precedence over inherited constructors.
6064  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6065  //   unless there is a user-declared constructor with the same signature in
6066  //   the class where the using-declaration appears.
6067  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6068  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6069                                    CtorE = ClassDecl->ctor_end();
6070       CtorIt != CtorE; ++CtorIt) {
6071    ExistingConstructors.insert(
6072        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6073  }
6074
6075  Scope *S = getScopeForContext(ClassDecl);
6076  DeclarationName CreatedCtorName =
6077      Context.DeclarationNames.getCXXConstructorName(
6078          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6079
6080  // Now comes the true work.
6081  // First, we keep a map from constructor types to the base that introduced
6082  // them. Needed for finding conflicting constructors. We also keep the
6083  // actually inserted declarations in there, for pretty diagnostics.
6084  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6085  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6086  ConstructorToSourceMap InheritedConstructors;
6087  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6088                             BaseE = BasesToInheritFrom.end();
6089       BaseIt != BaseE; ++BaseIt) {
6090    const RecordType *Base = *BaseIt;
6091    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6092    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6093    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6094                                      CtorE = BaseDecl->ctor_end();
6095         CtorIt != CtorE; ++CtorIt) {
6096      // Find the using declaration for inheriting this base's constructors.
6097      DeclarationName Name =
6098          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6099      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6100          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6101      SourceLocation UsingLoc = UD ? UD->getLocation() :
6102                                     ClassDecl->getLocation();
6103
6104      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6105      //   from the class X named in the using-declaration consists of actual
6106      //   constructors and notional constructors that result from the
6107      //   transformation of defaulted parameters as follows:
6108      //   - all non-template default constructors of X, and
6109      //   - for each non-template constructor of X that has at least one
6110      //     parameter with a default argument, the set of constructors that
6111      //     results from omitting any ellipsis parameter specification and
6112      //     successively omitting parameters with a default argument from the
6113      //     end of the parameter-type-list.
6114      CXXConstructorDecl *BaseCtor = *CtorIt;
6115      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6116      const FunctionProtoType *BaseCtorType =
6117          BaseCtor->getType()->getAs<FunctionProtoType>();
6118
6119      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6120                    maxParams = BaseCtor->getNumParams();
6121           params <= maxParams; ++params) {
6122        // Skip default constructors. They're never inherited.
6123        if (params == 0)
6124          continue;
6125        // Skip copy and move constructors for the same reason.
6126        if (CanBeCopyOrMove && params == 1)
6127          continue;
6128
6129        // Build up a function type for this particular constructor.
6130        // FIXME: The working paper does not consider that the exception spec
6131        // for the inheriting constructor might be larger than that of the
6132        // source. This code doesn't yet, either.
6133        const Type *NewCtorType;
6134        if (params == maxParams)
6135          NewCtorType = BaseCtorType;
6136        else {
6137          llvm::SmallVector<QualType, 16> Args;
6138          for (unsigned i = 0; i < params; ++i) {
6139            Args.push_back(BaseCtorType->getArgType(i));
6140          }
6141          FunctionProtoType::ExtProtoInfo ExtInfo =
6142              BaseCtorType->getExtProtoInfo();
6143          ExtInfo.Variadic = false;
6144          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6145                                                Args.data(), params, ExtInfo)
6146                       .getTypePtr();
6147        }
6148        const Type *CanonicalNewCtorType =
6149            Context.getCanonicalType(NewCtorType);
6150
6151        // Now that we have the type, first check if the class already has a
6152        // constructor with this signature.
6153        if (ExistingConstructors.count(CanonicalNewCtorType))
6154          continue;
6155
6156        // Then we check if we have already declared an inherited constructor
6157        // with this signature.
6158        std::pair<ConstructorToSourceMap::iterator, bool> result =
6159            InheritedConstructors.insert(std::make_pair(
6160                CanonicalNewCtorType,
6161                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6162        if (!result.second) {
6163          // Already in the map. If it came from a different class, that's an
6164          // error. Not if it's from the same.
6165          CanQualType PreviousBase = result.first->second.first;
6166          if (CanonicalBase != PreviousBase) {
6167            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6168            const CXXConstructorDecl *PrevBaseCtor =
6169                PrevCtor->getInheritedConstructor();
6170            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6171
6172            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6173            Diag(BaseCtor->getLocation(),
6174                 diag::note_using_decl_constructor_conflict_current_ctor);
6175            Diag(PrevBaseCtor->getLocation(),
6176                 diag::note_using_decl_constructor_conflict_previous_ctor);
6177            Diag(PrevCtor->getLocation(),
6178                 diag::note_using_decl_constructor_conflict_previous_using);
6179          }
6180          continue;
6181        }
6182
6183        // OK, we're there, now add the constructor.
6184        // C++0x [class.inhctor]p8: [...] that would be performed by a
6185        //   user-writtern inline constructor [...]
6186        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6187        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6188            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6189            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6190            /*ImplicitlyDeclared=*/true);
6191        NewCtor->setAccess(BaseCtor->getAccess());
6192
6193        // Build up the parameter decls and add them.
6194        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6195        for (unsigned i = 0; i < params; ++i) {
6196          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6197                                                   UsingLoc, UsingLoc,
6198                                                   /*IdentifierInfo=*/0,
6199                                                   BaseCtorType->getArgType(i),
6200                                                   /*TInfo=*/0, SC_None,
6201                                                   SC_None, /*DefaultArg=*/0));
6202        }
6203        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6204        NewCtor->setInheritedConstructor(BaseCtor);
6205
6206        PushOnScopeChains(NewCtor, S, false);
6207        ClassDecl->addDecl(NewCtor);
6208        result.first->second.second = NewCtor;
6209      }
6210    }
6211  }
6212}
6213
6214Sema::ImplicitExceptionSpecification
6215Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6216  // C++ [except.spec]p14:
6217  //   An implicitly declared special member function (Clause 12) shall have
6218  //   an exception-specification.
6219  ImplicitExceptionSpecification ExceptSpec(Context);
6220
6221  // Direct base-class destructors.
6222  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6223                                       BEnd = ClassDecl->bases_end();
6224       B != BEnd; ++B) {
6225    if (B->isVirtual()) // Handled below.
6226      continue;
6227
6228    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6229      ExceptSpec.CalledDecl(
6230                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6231  }
6232
6233  // Virtual base-class destructors.
6234  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6235                                       BEnd = ClassDecl->vbases_end();
6236       B != BEnd; ++B) {
6237    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6238      ExceptSpec.CalledDecl(
6239                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6240  }
6241
6242  // Field destructors.
6243  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6244                               FEnd = ClassDecl->field_end();
6245       F != FEnd; ++F) {
6246    if (const RecordType *RecordTy
6247        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6248      ExceptSpec.CalledDecl(
6249                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6250  }
6251
6252  return ExceptSpec;
6253}
6254
6255CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6256  // C++ [class.dtor]p2:
6257  //   If a class has no user-declared destructor, a destructor is
6258  //   declared implicitly. An implicitly-declared destructor is an
6259  //   inline public member of its class.
6260
6261  ImplicitExceptionSpecification Spec =
6262      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6263  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6264
6265  // Create the actual destructor declaration.
6266  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6267
6268  CanQualType ClassType
6269    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6270  SourceLocation ClassLoc = ClassDecl->getLocation();
6271  DeclarationName Name
6272    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6273  DeclarationNameInfo NameInfo(Name, ClassLoc);
6274  CXXDestructorDecl *Destructor
6275      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6276                                  /*isInline=*/true,
6277                                  /*isImplicitlyDeclared=*/true);
6278  Destructor->setAccess(AS_public);
6279  Destructor->setDefaulted();
6280  Destructor->setImplicit();
6281  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6282
6283  // Note that we have declared this destructor.
6284  ++ASTContext::NumImplicitDestructorsDeclared;
6285
6286  // Introduce this destructor into its scope.
6287  if (Scope *S = getScopeForContext(ClassDecl))
6288    PushOnScopeChains(Destructor, S, false);
6289  ClassDecl->addDecl(Destructor);
6290
6291  // This could be uniqued if it ever proves significant.
6292  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6293
6294  if (ShouldDeleteDestructor(Destructor))
6295    Destructor->setDeletedAsWritten();
6296
6297  AddOverriddenMethods(ClassDecl, Destructor);
6298
6299  return Destructor;
6300}
6301
6302void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6303                                    CXXDestructorDecl *Destructor) {
6304  assert((Destructor->isDefaulted() && !Destructor->isUsed(false)) &&
6305         "DefineImplicitDestructor - call it for implicit default dtor");
6306  CXXRecordDecl *ClassDecl = Destructor->getParent();
6307  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6308
6309  if (Destructor->isInvalidDecl())
6310    return;
6311
6312  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6313
6314  DiagnosticErrorTrap Trap(Diags);
6315  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6316                                         Destructor->getParent());
6317
6318  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6319    Diag(CurrentLocation, diag::note_member_synthesized_at)
6320      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6321
6322    Destructor->setInvalidDecl();
6323    return;
6324  }
6325
6326  SourceLocation Loc = Destructor->getLocation();
6327  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6328
6329  Destructor->setUsed();
6330  MarkVTableUsed(CurrentLocation, ClassDecl);
6331
6332  if (ASTMutationListener *L = getASTMutationListener()) {
6333    L->CompletedImplicitDefinition(Destructor);
6334  }
6335}
6336
6337void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6338                                         CXXDestructorDecl *destructor) {
6339  // C++11 [class.dtor]p3:
6340  //   A declaration of a destructor that does not have an exception-
6341  //   specification is implicitly considered to have the same exception-
6342  //   specification as an implicit declaration.
6343  const FunctionProtoType *dtorType = destructor->getType()->
6344                                        getAs<FunctionProtoType>();
6345  if (dtorType->hasExceptionSpec())
6346    return;
6347
6348  ImplicitExceptionSpecification exceptSpec =
6349      ComputeDefaultedDtorExceptionSpec(classDecl);
6350
6351  // Replace the destructor's type.
6352  FunctionProtoType::ExtProtoInfo epi;
6353  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6354  epi.NumExceptions = exceptSpec.size();
6355  epi.Exceptions = exceptSpec.data();
6356  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6357
6358  destructor->setType(ty);
6359
6360  // FIXME: If the destructor has a body that could throw, and the newly created
6361  // spec doesn't allow exceptions, we should emit a warning, because this
6362  // change in behavior can break conforming C++03 programs at runtime.
6363  // However, we don't have a body yet, so it needs to be done somewhere else.
6364}
6365
6366/// \brief Builds a statement that copies the given entity from \p From to
6367/// \c To.
6368///
6369/// This routine is used to copy the members of a class with an
6370/// implicitly-declared copy assignment operator. When the entities being
6371/// copied are arrays, this routine builds for loops to copy them.
6372///
6373/// \param S The Sema object used for type-checking.
6374///
6375/// \param Loc The location where the implicit copy is being generated.
6376///
6377/// \param T The type of the expressions being copied. Both expressions must
6378/// have this type.
6379///
6380/// \param To The expression we are copying to.
6381///
6382/// \param From The expression we are copying from.
6383///
6384/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6385/// Otherwise, it's a non-static member subobject.
6386///
6387/// \param Depth Internal parameter recording the depth of the recursion.
6388///
6389/// \returns A statement or a loop that copies the expressions.
6390static StmtResult
6391BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6392                      Expr *To, Expr *From,
6393                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6394  // C++0x [class.copy]p30:
6395  //   Each subobject is assigned in the manner appropriate to its type:
6396  //
6397  //     - if the subobject is of class type, the copy assignment operator
6398  //       for the class is used (as if by explicit qualification; that is,
6399  //       ignoring any possible virtual overriding functions in more derived
6400  //       classes);
6401  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6402    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6403
6404    // Look for operator=.
6405    DeclarationName Name
6406      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6407    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6408    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6409
6410    // Filter out any result that isn't a copy-assignment operator.
6411    LookupResult::Filter F = OpLookup.makeFilter();
6412    while (F.hasNext()) {
6413      NamedDecl *D = F.next();
6414      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6415        if (Method->isCopyAssignmentOperator())
6416          continue;
6417
6418      F.erase();
6419    }
6420    F.done();
6421
6422    // Suppress the protected check (C++ [class.protected]) for each of the
6423    // assignment operators we found. This strange dance is required when
6424    // we're assigning via a base classes's copy-assignment operator. To
6425    // ensure that we're getting the right base class subobject (without
6426    // ambiguities), we need to cast "this" to that subobject type; to
6427    // ensure that we don't go through the virtual call mechanism, we need
6428    // to qualify the operator= name with the base class (see below). However,
6429    // this means that if the base class has a protected copy assignment
6430    // operator, the protected member access check will fail. So, we
6431    // rewrite "protected" access to "public" access in this case, since we
6432    // know by construction that we're calling from a derived class.
6433    if (CopyingBaseSubobject) {
6434      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6435           L != LEnd; ++L) {
6436        if (L.getAccess() == AS_protected)
6437          L.setAccess(AS_public);
6438      }
6439    }
6440
6441    // Create the nested-name-specifier that will be used to qualify the
6442    // reference to operator=; this is required to suppress the virtual
6443    // call mechanism.
6444    CXXScopeSpec SS;
6445    SS.MakeTrivial(S.Context,
6446                   NestedNameSpecifier::Create(S.Context, 0, false,
6447                                               T.getTypePtr()),
6448                   Loc);
6449
6450    // Create the reference to operator=.
6451    ExprResult OpEqualRef
6452      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6453                                   /*FirstQualifierInScope=*/0, OpLookup,
6454                                   /*TemplateArgs=*/0,
6455                                   /*SuppressQualifierCheck=*/true);
6456    if (OpEqualRef.isInvalid())
6457      return StmtError();
6458
6459    // Build the call to the assignment operator.
6460
6461    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6462                                                  OpEqualRef.takeAs<Expr>(),
6463                                                  Loc, &From, 1, Loc);
6464    if (Call.isInvalid())
6465      return StmtError();
6466
6467    return S.Owned(Call.takeAs<Stmt>());
6468  }
6469
6470  //     - if the subobject is of scalar type, the built-in assignment
6471  //       operator is used.
6472  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6473  if (!ArrayTy) {
6474    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6475    if (Assignment.isInvalid())
6476      return StmtError();
6477
6478    return S.Owned(Assignment.takeAs<Stmt>());
6479  }
6480
6481  //     - if the subobject is an array, each element is assigned, in the
6482  //       manner appropriate to the element type;
6483
6484  // Construct a loop over the array bounds, e.g.,
6485  //
6486  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6487  //
6488  // that will copy each of the array elements.
6489  QualType SizeType = S.Context.getSizeType();
6490
6491  // Create the iteration variable.
6492  IdentifierInfo *IterationVarName = 0;
6493  {
6494    llvm::SmallString<8> Str;
6495    llvm::raw_svector_ostream OS(Str);
6496    OS << "__i" << Depth;
6497    IterationVarName = &S.Context.Idents.get(OS.str());
6498  }
6499  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6500                                          IterationVarName, SizeType,
6501                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6502                                          SC_None, SC_None);
6503
6504  // Initialize the iteration variable to zero.
6505  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6506  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6507
6508  // Create a reference to the iteration variable; we'll use this several
6509  // times throughout.
6510  Expr *IterationVarRef
6511    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6512  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6513
6514  // Create the DeclStmt that holds the iteration variable.
6515  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6516
6517  // Create the comparison against the array bound.
6518  llvm::APInt Upper
6519    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6520  Expr *Comparison
6521    = new (S.Context) BinaryOperator(IterationVarRef,
6522                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6523                                     BO_NE, S.Context.BoolTy,
6524                                     VK_RValue, OK_Ordinary, Loc);
6525
6526  // Create the pre-increment of the iteration variable.
6527  Expr *Increment
6528    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6529                                    VK_LValue, OK_Ordinary, Loc);
6530
6531  // Subscript the "from" and "to" expressions with the iteration variable.
6532  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6533                                                         IterationVarRef, Loc));
6534  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6535                                                       IterationVarRef, Loc));
6536
6537  // Build the copy for an individual element of the array.
6538  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6539                                          To, From, CopyingBaseSubobject,
6540                                          Depth + 1);
6541  if (Copy.isInvalid())
6542    return StmtError();
6543
6544  // Construct the loop that copies all elements of this array.
6545  return S.ActOnForStmt(Loc, Loc, InitStmt,
6546                        S.MakeFullExpr(Comparison),
6547                        0, S.MakeFullExpr(Increment),
6548                        Loc, Copy.take());
6549}
6550
6551/// \brief Determine whether the given class has a copy assignment operator
6552/// that accepts a const-qualified argument.
6553static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
6554  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
6555
6556  if (!Class->hasDeclaredCopyAssignment())
6557    S.DeclareImplicitCopyAssignment(Class);
6558
6559  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
6560  DeclarationName OpName
6561    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6562
6563  DeclContext::lookup_const_iterator Op, OpEnd;
6564  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
6565    // C++ [class.copy]p9:
6566    //   A user-declared copy assignment operator is a non-static non-template
6567    //   member function of class X with exactly one parameter of type X, X&,
6568    //   const X&, volatile X& or const volatile X&.
6569    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
6570    if (!Method)
6571      continue;
6572
6573    if (Method->isStatic())
6574      continue;
6575    if (Method->getPrimaryTemplate())
6576      continue;
6577    const FunctionProtoType *FnType =
6578    Method->getType()->getAs<FunctionProtoType>();
6579    assert(FnType && "Overloaded operator has no prototype.");
6580    // Don't assert on this; an invalid decl might have been left in the AST.
6581    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
6582      continue;
6583    bool AcceptsConst = true;
6584    QualType ArgType = FnType->getArgType(0);
6585    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
6586      ArgType = Ref->getPointeeType();
6587      // Is it a non-const lvalue reference?
6588      if (!ArgType.isConstQualified())
6589        AcceptsConst = false;
6590    }
6591    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
6592      continue;
6593
6594    // We have a single argument of type cv X or cv X&, i.e. we've found the
6595    // copy assignment operator. Return whether it accepts const arguments.
6596    return AcceptsConst;
6597  }
6598  assert(Class->isInvalidDecl() &&
6599         "No copy assignment operator declared in valid code.");
6600  return false;
6601}
6602
6603std::pair<Sema::ImplicitExceptionSpecification, bool>
6604Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6605                                                   CXXRecordDecl *ClassDecl) {
6606  // C++ [class.copy]p10:
6607  //   If the class definition does not explicitly declare a copy
6608  //   assignment operator, one is declared implicitly.
6609  //   The implicitly-defined copy assignment operator for a class X
6610  //   will have the form
6611  //
6612  //       X& X::operator=(const X&)
6613  //
6614  //   if
6615  bool HasConstCopyAssignment = true;
6616
6617  //       -- each direct base class B of X has a copy assignment operator
6618  //          whose parameter is of type const B&, const volatile B& or B,
6619  //          and
6620  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6621                                       BaseEnd = ClassDecl->bases_end();
6622       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6623    assert(!Base->getType()->isDependentType() &&
6624           "Cannot generate implicit members for class with dependent bases.");
6625    const CXXRecordDecl *BaseClassDecl
6626      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6627    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
6628  }
6629
6630  //       -- for all the nonstatic data members of X that are of a class
6631  //          type M (or array thereof), each such class type has a copy
6632  //          assignment operator whose parameter is of type const M&,
6633  //          const volatile M& or M.
6634  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6635                                  FieldEnd = ClassDecl->field_end();
6636       HasConstCopyAssignment && Field != FieldEnd;
6637       ++Field) {
6638    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6639    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6640      const CXXRecordDecl *FieldClassDecl
6641        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6642      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
6643    }
6644  }
6645
6646  //   Otherwise, the implicitly declared copy assignment operator will
6647  //   have the form
6648  //
6649  //       X& X::operator=(X&)
6650
6651  // C++ [except.spec]p14:
6652  //   An implicitly declared special member function (Clause 12) shall have an
6653  //   exception-specification. [...]
6654  ImplicitExceptionSpecification ExceptSpec(Context);
6655  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6656                                       BaseEnd = ClassDecl->bases_end();
6657       Base != BaseEnd; ++Base) {
6658    CXXRecordDecl *BaseClassDecl
6659      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6660
6661    if (!BaseClassDecl->hasDeclaredCopyAssignment())
6662      DeclareImplicitCopyAssignment(BaseClassDecl);
6663
6664    if (CXXMethodDecl *CopyAssign
6665           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6666      ExceptSpec.CalledDecl(CopyAssign);
6667  }
6668  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6669                                  FieldEnd = ClassDecl->field_end();
6670       Field != FieldEnd;
6671       ++Field) {
6672    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6673    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
6674      CXXRecordDecl *FieldClassDecl
6675        = cast<CXXRecordDecl>(FieldClassType->getDecl());
6676
6677      if (!FieldClassDecl->hasDeclaredCopyAssignment())
6678        DeclareImplicitCopyAssignment(FieldClassDecl);
6679
6680      if (CXXMethodDecl *CopyAssign
6681            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
6682        ExceptSpec.CalledDecl(CopyAssign);
6683    }
6684  }
6685
6686  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6687}
6688
6689CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6690  // Note: The following rules are largely analoguous to the copy
6691  // constructor rules. Note that virtual bases are not taken into account
6692  // for determining the argument type of the operator. Note also that
6693  // operators taking an object instead of a reference are allowed.
6694
6695  ImplicitExceptionSpecification Spec(Context);
6696  bool Const;
6697  llvm::tie(Spec, Const) =
6698    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6699
6700  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6701  QualType RetType = Context.getLValueReferenceType(ArgType);
6702  if (Const)
6703    ArgType = ArgType.withConst();
6704  ArgType = Context.getLValueReferenceType(ArgType);
6705
6706  //   An implicitly-declared copy assignment operator is an inline public
6707  //   member of its class.
6708  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6709  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6710  SourceLocation ClassLoc = ClassDecl->getLocation();
6711  DeclarationNameInfo NameInfo(Name, ClassLoc);
6712  CXXMethodDecl *CopyAssignment
6713    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6714                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6715                            /*TInfo=*/0, /*isStatic=*/false,
6716                            /*StorageClassAsWritten=*/SC_None,
6717                            /*isInline=*/true,
6718                            SourceLocation());
6719  CopyAssignment->setAccess(AS_public);
6720  CopyAssignment->setDefaulted();
6721  CopyAssignment->setImplicit();
6722  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6723
6724  // Add the parameter to the operator.
6725  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6726                                               ClassLoc, ClassLoc, /*Id=*/0,
6727                                               ArgType, /*TInfo=*/0,
6728                                               SC_None,
6729                                               SC_None, 0);
6730  CopyAssignment->setParams(&FromParam, 1);
6731
6732  // Note that we have added this copy-assignment operator.
6733  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6734
6735  if (Scope *S = getScopeForContext(ClassDecl))
6736    PushOnScopeChains(CopyAssignment, S, false);
6737  ClassDecl->addDecl(CopyAssignment);
6738
6739  if (ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6740    CopyAssignment->setDeletedAsWritten();
6741
6742  AddOverriddenMethods(ClassDecl, CopyAssignment);
6743  return CopyAssignment;
6744}
6745
6746void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6747                                        CXXMethodDecl *CopyAssignOperator) {
6748  assert((CopyAssignOperator->isDefaulted() &&
6749          CopyAssignOperator->isOverloadedOperator() &&
6750          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6751          !CopyAssignOperator->isUsed(false)) &&
6752         "DefineImplicitCopyAssignment called for wrong function");
6753
6754  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6755
6756  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6757    CopyAssignOperator->setInvalidDecl();
6758    return;
6759  }
6760
6761  CopyAssignOperator->setUsed();
6762
6763  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6764  DiagnosticErrorTrap Trap(Diags);
6765
6766  // C++0x [class.copy]p30:
6767  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6768  //   for a non-union class X performs memberwise copy assignment of its
6769  //   subobjects. The direct base classes of X are assigned first, in the
6770  //   order of their declaration in the base-specifier-list, and then the
6771  //   immediate non-static data members of X are assigned, in the order in
6772  //   which they were declared in the class definition.
6773
6774  // The statements that form the synthesized function body.
6775  ASTOwningVector<Stmt*> Statements(*this);
6776
6777  // The parameter for the "other" object, which we are copying from.
6778  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6779  Qualifiers OtherQuals = Other->getType().getQualifiers();
6780  QualType OtherRefType = Other->getType();
6781  if (const LValueReferenceType *OtherRef
6782                                = OtherRefType->getAs<LValueReferenceType>()) {
6783    OtherRefType = OtherRef->getPointeeType();
6784    OtherQuals = OtherRefType.getQualifiers();
6785  }
6786
6787  // Our location for everything implicitly-generated.
6788  SourceLocation Loc = CopyAssignOperator->getLocation();
6789
6790  // Construct a reference to the "other" object. We'll be using this
6791  // throughout the generated ASTs.
6792  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6793  assert(OtherRef && "Reference to parameter cannot fail!");
6794
6795  // Construct the "this" pointer. We'll be using this throughout the generated
6796  // ASTs.
6797  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6798  assert(This && "Reference to this cannot fail!");
6799
6800  // Assign base classes.
6801  bool Invalid = false;
6802  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6803       E = ClassDecl->bases_end(); Base != E; ++Base) {
6804    // Form the assignment:
6805    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6806    QualType BaseType = Base->getType().getUnqualifiedType();
6807    if (!BaseType->isRecordType()) {
6808      Invalid = true;
6809      continue;
6810    }
6811
6812    CXXCastPath BasePath;
6813    BasePath.push_back(Base);
6814
6815    // Construct the "from" expression, which is an implicit cast to the
6816    // appropriately-qualified base type.
6817    Expr *From = OtherRef;
6818    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6819                             CK_UncheckedDerivedToBase,
6820                             VK_LValue, &BasePath).take();
6821
6822    // Dereference "this".
6823    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6824
6825    // Implicitly cast "this" to the appropriately-qualified base type.
6826    To = ImpCastExprToType(To.take(),
6827                           Context.getCVRQualifiedType(BaseType,
6828                                     CopyAssignOperator->getTypeQualifiers()),
6829                           CK_UncheckedDerivedToBase,
6830                           VK_LValue, &BasePath);
6831
6832    // Build the copy.
6833    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6834                                            To.get(), From,
6835                                            /*CopyingBaseSubobject=*/true);
6836    if (Copy.isInvalid()) {
6837      Diag(CurrentLocation, diag::note_member_synthesized_at)
6838        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6839      CopyAssignOperator->setInvalidDecl();
6840      return;
6841    }
6842
6843    // Success! Record the copy.
6844    Statements.push_back(Copy.takeAs<Expr>());
6845  }
6846
6847  // \brief Reference to the __builtin_memcpy function.
6848  Expr *BuiltinMemCpyRef = 0;
6849  // \brief Reference to the __builtin_objc_memmove_collectable function.
6850  Expr *CollectableMemCpyRef = 0;
6851
6852  // Assign non-static members.
6853  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6854                                  FieldEnd = ClassDecl->field_end();
6855       Field != FieldEnd; ++Field) {
6856    // Check for members of reference type; we can't copy those.
6857    if (Field->getType()->isReferenceType()) {
6858      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6859        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6860      Diag(Field->getLocation(), diag::note_declared_at);
6861      Diag(CurrentLocation, diag::note_member_synthesized_at)
6862        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6863      Invalid = true;
6864      continue;
6865    }
6866
6867    // Check for members of const-qualified, non-class type.
6868    QualType BaseType = Context.getBaseElementType(Field->getType());
6869    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6870      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6871        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6872      Diag(Field->getLocation(), diag::note_declared_at);
6873      Diag(CurrentLocation, diag::note_member_synthesized_at)
6874        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6875      Invalid = true;
6876      continue;
6877    }
6878
6879    QualType FieldType = Field->getType().getNonReferenceType();
6880    if (FieldType->isIncompleteArrayType()) {
6881      assert(ClassDecl->hasFlexibleArrayMember() &&
6882             "Incomplete array type is not valid");
6883      continue;
6884    }
6885
6886    // Build references to the field in the object we're copying from and to.
6887    CXXScopeSpec SS; // Intentionally empty
6888    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6889                              LookupMemberName);
6890    MemberLookup.addDecl(*Field);
6891    MemberLookup.resolveKind();
6892    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6893                                               Loc, /*IsArrow=*/false,
6894                                               SS, 0, MemberLookup, 0);
6895    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6896                                             Loc, /*IsArrow=*/true,
6897                                             SS, 0, MemberLookup, 0);
6898    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6899    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6900
6901    // If the field should be copied with __builtin_memcpy rather than via
6902    // explicit assignments, do so. This optimization only applies for arrays
6903    // of scalars and arrays of class type with trivial copy-assignment
6904    // operators.
6905    if (FieldType->isArrayType() &&
6906        (!BaseType->isRecordType() ||
6907         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
6908           ->hasTrivialCopyAssignment())) {
6909      // Compute the size of the memory buffer to be copied.
6910      QualType SizeType = Context.getSizeType();
6911      llvm::APInt Size(Context.getTypeSize(SizeType),
6912                       Context.getTypeSizeInChars(BaseType).getQuantity());
6913      for (const ConstantArrayType *Array
6914              = Context.getAsConstantArrayType(FieldType);
6915           Array;
6916           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6917        llvm::APInt ArraySize
6918          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6919        Size *= ArraySize;
6920      }
6921
6922      // Take the address of the field references for "from" and "to".
6923      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6924      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6925
6926      bool NeedsCollectableMemCpy =
6927          (BaseType->isRecordType() &&
6928           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6929
6930      if (NeedsCollectableMemCpy) {
6931        if (!CollectableMemCpyRef) {
6932          // Create a reference to the __builtin_objc_memmove_collectable function.
6933          LookupResult R(*this,
6934                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6935                         Loc, LookupOrdinaryName);
6936          LookupName(R, TUScope, true);
6937
6938          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6939          if (!CollectableMemCpy) {
6940            // Something went horribly wrong earlier, and we will have
6941            // complained about it.
6942            Invalid = true;
6943            continue;
6944          }
6945
6946          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6947                                                  CollectableMemCpy->getType(),
6948                                                  VK_LValue, Loc, 0).take();
6949          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6950        }
6951      }
6952      // Create a reference to the __builtin_memcpy builtin function.
6953      else if (!BuiltinMemCpyRef) {
6954        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6955                       LookupOrdinaryName);
6956        LookupName(R, TUScope, true);
6957
6958        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6959        if (!BuiltinMemCpy) {
6960          // Something went horribly wrong earlier, and we will have complained
6961          // about it.
6962          Invalid = true;
6963          continue;
6964        }
6965
6966        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6967                                            BuiltinMemCpy->getType(),
6968                                            VK_LValue, Loc, 0).take();
6969        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6970      }
6971
6972      ASTOwningVector<Expr*> CallArgs(*this);
6973      CallArgs.push_back(To.takeAs<Expr>());
6974      CallArgs.push_back(From.takeAs<Expr>());
6975      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
6976      ExprResult Call = ExprError();
6977      if (NeedsCollectableMemCpy)
6978        Call = ActOnCallExpr(/*Scope=*/0,
6979                             CollectableMemCpyRef,
6980                             Loc, move_arg(CallArgs),
6981                             Loc);
6982      else
6983        Call = ActOnCallExpr(/*Scope=*/0,
6984                             BuiltinMemCpyRef,
6985                             Loc, move_arg(CallArgs),
6986                             Loc);
6987
6988      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
6989      Statements.push_back(Call.takeAs<Expr>());
6990      continue;
6991    }
6992
6993    // Build the copy of this field.
6994    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
6995                                                  To.get(), From.get(),
6996                                              /*CopyingBaseSubobject=*/false);
6997    if (Copy.isInvalid()) {
6998      Diag(CurrentLocation, diag::note_member_synthesized_at)
6999        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7000      CopyAssignOperator->setInvalidDecl();
7001      return;
7002    }
7003
7004    // Success! Record the copy.
7005    Statements.push_back(Copy.takeAs<Stmt>());
7006  }
7007
7008  if (!Invalid) {
7009    // Add a "return *this;"
7010    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7011
7012    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7013    if (Return.isInvalid())
7014      Invalid = true;
7015    else {
7016      Statements.push_back(Return.takeAs<Stmt>());
7017
7018      if (Trap.hasErrorOccurred()) {
7019        Diag(CurrentLocation, diag::note_member_synthesized_at)
7020          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7021        Invalid = true;
7022      }
7023    }
7024  }
7025
7026  if (Invalid) {
7027    CopyAssignOperator->setInvalidDecl();
7028    return;
7029  }
7030
7031  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7032                                            /*isStmtExpr=*/false);
7033  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7034  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7035
7036  if (ASTMutationListener *L = getASTMutationListener()) {
7037    L->CompletedImplicitDefinition(CopyAssignOperator);
7038  }
7039}
7040
7041std::pair<Sema::ImplicitExceptionSpecification, bool>
7042Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7043  // C++ [class.copy]p5:
7044  //   The implicitly-declared copy constructor for a class X will
7045  //   have the form
7046  //
7047  //       X::X(const X&)
7048  //
7049  //   if
7050  bool HasConstCopyConstructor = true;
7051
7052  //     -- each direct or virtual base class B of X has a copy
7053  //        constructor whose first parameter is of type const B& or
7054  //        const volatile B&, and
7055  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7056                                       BaseEnd = ClassDecl->bases_end();
7057       HasConstCopyConstructor && Base != BaseEnd;
7058       ++Base) {
7059    // Virtual bases are handled below.
7060    if (Base->isVirtual())
7061      continue;
7062
7063    CXXRecordDecl *BaseClassDecl
7064      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7065    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7066      DeclareImplicitCopyConstructor(BaseClassDecl);
7067
7068    HasConstCopyConstructor
7069      = BaseClassDecl->hasConstCopyConstructor(Context);
7070  }
7071
7072  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7073                                       BaseEnd = ClassDecl->vbases_end();
7074       HasConstCopyConstructor && Base != BaseEnd;
7075       ++Base) {
7076    CXXRecordDecl *BaseClassDecl
7077      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7078    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7079      DeclareImplicitCopyConstructor(BaseClassDecl);
7080
7081    HasConstCopyConstructor
7082      = BaseClassDecl->hasConstCopyConstructor(Context);
7083  }
7084
7085  //     -- for all the nonstatic data members of X that are of a
7086  //        class type M (or array thereof), each such class type
7087  //        has a copy constructor whose first parameter is of type
7088  //        const M& or const volatile M&.
7089  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7090                                  FieldEnd = ClassDecl->field_end();
7091       HasConstCopyConstructor && Field != FieldEnd;
7092       ++Field) {
7093    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7094    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7095      CXXRecordDecl *FieldClassDecl
7096        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7097      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7098        DeclareImplicitCopyConstructor(FieldClassDecl);
7099
7100      HasConstCopyConstructor
7101        = FieldClassDecl->hasConstCopyConstructor(Context);
7102    }
7103  }
7104  //   Otherwise, the implicitly declared copy constructor will have
7105  //   the form
7106  //
7107  //       X::X(X&)
7108
7109  // C++ [except.spec]p14:
7110  //   An implicitly declared special member function (Clause 12) shall have an
7111  //   exception-specification. [...]
7112  ImplicitExceptionSpecification ExceptSpec(Context);
7113  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7114  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7115                                       BaseEnd = ClassDecl->bases_end();
7116       Base != BaseEnd;
7117       ++Base) {
7118    // Virtual bases are handled below.
7119    if (Base->isVirtual())
7120      continue;
7121
7122    CXXRecordDecl *BaseClassDecl
7123      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7124    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7125      DeclareImplicitCopyConstructor(BaseClassDecl);
7126
7127    if (CXXConstructorDecl *CopyConstructor
7128                          = BaseClassDecl->getCopyConstructor(Context, Quals))
7129      ExceptSpec.CalledDecl(CopyConstructor);
7130  }
7131  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7132                                       BaseEnd = ClassDecl->vbases_end();
7133       Base != BaseEnd;
7134       ++Base) {
7135    CXXRecordDecl *BaseClassDecl
7136      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7137    if (!BaseClassDecl->hasDeclaredCopyConstructor())
7138      DeclareImplicitCopyConstructor(BaseClassDecl);
7139
7140    if (CXXConstructorDecl *CopyConstructor
7141                          = BaseClassDecl->getCopyConstructor(Context, Quals))
7142      ExceptSpec.CalledDecl(CopyConstructor);
7143  }
7144  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7145                                  FieldEnd = ClassDecl->field_end();
7146       Field != FieldEnd;
7147       ++Field) {
7148    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7149    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
7150      CXXRecordDecl *FieldClassDecl
7151        = cast<CXXRecordDecl>(FieldClassType->getDecl());
7152      if (!FieldClassDecl->hasDeclaredCopyConstructor())
7153        DeclareImplicitCopyConstructor(FieldClassDecl);
7154
7155      if (CXXConstructorDecl *CopyConstructor
7156                          = FieldClassDecl->getCopyConstructor(Context, Quals))
7157        ExceptSpec.CalledDecl(CopyConstructor);
7158    }
7159  }
7160
7161  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7162}
7163
7164CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7165                                                    CXXRecordDecl *ClassDecl) {
7166  // C++ [class.copy]p4:
7167  //   If the class definition does not explicitly declare a copy
7168  //   constructor, one is declared implicitly.
7169
7170  ImplicitExceptionSpecification Spec(Context);
7171  bool Const;
7172  llvm::tie(Spec, Const) =
7173    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7174
7175  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7176  QualType ArgType = ClassType;
7177  if (Const)
7178    ArgType = ArgType.withConst();
7179  ArgType = Context.getLValueReferenceType(ArgType);
7180
7181  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7182
7183  DeclarationName Name
7184    = Context.DeclarationNames.getCXXConstructorName(
7185                                           Context.getCanonicalType(ClassType));
7186  SourceLocation ClassLoc = ClassDecl->getLocation();
7187  DeclarationNameInfo NameInfo(Name, ClassLoc);
7188
7189  //   An implicitly-declared copy constructor is an inline public
7190  //   member of its class.
7191  CXXConstructorDecl *CopyConstructor
7192    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7193                                 Context.getFunctionType(Context.VoidTy,
7194                                                         &ArgType, 1, EPI),
7195                                 /*TInfo=*/0,
7196                                 /*isExplicit=*/false,
7197                                 /*isInline=*/true,
7198                                 /*isImplicitlyDeclared=*/true);
7199  CopyConstructor->setAccess(AS_public);
7200  CopyConstructor->setDefaulted();
7201  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7202
7203  // Note that we have declared this constructor.
7204  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7205
7206  // Add the parameter to the constructor.
7207  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7208                                               ClassLoc, ClassLoc,
7209                                               /*IdentifierInfo=*/0,
7210                                               ArgType, /*TInfo=*/0,
7211                                               SC_None,
7212                                               SC_None, 0);
7213  CopyConstructor->setParams(&FromParam, 1);
7214
7215  if (Scope *S = getScopeForContext(ClassDecl))
7216    PushOnScopeChains(CopyConstructor, S, false);
7217  ClassDecl->addDecl(CopyConstructor);
7218
7219  if (ShouldDeleteCopyConstructor(CopyConstructor))
7220    CopyConstructor->setDeletedAsWritten();
7221
7222  return CopyConstructor;
7223}
7224
7225void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7226                                   CXXConstructorDecl *CopyConstructor) {
7227  assert((CopyConstructor->isDefaulted() &&
7228          CopyConstructor->isCopyConstructor() &&
7229          !CopyConstructor->isUsed(false)) &&
7230         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7231
7232  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7233  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7234
7235  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7236  DiagnosticErrorTrap Trap(Diags);
7237
7238  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7239      Trap.hasErrorOccurred()) {
7240    Diag(CurrentLocation, diag::note_member_synthesized_at)
7241      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7242    CopyConstructor->setInvalidDecl();
7243  }  else {
7244    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7245                                               CopyConstructor->getLocation(),
7246                                               MultiStmtArg(*this, 0, 0),
7247                                               /*isStmtExpr=*/false)
7248                                                              .takeAs<Stmt>());
7249  }
7250
7251  CopyConstructor->setUsed();
7252
7253  if (ASTMutationListener *L = getASTMutationListener()) {
7254    L->CompletedImplicitDefinition(CopyConstructor);
7255  }
7256}
7257
7258ExprResult
7259Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7260                            CXXConstructorDecl *Constructor,
7261                            MultiExprArg ExprArgs,
7262                            bool RequiresZeroInit,
7263                            unsigned ConstructKind,
7264                            SourceRange ParenRange) {
7265  bool Elidable = false;
7266
7267  // C++0x [class.copy]p34:
7268  //   When certain criteria are met, an implementation is allowed to
7269  //   omit the copy/move construction of a class object, even if the
7270  //   copy/move constructor and/or destructor for the object have
7271  //   side effects. [...]
7272  //     - when a temporary class object that has not been bound to a
7273  //       reference (12.2) would be copied/moved to a class object
7274  //       with the same cv-unqualified type, the copy/move operation
7275  //       can be omitted by constructing the temporary object
7276  //       directly into the target of the omitted copy/move
7277  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7278      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7279    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7280    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7281  }
7282
7283  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7284                               Elidable, move(ExprArgs), RequiresZeroInit,
7285                               ConstructKind, ParenRange);
7286}
7287
7288/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7289/// including handling of its default argument expressions.
7290ExprResult
7291Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7292                            CXXConstructorDecl *Constructor, bool Elidable,
7293                            MultiExprArg ExprArgs,
7294                            bool RequiresZeroInit,
7295                            unsigned ConstructKind,
7296                            SourceRange ParenRange) {
7297  unsigned NumExprs = ExprArgs.size();
7298  Expr **Exprs = (Expr **)ExprArgs.release();
7299
7300  for (specific_attr_iterator<NonNullAttr>
7301           i = Constructor->specific_attr_begin<NonNullAttr>(),
7302           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7303    const NonNullAttr *NonNull = *i;
7304    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7305  }
7306
7307  MarkDeclarationReferenced(ConstructLoc, Constructor);
7308  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7309                                        Constructor, Elidable, Exprs, NumExprs,
7310                                        RequiresZeroInit,
7311              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7312                                        ParenRange));
7313}
7314
7315bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7316                                        CXXConstructorDecl *Constructor,
7317                                        MultiExprArg Exprs) {
7318  // FIXME: Provide the correct paren SourceRange when available.
7319  ExprResult TempResult =
7320    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7321                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7322                          SourceRange());
7323  if (TempResult.isInvalid())
7324    return true;
7325
7326  Expr *Temp = TempResult.takeAs<Expr>();
7327  CheckImplicitConversions(Temp, VD->getLocation());
7328  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7329  Temp = MaybeCreateExprWithCleanups(Temp);
7330  VD->setInit(Temp);
7331
7332  return false;
7333}
7334
7335void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7336  if (VD->isInvalidDecl()) return;
7337
7338  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7339  if (ClassDecl->isInvalidDecl()) return;
7340  if (ClassDecl->hasTrivialDestructor()) return;
7341  if (ClassDecl->isDependentContext()) return;
7342
7343  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7344  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7345  CheckDestructorAccess(VD->getLocation(), Destructor,
7346                        PDiag(diag::err_access_dtor_var)
7347                        << VD->getDeclName()
7348                        << VD->getType());
7349
7350  if (!VD->hasGlobalStorage()) return;
7351
7352  // Emit warning for non-trivial dtor in global scope (a real global,
7353  // class-static, function-static).
7354  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7355
7356  // TODO: this should be re-enabled for static locals by !CXAAtExit
7357  if (!VD->isStaticLocal())
7358    Diag(VD->getLocation(), diag::warn_global_destructor);
7359}
7360
7361/// AddCXXDirectInitializerToDecl - This action is called immediately after
7362/// ActOnDeclarator, when a C++ direct initializer is present.
7363/// e.g: "int x(1);"
7364void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7365                                         SourceLocation LParenLoc,
7366                                         MultiExprArg Exprs,
7367                                         SourceLocation RParenLoc,
7368                                         bool TypeMayContainAuto) {
7369  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7370
7371  // If there is no declaration, there was an error parsing it.  Just ignore
7372  // the initializer.
7373  if (RealDecl == 0)
7374    return;
7375
7376  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7377  if (!VDecl) {
7378    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7379    RealDecl->setInvalidDecl();
7380    return;
7381  }
7382
7383  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7384  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7385    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7386    if (Exprs.size() > 1) {
7387      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7388           diag::err_auto_var_init_multiple_expressions)
7389        << VDecl->getDeclName() << VDecl->getType()
7390        << VDecl->getSourceRange();
7391      RealDecl->setInvalidDecl();
7392      return;
7393    }
7394
7395    Expr *Init = Exprs.get()[0];
7396    TypeSourceInfo *DeducedType = 0;
7397    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7398      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7399        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7400        << Init->getSourceRange();
7401    if (!DeducedType) {
7402      RealDecl->setInvalidDecl();
7403      return;
7404    }
7405    VDecl->setTypeSourceInfo(DeducedType);
7406    VDecl->setType(DeducedType->getType());
7407
7408    // If this is a redeclaration, check that the type we just deduced matches
7409    // the previously declared type.
7410    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7411      MergeVarDeclTypes(VDecl, Old);
7412  }
7413
7414  // We will represent direct-initialization similarly to copy-initialization:
7415  //    int x(1);  -as-> int x = 1;
7416  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7417  //
7418  // Clients that want to distinguish between the two forms, can check for
7419  // direct initializer using VarDecl::hasCXXDirectInitializer().
7420  // A major benefit is that clients that don't particularly care about which
7421  // exactly form was it (like the CodeGen) can handle both cases without
7422  // special case code.
7423
7424  // C++ 8.5p11:
7425  // The form of initialization (using parentheses or '=') is generally
7426  // insignificant, but does matter when the entity being initialized has a
7427  // class type.
7428
7429  if (!VDecl->getType()->isDependentType() &&
7430      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7431                          diag::err_typecheck_decl_incomplete_type)) {
7432    VDecl->setInvalidDecl();
7433    return;
7434  }
7435
7436  // The variable can not have an abstract class type.
7437  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7438                             diag::err_abstract_type_in_decl,
7439                             AbstractVariableType))
7440    VDecl->setInvalidDecl();
7441
7442  const VarDecl *Def;
7443  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7444    Diag(VDecl->getLocation(), diag::err_redefinition)
7445    << VDecl->getDeclName();
7446    Diag(Def->getLocation(), diag::note_previous_definition);
7447    VDecl->setInvalidDecl();
7448    return;
7449  }
7450
7451  // C++ [class.static.data]p4
7452  //   If a static data member is of const integral or const
7453  //   enumeration type, its declaration in the class definition can
7454  //   specify a constant-initializer which shall be an integral
7455  //   constant expression (5.19). In that case, the member can appear
7456  //   in integral constant expressions. The member shall still be
7457  //   defined in a namespace scope if it is used in the program and the
7458  //   namespace scope definition shall not contain an initializer.
7459  //
7460  // We already performed a redefinition check above, but for static
7461  // data members we also need to check whether there was an in-class
7462  // declaration with an initializer.
7463  const VarDecl* PrevInit = 0;
7464  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7465    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7466    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7467    return;
7468  }
7469
7470  bool IsDependent = false;
7471  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7472    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7473      VDecl->setInvalidDecl();
7474      return;
7475    }
7476
7477    if (Exprs.get()[I]->isTypeDependent())
7478      IsDependent = true;
7479  }
7480
7481  // If either the declaration has a dependent type or if any of the
7482  // expressions is type-dependent, we represent the initialization
7483  // via a ParenListExpr for later use during template instantiation.
7484  if (VDecl->getType()->isDependentType() || IsDependent) {
7485    // Let clients know that initialization was done with a direct initializer.
7486    VDecl->setCXXDirectInitializer(true);
7487
7488    // Store the initialization expressions as a ParenListExpr.
7489    unsigned NumExprs = Exprs.size();
7490    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
7491                                               (Expr **)Exprs.release(),
7492                                               NumExprs, RParenLoc));
7493    return;
7494  }
7495
7496  // Capture the variable that is being initialized and the style of
7497  // initialization.
7498  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7499
7500  // FIXME: Poor source location information.
7501  InitializationKind Kind
7502    = InitializationKind::CreateDirect(VDecl->getLocation(),
7503                                       LParenLoc, RParenLoc);
7504
7505  InitializationSequence InitSeq(*this, Entity, Kind,
7506                                 Exprs.get(), Exprs.size());
7507  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7508  if (Result.isInvalid()) {
7509    VDecl->setInvalidDecl();
7510    return;
7511  }
7512
7513  CheckImplicitConversions(Result.get(), LParenLoc);
7514
7515  Result = MaybeCreateExprWithCleanups(Result);
7516  VDecl->setInit(Result.takeAs<Expr>());
7517  VDecl->setCXXDirectInitializer(true);
7518
7519  CheckCompleteVariableDeclaration(VDecl);
7520}
7521
7522/// \brief Given a constructor and the set of arguments provided for the
7523/// constructor, convert the arguments and add any required default arguments
7524/// to form a proper call to this constructor.
7525///
7526/// \returns true if an error occurred, false otherwise.
7527bool
7528Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7529                              MultiExprArg ArgsPtr,
7530                              SourceLocation Loc,
7531                              ASTOwningVector<Expr*> &ConvertedArgs) {
7532  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7533  unsigned NumArgs = ArgsPtr.size();
7534  Expr **Args = (Expr **)ArgsPtr.get();
7535
7536  const FunctionProtoType *Proto
7537    = Constructor->getType()->getAs<FunctionProtoType>();
7538  assert(Proto && "Constructor without a prototype?");
7539  unsigned NumArgsInProto = Proto->getNumArgs();
7540
7541  // If too few arguments are available, we'll fill in the rest with defaults.
7542  if (NumArgs < NumArgsInProto)
7543    ConvertedArgs.reserve(NumArgsInProto);
7544  else
7545    ConvertedArgs.reserve(NumArgs);
7546
7547  VariadicCallType CallType =
7548    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7549  llvm::SmallVector<Expr *, 8> AllArgs;
7550  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7551                                        Proto, 0, Args, NumArgs, AllArgs,
7552                                        CallType);
7553  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7554    ConvertedArgs.push_back(AllArgs[i]);
7555  return Invalid;
7556}
7557
7558static inline bool
7559CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7560                                       const FunctionDecl *FnDecl) {
7561  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7562  if (isa<NamespaceDecl>(DC)) {
7563    return SemaRef.Diag(FnDecl->getLocation(),
7564                        diag::err_operator_new_delete_declared_in_namespace)
7565      << FnDecl->getDeclName();
7566  }
7567
7568  if (isa<TranslationUnitDecl>(DC) &&
7569      FnDecl->getStorageClass() == SC_Static) {
7570    return SemaRef.Diag(FnDecl->getLocation(),
7571                        diag::err_operator_new_delete_declared_static)
7572      << FnDecl->getDeclName();
7573  }
7574
7575  return false;
7576}
7577
7578static inline bool
7579CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7580                            CanQualType ExpectedResultType,
7581                            CanQualType ExpectedFirstParamType,
7582                            unsigned DependentParamTypeDiag,
7583                            unsigned InvalidParamTypeDiag) {
7584  QualType ResultType =
7585    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7586
7587  // Check that the result type is not dependent.
7588  if (ResultType->isDependentType())
7589    return SemaRef.Diag(FnDecl->getLocation(),
7590                        diag::err_operator_new_delete_dependent_result_type)
7591    << FnDecl->getDeclName() << ExpectedResultType;
7592
7593  // Check that the result type is what we expect.
7594  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7595    return SemaRef.Diag(FnDecl->getLocation(),
7596                        diag::err_operator_new_delete_invalid_result_type)
7597    << FnDecl->getDeclName() << ExpectedResultType;
7598
7599  // A function template must have at least 2 parameters.
7600  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7601    return SemaRef.Diag(FnDecl->getLocation(),
7602                      diag::err_operator_new_delete_template_too_few_parameters)
7603        << FnDecl->getDeclName();
7604
7605  // The function decl must have at least 1 parameter.
7606  if (FnDecl->getNumParams() == 0)
7607    return SemaRef.Diag(FnDecl->getLocation(),
7608                        diag::err_operator_new_delete_too_few_parameters)
7609      << FnDecl->getDeclName();
7610
7611  // Check the the first parameter type is not dependent.
7612  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7613  if (FirstParamType->isDependentType())
7614    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7615      << FnDecl->getDeclName() << ExpectedFirstParamType;
7616
7617  // Check that the first parameter type is what we expect.
7618  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7619      ExpectedFirstParamType)
7620    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7621    << FnDecl->getDeclName() << ExpectedFirstParamType;
7622
7623  return false;
7624}
7625
7626static bool
7627CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7628  // C++ [basic.stc.dynamic.allocation]p1:
7629  //   A program is ill-formed if an allocation function is declared in a
7630  //   namespace scope other than global scope or declared static in global
7631  //   scope.
7632  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7633    return true;
7634
7635  CanQualType SizeTy =
7636    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7637
7638  // C++ [basic.stc.dynamic.allocation]p1:
7639  //  The return type shall be void*. The first parameter shall have type
7640  //  std::size_t.
7641  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7642                                  SizeTy,
7643                                  diag::err_operator_new_dependent_param_type,
7644                                  diag::err_operator_new_param_type))
7645    return true;
7646
7647  // C++ [basic.stc.dynamic.allocation]p1:
7648  //  The first parameter shall not have an associated default argument.
7649  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7650    return SemaRef.Diag(FnDecl->getLocation(),
7651                        diag::err_operator_new_default_arg)
7652      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7653
7654  return false;
7655}
7656
7657static bool
7658CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7659  // C++ [basic.stc.dynamic.deallocation]p1:
7660  //   A program is ill-formed if deallocation functions are declared in a
7661  //   namespace scope other than global scope or declared static in global
7662  //   scope.
7663  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7664    return true;
7665
7666  // C++ [basic.stc.dynamic.deallocation]p2:
7667  //   Each deallocation function shall return void and its first parameter
7668  //   shall be void*.
7669  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7670                                  SemaRef.Context.VoidPtrTy,
7671                                 diag::err_operator_delete_dependent_param_type,
7672                                 diag::err_operator_delete_param_type))
7673    return true;
7674
7675  return false;
7676}
7677
7678/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7679/// of this overloaded operator is well-formed. If so, returns false;
7680/// otherwise, emits appropriate diagnostics and returns true.
7681bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7682  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7683         "Expected an overloaded operator declaration");
7684
7685  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7686
7687  // C++ [over.oper]p5:
7688  //   The allocation and deallocation functions, operator new,
7689  //   operator new[], operator delete and operator delete[], are
7690  //   described completely in 3.7.3. The attributes and restrictions
7691  //   found in the rest of this subclause do not apply to them unless
7692  //   explicitly stated in 3.7.3.
7693  if (Op == OO_Delete || Op == OO_Array_Delete)
7694    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7695
7696  if (Op == OO_New || Op == OO_Array_New)
7697    return CheckOperatorNewDeclaration(*this, FnDecl);
7698
7699  // C++ [over.oper]p6:
7700  //   An operator function shall either be a non-static member
7701  //   function or be a non-member function and have at least one
7702  //   parameter whose type is a class, a reference to a class, an
7703  //   enumeration, or a reference to an enumeration.
7704  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7705    if (MethodDecl->isStatic())
7706      return Diag(FnDecl->getLocation(),
7707                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7708  } else {
7709    bool ClassOrEnumParam = false;
7710    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7711                                   ParamEnd = FnDecl->param_end();
7712         Param != ParamEnd; ++Param) {
7713      QualType ParamType = (*Param)->getType().getNonReferenceType();
7714      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7715          ParamType->isEnumeralType()) {
7716        ClassOrEnumParam = true;
7717        break;
7718      }
7719    }
7720
7721    if (!ClassOrEnumParam)
7722      return Diag(FnDecl->getLocation(),
7723                  diag::err_operator_overload_needs_class_or_enum)
7724        << FnDecl->getDeclName();
7725  }
7726
7727  // C++ [over.oper]p8:
7728  //   An operator function cannot have default arguments (8.3.6),
7729  //   except where explicitly stated below.
7730  //
7731  // Only the function-call operator allows default arguments
7732  // (C++ [over.call]p1).
7733  if (Op != OO_Call) {
7734    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7735         Param != FnDecl->param_end(); ++Param) {
7736      if ((*Param)->hasDefaultArg())
7737        return Diag((*Param)->getLocation(),
7738                    diag::err_operator_overload_default_arg)
7739          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7740    }
7741  }
7742
7743  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7744    { false, false, false }
7745#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7746    , { Unary, Binary, MemberOnly }
7747#include "clang/Basic/OperatorKinds.def"
7748  };
7749
7750  bool CanBeUnaryOperator = OperatorUses[Op][0];
7751  bool CanBeBinaryOperator = OperatorUses[Op][1];
7752  bool MustBeMemberOperator = OperatorUses[Op][2];
7753
7754  // C++ [over.oper]p8:
7755  //   [...] Operator functions cannot have more or fewer parameters
7756  //   than the number required for the corresponding operator, as
7757  //   described in the rest of this subclause.
7758  unsigned NumParams = FnDecl->getNumParams()
7759                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7760  if (Op != OO_Call &&
7761      ((NumParams == 1 && !CanBeUnaryOperator) ||
7762       (NumParams == 2 && !CanBeBinaryOperator) ||
7763       (NumParams < 1) || (NumParams > 2))) {
7764    // We have the wrong number of parameters.
7765    unsigned ErrorKind;
7766    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7767      ErrorKind = 2;  // 2 -> unary or binary.
7768    } else if (CanBeUnaryOperator) {
7769      ErrorKind = 0;  // 0 -> unary
7770    } else {
7771      assert(CanBeBinaryOperator &&
7772             "All non-call overloaded operators are unary or binary!");
7773      ErrorKind = 1;  // 1 -> binary
7774    }
7775
7776    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7777      << FnDecl->getDeclName() << NumParams << ErrorKind;
7778  }
7779
7780  // Overloaded operators other than operator() cannot be variadic.
7781  if (Op != OO_Call &&
7782      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7783    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7784      << FnDecl->getDeclName();
7785  }
7786
7787  // Some operators must be non-static member functions.
7788  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7789    return Diag(FnDecl->getLocation(),
7790                diag::err_operator_overload_must_be_member)
7791      << FnDecl->getDeclName();
7792  }
7793
7794  // C++ [over.inc]p1:
7795  //   The user-defined function called operator++ implements the
7796  //   prefix and postfix ++ operator. If this function is a member
7797  //   function with no parameters, or a non-member function with one
7798  //   parameter of class or enumeration type, it defines the prefix
7799  //   increment operator ++ for objects of that type. If the function
7800  //   is a member function with one parameter (which shall be of type
7801  //   int) or a non-member function with two parameters (the second
7802  //   of which shall be of type int), it defines the postfix
7803  //   increment operator ++ for objects of that type.
7804  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7805    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7806    bool ParamIsInt = false;
7807    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7808      ParamIsInt = BT->getKind() == BuiltinType::Int;
7809
7810    if (!ParamIsInt)
7811      return Diag(LastParam->getLocation(),
7812                  diag::err_operator_overload_post_incdec_must_be_int)
7813        << LastParam->getType() << (Op == OO_MinusMinus);
7814  }
7815
7816  return false;
7817}
7818
7819/// CheckLiteralOperatorDeclaration - Check whether the declaration
7820/// of this literal operator function is well-formed. If so, returns
7821/// false; otherwise, emits appropriate diagnostics and returns true.
7822bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7823  DeclContext *DC = FnDecl->getDeclContext();
7824  Decl::Kind Kind = DC->getDeclKind();
7825  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7826      Kind != Decl::LinkageSpec) {
7827    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7828      << FnDecl->getDeclName();
7829    return true;
7830  }
7831
7832  bool Valid = false;
7833
7834  // template <char...> type operator "" name() is the only valid template
7835  // signature, and the only valid signature with no parameters.
7836  if (FnDecl->param_size() == 0) {
7837    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7838      // Must have only one template parameter
7839      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7840      if (Params->size() == 1) {
7841        NonTypeTemplateParmDecl *PmDecl =
7842          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7843
7844        // The template parameter must be a char parameter pack.
7845        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7846            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7847          Valid = true;
7848      }
7849    }
7850  } else {
7851    // Check the first parameter
7852    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7853
7854    QualType T = (*Param)->getType();
7855
7856    // unsigned long long int, long double, and any character type are allowed
7857    // as the only parameters.
7858    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7859        Context.hasSameType(T, Context.LongDoubleTy) ||
7860        Context.hasSameType(T, Context.CharTy) ||
7861        Context.hasSameType(T, Context.WCharTy) ||
7862        Context.hasSameType(T, Context.Char16Ty) ||
7863        Context.hasSameType(T, Context.Char32Ty)) {
7864      if (++Param == FnDecl->param_end())
7865        Valid = true;
7866      goto FinishedParams;
7867    }
7868
7869    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7870    const PointerType *PT = T->getAs<PointerType>();
7871    if (!PT)
7872      goto FinishedParams;
7873    T = PT->getPointeeType();
7874    if (!T.isConstQualified())
7875      goto FinishedParams;
7876    T = T.getUnqualifiedType();
7877
7878    // Move on to the second parameter;
7879    ++Param;
7880
7881    // If there is no second parameter, the first must be a const char *
7882    if (Param == FnDecl->param_end()) {
7883      if (Context.hasSameType(T, Context.CharTy))
7884        Valid = true;
7885      goto FinishedParams;
7886    }
7887
7888    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7889    // are allowed as the first parameter to a two-parameter function
7890    if (!(Context.hasSameType(T, Context.CharTy) ||
7891          Context.hasSameType(T, Context.WCharTy) ||
7892          Context.hasSameType(T, Context.Char16Ty) ||
7893          Context.hasSameType(T, Context.Char32Ty)))
7894      goto FinishedParams;
7895
7896    // The second and final parameter must be an std::size_t
7897    T = (*Param)->getType().getUnqualifiedType();
7898    if (Context.hasSameType(T, Context.getSizeType()) &&
7899        ++Param == FnDecl->param_end())
7900      Valid = true;
7901  }
7902
7903  // FIXME: This diagnostic is absolutely terrible.
7904FinishedParams:
7905  if (!Valid) {
7906    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7907      << FnDecl->getDeclName();
7908    return true;
7909  }
7910
7911  return false;
7912}
7913
7914/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7915/// linkage specification, including the language and (if present)
7916/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7917/// the location of the language string literal, which is provided
7918/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7919/// the '{' brace. Otherwise, this linkage specification does not
7920/// have any braces.
7921Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7922                                           SourceLocation LangLoc,
7923                                           llvm::StringRef Lang,
7924                                           SourceLocation LBraceLoc) {
7925  LinkageSpecDecl::LanguageIDs Language;
7926  if (Lang == "\"C\"")
7927    Language = LinkageSpecDecl::lang_c;
7928  else if (Lang == "\"C++\"")
7929    Language = LinkageSpecDecl::lang_cxx;
7930  else {
7931    Diag(LangLoc, diag::err_bad_language);
7932    return 0;
7933  }
7934
7935  // FIXME: Add all the various semantics of linkage specifications
7936
7937  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7938                                               ExternLoc, LangLoc, Language);
7939  CurContext->addDecl(D);
7940  PushDeclContext(S, D);
7941  return D;
7942}
7943
7944/// ActOnFinishLinkageSpecification - Complete the definition of
7945/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7946/// valid, it's the position of the closing '}' brace in a linkage
7947/// specification that uses braces.
7948Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7949                                            Decl *LinkageSpec,
7950                                            SourceLocation RBraceLoc) {
7951  if (LinkageSpec) {
7952    if (RBraceLoc.isValid()) {
7953      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7954      LSDecl->setRBraceLoc(RBraceLoc);
7955    }
7956    PopDeclContext();
7957  }
7958  return LinkageSpec;
7959}
7960
7961/// \brief Perform semantic analysis for the variable declaration that
7962/// occurs within a C++ catch clause, returning the newly-created
7963/// variable.
7964VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7965                                         TypeSourceInfo *TInfo,
7966                                         SourceLocation StartLoc,
7967                                         SourceLocation Loc,
7968                                         IdentifierInfo *Name) {
7969  bool Invalid = false;
7970  QualType ExDeclType = TInfo->getType();
7971
7972  // Arrays and functions decay.
7973  if (ExDeclType->isArrayType())
7974    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7975  else if (ExDeclType->isFunctionType())
7976    ExDeclType = Context.getPointerType(ExDeclType);
7977
7978  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7979  // The exception-declaration shall not denote a pointer or reference to an
7980  // incomplete type, other than [cv] void*.
7981  // N2844 forbids rvalue references.
7982  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
7983    Diag(Loc, diag::err_catch_rvalue_ref);
7984    Invalid = true;
7985  }
7986
7987  // GCC allows catching pointers and references to incomplete types
7988  // as an extension; so do we, but we warn by default.
7989
7990  QualType BaseType = ExDeclType;
7991  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
7992  unsigned DK = diag::err_catch_incomplete;
7993  bool IncompleteCatchIsInvalid = true;
7994  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
7995    BaseType = Ptr->getPointeeType();
7996    Mode = 1;
7997    DK = diag::ext_catch_incomplete_ptr;
7998    IncompleteCatchIsInvalid = false;
7999  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8000    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8001    BaseType = Ref->getPointeeType();
8002    Mode = 2;
8003    DK = diag::ext_catch_incomplete_ref;
8004    IncompleteCatchIsInvalid = false;
8005  }
8006  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8007      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8008      IncompleteCatchIsInvalid)
8009    Invalid = true;
8010
8011  if (!Invalid && !ExDeclType->isDependentType() &&
8012      RequireNonAbstractType(Loc, ExDeclType,
8013                             diag::err_abstract_type_in_decl,
8014                             AbstractVariableType))
8015    Invalid = true;
8016
8017  // Only the non-fragile NeXT runtime currently supports C++ catches
8018  // of ObjC types, and no runtime supports catching ObjC types by value.
8019  if (!Invalid && getLangOptions().ObjC1) {
8020    QualType T = ExDeclType;
8021    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8022      T = RT->getPointeeType();
8023
8024    if (T->isObjCObjectType()) {
8025      Diag(Loc, diag::err_objc_object_catch);
8026      Invalid = true;
8027    } else if (T->isObjCObjectPointerType()) {
8028      if (!getLangOptions().ObjCNonFragileABI) {
8029        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
8030        Invalid = true;
8031      }
8032    }
8033  }
8034
8035  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8036                                    ExDeclType, TInfo, SC_None, SC_None);
8037  ExDecl->setExceptionVariable(true);
8038
8039  if (!Invalid) {
8040    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8041      // C++ [except.handle]p16:
8042      //   The object declared in an exception-declaration or, if the
8043      //   exception-declaration does not specify a name, a temporary (12.2) is
8044      //   copy-initialized (8.5) from the exception object. [...]
8045      //   The object is destroyed when the handler exits, after the destruction
8046      //   of any automatic objects initialized within the handler.
8047      //
8048      // We just pretend to initialize the object with itself, then make sure
8049      // it can be destroyed later.
8050      QualType initType = ExDeclType;
8051
8052      InitializedEntity entity =
8053        InitializedEntity::InitializeVariable(ExDecl);
8054      InitializationKind initKind =
8055        InitializationKind::CreateCopy(Loc, SourceLocation());
8056
8057      Expr *opaqueValue =
8058        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8059      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8060      ExprResult result = sequence.Perform(*this, entity, initKind,
8061                                           MultiExprArg(&opaqueValue, 1));
8062      if (result.isInvalid())
8063        Invalid = true;
8064      else {
8065        // If the constructor used was non-trivial, set this as the
8066        // "initializer".
8067        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8068        if (!construct->getConstructor()->isTrivial()) {
8069          Expr *init = MaybeCreateExprWithCleanups(construct);
8070          ExDecl->setInit(init);
8071        }
8072
8073        // And make sure it's destructable.
8074        FinalizeVarWithDestructor(ExDecl, recordType);
8075      }
8076    }
8077  }
8078
8079  if (Invalid)
8080    ExDecl->setInvalidDecl();
8081
8082  return ExDecl;
8083}
8084
8085/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8086/// handler.
8087Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8088  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8089  bool Invalid = D.isInvalidType();
8090
8091  // Check for unexpanded parameter packs.
8092  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8093                                               UPPC_ExceptionType)) {
8094    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8095                                             D.getIdentifierLoc());
8096    Invalid = true;
8097  }
8098
8099  IdentifierInfo *II = D.getIdentifier();
8100  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8101                                             LookupOrdinaryName,
8102                                             ForRedeclaration)) {
8103    // The scope should be freshly made just for us. There is just no way
8104    // it contains any previous declaration.
8105    assert(!S->isDeclScope(PrevDecl));
8106    if (PrevDecl->isTemplateParameter()) {
8107      // Maybe we will complain about the shadowed template parameter.
8108      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8109    }
8110  }
8111
8112  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8113    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8114      << D.getCXXScopeSpec().getRange();
8115    Invalid = true;
8116  }
8117
8118  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8119                                              D.getSourceRange().getBegin(),
8120                                              D.getIdentifierLoc(),
8121                                              D.getIdentifier());
8122  if (Invalid)
8123    ExDecl->setInvalidDecl();
8124
8125  // Add the exception declaration into this scope.
8126  if (II)
8127    PushOnScopeChains(ExDecl, S);
8128  else
8129    CurContext->addDecl(ExDecl);
8130
8131  ProcessDeclAttributes(S, ExDecl, D);
8132  return ExDecl;
8133}
8134
8135Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8136                                         Expr *AssertExpr,
8137                                         Expr *AssertMessageExpr_,
8138                                         SourceLocation RParenLoc) {
8139  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8140
8141  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8142    llvm::APSInt Value(32);
8143    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8144      Diag(StaticAssertLoc,
8145           diag::err_static_assert_expression_is_not_constant) <<
8146        AssertExpr->getSourceRange();
8147      return 0;
8148    }
8149
8150    if (Value == 0) {
8151      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8152        << AssertMessage->getString() << AssertExpr->getSourceRange();
8153    }
8154  }
8155
8156  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8157    return 0;
8158
8159  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8160                                        AssertExpr, AssertMessage, RParenLoc);
8161
8162  CurContext->addDecl(Decl);
8163  return Decl;
8164}
8165
8166/// \brief Perform semantic analysis of the given friend type declaration.
8167///
8168/// \returns A friend declaration that.
8169FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8170                                      TypeSourceInfo *TSInfo) {
8171  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8172
8173  QualType T = TSInfo->getType();
8174  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8175
8176  if (!getLangOptions().CPlusPlus0x) {
8177    // C++03 [class.friend]p2:
8178    //   An elaborated-type-specifier shall be used in a friend declaration
8179    //   for a class.*
8180    //
8181    //   * The class-key of the elaborated-type-specifier is required.
8182    if (!ActiveTemplateInstantiations.empty()) {
8183      // Do not complain about the form of friend template types during
8184      // template instantiation; we will already have complained when the
8185      // template was declared.
8186    } else if (!T->isElaboratedTypeSpecifier()) {
8187      // If we evaluated the type to a record type, suggest putting
8188      // a tag in front.
8189      if (const RecordType *RT = T->getAs<RecordType>()) {
8190        RecordDecl *RD = RT->getDecl();
8191
8192        std::string InsertionText = std::string(" ") + RD->getKindName();
8193
8194        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8195          << (unsigned) RD->getTagKind()
8196          << T
8197          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8198                                        InsertionText);
8199      } else {
8200        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8201          << T
8202          << SourceRange(FriendLoc, TypeRange.getEnd());
8203      }
8204    } else if (T->getAs<EnumType>()) {
8205      Diag(FriendLoc, diag::ext_enum_friend)
8206        << T
8207        << SourceRange(FriendLoc, TypeRange.getEnd());
8208    }
8209  }
8210
8211  // C++0x [class.friend]p3:
8212  //   If the type specifier in a friend declaration designates a (possibly
8213  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8214  //   the friend declaration is ignored.
8215
8216  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8217  // in [class.friend]p3 that we do not implement.
8218
8219  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8220}
8221
8222/// Handle a friend tag declaration where the scope specifier was
8223/// templated.
8224Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8225                                    unsigned TagSpec, SourceLocation TagLoc,
8226                                    CXXScopeSpec &SS,
8227                                    IdentifierInfo *Name, SourceLocation NameLoc,
8228                                    AttributeList *Attr,
8229                                    MultiTemplateParamsArg TempParamLists) {
8230  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8231
8232  bool isExplicitSpecialization = false;
8233  bool Invalid = false;
8234
8235  if (TemplateParameterList *TemplateParams
8236        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8237                                                  TempParamLists.get(),
8238                                                  TempParamLists.size(),
8239                                                  /*friend*/ true,
8240                                                  isExplicitSpecialization,
8241                                                  Invalid)) {
8242    if (TemplateParams->size() > 0) {
8243      // This is a declaration of a class template.
8244      if (Invalid)
8245        return 0;
8246
8247      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8248                                SS, Name, NameLoc, Attr,
8249                                TemplateParams, AS_public,
8250                                TempParamLists.size() - 1,
8251                   (TemplateParameterList**) TempParamLists.release()).take();
8252    } else {
8253      // The "template<>" header is extraneous.
8254      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8255        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8256      isExplicitSpecialization = true;
8257    }
8258  }
8259
8260  if (Invalid) return 0;
8261
8262  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8263
8264  bool isAllExplicitSpecializations = true;
8265  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8266    if (TempParamLists.get()[I]->size()) {
8267      isAllExplicitSpecializations = false;
8268      break;
8269    }
8270  }
8271
8272  // FIXME: don't ignore attributes.
8273
8274  // If it's explicit specializations all the way down, just forget
8275  // about the template header and build an appropriate non-templated
8276  // friend.  TODO: for source fidelity, remember the headers.
8277  if (isAllExplicitSpecializations) {
8278    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8279    ElaboratedTypeKeyword Keyword
8280      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8281    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8282                                   *Name, NameLoc);
8283    if (T.isNull())
8284      return 0;
8285
8286    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8287    if (isa<DependentNameType>(T)) {
8288      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8289      TL.setKeywordLoc(TagLoc);
8290      TL.setQualifierLoc(QualifierLoc);
8291      TL.setNameLoc(NameLoc);
8292    } else {
8293      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8294      TL.setKeywordLoc(TagLoc);
8295      TL.setQualifierLoc(QualifierLoc);
8296      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8297    }
8298
8299    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8300                                            TSI, FriendLoc);
8301    Friend->setAccess(AS_public);
8302    CurContext->addDecl(Friend);
8303    return Friend;
8304  }
8305
8306  // Handle the case of a templated-scope friend class.  e.g.
8307  //   template <class T> class A<T>::B;
8308  // FIXME: we don't support these right now.
8309  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8310  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8311  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8312  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8313  TL.setKeywordLoc(TagLoc);
8314  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8315  TL.setNameLoc(NameLoc);
8316
8317  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8318                                          TSI, FriendLoc);
8319  Friend->setAccess(AS_public);
8320  Friend->setUnsupportedFriend(true);
8321  CurContext->addDecl(Friend);
8322  return Friend;
8323}
8324
8325
8326/// Handle a friend type declaration.  This works in tandem with
8327/// ActOnTag.
8328///
8329/// Notes on friend class templates:
8330///
8331/// We generally treat friend class declarations as if they were
8332/// declaring a class.  So, for example, the elaborated type specifier
8333/// in a friend declaration is required to obey the restrictions of a
8334/// class-head (i.e. no typedefs in the scope chain), template
8335/// parameters are required to match up with simple template-ids, &c.
8336/// However, unlike when declaring a template specialization, it's
8337/// okay to refer to a template specialization without an empty
8338/// template parameter declaration, e.g.
8339///   friend class A<T>::B<unsigned>;
8340/// We permit this as a special case; if there are any template
8341/// parameters present at all, require proper matching, i.e.
8342///   template <> template <class T> friend class A<int>::B;
8343Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8344                                MultiTemplateParamsArg TempParams) {
8345  SourceLocation Loc = DS.getSourceRange().getBegin();
8346
8347  assert(DS.isFriendSpecified());
8348  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8349
8350  // Try to convert the decl specifier to a type.  This works for
8351  // friend templates because ActOnTag never produces a ClassTemplateDecl
8352  // for a TUK_Friend.
8353  Declarator TheDeclarator(DS, Declarator::MemberContext);
8354  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8355  QualType T = TSI->getType();
8356  if (TheDeclarator.isInvalidType())
8357    return 0;
8358
8359  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8360    return 0;
8361
8362  // This is definitely an error in C++98.  It's probably meant to
8363  // be forbidden in C++0x, too, but the specification is just
8364  // poorly written.
8365  //
8366  // The problem is with declarations like the following:
8367  //   template <T> friend A<T>::foo;
8368  // where deciding whether a class C is a friend or not now hinges
8369  // on whether there exists an instantiation of A that causes
8370  // 'foo' to equal C.  There are restrictions on class-heads
8371  // (which we declare (by fiat) elaborated friend declarations to
8372  // be) that makes this tractable.
8373  //
8374  // FIXME: handle "template <> friend class A<T>;", which
8375  // is possibly well-formed?  Who even knows?
8376  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8377    Diag(Loc, diag::err_tagless_friend_type_template)
8378      << DS.getSourceRange();
8379    return 0;
8380  }
8381
8382  // C++98 [class.friend]p1: A friend of a class is a function
8383  //   or class that is not a member of the class . . .
8384  // This is fixed in DR77, which just barely didn't make the C++03
8385  // deadline.  It's also a very silly restriction that seriously
8386  // affects inner classes and which nobody else seems to implement;
8387  // thus we never diagnose it, not even in -pedantic.
8388  //
8389  // But note that we could warn about it: it's always useless to
8390  // friend one of your own members (it's not, however, worthless to
8391  // friend a member of an arbitrary specialization of your template).
8392
8393  Decl *D;
8394  if (unsigned NumTempParamLists = TempParams.size())
8395    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8396                                   NumTempParamLists,
8397                                   TempParams.release(),
8398                                   TSI,
8399                                   DS.getFriendSpecLoc());
8400  else
8401    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8402
8403  if (!D)
8404    return 0;
8405
8406  D->setAccess(AS_public);
8407  CurContext->addDecl(D);
8408
8409  return D;
8410}
8411
8412Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8413                                    MultiTemplateParamsArg TemplateParams) {
8414  const DeclSpec &DS = D.getDeclSpec();
8415
8416  assert(DS.isFriendSpecified());
8417  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8418
8419  SourceLocation Loc = D.getIdentifierLoc();
8420  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8421  QualType T = TInfo->getType();
8422
8423  // C++ [class.friend]p1
8424  //   A friend of a class is a function or class....
8425  // Note that this sees through typedefs, which is intended.
8426  // It *doesn't* see through dependent types, which is correct
8427  // according to [temp.arg.type]p3:
8428  //   If a declaration acquires a function type through a
8429  //   type dependent on a template-parameter and this causes
8430  //   a declaration that does not use the syntactic form of a
8431  //   function declarator to have a function type, the program
8432  //   is ill-formed.
8433  if (!T->isFunctionType()) {
8434    Diag(Loc, diag::err_unexpected_friend);
8435
8436    // It might be worthwhile to try to recover by creating an
8437    // appropriate declaration.
8438    return 0;
8439  }
8440
8441  // C++ [namespace.memdef]p3
8442  //  - If a friend declaration in a non-local class first declares a
8443  //    class or function, the friend class or function is a member
8444  //    of the innermost enclosing namespace.
8445  //  - The name of the friend is not found by simple name lookup
8446  //    until a matching declaration is provided in that namespace
8447  //    scope (either before or after the class declaration granting
8448  //    friendship).
8449  //  - If a friend function is called, its name may be found by the
8450  //    name lookup that considers functions from namespaces and
8451  //    classes associated with the types of the function arguments.
8452  //  - When looking for a prior declaration of a class or a function
8453  //    declared as a friend, scopes outside the innermost enclosing
8454  //    namespace scope are not considered.
8455
8456  CXXScopeSpec &SS = D.getCXXScopeSpec();
8457  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8458  DeclarationName Name = NameInfo.getName();
8459  assert(Name);
8460
8461  // Check for unexpanded parameter packs.
8462  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8463      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8464      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8465    return 0;
8466
8467  // The context we found the declaration in, or in which we should
8468  // create the declaration.
8469  DeclContext *DC;
8470  Scope *DCScope = S;
8471  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8472                        ForRedeclaration);
8473
8474  // FIXME: there are different rules in local classes
8475
8476  // There are four cases here.
8477  //   - There's no scope specifier, in which case we just go to the
8478  //     appropriate scope and look for a function or function template
8479  //     there as appropriate.
8480  // Recover from invalid scope qualifiers as if they just weren't there.
8481  if (SS.isInvalid() || !SS.isSet()) {
8482    // C++0x [namespace.memdef]p3:
8483    //   If the name in a friend declaration is neither qualified nor
8484    //   a template-id and the declaration is a function or an
8485    //   elaborated-type-specifier, the lookup to determine whether
8486    //   the entity has been previously declared shall not consider
8487    //   any scopes outside the innermost enclosing namespace.
8488    // C++0x [class.friend]p11:
8489    //   If a friend declaration appears in a local class and the name
8490    //   specified is an unqualified name, a prior declaration is
8491    //   looked up without considering scopes that are outside the
8492    //   innermost enclosing non-class scope. For a friend function
8493    //   declaration, if there is no prior declaration, the program is
8494    //   ill-formed.
8495    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8496    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8497
8498    // Find the appropriate context according to the above.
8499    DC = CurContext;
8500    while (true) {
8501      // Skip class contexts.  If someone can cite chapter and verse
8502      // for this behavior, that would be nice --- it's what GCC and
8503      // EDG do, and it seems like a reasonable intent, but the spec
8504      // really only says that checks for unqualified existing
8505      // declarations should stop at the nearest enclosing namespace,
8506      // not that they should only consider the nearest enclosing
8507      // namespace.
8508      while (DC->isRecord())
8509        DC = DC->getParent();
8510
8511      LookupQualifiedName(Previous, DC);
8512
8513      // TODO: decide what we think about using declarations.
8514      if (isLocal || !Previous.empty())
8515        break;
8516
8517      if (isTemplateId) {
8518        if (isa<TranslationUnitDecl>(DC)) break;
8519      } else {
8520        if (DC->isFileContext()) break;
8521      }
8522      DC = DC->getParent();
8523    }
8524
8525    // C++ [class.friend]p1: A friend of a class is a function or
8526    //   class that is not a member of the class . . .
8527    // C++0x changes this for both friend types and functions.
8528    // Most C++ 98 compilers do seem to give an error here, so
8529    // we do, too.
8530    if (!Previous.empty() && DC->Equals(CurContext)
8531        && !getLangOptions().CPlusPlus0x)
8532      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8533
8534    DCScope = getScopeForDeclContext(S, DC);
8535
8536  //   - There's a non-dependent scope specifier, in which case we
8537  //     compute it and do a previous lookup there for a function
8538  //     or function template.
8539  } else if (!SS.getScopeRep()->isDependent()) {
8540    DC = computeDeclContext(SS);
8541    if (!DC) return 0;
8542
8543    if (RequireCompleteDeclContext(SS, DC)) return 0;
8544
8545    LookupQualifiedName(Previous, DC);
8546
8547    // Ignore things found implicitly in the wrong scope.
8548    // TODO: better diagnostics for this case.  Suggesting the right
8549    // qualified scope would be nice...
8550    LookupResult::Filter F = Previous.makeFilter();
8551    while (F.hasNext()) {
8552      NamedDecl *D = F.next();
8553      if (!DC->InEnclosingNamespaceSetOf(
8554              D->getDeclContext()->getRedeclContext()))
8555        F.erase();
8556    }
8557    F.done();
8558
8559    if (Previous.empty()) {
8560      D.setInvalidType();
8561      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8562      return 0;
8563    }
8564
8565    // C++ [class.friend]p1: A friend of a class is a function or
8566    //   class that is not a member of the class . . .
8567    if (DC->Equals(CurContext))
8568      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8569
8570  //   - There's a scope specifier that does not match any template
8571  //     parameter lists, in which case we use some arbitrary context,
8572  //     create a method or method template, and wait for instantiation.
8573  //   - There's a scope specifier that does match some template
8574  //     parameter lists, which we don't handle right now.
8575  } else {
8576    DC = CurContext;
8577    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8578  }
8579
8580  if (!DC->isRecord()) {
8581    // This implies that it has to be an operator or function.
8582    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8583        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8584        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8585      Diag(Loc, diag::err_introducing_special_friend) <<
8586        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8587         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8588      return 0;
8589    }
8590  }
8591
8592  bool Redeclaration = false;
8593  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8594                                          move(TemplateParams),
8595                                          IsDefinition,
8596                                          Redeclaration);
8597  if (!ND) return 0;
8598
8599  assert(ND->getDeclContext() == DC);
8600  assert(ND->getLexicalDeclContext() == CurContext);
8601
8602  // Add the function declaration to the appropriate lookup tables,
8603  // adjusting the redeclarations list as necessary.  We don't
8604  // want to do this yet if the friending class is dependent.
8605  //
8606  // Also update the scope-based lookup if the target context's
8607  // lookup context is in lexical scope.
8608  if (!CurContext->isDependentContext()) {
8609    DC = DC->getRedeclContext();
8610    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8611    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8612      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8613  }
8614
8615  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8616                                       D.getIdentifierLoc(), ND,
8617                                       DS.getFriendSpecLoc());
8618  FrD->setAccess(AS_public);
8619  CurContext->addDecl(FrD);
8620
8621  if (ND->isInvalidDecl())
8622    FrD->setInvalidDecl();
8623  else {
8624    FunctionDecl *FD;
8625    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8626      FD = FTD->getTemplatedDecl();
8627    else
8628      FD = cast<FunctionDecl>(ND);
8629
8630    // Mark templated-scope function declarations as unsupported.
8631    if (FD->getNumTemplateParameterLists())
8632      FrD->setUnsupportedFriend(true);
8633  }
8634
8635  return ND;
8636}
8637
8638void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8639  AdjustDeclIfTemplate(Dcl);
8640
8641  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8642  if (!Fn) {
8643    Diag(DelLoc, diag::err_deleted_non_function);
8644    return;
8645  }
8646  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8647    Diag(DelLoc, diag::err_deleted_decl_not_first);
8648    Diag(Prev->getLocation(), diag::note_previous_declaration);
8649    // If the declaration wasn't the first, we delete the function anyway for
8650    // recovery.
8651  }
8652  Fn->setDeletedAsWritten();
8653}
8654
8655void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8656  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8657
8658  if (MD) {
8659    CXXSpecialMember Member = getSpecialMember(MD);
8660    if (Member == CXXInvalid) {
8661      Diag(DefaultLoc, diag::err_default_special_members);
8662      return;
8663    }
8664
8665    MD->setDefaulted();
8666    MD->setExplicitlyDefaulted();
8667
8668    // We'll check it when the record is done
8669    if (MD == MD->getCanonicalDecl())
8670      return;
8671
8672    switch (Member) {
8673    case CXXDefaultConstructor: {
8674      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8675      CheckExplicitlyDefaultedDefaultConstructor(CD);
8676      if (!CD->isInvalidDecl())
8677        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8678      break;
8679    }
8680
8681    case CXXCopyConstructor: {
8682      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8683      CheckExplicitlyDefaultedCopyConstructor(CD);
8684      if (!CD->isInvalidDecl())
8685        DefineImplicitCopyConstructor(DefaultLoc, CD);
8686      break;
8687    }
8688
8689    case CXXCopyAssignment: {
8690      CheckExplicitlyDefaultedCopyAssignment(MD);
8691      if (!MD->isInvalidDecl())
8692        DefineImplicitCopyAssignment(DefaultLoc, MD);
8693      break;
8694    }
8695
8696    case CXXDestructor: {
8697      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8698      CheckExplicitlyDefaultedDestructor(DD);
8699      if (!DD->isInvalidDecl())
8700        DefineImplicitDestructor(DefaultLoc, DD);
8701      break;
8702    }
8703
8704    default:
8705      // FIXME: Do the rest once we have move functions
8706      break;
8707    }
8708  } else {
8709    Diag(DefaultLoc, diag::err_default_special_members);
8710  }
8711}
8712
8713static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8714  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8715    Stmt *SubStmt = *CI;
8716    if (!SubStmt)
8717      continue;
8718    if (isa<ReturnStmt>(SubStmt))
8719      Self.Diag(SubStmt->getSourceRange().getBegin(),
8720           diag::err_return_in_constructor_handler);
8721    if (!isa<Expr>(SubStmt))
8722      SearchForReturnInStmt(Self, SubStmt);
8723  }
8724}
8725
8726void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8727  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8728    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8729    SearchForReturnInStmt(*this, Handler);
8730  }
8731}
8732
8733bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8734                                             const CXXMethodDecl *Old) {
8735  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8736  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8737
8738  if (Context.hasSameType(NewTy, OldTy) ||
8739      NewTy->isDependentType() || OldTy->isDependentType())
8740    return false;
8741
8742  // Check if the return types are covariant
8743  QualType NewClassTy, OldClassTy;
8744
8745  /// Both types must be pointers or references to classes.
8746  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8747    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8748      NewClassTy = NewPT->getPointeeType();
8749      OldClassTy = OldPT->getPointeeType();
8750    }
8751  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8752    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8753      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8754        NewClassTy = NewRT->getPointeeType();
8755        OldClassTy = OldRT->getPointeeType();
8756      }
8757    }
8758  }
8759
8760  // The return types aren't either both pointers or references to a class type.
8761  if (NewClassTy.isNull()) {
8762    Diag(New->getLocation(),
8763         diag::err_different_return_type_for_overriding_virtual_function)
8764      << New->getDeclName() << NewTy << OldTy;
8765    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8766
8767    return true;
8768  }
8769
8770  // C++ [class.virtual]p6:
8771  //   If the return type of D::f differs from the return type of B::f, the
8772  //   class type in the return type of D::f shall be complete at the point of
8773  //   declaration of D::f or shall be the class type D.
8774  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8775    if (!RT->isBeingDefined() &&
8776        RequireCompleteType(New->getLocation(), NewClassTy,
8777                            PDiag(diag::err_covariant_return_incomplete)
8778                              << New->getDeclName()))
8779    return true;
8780  }
8781
8782  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8783    // Check if the new class derives from the old class.
8784    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8785      Diag(New->getLocation(),
8786           diag::err_covariant_return_not_derived)
8787      << New->getDeclName() << NewTy << OldTy;
8788      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8789      return true;
8790    }
8791
8792    // Check if we the conversion from derived to base is valid.
8793    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8794                    diag::err_covariant_return_inaccessible_base,
8795                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8796                    // FIXME: Should this point to the return type?
8797                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8798      // FIXME: this note won't trigger for delayed access control
8799      // diagnostics, and it's impossible to get an undelayed error
8800      // here from access control during the original parse because
8801      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8802      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8803      return true;
8804    }
8805  }
8806
8807  // The qualifiers of the return types must be the same.
8808  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8809    Diag(New->getLocation(),
8810         diag::err_covariant_return_type_different_qualifications)
8811    << New->getDeclName() << NewTy << OldTy;
8812    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8813    return true;
8814  };
8815
8816
8817  // The new class type must have the same or less qualifiers as the old type.
8818  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8819    Diag(New->getLocation(),
8820         diag::err_covariant_return_type_class_type_more_qualified)
8821    << New->getDeclName() << NewTy << OldTy;
8822    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8823    return true;
8824  };
8825
8826  return false;
8827}
8828
8829/// \brief Mark the given method pure.
8830///
8831/// \param Method the method to be marked pure.
8832///
8833/// \param InitRange the source range that covers the "0" initializer.
8834bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8835  SourceLocation EndLoc = InitRange.getEnd();
8836  if (EndLoc.isValid())
8837    Method->setRangeEnd(EndLoc);
8838
8839  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8840    Method->setPure();
8841    return false;
8842  }
8843
8844  if (!Method->isInvalidDecl())
8845    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8846      << Method->getDeclName() << InitRange;
8847  return true;
8848}
8849
8850/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8851/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8852/// is a fresh scope pushed for just this purpose.
8853///
8854/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8855/// static data member of class X, names should be looked up in the scope of
8856/// class X.
8857void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8858  // If there is no declaration, there was an error parsing it.
8859  if (D == 0 || D->isInvalidDecl()) return;
8860
8861  // We should only get called for declarations with scope specifiers, like:
8862  //   int foo::bar;
8863  assert(D->isOutOfLine());
8864  EnterDeclaratorContext(S, D->getDeclContext());
8865}
8866
8867/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8868/// initializer for the out-of-line declaration 'D'.
8869void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8870  // If there is no declaration, there was an error parsing it.
8871  if (D == 0 || D->isInvalidDecl()) return;
8872
8873  assert(D->isOutOfLine());
8874  ExitDeclaratorContext(S);
8875}
8876
8877/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8878/// C++ if/switch/while/for statement.
8879/// e.g: "if (int x = f()) {...}"
8880DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8881  // C++ 6.4p2:
8882  // The declarator shall not specify a function or an array.
8883  // The type-specifier-seq shall not contain typedef and shall not declare a
8884  // new class or enumeration.
8885  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8886         "Parser allowed 'typedef' as storage class of condition decl.");
8887
8888  TagDecl *OwnedTag = 0;
8889  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
8890  QualType Ty = TInfo->getType();
8891
8892  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
8893                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
8894                              // would be created and CXXConditionDeclExpr wants a VarDecl.
8895    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
8896      << D.getSourceRange();
8897    return DeclResult();
8898  } else if (OwnedTag && OwnedTag->isDefinition()) {
8899    // The type-specifier-seq shall not declare a new class or enumeration.
8900    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
8901  }
8902
8903  Decl *Dcl = ActOnDeclarator(S, D);
8904  if (!Dcl)
8905    return DeclResult();
8906
8907  return Dcl;
8908}
8909
8910void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8911                          bool DefinitionRequired) {
8912  // Ignore any vtable uses in unevaluated operands or for classes that do
8913  // not have a vtable.
8914  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8915      CurContext->isDependentContext() ||
8916      ExprEvalContexts.back().Context == Unevaluated)
8917    return;
8918
8919  // Try to insert this class into the map.
8920  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8921  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8922    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8923  if (!Pos.second) {
8924    // If we already had an entry, check to see if we are promoting this vtable
8925    // to required a definition. If so, we need to reappend to the VTableUses
8926    // list, since we may have already processed the first entry.
8927    if (DefinitionRequired && !Pos.first->second) {
8928      Pos.first->second = true;
8929    } else {
8930      // Otherwise, we can early exit.
8931      return;
8932    }
8933  }
8934
8935  // Local classes need to have their virtual members marked
8936  // immediately. For all other classes, we mark their virtual members
8937  // at the end of the translation unit.
8938  if (Class->isLocalClass())
8939    MarkVirtualMembersReferenced(Loc, Class);
8940  else
8941    VTableUses.push_back(std::make_pair(Class, Loc));
8942}
8943
8944bool Sema::DefineUsedVTables() {
8945  if (VTableUses.empty())
8946    return false;
8947
8948  // Note: The VTableUses vector could grow as a result of marking
8949  // the members of a class as "used", so we check the size each
8950  // time through the loop and prefer indices (with are stable) to
8951  // iterators (which are not).
8952  bool DefinedAnything = false;
8953  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8954    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8955    if (!Class)
8956      continue;
8957
8958    SourceLocation Loc = VTableUses[I].second;
8959
8960    // If this class has a key function, but that key function is
8961    // defined in another translation unit, we don't need to emit the
8962    // vtable even though we're using it.
8963    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8964    if (KeyFunction && !KeyFunction->hasBody()) {
8965      switch (KeyFunction->getTemplateSpecializationKind()) {
8966      case TSK_Undeclared:
8967      case TSK_ExplicitSpecialization:
8968      case TSK_ExplicitInstantiationDeclaration:
8969        // The key function is in another translation unit.
8970        continue;
8971
8972      case TSK_ExplicitInstantiationDefinition:
8973      case TSK_ImplicitInstantiation:
8974        // We will be instantiating the key function.
8975        break;
8976      }
8977    } else if (!KeyFunction) {
8978      // If we have a class with no key function that is the subject
8979      // of an explicit instantiation declaration, suppress the
8980      // vtable; it will live with the explicit instantiation
8981      // definition.
8982      bool IsExplicitInstantiationDeclaration
8983        = Class->getTemplateSpecializationKind()
8984                                      == TSK_ExplicitInstantiationDeclaration;
8985      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
8986                                 REnd = Class->redecls_end();
8987           R != REnd; ++R) {
8988        TemplateSpecializationKind TSK
8989          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
8990        if (TSK == TSK_ExplicitInstantiationDeclaration)
8991          IsExplicitInstantiationDeclaration = true;
8992        else if (TSK == TSK_ExplicitInstantiationDefinition) {
8993          IsExplicitInstantiationDeclaration = false;
8994          break;
8995        }
8996      }
8997
8998      if (IsExplicitInstantiationDeclaration)
8999        continue;
9000    }
9001
9002    // Mark all of the virtual members of this class as referenced, so
9003    // that we can build a vtable. Then, tell the AST consumer that a
9004    // vtable for this class is required.
9005    DefinedAnything = true;
9006    MarkVirtualMembersReferenced(Loc, Class);
9007    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9008    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9009
9010    // Optionally warn if we're emitting a weak vtable.
9011    if (Class->getLinkage() == ExternalLinkage &&
9012        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9013      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9014        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9015    }
9016  }
9017  VTableUses.clear();
9018
9019  return DefinedAnything;
9020}
9021
9022void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9023                                        const CXXRecordDecl *RD) {
9024  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9025       e = RD->method_end(); i != e; ++i) {
9026    CXXMethodDecl *MD = *i;
9027
9028    // C++ [basic.def.odr]p2:
9029    //   [...] A virtual member function is used if it is not pure. [...]
9030    if (MD->isVirtual() && !MD->isPure())
9031      MarkDeclarationReferenced(Loc, MD);
9032  }
9033
9034  // Only classes that have virtual bases need a VTT.
9035  if (RD->getNumVBases() == 0)
9036    return;
9037
9038  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9039           e = RD->bases_end(); i != e; ++i) {
9040    const CXXRecordDecl *Base =
9041        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9042    if (Base->getNumVBases() == 0)
9043      continue;
9044    MarkVirtualMembersReferenced(Loc, Base);
9045  }
9046}
9047
9048/// SetIvarInitializers - This routine builds initialization ASTs for the
9049/// Objective-C implementation whose ivars need be initialized.
9050void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9051  if (!getLangOptions().CPlusPlus)
9052    return;
9053  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9054    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9055    CollectIvarsToConstructOrDestruct(OID, ivars);
9056    if (ivars.empty())
9057      return;
9058    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9059    for (unsigned i = 0; i < ivars.size(); i++) {
9060      FieldDecl *Field = ivars[i];
9061      if (Field->isInvalidDecl())
9062        continue;
9063
9064      CXXCtorInitializer *Member;
9065      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9066      InitializationKind InitKind =
9067        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9068
9069      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9070      ExprResult MemberInit =
9071        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9072      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9073      // Note, MemberInit could actually come back empty if no initialization
9074      // is required (e.g., because it would call a trivial default constructor)
9075      if (!MemberInit.get() || MemberInit.isInvalid())
9076        continue;
9077
9078      Member =
9079        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9080                                         SourceLocation(),
9081                                         MemberInit.takeAs<Expr>(),
9082                                         SourceLocation());
9083      AllToInit.push_back(Member);
9084
9085      // Be sure that the destructor is accessible and is marked as referenced.
9086      if (const RecordType *RecordTy
9087                  = Context.getBaseElementType(Field->getType())
9088                                                        ->getAs<RecordType>()) {
9089                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9090        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9091          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9092          CheckDestructorAccess(Field->getLocation(), Destructor,
9093                            PDiag(diag::err_access_dtor_ivar)
9094                              << Context.getBaseElementType(Field->getType()));
9095        }
9096      }
9097    }
9098    ObjCImplementation->setIvarInitializers(Context,
9099                                            AllToInit.data(), AllToInit.size());
9100  }
9101}
9102
9103static
9104void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9105                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9106                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9107                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9108                           Sema &S) {
9109  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9110                                                   CE = Current.end();
9111  if (Ctor->isInvalidDecl())
9112    return;
9113
9114  const FunctionDecl *FNTarget = 0;
9115  CXXConstructorDecl *Target;
9116
9117  // We ignore the result here since if we don't have a body, Target will be
9118  // null below.
9119  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9120  Target
9121= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9122
9123  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9124                     // Avoid dereferencing a null pointer here.
9125                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9126
9127  if (!Current.insert(Canonical))
9128    return;
9129
9130  // We know that beyond here, we aren't chaining into a cycle.
9131  if (!Target || !Target->isDelegatingConstructor() ||
9132      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9133    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9134      Valid.insert(*CI);
9135    Current.clear();
9136  // We've hit a cycle.
9137  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9138             Current.count(TCanonical)) {
9139    // If we haven't diagnosed this cycle yet, do so now.
9140    if (!Invalid.count(TCanonical)) {
9141      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9142             diag::warn_delegating_ctor_cycle)
9143        << Ctor;
9144
9145      // Don't add a note for a function delegating directo to itself.
9146      if (TCanonical != Canonical)
9147        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9148
9149      CXXConstructorDecl *C = Target;
9150      while (C->getCanonicalDecl() != Canonical) {
9151        (void)C->getTargetConstructor()->hasBody(FNTarget);
9152        assert(FNTarget && "Ctor cycle through bodiless function");
9153
9154        C
9155       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9156        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9157      }
9158    }
9159
9160    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9161      Invalid.insert(*CI);
9162    Current.clear();
9163  } else {
9164    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9165  }
9166}
9167
9168
9169void Sema::CheckDelegatingCtorCycles() {
9170  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9171
9172  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9173                                                   CE = Current.end();
9174
9175  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9176         I = DelegatingCtorDecls.begin(),
9177         E = DelegatingCtorDecls.end();
9178       I != E; ++I) {
9179   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9180  }
9181
9182  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9183    (*CI)->setInvalidDecl();
9184}
9185